Topological meaning of gauge and gravitational anomalies and Gaussian factors
International Nuclear Information System (INIS)
We discuss a relation between the 2n-dimensional anomalies and the (2n+2)-dimensional chiral anomalies using the Gaussian factor (heat kernel) regularization. Recently, it was shown that Fujikawa's form of the non-Abelian anomaly is related to a topological object in a direct manner. Their argument seems general and independent of concrete forms of index, anomaly and other details of models. In this paper we extend the analysis to the V, A coupling gauge theories, the gravitational theory and also to the open superstring theory. In application to the gravitational anomaly, we obtain a family of consistent anomalies from the higher dimensional index, which are all equivalent to Fujikawa's form. Our construction of gravitational anomalies leads naturally to counterterms which relate different forms of anomalies to one another. In the case of Type-I superstring theory in 10 dimensions, we show that the gauge anomaly in this theory is related to a index of a kind of Dirac operator in 12 dimensions. Our consideration might provide hints to geometrical understanding of string anomaly. (author)
International Nuclear Information System (INIS)
In quantum systems with an infinite number of degrees of freedom loop corrections may break symmetries of original Lagrangian. This phenomenon, referred to as quantum anomaly, appears to be due to the need of regularization, i.e., the definition of the theory in ultraviolet domain. Such a definition unavoidably contradicts certain symmetries of the classical theory. In particular, it leads to nonconservation of the corresponding Noether currents. In the present review the origin of anomalies and their role in the structure of modern field-theoretical models are discussed. Anomalies in internal currents of gauge theories are of special importance. They may induce a loss of invariance with respect to either infinitesimal or global gauge transformations, resulting in nonself-contented theory. Anomaly cancellation condition severely restricts the field content and the choice of interactions in realistic models. The methods of anomally calculations are discussed in details. The special attention is played to nonconservation of axial and chiral fermionic currents. The elementary concept of the hierarchy of anomalies is presented. A special section treats global anomalies, in particular the Witten's SU(2) one, and analogous phenomenon in odd-dimensional Yang-Mills theories
International Nuclear Information System (INIS)
These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)
Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly*,**
Directory of Open Access Journals (Sweden)
Megías Eugenio
2014-03-01
Full Text Available We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.
Anomaly Inflow for Gauge Defects
Blum, Julie; Harvey, Jeffrey A.
1993-01-01
Topological defects constructed out of scalar fields and possessing chiral fermion zero modes are known to exhibit an anomaly inflow mechanism which cancels the anomaly in the effective theory of the zero modes through an inflow of current from the space in which the defect is embedded. We investigate the analog of this mechanism for defects constructed out of gauge fields in higher dimensions. In particular we analyze this mechanism for string (one-brane) defects in six dim...
Anomaly Cancellation Condition in Lattice Gauge Theory
Suzuki, Hiroshi
2000-01-01
We study the gauge anomaly ${\\cal A}$ defined on a 4-dimensional infinite lattice while keeping the lattice spacing finite. We assume that (I) ${\\cal A}$ depends smoothly and locally on the gauge potential, (II) ${\\cal A}$ reproduces the gauge anomaly in the continuum theory in the classical continuum limit, and (III) U(1) gauge anomalies have a topological property. It is then shown that the gauge anomaly ${\\cal A}$ can always be removed by local counterterms to all orders ...
Konishi anomaly approach to gravitational F-terms
International Nuclear Information System (INIS)
We study gravitational corrections to the effective superpotential in theories with a single adjoint chiral multiplet, using the generalized Konishi anomaly and the gravitationally deformed chiral ring. We show that the genus one correction to the loop equation in the corresponding matrix model agrees with the gravitational corrected anomaly equations in the gauge theory. An important ingredient in the proof is the lack of factorization of chiral gauge invariant operators in presence of a supergravity background. We also find a genus zero gravitational correction to the superpotential, which can be removed by a field redefinition. (author)
Review on possible gravitational anomalies
Amador, X E
2005-01-01
This is an updated introductory review of 2 possible gravitational anomalies that has attracted part of the Scientific community: the Allais effect that occur during solar eclipses, and the Pioneer 10 spacecraft anomaly, experimented also by Pioneer 11 and Ulysses spacecrafts. It seems that, to date, no satisfactory conventional explanation exist to these phenomena, and this suggests that possible new physics will be needed to account for them. The main purpose of this review is to announce 3 other new measurements that will be carried on during the 2005 solar eclipses in Panama and Colombia (Apr. 8) and in Portugal (Oct.15).
Review on possible gravitational anomalies
International Nuclear Information System (INIS)
This is an updated introductory review of 2 possible gravitational anomalies that has attracted part of the Scientific community: the Allais effect that occur during solar eclipses, and the Pioneer 10 spacecraft anomaly, experimented also by Pioneer 11 and Ulysses spacecrafts. It seems that, to date, no satisfactory conventional explanation exist to these phenomena, and this suggests that possible new physics will be needed to account for them. The main purpose of this review is to announce 3 other new measurements that will be carried on during the 2005 solar eclipses in Panama and Colombia (Apr. 8) and in Portugal (Oct.15)
Chiral and Gravitational Anomalies on Fermi Surfaces
Basar, Gokce; Zahed, Ismail
2013-01-01
A Fermi surface threaded by a Berry phase can be described by the Wess-Zumino-Witten (WZW) term. After gauging, it produces a five-dimensional Chern-Simons term in the action. We show how this Chern-Simons term captures the essence of the Abelian, non-Abelian, and mixed gravitational anomalies in describing both in- and off-equilibrium phenomena. In particular we derive a novel contribution to the Chiral Vortical Effect that arises when a temperature gradient is present. We also discuss the issue of universality of the anomalous currents.
Gauge-independent trace anomaly for gravitons
International Nuclear Information System (INIS)
We show that the trace anomaly for gravitons calculated using the usual effective action formalism depends on the choice of gauge when the background spacetime is not a solution of the classical equation of motion, that is, when off shell. We then use the gauge-independent Vilkovisky-DeWitt effective action to restore gauge independence to the off-shell case. Additionally we explicitly evaluate trace anomalies for some N-sphere background spacetimes
Gauge independent conformal anomaly for gravitons
Cho, H T; Cho, H T; Kantowski, R
1995-01-01
We show that the conformal anomaly for gravitons calculated using the usual effective action formalism depends on the choice of gauge when the background spacetime is not a solution of the classical equation of motion, that is, when off-shell. We then use the gauge independent Vilkovisky-DeWitt effective action to restore gauge independence to the off-shell case. Additionally we explicitly evaluate conformal anomalies for some N-sphere background spacetimes.
Anomaly cancellation condition in lattice gauge theory
International Nuclear Information System (INIS)
We show that, to all orders of powers of the gauge potential, a gauge anomaly ? defined on 4-dimensional infinite lattice can always be removed by a local counterterm, provided that ? depends smoothly and locally on the gauge potential and that ? reproduces the gauge anomaly in the continuum theory in the classical continuum limit: The unique exception is proportional to the anomaly in the continuum theory. This follows from an analysis of nontrivial local solutions to the Wess-Zumino consistency condition in lattice gauge theory. Our result is applicable to the lattice chiral gauge theory based on the Ginsparg-Wilson Dirac operator, when the gauge field is sufficiently weak parallel-U(n,?) - 1-parallel < ?', where U(n,?) is the link variable and ?' a certain small positive constant. (author)
Gravitation and Gauge Symmetries
International Nuclear Information System (INIS)
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The book concludes with thirteen appendices, covering mainly technical issues but also including Ashtekhar variables and Chern-Simons theory. Irritatingly, there is a separate bibliography for each chapter (which leads to much duplication) but commendably, the author highlights selected sources for suitable further reading. Also to be welcomed wholeheartedly are well-chosen worked examples and exercises, ranging from easy to fairly challenging, in each chapter. This is a properly bound paperback, hardly inexpensive, but well up to IOP's impeccable production standards. Could this be the ideal textbook for a research student or even an established researcher from another field to pick up the latest developments in field theory? Unfortunately this is not the whole story. The back cover also asserts, while talking about gauge invariance, that 'It is less known that the principle of equivalence, one of the basic dynamical properties of the gravitational interaction, can be expressed as a (spacetime) gauge symmetry'. On page 10 this is qualified to be a local symmetry. On pages 62-3 this hidden result is revealed. As every relativist knows, the principle of equivalence implies that for each spacetime point p a chart (normal coordinates at p) can be chosen so that the metric tensor takes its Minkowski value and its (partial) derivatives vanish at p. In other words every (pseudo-)Riemannian manifold is locally flat, the 'less known' result. So what else can the author tell us about gravity? There is little to fault in the first two sections of the book, trying to express gravity as a nonlinear spin-2 theory on Minkowski spacetime, apart from the obvious objection. A well-known and highly-recommendable textbook by S Weinberg 1972 Gravitation and Cosmology (New York: Wiley), carries out, at a more elementary level, a similar programme with the same defect. Such local theories cannot predict global changes whereby spacetime has a different topology to the Minkowski one. (The unconvinced reader should investigate references to black holes in Weinberg's text.) As speaker after speaker at the S W Hawking 60th Birthday Conference last week emphasized, when trying to unify gravity with quantum theory, it is perilous to neglect geometry. Because the later chapters on supersymmetry, supergravity, Kaluza-Klein and string theories are more fashionable, I need to point out an important caveat. Excluding textbooks and conference volumes, all (English language) citations in the supersymmetry/supergravity chapter are at least 16 years old. Apart from one 2000 article (on teleparallel theory) this age gap drops by three years for the chapter on Kaluza-Klein theory, and it does not change any further for the string theory chapter. There have been more recent significant advances in our understanding and interpretation of these theories but, alas, they are not chronicled here. I raised a question as to the value of this book at the end of the first paragraph, and I want to answer it within the context of the conference mentioned above, which tried t
The ABJ anomaly in regularized gauge theories
Energy Technology Data Exchange (ETDEWEB)
Leveque, Benjamin; Kopper, Christoph [Centre de Physique Theorique, Ecole Polytechnique (France)
2012-07-01
We analyse the triangular anomaly in Pauli-Villars regularized axial U(1) gauge theory and within the Standard Model, using well-defined euclidean functional integrals. In axial U(1) gauge theory, we prove the presence of the anomaly and explain its relation to the IR non-analyticity of the fermion triangle. In the electroweak sector of the Standard Model, we confirm the cancelation of the anomaly to one-loop order in the regularized theory. We expose the theoretical tools based on which we aim to extend this result to all loop orders.
Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***
Megías, Eugenio; Pena-Benitez, Francisco
2014-03-01
We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.
Interpretation of Venus gravitational anomalies
International Nuclear Information System (INIS)
The Venus gravity field anomalies are interpreted from three harmonics of potential expansion. Masses and depths of the anomaly centers in three regions: the Aphrodita land, the Ishtar land and in the South of the planet, are defined from the Venus geoid height, pure anomaly of attractive force, and plumb deviation. These depths are determined to be 930-1140 km. Analogous Earth anomalies in the field smoothing from 16 to 3 harmonics are characterized by depth overestimation. 1.4-times. Because of this, depths of the Venus anomaly sources reduced to 16 harmonics lie approximately in the range of 700-800 km, that is they correspond to the depth of bedding of the Venus mantle second phase boundary
Topological orders with global gauge anomalies
You, Yi-Zhuang; Xu, Cenke
2015-08-01
By definition, the physics of the d -dimensional (dim) boundary of a (d +1 ) -dim symmetry protected topological (SPT) state cannot be realized as itself on a d -dim lattice. If the symmetry of the system is unitary, then a formal way to determine whether a d -dim theory must be a boundary or not, is to couple this theory to a gauge field (or to "gauge" its symmetry), and check if there is a gauge anomaly. In this paper we discuss the following question: Can the boundary of a SPT state be driven into a fully gapped topological order which preserves all the symmetries? We argue (conjecture) that if the gauge anomaly of the boundary is "perturbative," then the boundary must remain gapless; while if the boundary only has global gauge anomaly but no perturbative anomaly, then it is possible to gap out the boundary by driving it into a topological state, when d ?2 . We will demonstrate this conjecture with two examples: (1) the 3 d spin-1/2 chiral fermion with the well-known Witten's global anomaly [Phys. Lett. 117, 324 (1982), 10.1016/0370-2693(82)90728-6], which can be realized on the boundary of a 4 d topological superconductor with SU(2) or U (1 ) ?Z2 symmetry; and (2) the 4 d boundary of a 5 d topological superconductor with the same symmetry. We show that these boundary systems can be driven into a fully gapped Z2 N topological order with topological degeneracy, but this Z2 N topological order cannot be future driven into a trivial confined phase that preserves all the symmetries due to some special properties of its topological defects. Our study also leads to exotic states of matter in pure 3 d space.
Gauge invariant gravitation theory. 1. Gravitational field source and spin
International Nuclear Information System (INIS)
It is shown that gauge invariance occurs as the consequence of physical field (fields with certain spin) description by the values, transformed as irreducible representations of homogeneous Lorentz group. Gauge-invariant lagrangian of the field of 2 spin was constructed. It was proved that gravitational field represented the superposition of gauge-invariant fields of 2 and 0 spins. Occurrence of the zero spin field is directly related with nonpreservation of the (gauge-invariant) source of gravitational field
Anomalies, gauge field topology, and the lattice
Creutz, Michael
2011-04-01
Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally "fall through the lattice." Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility.
Holographic entanglement entropy and gravitational anomalies
Castro, Alejandra; Iqbal, Nabil; Perlmutter, Eric
2014-01-01
We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal worldline into a ribbon, and that the anomalous contribution to the CFT entanglement entropy is given by the twist in this ribbon. The entanglement functional may also be interpreted as the worldline action for a spinning particle -- that is, an anyon -- in three-dimensional curved spacetime. We demonstrate that the minimization of this action results in the Mathisson-Papapetrou-Dixon equations of motion for a spinning particle in three dimensions. We work out several simple examples and demonstrate agreement with CFT calculations.
Gauge Anomalies and Neutrino Seesaw Models
Neves Cebola, Luis Manuel
Despite the success of the Standard Model concerning theoretical predictions, there are several experimental results that cannot be explained and there are reasons to believe that there exists new physics beyond it. Neutrino oscillations, and hence their masses, are examples of this. Experimentally it is known that neutrinos masses are quite small, when compared to all Standard Model particle masses. Among the theoretical possibilities to explain these tiny masses, the seesaw mechanism is a simple and well-motivated framework. In its minimal version, heavy particles are introduced that decouple from the theory in the early universe. To build consistent theories, classical symmetries need to be preserved at quantum level, so that there are no anomalies. The cancellation of these anomalies leads to constraints in the parameters of the theory. One attractive solution is to realize the anomaly cancellation through the modication of the gauge symmetry. In this thesis we present a short review of some features of t...
Gravitational anomalies in the solar system?
Iorio, Lorenzo
2015-02-01
Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.
Axial Anomaly in Lattice Abelian Gauge Theory in Arbitrary Dimensions
Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
1999-01-01
Axial anomaly of lattice abelian gauge theory in hyper-cubic regular lattice in arbitrary even dimensions is investigated by applying the method of exterior differential calculus. The topological invariance, gauge invariance and locality of the axial anomaly determine the explicit form of the topological part. The anomaly is obtained up to a multiplicative constant for finite lattice spacing and can be interpreted as the Chern character of the abelian lattice gauge theory.
Gravitational monopoles, anomalies and ME8 bundles
Manjarin, Juan Jose
2004-11-01
In this paper we try to clarify the physical meaning of the gauge theory that underlies the K-theoretical classification of RR charges in type IIA. Our main tool are the conditions for the cancellation of the Freed-Witten global anomaly when we take into account the effects of a flat and a general B-field. In each case we will see how K-theory captures some eleven dimensional information. In the first case and studying the electric properties of the D6-brane we see an eleven dimensional U(2) gauge symmetry, while the second can be related to an E8 theory. Moreover, in the reduction from the general to the flat case, we find that the Romans' mass gives the number of unstable intial D9-branes.
Modification of Gravitational Anomaly Method in Hawking Radiation
Morita, Takeshi
2009-01-01
We argue an ambiguity of the derivation of the Hawking radiation through the gravitational anomaly method and propose modifications of this method such that it reproduces the correct thermal fluxes. In this modified gravitational anomaly method, we employ the two dimensional conformal field theory technique.
On the photon chiral anomaly in an external gravitational field
International Nuclear Information System (INIS)
The anomaly of the photonic chiral current in an external gravitational field is in essence the only bosonic chiral anomaly in the four-dimensional space. The derivation of this anomaly, as well as of the analogous one for fermions, by means of the Pauli-Villars regularization in the external field technique are presented
Anomaly freedom in Seiberg-Witten noncommutative gauge theories
Brandt, F; Ruiz, F R; Brandt, Friedemann
2003-01-01
We show that noncommutative gauge theories with arbitrary compact gauge group defined by means of the Seiberg-Witten map have the same one-loop anomalies as their commutative counterparts. This is done in two steps. By explicitly calculating the $\\epsilon^{\\m_1\\m_2\\m_3\\m_4}$ part of the renormalized effective action, we first find the would-be one-loop anomaly of the theory to all orders in the noncommutativity parameter $\\theta^{\\m\
Anomaly cancellation in three-dimensional noncommutative gauge theories
International Nuclear Information System (INIS)
The anomaly found by Callan and Harvey is shown to be cancelled in a three-dimensional noncommutative gauge theory coupled to a fermion with a mass function depending on one spatial coordinate (domain wall mass). This evaluation has been done for the fermion in the fundamental and adjoint representations of the gauge group in the limit of small noncommutativity ? parameter
A Classical Version of the Non-Abelian Gauge Anomaly
Stone, Michael
2013-01-01
We show that a version of the covariant gauge anomaly for a 3+1 dimensional chiral fermion interacting with a non-Abelian gauge field can be obtained from the classical Hamiltonian flow of its probability distribution in phase space. The only quantum input needed is the Berry phase that arises from the direction of the spin being slaved to the particle's momentum.
Gravitational Anomalies in the Solar System?
Iorio, Lorenzo
2014-01-01
Mindful of the anomalous perihelion precession of Mercury discovered by U. Le Verrier in the second half of the nineteenth century and its successful explanation by A. Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known bodies have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the Universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gra...
Anomaly of discrete family symmetries and gauge coupling unification
Araki, Takeshi
2006-01-01
Anomaly of discrete symmetries can be defined as the Jacobian of the path-integral measure. We assume that an anomalous discrete symmetry at low energy is remnant of an anomaly free discrete symmetry, and that its anomaly is cancelled by the Green-Schwarz(GS) mechanism at a more fundamental scale. If the Kac-Moody levels k_i assume non-trivial values, the GS cancellation conditions of anomaly modify the ordinary unification of gauge couplings. This is most welcome, because f...
Topology and heterotic, gravitational, Lorentz and super-Weyl anomalies
International Nuclear Information System (INIS)
The (1,0) superdiffeomorphic and Lorentz anomalies are constructed using cohomology and descent equations in heterotic superspace. The superfield gravitational Wess-Zumino term is presented. Supergraph techniques are used to calculate the coefficients of the superdiffeomorphic, Lorentz and super-Weyl anomalies. (orig.)
Gravitational anomaly cancellation in type I superstring theory
International Nuclear Information System (INIS)
By explicit calculations we show that the gravitational anomaly of type I superstring theory vanishes at the string level. There are contributions from four topologically different diagrams to the anomaly: annulus, Moebius strip, torus, and Klein bottle. We explicitly show how the non-trivial cancellation occurs between the open (annulus and Moebius strip) and closed (Klein bottle) sectors. The anomaly of the torus diagram has the same form of type II superstring theory and vanishes because of the modular invariance. (orig.)
Gravitational anomaly cancellation in type I superstring theory
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Masahito; Kawamotu, Noboru; Kuramoto, Tetsuji; Shigemoto, Kazuyasu
1988-01-11
By explicit calculations we show that the gravitational anomaly of type I superstring theory vanishes at the string level. There are contributions from four topologically different diagrams to the anomaly: annulus, Moebius strip, torus, and Klein bottle. We explicitly show how the non-trivial cancellation occurs between the open (annulus and Moebius strip) and closed (Klein bottle) sectors. The anomaly of the torus diagram has the same form of type II superstring theory and vanishes because of the modular invariance.
Holomorphic Anomaly in Gauge Theories and Matrix Models
Huang, Min-xin(Interdisciplinary Center for Theoretical Study, Department of Modern Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China); Klemm, Albrecht
2006-01-01
We use the holomorphic anomaly equation to solve the gravitational corrections to Seiberg-Witten theory and a two-cut matrix model, which is related by the Dijkgraaf-Vafa conjecture to the topological B-model on a local Calabi-Yau manifold. In both cases we construct propagators that give a recursive solution in the genus modulo a holomorphic ambiguity. In the case of Seiberg-Witten theory the gravitational corrections can be expressed in closed form as quasimodular function...
Gravitational Quantum Foam and Supersymmetric Gauge Theories
Maeda, T; Noma, Y; Tamakoshi, T; Maeda, Takashi; Nakatsu, Toshio; Noma, Yui; Tamakoshi, Takeshi
2005-01-01
We study K\\"{a}hler gravity on local SU(N) geometry and describe precise correspondence with certain supersymmetric gauge theories and random plane partitions. The local geometry is discretized, via the geometric quantization, to a foam of an infinite number of gravitational quanta. We count these quanta in a relative manner by measuring a deviation of the local geometry from a singular Calabi-Yau threefold, that is a A_{N-1} singularity fibred over \\mathbb{P}^1. With such a regularization prescription, the number of the gravitational quanta becomes finite and turns to be the perturbative prepotential for five-dimensional \\mathcal{N}=1 supersymmetric SU(N) Yang-Mills. These quanta are labelled by lattice points in a certain convex polyhedron on \\mathbb{R}^3. The polyhedron becomes obtainable from a plane partition which is the ground state of a statistical model of random plane partition that describes the exact partition function for the gauge theory. Each gravitational quantum of the local geometry is shown...
Global gauge anomalies in two-dimensional bosonic sigma models
Gawedzki, Krzysztof; Waldorf, Konrad
2010-01-01
We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge field...
Gravitation, gauge theories and the early universe
International Nuclear Information System (INIS)
This volume contains chapters on various aspects of gravitation, gauge theory and the early universe. The work begins with an introduction into relativity, particle physics and classical quantum theory. This is followed by reviews of the latest developments in each of these fields, such as black-hole thermodynamics, electroweak theory, grand unification, and the renormalization group. The concluding part of the work comprises discussions of current research topics, such as the problem of the big-bang cosmology, quantum fields in curved spacetimes, quantum cosmology, Kaluza-Klein theories, supersymmetry, supergravity and superstrings. In addition, special articles on relevant mathematical topics are included. (author). 239 refs.; 60 figs.; 18 tabs
From gauge anomalies to gerbes and gerbal actions
Mickelsson, Jouko
2008-01-01
The purpose of this contribution is to point out connections between recent ideas about gerbes and gerbal actions (as higher categorical extension of representation theory) and old discussion in quantum field theory on commutator anomalies, gauge group extensions, and 3-cocycles. The unifying concept is the classical obstruction theory for group extensions as explained in the reference [ML].
Poincare gauge theory of gravitation and its Hamiltonian formulation
International Nuclear Information System (INIS)
Poincare gauge approach to the theory of gravitation is formulated. It has a very close resemblance to the usual procedure for gauging internal symmetries. By using Dirac's systematic method for systems with constraints, Einstein-Cartan form of Poincare gauge theory is put into Hamiltonian form, by means of a time gauge and by treating tetrad and connection coefficients as independent variables. (author)
More on counterterms in the gravitational action and anomalies
Taylor-Robinson, M M
2000-01-01
The addition of boundary counterterms to the gravitational action ofasymptotically anti-de Sitter spacetimes permits us to define the partitionfunction unambiguously without background subtraction. We show that theinclusion of p-form fields in the gravitational action requires the addition offurther counterterms which we explicitly identify. We also relate logarithmicdivergences in the action dependent on the matter fields to anomalies in thedual conformal field theories. In particular we find that the anomaly predictedfor the correlator of the stress energy tensor and two vector currents in fourdimensions agrees with that of the ${\\cal{N}} = 4$ superconformal SU(N) gaugetheory.
Shih, Sheng-Yu Darren
This thesis covers two distinct parts: Holomorphic Anomaly in Gauge Theory on ALE Space and Freudenthal Gauge Theory. In part I, I presented a concise review of the Seiberg-Witten curve, Nekrasov's background, geometric engineering and the holomorphic anomaly equation followed by my published work: Holomorphic Anomaly in Gauge Theory on ALE Space, where an deformed N = 2 SU(2) gauge theory on A1 space and its five dimension lift is studied. We find that the partition functions can be reproduced via special geometry and the holomorphic anomaly equation. Schwinger type integral expressions for the boundary conditions at the monopole/dyon point in moduli space are inferred. The interpretation of the five dimensional partition function as the partition function of a refined topological string on A1x(local P1 x P1) is suggested. In part II, I give a comprehensive review of the Freudenthal Triple System, including Freudenthal's orginal construction from Jordan Triple Systems and its relation to Lie algebra, Yang-Baxter equation, and 4d N = 2 BPS black holes, where the novel Freudenthal-dual was discovered. I also present my published work on the Freudenthal Gauge Theory, where we construct the most generic gauge theory admitting F-dual, and prove a no-go theorem that forbids coupling of a F-dual invariant gauge theory to supersymmetry.
Muon g-2 Anomaly and Dark Leptonic Gauge Boson
Energy Technology Data Exchange (ETDEWEB)
Lee, Hye-Sung [W& M
2014-11-01
One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.
Triangle anomaly in the light-cone gauge
Energy Technology Data Exchange (ETDEWEB)
Capper, D.M.; Jones, D.R.T.; Litvak, M.J.
1986-09-01
It is shown that the triangle anomaly can be evaluated in the light-cone gauge and that the result obtained is consistent with the usual covariant one. We use two different procedures: (i) Eliminating the non-physical fields from the covariant anomalous Ward identity. (ii) Carrying out a chiral transformation on the light-cone lagrangian. The use of both dimensional and Pauli-Villars regularisations are discussed.
International Nuclear Information System (INIS)
Hidden symmetries in a covariant Hamiltonian framework are investigated. The special role of the Stackel-Killing and Killing-Yano tensors is pointed out. The covariant phase-space is extended to include external gauge fields and scalar potentials. We investigate the possibility for a higher-order symmetry to survive when the electromagnetic interactions are taken into account. Aconcrete realization of this possibility is given by the Killing-Maxwell system. The classical conserved quantities do not generally transfer to the quantized systems producing quantum gravitational anomalies. As a rule the conformal extension of the Killing vectors and tensors does not produce symmetry operators for the Klein-Gordon operator.
On Cosmological Implications of Gravitational Trace Anomaly
Bilic, Neven; Horvat, Raul; Nikolic, Hrvoje; Stefancic, Hrvoje
2007-01-01
We study the infrared effective theory of gravity that stems from the quantum trace anomaly. Quantum fluctuations of the metric induce running of the cosmological constant and the Newton constant at cosmological scales. By imposing the generalized Bianchi identity we obtain a prediction for the scale dependence of the dark matter and dark energy densities in terms of the parameters of the underlying conformal theory. For certain values of the model parameters the dark energy equation of state and the observed spectral index of the primordial density fluctuations can be simultaneously reproduced.
On cosmological implications of gravitational trace anomaly
Energy Technology Data Exchange (ETDEWEB)
Bilic, Neven [Rudjer Boskovic Institute, PO Box 180, HR-10002 Zagreb (Croatia)], E-mail: bilic@thphys.irb.hr; Guberina, Branko [Rudjer Boskovic Institute, PO Box 180, HR-10002 Zagreb (Croatia)], E-mail: guberina@thphys.irb.hr; Horvat, Raul [Rudjer Boskovic Institute, PO Box 180, HR-10002 Zagreb (Croatia)], E-mail: horvat@lei3.irb.hr; Nikolic, Hrvoje [Rudjer Boskovic Institute, PO Box 180, HR-10002 Zagreb (Croatia)], E-mail: hrvoje@thphys.irb.hr; Stefancic, Hrvoje [Rudjer Boskovic Institute, PO Box 180, HR-10002 Zagreb (Croatia)], E-mail: shrvoje@thphys.irb.hr
2007-12-06
We study the infrared effective theory of gravity that stems from the quantum trace anomaly. Quantum fluctuations of the metric induce running of the cosmological constant and the Newton constant at cosmological scales. By imposing the generalized Bianchi identity we obtain a prediction for the scale dependence of the dark matter and dark energy densities in terms of the parameters of the underlying conformal theory. For certain values of the model parameters the dark energy equation of state and the observed spectral index of the primordial density fluctuations can be simultaneously reproduced.
On cosmological implications of gravitational trace anomaly
International Nuclear Information System (INIS)
We study the infrared effective theory of gravity that stems from the quantum trace anomaly. Quantum fluctuations of the metric induce running of the cosmological constant and the Newton constant at cosmological scales. By imposing the generalized Bianchi identity we obtain a prediction for the scale dependence of the dark matter and dark energy densities in terms of the parameters of the underlying conformal theory. For certain values of the model parameters the dark energy equation of state and the observed spectral index of the primordial density fluctuations can be simultaneously reproduced
Gravitational F-terms through anomaly equations and deformed chiral rings
International Nuclear Information System (INIS)
We study effective gravitational F-terms, obtained by integrating an U(N) adjoint chiral superfield ? coupled to the N = 1 gauge chiral superfield W? and supergravity, to arbitrary orders in the gravitational background. The latter includes in addition to the N = 1 Weyl superfield G???, the self-dual graviphoton field strength F?? of the parent, broken N = 2 theory. We first study the chiral ring relations resulting from the above non-standard gravitational background and find agreement, for gauge invariant operators, with those obtained from the dual closed string side via Bianchi identities for N = 2 supergravity coupled to vector multiplets. We then derive generalized anomaly equations for connected correlators on the gauge theory side, which allow us to solve for the basic one-point function 2/(z - ?)> to all orders in F2. By generalizing the matrix model loop equation to the generating functional of connected correlators of resolvents, we prove that the gauge theory result coincides with the genus expansion of the associated matrix model, after identifying the expansion parameters on the two sides. (author)
Could the Pioneer anomaly have a gravitational origin?
International Nuclear Information System (INIS)
If the Pioneer anomaly has a gravitational origin, it would, according to the equivalence principle, distort the motions of the planets in the Solar System. Since no anomalous motion of the planets has been detected, it is generally believed that the Pioneer anomaly can not originate from a gravitational source in the Solar System. However, this conclusion becomes less obvious when considering models that either imply modifications to gravity over long distances or gravitational sources localized to the outer Solar System, given the uncertainty in the orbital parameters of the outer planets. Following the general assumption that the Pioneer spacecraft move geodesically in a spherically symmetric space-time metric, we derive the metric disturbance that is needed in order to account for the Pioneer anomaly. We then analyze the residual effects on the astronomical observables of the three outer planets that would arise from this metric disturbance, given an arbitrary metric theory of gravity. Providing a method for comparing the computed residuals with actual residuals, our results imply that the presence of a perturbation to the gravitational field necessary to induce the Pioneer anomaly is in conflict with available data for the planets Uranus and Pluto, but not for Neptune. We therefore conclude that the motion of the Pioneer spacecraft must be nongeodesic. Since our results are model-independent within the class of metric theories of gravity, they can be applied to rories of gravity, they can be applied to rule out any model of the Pioneer anomaly that implies that the Pioneer spacecraft move geodesically in a perturbed space-time metric, regardless of the origin of this metric disturbance
Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Torsten
2009-05-13
The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)
Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory
International Nuclear Information System (INIS)
The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)
Effective QED actions: Representations, gauge invariance, anomalies, and mass expansions
International Nuclear Information System (INIS)
We analyze and give explicit representations for the effective Abelian vector gauge field actions generated by charged fermions with particular attention to the thermal regime in odd dimensions, where spectral asymmetry can be present. We show, through ?-function regularization, that both small and large gauge invariances are preserved at any temperature and for any number of fermions at the usual price of anomalies: helicity (parity) invariance will be lost in even (odd) dimensions, and in the latter even at zero mass. Gauge invariance dictates a very general 'Fourier' representation of the action in terms of the holonomies that carry the novel, large gauge-invariant, information. We show that large (unlike small) transformations and hence their Ward identities are not perturbative order-preserving, and clarify the role of (properly redefined) Chern-Simons terms in this context. From a powerful representation of the action in terms of massless heat kernels, we are able to obtain rigorous gauge-invariant expansions, for both small and large fermion masses, of its separate parity even and odd parts in arbitrary dimension. The representation also displays both the nonperturbative origin of a finite renormalization ambiguity and its physical resolution by requiring decoupling at infinite mass. Finally, we illustrate these general results by explicit computation of the effective action for some physical examples of field configurations in the three-dimensional case, where our conclusions on finite temperature effects may have physical relevance. Non-Abelian results will be presented separately. copyright 1998 The American Physical Society
Anomaly-free formulation of chiral gauge theory and quantum holonomy
International Nuclear Information System (INIS)
We investigate the quantization of a fermion field coupled to external gauge fields. Defining the S-matrix carefully by means of the time-dependent Bogoliubov transformation, we show a possibility of an anomaly-free formulation of chiral gauge theories. In this formulation the gauge anomaly is canceled by the non-trivial quantum holonomy of the fermionic Fock vacuum. (author)
The Higgs sector of gravitational gauge theories
International Nuclear Information System (INIS)
Gravitational gauge theories with de Sitter, Poincare and affine symmetry group are investigated under the aspect of the breakdown of the initial symmetry group down to the Lorentz subgroup. As opposed to the nonlinear realization approach, in the dynamical symmetry breaking procedure, the structure subgroup is not chosen arbitrarily, but is dictated by the symmetry of the groundstate of a Higgs field. We review the theory of spontaneously broken de Sitter gravity by Stelle and West and apply a similar approach to the case of the Poincare and affine groups. We will find that the Poincare case is almost trivial. The translational Higgs field reveals itself as pure gauge, i.e., it is expressed entirely in terms of the Nambu-Goldstone bosons and does not appear in the Lagrangian after the symmetry breaking. The same holds for the translational part of the affine group. The Higgs field provoking the breakdown of the general linear group leads to the determination of the Lorentzian signature of the metric in the groundstate. We show that the Higgs field remains in its groundstate, i.e., that the metric will have Lorentzian signature, unless we introduce matter fields that explicitely couple to the symmetric part of the connection. Furthermore, we present arguments that the Lorentzian signature is actually the only possible choice for physical spacetime, since the symmetry breaking mechanism works only if the stability subgroup is taken to be the Lorentz group. The other foaken to be the Lorentz group. The other four-dimensional rotation groups are therefore ruled out not only on physical, but also on theoretical grounds. Finally, we show that some features, like the necessity of the introduction of a dilaton field, that seem artificial in the context of the affine theory, appear most natural if the gauge group is taken to be the special linear group in five dimensions. We also present an alternative model which is based on the spinor representation of the Lorentz group and is especially adopted to the description of spinor fields in a general linear covariant way, without the use of the infinite dimensional representations which are usually considered to be unavoidable
Gravitational anomalies and one dimensional behaviour of black holes
Majhi, Bibhas Ranjan
2015-01-01
It has been pointed out by Bekenstein and Mayo that the behavior of the Black hole's entropy or information flow is similar to that through one-dimensional channel. Here I analyse the same issue with the use of gravitational anomalies. The rate of the entropy change ($\\dot{S}$) and the power ($P$) of the Hawking emission are calculated from the relevant components of the anomalous stress-tensor under the Unruh vacuum condition. I show that the dependence of $\\dot{S}$ on power is $\\dot{S}\\propto P^{1/2}$ which is identical to that for the information flow in one dimensional system. This is established by using the ($1+1$) dimensional gravitational anomalies first. Then the fact is further bolstered by considering the ($1+3$) dimensional gravitational anomalies. It is found that in the former case, the proportionality constant is exactly identical to one dimensional situation, known as Pendry's formula, while in later situation its value decreases.
Gauge Invariant Effective Stress-Energy Tensors for Gravitational Waves
Anderson, Paul R.
1996-01-01
It is shown that if a generalized definition of gauge invariance is used, gauge invariant effective stress-energy tensors for gravitational waves and other gravitational perturbations can be defined in a much larger variety of circumstances than has previously been possible. In particular it is no longer necessary to average the stress-energy tensor over a region of spacetime which is larger in scale than the wavelengths of the waves and it is no longer necessary to restrict...
Holomorphic Anomaly in Gauge Theories and Matrix Models
Huang, M; Huang, Min-xin; Klemm, Albrecht
2007-01-01
We use the holomorphic anomaly equation to solve the gravitational corrections to Seiberg-Witten theory and a two-cut matrix model, which is related by the Dijkgraaf-Vafa conjecture to the topological B-model on a local Calabi-Yau manifold. In both cases we construct propagators that give a recursive solution in the genus modulo a holomorphic ambiguity. In the case of Seiberg-Witten theory the gravitational corrections can be expressed in closed form as quasimodular functions of Gamma(2). In the matrix model we fix the holomorphic ambiguity up to genus two. The latter result establishes the Dijkgraaf-Vafa conjecture at that genus and yields a new method for solving the matrix model at fixed genus in closed form in terms of generalized hypergeometric functions.
Gauge field, strings, solitons, anomalies and the speed of life
Niemi, Antti J
2014-01-01
It's been said that "mathematics is biology's next microscope, only better; biology is mathematics' next physics, only better". Here we aim for something even better. We try to combine mathematical physics and biology into a picoscope of life. For this we merge techniques which have been introduced and developed in modern mathematical physics, largely by Ludvig Faddeev to describe objects such as solitons and Higgs and to explain phenomena such as anomalies in gauge fields. We propose a synthesis that can help to resolve the protein folding problem, one of the most important conundrums in all of science. We apply the concept of gauge invariance to scrutinize the extrinsic geometry of strings in three dimensional space. We evoke general principles of symmetry in combination with Wilsonian universality and derive an essentially unique Landau-Ginzburg energy that describes the dynamics of a generic string-like configuration in the far infrared. We observe that the energy supports topological solitons, that perta...
Muon g -2 anomaly and dark leptonic gauge boson
Lee, Hye-Sung
2014-11-01
One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing g?-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the g?-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U (1 )L . The g?-2 favored parameter region of the U (1 )L survives all the constraints that were critical in the dark photon case, yet it is disfavored by the new constraints from the large flux neutrino experiments.
Bradlyn, Barry
2015-01-01
We show that the topological central charge of a topological phase can be directly accessed from the ground-state wavefunctions for a system on a surface as a Berry curvature produced by adiabatic variation of the metric on the surface, at least up to addition of another topological invariant that arises in some cases. For trial wavefunctions that are given by conformal blocks (chiral correlation functions) in a conformal field theory (CFT), we carry out this calculation analytically, using the hypothesis of generalized screening. The topological central charge is found to be that of the underlying CFT used in the construction, as expected. The calculation makes use of the gravitational anomaly in the chiral CFT. It is also shown that the Hall conductivity can be obtained in an analogous way from the U($1$) gauge anomaly.
Bradlyn, Barry; Read, N.
2015-04-01
We show that the topological central charge of a topological phase can be directly accessed from the ground-state wave functions for a system on a surface as a Berry curvature produced by adiabatic variation of the metric on the surface, at least up to addition of another topological invariant that arises in some cases. For trial wave functions that are given by conformal blocks (chiral correlation functions) in a conformal field theory (CFT), we carry out this calculation analytically, using the hypothesis of generalized screening. The topological central charge is found to be that of the underlying CFT used in the construction, as expected. The calculation makes use of the gravitational anomaly in the chiral CFT. It is also shown that the Hall conductivity can be obtained in an analogous way from the U(1) gauge anomaly.
Absence of anomalies in two-dimensional nonabelian chiral gauge theories
International Nuclear Information System (INIS)
Using the appropriate quantization procedure for the gauge fields, we explicitly show that two-dimensional nonabelian gauge theories with chiral coupling to massless fermions are free of anomalies. (orig.)
Gauge fields, strings, solitons, anomalies, and the speed of life
Niemi, A. J.
2014-10-01
Joel Cohen proposed that "mathematics is biology's next microscope, only better; biology is mathematics' next physics, only better." Here, we aim for something even better. We try to combine mathematical physics and biology into a picoscope of life. For this, we merge techniques that were introduced and developed in modern mathematical physics, largely by Ludvig Faddeev, to describe objects such as solitons and Higgs and to explain phenomena such as anomalies in gauge fields. We propose a synthesis that can help to resolve the protein folding problem, one of the most important conundrums in all of science. We apply the concept of gauge invariance to scrutinize the extrinsic geometry of strings in three-dimensional space. We evoke general principles of symmetry in combination with Wilsonian universality and derive an essentially unique Landau-Ginzburg energy that describes the dynamics of a generic stringlike configuration in the far infrared. We observe that the energy supports topological solitons that relate to an anomaly similarly to how a string is framed around its inflection points. We explain how the solitons operate as modular building blocks from which folded proteins are composed. We describe crystallographic protein structures by multisolitons with experimental precision and investigate the nonequilibrium dynamics of proteins under temperature variations. We simulate the folding process of a protein at in vivo speed and with close to picoscale accuracy using a standard laptop computer. With picobiology as next pursuit of mathematical physics, things can only get better.
Ning WU; Zhang, Dahua
2005-01-01
A systematic method is developed to study classical motion of a mass point in gravitational gauge field. First, the formulation of gauge theory of gravity in arbitrary curvilinear coordinates is given. Then in spherical coordinates system, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the Schwarzschild solution. In gauge theory of gravity, the equation of motion of a classical mass point in gravitational gauge fi...
Gravitational anomalies, entanglement entropy, and flat-space holography
Hosseini, Seyed Morteza
2015-01-01
We introduce a prescription to compute the entanglement entropy of Galilean conformal field theories by combining gravitational anomalies and an \\.{I}n\\"{o}n\\"{u}-Wigner contraction. Using this proposal, we calculate the entanglement entropy for a class of Galilean conformal field theories, which are believed to be dual to three-dimensional flat-space cosmological solutions. These geometries describe expanding (contracting) universes and can be viewed as the flat-space limit of rotating BTZ black holes. We show that our finding reduces, in the appropriate limits, to the results discussed in the literature and provide interpretations for the previously unexplored regimes, such as flat-space chiral gravity.
Gravitational anomalies and one dimensional behaviour of black holes
Majhi, Bibhas Ranjan
2015-01-01
It has been pointed out by Bekenstein and Mayo that the behavior of the Black hole's entropy or information flow is similar to that through one-dimensional channel. Here I analyse the same issue with the use of gravitational anomalies. The rate of the entropy change ($\\dot{S}$) and the power ($P$) of the Hawking emission are calculated from the relevant components of the anomalous stress-tensor under the Unruh vacuum condition. I show that the dependence of $\\dot{S}$ on powe...
Gravitational monopoles, anomalies and M$E_8$ bundles
Manjarin, J J
2004-01-01
In this paper we try to clarify the physical meaning of the gauge theory that underlies the K-theoretical classification of RR charges in type IIA. Our main tool are the conditions for the cancellation of the Freed-Witten global anomaly when we take into account the effects of a flat and a general B-field. In each case we will see how K-theory captures some eleven dimensional information. In the first case and studying the electric properties of the D6-brane we see an eleven dimensional U(2) gauge symmetry, while the second can be related to an $E_8$ theory. Moreover, in the reduction from the general to the flat case, we find that the Romans' mass gives the number of unstable intial D9-branes.
Overcoming the Gauge Problem for the Gravitational Self-Force
Canizares, Priscilla
2014-01-01
The gravitational waves emitted by binary systems with extreme-mass ratios carry unique astrophysical information that can only be detected by space-based detectors like eLISA. To that end, a very accurate modelling of the system is required. The gravitational self-force program, which has been fully developed in the Lorenz gauge, is the best approach we have so far. However, the computations required would be done more efficiently if we could work in other gauges, like the Regge-Wheeler (RW) one in the case of Schwarzschild black holes. In this letter we present a new scheme, based on the Particle-without-Particle formulation of the field equations, where the gravitational self-force can be obtained from just solving individual wave-type equations like the master equations of the RW gauge. This approach can help to tackle the yet unsolved Kerr case.
Branes as solutions of gauge theories in gravitational field
Energy Technology Data Exchange (ETDEWEB)
Zheltukhin, A.A. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine); KTH Royal Institute of Technology and Stockholm University, Nordita, the Nordic Institute for Theoretical Physics, Stockholm (Sweden)
2014-09-15
The idea of the Gauss map is unified with the concept of branes as hypersurfaces embedded into D-dimensional Minkowski space. The map introduces new generalized coordinates of branes alternative to their world vectors x and identified with the gauge and other massless fields. In these coordinates the Dirac p-branes realize extremals of the Euler-Lagrange equations of motion of a (p + 1)- dimensional SO(D-p-1) gauge-invariant action in a gravitational background. (orig.)
Gauge Theory of the Gravitational-Electromagnetic Field
Bock, Robert D
2015-01-01
We develop a gauge theory of the combined gravitational-electromagnetic field by expanding the Poincar\\'e group to include clock synchronization transformations. We show that the electromagnetic field can be interpreted as a local gauge theory of the synchrony group. According to this interpretation, the electromagnetic field equations possess nonlinear terms and electromagnetic gauge transformations acquire a space-time interpretation as local synchrony transformations. The free Lagrangian for the fields leads to the usual Einstein-Maxwell field equations with additional gravitational-electromagnetic coupling terms. The connection between the electromagnetic field and the invariance properties of the Lagrangian under clock synchronization transformations provides a strong theoretical argument in favor of the thesis of the conventionality of simultaneity. This suggests that clock synchronization invariance (or equivalently, invariance under transformations of the one-way speed of light) is a fundamental invar...
Mass Gauging Demonstrator for Any Gravitational Conditions
Korman, Valentin (Inventor); Pedersen, Kevin W. (Inventor); Witherow, William K. (Inventor)
2013-01-01
The present invention is a mass gauging interferometry system used to determine the volume contained within a tank. By using an optical interferometric technique to determine gas density and/or pressure a much smaller compression volume or higher fidelity measurement is possible. The mass gauging interferometer system is comprised of an optical source, a component that splits the optical source into a plurality of beams, a component that recombines the split beams, an optical cell operatively coupled to a tank, a detector for detecting fringes, and a means for compression. A portion of the beam travels through the optical cell operatively coupled to the tank, while the other beam(s) is a reference.
Non-commutative Differential Calculus and the Axial Anomaly in Abelian Lattice Gauge Theories
Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
1999-01-01
The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus~(NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the ``Chern character'' on the latt...
Brandt, F
2003-01-01
The local cohomology of an extended BRST differential which includes global N=1 supersymmetry and Poincare transformations is completely and explicitly computed in four-dimensional supersymmetric gauge theories with super-Yang-Mills multiplets, chiral matter multiplets and linear multiplets containing 2-form gauge potentials. In particular we determine to first order all N=1 supersymmetric and Poincare invariant consistent deformations of these theories that preserve the N=1 supersymmetry algebra on-shell modulo gauge transformations, and all Poincare invariant candidate gauge and supersymmetry anomalies. When the Yang-Mills gauge group is semisimple and no linear multiplets are present, we find that all such deformations can be constructed from standard superspace integrals and preserve the supersymmetry transformations in a formulation with auxiliary fields, and the candidate anomalies are exhausted by supersymmetric generalizations of the well-known chiral anomalies. In the general case there are additiona...
Anselmi, Damiano
2015-05-01
We prove the Adler-Bardeen theorem in a large class of general gauge theories, including nonrenormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry, and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost numbers satisfy a variant of the Kluberg-Stern-Zuber conjecture. We show that if the gauge anomalies are trivial at one loop, for every truncation of the theory there exists a subtraction scheme where they manifestly vanish to all orders, within the truncation. Outside the truncation the cancellation of gauge anomalies can be enforced by fine-tuning local counterterms. The framework of the proof is worked out by combining a recently formulated chiral dimensional regularization with a gauge invariant higher-derivative regularization. If the higher-derivative regularizing terms are placed well beyond the truncation, and the energy scale ? associated with them is kept fixed, the theory is superrenormalizable and has the property that, once the gauge anomalies are canceled at one loop, they manifestly vanish from two loops onwards by simple power counting. When the ? divergences are subtracted away and ? is sent to infinity, the anomaly cancellation survives in a manifest form within the truncation and in a nonmanifest form outside. The standard model coupled to quantum gravity satisfies all the assumptions, so it is free of gauge anomalies to all orders.
Axial and gauge anomalies in the field-antifield quantization of the generalized Schwinger model
International Nuclear Information System (INIS)
In the generalized Schwinger model the vector and axial vector currents are linearly coupled, with arbitrary coefficients, to the gauge connection. Therefore it represents an interesting example of a theory where both gauge anomalies and anomalous divergences of global currents show up in general. We derive results for these two kinds of quantum corrections inside the field-antifield framework. (author)
Space-time dependent couplings In N = 1 SUSY gauge theories: Anomalies and central functions
International Nuclear Information System (INIS)
We consider N = 1 supersymmetric gauge theories in which the couplings are allowed to be space-time dependent functions. Both the gauge and the superpotential couplings become chiral superfields. As has recently been shown, a new topological anomaly appears in models with space-time dependent gauge coupling. Here we show how this anomaly may be used to derive the NSVZ ?-function in a particular, well-determined renormalisation scheme, both without and with chiral matter. Moreover we extend the topological anomaly analysis to theories coupled to a classical curved superspace background, and use it to derive an all-order expression for the central charge c, the coefficient of the Weyl tensor squared contribution to the conformal anomaly. We also comment on the implications of our results for the central charge a expected to be of relevance for a four-dimensional C-theorem. (author)
One-loop anomalies and Wess-Zumino terms for general gauge theories
International Nuclear Information System (INIS)
One-loop anomalies and their dependence on antifields for general gauge theories are investigated within a Pauli-Villars regularization scheme. For on-shell theories i.e. with open algebras or on-shell reducible theories, the antifield dependence is cohomologically non-trivial. The associated Wess-Zumino term depends also on antifields. In the classical basis the antifield-independent part of the WZ term is expressed in terms of the anomaly and finite gauge transformations by introducing gauge degrees of freedom as the extra dynamical variables. The complete WZ term is reconstructed from the antifield-independent part. (orig.)
Anomalies of E8 gauge theory on String manifolds
Sati, Hisham
2008-01-01
In this note we revisit the subject of anomaly cancelation in string theory and M-theory on manifolds with String structure and give three observations. First, that on String manifolds there is no E8 x E8 global anomaly in heterotic string theory. Second, that the description of the anomaly in the phase of the M-theory partition function of Diaconescu-Moore-Witten extends from the Spin case to the String case. Third, that the cubic refinement law of Diaconescu-Freed-Moore fo...
On anomalies of E8 gauge theory on String manifolds
Sati, Hisham
2008-01-01
In this note we revisit the subject of anomaly cancelation in string theory and M-theory on manifolds with String structure and give three observations. First, that on String manifolds there is no E8 x E_8 global anomaly in heterotic string theory. Second, that the description of the anomaly in the phase of the M-theory partition function of Diaconescu-Moore-Witten extends from the Spin case to the String case. Third, that the cubic refinement law of Diaconescu-Freed-Moore for the phase of the M-theory partition function extends to String manifolds.
On the definiteness of the conformal anomaly in nonconformal gauges
Mödritsch, W
1993-01-01
The critical dimension of the bosonic string in the harmonic and the deDonder gauge may be calculated from the time ordered product of two energy momentum tensors. We show that recently found ambiguities within that method in nonconformal gauges can be resolved by a treatment respecting background covariance.
International Nuclear Information System (INIS)
Homogeneous scaling of the group space of the Poincare group, P10, is shown to induce scalings of all geometric quantities associated with the local action of P10. The field equations for both the translation and the Lorentz rotation compensating fields reduce to O(1) equations if the scaling parameter is set equal to the general relativistic gravitational coupling constant 8?Gc-4. Standard expansions of all field variables in power series in the scaling parameter give the following results. The zeroth-order field equations are exactly the classical field equations for matter fields on Minkowski space subject to local action of an internal symmetry group (classical gauge theory). The expansion process is shown to break P10-gauge covariance of the theory, and hence solving the zeroth-order field equations imposes an implicit system of P10-gauge conditions. Explicit systems of field equations are obtained for the first- and higher-order approximations. The first-order translation field equations are driven by the momentum-energy tensor of the matter and internal compensating fields in the zeroth order (classical gauge theory), while the first-order Lorentz rotation field equations are driven by the spin currents of the same classical gauge theory. Field equations for the first-order gravitational corrections to the matter fields and the gauge fields for the internal symmetry group are obtained. Direct Poincare gauge theory is thus shown to satisfy the first two of the three-part acid test of any unified field theory. Satisfaction of the third part of the test, at least for finite neighborhoods, seems probable
Gravitational cubic interactions for a massive mixed symmetry gauge field
Zinoviev, Yu. M.(Institute for High Energy Physics, 142280, Protvino, Moscow Region, Russia)
2011-01-01
In a recent paper arXiv:1107.1872 cubic gravitational interactions for a massless mixed symmetry field in AdS space have been constructed. In the current paper we extend these results to the case of massive field. We work in a Fradkin-Vasiliev approach and use frame-like gauge invariant description for massive field which works in (A)dS spaces with arbitrary values of cosmological constant including flat Minkowski space. In this, massless limit in AdS space coincides with th...
Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories
Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
2000-03-01
The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the "Chern character" on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Lüscher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions.
Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories
International Nuclear Information System (INIS)
The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the 'Chern character' on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Luescher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions
Non-commutative Differential Calculus and the Axial Anomaly in Abelian Lattice Gauge Theories
Fujiwara, T; Wu, K; Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
2000-01-01
The axial anomaly in lattice gauge theories has topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological techniques. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which validates the Leibniz rule of exterior derivatives on the lattice. The topological nature of the ``Chern character'' on the lattice becomes manifest with NCDC. Our result provides an algebraic proof of Lüscher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions.
Wu, N; Wu, Ning; Zhang, Dahua
2005-01-01
A systematic method is developed to study classical motion of a mass point in gravitational gauge field. First, the formulation of gauge theory of gravity in arbitrary curvilinear coordinates is given. Then in spherical coordinates system, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the Schwarzschild solution. In gauge theory of gravity, the equation of motion of a classical mass point in gravitational gauge field is given by Newton's second law of motion. A relativistic form of the gravitational force on a mass point is deduced in this paper. Based on the spherical symmetric solution of the field equation and Newton's second law of motion, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge t...
Pioneer anomaly? Gravitational pull due to the Kuiper belt
De Diego, J A; Zavala, I; Diego, Jos\\'e A. de; Nunez, Dario; Zavala, Jesus
2005-01-01
In this work we study the gravitational influence of the material extending from Uranus orbit to the Kuiper belt and beyond on objects moving within these regions. We conclude that a density distribution given by $\\rho(r)=\\frac{1}{20 r}$ (for $r\\geq 20 UA$) generates a constant acceleration towards the Sun on those objects, which accounts for the blue shift detected on the Pioneers space crafts. We also discuss the effect of this gravitational pull on Neptune, and comment on the possible origin of such a matter distribution.
Modular invariance and the gravitational anomaly in type II superstring theory
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Masahito; Kawamoto, Noboru; Kuramoto, Tetsuji; Shigemoto, Kazuyasu
1987-12-07
By explicit calculations we show that the one-loop parity-violating amplitude with six external gravitons is modular invariant and finite. As a natural consequence of the modular invariance and double periodicity of the amplitude with respect to torus parameters, the gravitational anomaly of type II superstring theory vanishes.
Modular invariance and the gravitational anomaly in type II superstring theory
International Nuclear Information System (INIS)
By explicit calculations we show that the one-loop parity-violating amplitude with six external gravitons is modular invariant and finite. As a natural consequence of the modular invariance and double periodicity of the amplitude with respect to torus parameters, the gravitational anomaly of type II superstring theory vanishes. (orig.)
Gravitational Anomaly and Hawking Radiation of Brane World Black Holes
Huang, Chao-Guang; Sun, Jia-Rui; Wu, Xiaoning; Zhang, Hai-Qing
2007-01-01
We apply Wilczek and his collaborators' anomaly cancellation approach to the 3-dimensional Schwarzschild- and BTZ-like brane world black holes induced by the generalized C metrics in the Randall-Sundrum scenario. Based on the fact that the horizon of brane world black hole will extend into the bulk spacetime, we do the calculation from the bulk generalized C metrics side and show that this approach also reproduces the correct Hawking radiation for these brane world black hol...
Anselmi, Damiano
2015-01-01
We prove the Adler-Bardeen theorem in a large class of general gauge theories, including nonrenormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost number satisfy a variant of the Kluberg-Stern--Zuber conjecture. We show that if the gauge anomalies are trivial at one loop, for every truncation of the theory there exists a subtraction scheme where they manifestly vanish to all orders, within the truncation. Outside the truncation the cancellation of gauge anomalies can be enforced by fine-tuning local counterterms. The framework of the proof is worked out by combining a recently formulated chiral dimensional regularization with a gauge invariant higher-derivative regularization. If the higher-derivative regularizing terms are placed well beyond the truncation, and the energy scale $\\Lambda$ associated with them is kept fixed, the theory is super-renormalizable and...
International Nuclear Information System (INIS)
We show that certain one-loop corrections to superstring effective four-dimensional lagrangians, involving non-harmonic field-dependent renormalization of gauge couplings, can be consistently written in a standard N=1 supergravity form, preserving target-space duality. The preservation of target-space duality is due both to a four-dimensional Green-Schwarz mechanism and to local terms, coming from non-local chiral superfields, originated by mixed gauge-?-model anomaly diagrams. In some models, the Green-Schwarz mechanism is sufficient to achieve complete anomaly cancellation. In more general models automorphic functions, generated by the integration over the heavy string modes, are required to preserve target-space duality. (orig.)
Gravitational Anomalies and Thermal Hall effect in Topological Insulators
Stone, Michael
2012-01-01
It has been suggested that a temperature gradient will induce a Leduc-Righi, or thermal Hall, current in the Majorana quasiparticles localized on the surface of class DIII topological insulators, and that the magnitude of this current can be related {\\it via} an Einstein argument to a Hall-like energy flux induced by gravity. We critically examine this idea, and argue that the gravitational Hall effect is more complicated than its familiar analogue. A conventional Hall curre...
Kong, Liang
2014-01-01
Gravitational anomalies can be realized on the boundary of topologically ordered states in one higher dimension and are described by topological orders in one higher dimension. In this paper, we try to develop a general theory for both topological order and gravitational anomaly in any dimensions. (1) We introduce the notion of BF category to describe the braiding and fusion properties of topological excitations that can be point-like, string-like, etc. A subset of BF categories -- closed BF categories -- classify topological orders in any dimensions, while generic BF categories classify (potentially) anomalous topological orders that can appear at a boundary of a gapped quantum liquid in one higher dimension. (2) We introduce topological path integral based on tensor network to realize those topological orders. (3) Bosonic topological orders have an important topological invariant: the vector bundles of the degenerate ground states over the moduli spaces of closed spaces with different metrics. They may full...
Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models
International Nuclear Information System (INIS)
Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free ZN symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z6 symmetry, proton hexality P6, which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LHuLHu. In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1)X FN models in which the Z3 symmetry baryon triality, B3, arises from U(1)X breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B3-conserving FN models. (orig.)
Gravitational waves from Abelian gauge fields and cosmic strings at preheating
International Nuclear Information System (INIS)
Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space. We show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearance of new peaks at characteristic frequencies that are related to the mass scales in the problem. We also show how these new features in the spectra correlate with stringlike spatial configurations in both the Higgs and gauge fields that arise due to the appearance of topological winding numbers of the Higgs around Nielsen-Olesen strings. We study in detail the time evolution of the spectrum of gauge fields and gravitational waves as these strings evolve and decay before entering a turbulent regime where the gravitational wave energy density saturates.
Rose, Luigi Delle
2013-01-01
The principal goal of the physics of the fundamental interactions is to provide a consistent description of the nature of the subnuclear forces, which manifest in our universe, together with the gravitational force, in a unified framework. This attempt, which is far from being complete, is characterized by two milestones, the Standard Model of the elementary particles and the Einstein's theory of General Relativity. The coupling of a quantum field theory, such as the Standard Model, to a weak gravitational background provides significant information concerning the coupling of matter to gravity and allows to study in a systematic way the origin of the conformal anomaly. For this reason, the computation of correlation functions in a weak gravitational background is of remarkable interest and the consequences of this analysis are also of phenomenological relevance. For instance, they concern the appearance in the spectrum of the theory of a composite state, the dilaton, which is identified, in perturbation theor...
Minimal anomaly-free chiral fermion sets and gauge coupling unification
Cebola, Luís M.; Emmanuel-Costa, D.; Felipe, R. González; Simões, C.
2014-12-01
We look for minimal chiral sets of fermions beyond the standard model that are anomaly free and, simultaneously, vectorlike particles with respect to color SU (3 ) and electromagnetic U (1 ). We then study whether the addition of such particles to the standard model particle content allows for the unification of gauge couplings at a high energy scale, above 5.0 ×1015 GeV so as to be safely consistent with proton decay bounds. The possibility to have unification at the string scale is also considered. Inspired in grand unified theories, we also search for minimal chiral fermion sets that belong to SU (5 ) multiplets, restricted to representations up to dimension 50. It is shown that, in various cases, it is possible to achieve gauge unification provided that some of the extra fermions decouple at relatively high intermediate scales.
Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories
International Nuclear Information System (INIS)
The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d? 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed
Online-Offline, 1999
1999-01-01
This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…
Does the Neptunian system of satellites challenge a gravitational origin for the Pioneer anomaly?
Iorio, Lorenzo
2009-01-01
If the Pioneer Anomaly (PA) was a genuine dynamical effect of gravitational origin, it should also affect the orbital motions of the solar system's bodies moving in the space regions in which the PA manifested itself in its presently known form, i.e. as a constant and uniform acceleration approximately directed towards the Sun with a non-zero magnitude APio = (8.74 +/- 1.33) x 10^-10 m s^-2 after 20 au from the Sun. In this paper we preliminarily investigate its effects on t...
International Nuclear Information System (INIS)
Full text: (author)The intimate relation between Killing-Yano tensors and non-standard supersymmetries is pointed out. The gravitational anomalies are absent if the hidden symmetry is associated to a Killing-Yano tensor. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac type operators involved in interesting algebraic structures as dynamical algebras or even infinite dimensional algebras or superalgebras. The general results are applied to the 4-dimensional Euclidean Taub-NUT space. One presents the infinite dimensional superalgebra of Dirac type operators on Taub-NUT space that can be seen as a twisted loop algebra
Gauge invariance and the detection of gravitational radiation
Garfinkle, David
2005-01-01
The detection of gravitational radiation raises some subtle issues having to do with the coordinate invariance of general relativity. This paper explains these issues and their resolution by using an analogy with the Aharonov-Bohm effect of quantum mechanics.
Marcos, Marta; Pascual, Ananda; Pujol, Isabelle
2015-08-01
The new gridded Mediterranean sea level anomaly product recently released by AVISO (DT14) is evaluated and compared with the earlier version (DT10) at which it is aimed to substitute. Differences between the two products are found along coastal regions, where the new version captures more variability (up to 10% more) and trends locally differ by up to 1 mm/yr for the altimetric period. Coastal tide gauge observations have therefore been used as the basis for quantifying changes in DT14. Correlation and variance reduction in available monthly tide gauge time series are improved in more than 80% of the selected sites by up to 0.2 and 5 cm2, respectively. This resulted in an overall higher skill to recover coastal low frequency (with periods larger than a few months) sea level signals. Results for higher/lower order percentiles were also explored and showed different performances depending on the site, although with a slight overall improvement. A comparison with tide gauges on a daily basis using wavelet analysis reveals that altimetry gridded products are not capable of recovering higher frequency (a few days) coastal sea level signals despite some advances have been achieved thanks to the daily temporal sampling of DT14.
The Huygens principle and cosmological gravitational waves in the Regge-Wheeler gauge
Energy Technology Data Exchange (ETDEWEB)
Malec, Edward; Wylezek, Grzegorz [Institute of Physics, Jagiellonian University, 30-059 Cracow, Reymonta 4 (Poland)
2005-09-07
We study the propagation of axial gravitational waves in Friedmann universes. The evolution equation is obtained in the Regge-Wheeler gauge. The gravitational waves obey the Huygens principle in the radiation-dominated era, but in the matter-dominated universe their propagation depends on their wavelengths, with the scale fixed essentially by the Hubble radius. Short waves practically satisfy the Huygens principle while long waves can backscatter off the curvature of a spacetime.
The Huygens principle and cosmological gravitational waves in the Regge Wheeler gauge
Malec, Edward; Wylezek, Grzegorz
2005-09-01
We study the propagation of axial gravitational waves in Friedmann universes. The evolution equation is obtained in the Regge Wheeler gauge. The gravitational waves obey the Huygens principle in the radiation-dominated era, but in the matter-dominated universe their propagation depends on their wavelengths, with the scale fixed essentially by the Hubble radius. Short waves practically satisfy the Huygens principle while long waves can backscatter off the curvature of a spacetime.
The Huygens principle and cosmological gravitational waves in the Regge-Wheeler gauge
Malec, Edward; Wylezek, Grzegorz
2005-01-01
We study the propagation of axial gravitational waves in Friedman universes. The evolution equation is obtained in the Regge-Wheeler gauge. The gravitational waves obey the Huygens principle in the radiation dominated era, but in the matter dominated universe their propagation depends on their wavelengths, with the scale fixed essentially by the Hubble radius. Short waves practically satisfy the Huygens principle while long waves can backscatter off the curvature of a spacet...
The Huygens principle and cosmological gravitational waves in the Regge-Wheeler gauge
International Nuclear Information System (INIS)
We study the propagation of axial gravitational waves in Friedmann universes. The evolution equation is obtained in the Regge-Wheeler gauge. The gravitational waves obey the Huygens principle in the radiation-dominated era, but in the matter-dominated universe their propagation depends on their wavelengths, with the scale fixed essentially by the Hubble radius. Short waves practically satisfy the Huygens principle while long waves can backscatter off the curvature of a spacetime
The Huygens principle and cosmological gravitational waves in the Regge-Wheeler gauge
Malec, E; Malec, Edward; Wylezek, Grzegorz
2005-01-01
We study the propagation of axial gravitational waves in Friedman universes. The evolution equation is obtained in the Regge-Wheeler gauge. The gravitational waves obey the Huygens principle in the radiation dominated era, but in the matter dominated universe their propagation depends on their wavelengths, with the scale fixed essentially by the Hubble radius. Short waves practically satisfy the Huygens principle while long waves can backscatter off the curvature of a spacetime.
Linearization stability of couples gravitational and gauge fields
International Nuclear Information System (INIS)
The work of Fischer, Marsden, and Moncrief on linearization stability of vacuum spacetimes is extended to the case of gravity coupled with a sourceless gauge field. (Linearization stability concerns the validity of first order perturbation theory. A nonlinear equation is said to be linearization stable when solutions of the linearized equation are tangent to curves of solutions of the original nonlinear equation.) For a spacetime with a compact Cauchy surface and a gauge field with matrix gauge group whose Lie algebra admits an adjoint action invariant nondegenerate metric, conditions for linearization stability of the coupled Einstein-Yang-Mills field equations are obtained. These conditions are sufficient conditions on the Cauchy surface and necessary and sufficient conditions on the spacetime. Roughly speaking, the results state that linearization stability can be guaranteed when the fields are not ''too symmetrical.'' Thus a generic solution, which lacks symmetry, is linearization stable. The proof of the main results uses the ellipticity of the adjoint operator to the linearized constraints, elliptic operator theory, and the implicit function theorem for Banach spaces. The spacetime results are most geometrically and concisely stated in terms of the principal fiber bundle formulation of gauge fields. Linearization instability, the kernel of the adjoint operator, and nontrivial infinitesimal symmetries on the bundle for the gravity and gauge fields are identified. Comparisons to related work, including the Atiyah-Hitchin-Singer work on the moduli space of self-dual gauge fields, are made
International Nuclear Information System (INIS)
Identification of the diagrams that can lead to gauge anomalies in the (minimal) Lorentz- and CPT-violating extension of quantum electrodynamics reveal these to be the electron self-energy and vertex correction (related to the Ward–Takahashi identity), the photon self-energy (related to the vacuum polarization tensor transversality) and the three-photon vertex diagrams. All but the latter were explicitly verified to be free of anomalies to first order in loop expansion. Here we provide this remaining evaluation and verify the absence of anomalies in this process. (paper)
Gauge theories of gravitation a reader with commentaries
Blagojevic, Milutin
2013-01-01
In the last five decades, the gauge approach to gravity has represented a research area of increasing importance for our understanding of the physics of fundamental interactions. A full clarification of the gauge dynamics of gravity is expected to be the last missing link to the hidden structure of a consistent unification of all the fundamental interactions, based on the gauge principle. The aim of the present reprint volume, with commentaries by Milutin Blagojevi & 263; and Friedrich W Hehl, is to introduce graduate and advanced undergraduate students of theoretical or mathematical physics, or any other interested researcher, to the field of classical gauge theories of gravity. This is not just an ordinary reprint volume; it is a guide to the literature on gauge theories of gravity. The reader is encouraged first to study the introductory commentaries and to become familiar with the basic content of the reprints and related ideas, then he/she can choose to read a specific reprint or reprints, and after ...
Gauge theory duals of black hole – black string transitions of gravitational theories on a circle
International Nuclear Information System (INIS)
We study the black hole – black string phase transitions of gravitational theories compactified on a circle using the holographic duality conjecture. The gauge theory duals of these theories are maximally supersymmetric and strongly coupled 1 + 1 dimensional SU(N) Yang-Mills theories compactified on a circle, in the large N limit. We perform the strongly coupled finite temperature gauge theory calculations on a lattice, using the recently developed exact lattice supersymmetry methods based on topological twisting and orbifolding. The spatial Polyakov line serves as relevant order parameter of the confinement – deconfinement phase transitions in the gauge theory duals
Anomalies, cohomology and generalized secondary classes
International Nuclear Information System (INIS)
The authors introduce, in this paper, their recent works on the generalized secondary characteristic classes, the cohomologies of gauge groups realized upon these classes and the degenerate forms of these classes, as well as their applications to the analyses on both gauge and gravitational anomalies in spacetimes of different dimensions. They also show the relations between their works and Faddeev's, Song's and Zumino's approaches
Kaluza-Klein electric monopole in a six-dimensional Poincare gauge theory of gravitation
International Nuclear Information System (INIS)
We found a solution to the six-dimensional Poincare gauge theory that can be interpreted as the gravitational field and the electric field of an electric monopole in four-dimensional spacetime. The extra dimensions are curled up into a compact space of a size characterized by the Planck length. (orig.)
Gravitational Field as a Generalized Gauge Field Revisited
Fukuyama, Takeshi
2009-01-01
We add some comments to our old paper \\cite{F-U} where the metric tensor was introduced as the gauge theory of general coordinate transformation. This formulation is more satisfactorily completed than the original one if it is required to be valid for arbitrary n dimensional spacetime. That is, our formulation asserts the presence of extra dimensions positively.
Anomaly inflow and thermal equilibrium
Jensen, Kristan; Yarom, Amos
2013-01-01
Using the anomaly inflow mechanism, we compute a contribution of gauge and (or) gravitational anomalies to the partition function of a theory in even dimensional spacetimes in backgrounds with a U(1) isometry. This contribution is a local functional of the background fields. By identifying the U(1) isometry with Euclidean time we obtain a contribution of the anomaly to the thermodynamic partition function from which hydrostatic correlators can be efficiently computed. Our result is in line with, and an extension of, previous studies on the role of anomalies in a hydrodynamic setting. Along the way we find simplified expressions for Bardeen-Zumino polynomials and various transgression formulae.
Quadratic divergences and quantum gravitational contributions to gauge coupling constants
Toms, David J.
2011-10-01
The calculation of quadratic divergences in Einstein-Maxwell theory with a possible cosmological constant is considered. We describe a method of calculation, using the background-field method, that is sensitive to quadratic divergences, is respectful of gauge invariance, and is independent of gauge conditions. A standard renormalization group analysis is applied to the result where it is shown that the quadratic divergences do lead to asymptotic freedom as found in the original paper of Robinson and Wilczek. The role and nature of these quadratic divergences is critically evaluated in light of recent criticism. Within the context of the background-field method, it is shown that it is possible to define the charge in a physically motivated way in which the quadratic divergences do not play a role. This latter view is studied in more depth in a toy model described in an appendix.
International Nuclear Information System (INIS)
A systematic method is developed to study the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
Stochastic quantization of gauge, gravitational and string fields
International Nuclear Information System (INIS)
The stochastic quantization method of Parisi and Wu and its application to gauge fields are briefly reviewed. The method is then generalized so as to make it applicable to Einstein gravity. The generalization is based on the existence of a preferred metric in field configuration space and involves Ito's calculus. In the nonlinear case the indefiniteness of the Euclidean Einstein action necessitates to generalize the stochastic formalism further to Lorentzian space-times. The formalism is shown to imply the path integral measure of De Witt, a causal Feynman propagator, and a consistent stochastic perturbation theory. Finally it is shown how stochastic quantization resolves the indefiniteness problem in free bosonic string field theory. (Author)
Schradin, Leslie J., III
We introduce the Standard Model, list a large sector of the low energy data, and present extensions to the Standard Model including grand unification, supersymmetry, and orbifold extra dimensions. These foundations underly the research presented in this dissertation, which is from three separate projects. Texture models are Ansatze for the undiagonalized Yukawa matrices in which some of the matrix elements have been chosen to vanish. Recent precise measurements of sin 2beta from the B-factories (BABAR and BELLE) and a better known strange quark mass from lattice QCD make precision tests of predictive texture models possible. We show that in a set of these models, their maximal sin 2beta values rule them out at the 3sigma level. While at present sin 2beta and |Vub/Vcb| are equally good for testing N-zero texture models, in the near future the former will surpass the latter in constraining power. We construct a supersymmetric SO(10) x D3 grand unified model with an orbifold extra dimension S1/(Z2 x Z2'). The model uses 11 parameters to fit the 13 independent low energy observables of the charged fermion Yukawa matrices and predicts the values of two quark mass combinations, mu/mc and mdmsmb, to each be approximately 1sigma above their experimental values. The remaining observables are successfully fit at the 5% level. This model is shown to have a gauge anomaly on one of the fixed points and we discuss the alterations in field content necessary to repair it. Extra dimensional orbifold theories have gauge anomaly structures which are more complicated than those of Minkowski space. We review previous work done by von Gersdorff and Quiros to derive general expressions for orbifold gauge anomalies. These equations are applied to a supersymmetric 6D orbifold model with E6 gauge symmetry presented by Kobayashi, Raby, and Zhang in order to verify the gauge anomaly cancellations. From this illustration we conclude that the constraining power of orbifold gauge anomalies on the field content of the theory is about as great as the usual case in Minkowski space and depends highly on the gauge groups and number of dimensions present.
International Nuclear Information System (INIS)
The vacuum equations for Bianchi I cosmology in the conformal Poincare -gauge theory of gravitation are considered. All possible cases are investigated. It is shown that do not exist the solutions which are different from the Kasner line element. (author)
Gauge theory and gravitation: an approach to a fiber bundle formalism
International Nuclear Information System (INIS)
The thesis is composed of two different parts. A formal complete and rigorous mathematical part-of topics of differential manilfolds, exterior calculus, riemannian geometry, principal fiber bundle (p.f.) with connections and linear connections and a second part of application of this mathematical formalism concerning physical theories, particularly the Maxwell eletromagnetism (EM), gauge theory of Yang-Mills (Y-M), the GRT, and the gravitation theory of Einstein-Cartan. (E.C.)
Canonical Formulation of Gravitational Teleparallelism in 2+1 Dimensions in Schwinger's Time Gauge
Sousa, A. A.; Maluf, J. W.
2000-01-01
We consider the most general class of teleparallel gravitational {}{}theories quadratic in the torsion tensor, in three space-time dimensions, and carry out a detailed investigation of its Hamiltonian formulation in Schwinger's time gauge. This general class is given by a family of three-parameter theories. A consistent implementation of the Legendre transform reduces the original theory to a one-parameter family of theories. By calculating Poisson brackets we show explicitl...
Quantum topology and global anomalies
Baadhio, R A
1996-01-01
Anomalies are ubiquitous features in quantum field theories. They can ruin the consistency of such theories and put significant restrictions on their viability, especially in dimensions higher than four. Global gauge and gravitational anomalies are to date, one of the scant powerful and probing tools available to physicists in the pursuit of uniqueness.This monograph is one of the very few that specializes in the study of global anomalies in quantum field theories. A discussion of various issues associated to three dimensional physics - the Chern-Simons-Witten theories - widen the scope of thi
Wyithe, Stuart; Loeb, Abraham
2002-01-01
Intensive monitoring campaigns have recently attempted to measure the time delays between multiple images of gravitational lenses. Some of the resulting light-curves show puzzling low-level, rapid variability which is unique to individual images, superimposed on top of (and concurrent with) longer time-scale intrinsic quasar variations which repeat in all images. We demonstrate that both the amplitude and variability time-scale of the rapid light-curve anomalies, as well as ...
Busack, Hans-Juergen
2007-01-01
All anomalous velocity increases until now observed during the Earth flybys of the spacecrafts Galileo, NEAR, Rosetta, Cassini and Messenger have been correctly calculated by computer simulation using an asymmetric potential term in addition to the Newtonian potential. The specific characteristic of this term is the lack of coupling to the rotation of the Earth or to the direction of other gravitational sources such as the Sun or Moon. Instead, the asymmetry is oriented in the direction of the Earth's motion within an assumed unique reference frame. With this assumption, the simulation results of the Earth flybys Galileo1, NEAR, Rosetta1 and Cassini hit the observed nominal values, while for the flybys Galileo2 and Messenger, which for different reasons are measured with uncertain anomaly values, the simulated anomalies are within plausible ranges. Furthermore, the shape of the simulated anomaly curve is in qualitative agreement with the measured Doppler residuals immediately following the perigee of the firs...
Hawking radiation from the dilaton—(anti) de Sitter black hole via covariant anomaly
International Nuclear Information System (INIS)
Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton—(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential. (general)
Covariant Lorentz anomalies in higher dimensional space
International Nuclear Information System (INIS)
The covariant Lorentz anomalies are evaluated by both the path integral and the topological methods, when Weyl fermions couple with the gauge and gravitational fields. In 2,4,6-dimensional curved space, the difference between the results obtained by the two methods is removed by counterterms and the equivalence of both methods is proved. It is shown that the Lorentz anomalies in flat space of arbitrary dimensions are eliminated. (author)
Information Geometry of Hydrodynamics with Global Anomalies
Surówka, Piotr
2015-01-01
We construct information geometry for hydrodynamics with global gauge and gravitational anomalies in $1+1$ and $3+1$ dimensions. We introduce the metric on a parameter space and show that turning on non-zero rotations leads to a curvature on the statistical manifold. We calculate the curvature invariant and analyze its divergences, which occur at the transition points of the system. The transition points are universal and expressed in terms of ratios of anomaly coefficients.
Gravitational Energy for GR and Poincare Gauge Theories: a Covariant Hamiltonian Approach
Chen, Chiang-Mei; Tung, Roh-Suan
2015-01-01
Our topic concerns a long standing puzzle: the energy of gravitating systems. More precisely we want to consider, for gravitating systems, how to best describe energy-momentum and angular momentum/center-of-mass momentum (CoMM). It is known that these quantities cannot be given by a local density. The modern understanding is that (i) they are quasi-local (associated with a closed 2-surface), (ii) they have no unique formula, (iii) they have no reference frame independent description. In the first part of this work we review some early history, much of it not so well known, on the subject of gravitational energy in Einstein's general relativity (GR), noting especially Noether's contribution. In the second part we review (including some new results) much of our covariant Hamiltonian formalism and apply it to Poincar\\'e gauge theories (GR is a special case). The key point is that the Hamiltonian boundary term has two roles, it determines the quasi-local quantities, and, furthermore it determines the boundary con...
International Nuclear Information System (INIS)
The Morris-Thorne wormhole and vacuum equations in the conformal Poincare-gauge theory of gravitation are considered. It is shown that wormholes cannot be realized as configurations of a '' usual '' matter. It is obtained also that dynamic vacuum solutions for spherical symmetric case coincide with the corresponding GR solutions. (authors)
Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation
Scheck, Florian
2012-01-01
The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...
Bashinsky, Sergei
2015-01-01
We study a finite basic structure that possibly underlies the observed elementary quantum fields with gauge and gravitational interactions. Realistic wave functions of locally interacting quantum fields emerge naturally as fitting functions for the generic distribution of many quantifiable properties of arbitrary static objects. We prove that in any quantum theory with the superposition principle, evolution of a current state of fields unavoidably continues along alternate routes with every conceivable Hamiltonian for the fields. This applies to the emergent quantum fields too. Yet the Hamiltonian is unambiguous for isolated emergent systems with sufficient local symmetry. The other emergent systems, without specific physical laws, cannot be inhabitable. The acceptable systems are eternally inflating universes with reheated regions. We see how eternal inflation perpetually creates new short-scale physical degrees of freedom and why they are initially in the ground state. In the emergent quantum worlds probabi...
Pitts, J Brian
2009-01-01
The problem of finding a covariant expression for the distribution and conservation of gravitational energy-momentum dates to the 1910s. A suitably covariant infinite-component localization is displayed, reflecting Bergmann's realization that there are infinitely many conserved gravitational energy-momenta. Initially use is made of a flat background metric or connection (or rather, all of them), because the desired gauge invariance properties are obvious. Partial gauge-fixing then yields an appropriate covariant quantity without any background metric or connection; one version is the collection of pseudotensors of a given type, such as the Einstein pseudotensor, in_every_ coordinate system. This solution to the gauge covariance problem is easily adapted to any pseudotensorial expression or to any tensorial expression built with a background metric or connection. Thus the specific functional form can be chosen on technical grounds such as relating to Noether's theorem and yielding expected values of conserved ...
Anomalies of the Entanglement Entropy in Chiral Theories
Iqbal, Nabil
2015-01-01
We study entanglement entropy in theories with gravitational or mixed U(1) gauge-gravitational anomalies in two, four and six dimensions. In such theories there is an anomaly in the entanglement entropy: it depends on the choice of reference frame in which the theory is regulated. We discuss subtleties regarding regulators and entanglement entropies in anomalous theories. We then study the entanglement entropy of free chiral fermions and self-dual bosons and show that in sufficiently symmetric situations this entanglement anomaly comes from an imbalance in the flux of modes flowing through the boundary, controlled by familiar index theorems. In two and four dimensions we use anomalous Ward identities to find general expressions for the transformation of the entanglement entropy under a diffeomorphism. (In the case of a mixed anomaly there is an alternative presentation of the theory in which the entanglement entropy is not invariant under a U(1) gauge transformation. The free-field manifestation of this pheno...
Note on Anomaly Cancellation on SO(32) heterotic 5-brane
Imazato, Harunobu; Yata, Masaya
2010-01-01
We show that the gauge, gravitational (tangent-bundle) and their mixed anomalies arising from the localized modes near a 5-brane in the SO(32) heterotic string theory cancel with the anomaly inflow from the bulk with the use of Green-Schwarz mechanism on the brane, similarly to the E_8 x E_8 5-brane case. We also compare our result with Mourad's analysis performed in the small-instanton limit.
Note on Anomaly Cancellation on SO(32) Heterotic 5-BRANE
Imazato, Harunobu; Mizoguchi, Shun'ya; Yata, Masaya
We show that the gauge, gravitational (tangent-bundle) and their mixed anomalies arising from the localized modes near a 5-brane in the SO(32) heterotic string theory cancel with the anomaly inflow from the bulk with the use of the Green-Schwarz mechanism on the brane, similarly to the E8×E8 5-brane case. We also compare our result with Mourad's analysis performed in the small-instanton limit.
Symmetry Protected Topological Phases, Anomalies, and Cobordisms: Beyond Group Cohomology
Kapustin, Anton
2014-01-01
We propose that Symmetry Protected Topological Phases with a finite symmetry group G are classified by cobordism groups of the classifying space of G. This provides an explanation for the recent discovery of bosonic SPT phases which do not fit into the group cohomology classification. We discuss the connection of the cobordism classification of SPT phases to gauge and gravitational anomalies in various dimensions.
Ryu, Shinsei; Moore, Joel E.; Ludwig, Andreas W. W.
2010-01-01
One of the defining properties of the conventional three-dimensional ("$\\mathbb{Z}_2$-", or "spin-orbit"-) topological insulator is its characteristic magnetoelectric effect, as described by axion electrodynamics. In this paper, we discuss an analogue of such a magnetoelectric effect in the thermal (or gravitational) and the magnetic dipole responses in all symmetry classes which admit topologically non-trivial insulators or superconductors to exist in three dimensions. In p...
International Nuclear Information System (INIS)
The lectures given cover the topological effects in gauge field theories, fermionic chiral anomalies, and some relationships between the two. Gauge field theories in three and four space-time dimensions are considered. Topological terms as external U(1) functional gauge potential connections in field space are discussed. Both the structure and physical impact of anomalies are described. 17 refs
Gauge theories, time-dependence of the gravitational constant and antigravity in the early universe
International Nuclear Information System (INIS)
It is shown that the interaction of the gravitational field with matter leads to a strong modification of the effective gravitational constant in the early universe. In certain cases this leads even to the change of sign of the gravitational constant, i.e. to antigravity in the early universe. (orig.)
International Nuclear Information System (INIS)
This book is a populary introduction to the current status of research in gravitation. After a description of the gravitational theory of Newton and Einstein's general relativity theory the quantum theory of gravitation and supergravity are introduced. Then the dimensions of the space-time are discussed. Thereafter gravitational waves and gravitational lenses are described. Finally black holes, cosmic jets, and the structure of the universe are considered. (HSI)
Interpretation of a short-term anomaly in the gravitational microlensing event MOA-2012-BLG-486
Energy Technology Data Exchange (ETDEWEB)
Hwang, K.-H.; Choi, J.-Y.; Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Sumi, T.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Gaudi, B. S.; Gould, A. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bozza, V. [Dipartimento di Fisica " E. R. Caianiello," Università degli Studi di Salerno, Via S. Allende, I-84081 Baronissi (Italy); Beaulieu, J.-P. [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, 98bis boulevard Arago, F-75014 Paris (France); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Goleta, CA 93117 (United States); Abe, F.; Fukunaga, D.; Itow, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Chote, P.; Harris, P. [School of Chemical and Physical Sciences, Victoria University, Wellington (New Zealand); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; ?FUN Collaboration; PLANET Collaboration; RoboNet Collaboration; and others
2013-11-20
A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambiguity between the planetary and binary-source interpretations. In this paper, we present the analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive planetary signals.
Interpretation of a Short-Term Anomaly in the Gravitational Microlensing Event MOA-2012-BLG-486
Hwang, K -H; Bond, I A; Sumi, T; Han, C; Gaudi, B S; Gould, A; Bozza, V; Beaulieu, J -P; Tsapras, Y; Abe, F; Bennett, D P; Botzler, C S; Chote, P; Freeman, M; Fukui, A; Fukunaga, D; Harris, P; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Suzuki, D; Tristram, P J; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; de Almeida, L Andrade; DePoy, D L; Dong, Subo; Jablonski, F; Jung, Y K; Kavka, A; Lee, C -U; Park, H; Pogge, R W; Shin, I -G; Yee, J C; Albrow, M D; Bachelet, E; Batista, V; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A; Corrales, E; Coutures, Ch; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Greenhill, J; Jørgensen, U G; Kane, S R; Kubas, D; Marquette, J -B; Martin, R; Meintjes, P; Menzies, J; Pollard, K R; Williams, A; Wouters, D; Bramich, D M; Dominik, M; Horne, K; Browne, P; Hundertmark, M; Ipatov, S; Kains, N; Snodgrass, C; Steele, I A; Street, R A
2013-01-01
A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambiguity between the planetary and binary-source interpretations. In this paper, we present analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive pla...
Galilean Anomalies and Their Effect on Hydrodynamics
Jain, Akash
2015-01-01
We extend the null background construction of [arXiv:1505.05677,arXiv:1509.04718] to include torsion and a conserved spin current, and use it to study gauge and gravitational anomalies in Galilean theories coupled to torsional Newton-Cartan backgrounds. We establish that the relativistic anomaly inflow mechanism with an appropriately modified anomaly polynomial, can be used to generate these anomalies. Similar to relativistic case, we find that Galilean anomalies also survive only in even dimensions. Further, these anomalies only effect the gauge and rotational symmetries of a Galilean theory; in particular the Milne boost symmetry remains non-anomalous. We also extend the transgression machinery used in relativistic fluids to fluids on null backgrounds, and use it to determine how these anomalies affect the constitutive relations of a Galilean fluid. Unrelated to Galilean fluids, we propose an analogue of the off-shell second law of thermodynamics for relativistic fluids introduced by [arXiv:1106.0277], to i...
Wyithe, S; Wyithe, Stuart; Loeb, Abraham
2002-01-01
Intensive monitoring campaigns have recently attempted to measure the time delays between multiple images of gravitational lenses. Some of the resulting light-curves show puzzling low-level, rapid variability which is unique to individual images, superimposed on top of (and concurrent with) longer time-scale intrinsic quasar variations which repeat in all images. We demonstrate that both the amplitude and variability time-scale of the rapid light-curve anomalies, as well as the correlation observed between intrinsic and microlensed variability, are naturally explained by stellar microlensing of a smooth accretion disk which is occulted by optically-thick broad-line clouds. The rapid time-scale is caused by the high velocities of the clouds (~5x10^3 km/s), and the low amplitude results from the large number of clouds covering the magnified or demagnified parts of the disk. The observed amplitudes of variations in specific lenses implies that the number of broad-line clouds that cover ~10% of the quasar sky is ...
International Nuclear Information System (INIS)
We present new exact spherically symmetric solutions of the Wu-Yang-t'Hooft monopole and Julia-Zee dyon type of the SO(3)-Yang-Mills-(Higgs-)fields coupled to gravitation through a particular quadratic Poincare gauge field theory. The space-time metrics are of the Reissner-Nordstroem, DeSitter, and AntiDeSitter form with non-vanishing torsion always being present. Due to a free function occurring, the solutions given admit arbitrary vector torsion. We conclude that the local Cauchy-Kowalevski problem is not well posed even in the limit of vanishing Yang-Mills and Higgs fields. (author)
International Nuclear Information System (INIS)
In this lecture, the AdS/CFT correspondence (anti de Sitter/Conformed Field Theory correspondence) and its application are plainly reviewed for non-specialists. The AdS/CFT correspondence is the corresponding relation between a strongly coupled quantum gauge theory and a classical gravitational theory. These two theories are seemed to be quite different in each other, but the correspondence between the two theories is necessarily derived from the string theory. The fundamental idea of the AdS/CFT correspondence is intuitively explained in reference to the classical field theory. Some examples of the application are cited except the superstring theory. (Y. Kazumata)
Gauge invariance and string interactions in a generalized theory of gravitation
International Nuclear Information System (INIS)
The gauge invariance of the Lagrangian in the nonsymmetric extension of general relativity is investigated. The skew parts of the nonsymmetric Hermitian g/sub munu/, in the weak-field approximation, act as gauge potentials that correspond to the exchange of massless scalar mesons between one-dimensionally extended objects (strings) in space-time. For open strings a massive vector particle, associated with the torsion, is also exchanged between the end points of the strings
Elsayed, Ahmed Mohammed Hussain El Kenawy
2015-05-01
Many arid and semi-arid regions have sparse precipitation observing networks, which limits the capacity for detailed hydrological modelling, water resources management and flood forecasting efforts. The objective of this work is to evaluate the utility of relatively high-spatial resolution rainfall products to reproduce observed multi-decadal rainfall characteristics such as climatologies, anomalies and trends over Saudi Arabia. Our study compares the statistical characteristics of rainfall from 53 observatories over the reference period 1965-2005, with rainfall data from six widely used gauge-based products, including APHRODITE, GPCC, PRINCETON, UDEL, CRU and PREC/L. In addition, the performance of three global climate models (GCMs), including CCSM4, EC-EARTH and MRI-I-CGCM3, integrated as part of the Fifth Coupled Model Intercomparison Project (CMIP5), was also evaluated. Results indicate that the gauge-based products were generally skillful in reproducing rainfall characteristics in Saudi Arabia. In most cases, the gauge-based products were also able to capture the annual cycle, anomalies and climatologies of observed data, although significant inter-product variability was observed, depending on the assessment metric being used. In comparison, the GCM-based products generally exhibited poor performance, with larger biases and very weak correlations, particularly during the summertime. Importantly, all products generally failed to reproduce the observed long-term seasonal and annual trends in the region, particularly during the dry seasons (summer and autumn). Overall, this work suggests that selected gauge-based products with daily (APHRODITE and PRINCETON) and monthly (GPCC and CRU) resolutions show superior performance relative to other products, implying that they may be the most appropriate data source from which multi-decadal variations of rainfall can be investigated at the regional scale over Saudi Arabia. Discriminating these skillful products is important not only for reducing uncertainty in climate, hydrological and environmental assessments but also for advancing model developments in the region. © 2015 Royal Meteorological Society.
One-loop effective actions and 2D hydrodynamics with anomalies
Directory of Open Access Journals (Sweden)
Gim Seng Ng
2015-06-01
Full Text Available We revisit the study of a 2D quantum field theory in the hydrodynamic regime and develop a formalism based on Euclidean one-loop partition functions that is suitable to analyze transport properties due to gauge and gravitational anomalies. To do so, we generalize the method of a modified Dirac operator developed for zero-temperature anomalies to finite temperature, chemical potentials and rotations.
Klinkhamer, F. R.
1999-01-01
We consider chiral gauge theories defined over a four-dimensional spacetime manifold with a Cartesian product structure for at least one compact spatial dimension. For a simple setup, we calculate the effective gauge field action by integrating out the chiral fermions, while maintaining gauge invariance. Due to a combination of infrared and ultraviolet effects, there appears a CPT-odd term in the effective gauge field action. This CPT anomaly could occur in chiral gauge theo...
Beauchesne, Hugues; Gregoire, Thomas
2015-01-01
Stringent experimental constraints have raised the lower limit on the masses of squarks to TeV levels, while compatibility with the mass of the Higgs boson provides an upper limit. This two-sided bound has lead to the emergence of Mini-Split theories where gauginos are not far removed from the electroweak scale while scalars are somewhat heavier. This small hierarchy modifies the spectrum of standard anomaly and gauge mediation, leading to Mini-Split deflected anomaly and gauge mediation models. In this paper, we study LHC constraints on these models and their prospects at a 100 TeV collider. Current constraints on their parameter space come from ATLAS and CMS supersymmetry searches, the known mass of the Higgs boson, and the absence of a color-breaking vacuum. Prospects at a 100 TeV collider are obtained from these same theoretical constraints in conjunction with background estimates. As would be expected from renormalization group effects, a slightly lighter third generation of squarks is assumed. Higgsinos...
International Nuclear Information System (INIS)
Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution.
Search for light massive gauge bosons as an explanation of the $(g-2)_\\mu$ anomaly at MAMI
Merkel, H; Gayoso, C Ayerbe; Beranek, T; Beri?i?, J; Bernauer, J C; Böhm, R; Bosnar, D; Correa, L; Debenjak, L; Denig, A; Distler, M O; Esser, A; Fonvieille, H; Friš?i?, I; de la Paz, M Gómez Rodríguez; Hoek, M; Kegel, S; Kohl, Y; Middleton, D G; Mihovilovi?, M; Müller, U; Nungesser, L; Pochodzalla, J; Rohrbeck, M; Ron, G; Majos, S Sánchez; Schlimme, B S; Schoth, M; Schulz, F; Sfienti, C; Širca, S; Thiel, M; Tyukin, A; Weber, A; Weinriefer, M
2014-01-01
A massive, but light abelian U(1) gauge boson is a well motivated possible signature of physics beyond the Standard Model of particle physics. In this paper, the search for the signal of such a U(1) gauge boson in electron-positron pair-production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron (MAMI) is described. Exclusion limits in the mass range of 40 MeV up to 300 MeV with a sensitivity in the mixing parameter of down to $\\epsilon^2 = 8\\times 10^{-7}$ are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge boson.
Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g-2 anomaly.
Merkel, H; Achenbach, P; Ayerbe Gayoso, C; Beranek, T; Beri?i?, J; Bernauer, J C; Böhm, R; Bosnar, D; Correa, L; Debenjak, L; Denig, A; Distler, M O; Esser, A; Fonvieille, H; Friš?i?, I; Gómez Rodríguez de la Paz, M; Hoek, M; Kegel, S; Kohl, Y; Middleton, D G; Mihovilovi?, M; Müller, U; Nungesser, L; Pochodzalla, J; Rohrbeck, M; Ron, G; Sánchez Majos, S; Schlimme, B S; Schoth, M; Schulz, F; Sfienti, C; Sirca, S; Thiel, M; Tyukin, A; Weber, A; Weinriefer, M
2014-06-01
A massive, but light, Abelian U(1) gauge boson is a well-motivated possible signature of physics beyond the standard model of particle physics. In this Letter, the search for the signal of such a U(1) gauge boson in electron-positron pair production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron is described. Exclusion limits in the mass range of 40??MeV/c^{2} to 300??MeV/c^{2}, with a sensitivity in the squared mixing parameter of as little as ?^{2}=8×10^{-7} are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge boson. PMID:24949757
Gravitational Electric-Magnetic Duality, Gauge Invariance and Twisted Self-Duality
Bunster, Claudio; Hörtner, Sergio
2012-01-01
The concept of electric-magnetic duality can be extended to linearized gravity. It has indeed been established that in four dimensions, the Pauli-Fierz action (quadratic part of the Einstein-Hilbert action) can be cast in a form that is manifestly invariant under duality rotations in the internal 2-plane of the spacetime curvature and its dual. In order to achieve this manifestly duality-invariant form, it is necessary to introduce two "prepotentials", which form a duality multiplet. These prepotentials enjoy interesting gauge invariance symmetries, which are, for each, linearized diffeomorphisms and linearized Weyl rescalings. The purpose of this note is twofold: (i) To rewrite the manifestly-duality invariant action obtained in previous work in a way that makes its gauge invariances also manifest. (ii) To explicitly show that the equations of motion derived from that action can be interpreted as twisted self-duality conditions on the curvature tensors of the two metrics obtained from the two prepotentials.
Path-integral quantization of gravitational interactions
International Nuclear Information System (INIS)
Some of the local symmetry properties of quantum field theory in curved space-time and quantized gravitational interactions are discussed. The authors concentrate on local symmetry properties, and thus the asymptotically flat space-time is assumed, whenever necessary, in the hope that the precise boundary conditions will not modify the short distance structure in quantum theory. They adopt the DeWitt-Faddeev-Popov prescription of the Feyman path integral with a complete gauge fixing. The topics discussed include: (i) A brief review of the path-integral derivation of chiral anomalies in flat space-time; (ii) The specification of the gravitational path-integral measure, which avoids all the ''fake'' gravitational anomalies, and the applications of this path-integral prescription to: (1) effective potential in generalized Kaluza-Klein theory, (2) 4-dimensional conformal anomalies, (3) conformal symmetry in pure conformal gravity, (4) bosonic string theory as a gravitational theory in d = 2, (5) Virasoro condition and the Wheeler-DeWitt equation in the path-integral formalism, (6) gravitational anomalies and the definition of the energy-momentum tensor
Renormalizable Quantum Gauge General Relativity
Wu, N
2003-01-01
The quantum gauge general relativity is proposed in the framework of quantum gauge theory of gravity. It is formulated based on gauge principle which states that the correct symmetry for gravitational interactions should be gravitational gauge symmetry. The gravitational gauge group is studied in the paper. Then gravitational gauge interactions of pure gravitational gauge field is studied. It is found that the field equation of gravitational gauge field is just the Einstein's field equation. After that, the gravitational interactions of scalar field, Dirac field and vector fields are studied, and unifications of fundamental interactions are discussed. Path integral quantization of the theory is studied in the paper. The quantum gauge general relativity discussed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. A strict proof on the renormalizability of the theory is also given in this ...
Busack, Hans-Juergen
2007-01-01
All anomalous velocity increases until now observed during the Earth flybys of the spacecrafts Galileo, NEAR, Rosetta, Cassini and Messenger have been correctly calculated by computer simulation using an asymmetric field term in addition to the Newtonian gravitational field. The specific characteristic of this term is the lack of coupling to the rotation of the Earth or to the direction of other gravitational sources such as the Sun or Moon. Instead, the asymmetry is oriente...
Canonical formulation of gravitational teleparallelism in $2+1$ dimensions in Schwinger's time gauge
Sousa, A A
2000-01-01
We consider the most general class of teleparallel gravitational theoriesquadratic in the torsion tensor, in three space-time dimensions, and carry outa detailed investigation of its Hamiltonian formulation in Schwinger's timegauge. This general class is given by a family of three-parameter theories. Aconsistent implementation of the Legendre transform reduces the original theoryto a one-parameter family of theories. By calculating Poisson brackets we showexplicitely that the constraints of the theory constitute a first class set.Therefore the theory is well defined regarding time evolution. The freeparameter may be fixed by requiring the theory to display the Newtonian limit.The resulting theory does not coincide with Einstein's general relativity in2+1 dimensions.
Without gravity, you would float into space. Gravity pulls matter together: it holds us onto the Earth, it holds the Earth in orbit around the sun and it holds our solar system in orbit about the centre of the galaxy. Everything with mass feels the attraction of gravity. The strength of the attraction between 2 objects depends on their masses. Despite its omnipresence, gravity is the weakest of the 4 forces. It is insignificant at the scale of human beings: when a group of visitors walks past, gravity doesn't pull you towards them! At even smaller scales, the gravitational pull between the electron and the proton is about 1040 times weaker than the electromagnetic attraction between them. Text for the interactive: Why does the same mass weigh more on the Earth than on the moon ?
Lorentz anomaly in arbitrary dimensions
International Nuclear Information System (INIS)
It is shown that the Lorentz invariance is broken in gauge theories of chiral Weyl fermions in flat space-time via one-loop quantum corrections. Abelian gauge fields contribute to this anomaly in even dimensions larger than or equal to four and non-Abelian gauge fields do in even dimensions larger than or equal to six. The anomaly is proportional to D/2 - 1 power to the charge, where D is a number of space-time dimensions
Juri AgrestiFirenze Univ.; Roberto De PietriParma Univ. & INFN; Luca LusannaINFN, Firenze; Luca MartucciMilano Univ. & INFN
2003-01-01
In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy ${\\hat E}_{ADM}$, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of {\\it non-harmonic} 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) $r_{\\bar a}(\\tau ,\\vec \\sigma)$, $\\pi_{\\bar a}(\\tau ,\\vec \\sigma)$, $\\b...
Shah, Abhay; Friedman, John; Kim, Dong-Hoon; Price, Larry
2010-01-01
This is the second of two companion papers on computing the self-force in a radiation gauge; more precisely, the method uses a radiation gauge for the radiative part of the metric perturbation, together with an arbitrarily chosen gauge for the parts of the perturbation associated with changes in black-hole mass and spin and with a shift in the center of mass. We compute the conservative part of the self-force for a particle in circular orbit around a Schwarzschild black hole. The gauge vector relating our radiation gauge to a Lorenz gauge is helically symmetric, implying that the quantity h_{\\alpha\\beta} u^\\alpha u^\\beta (= h_{uu}) must have the same value for our radiation gauge as for a Lorenz gauge; and we confirm this numerically to one part in 10^{13}. As outlined in the first paper, the perturbed metric is constructed from a Hertz potential that is in term obtained algebraically from the the retarded perturbed spin-2 Weyl scalar, \\psi_0 . We use a mode-sum renormalization and find the renormalization co...
Invariant Regularization of Supersymmetric Chiral Gauge Theory
Suzuki, Hiroshi
1999-01-01
We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We pr...
Shah, Abhay; Keidl, Tobias; Friedman, John; KIM, Dong-Hoon; Price, Larry
2010-01-01
This is the second of two companion papers on computing the self-force in a radiation gauge; more precisely, the method uses a radiation gauge for the radiative part of the metric perturbation, together with an arbitrarily chosen gauge for the parts of the perturbation associated with changes in black-hole mass and spin and with a shift in the center of mass. We compute the conservative part of the self-force for a particle in circular orbit around a Schwarzschild black hole...
Gravitational cubic interactions for a simple mixed-symmetry gauge field in AdS and flat backgrounds
International Nuclear Information System (INIS)
Cubic interactions between the simplest mixed-symmetry gauge field and gravity are constructed in anti-de Sitter (AdS) and flat backgrounds. Non-Abelian cubic interactions are obtained in AdS following various perturbative methods including the Fradkin-Vasiliev construction, with and without Stueckelberg fields. The action that features the maximal number of Stueckelberg fields can be considered in the flat limit without loss of physical degrees of freedom. The resulting interactions in flat space are compared with a classification of vertices obtained via the antifield cohomological perturbative method. It is shown that the gauge algebra becomes Abelian in the flat limit, in contrast to what happens for totally symmetric gauge fields in AdS. (paper)
Gravitational cubic interactions for a simple mixed-symmetry gauge field in AdS and flat backgrounds
Energy Technology Data Exchange (ETDEWEB)
Boulanger, Nicolas [Service de Mecanique et Gravitation, Universite de Mons-UMONS, 20 Place du Parc, 7000 Mons (Belgium); Skvortsov, E D [P. N. Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow (Russian Federation); Zinoviev, Yu M, E-mail: nicolas.boulanger@umons.ac.be, E-mail: skvortsov@lpi.ru, E-mail: Yurii.Zinoviev@ihep.ru [Institute for High Energy Physics Protvino, Moscow Region 142280 (Russian Federation)
2011-10-14
Cubic interactions between the simplest mixed-symmetry gauge field and gravity are constructed in anti-de Sitter (AdS) and flat backgrounds. Non-Abelian cubic interactions are obtained in AdS following various perturbative methods including the Fradkin-Vasiliev construction, with and without Stueckelberg fields. The action that features the maximal number of Stueckelberg fields can be considered in the flat limit without loss of physical degrees of freedom. The resulting interactions in flat space are compared with a classification of vertices obtained via the antifield cohomological perturbative method. It is shown that the gauge algebra becomes Abelian in the flat limit, in contrast to what happens for totally symmetric gauge fields in AdS. (paper)
Agresti, J; Lusanna, L; Martucci, L; Agresti, Juri; Pietri, Roberto De; Lusanna, Luca; Martucci, Luca
2003-01-01
In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy ${\\hat E}_{ADM}$, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of {\\it non-harmonic} 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) $r_{\\bar a}(\\tau ,\\vec \\sigma)$, $\\pi_{\\bar a}(\\tau ,\\vec \\sigma)$, $\\bar a = 1,2$. We define a Hamiltonian linearization of the theory, i.e. gravitational waves, {\\it without introducing any background 4-metric}, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in ${\\hat E}_{ADM}$. {\\it We solve all the constraints} of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave ...
Bardeen, J M
2002-01-01
We investigate how the accuracy and stability of numerical relativity simulations of 1D colliding plane waves depends on choices of equation formulations, gauge conditions, boundary conditions, and numerical methods, all in the context of a first-order 3+1 approach to the Einstein equations, with basic variables some combination of first derivatives of the spatial metric and components of the extrinsic curvature tensor. Hyperbolic schemes, specifically variations on schemes proposed by Bona and Masso and Anderson and York, are compared with variations of the Arnowitt-Deser-Misner formulation. Modifications of the three basic schemes include raising one index in the metric derivative and extrinsic curvature variables and adding a multiple of the energy constraint to the extrinsic curvature evolution equations. Redundant variables in the Bona-Masso formulation may be reset frequently or allowed to evolve freely. Gauge conditions which simplify the dynamical structure of the system are imposed during each time s...
Shah, Abhay; Keidl, Tobias; Friedman, John; Price, Larry
2011-04-01
This talk reports recent progress on computing the self-force in a radiation gauge for a particle in circular orbit around a Kerr black hole. We work in a gauge which allows us to use the Teukolsky equation to obtain retarded field needed to compute the self-force. We use of the Chrzanowski-Cohen-Kegeles formalism to extract the perturbed metric from the Weyl scalar. The Hertz potential is calculated by algebraically inverting the differential angular equation relating it to the Weyl scalar. Since this is an algebraic inversion, every operator acting on the Hertz potential to yield the self-force can be traced back to an action on the Weyl scalar, which simplifies our analytic work. Once the retarded self-force is calculated, we match it numerically to an appropriate series in the angular harmonic index l to extract regularization parameters. The quantity habuaub and an associated change in the orbital frequency are invariant under helically symmetric gauge transformations, and we compute them inside the (Boyer-Lindquist) radius of the particle.
Holographic renormalization of cascading gauge theories
Aharony, O; Yarom, A; Aharony, Ofer; Buchel, Alex; Yarom, Amos
2005-01-01
We perform a holographic renormalization of cascading gauge theories. Specifically, we find the counter-terms that need to be added to the gravitational action of the backgrounds dual to the cascading theory of Klebanov and Tseytlin, compactified on an arbitrary four-manifold, in order to obtain finite correlation functions (with a limited set of sources). We show that it is possible to truncate the action for deformations of this background to a five dimensional system coupling together the metric and four scalar fields. Somewhat surprisingly, despite the fact that these theories involve an infinite number of high-energy degrees of freedom, we find finite answers for all one-point functions (including the conformal anomaly). We compute explicitly the renormalized stress tensor for the cascading gauge theories at high temperature and show how our finite answers are consistent with the infinite number of degrees of freedom. Finally, we discuss ambiguities appearing in the holographic renormalization we propose...
Path Integrals and Anomalies in Curved Space
International Nuclear Information System (INIS)
Bastianelli and van Nieuwenhuizen's monograph 'Path Integrals and Anomalies in Curved Space' collects in one volume the results of the authors' 15-year research programme on anomalies that arise in Feynman diagrams of quantum field theories on curved manifolds. The programme was spurred by the path-integral techniques introduced in Alvarez-Gaume and Witten's renowned 1983 paper on gravitational anomalies which, together with the anomaly cancellation paper by Green and Schwarz, led to the string theory explosion of the 1980s. The authors have produced a tour de force, giving a comprehensive and pedagogical exposition of material that is central to current research. The first part of the book develops from scratch a formalism for defining and evaluating quantum mechanical path integrals in nonlinear sigma models, using time slicing regularization, mode regularization and dimensional regularization. The second part applies this formalism to quantum fields of spin 0, 1/2, 1 and 3/2 and to self-dual antisymmetric tensor fields. The book concludes with a discussion of gravitational anomalies in 10-dimensional supergravities, for both classical and exceptional gauge groups. The target audience is researchers and graduate students in curved spacetime quantum field theory and string theory, and the aims, style and pedagogical level have been chosen with this audience in mind. Path integrals are treated as calculational tools, and the notation and terminology are throughout taiotation and terminology are throughout tailored to calculational convenience, rather than to mathematical rigour. The style is closer to that of an exceedingly thorough and self-contained review article than to that of a textbook. As the authors mention, the first part of the book can be used as an introduction to path integrals in quantum mechanics, although in a classroom setting perhaps more likely as supplementary reading than a primary class text. Readers outside the core audience, including this reviewer, will gain from the book a heightened appreciation of the central role of regularization as a defining ingredient of a quantum field theory and will be impressed by the agreement of results arising from different regularization schemes. The readers may in particular enjoy the authors' 'brief history of anomalies' in quantum field theory, as well as a similar historical discussion of path integrals in quantum mechanics. (book review)
Gravitational research. Gravitational waves
Amaldi, E.; Pizzella, G.
1985-04-01
Gravitational wave research is reviewed. Gravitational theory, relativity theory, experiments in general relativity, sources of gravitational waves, the Rome gravitational experiment, quantic limits of gravitational waves measurements and how to avoid those limits are discussed.
National Oceanic and Atmospheric Administration, Department of Commerce — Bogus - Spacecraft anomalies due to the space environment range from minor operational problems to permanent spacecraft failure. The NGDC Spacecraft Anomaly...
Wardell, Barry
2015-01-01
With a view to developing a formalism that will be applicable at second perturbative order, we devise a new practical scheme for computing the gravitational self-force experienced by a point mass moving in a curved background spacetime. Our method works in the frequency domain and employs the effective-source approach, in which a distributional source for the retarded metric perturbation is replaced with an effective source for a certain regularized self-field. A key ingredient of the calculation is the analytic determination of an appropriate puncture field from which the effective source and regularized residual field can be calculated. In addition to its application in our effective-source method, we also show how this puncture field can be used to derive tensor-harmonic mode-sum regularization parameters that improve the efficiency of the traditional mode-sum procedure. To demonstrate the method, we calculate the first-order-in-the-mass-ratio self-force and redshift invariant for a point mass on a circula...
What's wrong with anomalous chiral gauge theory?
International Nuclear Information System (INIS)
It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs
Igarashi, Yuji; Sato, Masanao; Sonoda, Hidenori; 10.1143/PTP.125.565
2011-01-01
The antifield formalism adapted in the exact renormalization group is found to be useful for describing a system with some symmetry, especially the gauge symmetry. In the formalism, the vanishing of the quantum master operator implies the presence of a symmetry. The QM operator satisfies a simple algebraic relation that will be shown to be related to the Wess-Zumino condition for anomalies. We also explain how an anomaly contributes to the QM operator.
Anomalies and de Sitter radiation from the generic black holes in de Sitter spaces
International Nuclear Information System (INIS)
Robinson-Wilczek's recent work shows that, the energy-momentum tensor flux required to cancel gravitational anomaly at the event horizon of a Schwarzschild-type black hole has an equivalent form to that of a (1+1)-dimensional blackbody radiation at the Hawking temperature. Motivated by their work, Hawking radiation from the cosmological horizons of the general Schwarzschild-de Sitter and Kerr-de Sitter black holes, has been studied by the method of anomaly cancellation. The result shows that the absorbing gauge current and energy momentum tensor fluxes required to cancel gauge and gravitational anomalies at the cosmological horizon are precisely equal to those of Hawking radiation from it. It should be emphasized that the effective field theory for generic black holes in de Sitter spaces should be formulated within the region between the event horizon (EH) and the cosmological horizon (CH), to integrate out the classically irrelevant ingoing modes at the EH and the classically irrelevant outgoing modes at the CH, respectively
Conformal a-anomaly of some non-unitary 6d superconformal theories
Beccaria, M
2015-01-01
We compute conformal anomaly a-coefficient for some non-unitary (higher derivative or non-gauge-invariant) 6d conformal fields and their supermultiplets. We use the method based on a connection between 6d determinants on S^6 and 7d determinants on AdS_7. We find, in particular, that (1,0) supermultiplet containing 4-derivative gauge-invariant conformal vector has precisely the value of a-anomaly as attributed in \\href{http://arxiv.org/abs/1506.03807}{arXiv:1506.03807} (on the basis of R-symmetry and gravitational 't Hooft matching) to the standard (1,0) vector multiplet. We also show that higher derivative (2,0) 6d conformal supergravity coupled to exactly 26 (2,0) tensor multiplets has vanishing a-anomaly. This is the 6d counterpart of the known fact of cancellation of the conformal anomaly in the 4d system of N=4 conformal supergravity coupled to 4 vector N=4 multiplets. In the case when 5 of tensor multiplets are chosen to be ghost-like and the conformal symmetry is spontaneously broken by a quadratic scal...
Anomaly-induced charges in baryons
Eto, Minoru; Hashimoto, Koji; Iida, Hideaki; Ishii, Takaaki; Maezawa, Yu
2011-01-01
We show that quantum chiral anomaly of QCD in magnetic backgrounds induces a novel structure of electric charge inside baryons. To illustrate the anomaly effect, we employ the Skyrme model for baryons, with the anomaly-induced gauged Wess-Zumino term (\\pi_0 + (multi-pion)) E_i B_i. Due to this term, the Skyrmions giving a local pion condensation ((\\pi_0 + (multi-pion)) \
Regularized determinants and non-perturbative definition of chiral anomalies
International Nuclear Information System (INIS)
We develop a non-perturbative regularization scheme for fermions interacting with external gauge fields. It is used to obtain the axial anomalies in theories with (classical) global and local axial-vector symmetries. The main result is that in the latter case, this regularization automatically produces the consistent anomaly, provided the cut-off operator is vector gauge covariant. (orig.)
Black hole spectra in holography: Consequences for equilibration of dual gauge theories
Directory of Open Access Journals (Sweden)
Alex Buchel
2015-07-01
Full Text Available For a closed system to equilibrate from a given initial condition there must exist an equilibrium state with the energy equal to the initial one. Equilibrium states of a strongly coupled gauge theory with a gravitational holographic dual are represented by black holes. We study the spectrum of black holes in Pilch–Warner geometry. These black holes are holographically dual to equilibrium states of strongly coupled SU(N N=2? gauge theory plasma on S3 in the planar limit. We find that there is no energy gap in the black hole spectrum. Thus, there is a priori no obstruction for equilibration of arbitrary low-energy states in the theory via a small black hole gravitational collapse. The latter is contrasted with phenomenological examples of holography with dual four-dimensional CFTs having non-equal central charges in the stress–energy tensor trace anomaly.
Non-topological anomalies and Wess-Zumino effective action
International Nuclear Information System (INIS)
The uniqueness of the full non-Abelian anomaly including the terms additional to the usual Bardeen anomaly is proved within gauge invariant perturbation theory. The resulting effective Wess-Zumino Lagrangian describes both normal and abnormal parity progresses. The slope parameter shown to be uniquely determined by the anomaly. (author)
... right ventricle) from the right upper heart chamber (right atrium). In Ebstein's anomaly, the positioning of the tricuspid ... open to allow blood to move from the right atrium (top chamber) to the right ventricle (bottom chamber) ...
The Effective Gravitational Theory at Large Scale with Lorentz Violation
Wu, Yiwei; Yang, Lixiang; Yuan, Tzu-Chiang
2015-01-01
The dipole anomaly in the power spectrum of CMB may indicate that the Lorentz boost invarianc is violated at cosmic scale. We assume that the Lorentz symmetry is violated partly from the scale of galaxy. We employ the symmetry of very special relativity as an example to illustrate the Lorentz violation effect by constructing the corresponding gauge theories as the effective gravitational theory at the large scale. We find the common feather of these gravitation models is the non-triviality of spacetime torsion and contorsion even if the matter source is of only scalar matter. The presence of non-trivial contorsion contributes an effective enenrgy-momentum distribution which may account for part of dark matter effect.
Astrometric solar system anomalies
Energy Technology Data Exchange (ETDEWEB)
Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LABORATORY
2009-01-01
There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.
Alba, David
2010-01-01
In this second paper we define a Post-Minkowskian weak field approximation leading to a linearization of the Hamilton equations of ADM tetrad gravity in the York canonical basis in a family of non-harmonic 3-orthogonal Schwinger time gauges. The York time ${}^3K$ (the relativistic inertial gauge variable, not existing in Newtonian gravity, parametrizing the family and connected to the freedom in clock synchronization, i.e. to the definition of the instantaneous 3-spaces) is put equal to an arbitrary numerical function. The matter are point particles, with a Grassmann regularization of self-energies, and the electro-magnetic field in the radiation gauge: a ultraviolet cutoff allows a consistent linearization, which is shown to be the lowest order of a Hamiltonian Post-Minkowskian (HPM) expansion. We solve the constraints and the Hamilton equations for the tidal variables and we find Post-Minkowskian gravitational waves with asymptotic background (and the correct quadrupole emission formula) propagating on dyna...
Ohanian, Hans
2015-04-01
It seems desirable that Einstein's gravitational theory with the Lagrangian (mPlanck)2 (- g)1/2 R should arise by symmetry breaking from an underlying conformally symmetric theory. A simple way to achieve this goal is to start with a conformally invariant version of Brans-Dicke theory with a complex massless scalar field ? coupled to the curvature by a term ?? * (- g)1/2 R , and also coupled to a massless gauge-vector field ?? for which the complex scalar acts as source. The vector field can be interpreted geometrically as the Weyl gauge-vector for transport of lengths in the conformal geometry. By the Coleman-Weinberg mechanism, the scalar field generates an effective potential with a stable minimum at ? 0 . By the Higgs mechanism, this leads to conformal symmetry breaking, and both the scalar and gauge-vector fields acquire masses of the order of mPlanck , so they become practically undetectable, while the value of ??* becomes equal to (mPlanck)2 .
Robert W. Sault; Jeffrey Sheridan
2013-01-01
While conducting medical aid in Mozambique, a 41 year old African male presented to our eye clinic complaining of visual impairment. The male was found to have Peters’ anomaly type 2, a rare congenital ocular malformation leading to sensory amblyopia and glaucoma.
Chiral Gauge Models on a Lattice
Horowitz, Alan
1999-01-01
Chiral gauge groups acting on a lattice fermion field are constructed such that all fermion modes (doublers) have the same charge. Details are given for an abelian axial gauge group within a perturbative framework. An action based on this group correctly reproduces the continuum gauge-current anomaly, while preserving global chiral symmetry, locality, rotational symmetry and hermiticity. A Wess-Zumino-like scalar field enters naturally to enforce exact chiral gauge invarianc...
Energy Technology Data Exchange (ETDEWEB)
Bachas, C. [Laboratoire de Physique Theorique, ENS, 75 - Paris (France); Bilal, A. [Institut de Physique, Universite de Neuchatel, (Switzerland); Douglas, M. [New Jersey University, Dept. of Physics and Astronomy, Piscataway, NJ (United States); Nekrasov, N. [IHES, Institut des Hautes Etudes Scientifiques, 91 - Bures sur Yvette (France); David, F. [CEA Saclay, Service de Physique Theorique, 91 - Gif-sur-Yvette (France)
2002-07-01
The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)
Gauge Invariant Spectral Cauchy Characteristic Extraction
Handmer, Casey J; Winicour, Jeffrey
2015-01-01
We present gauge invariant spectral Cauchy characteristic extraction. We compare gravitational waveforms extracted from a head-on black hole merger simulated in two different gauges by two different codes. We show rapid convergence, demonstrating both gauge invariance of the extraction algorithm and consistency between the legacy Pitt null code and the much faster Spectral Einstein Code (SpEC).
To theory of gravitational interaction
Minkevich, A. V.
2008-01-01
Some principal problems of general relativity theory and attempts of their solution are discussed. The Poincare gauge theory of gravity as natural generalization of Einsteinian gravitation theory is considered. The changes of gravitational interaction in the frame of this theory leading to the solution of principal problems of general relativity theory are analyzed.
Connections between Schwinger terms and anomalies
International Nuclear Information System (INIS)
We present examples of a new type of Schwinger terms appearing in commutators of energy-momentum tensor. We demonstrate them in two-dimensional flat Minkowski space. The Schwinger terms which correspond to gravitational anomaly appear in different places from those of conformal anomaly. Nevertheless, they still preserve the Jacobi identity. We also discuss the relation between anomalies and the Schwinger terms. In any-dimensional curved space-time Faddeev's cohomological technique works well. Therefore we can derive the Schwinger terms in curved space-time. (author)
Triangle Anomalies from Einstein Manifolds
Benvenuti, S; Tachikawa, Y; Benvenuti, Sergio; Tachikawa, Yuji; Zayas, Leopoldo A. Pando
2006-01-01
The triangle anomalies in conformal field theory, which can be used to determine the central charge a, correspond to the Chern-Simons couplings of gauge fields in AdS under the gauge/gravity correspondence. We present a simple geometrical formula for the Chern-Simons couplings in the case of type IIB supergravity compactified on a five-dimensional Einstein manifold X. When X is a circle bundle over del Pezzo surfaces or a toric Sasaki-Einstein manifold, we show that the gravity result is in perfect agreement with the corresponding quiver gauge theory. Our analysis reveals an interesting connection with the condensation of giant gravitons or dibaryon operators which effectively induces a rolling among Sasaki-Einstein vacua.
Anomaly-induced charges in baryons
Eto, Minoru; Hashimoto, Koji; Iida, Hideaki; Ishii, Takaaki; Maezawa, Yu
2012-06-01
We study the Skyrme model of baryons with quantum chiral anomaly of QCD in magnetic backgrounds, and suggest a possible induction of a novel structure of electric charge inside the baryons. Due to the anomaly-induced gauged Wess-Zumino term ˜(?0+multipion)E?·B?, the Skyrmions giving a local pion condensation ?(?0+multipion)??0 would produce a local charge source, in the background magnetic field B??0. Since the appearance of the total additional electric charge on the baryon looks unrealistic and surprising, we discuss the validity of our detailed evaluation of the anomaly effects.
QCD Flux Tubes and Anomaly Inflow
Xiong, Chi
2013-01-01
We apply the Callan-Harvey anomaly inflow mechanism to the study of QCD (chromoelectric) flux tubes, quark (pair)-creation and chiral magnetic effect, using new variables from the Cho-Faddeev-Niemi decomposition of the gauge potential. A phenomenological description of chromoelectric flux tubes is obtained by studying a gauged Nambu-Jona-Lasinio effective Lagrangian, derived from the original QCD Lagrangian. At the quantum level, quark condensates in the QCD vacuum may form ...
Gauge-invariance in one-loop quantum cosmology
Vasilevich, D V
1995-01-01
We study the problem of gauge-invariance and gauge-dependence in one-loop quantum cosmology. We formulate some requirements which should be satisfied by boundary conditions in order to give gauge-independent path integral. The case of QED is studied in some detail. We outline difficulties in gauge-invariant quantization of gravitational field in a bounded region.
Application of Noncommutative Differential Geometry on Lattice to Anomaly
Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
1999-01-01
The chiral anomaly in lattice abelian gauge theory is investigated by applying the geometric and topological method in noncommutative differential geometry(NCDG). A new kind of double complex and descent equation are proposed on infinite hypercubic lattice in arbitrary even dimensional Euclidean space, in the framework of NCDG. Using the general solutions to proposed descent equation, we derive the chiral anomaly in Abelian lattice gauge theory. The topological origin of ano...
The regulation of supersymmetric theories and anomalies in the supercurrent
International Nuclear Information System (INIS)
The paper on supersymmetric theories and supercurrent anomalies is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. The possible supersymmetry anomaly within the context of the Wess-Zumino gauge is discussed. It is also demonstrated that there exists a gauge invariant and supersymmetric regularisation scheme in superspace. This scheme is the higher derivative method when supplemented by one-loop Pauli-Villars regulators. (U.K.)
Chen, Wei-Ming; McGady, David A
2014-01-01
Modern on-shell methods allow us to construct both the classical and quantum S-matrix for a large class of theories, without utilizing knowledge of the interacting Lagrangian. It was recently shown that the same applies for chiral gauge theories, where the constraints from anomaly cancelation can be recast into the tension between unitarity and locality, without any reference to gauge symmetry. In this paper, we give a more detailed exploration, for chiral QED and QCD. We study the rational terms that are mandated by locality, and show that the factorization poles of such terms reveal a new particle in the spectrum, the Green-Schwarz two-from. We further extend the analysis to six-dimensional gravity coupled to chiral matter, including self-dual two-forms for which covariant actions generically do not exist. Despite this, the on-shell methods define the correct quantum S-matrix by demonstrating that locality of the one-loop amplitude requires combination of chiral matter that is consistent with that of anomal...
See Also: Talking Glossary of Genetic Terms Definitions for the genetic terms used on this page Learning About Poland Anomaly What is Poland anomaly? What are the associated features of Poland anomaly? What ...
Reissner—Nordstroem-de—Sitter-type Solution by a Gauge Theory of Gravity
International Nuclear Information System (INIS)
We use the theory based on a gravitational gauge group (Wu's model) to obtain a spherical symmetric solution of the Geld equations for the gravitational potential on a Minkowski spacetime. The gauge group, the gauge covariant derivative, the strength tensor of the gauge Held, the gauge invariant Lagrangean with the cosmological constant, the Geld equations of the gauge potentials with a gravitational energy-momentum tensor as well as with a tensor of the Geld of a point like source are determined. Finally, a Reissner-Nordstrom-de Sitter-type metric on the gauge group space is obtained
The Anomaly Structure of Regularized Supergravity
Butter, Daniel
2014-01-01
On-shell Pauli-Villars regularization of the one-loop divergences of supergravity theories is used to study the anomaly structure of supergravity and the cancellation of field theory anomalies under a $U(1)$ gauge transformation and under the T-duality group of modular transformations in effective supergravity theories with three K\\"ahler moduli $T^i$ obtained from orbifold compactification of the weakly coupled heterotic string. This procedure requires constraints on the chiral matter representations of the gauge group that are consistent with known results from orbifold compactifications. Pauli-Villars regulator fields allow for the cancellation of all quadratic and logarithmic divergences, as well as most linear divergences. If all linear divergences were canceled, the theory would be anomaly free, with noninvariance of the action arising only from Pauli-Villars masses. However there are linear divergences associated with nonrenormalizable gravitino/gaugino interactions that cannot be canceled by PV fields...
Chiao, Raymond Y.; Haun, Robert W.; Inan, Nader A.; Kang, Bong-Soo; Martinez, Luis A; Minter, Stephen J.; Muñoz, Gerardo A.; Singleton, Douglas A.
2013-01-01
A thought experiment is proposed to demonstrate the existence of a gravitational, vector Aharonov-Bohm effect. A connection is made between the gravitational, vector Aharonov-Bohm effect and the principle of local gauge invariance for nonrelativistic quantum matter interacting with weak gravitational fields. The compensating vector fields that are necessitated by this local gauge principle are shown to be incorporated by the DeWitt minimal coupling rule. The nonrelativistic ...
Chern-Simons and WZW Anomaly Cancelations Across Dimensions
Hill, Christopher T
2008-01-01
The WZW functional in D=4 can be derived directly from the Chern-Simons functional of a compactified D=5 gauge theory and the boundary fermions it supplants. A simple pedagogical model based on U(1) gauge groups illustrates how this works. A bulk-boundary system with the fermions eliminated manifestly evinces anomaly cancelations between CS and WZW terms.
Entropy for gravitational Chern-Simons terms by squashed cone method
Guo, Wu-zhong
2015-01-01
In this paper we investigate the entropy of gravitational Chern-Simons terms for the horizon with non-vanishing extrinsic curvatures, or the holographic entanglement entropy for arbitrary entangling surface. In 3D we find no anomaly of entropy appears. But the squashed cone method can not be used directly to get the correct result. For higher dimensions the anomaly of entropy would appear, still, we can not use the squashed cone method directly. That is becasuse the Chern-Simons action is not gauge invariant. To get a reasonable result we suggest two methods. One is by adding a boundary term to recover the gauge invariance. This boundary term can be derived from the variation of the Chern-Simons action. The other one is by using the Chern-Simons relation $d\\bm{\\Omega_{4n-1}}=tr(\\bm{R}^{2n})$. We notice that the entropy of $tr(\\bm{R}^{2n})$ is a total derivative locally, i.e. $S=d s_{CS}$. We propose to identify $s_{CS}$ with the entropy of gravitational Chern-Simons terms $\\Omega_{4n-1}$. In the first method ...
Chiral anomaly, fermionic determinant and two dimensional models
International Nuclear Information System (INIS)
The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.)
(Fractional) intersection numbers, tadpoles and anomalies
International Nuclear Information System (INIS)
We use the Witten index in the open string sector to determine tadpole charges of orientifold planes and D-branes. As specific examples we consider type I compactifications on Calabi Yau manifolds and noncompact orbifolds. The tadpole constraints suggest that the standard embedding is not a natural choice for the gauge bundle. Rather there should be a close connection of the gauge bundle and the spin bundle. In the case of a four fold, the standard embedding does not in general fulfill the tadpole conditions. We show that this agrees with the Green-Schwarz mechanism. In the case of noncompact orbifolds we are able to solve the tadpole constraints with a gauge bundle, which is related to the spin bundle. We compare these results to anomaly cancellation on the fixed plane of the orbifold. In the case of branes wrapping noncompact cycles, there are fractional intersection numbers and anomaly coefficients, which we explain in geometric terms
Axionic defect anomalies and their cancellation
International Nuclear Information System (INIS)
We present a simple derivation of the Callan-Harvey-Naculich effect, i.e. the compensation of charge violation on axion strings due to gauge anomalies by accretion of charge onto the string from the surrounding space. We then show, in the case of axion fields without a potential, that an alternative explanation is possible in which no reference to the surrounding space is necessary because the anomalies are cancelled by a version of the Green-Schwarz mechanism. We prove that such an alternative explanation is always possible in the more general context of p-brane defects in d-dimensional field theories, and hence that there always exists an anomaly-free effective world-volume action whenever the space-time theory is anomaly free. Our results have implications, which we discuss, for heterotic and type-II fivebranes. (orig.)
Emergent gravity and chiral anomaly in Dirac semimetals in the presence of dislocations
Zubkov, M A
2015-01-01
We consider the recently discovered Dirac semimetals with two Dirac points $\\pm{\\bf K}$. In the presence of elastic deformations each fermion propagates in a curved space, whose metric is defined by the expansion of the effective Hamiltonian near the Dirac point. Besides, there is the emergent electromagnetic field that is defined by the shift of the Dirac point. We consider the case, when the deformations are caused by the dislocations. The dislocation carries singular torsion and the quantized flux of emergent magnetic field. Both torsion singularity and emergent magnetic flux may be observed in the scattering of quasiparticles on the dislocation due to Stodolsky and Aharonov - Bohm effects. We discuss quantum anomalies in the quasiparticle currents in the presence of emergent gauge and gravitational fields and the external electromagnetic field. In particular, it is demonstrated, that in the presence of external electric field the quasiparticles/holes are pumped from vacuum along the dislocation. The appea...
Interference, gravity and gauge fields
International Nuclear Information System (INIS)
The phase shift due to gravitational field and all gauge fields in the interference of two coherent beams is obtained. In the case of gravitation, it is shown, for a particle with arbitrary spin, that there exists a phase shift due to the coupling of spin to space-time curvature. This and the corresponding phase shift for gauge fields are analogous to the Aharonov-Bohm effect. The classical limit for particles moving in gravitational and gauge fields is obtained from the phase shift. For gravitation, in the absence of torsion, this is the Mathisson-Papapetrou equation, which is thereby shown to be the classical limit of the Dirac and Bargmann-Wigner wave equations, generalized to curved space-time. In the presence of torsion, a modification of this equation, given by Hehl, is obtained. It is pointed out that gravity is not a pure gauge field and that it must be placed in the more general category of an ''interference field'' which contains both gravity and gauge fields as special cases. The field equations for gauge fields and gravity are obtained from the heuristic assumption that a particle acts on a field in a manner which depends on how it responds to the field via the phase shift. For gauge fields, they contain the Yang-Mills equations as a special case. For gravity, a modification of Einstein's field equations is obtained, which corresponds to the Lagrangian (1/16?K).(2?+R) + (1/32?f)Rsub(??rho)sup(?) Rsup(??rho)sub(?), where the Riemann tensor contains torsion and K, f, ? are constants (? may be zero). The relevance of the phase shift, due to rotation, to the quantization of vortices in superfluid helium is pointed out. This suggests that the curl of the superfluid velocity may obey a system of equations analogous to Maxwell's equations and the analogue of the magnetic monopole for superfluid helium is also introduced. (author)
On the determination of the group of gauge transformations in the gauge field theory
International Nuclear Information System (INIS)
Existence of various types of gauge transformations (gT) in gauge theory and gravitational theory is established and their definitions in stratification formalism are given. It is noted that there is no any transformation of gravitational field not induced by transformation of reference system which leaves lagrangian and equations of gravitational theory invariant. That is each gT in gauge gravitational theory is of the first type. They form gauge GL+(4, R)x(X) group and gravitational theory can be constructed as gauge theory of GL+(4, R) group in which, however, gauge fields are reduced to gauge fields of Lorentz group and GL+(4, R) group represents the group of spontaneously broken symmetries with Lorentz subgroup of exact symmetries. This is a consequence of equivalence principle and is expressed in stratification terms in reduction of structural GL+(4, R) group of tangential and associated with it stratifications to Lorentz group, which results in interpretation of metrical gravitational field as the field of Goldstone type
Lattice chirality, anomaly matching, and more on the (non)decoupling of mirror fermions
Poppitz, Erich; Shang, Yanwen
2009-01-01
We study 't Hooft anomaly matching in lattice models with strong Yukawa or multi-fermion interactions. Strong non-gauge interactions among the mirror fermions in a vectorlike lattice gauge theory are introduced with the aim to obtain, in a strong-coupling symmetric phase, a long-distance unbroken gauge theory with chiral fermions in a complex representation. We show how to use exact lattice chirality to analyze the anomaly matching conditions on chiral symmetry current corre...
Relevance of induced gauge interactions in decoherence
International Nuclear Information System (INIS)
Decoherence in quantum cosmology is shown to occur naturally in the presence of induced geometric gauge interactions associated with particle production. A new ''gauge'' - variant form of the semiclassical Einstein equations is also presented which makes the non-gravitating character of the vacuum polarization energy explicit. (author). 20 refs
Exotic Gauge Theories from Tensor Calculus
Brandt, Friedemann; SIMON, JOAN; Theis, Ulrich
1999-01-01
We construct non-standard interactions between exterior form gauge fields by gauging a particular global symmetry of the Einstein-Maxwell action for such fields. Furthermore we discuss generalizations of such interactions by adding couplings to gravitational Chern-Simons forms and to fields arising through dimensional reduction. The construction uses an appropriate tensor calculus.
Affine Defects and Gravitation
Petti, R J
2014-01-01
We argue that the structure general relativity (GR) as a theory of affine defects is deeper than the standard interpretation as a metric theory of gravitation. Einstein-Cartan theory (EC), with its inhomogenous affine symmetry, should be the standard-bearer for GR-like theories. A discrete affine interpretation of EC (and gauge theory) yields topological definitions of momentum and spin (and Yang Mills current), and their conservation laws become discrete topological identities. Considerations from quantum theory provide evidence that discrete affine defects are the physical foundation for gravitation.
Recent developments in the path integral approach to anomalies
International Nuclear Information System (INIS)
After a brief summary of the path integral approach to anomalous identities, some of the recent developments in this approach are discussed. The topics discussed include (i) Construction of the effective action by means of the covariant current, (ii) Gauss law constraint in anomalous gauge theories, (iii) Path integral approach to anomalies in superconformal transformations, (iv) Conformal and ghost number anomalies in string theory in analogy with the instanton calculation, (v) Covariant local Lorentz anomaly and its connection with the mathematical construction of the consistent anomaly. (author)
Gravity, Gauge Theories and Geometric Algebra
Lasenby, Anthony; Doran, Chris; Gull, Stephen
2004-01-01
A new gauge theory of gravity is presented. The theory is constructed in a flat background spacetime and employs gauge fields to ensure that all relations between physical quantities are independent of the positions and orientations of the matter fields. In this manner all properties of the background spacetime are removed from physics, and what remains are a set of `intrinsic' relations between physical fields. The properties of the gravitational gauge fields are derived fr...
Gauge Invariant Effective Action in Abelian Chiral Gauge Theory on the Lattice
Suzuki, Hiroshi
1999-01-01
L\\"uscher's recent formulation of Abelian chiral gauge theories on the lattice, in the vacuum (or perturbative) sector in infinite volume, is reinterpreted in terms of the lattice covariant regularization. The gauge invariance of the effective action and the integrability of the gauge current in anomaly-free cases become transparent. The real part of the effective action is simply one-half that of the Dirac fermion and, when the Dirac operator behaves properly in the continu...
Gauge boson mass without a Higgs field: a simple model
International Nuclear Information System (INIS)
A simple, anomaly-free chiral gauge theory can be perturbatively quantized and renormalized in such a way as to generate fermion and gauge boson masses. This development exploits certain freedoms inherent in choosing the unperturbed Lagrangian and in the renormalization procedure. Apart from its intrinsic interest, such a mechanism might be employed in electroweak gauge theory to generate fermion and gauge boson masses without a Higgs sector. 38 refs
Real Representation in Chiral Gauge Theories on the Lattice
Suzuki, Hiroshi
2000-01-01
The Weyl fermion belonging to the real representation of the gauge group provides a simple illustrative example for L\\"uscher's gauge-invariant lattice formulation of chiral gauge theories. We can explicitly construct the fermion integration measure globally over the gauge-field configuration space in the arbitrary topological sector; there is no global obstruction corresponding to the Witten anomaly. It is shown that this Weyl formulation is equivalent to a lattice formulat...
Entanglement Entropy & Anomaly Inflow
Hughes, Taylor L; Parrikar, Onkar; Ramamurthy, Srinidhi T
2015-01-01
We study entanglement entropy for parity-violating (time-reversal breaking) quantum field theories on $\\mathbb{R}^{1,2}$ in the presence of a domain wall between two distinct parity-odd phases. The domain wall hosts a 1+1-dimensional conformal field theory (CFT) with non-trivial chiral central charge. Such a CFT possesses gravitational anomalies. It has been shown recently that, as a consequence, its intrinsic entanglement entropy is sensitive to Lorentz boosts around the entangling surface. Here, we show using various methods that the entanglement entropy of the three-dimensional bulk theory is also sensitive to such boosts owing to parity-violating effects, and that the bulk response to a Lorentz boost precisely cancels the contribution coming from the domain wall CFT. We argue that this can naturally be interpreted as entanglement inflow (i.e., inflow of entanglement entropy analogous to the familiar Callan-Harvey effect) between the bulk and the domain-wall, mediated by the low-lying states in the entangl...
Geodesic deviation and gravitational waves
Leclerc, M
2006-01-01
The detection of gravitational waves based on the geodesic deviation equation is discussed. In particular, it is shown that the only non-vanishing components of the wave field in the conventional traceless-transverse gauge in linearized general relativity do not enter the geodesic deviation equation, and therefore, apparently, no effect is predicted by that equation in that specific gauge. The reason is traced back to the fact that the geodesic deviation equation is written ...
Gauge invariant composite operators of QED in the exact renormalization group formalism
Sonoda, Hidenori
2013-01-01
Using the exact renormalization group (ERG) formalism, we study the gauge invariant composite operators in QED. Gauge invariant composite operators are introduced as infinitesimal changes of the gauge invariant Wilson action. We examine the dependence on the gauge fixing parameter of both the Wilson action and gauge invariant composite operators. After defining ``gauge fixing parameter independence,'' we show that any gauge independent composite operators can be made ``gauge fixing parameter independent'' by appropriate normalization. As an application, we give a concise but careful proof of the Adler-Bardeen non-renormalization theorem for the axial anomaly in an arbitrary covariant gauge by extending the original proof by A. Zee.
Gauge invariant composite operators of QED in the exact renormalization group formalism
International Nuclear Information System (INIS)
Using the exact renormalization group (ERG) formalism, we study the gauge invariant composite operators in QED. Gauge invariant composite operators are introduced as infinitesimal changes of the gauge invariant Wilson action. We examine the dependence on the gauge fixing parameter of both the Wilson action and gauge invariant composite operators. After defining ‘gauge fixing parameter independence,’ we show that any gauge independent composite operators can be made ‘gauge fixing parameter independent’ by appropriate normalization. As an application, we give a concise but careful proof of the Adler–Bardeen non-renormalization theorem for the axial anomaly in an arbitrary covariant gauge by extending the original proof by A Zee. (paper)
SST Anomalies + Wind Anomalies (with dates)
Greg Shirah
2003-02-03
Sea surface temperature (SST) anomalies and sea surface wind anomalies show the development of the 2002-2003 El Nino based on data from NASAs Aqua and QuikSCAT spacecraft. The wind data has been processed using the Variational Analysis Method (VAM).
A proposal that explains the Pioneer anomaly
Ranada, Antonio F.; Tiemblo, Alfredo
2008-01-01
We propose here an explanation of the Pioneer anomaly which is not in conflict with the cartography of the solar system. In our model, the spaceship does not suffer any extra acceleration but follows the trajectory predicted by standard gravitational theory. The observed acceleration is not real but apparent and has the same observational footprint as a deceleration of astronomical time with respect to atomic time. The details can be summarized as follows: i) as we argued in...
Differential renormalization of gauge theories
International Nuclear Information System (INIS)
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author)
Wodzicki residue and anomalies of current algebras
International Nuclear Information System (INIS)
The commutator anomalies (Schwinger terms) of current algebras in 3 + 1 dimensions are computed in terms of the Wodzicki residue of pseudo-differential operators; the result can be written as a (twisted) Radul 2-cocyle for the Lie algebra of PSDO's. The construction of the (second quantized) current algebra is closely related to a geometric renormalization of the interaction Hamiltonian HI = j?A? in gauge theory. (orig.)
Eliminating the chiral anomaly via symplectic embedding approach
Mendes, A C R; Oliveira, W
2009-01-01
The quantization of the chiral Schwinger model $(\\chi QED_{2})$ with one-parameter class Faddeevian regularization is hampered by the chiral anomaly, i.e., the Gauss law commutator exhibits Faddeev's anomaly. To overcome this kind of problem, we propose to eliminate this anomaly by embedding the theory through a new gauge-invariant formalism based on the enlargement of the phase space with the introduction of Wess-Zumino(WZ) fields and the symplectic approach. This process opens up a possibility to formulate different, but dynamically equivalent, gauge invariant versions for the model and also gives a geometrical interpretation to the arbitrariness presents on the BFFT and iterative conversion methods. Further, we observe that the elimination of the chiral anomaly imposes a condition on the chiral parameters present on the original model and on the WZ sector.
Effects of local mass anomalies in Eoetvoes-like experiments
International Nuclear Information System (INIS)
We consider in detail the effects of local mass anomalies in Eoetvoes-like experiments. It is shown that in the presence of an intermediate-range non-gravitational force, the dominant contributions to both the sign and magnitude of the Eoetvoes anomaly may come from nearby masses and not from the earth as a whole. This observation has important implications in the design and interpretation of future experiments, and in the formulation of unified theories incorporating new intermediate-range forces
Supersymmetric chiral effective action and nonabelian anomalies
International Nuclear Information System (INIS)
The definition of the one-loop supersymmetric effective action for chiral superfields coupled to a nonabelian gauge superfield is carefully discussed. The variation of the odd parity part is not always integrable after regularisation, if anomalies are present. When this is compensated by a local additional term, so as to obtain an integrable variation, a supersymmetric expression for the nonabelian anomaly, satisfying the Wess-Zumino consistency conditions, is simply obtained. The nonabelian anomaly is shown to be reproduced by relating it to the index for a Dirac-like operator defined on a two-dimensional disc in the space of gauge superfields. The integrated odd parity part of the effective action is further identified formally with the spectral asymmetry of a related Dirac-like operator involving one additional boson coordinate. The results are also expressed in terms of superforms which allow a connection to be made to general topological discussions of the anomaly. This depends on an analysis of the cohomology of superforms over flat superspace. (orig.)
International Nuclear Information System (INIS)
The fundamental laws of nature may be truely random, or they may be so complicated that a random description is adequate. With this philosophy we examine various ways in which a lattice gauge theory (at the Planck scale) can be generalized. Without here giving up a regular lattice structure (which we really ought to do) we consider two generalizations. Making the action (quenched) random has the effect that the gauge group tends to break down and some gauge bosons become massive, unless the gauge group has special properties: no noncentral corners in the geometry of conjugacy classes and furthermore a connected center. Making the concept of gauge transformation more general has a symmetry breaking effect for groups with outer automorphisms. A study of SU5-breaking in the context of the first breakdown mechanism (D. Bennett, E. Buturovic and H. B. Nielsen) is shortly reviewed. (orig.)
Light-induced gauge fields for ultracold atoms
Goldman, N.; Juzeliunas, G.; Ohberg, P.; Spielman, I. B
2013-01-01
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our universe is ruled by gravity, whose gauge structure suggests the existence of a particle - the graviton - that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge f...
Statistical Geometry of Gravitation
Bootello, J
2007-01-01
General Relativity explains with precision the anomalous advance of the perihelion of Mercury, discovered by Le Verrier in 1859. Otherwise, diverse post-Newtonian proposals trying to solve this anomaly, introduce mathematical potentials focused on a finite propagation speed. This paper tries to set some properties that should have any hypothetical gravitational potential suitable with material objects inside a physical universe. If a propagation speed is admitted, this assumption must link its origin, the continuous update, the trajectory, the retarded action and impulse mechanism (transit action) in the final target. This gravitational potential, tries to explain the anomalous shift of the perihelion of Mercury. Otherwise, applied as a potential of force added to a mechanical momentum, could give a partial explanation of the anomalous acceleration of Pioneer 10/11. Anyway, it is an hypothetical conjecture without any proof of its physical reality
Teleparallel gauge theory of gravity
Maluf, J W
2012-01-01
We investigate a tetrad theory of gravity that is invariant under conformal transformations. The action of the theory is similar to the action of Maxwell's electromagnetism. The role of the electromagnetic gauge potential is played by the trace of the torsion tensor of the Weitzenb\\"ock spacetime. We show that all spherically symmetric space-times are solutions of the vacuum field equations. However, by fixing the gauge in the linearized form of the vacuum field equations, we obtain the usual Newtonian limit for the gravitational field.
D=4 Super Yang Mills, D=5 gauged supergravity and D=4 conformal supergravity
Liu, H; Liu, Hong
1998-01-01
We consider the role of N=4 conformal supergravity in the relation between N=4 SYM theory and D=5 gauged supergravity expanded near the Anti de Sitter background. We discuss the structure of the SYM effective action in conformal supergravity background, in particular, terms related to conformal anomaly. Solving the leading-order Dirichlet problem for the metric perturbation in AdS background we explicitly compute the bilinear graviton term in the D=5 Einstein action, demonstrating its equivalence to the linearized Weyl tensor squared part of the gravitational effective action induced by SYM theory. We also compute the graviton-dilaton-dilaton 3-point function which is found to have the form consistent with conformal invariance of the boundary theory.
On Schwinger terms in nonabelian chiral gauge theories
International Nuclear Information System (INIS)
Chiral fermionic currents, coupled with nonabelian background gauge fields, are known to have Schwinger terms in their commutators. It is shown that if the gauge group is semisimple, the anomaly is completely determined by these Schwinger terms. Violation of Jacobi identities can also be demonstrated using them. (orig.)
Fermions with a domain-wall mass: explicit Greens function and anomaly cancellation
Energy Technology Data Exchange (ETDEWEB)
Chandrasekharan, S. (Dept. of Physics, Columbia Univ., New York, NY (United States))
1994-04-01
We calculate the explicit Greens function for fermions in 2+1 dimensions, with a domain wall mass. We then show a calculation demonstrating the anomaly cancellation when such fermions move in the background of an abelian gauge field. (orig.)
International Nuclear Information System (INIS)
We consider global anomalies for heterotic string theory formulated on orbifolds. The vanishing of certain characteristic glasses in group cohomology provides sufficient conditions for the absence of global anomalies. For abelian orbifolds level matching implies these cohomology conditions, so suffices for the absence of anomalies. For nonabelian orbifolds level matching does not suffice, and there are additional constraints. We give some examples to illustrate these new constraints. (orig.)
Conformal Anomalies in Hydrodynamics
Eling, Christopher; Theisen, Stefan; Yankielowicz, Shimon
2013-01-01
We study the effect of conformal anomalies on the hydrodynamic description of conformal field theories in four spacetime dimensions. We consider equilibrium curved backgrounds characterized by a time-like Killing vector and construct a local low energy effective action that captures the conformal anomalies. Using as a special background the Rindler spacetime we derive a formula for the effect of the anomaly on the hydrodynamic pressure.
Elmfors, Per
1998-01-01
The anomaly equation can be derived from the ultraviolet properties of quantum field theory and should, therefore, not depend on infrared properties, such as the presence of a thermal heat bath. There is also an infrared explanation of anomalies which is related to fermionic zero modes. I show how the anomaly equation can be satisfied in a high temperature plasma in spite of the fact that all propagating fermionic excitations have a thermal mass.
QCD in the axial gauge: boundary terms and Poincare invariance
International Nuclear Information System (INIS)
Quantum chromodynamics is investigated in the axial gauge with particular attention to boundary terms. The Poincare algebra has anomalies and closes only in the gauge-invariant physical sector. A simple method is proposed for dealing with the boundary condition Esup(a)3?0 as x3?infinity in a Hamiltonian formalism. It is found that the gauge potentials have physically meaningful non-trivial asymptotic behavior related to instanton effects. This presents an obstacle to perturbation theory. (Auth.)
S-matrix theory for gravitational field
International Nuclear Information System (INIS)
Major results of the investigation conducted on the quantum theory of the gravitational field and reported to the conference are summarized. The S matrix has been constructed in the most general class of gauges including relativistic ones. The causes of the failure to apply the proper-time regularization technique to gravitational interaction are considered. The corrected and improved proper-time method makes it possible to obtain the universal expression for one-loop divergences in and arbitrary system of gravitational fields. Under the assumption of mass-shell renormalizability the quantum theory of the gravitational field is asymptotically free
Differential formalism aspects of the gauge classical theories
International Nuclear Information System (INIS)
The classical aspects of the gauge theories are shown using differential geometry as fundamental tool. Somme comments are done about Maxwell Electro-dynamics, classical Yang-Mills and gravitation theories. (L.C.)
Loup, Fernando
2007-01-01
We use the 5D Extra Dimensional Force according to Basini-Capozziello-Ponce De Leon,Overduin-Wesson and Mashoon-Wesson-Liu Formalisms to study the behaviour of the Chung-Freese Superluminal BraneWorld compared to the Alcubierre Warp Drive and we arrive at some interesting results from the point of view of the Alcubierre ansatz although we used a diferent Shape Function f(rs) with a behaviour similar to the Natario Warp Drive. We introduce here the Casimir Warp Drive. We also demonstrate that in flat 5D Minkowsky Spacetime or weak Gravitational Fields we cannot tell if we live in a 5D or a 4D Universe according to Basini-Capozziello-Ponce De Leon,Overduin-Wesson and Mashoon-Wesson-Liu Dimensional Reduction but in the extreme conditions of Strong Gravitational Fields we demonstrate that the effects of the 5D Extra Dimension becomes visible and perhaps the study of the extreme conditions in Black Holes can tell if we live in a Higher Dimensional Universe. We use a 5D Maartens-Clarkson Schwarzschild Cosmic Black ...
The Trace Anomaly and Massless Scalar Degrees of Freedom in Gravity
Giannotti, Maurizio; Mottola, Emil
2008-01-01
The trace anomaly of quantum fields in electromagnetic or gravitational backgrounds implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. Considering first the axial anomaly and using QED as an example, we compute the full one-loop triangle amplitude of the fermionic stress tensor with two current vertices, , and exhibit the scalar pole in this amplitude associated with the trace anomaly, in the limit of zero electron mass m -...
Composite gauge fields and broken symmetries
Balakrishna, B S; Balakrishna, B S; Mahanthappa, K T
1995-01-01
A generalization of the non-Abelian version of the CP^{N-1} models (also known as Grassmannian models) is presented. The generalization helps accommodate a partial breaking of the non-Abelian gauge symmetry. Constituents of the composite gauge fields, in many cases, are naturally constrained to belong to an anomaly free representation which in turn generates a composite scalar simulating Higgs mechanism to break the gauge symmetry dynamically for large N. Two cases are studied in detail: one based on the SU(2) gauge group and the other on SO(10). Breakings such as SU(2)\\toU(1) or SO(10)\\toSU(5)\\timesU(1) are found feasible. Properties of the composites fields and gauge boson masses are computed by doing a derivative expansion of the large N effective action.
Absence of axial anomaly in the background of the Bohm-Aharonov vector potential
International Nuclear Information System (INIS)
The problem of axial anomaly in the singular background of the Bohm-Aharonov gauge vector field is exactly solved. It is shown that, contrary to the leak of vacuum quantum numbers, the leak of anomaly from the singularity points does not occur. It is shown too that, in a singular background, the conventional relation between the axial anomaly and the background field strength is valid only in the space with punctures singularities
[Vascular anomalies: information documents].
Philandrianos, C; Degardin, N; Casanova, D; Bardot, J; Petit, P; Bartoli, J-M; Magalon, G
2011-06-01
Vascular anomalies are a complex pathological group. They are composed of hemangiomas and other vascular tumors and congenital vascular malformations: venous, lymphatic, arteriovenous and capillary malformations. The management of these anomalies is difficult and must involve an interdisciplinary approach. To help patients to understand their pathology, we have made some information documents. PMID:20598795
Gauge and Gravity Amplitude Relations
Carrasco, John Joseph M
2015-01-01
In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.
On the mean anomaly and the Lense-Thirring effect
Iorio, L
2006-01-01
In this brief note we reply to the authors of a recent preprint in which an alleged explicit proposal of using the mean anomaly of the LAGEOS satellites to measure the general relativistic Lense-Thirring effect in the gravitational field of the Earth is attributed to the present author.
Infinite Classes of Cases with Non-trivial Anomaly Cancellation
Barr, S M
2015-01-01
It is pointed out that there are infinite classes of cases based on gauge groups of the form SU(p)xSU(q)xU(1) in which gauge anomalies cancel non-trivially for small sets of fermion multiplets that include symmetric tensor representations. These cancellations are non-trivial in the sense that no group-theoretic explanation in terms of embedding in a larger simple group is apparent. The cases presented here could be useful for model building and lead to models with extra leptons and an extra U(1) gauge interaction under which the Standard Model fermions have distinctive charges.
Determination of covariant Schwinger terms in anomalous gauge theories
International Nuclear Information System (INIS)
A functional integral method is used to determine equal time commutators between the covariant currents and the covariant Gauss-law operators in theories which are affected by an anomaly. By using a differential geometrical setup we show how the derivation of consistent- and covariant Schwinger terms can be understood on an equal footing. We find a modified consistency condition for the covariant anomaly. As a by-product the Bardeen-Zumino functional, which relates consistent and covariant anomalies, can be interpreted as connection on a certain line bundle over all gauge potentials. Finally the commutator anomalies are calculated for the two- and four dimensional case. (Author) 13 refs
International Nuclear Information System (INIS)
An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)
Anomaly Conditions for Non-Abelian Finite Family Symmetries
Luhn, Christoph; Ramond, Pierre
2008-01-01
Assuming that finite family symmetries are gauged, we derive discrete anomaly conditions for various non-Abelian groups. We thus provide new constraints for flavor model building, in which discrete non-Abelian symmetries are employed to explain the tri-bimaximal mixing pattern in the lepton sector.
Origin of Weyl Anomaly as Pair Production in Dirac Sea
Habara, Yoshinobu; Ninomiya, Masao
2015-01-01
Using Dirac sea picture for both left and right moving Weyl fermion (massless fermions) in $1+1$ dimensional world with a general relativity metric field we calculate the Weyl anomaly. That is to say we calculate the trace of the energy-momentum tensor $T_{\\mu}^{\\> \\mu}$ arising from the fermions. With the gauge choice ansatz $g_{\\mu \
Genetics Home Reference: Peters anomaly
... PubMed Recent literature OMIM Genetic disorder catalog Conditions > Peters anomaly On this page: Description Genetic changes Inheritance ... names Glossary definitions Reviewed January 2014 What is Peters anomaly? Peters anomaly is characterized by eye problems ...
Composite gauge bosons of transmuted gauge symmetry
International Nuclear Information System (INIS)
It is shown that effective gauge theories of composite gauge bosons describing the dynamics of composite quarks and leptons can be transmuted from the subcolor gauge theory describing that of subquarks due to the condensation of subquarks and that the equality of effective gauge coupling constants can result as in a grand unified gauge theory. (author)
On Certain Conceptual Anomalies in Einstein's Theory of Relativity
Directory of Open Access Journals (Sweden)
Crothers S. J.
2008-01-01
Full Text Available There are a number of conceptual anomalies occurring in the Standard exposition of Einstein's Theory of Relativity. These anomalies relate to issues in both mathematics and in physics and penetrate to the very heart of Einstein's theory. This paper reveals and amplifies a few such anomalies, including the fact that Einstein's field equations for the so-called static vacuum configuration, $R_{mu u} = 0$, violates his Principle of Equivalence, and is therefore erroneous. This has a direct bearing on the usual concept of conservation of energy for the gravitational field and the conventional formulation for localisation of energy using Einstein's pseudo-tensor. Misconceptions as to the relationship between Minkowski spacetime and Special Relativity are also discussed, along with their relationships to the pseudo-Riemannian metric manifold of Einstein's gravitational field, and their fundamental geometric structures pertaining to spherical symmetry.
The Trace Anomaly and Dynamical Vacuum Energy in Cosmology
Mottola, Emil
2010-01-01
The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effective action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmol...
Anomaly-free constraints in neutrino seesaw models
Emmanuel-Costa, D.; Franco, Edison T.; Felipe, R. González
2009-06-01
The implementation of seesaw mechanisms to give mass to neutrinos in the presence of an anomaly-free U(1)X gauge symmetry is discussed in the context of minimal extensions of the standard model. It is shown that type-I and type-III seesaw mechanisms cannot be simultaneously implemented with an anomaly-free local U(1)X, unless the symmetry is a replica of the well-known hypercharge. For combined type-I/II or type-III/II seesaw models it is always possible to find nontrivial anomaly-free charge assignments, which are however tightly constrained, if the new neutral gauge boson is kinematically accessible at LHC. The discovery of the latter and the measurement of its decays into third-generation quarks, as well as its mixing with the standard Z boson, would allow one to discriminate among different seesaw realizations.
D-brane anomaly inflow revisited
Kim, Heeyeon
2012-01-01
Axial and gravitational anomaly of field theories, when embedded in string theory, must be accompanied by canceling inflow. We give a self-contained overview for various world-volume theories, and clarify the role of smeared magnetic sources in I-brane/D-brane cases. The proper anomaly descent of the source, as demanded by regularity of RR field strengths H's, turns out to be an essential ingredient. We show how this allows correct inflow to be generated for all such theories, including self-dual cases, and also that the mechanism is now insensitive to the choice between the two related but inequivalent forms of D-brane Chern-Simons couplings. In particular, SO(6)_R axial anomaly of d=4 maximal SYM is canceled by the inflow onto D3-branes via the standard minimal coupling to C_4. We also propose how, for the anomaly cancelation, the four types of Orientifold planes should be coupled to the spacetime curvatures, of which conflicting claims existed previously.
International Nuclear Information System (INIS)
Gravitational waves are propagating fluctuations of gravitational fields, that is, '' ripples '' in space-time, generated mainly by moving massive bodies. These distortions of space-time travel with the speed of light. Every body in the path of such a wave feels a tidal gravitational force that acts perpendicular to the wave's direction of propagation; these forces change the distance between points, and the size of the changes is proportional to the distance between these points thus gravitational waves can be detected by devices which measure the induced length changes. The frequencies and the amplitudes of the waves are related to the motion of the masses involved. Thus, the analysis of gravitational waveforms allows us to learn about their source and, if there are more than two detectors involved in observation, to estimate the distance and position of their source on the sky. (author)
Energy Technology Data Exchange (ETDEWEB)
Arkani-Hamed, Nima; Cohen, Andrew G.; Georgi, Howard
2001-03-16
We discuss the form of the chiral anomaly on an S1/Z2 orbifold with chiral boundary conditions. We find that the 4-divergence of the higher-dimensional current evaluated at a given point in the extra dimension is proportional to the probability of finding the chiral zero mode there. Nevertheless the anomaly, appropriately defined as the five dimensional divergence of the current, lives entirely on the orbifold fixed planes and is independent of the shape of the zero mode. Therefore long distance four dimensional anomaly cancellation ensures the consistency of the higher dimensional orbifold theory.
Gravitation on a Spherically Symmetric Metric Manifold
Directory of Open Access Journals (Sweden)
Crothers S. J.
2007-04-01
Full Text Available The usual interpretations of solutions for Einstein's gravitational field satisfying the spherically symmetric condition contain anomalies that are not mathematically permissible. It is shown herein that the usual solutions must be modified to account for the intrinsic geometry associated with the relevant line elements.
Gravitation on a Spherically Symmetric Metric Manifold
Crothers S. J.
2007-01-01
The usual interpretations of solutions for Einstein's gravitational field satisfying the spherically symmetric condition contain anomalies that are not mathematically permissible. It is shown herein that the usual solutions must be modified to account for the intrinsic geometry associated with the relevant line elements.
Two potentials, one gauge group: a possible geometrical motivation
International Nuclear Information System (INIS)
By studying the purely gravitational sector of a higher-dimensional matter-gravity coupled theory, one can see that in the case of nonvanishing torsion the effective 4-dimensional theory exhibits two gauge potentials that transform under the action of a single gauge group
Poincare gauge theory from higher derivative matter lagrangean
Mukherjee, Pradip
2009-01-01
Starting from matter lagrangean containing higher order derivative than the first, we construct the Poincare gauge theory by localising the Poincare symmetry of the matter theory. The construction is shown to follow the usual geometric procedure of gravitational coupling, thereby buttressing the geometric interpretation of the Poincare gauge theory.
Anomaly cancellation in K3 orientifolds
International Nuclear Information System (INIS)
We study in detail the pattern of anomaly cancellation in D=6 Type IIB ZN orientifolds, occurring through a generalized Green-Schwarz mechanism involving several RR antisymmetric tensors and scalars fields. The starting point is a direct string theory computation of the inflow of anomaly arising from magnetic interaction of D-branes, O-planes and fixed points, which are encoded in topological one-loop partition functions in the RR odd spin-structure. All the RR anomalous couplings of these objects are then obtained by factorization. They are responsible for a spontaneous breaking of U(1) factors through a Higgs mechanism involving the corresponding hypermultiplets. Some of them are also related by supersymmetry to gauge couplings involving the NSNS scalars sitting in the tensor multiplets. We also comment on the possible occurrence of tensionless strings when these couplings diverge
Sluse, D; Magain, P; Courbin, F; Meylan, G
2011-01-01
(abridged) Gravitationally lensed quasars can be used as powerful cosmological and astrophysical probes. We can (i) infer the Hubble constant based on the time-delay technique, (ii) unveil substructures along the l.o.s. toward distant galaxies, and (iii) compare the shape and the slope of baryons and dark matter distributions in galaxies. To reach these goals, we need high-accuracy astrometry and morphology measurements of the lens. In this work, we first present new astrometry for 11 lenses with measured time delays. Using MCS deconvolution on NIC2 HST images, we reached an astrometric accuracy of about 1-2.5 mas and an accurate shape measurement of the lens galaxy. Second, we combined these measurements with those of 14 other systems to present new mass models of these lenses. This led to the following results: 1) In 4 double-image quasars, we show that the influence of the lens environment on the time delay can easily be quantified and modeled, hence putting these lenses with high priority for time-delay d...
A Pseudospectral Method for Gravitational Wave Collapse
Hilditch, David; Bruegmann, Bernd
2015-01-01
We present a new pseudospectral code, bamps, for numerical relativity written with the evolution of collapsing gravitational waves in mind. We employ the first order generalized harmonic gauge formulation. The relevant theory is reviewed and the numerical method is critically examined and specialized for the task at hand. In particular we investigate formulation parameters, gauge and constraint preserving boundary conditions well-suited to non-vanishing gauge source functions. Different types of axisymmetric twist-free moment of time symmetry gravitational wave initial data are discussed. A treatment of the axisymmetric apparent horizon condition is presented with careful attention to regularity on axis. Our apparent horizon finder is then evaluated in a number of test cases. Moving on to evolutions, we investigate modifications to the generalized harmonic gauge constraint damping scheme to improve conservation in the strong field regime. We demonstrate strong-scaling of our pseudospectral penalty code. We em...
Canonical Gauges in the Path Integral for Parametrized Systems
Ferraro, Rafael; Simeone, Claudio(Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón I, 1428, Buenos Aires, Argentina)
1995-01-01
It is well known that --differing from ordinary gauge systems-- canonical gauges are not admissible in the path integral for parametrized systems. This is the case for the relativistic particle and gravitation. However, a time dependent canonical transformation can turn a parametrized system into an ordinary gauge system. It is shown how to build a canonical transformation such that the fixation of the new coordinates is equivalent to the fixation of the original ones; this ...
Light-induced gauge fields for ultracold atoms
Goldman, N; Ohberg, P; Spielman, I B
2013-01-01
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our universe is ruled by gravity, whose gauge structure suggests the existence of a particle - the graviton - that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms "feeling" laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field,...
On coupling constant dependence of gauge fields
International Nuclear Information System (INIS)
Classical gauge fields (pure, coupled to the Dirac, scalar and gravitational fields) are investigated in the weak-coupling and strong-coupling limits. Several results concerning coupling constant dependence of fields in these regions are given. In particular, validity of the weak-coupling perturbative techniques is questioned for dynamical and non-singular solutions to the field equations. 16 refs. (author)
International Nuclear Information System (INIS)
The author summarizes the works presented at the meeting on skyrmions and anomalies. He divides the principal issues of this workshop into five categories: QCD effective lagrangians, chiral bags and the Cheshire cat principle, strangeness problem, phenomenology, mathematical structure
A Dark Matter Relic From Muon Anomalies
Bélanger, Geneviève; Delaunay, Cédric; Westhoff, Susanne
2015-01-01
We show that the recently reported anomalies in $b\\to s\\mu^+\\mu^-$ transitions, as well as the long-standing $g_\\mu-2$ discrepancy, can be addressed simultaneously by a new massive abelian gauge boson with loop-induced coupling to muons. Such a scenario typically leads to a stable dark matter candidate with a thermal relic density close to the observed value. Dark matter in our model couples dominantly to leptons, hence signals in direct detection experiments lie well below ...
A Dark Matter Relic From Muon Anomalies
Bélanger, Geneviève; Westhoff, Susanne
2015-01-01
We show that the recently reported anomalies in $b\\to s\\mu^+\\mu^-$ transitions, as well as the long-standing $g_\\mu-2$ discrepancy, can be addressed simultaneously by a new massive abelian gauge boson with loop-induced coupling to muons. Such a scenario typically leads to a stable dark matter candidate with a thermal relic density close to the observed value. Dark matter in our model couples dominantly to leptons, hence signals in direct detection experiments lie well below the current sensitivity. The LHC, in combination with indirect detection searches, can test this scenario through distinctive signatures with muon pairs and missing energy.
Background-Independent Gravitational Waves
Juri AgrestiFirenze Univ.; Roberto De PietriParma Univ. & INFN; Luca LusannaINFN, Firenze; Luca MartucciMilano Univ. & INFN
2003-01-01
A Hamiltonian linearization of the rest-frame instant form of tetrad gravity (gr-qc/0302084), where the Hamiltonian is the weak ADM energy ${\\hat E}_{ADM}$, in a completely fixed (non harmonic) 3-orthogonal Hamiltonian gauge is defined. For the first time this allows to find an explicit solution of all the Hamiltonian constraints and an associated linearized solution of Einstein's equations. It corresponds to background-independent gravitational waves in a well defined post-...
Supersymmetric gauge theories from string theory
International Nuclear Information System (INIS)
This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G2-manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G2-manifold is known. Here we construct families of metrics on compact weak G2-manifolds, which contain two conical singularities. Weak G2-manifolds have properties that are similar to the ones of proper G2-manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E8 x E8-heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)
Physical anomaly on the lattice
International Nuclear Information System (INIS)
The authors study the axial anomaly of chiral non-invariant generalized Wilson's action and point out a possibility that physical anomaly which is responsible for ?0 ? 2? decay and ?-eta-eta' mass difference vanishes. The physical anomaly is different from the commonly defined anomaly which has correct magnitude. (Auth.)
Cardiovascular anomalies with imperforate anus.
Teixeira, O. H.; Malhotra, K; Sellers, J; Mercer, S
1983-01-01
In 68 patients with anorectal malformations cardiovascular anomalies (CVA) were seen in 15 and genitourinary (GU) anomalies in 30. CVA were more frequent (33%) whenever there was a GU anomaly. Ventricular septal defect was the most frequent lesion. All but 1 CVA occurred with type III anorectal malformation. The complexity of the cardiac lesion did not parallel that of the GU anomaly.
Yang-Mills origin of gravitational symmetries
Anastasiou, A; Borsten, L.; M.J. Duff(Theoretical Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom); Hughes, L. J.; Nagy, S.
2014-01-01
By regarding gravity as the convolution of left and right Yang-Mills theories together with a spectator scalar field in the bi-adjoint representation, we derive in linearised approximation the gravitational symmetries of general covariance, p-form gauge invariance, local Lorentz invariance and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincar\\'e. As a concrete example we focus on the new-minimal (12+12) off-shell...
International Nuclear Information System (INIS)
Enormous technical and economic benefits have been conferred on the industry in many countries by the application of nucleonic gauging. The last few years have witnessed many important advances in the field. Basically radioisotope instruments are used to measure a variety of physical properties of material in solid, liquid and gaseous state and many of them are designed to work in the industrial plants and fields under rigorous conditions
International Nuclear Information System (INIS)
We discuss a new model of quintessence in which the quintessence field is identified with the extra component of a gauge field in a compactified five-dimensional theory. We show that the extremely tiny energy scale ?(3x10-3 eV)4 needed to account for the present acceleration of the Universe can be naturally explained in terms of high energy scales such as the scale of grand unification
Local BRST cohomology in gauge theories
Barnich, G; Henneaux, M; Barnich, Glenn; Brandt, Friedemann; Henneaux, Marc
2000-01-01
The general solution of the anomaly consistency condition (Wess-Zuminoequation) has been found recently for Yang-Mills gauge theory. The general formof the counterterms arising in the renormalization of gauge invariant operators(Kluberg-Stern and Zuber conjecture) and in gauge theories of the Yang-Millstype with non power counting renormalizable couplings has also been worked outin any number of spacetime dimensions. This Physics Report is devoted toreviewing in a self-contained manner these results and their proofs. Thisinvolves computing cohomology groups of the differential introduced by Becchi,Rouet, Stora and Tyutin, with the sources of the BRST variations of the fields("antifields") included in the problem. Applications of this computation toother physical questions (classical deformations of the action, conservationlaws) are also considered. The general algebraic techniques developed in theReport can be applied to other gauge theories, for which relevant referencesare given.
Canonical quantization and cosmological particle production in non-abelian gauge theories
International Nuclear Information System (INIS)
A canonical quantization scheme for non-abelian gauge fields in an external, classical gravitational field is formulated and applied to the problem of cosmological Higgs and gauge boson production. Via interaction, the mass of the Higgs field not only leads to additional Higgs production, but also enables the production of massless gauge bosons. (orig.)
Trace anomaly and massless scalar degrees of freedom in gravity
International Nuclear Information System (INIS)
The trace anomaly of quantum fields in electromagnetic or gravitational backgrounds implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. Considering first the axial anomaly and using QED as an example, we compute the full one-loop triangle amplitude of the fermionic stress tensor with two current vertices, ??J?J?>, and exhibit the scalar pole in this amplitude associated with the trace anomaly, in the limit of zero electron mass m?0. To emphasize the infrared aspect of the anomaly, we use a dispersive approach and show that this amplitude and the existence of the massless scalar pole is determined completely by its ultraviolet finite terms, together with the requirements of Poincare invariance of the vacuum, Bose symmetry under interchange of J? and J?, and vector current and stress-tensor conservation. We derive a sum rule for the appropriate positive spectral function corresponding to the discontinuity of the triangle amplitude, showing that it becomes proportional to ?(k2) and therefore contains a massless scalar intermediate state in the conformal limit of zero electron mass. The effective action corresponding to the trace of the triangle amplitude can be expressed in local form by the introduction of two scalar auxiliary fields which satisfy massless wave equations. These massless scalar degrees of freedom couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects.
Nonlocal regularizations of gauge theories
International Nuclear Information System (INIS)
A procedure is given for generalizing local, gauge-invariant field theories to nonlocal ones which are finite, Poincare invariant, and perturbatively unitary. These theories are endowed with nonlocal gauge symmetries which ensure current conservation and decoupling in the same way that their local analogs do in the parent theories. An elegant way of viewing the resulting on-shell symmetry transformations is as ''quantum representations'' of the local gauge group in which the representation matrices become field-dependent, nonlocal operators. By varying the scale of nonlocality one can obtain gauge-invariant regularization schemes which are manifestly Poincare invariant, perturbatively unitary, and free of automatic subtractions. Since our method does not entail changing either the particle content or the dimension of spacetime, it may preserve global supersymmetry. As applications we work out the electron self-energy and vacuum polarization in QED at one loop. The latter gives the surprising result that no Landau ghost occurs with the regulator on and before renormalization. Another surprise is the absence of an axial-vector anomaly
Katz, Joseph
2005-01-01
Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass+internal energies+kinetic energies+pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total "matter energy" for those observers. The total mass-energy minus the matter energy is the binding gravitational energy. Misner, Thorne and Wheeler evaluated the gravitational energy of a spherically symmetric static spa...
Singularities in the dynamics of superfluid 3He-A: analog of chiral anomaly and ZERO-charge
International Nuclear Information System (INIS)
Some of the peculiarities in the dynamics of 3He-A (the anomalous current, nonanalyticity of the gauge expansion, orbital moment paradox) can be attributed to the gap vanishing in the energy spectrum of fermion excitations at two points on the Fermi sphere. Near these points the Bogolyubov equations fer fermions can be linearized and change into the Weyl equations for massless right-hand ''positrons'' and left-hand ''electrons'' moving in ''elecromagnetic'' and ''gravitational'' fields which are produced by fluctuations of the order parameter. This permits one to relate the singularities in the dynamics of 3He-A to the phenomena of chiral anomaly, zero-charge, nonlinear polarization of vacuum and electron-positron pair production in strong fields in quantum electrodynamics with massless chiral fermions. The local gauge invaiance and general covariance of the Weyl equations obtained simplify considerably the derivation of various singularities in the action for 3He-A, including the Wess-Zumino action
Ambiguities in the Gravitational Correction of Quantum Electrodynamics
Felipe, J. C. C.; Cabral, L. A.; Brito, L. C. T.; Sampaio, Marcos; Nemes, M. C.
2013-06-01
We verify that quadratic divergences stemming from gravitational corrections to quantum electrodynamics (QED) which have been conjectured to lead to asymptotic freedom near Planck scale are arbitrary (regularization dependent) and compatible with zero. Moreover, we explicitly show that such arbitrary term contributes to the beta function of QED in a gauge dependent way in the gravitational sector.
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
Chris L. Fryer
2011-01-01
Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational waves from gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Confining gauge theories without Goldstone bosons
International Nuclear Information System (INIS)
We discuss the possibility that in the Wilson lattice definition of confining gauge theories without Goldstone bosons one may systematically adjust the lightest vector mass to zero while keeping the isosinglet scalar mass, which arises by the chiral anomaly, nontachyonic. We discuss a Weyl fermion theory and find the lightest vector particle to be an isoscalar (at least in strong coupling) so that there is no collision with known theorems. We discuss how an abelian gauge symmetry can arise as an infrared attractor and point out a difference between the Weyl fermion theory and one flavour QCD. Attention is also drawn to a physical motivation. (orig.)
Anomaly Extraction in Networks
Directory of Open Access Journals (Sweden)
Mr. Naushad Mujawar
2014-03-01
Full Text Available The application detects anomaly in network using techniques like histogram, cloning voting, filtering. To extract anomalous flows, one could build a model describing normal flow characteristics and use the model to identify deviating flows. We can compare flows of packets on network with previous flows, like new flows that were not previously observed or flows with significant increase/decrease in their volume. Identify an anomalous flow that combines and consolidates information from multiple histogram-based anomaly detectors [1] [4] [8]. Compared to other possible approaches. Build a histogram based detector that (i applies histogram cloning[1][4], i.e., maintains multiple randomized histograms to obtain additional views of network traffic[3]; and (ii uses the Kullback-Leibler (KL distance to detect anomalies.
Crewther, R. J.
2014-01-01
A nonperturbative understanding of neutral pion decay was an essential step towards the idea that strong interactions are governed by a color gauge theory for quarks. Some aspects of this work and related problems are still important.
Implications of a new light gauge boson for neutrino physics
Boehm, Celine
2004-01-01
We study the impact of light gauge bosons on neutrino physics. We show that they can explain the NuTeV anomaly and also escape the constraints from neutrino experiments if they are very weakly coupled and have a mass of a few GeV. Lighter gauge bosons with stronger couplings could explain both the NuTeV anomaly and the positive anomalous magnetic moment of the muon. However, in the simple model we consider in this paper (say a purely vectorial extra U(1) current), they appear to be in conflict with the precise measurements of \
Chiao, Raymond Y; Inan, Nader; Kang, Bong-Soo; Martinez, Luis A; Minter, Stephen J; Muñoz, Gerardo; Singleton, Douglas
2013-01-01
A thought experiment is proposed to demonstrate the existence of a gravitational, vector Aharonov-Bohm effect. A connection is made between the gravitational, vector Aharonov-Bohm effect and the principle of local gauge invariance for nonrelativistic quantum matter interacting with weak gravitational fields. The compensating vector fields that are necessitated by this local gauge principle are shown to be incorporated by the DeWitt minimal coupling rule. The nonrelativistic Hamiltonian for weak, time-independent fields interacting with quantum matter is then extended to time-dependent fields, and applied to problem of the interaction of radiation with macroscopically coherent quantum systems, including the problem of gravitational radiation interacting with superconductors. But first we examine the interaction of EM radiation with superconductors in a parametric oscillator consisting of a superconducting wire placed at the center of a high Q superconducting cavity driven by pump microwaves. We find that the t...
Introduction to gauge theories
International Nuclear Information System (INIS)
In these lectures we present the key ingredients of theories with local gauge invariance. We introduce gauge invariance as a starting point for the construction of a certain class of field theories, both for abelian and nonabelian gauge groups. General implications of gauge invariance are discussed, and we outline in detail how gauge fields can acquire masses in a spontaneous fashion. (orig./HSI)
The gauge fields and the Lorentz group
International Nuclear Information System (INIS)
The role of the Lorentz group in the gauge field theory in the framework of the tetrad theory of gravitation is considered. It is shown that in the tetrad theory covariant with respect to arbitrary tetrad transformations no gauge field is connected with the Lorentz group. A gauge field of the third rank produced by the corresponding Noether invariant (the tetrad spin angular-momentum) is introduced by applying the gauge field theory to the group of tetrad Lorentz transformations with constant parameters. It is shown that in the limit of the special relativistic field theory the tetrad spin angular-momentum coincides with the spin angular-momentum of the fermion fields. (author)
Graviton as a pair of collinear gauge bosons
Directory of Open Access Journals (Sweden)
Stephan Stieberger
2014-12-01
Full Text Available We show that the mixed gravitational/gauge superstring amplitudes describing decays of massless closed strings – gravitons or dilatons – into a number of gauge bosons, can be written at the tree (disk level as linear combinations of pure open string amplitudes in which the graviton (or dilaton is replaced by a pair of collinear gauge bosons. Each of the constituent gauge bosons carry exactly one half of the original closed string momentum, while their ±1 helicities add up to ±2 for the graviton or to 0 for the dilaton.
Antifield dependence of anomalies
International Nuclear Information System (INIS)
It is shown that generally the consistency equation for anomalies of quantum field theories has solutions which depend nontrivially on the sources of the (generalized) BRS-transformations of the fields. Explicit previously unknown examples of such solutions are given for Yang-Mills and super Yang-Mills theories. (orig.)
National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Bouguer anomaly grid for the country of Bolivia.Number of columns is 550 and number of rows is 900. The order of the data is from the lower left to...
International Nuclear Information System (INIS)
The anomaly busters had struck on the first day of the Kyoto meeting with Yoji Totsuka of Tokyo speaking on baryon number nonjjonservation and 'related topics'. The unstable proton is a vital test of grand unified pictures pulling together the electroweak and quark/gluon forces in a single field theory
Antifield Dependence of Anomalies
Brandt, F
1994-01-01
It is shown that generally the consistency equation for anomalies of quantum field theories has solutions which depend nontrivially on the sources of the (generalized) BRS-transformations of the fields. Explicit previously unknown examples of such solutions are given for Yang-Mills and super Yang-Mills theories.
Algebraic renormalization of N=1 supersymmetric gauge theories
International Nuclear Information System (INIS)
The complete renormalization procedure of a general N=1 supersymmetric gauge theory in the Wess-Zumino gauge is presented, using the regulator free ''algebraic renormalization'' procedure. Both gauge invariance and supersymmetry are included into one single BRS invariance. The form of the general non-abelian anomaly is given. Furthermore, it is explained how the gauge BRS and the supersymmetry functional operators can be extracted from the general BRS operator. It is then shown that the supersymmetry operators actually belong to the closed, finite, Wess-Zumino superalgebra when their action is restricted to the space of the ''gauge invariant operators'', i.e. to the cohomology classes of the gauge BRS operator. (orig.)
Renormalizability and phenomenology of ?-expanded noncommutative gauge field theory
International Nuclear Information System (INIS)
In this article we consider ?-expanded noncommutative gauge field theory, constructed at the first order in noncommutative parameter ?, as an effective, anomaly free theory, with one-loop renormalizable gauge sector. Related phenomenology with emphasis on the standard model forbidden decays, is discussed. Experimental possibilities of Z??? decay are analyzed and a firm bound to the scale of the noncommutativity parameter is set around few TeV's. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Supersymmetry breaking from superstrings and the gauge hierarchy
International Nuclear Information System (INIS)
The gauge hierarchy problem is reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a classical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated. 39 refs
Light-induced gauge fields for ultracold atoms
Goldman, N.; Juzeli?nas, G.; Öhberg, P.; Spielman, I. B.
2014-12-01
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.
Light-induced gauge fields for ultracold atoms
International Nuclear Information System (INIS)
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms. (review article)
International Nuclear Information System (INIS)
This paper is a report of the author's recent work on the global initial value problem for Einstein's equations in the spherically symmetric case with a massless scalar field as the material model. This work is a mathematical study of the dynamics of gravitational collapse and the formation of black holes
Directory of Open Access Journals (Sweden)
Mu-Chun Chen
2015-07-01
Full Text Available We show that there is a class of finite groups, the so-called perfect groups, which cannot exhibit anomalies. This implies that all non-Abelian finite simple groups are anomaly-free. On the other hand, non-perfect groups generically suffer from anomalies. We present two different ways that allow one to understand these statements.
A flyby anomaly for Juno? Not from standard physics
Iorio, L.
2014-12-01
An empirical formula recently appeared in the literature to explain the observed anomalies of about ? ? ? ? 1 - 10 mm s-1 in the geocentric range-rates ? ? of the Galileo, NEAR and Rosetta spacecraft at some of their past perigee passages along unbound, hyperbolic trajectories.It predicts an anomaly of the order of 6 mm s-1 for the recent flyby of Juno, occurred on 9 October 2013.Data analyses to confirm or disproof it are currently ongoing.We numerically calculate the impact on the geocentric Juno's range rate of some classical and general relativistic dynamical effects which are either unmodeled or mismodeled to a certain level in the software used to process the data.They are: (a) the first even zonal harmonic coefficient J2 of the multipolar expansion of the terrestrial gravitational potential causing orbital perturbations both at the (a?) Newtonian (J2) and at the (a?) first post-Newtonian level (J2c-2) (b) the post-Newtonian gravitoelectric (GE) Schwarschild-like component of the Earth's gravitational field (c) the post-Newtonian gravitomagnetic (GM) Lense-Thirring effect.The magnitudes of their mismodeled and nominal range-rate signatures are: (a?) ????J2 ? 1 ? m s-1 (a?) ???J2c-2 ? 0.015 ? m s-1 (b) ???GE ? 25 ? m s-1 (c) ???GM ? 0.05 ? m s-1. If a flyby anomaly as large as a few mm s-1 will be finally found also for Juno, it will not be due to any of these standard gravitational effects. It turns out that a Rindler-type radial extra-acceleration of the same magnitude as in the Pioneer anomaly would impact the Juno's range-rate at a ???Rin ? 1.5 ? m s-1 level. Regardless of the quest for the flyby anomaly, all such effects are undetectable.
On global anomalies in type IIB string theory
Sati, Hisham
2011-01-01
We study global gravitational anomalies in type IIB string theory with nontrivial middle cohomology. This requires the study of the action of diffeomorphisms on this group. Several results and constructions, including some recent vanishing results via elliptic genera, make it possible to consider this problem. Along the way, we describe in detail the intersection pairing and the action of diffeomorphisms, and highlight the appearance of various structures, including the Rochlin invariant and its variants on the mapping torus.
On global anomalies in type IIB string theory
Sati, Hisham
2011-01-01
We study global gravitational anomalies in type IIB string theory with nontrivial middle cohomology. This requires the study of the action of diffeomorphisms on this group. Several results and constructions, including some recent vanishing results via elliptic genera, make it possible to consider this problem. Along the way, we describe in detail the intersection pairing and the action of diffeomorphisms, and highlight the appearance of various structures, including the Roch...
Anomaly-induced inflaton decay and gravitino-overproduction problem
International Nuclear Information System (INIS)
We point out that the inflaton spontaneously decays into any gauge bosons and gauginos via the super-Weyl, Kahler and sigma-model anomalies in supergravity, once the inflaton acquires a non-vanishing vacuum expectation value. In particular, in the dynamical supersymmetry breaking scenarios, the inflaton necessarily decays into the supersymmetry breaking sector, if the inflaton mass is larger than the dynamical scale. This generically causes the overproduction of the gravitinos, which severely constrains the inflation models. (orig.)
Transgressions and Holographic Conformal Anomalies for Chern-Simons Gravities
Mora, Pablo
2010-01-01
I present two calculations of the holographic Weyl anomalies induced by Chern-Simons gravity theories alternative to the ones presented in the literature. The calculations presented here rest on the extension from Chern-Simons to Transgression forms as lagrangians, motivated by gauge invariance, which automatically yields the boundary terms suitable to regularize the theory. The procedure followed here sheds light in the structure of Chern-Simons gravities and their regularization.
Torsion, Parity-odd Response and Anomalies in Topological States
Parrikar, Onkar; Leigh, Robert G
2014-01-01
We study the response of a class of topological systems to electromagnetic and gravitational sources, including torsion and curvature. By using the technology of anomaly polynomials, we derive the parity-odd response of a massive Dirac fermion in $d=2+1$ and $d=4+1$, which provides a simple model for a topological insulator. We discuss the covariant anomalies of the corresponding edge states, from a Callan-Harvey anomaly-inflow, as well as a Hamiltonian spectral flow point of view. We also discuss the applicability of our results to other systems such as Weyl semi-metals. Finally, using dimensional reduction from $d=4+1$, we derive the effective action for a $d=3+1$ time-reversal invariant topological insulator in the presence of torsion and curvature, and discuss its various physical consequences.
International Nuclear Information System (INIS)
In the framework of supersymmetric grand unified theories, the minimal Higgs sector is often extended by introducing multidimensional Higgs representations in order to obtain realistic models. However these constructions should remain anomaly-free, which significantly constrains their structure. We review the necessary conditions for the cancellation of anomalies in general and discuss in detail the different possibilities for supersymmetric SU(5) models. Alternative anomaly-free combinations of Higgs representations, beyond the usual vectorlike choice, are identified, and it is shown that their corresponding ? functions are not equivalent. Although the unification of gauge couplings is not affected, the introduction of multidimensional representations leads to different scenarios for the perturbative validity of the theory up to the Planck scale.
Relativistic Transverse Gravitational Redshift
Mayer, A. F.
2012-12-01
The parametrized post-Newtonian (PPN) formalism is a tool for quantitative analysis of the weak gravitational field based on the field equations of general relativity. This formalism and its ten parameters provide the practical theoretical foundation for the evaluation of empirical data produced by space-based missions designed to map and better understand the gravitational field (e.g., GRAIL, GRACE, GOCE). Accordingly, mission data is interpreted in the context of the canonical PPN formalism; unexpected, anomalous data are explained as similarly unexpected but apparently real physical phenomena, which may be characterized as ``gravitational anomalies," or by various sources contributing to the total error budget. Another possibility, which is typically not considered, is a small modeling error in canonical general relativity. The concept of the idealized point-mass spherical equipotential surface, which originates with Newton's law of gravity, is preserved in Einstein's synthesis of special relativity with accelerated reference frames in the form of the field equations. It was not previously realized that the fundamental principles of relativity invalidate this concept and with it the idea that the gravitational field is conservative (i.e., zero net work is done on any closed path). The ideal radial free fall of a material body from arbitrarily-large range to a point on such an equipotential surface (S) determines a unique escape-velocity vector of magnitude v collinear to the acceleration vector of magnitude g at this point. For two such points on S separated by angle d? , the Equivalence Principle implies distinct reference frames experiencing inertial acceleration of identical magnitude g in different directions in space. The complete equivalence of these inertially-accelerated frames to their analogous frames at rest on S requires evaluation at instantaneous velocity v relative to a local inertial observer. Because these velocity vectors are not parallel, a symmetric energy potential exists between the frames that is quantified by the instantaneous ? {v} = v\\cdot{d}? between them; in order for either frame to become indistinguishable from the other, such that their respective velocity and acceleration vectors are parallel, a change in velocity is required. While the qualitative features of general relativity imply this phenomenon (i.e., a symmetric potential difference between two points on a Newtonian `equipotential surface' that is similar to a friction effect), it is not predicted by the field equations due to a modeling error concerning time. This is an error of omission; time has fundamental geometric properties implied by the principles of relativity that are not reflected in the field equations. Where b is the radius and g is the gravitational acceleration characterizing a spherical geoid S of an ideal point-source gravitational field, an elegant derivation that rests on first principles shows that for two points at rest on S separated by a distance d << b, a symmetric relativistic redshift exists between these points of magnitude z = gd2/bc^2, which over 1 km at Earth sea level yields z ˜{10-17}. It can be tested with a variety of methods, in particular laser interferometry. A more sophisticated derivation yields a considerably more complex predictive formula for any two points in a gravitational field.
International Nuclear Information System (INIS)
This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator
International Nuclear Information System (INIS)
In general, quantum corrections to matter-supergravity couplings uniquely determine what are acceptable auxiliary fields for N = 1 supergravity, and partially determine those for N = 2. This is because one-loop corrections produce anomalies in not only the local superscale transformations, but also in the local (Poincare) supersymmetry transformations themselves, except for special cases: in particular, for N = 1 the n = 1/3 minimal set of auxiliary fields is uniquely chosen. (orig.)
International Nuclear Information System (INIS)
The Anomaly Busters' - this was how Roy Schwitters of Harvard summed up the International Symposium on Lepton and Photon Interactions at High Energies, held in Kyoto from 19-24 August. Recent results had given clues of possible anomalous behaviour - neutrino masses, the so-called 'monojets' in high energy proton-antiproton collisions, unexplained muon signals from the star Cygnus X-3, etc
Gravitational Radiation from Oscillating Gravitational Dipole
De Aquino, Fran
2002-01-01
The concept of Gravitational Dipole is introduced starting from the recent discovery of negative gravitational mass (gr-qc/0005107 and physics/0205089). A simple experiment, a gravitational wave transmitter, to test this new concept of gravitational radiation source is presented.
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
Induced quantum curvature and three-dimensional gauge theories
International Nuclear Information System (INIS)
The effects of quantum holonomy in three-dimensional gauge theories with massless fermions is examined and different definitions of the fermion determinant are discussed. The source of a global gauge and parity anomaly is identified in Schroedinger picture quantization as an induced holonomy that arises from the fermionic sector of the theory. In certain fermion representations this holonomy leads to a global obstruction ot imposing either gauge or parity invariance through the implementation of Gauss' law constraint. However, such obstructions can be removed by exploiting renormalization ambiguities inherent in the definition of composite operators. (orig.)
Applications of noncovariant gauges in the algebraic renormalization procedure
Boresch, A; Schweda, Manfred
1998-01-01
This volume is a natural continuation of the book Algebraic Renormalization, Perturbative Renormalization, Symmetries and Anomalies, by O Piguet and S P Sorella, with the aim of applying the algebraic renormalization procedure to gauge field models quantized in nonstandard gauges. The main ingredient of the algebraic renormalization program is the quantum action principle, which allows one to control in a unique manner the breaking of a symmetry induced by a noninvariant subtraction scheme. In particular, the volume studies in-depth the following quantized gauge field models: QED, Yang-Mills t
Hut, Piet
1997-01-01
The gravitational N-body problem, for $N>2$, is the oldest unsolved problem in mathematical physics. Some of the most ideal examples that can be found in nature are globular star clusters, with $N \\sim 10^6$. In this overview, I discuss six types of fundamental sources of unpredictability, each of which poses a different challenge to attempts to determine the long-term behavior of these systems, governed by a peculiar type of thermodynamics.
Fluids, Anomalies and the Chiral Magnetic Effect: A Group-theoretic Formulation
Nair, V P; Roy, Shubho
2011-01-01
It is possible to formulate fluid dynamics in terms of group-valued variables. This is particularly suited to the cases where the fluid has nonabelian charges and is coupled to nonabelian gauge fields. We explore this formulation further in this paper. An action for a fluid of relativistic particles (with and without spin) is given in terms of the Lorentz and Poincare (or de Sitter) groups. Considering the case of particles with flavor symmetries, a general fluid action which also incorporates all flavor anomalies is given. The chiral magnetic and chiral vorticity effects as well as the consequences of the mixed gauge-gravity anomaly are discussed.
Determination of Gravitational Counterterms Near Four Dimensions from RG Equations
Hamada, Ken-ji
2014-01-01
The finiteness condition of renormalization gives a restriction on the form of the gravitational action. By reconsidering the Hathrell's RG equations for massless QED in curved space, we determine the gravitational counterterms and the conformal anomalies as well near four dimensions. As conjectured for conformal couplings in 1970s, we show that at all orders of the perturbation they can be combined into two forms only: the square of the Weyl tensor in $D$ dimensions and $E_...
Interplay of gravitation and linear superposition of different mass eigenstates
D. V. Ahluwalia; Burgard, C
1998-01-01
The interplay of gravitation and the quantum-mechanical principle of linear superposition induces a new set of neutrino oscillation phases. These ensure that the flavor-oscillation clocks, inherent in the phenomenon of neutrino oscillations, redshift precisely as required by Einstein's theory of gravitation. The physical observability of these phases in the context of the solar neutrino anomaly, type-II supernovae, and certain atomic systems is briefly discussed.
Electroweak gauge-boson production at small transverse momentum
Energy Technology Data Exchange (ETDEWEB)
Wilhelm, Daniel [Johannes Gutenberg-Universitaet Mainz (Germany)
2012-07-01
Using soft-collinear effective theory (SCET), one can factorize the cross section for electroweak gauge-boson production at hadron colliders and resum large logarithms to all orders. The naive factorization is broken by a collinear anomaly (CA), which leads to infrared safety at vanishing transverse momentum.
Holographic Correlators for General Gauge Mediation
Argurio, Riccardo; Bertolini, Matteo; Di Pietro, Lorenzo; Porri, Flavio; Redigolo, Diego
2012-01-01
We use holographic techniques to compute two-point functions of operators belonging to a conserved current supermultiplet in theories which break supersymmetry at strong coupling. These are the relevant quantities one has to compute in models of gauge mediation to determine the soft spectrum in supersymmetric extensions of the Standard Model (SSM). Such holographic approach can be used for diverse gravitational backgrounds, but here we focus, for definiteness, on asymptotica...
Comments on Background Independence and Gauge Redundancies
Rozali, Moshe
2008-01-01
We describe the definition and the role background independence and the closely related notion of diffeomorphism invariance play in modern string theory. These important concepts are transformed by a new understanding of gauge redundancies and their implementation in non-perturbative quantum field theory and quantum gravity. This new understanding also suggests a new role for the so-called background-independent approaches to directly quantize the gravitational field. This a...
The ? transformation and gravitational copies
International Nuclear Information System (INIS)
An Abelian symmetry already considered by Einstein with respect to his asymmetrical field theories is related to the gravitational and gauge field copy phenomenon. It is shown that gauge field copies arise out of a straightforward generalization of the ? - map. The connection between Einstein's work on the ?-transformation and the copy phenomenon is obtained with the help of the Frobenius Theorem on the existence of foliations on a differentiable manifold. A problem like the one above is usually treated within the language of (intrinsic) Differential Geometry; General Relativity and classical unified field theories are traditionally developed in a classical style, that gap, a long introduction is prepared where the same structures are studied from the traditional and from the more recent point of view. (author)
Constraining an Expanding Locally Anisotropic metric from the Pioneer anomaly
Ferreira, P Castelo
2012-01-01
It is discussed the possibility of a fine-tuneable contribution to the two way Doppler acceleration either towards, either outwards the Sun for heliocentric distances above 20 AU by considering a background described by an Expanding Locally Anisotropic (ELA) metric. This metric encodes both the standard local Schwarzschild gravitational effects and the cosmological Universe expansion effects allowing simultaneously to fine-tune other gravitational effects at intermediate scales, which may be tentatively interpreted as a covariant parameterization of either cold dark matter either gravitational interaction corrections. Are derived bounds for the ELA metric functional parameter by considering the bounds on the deviation from standard General Relativity imposed by the current updated limits for the Pioneer anomaly, taking in consideration both the natural outgassing and on-board radiation pressure, resulting in an average Doppler acceleration outwards the Sun of a_p = +0.4^{+2.1}_{-2.0} x 10^{-10} (m/s^2). It is...
Background-Independent Gravitational Waves
Agresti, J; Lusanna, L; Martucci, L; Agresti, Juri; Pietri, Roberto De; Lusanna, Luca; Martucci, Luca
2003-01-01
A Hamiltonian linearization of the rest-frame instant form of tetrad gravity (gr-qc/0302084), where the Hamiltonian is the weak ADM energy ${\\hat E}_{ADM}$, in a completely fixed (non harmonic) 3-orthogonal Hamiltonian gauge is defined. For the first time this allows to find an explicit solution of all the Hamiltonian constraints and an associated linearized solution of Einstein's equations. It corresponds to background-independent gravitational waves in a well defined post-Minkowskian Christodoulou-Klainermann space-time.
Renormalization group, trace anomaly and Feynman-Hellmann theorem
Del Debbio, Luigi
2013-01-01
We show that the logarithmic derivative of the gauge coupling on the hadronic mass and the cosmological constant term of a gauge theory are related to the gluon condensate of the hadron and the vacuum respectively. These relations are akin to Feynman-Hellmann relations whose derivation for the case at hand are complicated by the construction of the gauge theory Hamiltonian. We bypass this problem by using a renormalisation group equation for composite operators and the trace anomaly. The relations serve as possible definitions of the gluon condensates themselves which are plagued in direct approaches by power divergences. In turn these results might help to determine the contribution of the QCD phase transition to the cosmological constant and test speculative ideas.
Miller, D; Broka, S S; Siegemund-Broka, S; Dean Miller; Kimball A Milton; Stephan Siegemund Broka
1994-01-01
We apply the finite-element lattice equations of motion for quantum electrodynamics given in the first paper in this series to examine anomalies in the current operators. By taking explicit lattice divergences of the vector and axial-vector currents we compute the vector and axial-vector anomalies in two and four dimensions. We examine anomalous commutators of the currents to compute divergent and finite Schwinger terms. And, using free lattice propagators, we compute the vacuum polarization in two dimensions and hence the anomaly in the Schwinger model. A discussion of our choice of gauge-invariant current is provided.
Group cocycles, line bundles, and anomalies
International Nuclear Information System (INIS)
The relation between complex line bundles and certain group cocycles is explored in general to obtain explicit formulae for the transition functions and curvature of the determinant line bundle DET of a family of Dirac operators coupled to Yang-Mills fields. A covariant derivative on sections of DET is constructed which realizes the curvature and 'minimally couples' to the integrated anomaly which thus appears as a 'functional magnetic field' on gauge orbit space. The transcription of group cohomological (cocycles) into geometrical (line bundles) information is refined in such a way that the relevant cohomology groups can be computed in many cases, giving insight into the classification of lifts of principal group actions. 23 refs. (Author)
Anomaly cancelling terms from the elliptic genus
International Nuclear Information System (INIS)
We calculate the heterotic string one-loop diagram in 2n+2 dimensions with one external B?? and n external gravitons and/or gauge bosons. The result is a modular integral over the weight zero terms of the character valued partition function (or elliptic genus) of the theory, and can be directly expressed in terms of the factor which multiplies Tr F2-Tr R2 in the field theory anomaly. The integrands have a non-trivial dependence on the modular parameter ?, reflecting contributions not only from the physical massless states but also from an infinity of 'unphysical' modes. Some of them are identical to integrands which have been discussed recently in relation with Atkin-Lehner symmetry and the cosmological constant. As a corollary we find a method to compute these integrals without using Atkin-Lehner transformations. (orig.)
A holomorphic anomaly in the elliptic genus
Murthy, Sameer
2013-01-01
We consider a class of gauged linear sigma models (GLSMs) in two dimensions that flow to non-compact (2,2) superconformal field theories in the infra-red, a prototype of which is the SL(2,\\IR)/U(1) (cigar) coset. We compute the elliptic genus of the GLSMs as a path-integral on the torus using supersymmetric localization. We find that the result is a Jacobi-like form that is non-holomorphic in the modular parameter $\\tau$ of the torus, with mock modular behavior. This agrees with a previously-computed expression in the cigar coset. We show that the lack of holomorphicity of the elliptic genus arises from the contributions of a compact boson with momentum and winding around the torus. This boson has an axionic shift symmetry and plays the role of a compensator field that is needed to cancel the chiral anomaly in the rest of the theory.
Elliptic operators in the functional quantisation for gauge field theories
International Nuclear Information System (INIS)
Given a gauge theory with gauge group G acting on a path space X, G and X being both infinite dimensional manifolds modelled on spaces of sections of vector bundles on a compact riemannian manifold without boundary, it is shown that when the action of G on X is smooth, free and proper, the same ellipticity condition on an operator naturally given by the geometry of the problem yields both the existence of a principal fibre bundle structure induced by the canonical projection ?:X ? X/G and the existence of the Faddeev-Popov determinant arising in the functional quantisation of the gauge theory. This holds for certain gauge theories with anomalies like bosonic closed string theory in non-critical dimension and also holds for a class of gauge theories which includes Yang-Mills theory. (orig.)
A noncommutative anomaly through Seiberg-Witten map and non-locally regularized BV quantization
Abreu, Everton M. C.; Nikoofard, Vahid
2013-01-01
Anomalies are one essential concept for the renormalization of noncommutative (NC) gauge theories. A NC space can be visualized as a deformation of the usual spacetime with the $\\star$-product and can be constructed after the quantization of a given space with its symplectic structure. The Seiberg-Witten (SW) map connects NC fields, transformations parameters and gauge potential to their commutative analogs. In this work we used the SW map to calculate the NC version of the ...
The Hawking effect in abelian gauge theories
International Nuclear Information System (INIS)
In an effort to compare and contrast gravity with other field theories an investigation is made into whether the Hawking effect is a peculiarly gravitational phenomenon. It is found that the effect exists for a particular background abelian gauge field configuration, as well as certain background gravitational field configurations. Specifically, pair production in a uniform electric field is shown to admit a thermal interpretation. In an effort to find out just what is singular about gravity it is found that the Hawking temperature characteristic of a particular gravitational field configuration is independent of the properties of the quantum fields propagating theorem, in direct contrast to the gauge field case. This implies that if the one loop approximation is to be valid the electric field must be ''cold'' relative to the energy scales set by the quantum fields. In gravity, however, because of the existence of a fundamental scale, the Planck length, the gravitational field can be ''hot'' or ''cold'' and a one loop approximation still remain valid. copyright 1989 Academic Press, Inc
Hall viscosity from elastic gauge fields in Dirac crystals
Cortijo, Alberto; Landsteiner, Karl; Vozmediano, María A H
2015-01-01
The combination of Dirac physics and elasticity has been explored at length in graphene where the so--called "elastic gauge fields" have given rise to an entire new field of research and applications: Straintronics. The fact that these elastic fields couple to fermions as the electromagnetic field, implies that many electromagnetic responses will have elastic counterparts not explored before. In this work we will first show that the presence of elastic gauge fields will be the rule rather than the exception in most of the topologically non--trivial materials in two and three dimensions. In particular we will extract the elastic gauge fields associated to the recently observed Weyl semimetals, the "three dimensional graphene". As it is known, quantum electrodynamics suffers from the chiral anomaly whose consequences have been recently explored in matter systems. We will show that, associated to the physics of the anomalies, and as a counterpart of the Hall conductivity, elastic materials will have a Hall visco...
International Nuclear Information System (INIS)
A mathematical study of the dynamics of gravitational collapse and the formation of black holes is presented. The global initial value problems for Einstein's equations in the spherically symmetric case with a massless scalar field, and for arbitrarily large initial data are examined. The required equations and theorems for the solution of the problem are presented. The asymptotic behavior of the global generalized solutions as the retarded time approaches infinity is studied. It is shown that when the final Bondi mass is different from zero, as the retarded time approaches infinity, a black hole forms surrounded by a vacuum
Alberta Congenital Anomalies Surveillance System.
Lowry, R B; Thunem, N Y; Anderson-Redick, S
1989-01-01
The Alberta Congenital Anomalies Surveillance System was started in 1966 in response to the thalidomide tragedy earlier in the decade. It was one of four provincial surveillance systems on which the federal government relied for baseline statistics of congenital anomalies. The government now collects data from six provinces and one territory. The Alberta Congenital Anomaly Surveillance System originally depended on three types of notification to the Division of Vital Statistics, Department of...
DEFF Research Database (Denmark)
Cassez, Franck; Hansen, Rene Rydhof
2012-01-01
Timing anomalies make worst-case execution time analysis much harder, because the analysis will have to consider all local choices. It has been widely recognised that certain hardware features are timing anomalous, while others are not. However, defining formally what a timing anomaly is, has been difficult. We examine previous definitions of timing anomalies, and identify examples where they do not align with common observations. We then provide a definition for consistently slower hardware traces that can be used to define timing anomalies and aligns with common observations.
Einstein, Entropy and Anomalies
Sirtes, Daniel; Oberheim, Eric
2006-11-01
This paper strengthens and defends the pluralistic implications of Einstein's successful, quantitative predictions of Brownian motion for a philosophical dispute about the nature of scientific advance that began between two prominent philosophers of science in the second half of the twentieth century (Thomas Kuhn and Paul Feyerabend). Kuhn promoted a monistic phase-model of scientific advance, according to which a paradigm driven `normal science' gives rise to its own anomalies, which then lead to a crisis and eventually a scientific revolution. Feyerabend stressed the importance of pluralism for scientific progress. He rejected Kuhn's model arguing that it fails to recognize the role that alternative theories can play in identifying exactly which phenomena are anomalous in the first place. On Feyerabend's account, Einstein's predictions allow for a crucial experiment between two incommensurable theories, and are an example of an anomaly that could refute the reigning paradigm only after the development of a competitor. Using Kuhn's specification of a disciplinary matrix to illustrate the incommensurability between the two paradigms, we examine the different research strategies available in this peculiar case. On the basis of our reconstruction, we conclude by rebutting some critics of Feyerabend's argument.
Kok, P; Kok, Pieter; Yurtsever, Ulvi
2003-01-01
We investigate the effect of quantum metric fluctuations on qubits that are gravitationally coupled to a background spacetime. In our first example, we study the propagation of a qubit in flat spacetime whose metric is subject to flat quantum fluctuations with a Gaussian spectrum. We find that these fluctuations cause two changes in the state of the qubit: they lead to a phase drift, as well as the expected exponential suppression (decoherence) of the off-diagonal terms in the density matrix. Secondly, we calculate the decoherence of a qubit in a circular orbit around a Schwarzschild black hole. The no-hair theorems suggest a quantum state for the metric in which the black hole's mass fluctuates with a thermal spectrum at the Hawking temperature. Again, we find that the orbiting qubit undergoes decoherence and a phase drift that both depend on the temperature of the black hole. Thirdly, we study the interaction of coherent and squeezed gravitational waves with a qubit in uniform motion. Finally, we investigat...
Yang-Mills origin of gravitational symmetries
Anastasiou, A; Duff, M J; Hughes, L J; Nagy, S
2014-01-01
By regarding gravity as the convolution of left and right Yang-Mills theories, we derive in linearised approximation the gravitational symmetries of general covariance, p-form gauge invariance, local Lorentz invariance and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincar\\'e. As a concrete example we focus on the new-minimal (12+12) off-shell version of simple four-dimensional supergravity obtained by tensoring the off-shell Yang-Mills multiplets (4 + 4, N_L = 1) and (3 + 0, N_R = 0).
Yang-Mills Origin of Gravitational Symmetries
Anastasiou, A.; Borsten, L.; Duff, M. J.; Hughes, L. J.; Nagy, S.
2014-12-01
By regarding gravity as the convolution of left and right Yang-Mills theories together with a spectator scalar field in the biadjoint representation, we derive in linearized approximation, the gravitational symmetries of general covariance, p -form gauge invariance, local Lorentz invariance, and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincaré symmetry. As a concrete example, we focus on the new minimal (12 +12 ) off shell version of simple four-dimensional supergravity obtained by tensoring the off shell Yang-Mills multiplets (4 +4 , NL=1 ) and (3 +0 , NR=0 ).
Yang-Mills origin of gravitational symmetries.
Anastasiou, A; Borsten, L; Duff, M J; Hughes, L J; Nagy, S
2014-12-01
By regarding gravity as the convolution of left and right Yang-Mills theories together with a spectator scalar field in the biadjoint representation, we derive in linearized approximation, the gravitational symmetries of general covariance, p-form gauge invariance, local Lorentz invariance, and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincaré symmetry. As a concrete example, we focus on the new minimal (12+12) off shell version of simple four-dimensional supergravity obtained by tensoring the off shell Yang-Mills multiplets (4+4, N_{L}=1) and (3+0, N_{R}=0). PMID:25526117
The gravitational analogue of the Witten effect
International Nuclear Information System (INIS)
In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP-violation, the Witten effect [a shift in the electric charge of a magnetic monopole due to CP-non-conservation] is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a theta R-tilde R term in the Lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed. (author)
Massive graviton and determination of cosmological constant from gauge theory of gravity
International Nuclear Information System (INIS)
The universe contains a lot more than the eye meets . Sophisticated experiments search diligently for this invisible dark matter. Here we will describe some theoretical implications of the gravitational gauge theory recently proposed by Ning Wu (hep-th/0112062), namely the possibility of the existence of massive gravitons which fill the intergalactic space. Dark matter is an important problem in cosmology. In gravitational gauge field theory, the following effects should be taken into account to solve this problem: 1) The existence of massive graviton will have some contribution to the dark matter; 2) If the gravitational magnetic field is strong inside a celestial system, the gravitational Lorentz force will provide additional centripetal force for circular motion of a celestial object; 3) The existence of a factor which violate inverse square law of classical gravity. Combining general relativity and gravitational gauge theory the cosmological constant is determined theoretically. The cosmological constant is related to the average vacuum energy of the gravitational gauge field. Because the vacuum energy of the gravitational gauge field is negative, the cosmological constant is positive what generates repulsive force on stars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude order 10-52 m-2, which is well consistent with experimental results. (authors)
System for closure of a physical anomaly
Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S
2014-11-11
Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.
Two-dimensional gravity and nonlinear gauge theory
International Nuclear Information System (INIS)
We construct a gauge theory based on nonlinear Lie algebras, which is an extension of the usual gauge theory based on Lie algebras. It is a new approach to generalization of the gauge theory. The two-dimensional gravity is derived from nonlinear Poincare algebra, which is the new Yang-Mills-like formulation of the gravitational theory. As typical examples, we investigate R2 gravity with dynamical torsion and generic form of open-quotes dilationclose quotes gravity. The supersymmetric extension of this theory is also discussed. 27 refs
Gauged Wess–Zumino–Witten actions for generalized Poincaré algebras
International Nuclear Information System (INIS)
If the Chern–Simons theory is the appropriate gauge theory for the gravitational interaction, then these theories must satisfy the correspondence principle, namely they must be related to General Relativity. In this Letter a five-dimensional Chern–Simons action invariant under the generalized Poincaré algebra B5 is constructed and then it is proved that the corresponding gauged Wess–Zumino–Witten term contains the Einstein–Hilbert action. In the same way, we show that a five-dimensional Chern–Simons action, invariant under the Maxwell algebra B4, induces a gauged Wess–Zumino–Witten term that coincides with the four-dimensional topological gravity.
Non-Relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
Wu, N
2006-01-01
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we could see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in earth's gravitational field may form a gravitationally bound quantized state, which had already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are discussed in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitational gauge field and quantum spin, radiation caused by this coupling can be used to directly determ...
Scientific Electronic Library Online (English)
Laurent, Baulieu; Daniel, Zwanziger.
2007-03-01
Full Text Available We define a regularization for the energy divergences in Coulomb gauge. It gives a perturbative algorithm for well-defined computations for the pure non-Abelian Yang-Mills theory in this gauge. [...
On nonrelativistic gauge theories
International Nuclear Information System (INIS)
A new approach to nonrelativistic gauge theories is presented. The theory admits non-trivial field equations. In contradistinction to the relativistic case the gauge fields in general are massive fields. (author)
Dimock, J
2014-01-01
We consider abelian gauge theories on a lattice and develop properties of an axial gauge that is covariant under lattice symmetries. Particular attention is paid to a version that behaves nicely under block averaging renormalization group transformations.
Axial anomaly in nonrenormalizable theories
International Nuclear Information System (INIS)
The anomaly for the axial current in nonrenormalizable theories with electromagnetic coupling is considered. The spinor electrodynamics with Pauli term is examined in detail using the Feynman graph technique and the point-splitting method. The same finite value for the axial anomaly emerges. (author)
Physical interpretation of gauge invariant perturbations of spherically symmetric space-times
International Nuclear Information System (INIS)
By calculating the Newman-Penrose Weyl tensor components of a perturbed spherically symmetric space-time with respect to invariantly defined classes of null tetrads, we give a physical interpretation, in terms of gravitational radiation, of odd parity gauge invariant metric perturbations. We point out how these gauge invariants may be used in setting boundary and/or initial conditions in perturbation theory
Anterior abdominal wall anomalies
Directory of Open Access Journals (Sweden)
Mehmet Eliçevik
2010-05-01
Full Text Available Anterior abdominal wall defects consists of omphalocele, gastroschisis, umblical hernia and exstrophy-epispadias complex. This section is written for the diagnosis and treatment of those anomalies which are summarized by figures. Managment of abdominal wall defects requires collaboration between the Pediatricians and Pediatric Surgeons. The pitfalls of preoperative and postoperative care from the respect of Pediatrics and intensive care unit are established. Especially the exstrophy-epispadias complex is a life long diasease, special attention for the diagnosis and treatment of mainly the urogenital and associated malformations must be given on the long term follow-up. Patient transfer to specialized centers of Pediatric Urology, in the field of exstrophy-epispadias-complex is recommended. (Turk Arch Ped 2010; 45 Suppl: 29-34
Exploring the web of heterotic string theories using anomalies
International Nuclear Information System (INIS)
We investigate how anomalies can be used to infer relations among different descriptions of heterotic string theory. Starting from the observation that the construction mechanism of heterotic orbifold compactifications considered up to now prevents them from being resolved into fully smooth Calabi-Yau compactification manifolds, we use a new mechanism to obtain an orbifold which does not suffer from the aforementioned limitations. We explain in general how to resolve orbifolds into smooth Calabi-Yau using toric geometry and gauged linear sigma models. The latter allow for studying the theory in various other regions of the string moduli space as well, which unveils interesting intermediate geometries. By following anomalies through the different regimes, we can match the orbifold theories to their smooth Calabi-Yau counterparts. In the process, we investigate discrete R and non-R orbifold symmetries and propose a mechanism for studying their fate in other regions of the moduli space. Finally, we introduce a novel anomaly cancelation mechanism in gauged linear sigma models, which manifests itself in target space as a description of compactification geometries with torsion and Neveu-Schwarz five branes.
Exploring the web of heterotic string theories using anomalies
Energy Technology Data Exchange (ETDEWEB)
Ruehle, Fabian
2013-07-15
We investigate how anomalies can be used to infer relations among different descriptions of heterotic string theory. Starting from the observation that the construction mechanism of heterotic orbifold compactifications considered up to now prevents them from being resolved into fully smooth Calabi-Yau compactification manifolds, we use a new mechanism to obtain an orbifold which does not suffer from the aforementioned limitations. We explain in general how to resolve orbifolds into smooth Calabi-Yau using toric geometry and gauged linear sigma models. The latter allow for studying the theory in various other regions of the string moduli space as well, which unveils interesting intermediate geometries. By following anomalies through the different regimes, we can match the orbifold theories to their smooth Calabi-Yau counterparts. In the process, we investigate discrete R and non-R orbifold symmetries and propose a mechanism for studying their fate in other regions of the moduli space. Finally, we introduce a novel anomaly cancelation mechanism in gauged linear sigma models, which manifests itself in target space as a description of compactification geometries with torsion and Neveu-Schwarz five branes.
Self-gravitating non-abelian kinks as brane worlds
Melfo, Alejandra; Naranjo, Roger; Pantoja, Nelson; Skirzewski, Aureliano; Vasquez, Juan Carlos
2011-01-01
We address the properties of self-gravitating domain walls arising from the breaking of an SU(N) x Z_2- symmetric theory. In the particular case of N=5, we find that the two classes of stable non-abelian kinks possible in flat space have an analogue in the gravitational case, and construct the analytical solutions. Localization of fermion fields in different representations of the gauge group in these branes is investigated. It is also shown that non-abelian gauge fields loc...
Anomalies of BRS and anti-BRS Ward-identities in N=1 supersymmetric theory
International Nuclear Information System (INIS)
The requirement of BRS and anti-BRS symmetries in the N=1 supersymmetric theory leads to Ward-Identities independent of the gauge parameter. The cohomology conditions are immediately satisfied. The determination of a supersymmetric compact formula for the anomaly is not affected by the anti-BRS symmetry. (author). 30 refs
Ward identities and the physical interpretation of anomalies in stochastic quantization
International Nuclear Information System (INIS)
The Ward identities are obtained for vector and axial currents through a functional integral representation of the Langevin equations for the stochastic quantization of fermions in an external gauge field. In this approach anomalies appear as due to fluctuations in the evolution of the system to its equilibrium regime. (orig.)
Spectral action and gravitational effects at the Planck scale
Devastato, AgostinoDipartimento di Fisica, Università di Napoli Federico II, Italy
2014-01-01
We discuss the possibility to extend the spectral action up to energy close to the Planck scale, taking also into account the gravitational effects given by graviton exchange. Including this contribution in the theory, the coupling constant unification is not compromised, but is shifted to the Planck scale rendering all gauge couplings asymptotically free. In the scheme of noncommutative geometry, the gravitational effects change the main standard model coupling constants, l...
Emission of gravitational radiation from ultra-relativistic sources
Segalis, Ehud B.; Ori, Amos
2001-01-01
Recent observations suggest that blobs of matter are ejected with ultra-relativistic speeds in various astrophysical phenomena such as supernova explosions, quasars, and microquasars. In this paper we analyze the gravitational radiation emitted when such an ultra-relativistic blob is ejected from a massive object. We express the gravitational wave by the metric perturbation in the transverse-traceless gauge, and calculate its amplitude and angular dependence. We find that in...
Gravitational Chern-Simons Lagrangians and black hole entropy
Bonora, Loriano; Prester, Predrag Dominis; Pallua, Silvio; Smoli?, Ivica
2011-01-01
We analyze the problem of defining the black hole entropy when Chern-Simons terms are present in the action. Extending previous works, we define a general procedure, valid in any odd dimensions both for purely gravitational CS terms and for mixed gauge-gravitational ones. The final formula is very similar to Wald's original formula valid for covariant actions, with a significant modification. Notwithstanding an apparent violation of covariance we argue that the entropy formula is indeed covariant.
Ghost properties of generalized theories of gravitation
International Nuclear Information System (INIS)
We investigate theories of gravitation, in which spacetime is non-Riemannian and the metric g/sub munu/ is nonsymmetric, for ghosts and tachyons, using a spin-projection operator formalism. Ghosts are removed not by gauge invariance but by a Lagrange multiplier W/sub ?/, which occurs due to the breaking of projective invariance in the theory. Unified theories based on a Lagrangian containing a term lambdag/sup munu/g/sub / are proved to contain ghosts or tachyons
Comments on Microcausality, Chaos, and Gravitational Observables
Marolf, Donald(Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, U.S.A.)
2015-01-01
Observables in gravitational systems must be non-local so as to be invariant under diffeomorphism gauge transformations. But at the classical level some such observables can nevertheless satisfy an exact form of microcausality. This property is conjectured to remain true at all orders in the semiclassical expansion, though with limitations at finite $\\hbar$ or $\\ell_{Planck}$. We also discuss related issues concerning observables in black hole spacetimes and comment on the s...
Gauge theories, black hole evaporation and cosmic censorship
International Nuclear Information System (INIS)
Recent work of Linde, which suggests that gauge theories modify the effective gravitational constant, are applied to the theory of black hole evaporation. Considerable modification of the late stages of evaporation are predicted. Contrary to expectations, the black hole never attains a sufficient temperature to enter the antigravity regime, which would represent a failure of cosmic censorship. (orig.)
Constrained macroscopic limit of the Poincare gauge theory
International Nuclear Information System (INIS)
It is proposed, at the level of Lagrangians and working with constraints, a macroscopic limit of the Poincare gauge theory of gravitation, PGT. Starting from two different Lagrangians, it is possible to obtain teleparallelism theories and Einstein's General Relativity as macroscopic limits of PGT
Anomalous U(1) Models in Four and Five Dimensions and their Anomaly Poles
Armillis, Roberta; Rose, Luigi Delle; Guzzi, Marco
2009-01-01
We show that effective anomalous models in four dimensions in which gauge invariance is restored with Wess-Zumino counterterms or with an anomaly inflow from extra dimensions are both affected by the presence of anomaly poles in certain amplitudes which break unitarity in the ultraviolet. In the case of extra dimensions the breaking takes place after any partial summation of the Kaluza-Klein excitations, showing an intrinsic limitation of the mechanism of inflow, with localized fermions on the branes, respect to the constraints from unitarity. We discuss the origin of these contributions by performing a complete analysis of the anomaly vertex at perturbative level using two independent (but equivalent) representations. We conclude that consistent formulations of anomalous models are not constrained just by gauge invariance, as usually stressed, via the addition of Wess-Zumino terms, but require necessarily the cancellation of these contributions, which are scaleless and prohibit any derivative expansion. We c...
Lenoir, Benjamin; Metris, Gilles; Christophe, Bruno; Lamine, Brahim; Reynaud, Serge
2012-07-01
A large number of tests of gravitation have now been performed in the Solar System, in particular using the motion of planets and interplanetary spacecrafts. They put severe constraints on possible deviations from General Relativity. However, at astrophysical and cosmological scales, observations show anomalies in the rotation curves of galaxies and in the relation between redshifts and luminosities of supernovae. As long as these dark components are observed by gravitational means solely, the anomalies can also be ascribed to modifications of standard gravitation. Obviously, any modification of this kind also has to pass the gravitation tests in the Solar System. Considering that theoretical models also predict deviations from General Relativity, it has become essential to map gravitation in the Solar System with high precision. This can be done by using the trajectory of interplanetary probes. To reach sufficiently precise measurements, it is necessary to correct for the non-gravitational acceleration of the spacecraft. We develop an instrument capable of measuring the non-gravitational acceleration with a precision of 1 pm.s^{-2} for an integration time of three hours. However, because of the constraints in term of mass on interplanetary missions, no drag-free system is envisioned. It is therefore necessary to introduce the non-gravitational acceleration measurements a-posteriori in the orbit restitution process. Currently, non-gravitational accelerations, such as the radiation pressure or the anisotropic thermal radiation, are taken into account by models whose parameters must be fitted. The direct measurement of these quantities enhances orbit restitution for several reasons. First, it removes parameters to be fitted in the process. Second, it measures the temporal fluctuations which cannot be taken into account by models. Third, it removes the correlations which appear in the orbit determination process between the non-gravitational acceleration and the gravitational acceleration, when the former are not measured. Keeping in mind that the Roadmap for Fundamental Physics in Space issued by ESA in 2010 recommends spacecraft tracking at the 10 pm.s^{-2} level, an emphasis will be put on the expected level of detection one can expect as far as deviation from General Relativity is concerned.
Demonstrating Gravitational Repulsion
Directory of Open Access Journals (Sweden)
Wagener P. C.
2010-10-01
Full Text Available In previous papers we showed that a classical model of gravitation explains present gravitational phenomena. This paper deals with gravitational repulsion and it shows how it manifests in black holes and particle pair production. We also suggest a laboratory experiment to demonstrate gravitational repulsion.
A viable axion from gauged flavor symmetries
Berenstein, David
2010-01-01
We consider a string inspired non-supersymmetric extension of the standard model with gauged anomalous U(1) flavor symmetries. Consistency requires the Green-Schwarz mechanism to cancel mixed anomalies. The additional required scalars provide Stuckelberg masses for the $Z'$ particles associated to the gauged flavor symmetry, so they decouple at low energies. Our models also include a complex scalar field $\\phi$ to generate Froggatt-Nielsen mass terms for light particles giving a partial solution to the fermion mass problem. A residual approximate (anomalous) global symmetry survives at low energies. The associated pseudo-Goldstone mode is the phase of the $\\phi$ scalar field, and it becomes the dominant contribution to the physical axion. An effective field theory analysis that includes neutrino masses gives a prediction for the axion decay constant. We find a simple modeI where the axion decay constant is in the center of the allowed window.
Matrix relativity and gauge fields
Energy Technology Data Exchange (ETDEWEB)
Maluf, J.W.
1986-01-01
In this thesis the author assumes the validity of Einstein's Relativity for the description of the gravitational phenomena and address the problem of unification of the latter with gauge theories of the Yang-Mills type. For this purpose the author has developed a formalism called Matrix Relativity, in which the usual metric tensor and affine connection are provided with internal degrees of freedom. This amounts to considering these objects as matrix-valued fields defined on a four dimensional space-time. Having defined and constructed the basic elements of the theory in Chapter II, the authors first observes that the formalism allows the establishment of a larger group of covariance for the matrix curvature tensor by means of a generalized gauge transformation, that includes general coordinate and N-dimensional unitary transformations as special cases. However, use of this covariance for the construction of invariant lagrangians seems to yield physically unacceptable models. The difficulty associated with the non-abelian nature of the field variables is circumvented in the model discussed in Chapter III, in which use is made of the Einstein ansatz. We also study an alternative model in which the matrix affine connection is required to satisfy the quasi-metric condition.
Bowler, M G
1976-01-01
Gravitation and Relativity generalizes Isaac Newton's theory of gravitation using the elementary tools of Albert Einstein's special relativity. Topics covered include gravitational waves, martian electrodynamics, relativistic gravitational fields and gravitational forces, the distortion of reference frames, and the precession of the perihelion of Mercury. Black holes and the geometry of spacetime also receive consideration. This book is comprised of 10 chapters; the first of which briefly reviews special relativity, with the emphasis on the Lorentz covariance of the equations of physics. This
Expanding universe with nonlinear gravitational waves
Ikeda, Taishi; Nambu, Yasusada
2015-01-01
We test the validity of Isaacson's formula which states that high frequency and low amplitude gravitational waves behave as a radiation fluid on average. For this purpose, we numerically construct a solution of the vacuum Einstein equations which contains nonlinear standing gravitational waves. The solution is constructed in a cubic box with periodic boundary conditions. The time evolution is solved in a gauge in which the trace of the extrinsic curvature $K$ of the time slice becomes spatially uniform. Then, the Hubble expansion rate $H$ is defined by $H=-K/3$ and compared with the effective scale factor $L$ defined by the proper volume, area and length of the cubic box. We find that, even when the wave length of the gravitational waves is comparable to the Hubble scale, the deviation from Isaacson's formula $H\\propto L^{-2}$ is at most 3\\% without taking a temporal average and is below 0.1\\% with a temporal average.
Less Mundane Explanation of Pioneer Anomaly from Q-Relativity
Directory of Open Access Journals (Sweden)
Christianto V.
2007-01-01
Full Text Available There have been various explanations of Pioneer blueshift anomaly in the past few years; nonetheless no explanation has been off ered from the viewpoint of Q-relativity physics. In the present paper it is argued that Pioneer anomalous blueshift may be caused by Pioneer spacecraft experiencing angular shift induced by similar Q-elativity effect which may also affect Jupiter satellites. By taking into consideration "aether drift" effect, the proposed method as described herein could explain Pioneer blueshift anomaly within ~0.26% error range, which speaks for itself. Another new proposition of redshift quantization is also proposed from gravitational Bohr-radius which is consistent with Bohr-Sommerfeld quantization. Further observation is of course recommended in order to refute or verify this proposition.
Fermion on curved spaces, symmetries, and quantum anomalies
Visinescu, M
2006-01-01
We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. The gravitational and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge-Lenz vector of the Kepler-type problem. Using the Atiyah-Patodi-Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly.
Fermion on Curved Spaces, Symmetries, and Quantum Anomalies
Directory of Open Access Journals (Sweden)
Mihai Visinescu
2006-11-01
Full Text Available We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. The gravitational and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge-Lenz vector of the Kepler-type problem. Using the Atiyah-Patodi-Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly.
Montgomery, Jerry, , Dr.
2005-04-01
Recent analysis of radio metric data from several space probes deployed by NASA indicate that they are being slowed by an anomalous constant acceleration with an average magnitude of 8x10-10m/s^2 oriented with respect to the sun. Analysis of their slowdown, in addition to many other anomalous astrophysical phenomena indicates that a negative curvature of the space-time continuum is produced by the electromagnetic radiation of the sun. The acceleration appears to have a close relation to the wavelength ?at which the sun radiates most intensely. The evidence that supports our hypothesis may also provide solutions to the flat rotation curve of the galaxy, and rogue stars and planets within the galaxy. Calculations using the data concerning the four probes result in the formula -a=c^2? which expresses a negative acceleration that is proportional to the speed of light divided by the peak wavelength, multiplied by a new constant k. The evidence also gives a strong indication that light, in addition to its particle-wave nature, produces gravitational field-like characteristics through interacting with the space-time continuum.
On the localization of the gravitational energy
Scientific Electronic Library Online (English)
N., Pinto Neto; P. I., Trajtenberg.
2000-03-01
Full Text Available Using a formalism introduced by Feynman, Deser, Grishchuk, Petrov and Popova, the pseudotensors, such as de.ned by Einstein, Tolman, Landau/Lifshitz and Møller, are expessed as gauge dependent tensors in a background space, as the gravitational energy-momentum tensor of Deser, Grishchuk, Petrov and [...] Popova. Using a result obtained by Virbhadra for the energy density in the Reissner-Nordström spacetime, it is shown that the action of these gauge transformations on the above tensorial expressions is the same as the action of the coordinate transformations on the equivalent pseudotensorial expressions, meaning that these tensors can be set to zero at a point by a suitable choice of gauge transformation.
Anomaly Poles as Common Signatures of Chiral and Conformal Anomalies
Armillis, Roberta; Coriano, Claudio; Rose, Luigi Delle
2009-01-01
One feature of the chiral anomaly, analyzed in a perturbative framework, is the appearance of massless poles which account for it. They are identified by a spectral analysis of the anomaly graph and are usually interpreted as being of an infrared origin. Recent investigations show that their presence is not just confined in the infrared, but that they appear in the effective action under the most general kinematical conditions, even if they decouple in the infrared. Further ...
Gauge fixing and residual symmetries in gauge/gravity theories with extra dimensions
International Nuclear Information System (INIS)
We study compactified pure gauge/gravitational theories with gauge-fixing terms and show that these theories possess quantum mechanical supersymmetriclike symmetries between unphysical degrees of freedom. These residual symmetries are global symmetries and generated by quantum mechanical N=2 supercharges. Also, we establish a new one-parameter family of gauge choices for higher-dimensional gravity and calculate as a check of its validity one graviton exchange amplitude in the lowest tree-level approximation. We confirm that the result is indeed ? independent and the cancellation of the ? dependence is ensured by the residual symmetries. We also give a simple interpretation of the van Dam-Veltman-Zakharov discontinuity, which arises in the lowest tree-level approximation, from the supersymmetric point of view.
Explicit form of non-Abelian consistent chiral SUSY anomaly
International Nuclear Information System (INIS)
An attempt is made to derive the consistent chiral anomaly using invariant SUSY regularization being in fact a particular case of the loop regularization. The authors have succeeded in avoiding any parameter integration in favour of a simple expansion over 1/M2, where Mi are regularizing parameters with dimension of mass. The answer obtained is of the form of the infinite series in ev-1 and 1-e-v. This enables one to perform direct verification of the chiral anomaly consistency conditions in the closed form. Up to the third order the derived formula reproduced the component result in the Wess-Lumino gauge. In the Abelian limit it is proved that the exact answer is converted into a compact form of the third-order polynomial in V
Anomalies in instanton calculus
International Nuclear Information System (INIS)
I develop a formalism for solving topological field theories explicitly, in the case when the explicit expression of the instantons is known. I solve topological Yang-Mills theory with the k=1 instanton of Belavin et al. and topological gravity with the Eguchi-Hanson instanton. It turns out that naively empty theories are indeed nontrivial. Many unexpected interesting hidden quantities (punctures, contact terms, nonperturbative anomalies with or without gravity) are revealed. Topological Yang-Mills theory with G=SU(2) is not just Donaldson theory, but contains a certain link theory. Indeed, local and non-local observables have the property of marking cycles. Moreover, from topological gravity one learns that an object can be considered BRST exact only if it is so all over the moduli space M , boundary included. Being BRST exact in any interior point of M is not sufficient to make an amplitude vanish. Presumably, recursion relations and hierarchies can be found to solve topological field theories in four dimensions, in particular topological Yang-Mills theory with G=SU(2) on R4 and topological gravity with the full set of asymptotically locally Euclidean manifolds. ((orig.))
Some Friedmann cosmological solutions in the scale covariant theory of gravitation
Directory of Open Access Journals (Sweden)
Aroonkumar Beesham
1991-06-01
Full Text Available The scale covariant theory of gravity admits the possibility of a time varying gravitational constant but contains a gauge function for which there is no independent equation. The circumstances under which explicit forms for a gauge function may be derived within the context of Friedmann-Robertson-Walker cosmological models are investigated and several forms are derived.
Four Poission-Laplace Theory of Gravitation (I)
Nyambuya, Golden Gadzirayi
2015-08-01
The Poisson-Laplace equation is a working and acceptable equation of gravitation which is mostly used or applied in its differential form in Magneto-Hydro-Dynamic (MHD) modelling of e.g. molecular clouds. From a general relativistic standpoint, it describes gravitational fields in the region of low spacetime curvature as it emerges in the weak field limit. For non-static gravitational fields, this equation is not generally covariant. On the requirements of general covariance, this equation can be extended to include a time-dependent component, in which case one is led to the Four Poisson-Laplace equation. We solve the Four Poisson-Laplace equation for radial solutions, and apart from the Newtonian gravitational component, we obtain four new solutions leading to four new gravitational components capable (in-principle) of explaining e.g. the Pioneer anomaly, the Titius-Bode Law and the formation of planetary rings. In this letter, we focus only on writing down these solutions. The task showing that these new solutions might explain the aforesaid gravitational anomalies has been left for separate future readings.
Interior Alaska Bouguer Gravity Anomaly
National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...
Interior Alaska Bouguer Gravity Anomaly
National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....
ALP hints from cooling anomalies
Giannotti, Maurizio
2015-01-01
We review the current status of the anomalies in stellar cooling and argue that, among the new physics candidates, an axion-like particle would represent the best option to account for the hinted additional cooling.
Prenatal diagnosis of congenital anomalies
Todros, T; Capuzzo, E; Gaglioti, P
2001-01-01
Up till the early 1970s, prenatal diagnosis of congenital anomalies was primarily aimed at detecting chromosomal abnormalities by amniocentesis.1. Over the last two decades, prenatal diagnosis has greatly benefited from advances in ultrasound technology and in our ability to detect microscopic and submicroscopic chromosome abnormalities as well as single gene disorders, leading to substantive improvements in detection of such congenital anomalies.2 At present, invasive prenatal diagnosis cont...
Situs anomalies on prenatal MRI
International Nuclear Information System (INIS)
Objective: Situs anomalies refer to an abnormal organ arrangement, which may be associated with severe errors of development. Due regard being given to prenatal magnetic resonance imaging (MRI) as an adjunct to ultrasonography (US), this study sought to demonstrate the in utero visualization of situs anomalies on MRI, compared to US. Materials and methods: This retrospective study included 12 fetuses with situs anomalies depicted on fetal MRI using prenatal US as a comparison modality. With an MRI standard protocol, the whole fetus was assessed for anomalies, with regard to the position and morphology of the following structures: heart; venous drainage and aorta; stomach and intestines; liver and gallbladder; and the presence and number of spleens. Results: Situs inversus totalis was found in 3/12 fetuses; situs inversus with levocardia in 1/12 fetuses; situs inversus abdominis in 2/12 fetuses; situs ambiguous with polysplenia in 3/12 fetuses, and with asplenia in 2/12 fetuses; and isolated dextrocardia in 1/12 fetuses. Congenital heart defects (CHDs), vascular anomalies, and intestinal malrotations were the most frequent associated malformations. In 5/12 cases, the US and MRI diagnoses were concordant. Compared to US, in 7/12 cases, additional MRI findings specified the situs anomaly, but CHDs were only partially visualized in six cases. Conclusions: Our initial MRI results demonstrate the visualization of situs anomalies and associated malformations in utero, which may provide important information for perinatal management. Using a standard protocol, MRI may identify additional findings, compared to US, which confirm and specify the situs anomaly, but, with limited MRI visualization of fetal CHDs.
Chiral fermions and anomaly cancellation on orbifolds with Wilson lines and flux
Buchmuller, Wilfried; Ruehle, Fabian; Schweizer, Julian
2015-01-01
We consider six-dimensional supergravity compactified on orbifolds with Wilson lines and flux. Torus Wilson lines are decomposed into Wilson lines around the orbifold fixed points, and twisted boundary conditions of matter fields are related to fractional localized flux. Both, orbifold singularities and flux lead to chiral fermions in four dimensions. The six-dimensional bulk anomaly, the fixed point anomalies and also the four-dimensional chiral anomaly are all cancelled by the Green-Schwarz counter term. The two axions contained in the antisymmetric tensor field both contribute to the cancellation of the four-dimensional anomaly and the generation of a vector boson mass via the Stueckelberg mechanism. An orthogonal linear combination of the axions remains massless and couples to the gauge field in the standard way. Furthermore, we construct explicit expressions for the wave functions of the zero modes and relate their multiplicity and behavior at the fixed points to flux and Wilson lines.
Prenatal sonographic diagnosis of focal musculoskeletal anomalies
International Nuclear Information System (INIS)
Focal musculoskeletal anomalies are various and may be an isolated finding or may be found in conjunction with numerous associations, including genetic syndromes, Karyotype abnormals, central nervous system anomalies and other general musculoskeletal disorders. Early prenatal diagnosis of these focal musculoskeletal anomalies nor only affects prenatal care and postnatal outcome but also helps in approaching other numerous associated anomalies.
Mirage Gauge Coupling Unification and TeV Scale Strings
Halyo, Edi
1999-01-01
We consider gauge coupling unification in models with TeV scale strings and large compact dimensions realized as type IIB string orientifolds. Following an observation by Ibanez we show that the gauge couplings at low energies can behave as if they effectively unify at $M_U \\sim 2 \\times 10^{16} GeV$ with $\\alpha_U \\sim 1/24$. This requires the $\\sigma$ model anomaly coefficients $b_a^{i'}$ not to be all equal and their ratio to the $\\beta$-functions of minimally supersymmet...
A little more Gauge Mediation and the light Higgs mass
Mummidi, V Suryanarayana
2013-01-01
We consider minimal models of gauge mediated supersymmetry breaking with an extra $U(1)$ factor in addition to the Standard Model gauge group. A $U(1)$ charged, Standard Model singlet is assumed to be present which allows for an additional NMSSM like coupling, $\\lambda H_u H_d S$. The U(1) is assumed to be flavour universal. Anomaly cancellation in the MSSM sector requires additional coloured degrees of freedom. The $S$ field can get a large vacuum expectation value along with consistent electroweak symmetry breaking. It is shown that the lightest CP even Higgs boson can attain mass of the order of 125 GeV.
MAGSAT anomaly map and continental drift
Lemouel, J. L. (principal investigator); Galdeano, A.; Ducruix, J.
1981-01-01
Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.
International Nuclear Information System (INIS)
We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.
Introduction to gauge theories
International Nuclear Information System (INIS)
These lecture notes contain the text of five lectures and a Supplement. The lectures were given at the JINR-CERN School of Physics, Tabor, Czechoslovakia, 5-18 June 1983. The subgect of the lecinvariancetures: gauge of electromagnetic and weak interactions, higgs and supersymmetric particles. The Supplement contains reprints (or excerpts) of some classical papers on gauge invariance by V. Fock, F. London, O. Klein and H. Weyl, in which the concept of gauge invariance was introduced and developed
Gravitational waves in plasmas
International Nuclear Information System (INIS)
Various aspects of gravitational wave propagation in plasmas and vacuum are discussed. First, we analyse single particle trajectories, study the resonant interaction of gravitational waves with photons, and show that photons can be strongly energized by gravitational waves. Second, this exchange of energy between the photons and the gravitational waves is treated statistically, using a kinetic equation for photons. Gravitational wave instabilities induced by intense photon beams are considered. The effects are very much dependent on the gravitational wave dispersion in the plasma medium, and in particular, on its turbulent state
Guendelman, Eduardo I
2014-01-01
In this paper we give a variation of the gauge procedure which employs a scalar gauge field, $B (x)$, in addition to the usual vector gauge field, $A_\\mu (x)$. We study this variant of the usual gauge procedure in the context of a complex scalar, matter field $\\phi (x)$ with a U(1) symmetry. We will focus most on the case when $\\phi$ develops a vacuum expectation value via spontaneous symmetry breaking. We find that under these conditions the scalar gauge field mixes with the Goldstone boson that arises from the breaking of a global symmetry. Some other interesting features of this scalar gauge model are: (i) The new gauge procedure gives rise to terms which violate C and CP symmetries. This may have have applications in cosmology or for CP violation in particle physics; (ii) the existence of mass terms in the Lagrangian which respect the new extended gauge symmetry. Thus one can have gauge field mass terms even in the absence of the usual Higgs mechanism; (iii) the emergence of a sine-Gordon potential for th...
D=26 and Exact Solution to the Conformal-Gauge Two-Dimensional Quantum Gravity
Abe, Mitsuo; Nakanishi, Noboru
1998-01-01
The conformal-gauge two-dimensional quantum gravity is formulated in the framework of the BRS quantization and solved completely in the Heisenberg picture: All n-point Wightman functions are explicitly obtained. The field-equation anomaly is shown to exist as in other gauges, but there is no other subtlety. At the critical dimension D=26 of the bosonic string, the field-equation anomaly is shown to be absent. However, this result is not equivalent to the statement that the c...
Comments on Background Independence and Gauge Redundancies
Rozali, Moshe
2008-01-01
We describe the definition and the role background independence and the closely related notion of diffeomorphism invariance play in modern string theory. These important concepts are transformed by a new understanding of gauge redundancies and their implementation in non-perturbative quantum field theory and quantum gravity. This new understanding also suggests a new role for the so-called background-independent approaches to directly quantize the gravitational field. This article is intended for a general audience, and is based on a plenary talk given in the Loops 2007 conference in Morelia, Mexico.
Gauged Nambu-Jona-Lasinio model and axionic QCD string
Xiong, Chi
2014-01-01
We propose an axionic QCD string scenario based on the original flux-tube model by Kogut and Susskind, and then incorporate it into a gauged Nambu-Jona-Lasinio (NJL) model. Axial anomaly is studied by a new topological coupling from the string side, and by the 't Hooft vortex from the NJL side, respectively. The nontrivial phase distribution of the quark condensate plays an important role in this scenario.
Underdevelopment’s gravitation
Directory of Open Access Journals (Sweden)
Marin Dinu
2013-09-01
Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.
Ngo Thanh, Hai
2011-01-01
In der vorliegenden Arbeit wird mit Hilfe der verallgemeinerten Eichtheorie/Gravitations-Dualität, welche stark gekoppelte Eichtheorien mit schwach gekrümmten gravitativen Theorien verbindet, stark korrelierte Quantenzustände der Materie untersucht. Der Schwerpunkt liegt dabei in Anwendungen auf Systeme der kondensierten Materie, insbesondere Hochtemperatur-Supraleitung und kritische Quantenzustände bei verschwindender Temperatur. Die Eichtheorie/Gravitations-Dualität entsta...
On the absence of parity anomaly and the finiteness of massless QED{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Del Cima, Oswaldo M.; Franco, Daniel H.T.; Piguet, Olivier [Universidade Federal de Vicosa (UFV) - MG (Brazil)
2013-07-01
Full text: In this work we call into question some unclear points concerning the perturbatively parity breakdown at 1-loop for the massless QED{sub 3} frequently claimed in the literature. There are some claims in the literature that Pauli- Villars regularization must be used because it does not break gauge invariance, contrary to the dimensional regularization case, that is not true in the light of perturbation theory for massless QED{sub 3}. Moreover, Pauli- Villars breaks parity, dimensional regularization does not, both preserve gauge invariance, which of them is more suitable in the quantization of the massless QED{sub 3}? Such a question makes no sense if both schemes are properly used. Fortuitous breaking of gauge symmetry happens when there is no invariant regularization scheme available, however, the Quantum Action Principle guarantees that they can be completely eliminated, when gauge anomaly is absent, by the introduction of noninvariant local counterterms at each perturbative order. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. We show algebraically, by adopting the Lowenstein-Zimmermann subtraction scheme, that the massless QED3 is perturbatively finite and parity anomaly free. We conclude from the Quantum Action Principle to the absence of noninvariant counterterms at the level of the Slavnov-Taylor identity, avoiding in this way a possible parity anomaly that could be induced by parity-odd noninvariant counterterms. The 1-loop parity-odd contribution to the vacuum-polarization tensor is also explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern-Simons term is generated at that order induced through the IR subtractions (which breaks parity), therefore, what is called 'parity anomaly' is in fact a parity-odd counterterm. (author)
Alberta Congenital Anomalies Surveillance System.
Lowry, R B; Thunem, N Y; Anderson-Redick, S
1989-12-01
The Alberta Congenital Anomalies Surveillance System was started in 1966 in response to the thalidomide tragedy earlier in the decade. It was one of four provincial surveillance systems on which the federal government relied for baseline statistics of congenital anomalies. The government now collects data from six provinces and one territory. The Alberta Congenital Anomaly Surveillance System originally depended on three types of notification to the Division of Vital Statistics, Department of Health, Government of Alberta: birth notice and certificates of death and stillbirth; increased sources of ascertainment have greatly improved data quality. We present the data for 1980-86 and compare the prevalence rates of selected anomalies with the rates from three other surveillance systems. Surveillance systems do not guarantee that a new teratogen will be detected, but they are extremely valuable for testing hypotheses regarding causation. At the very least they provide baseline data with which to compare any deviation or trend. For many, if not most, congenital anomalies total prevention is not possible; however, surveillance systems can be used to measure progress in prevention. PMID:2819634
Nonabelian generalized gauge multiplets
International Nuclear Information System (INIS)
We give the nonabelian extension of the newly discovered N = (2, 2) two-dimensional vector multiplets. These can be used to gauge symmetries of sigma models on generalized Kaehler geometries. Starting from the transformation rule for the nonabelian case we find covariant derivatives and gauge covariant field-strengths and write their actions in N = (2, 2) and N = (1, 1) superspace.
Noorbala, Mahdiyar
2015-01-01
We begin by studying a very simple Hamiltonian for Maxwell's equations that has no gauge fields and is made entirely of the electromagnetic fields. We then show that this theory cannot be quantized. We also show that no other such simple theory that only involves the electromagnetic fields can be quantized. This gives further evidence for the important role of gauge fields in QED.
Ridgely, Charles T.
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…
Detection of gravitational radiation
International Nuclear Information System (INIS)
In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)
Conformal Anomaly Actions and Dilaton Interactions
Serino, Mirko
2014-01-01
A number of computational results concerning quantum conformal symmetry is presented. After a review of the connection between conformal symmetry for a Lagrangian field theory in flat space and Weyl symmetry for the same system embedded in a gravitational background, which is discussed in chapter 1, in chapter 2 the 3 energy momentum tensors correlation function is explicitly computed in three free field theories in 4 dimensions; the result is given for two of the three operators on the mass-shell. In chapter 3 a general method to map Green functions built in position space on the ground of symmetry requirements to momentum space, where they can be computed in terms of Feynman diagrams, is developed and discussed: an "integrability" condition, allowing to decide whether a certain correlator can exist within a Lagrangian theory, is derived. Chapter 4 discusses the possible phenomenological implications of the conformal anomaly pole which shows up in the 3 point Green function of one energy momentum tensor with...
A NEO-NEWTONIAN EXPLANATION OF THE PIONEER ANOMALY
Directory of Open Access Journals (Sweden)
E. D. Greaves
2009-01-01
Full Text Available For over 20 years NASA has struggled to nd an explanation for the Pioneer anomaly, an unmodelled weak acceleration towards the sun (= 8:5 x 10-10 m s-2, observed in deep space probes Pioneer 10, 11, Galileo and Ulysses (Anderson et al. 1998, 1999; Katz 1999. No consensus explanation has been given since the anomaly was rst announced, suggesting that new physics is involved. The riddle may be solved if we assume that c, the speed of light, is not a universal constant. Newtonian mechanics, together with the hypothesis by C spedes-Cur (2002 that the index of refraction is a function of the gravitational energy density of space, leads to values of c slightly higher for interstellar space dominated by the primordial energy density p* due to galaxies and far away stars, far from the gravitational in uence of Earth, Moon, and Sun. The value derived for the index of refraction of space (n0 < 1, implies a Doppler shift of the radio signal received from the probes which results in a decrease of the frequency received at Earth and interpreted as a weak acceleration towards the Sun.
Spacecraft environmental anomalies expert system
Koons, H. C.; Gorney, D. J.
1988-01-01
A microcomputer-based expert system is being developed at the Aerospace Corporation Space Sciences Laboratory to assist in the diagnosis of satellite anomalies caused by the space environment. The expert system is designed to address anomalies caused by surface charging, bulk charging, single event effects and total radiation dose. These effects depend on the orbit of the satellite, the local environment (which is highly variable), the satellite exposure time and the hardness of the circuits and components of the satellite. The expert system is a rule-based system that uses the Texas Instruments Personal Consultant Plus expert system shell. The completed expert system knowledge base will include 150 to 200 rules, as well as a spacecraft attributes database, an historical spacecraft anomalies database, and a space environment database which is updated in near real-time. Currently, the expert system is undergoing development and testing within the Aerospace Corporation Space Sciences Laboratory.
Axial anomaly and index theorem for Dirac-Kaehler fermions
International Nuclear Information System (INIS)
Some aspects of topological influence on gauge field theory are analysed, considering the geometry and differential topology methods. A review of concepts of differential forms, fibered spaces, connection and curvature, showing an interpretation of gauge theory in this context, is presented. The question of fermions, analysing in details the Dirac-Kaehler which fermionic particle is considered a general differential form, is studied. It is shown how the explicit expressions in function of the Dirac spinor components vary with the Dirac matrix representation. The Dirac-Kahler equation contains 4 times (in 4 dimensions) the Dirac equation, each particle being associated an ideal at left of the algebra of general differential forms. These ideals and the SU(4) symmetry among them are also studied on the point of view of spinors and, the group of reduction to one of the ideals is identified as the Cartan subalgebra of this SU(4). Finally, the axial anomaly is calculated through the functional determinant given by the Dirac-Kaehler operator. The regularization method is the Seeley's coefficients. From that results a comparison of the index theorems for the twisted complexes of signature and spin, which proportionality is given by the number of the algebra ideals contained in the Dirac-Kaehler equation and which also manifests in the respective axial anomaly equations. (L.C.)
A test of the instanton vacuum with low-energy theorems of the axial anomaly
Musakhanov, M M; Kim, Hyun-Chul
2003-01-01
We revisit the QCD+QED axial anomaly low-energy theorems which give an exact relation between the matrix elements of the gluon and photon parts of the axial anomaly operator equation within the framework of the nonlocal chiral quark model derived from the instanton vacuum. The matrix elements between the vacuum and two photon states and between the vacuum and two gluon states are investigated for arbitrary $N_f $ in an {\\em effective action} approach from the instanton vacuum in the chiral limit. Having gauged the effective action properly, we show that the model does exactly satisfy the low-energy theorems.
Minimal seesaw as an ultraviolet insensitive cure for the problems of anomaly mediation
International Nuclear Information System (INIS)
We show that an intermediate scale supersymmetric left-right seesaw scenario with automatic R-parity conservation can cure the problem of tachyonic slepton masses that arise when supersymmetry is broken by anomaly mediation, while preserving ultraviolet insensitivity. The reason for this is the existence of light B-L=2 Higgses with Yukawa couplings to the charged leptons. We find these theories to have distinct predictions compared to the usual mSUGRA and gauge mediated models as well as the minimal anomaly mediated supersymmetry breaking models. Such predictions include a condensed gaugino mass spectrum and possibly a correspondingly condensed sfermion spectrum.
de Gouvea, Andre; Vega-Morales, Roberto
2013-01-01
The Standard Model calculation of $H\\rightarrow\\gamma\\gamma$ has the curious feature of being finite but regulator-dependent. While dimensional regularization yields a result which respects the electromagnetic Ward identities, additional terms which violate gauge invariance arise if the calculation is done setting $d=4$. This discrepancy between the $d=4-\\epsilon$ and $d=4$ results is recognized as a true ambiguity which must be resolved using physics input; as dimensional regularization respects gauge invariance, the $d=4-\\epsilon$ calculation is accepted as the correct SM result. However, here we point out another possibility; working in analogy with the gauge chiral anomaly, we note that it is possible that the individual diagrams do violate the electromagnetic Ward identities, but that the gauge-invariance-violating terms cancel when all contributions to $H\\rightarrow\\gamma\\gamma$, both from the SM and from new physics, are included. We thus examine the consequences of the hypothesis that the $d=4$ calcul...
Energy Technology Data Exchange (ETDEWEB)
Aufmuth, Peter; Danzmann, Karsten [Max-Planck-Institut fuer Gravitationsphysik (Albert Einstein Institut), Universitaet Hannover, Callinstr. 38, D-30167 Hannover (Germany)
2005-09-01
The existence of gravitational radiation is a prediction of Einstein's general theory of relativity. Gravitational waves are perturbations in the curvature of spacetime caused by accelerated masses. Since the 1960s gravitational wave detectors have been built and constantly improved. The present-day generation of resonant mass antennas and laser interferometers has reached the necessary sensitivity to detect gravitational waves from sources in the Milky Way. Within a few years, the next generation of detectors will open the field of gravitational wave astronomy.
International Nuclear Information System (INIS)
The existence of gravitational radiation is a prediction of Einstein's general theory of relativity. Gravitational waves are perturbations in the curvature of spacetime caused by accelerated masses. Since the 1960s gravitational wave detectors have been built and constantly improved. The present-day generation of resonant mass antennas and laser interferometers has reached the necessary sensitivity to detect gravitational waves from sources in the Milky Way. Within a few years, the next generation of detectors will open the field of gravitational wave astronomy
Axial Anomaly and Transition Formfactors
Teryaev, Oleg; Oganesian, Armen
2010-01-01
We study photon-meson transition formfactors of light mesons in the kinematics, where one photon is real and other is virtual. Dispersive approach to axial anomaly leads to the anomaly sum rule. The absence of corrections to it allows us to get the relation between possible corrections to continuum and to lower states within QCD method which does not rely on factorization hypothesis. We show, relying on the recent data of the BaBar Collaboration, that the relative correction to continuum is quite small, and small correction to continuum can dramatically change the pion formfactor. The same effect for {\\eta} meson is shown to be less pronounced.
Gauge models with hidden topology
International Nuclear Information System (INIS)
Gauge models in which vacuum possesses nontrivial topological characteristics are described by analogy with spontaneous symmetry breaking. Topological field characteristics occur when formalizing gauge models by foliations
[Müllerian anomalies. Obstructed hemivagina and ipsilateral renal anomaly syndrome (OHVIRA)].
Afrashtehfar, Cyrus Dean Mario; Piña-García, Adrián; Afrashtehfar, Kelvin Ian
2014-01-01
Müllerian duct anomalies are a group of uncommon and underdiagnosed entities, which cause specific symptoms in adolescent females and may be associated with infertility as well as adverse pregnancy outcomes. These malformations occur as a result of an arrest or abnormal development of the Müllerian ducts in different stages of the female reproductive tract during gestation. Obstructed hemivagina and ipsilateral renal anomaly syndrome (OHVIRA), formerly known as the Herlyn-Werner-Wunderlich syndrome, is a rare entity characterized by the presence of a uterus didelphys with an obstructed hemivagina cause by a vaginal septum and the association of a renal anomaly (most commonly renal agenesis) ipsilateral to the obstruction. This syndrome may remain undiagnosed during childhood and usually becomes symptomatic after menarche, causing obstructive symptoms. Occasionally it may be identified after the evaluation of a patient with infertility or recurrent pregnancy loss. The clinical diagnosis is very challenging and requires imaging studies in which ultrasound and MRI play an essential role in the diagnosis, classification and treatment plan. Opportune diagnosis and treatment achieve complete improvement of symptoms, adequate reproductive prognosis and avoid major complications such as endometriosis, pelvic adhesions and infertility. The purpose of this review is to demonstrate the pathophysiology, clinical manifestations, diagnostic methods and treatment of the obstructed hemivagina and ipsilateral renal anomaly syndrome. PMID:25167360
Determination of Gravitational Counterterms Near Four Dimensions from RG Equations
Hamada, Ken-ji
2014-01-01
The finiteness condition of renormalization gives a restriction on the form of the gravitational action. By reconsidering the Hathrell's RG equations for massless QED in curved space, we determine the gravitational counterterms and conformal anomalies near four dimensions. As conjectured for conformal couplings in 1970s, we show at all orders of the perturbation that they can be combined into two forms only: the square of the Weyl tensor in $D$ dimensions and \\begin{eqnarray*} E_D=G_4 +(D-4)\\chi(D)H^2 -4\\chi(D) \
On gauged Baryon and Lepton numbers
International Nuclear Information System (INIS)
The observation that Baryon number and Lepton number are conserved in nature provides strong motivation for associating gauge symmetries to these conserved numbers. This endeavor requires that the gauge group of electroweak interactions be extended from SU(2)L X U(1)Y to SU(2)L X U(1)R X U(1)Lepton where U(1)R couples only to the right-handed quarks and leptons. If it furthur postulated that right-handed currents exist on par with the left-handed ones, then the full electroweak symmetry is SU(2)L X SU(2)R X U(1)Baryon X U(1)Lepton. The SU(2)L X SU(2)R X U(1)Baryon X U(1)Lepton model is described in some detail. The triangle anomalies of the three families of quarks and leptons in the model are cancelled invoking leptoquark matter which is new fermionic matter that carries baryon as well as lepton numbers. In addition to the standard neutral boson (Z degree), the theory predicts two neutral gauge bosons with mass lower bounds of 120 GeV and 210 GeV which makes these particles prospective candidates for production at LEP, the TEVATRON and the SSC
Gravity from poincare gauge theory of the fundamental particles, 3
International Nuclear Information System (INIS)
We apply the weak field approximation to the most general gravitational field equations in Poincare gauge theory. The weak gravitational field h sub(??) is a multimass field obeying a fourth-order field equation. In the Newtonian approximation we show that there are two routes to arrive at the Newtonian potential. The torsion field is decomposed into six irreducibe building blocks with spin sup(parity), 2+, 2-, 1+, 1-, 0+ and 0-, each of which obeys the Klein-Gordon equation. Finally, we construct a possible candidate for the massless graviton field which obeys the linearized Einstein equation. (author)
An Analysis of Anomaly Cancellation for Theories in D=10
Antonelli, Andrea
2015-01-01
We prove that the swampland for D=10 N=1 SUGRA coupled to D=10 N=1 SYM is only populated by U(1)^496 and E_8 x U(1)^248. With this goal in mind, we review the anomalies for classical and exceptional groups, retrieving trace identities up to the sixth power of the curvature for each class of groups. We expand this idea for low-dimensional groups, for which the trace of the sixth power is known to factorize, and we retrieve such factorization. We obtain the total anomaly polynomials for individual low dimensional groups and combinations of them and finally we investigate their non-factorization, in such a way that U(1)^496and E_8 xU(1)^248 are non-trivially shown to be the only anomaly-free theories allowed in D=10. Using the method developed for checking the factorization of gauge theories, we retrieve the Green-Schwarz terms for the two theories populating the swampland.
Quantum anomaly and geometric phase: Their basic differences
International Nuclear Information System (INIS)
It is sometimes stated in the literature that the quantum anomaly is regarded as an example of the geometric phase. Though there is some superficial similarity between these two notions, I here show that the differences between these two notions are more profound and fundamental. As an explicit example, I analyze in detail a quantum mechanical model proposed by M. Stone, which is supposed to show the above connection. I show that the geometric term in the model, which is topologically trivial for any finite time interval T, corresponds to the so-called 'normal naive term' in field theory and has nothing to do with the anomaly-induced Wess-Zumino term. In the fundamental level, the difference between the two notions is stated as follows: The topology of gauge fields leads to level crossing in the fermionic sector in the case of chiral anomaly, and the failure of the adiabatic approximation is essential in the analysis, whereas the (potential) level crossing in the matter sector leads to the topology of the Berry phase only when the precise adiabatic approximation holds
Combining Anomaly and Z' Mediation of Supersymmetry Breaking
de Blas, Jorge; Paz, Gil; Wang, Lian-Tao
2009-01-01
We propose a scenario in which the supersymmetry breaking effect mediated by an additional U(1)' is comparable with that of anomaly mediation. We argue that such a scenario can be naturally realized in a large class of models. Combining anomaly with Z' mediation allows us to solve the tachyonic slepton problem of the former and avoid significant fine tuning in the latter. We focus on an NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level mu term, and present concrete models, which admit successful dynamical electroweak symmetry breaking. Gaugino masses are somewhat lighter than the scalar masses, and the third generation squarks are lighter than the first two. In the specific class of models under consideration, the gluino is light since it only receives a contribution from 2-loop anomaly mediation, and it decays dominantly into third generation quarks. Gluino production leads to distinct LHC signals and prospects of early discovery. In addition, there is a relatively light Z', wit...
Field theory limit of branes and gauged supergravities
International Nuclear Information System (INIS)
We discuss the field theory limit of Dp-branes. In this limit, the black Dp-brane solution approaches a solution which is conformal to adSp+2 x S8-p. We argue that the frame in which the conformal factor is equal to one, the dual frame, is a 'holographic' frame. The radial coordinate of adSp+2 provides a UV/IR connection as in the case of the D3 brane. The gravitational description involves gauged supergravities, typically with non-compact gauged groups. The near-horizon Dp-brane solution becomes a domain-wall solution of the latter. (orig.)
Baryon and lepton number as local gauge symmetries
International Nuclear Information System (INIS)
We investigate a simple theory where baryon number (B) and lepton number (L) are local gauge symmetries. In this theory B and L are on the same footing and the anomalies are canceled by adding a single new fermionic generation. There is an interesting realization of the seesaw mechanism for neutrino masses. Furthermore, there is a natural suppression of flavor violation in the quark and leptonic sectors since the gauge symmetries and particle content forbid tree level flavor changing neutral currents involving the quarks or charged leptons. Also one finds that the stability of a dark matter candidate is an automatic consequence of the gauge symmetry. Some constraints and signals at the Large Hadron Collider are briefly discussed.
Extension of magnetic anomaly rule
International Nuclear Information System (INIS)
The Moskowitz-Lombardi rule which has established a relationship for magnetic hyperfine-structure anomalies for ten mercury, Z=80, isotopes and isomers is extended, in the light of new experimental work, to iridium, gold, and thallium, Z=77, 79, and 81 respectively. (orig.)
Coral can have growth anomalies
Coral growth anomalies (GAs) are changes in the coral cells that deposit the calcium carbonate skeleton. They usually appear as raised areas of the skeleton and tissue that are different from the surrounding normal areas on the same colony. The features include abnormal shape a...
Branchial cleft anomalies: CT evaluation
Energy Technology Data Exchange (ETDEWEB)
Seok, Eul Hye; Park, Chan Sup [College of Medicine, Inha University, Seongnam (Korea, Republic of)
1994-04-15
The purpose of this paper is to describe the CT findings of a variety of branchial cleft anomalies in the head and neck area. We reviewed the CT findings of 16 patients with neck lesion pathologically proved as branchial cleft anomalies. There were two first and 12 second branchial cleft cysts, one first and one second branchial cleft sinuses. Two cases of first branchial cleft cysts were manifested as thin-walled, cystic masses at auricular area. One first branchial cleft sinus was an external opening type and manifested as an ill-defined, enhancing solid lesion at posterior auricular area. All 12 cases of second branchial cleft cysts demonstrated a typical location, displacing the sternocleidomastoid muscle posteriorly, the carotid artery and internal jugular vein complex medially and the submandibular gland anteriorly. Eight cases of second branchial cleft cysts were seen as fluid-filled, round or ovoid-shaped cysts, and 3 cases of them were seen as irregular-shaped cysts. In one case, suppurative adenopathy with loss of soft tissue planes around the cyst was observed. One case of second branchial cleft sinus was manifested as a tubular-shaped, enhancing lesion at submental area and containing external opening site draining into the anterior border of the sternocleidomastoid muscle. We conclude that CT provides important diagnostic and therapeutic information in patients with a neck mass believed to be a branchial cleft anomaly, as it can differentiate various forms of the branchial anomalies by their characteristic location and shape.
The conformal gauge to the derivative gauge for worldsheet gravity
Upadhyay, Sudhaker
2015-01-01
The BRST quantizations of worldsheet gravity corresponding to final more acceptable derivative gauge and the standard conformal gauge are studied. We establish a mapping between these two gauges utilizing FFBRST formulation in standard way. Therefore, we are able to declare that the problems associated with Virasoro constraints are the gauge artifact.
Can Schwarzschildean gravitational fields suppress gravitational waves?
Energy Technology Data Exchange (ETDEWEB)
Malec, Edward; Schaefer, Gerhard
2001-08-15
Gravitational waves in the linear approximation propagate in Schwarzschild space-time similarly to electromagnetic waves. A fraction of the radiation scatters off the curvature of the geometry. The energy of the backscattered part of an initially outgoing pulse of the quadrupole gravitational radiation is estimated by compact formulas depending on the initial energy, the Schwarzschild radius, and the location and width of the pulse. The backscatter becomes negligible in the short wavelength regime.
Can Schwarzschildean gravitational fields suppress gravitational waves?
Malec, E; Malec, Edward; Schaefer, Gerhard
2001-01-01
Gravitational waves in the linear approximation propagate in the Schwarzschild spacetime similarly as electromagnetic waves. A fraction of the radiation scatters off the curvature of the geometry. The energy of the backscattered part of an initially outgoing pulse of the quadrupole gravitational radiation is estimated by compact formulas depending on the initial energy, the Schwarzschild radius, and the location and width of the pulse. The backscatter becomes negligible in the short wavelength regime.
Can Schwarzschildean gravitational fields suppress gravitational waves?
Malec, Edward; Schaefer, Gerhard
2001-01-01
Gravitational waves in the linear approximation propagate in the Schwarzschild spacetime similarly as electromagnetic waves. A fraction of the radiation scatters off the curvature of the geometry. The energy of the backscattered part of an initially outgoing pulse of the quadrupole gravitational radiation is estimated by compact formulas depending on the initial energy, the Schwarzschild radius, and the location and width of the pulse. The backscatter becomes negligible in t...
Maas, Axel
2012-01-01
QCD can be formulated using any gauge group. One particular interesting choice is to replace SU(3) by the exceptional group G2. Conceptually, this group is the simplest group with a trivial center. It thus permits to study the conjectured relevance of center degrees of freedom for QCD. Practically, since all its representation are real, it is possible to perform lattice simulations for this theory also at finite baryon densities. It is thus an excellent environment to test methods and to investigate general properties of gauge theories at finite densities. We review the status of our understanding of gauge theories with the gauge group G2, including Yang-Mills theory, Yang-Mills-Higgs theory, and QCD both in the vacuum and in the phase diagram.
International Nuclear Information System (INIS)
Present and future prospects for the discovery of new gauge bosons, Z' and W', are reviewed. Particular attention is paid to hadron and e+e- collider searches for the W' of the Left-Right Symmetric Model
National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...
An Intelligent Strain Gauge with Debond Detection and Temperature Compensation
Jensen, Scott L.
2012-01-01
The harsh rocket propulsion test environment will expose any inadequacies associated with preexisting instrumentation technologies, and the criticality for collecting reliable test data justifies investigating any encountered data anomalies. Novel concepts for improved systems are often conceived during the high scrutiny investigations by individuals with an in-depth knowledge from maintaining critical test operations. The Intelligent Strain Gauge concept was conceived while performing these kinds of activities. However, the novel concepts are often unexplored even if it has the potential for advancing the current state of the art. Maturing these kinds of concepts is often considered to be a tangential development or a research project which are both normally abandoned within the propulsion-oriented environment. It is also difficult to justify these kinds of projects as a facility enhancement because facility developments are only accepted for mature and proven technologies. Fortunately, the CIF program has provided an avenue for bringing the Intelligent Strain Gauge to fruition. Two types of fully functional smart strain gauges capable of performing reliable and sensitive debond detection have been successfully produced. Ordinary gauges are designed to provide test article data and they lack the ability to supply information concerning the gauge itself. A gauge is considered to be a smart gauge when it provides supplementary data relating other relevant attributes for performing diagnostic function or producing enhanced data. The developed strain gauges provide supplementary signals by measuring strain and temperature through embedded Karma and nickel chromium (NiCr) alloy elements. Intelligently interpreting the supplementary data into valuable information can be performed manually, however, integrating this functionality into an automatic system is considered to be an intelligent gauge. This was achieved while maintaining a very low mass. The low mass enables debond detection and temperature compensation to be performed when the gauge is utilized on small test articles. It was also found that the element's mass must be relatively small to avoid overbearing the desired thermal dissipation characteristics. Detecting the degradation of a gauge s bond was reliably achieved by correlating thermal dissipation with the bond s integrity. This was accomplished by precisely coupling a NiCr element with a Karma element for accurately interjecting and quantifying thermal energy. A finite amount of thermal energy is consistently placed in the gauge by electrically powering the NiCr element. The energy will only be temporarily stored before it begins to dissipate into the surrounding structure through the gauge bond. The ability to transmit the energy into the structure becomes greatly inhibited by any discontinuity in the bond s substrate. Therefore, the way the thermal dissipation occurs will reveal even the slightest change in the integrity of the bond.
2010-04-01
...Miscellaneous Provisions Gauging of Spirits, Wines Or Alcoholic Flavoring Materials... Gauging. (a) Gauging of spirits and wine. Gauges shall be made...Gauges of spirits, denatured spirits, or wine shall be made in...
Energy Anomaly and Polarizability of Carbon Nanotubes
Novikov, D. S.; Levitov, L S
2005-01-01
The energy of electron Fermi sea perturbed by external potential, represented as energy anomaly which accounts for the contribution of the deep-lying states, is analyzed for massive d = 1+1 Dirac fermions on a circle. The anomaly is a universal function of the applied field, and is related to known field-theoretic anomalies. We express transverse polarizability of Carbon nanotubes via the anomaly, in a way which exhibits the universality and scale-invariance of the response ...
Gravitational Chern-Simons Lagrangian terms and spherically symmetric spacetimes
Bonora, Loriano; Prester, Predrag Dominis; Pallua, Silvio; Smoli?, Ivica
2011-01-01
We show that for general spherically symmetric configurations, contributions of general gravitational and mixed gauge-gravitational Chern-Simons terms to the equations of motion vanish identically in $D>3$ dimensions. This implies that such terms in the action do not affect Birkhoff's theorem or any previously known spherically symmetric solutions. Furthermore, we investigate the thermodynamical properties using the procedure described in an accompanying paper. We find that in $D>3$ static spherically symmetric case Chern-Simons terms do not contribute to the entropy either. Moreover, if one requires only for the metric tensor to be spherically symmetric, letting other fields unrestricted, the results extend almost completely, with only one possible exception --- Chern-Simons Lagrangian terms in which the gravitational part is just the $n=2$ irreducible gravitational Chern-Simons term.
Cosmic matter-antimatter asymmetry and gravitational force
Hsu, J. P.
1980-01-01
Cosmic matter-antimatter asymmetry due to the gravitational interaction alone is discussed, considering the gravitational coupling of fermion matter related to the Yang-Mills (1954) gauge symmetry with the unique generalization of the four-dimensional Poincare group. Attention is given to the case of weak static fields which determines the space-time metric where only large source terms are retained. In addition, considering lowest-order Feynman diagrams, there are presented gravitational potential energies between fermions, between antifermions, and between a fermion and an antifermion. It is concluded that the gravitational force between matter is different from that between antimatter; implications from this concerning the evolution of the universe are discussed.
Quantization of gauge theory for gauge dependent operators
Chen, Xiang-Song; Sun, Wei-Min; Wang, Fan; Faessler, Amand
1999-01-01
Based on a canonically derived path integral formalism, we demonstrate that the perturbative calculation of the matrix element for gauge dependent operators has crucial difference from that for gauge invariant ones. For a gauge dependent operator ${\\cal O}(\\phi)$ what appears in the Feynman diagrams is not ${\\cal O} (\\phi)$ itself, but the gauge-transformed one ${\\cal O}(^\\omega \\phi)$, where $\\omega$ characterizes the specific gauge transformation which brings any field var...
Minimal Gauge Invariant Classes of Tree Diagrams in Gauge Theories
Boos, Edward; Ohl, Thorsten
1999-01-01
We describe the explicit construction of groves, the smallest gauge invariant classes of tree Feynman diagrams in gauge theories. The construction is valid for gauge theories with any number of group factors which may be mixed. It requires no summation over a complete gauge group multiplet of external matter fields. The method is therefore suitable for defining gauge invariant classes of Feynman diagrams for processes with many observed final state particles in the standard ...
Anomalies and Hawking fluxes from the black holes of topologically massive gravity
Energy Technology Data Exchange (ETDEWEB)
Porfyriadis, Achilleas P. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: apporfyr@mit.edu
2009-05-11
The anomaly cancellation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. It is found that the terms in this U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancellation method, are in complete agreement with the ones obtained from integrating the Planck distribution.
Anomalies and Hawking fluxes from the black holes of topologically massive gravity
Porfyriadis, Achilleas P
2009-01-01
The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. It is found that the terms in this U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.
Anomalies and Hawking fluxes from the black holes of topologically massive gravity
Porfyriadis, Achilleas P.
2009-05-01
The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U (1) gauge field of the reduced (1 + 1)-dimensional theory. It is found that the terms in this U (1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.
Unparticle actions and gauge invariance
Ilderton, Anton
2008-01-01
We show that the requirement of gauge invariance is not enough to fix the form of interactions between unparticles and gauge fields, thus revealing a wide new class of gauged unparticle actions. Our approach also allows us to construct operators which create gauge invariant coloured unparticles. We discuss both their perturbative and non--perturbative properties.
Silvi, Pietro; Calarco, Tommaso; Montangero, Simone
2014-01-01
We present a unified framework to describe lattice gauge theories by means of tensor networks: this framework is efficient as it exploits the high amount of local symmetry content native of these systems describing only the gauge invariant subspace. Compared to a standard tensor network description, the gauge invariant one allows to speed-up real and imaginary time evolution of a factor that is up to the square of the dimension of the link variable. The gauge invariant tensor network description is based on the quantum link formulation, a compact and intuitive formulation for gauge theories on the lattice, and it is alternative and can be combined with the global symmetric tensor network description. We present some paradigmatic examples that show how this architecture might be used to describe the physics of condensed matter and high-energy physics systems. Finally, we present a cellular automata analysis which estimates the gauge invariant Hilbert space dimension as a function of the number of lattice sites...
The structure of electromagnetism and gravitation
International Nuclear Information System (INIS)
The formalisms of gauge theory and continuum mechanics linked to the construction of the non-linear Spencer sequences in the formal theory of Lie pseudogroups give results showing that a contradiction exists between the two theories quoted above as the Yang-Mills ''potentials'' of physicists are sections of the first Spencer vector bundle, coming from connections, while the ''fields'' of mechanicians are sections of the same bundle, not coming from connections. The purpose of this Note is to explain this contradiction by showing that the electromagnetic model of gauge theory must be modified. Maxwell and Einstein equations then automatically appear in this differential framework that unifies electromagnetism and gravitation. These conclusions are imposed, not by the choice of physical assumptions, but by the use of a new mathematical tool
Transformations of asymptotic gravitational-wave data
Boyle, Michael
2015-01-01
Gravitational-wave data is gauge dependent. While we can restrict the class of gauges in which such data may be expressed, there will still be an infinite-dimensional group of transformations allowed while remaining in this class, and almost as many different---though physically equivalent---waveforms as there are transformations. This paper presents a method for calculating the effects of the most important transformation group, the Bondi-Metzner-Sachs (BMS) group, consisting of rotations, boosts, and supertranslations (which include time and space translations as special cases). To a reasonable approximation, these transformations result in simple coupling between the modes in a spin-weighted spherical-harmonic decomposition of the waveform. It is shown that waveforms from simulated compact binaries in the publicly available SXS waveform catalog contain unmodeled effects due to displacement and drift of the center of mass, accounting for mode-mixing at typical levels of 1%. However, these effects can be mit...
Neutrino Mass and Dark Matter from Gauged B$-$L Breaking
Matsui, Toshinori
2015-01-01
We discuss a new radiative seesaw model with the gauged B$-$L symmetry which is spontaneously broken. We improve the previous model by using the anomaly-free condition without introducing too many fermions. In our model, dark matter, tiny neutrino masses and neutrino oscillation data can be explained simultaneously, assuming the B$-$L symmetry breaking at the TeV scale.
The Pioneer anomaly as an effect of the dynamics of time
Ranada, Antonio F.
2004-01-01
A model is presented in which the Pioneer anomaly is not related to the motion of the spaceship, but is a consequence of the acceleration of the cosmological proper time $\\tau$ with respect to the coordinate parametric time $t$, what is an effect of the background gravitational potential of the entire universe. The light speed, while being constant if defined with respect to $\\tau$ ({\\it i. e.} as ${\\rm d}\\ell /{\\rm d} \\tau$), would suffer an adiabatic secular acceleration, ...
Adler, Stephen L.
2011-01-01
We continue our exploration of whether the flyby anomalies can be explained by scattering of spacecraft nucleons from dark matter gravitationally bound to the earth, with the addition of data from five new flybys to that from the original six. We continue to use our model in which inelastic and elastic scatterers populate shells generated by the precession of circular orbits with normals tilted with respect to the earth's axis. With 11 data points and 8 parameters in the mod...
On the four dimensional Conformal Anomaly, Fractal Spacetime and the Fine Structure Constant
Castro, Carlos
2000-01-01
Antoniadis, Mazur and Mottola (AMM) two years ago computed the intrinsic Hausdorff dimension of spacetime at the infrared fixed point of the quantum conformal factor in 4D Gravity. The fractal dimension was determined by the coefficient of the Gauss-Bonnet topological term associated with the conformal gravitational anomaly and was found to be greater than 4. It is explicitly shown how one can relate the value of the Hausdorff dimension computed by AMM to the universal dimen...
Probing the Flyby Anomaly with the future STE-QUEST mission
Páramos, Jorge(Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, Porto, 4169-007, Portugal); Hechenblaikner, Gerald
2012-01-01
In this study, we demonstrate that the flyby anomaly, an unexpected acceleration detected in some of the gravitational assists of the Galileo, NEAR, Cassini and Rosetta spacecraft, could be probed by accurate orbital tracking available in the proposed Space-Time Explorer and Quantum Equivalence Principle Space Test (STE- QUEST); following a recent work, we focus on the similarity between an hyperbolic flyby and the perigee passage in a highly elliptic orbit of the latter, as...
Moortgat, J B; Kuijpers, J; Moortgat, Joachim; Hooft, Gerard 't; Kuijpers, Jan
2001-01-01
In the vicinity of merging neutron strar binaries or supernova remnants, gravitational waves can interact with the prevailing strong magnetic fields. The resulting partial conversion of gravitational waves into electromagnetic (radio) waves might prove to be an indirect way of detecting gravitational waves from such sources. Another interesting interaction considered in this article is the excitation of magnetosonic plasma waves by a gravitational wave passing through the surrounding plasma. The transfer of gravitational wave energy into the plasma might help to fuel the `fireball' of electromagnetic radiation observed in gamma ray bursts. In the last section of the article, a dispersion relation is derived for such magnetosonic plasma waves driven by a gravitational wave.
Spinor gauge fields in multidimensional and/or locally anisotropic gravity
International Nuclear Information System (INIS)
Our purpose is to present a review of our results on the classical and quantum field theory on multidimensional and/or locally anisotropic spaces (briefly, mla-spaces) modeled as vector bundles provided with nonlinear and distinguished linear connections and metric structures and containing as particular cases the Kaluza-Klein, Finsler and Lagrange spaces. We developed a geometric formalism for gauge theories with semisimple (Young-Mills fields) and non-semisimple (gauge-like gravity) structure groups on mla-spaces. A new class of gravitational gauge instanton solution with local anisotropy was found. Twistor and spinor methods were used in order to construct self-dual and non self-dual solutions of locally anisotropic gauge and gravitational field equations. The theory of locally isotropic spinors was laid down. The geometry of locally anisotropic (la) super spaces was formulated and two models of la-supergravity were proposed and studied in details. (author)
Aspherical gravitational monopoles
Connes, Alain; Damour, Thibault; Fayet, Pierre
1996-01-01
We show how to construct non-spherically-symmetric extended bodies of uniform density behaving exactly as pointlike masses. These ``gravitational monopoles'' have the following equivalent properties: (i) they generate, outside them, a spherically-symmetric gravitational potential $M/|x - x_O|$; (ii) their interaction energy with an external gravitational potential $U(x)$ is $- M U(x_O)$; and (iii) all their multipole moments (of order $l \\geq 1$) with respect to their center...
Boynton, P E; Kalet, A M; Kleczewski, A M; Lingwood, J K; McKenney, K J; Moore, M W; Steffen, J H; Berg, E C; Cross, W D; Newman, R D; Gephart, R E
2006-01-01
We report progress on a program of gravitational physics experiments using cryogenic torsion pendula undergoing large-amplitude torsion oscillation. This program includes tests of the gravitational inverse square law and of the weak equivalence principle. Here we describe our ongoing search for inverse-square-law violation at a strength down to $10^{-5}$ of standard gravity. The low-vibration environment provided by the Battelle Gravitation Physics Laboratory (BGPL) is uniquely suited to this study.
Pulsars and Gravitational Waves
Lee, K. J.; Xu, R.X.; Qiao, G. J.
2011-01-01
The relationship between pulsar-like compact stars and gravitational waves is briefly reviewed. Due to regular spins, pulsars could be useful tools for us to detect ~nano-Hz low-frequency gravitational waves by pulsar-timing array technique; besides, they would also be ~kilo-Hz high-frequency gravitational wave radiators because of their compactness. The wave strain of an isolate pulsar depends on the equation state of cold matter at supra-nuclear densities. Therefore, a rea...
Cosmological consequences of classical flavor-space locked gauge field radiation
Bielefeld, Jannis; Caldwell, Robert R.
2015-06-01
We propose a classical SU(2) gauge field in a flavor-space locked configuration as a species of radiation in the early Universe and show that it would have a significant imprint on a primordial stochastic gravitational wave spectrum. In the flavor-space locked configuration, the electric and magnetic fields of each flavor are parallel and mutually orthogonal to other flavors, with isotropic and homogeneous stress energy. Due to the non-Abelian coupling, the gauge field breaks the symmetry between left- and right-circularly polarized gravitational waves. This broken chiral symmetry results in a unique signal: nonzero cross-correlation of the cosmic microwave background temperature and polarization, T B and E B , both of which should be zero in the standard, chiral symmetric case. We forecast the ability of current and future cosmic microwave background experiments to constrain this model. Furthermore, a wide range of behavior is shown to emerge, depending on the gauge field coupling, abundance, and allocation into electric and magnetic field energy density. The fluctuation power of primordial gravitational waves oscillates back and forth into fluctuations of the gauge field. In certain cases, the gravitational wave spectrum is shown to be suppressed or amplified by up to an order of magnitude depending on the initial conditions of the gauge field.
Diagrammatics of gauge transformations for general gauge theories
International Nuclear Information System (INIS)
The diagrammatic combinatorics of gauge transformations for arbitrary gauge theories is presented. It is possible to define a systematic and simple procedure for transforming a given graph in one gauge into an equivalent sum of graphs in another gauge. This diagrammatic technique is inspired by a simpler path integral proof of gauge invariance than that developed by Faddeev and Popov. The method advocated requires the formulation of the diagrammatic counterpart to a change of variables for functional integrals. This being applied to gauge theories, ghost determinants are seen to arise through the Jacobian of a gauge transformation-change of variables. By examination of the Axial-Landau connection, it is shown that gauge-invariant quantities are independent of how the (1/k3)2 singularity is defined for the Axial bare propagator; however, gauge-variant quantities require a principal-value prescription. The formalism is extended to incorporate fermions
Anomaly Cancelation in Field Theory and F-theory on a Circle
Grimm, Thomas W
2015-01-01
We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.
DETECTING ANOMALIES DURING MULTIPLE INHERITANCE
Directory of Open Access Journals (Sweden)
Shivani Goel
2011-06-01
Full Text Available Abstract: Object oriented software is developed with iterative and recursive increments. Object oriented software testing starts modules with unit testing in which each module is tested first then modules are integrated that forms integration testing and then they are collaborated to make a system which begins with system testing. In multiple inheritance, while collaborating various base classes to a derived class, there comes static and dynamic anomalies i.e. objects and the values assigned to the objects vary. So an approach is discussed to detect such anomalies. And one of the major challenges in software testing is the generation of test cases. Here we generating test cases firstly with unit testing approach, then integration and then with system testing approach. By testing in this way it improves the quality of software assure the high reliability of software. In this paper, our focus is on classes, objects, inheritance, method overriding, and polymorphism
Radiometric anomalies analysis and mapping
International Nuclear Information System (INIS)
In this work we present the most important results derived from the application of the geostatistical methodology to the geophysical anomalies analysis and mapping. The studied area is located between Almuradiel and Viso del Marques (C. Real). In this area, a radiometric prospections campaign was realizated, in the approximated 8 km''8 surface, 1366 points were sampled. The objective of the study was the characterization of the highest radiometric zones as indicator to the rutile and zircon mineralizations. The application of the estimation technic, both punctual as block, has been made possible the detailed analysis of the spatial anomalies distributions. The obtained results are very valious to the possible localization of possible ore and later mechanical sondage planification
Survey of Anomaly Detection Methods
Energy Technology Data Exchange (ETDEWEB)
Ng, B
2006-10-12
This survey defines the problem of anomaly detection and provides an overview of existing methods. The methods are categorized into two general classes: generative and discriminative. A generative approach involves building a model that represents the joint distribution of the input features and the output labels of system behavior (e.g., normal or anomalous) then applies the model to formulate a decision rule for detecting anomalies. On the other hand, a discriminative approach aims directly to find the decision rule, with the smallest error rate, that distinguishes between normal and anomalous behavior. For each approach, we will give an overview of popular techniques and provide references to state-of-the-art applications.
On gauged linear sigma models with torsion
Crichigno, P Marcos
2015-01-01
We study a broad class of two dimensional gauged linear sigma models (GLSMs) with off-shell N=(2,2) supersymmetry that flow to nonlinear sigma models (NLSMs) on noncompact geometries with torsion. These models arise from coupling chiral, twisted chiral, and semichiral multiplets to known as well as to a new N=(2,2) vector multiplet, the constrained semichiral vector multiplet (CSVM). We discuss three kinds of models, corresponding to torsionful deformations of standard GLSMs realizing Kahler, hyperkahler, and Calabi-Yau manifolds. The (2,2) supersymmetry guarantees that these spaces are generalized Kahler. Our analysis of the geometric structure is performed at the classical level, but we also discuss quantum aspects such as R-symmetry anomalies. We provide an explicit example of a generalized Kahler structure on the conifold.
What about gravitation?; Et la gravitation?
Energy Technology Data Exchange (ETDEWEB)
Binetruy, P. [Ecole Polytechnique, CRNS/IN2P3, Lab. Astroparticule et Cosmologie (APC), 91 - Palaiseau (France); CEA Saclay, IRFU, 91 - Gif-sur-Yvette (France); Observatoire de Paris, 75 - Paris (France); Goldstein, C. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Institut de Mathematiques de Jussieu, 75 - Paris (France); Ritter, J. [Paris-8 Univ. Vincennes saint Senis, 93 (France); Institut de Mathematiques de Jussieu, 75 - Paris (France); Smolin, L. [Waterloo Univ., Institut for Theoretical Physics, ON (Canada); Maldacena, J. [Ecole des Sciences de la Nature de l' Institut pour les Etudes Avancees de Princeton, New Jersey (United States); Quevedo, F. [Cambridge Univ. (United Kingdom); Burgess, C. [Universite McMaster, Perimeter Institute, Hamilton, Ontario (Canada)
2009-01-15
Particle's standard model does not include gravitation. A quantum theory of gravitation is today's quest of physics, it would shed light on vacuum energy or extra-dimensions. Till his death A.Einstein has worked on theories able to unify gravitation to electromagnetism but none has been backed by experimental data. Space and time seem continuous but the theory of the loop quantum gravitation theory presents them as tiny discrete entities. On the other hand, the string theory in its attempt to unify physics'law, describes a strange world that allows strings to vibrate in a number of dimensions that is far beyond what we see in our daily life. The latest development of the string theory show that the brief period of very fast expansion that the universe underwent just after the big-bang could be the consequence of the collision of our universe with another one in a gigantic and multi-dimensional world. Another theory explains that gravitation is an illusion in our 3-dimensional world and must be seen as a consequence of particle interactions in a 2-dimensional world. (A.C.)
Schottky Anomaly and Hadronic Spectrum
Biswas, Aritra; Sinha, Nita
2015-01-01
We show that the hadronic "heat capacity" calculated as a function of temperature may be used to infer the possible presence of different scales underlying the dynamical structure of hadronic resonances using the phenomenon of Schottky anomaly. We first demonstrate this possibility with well known meson spectrum in various channels and comment on the possibility of using this method as a diagnostic to distinguish the exotic states.
Quantum tunneling and trace anomaly
International Nuclear Information System (INIS)
We compute the corrections, using the tunneling formalism based on a quantum WKB approach, to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. The results are related to the trace anomaly and are shown to be equivalent to findings inferred from Hawking's original calculation based on path integrals using zeta function regularization. Finally, exploiting the corrected temperature and periodicity arguments we also find the modification to the original Schwarzschild metric which captures the effect of quantum corrections.
Prenatal diagnosis of cloacal anomaly.
Cacciaguerra, S; Lo Presti, L; Di Leo, L; Grasso, S; Gangarossa, S; Di Benedetto, V; Di Benedetto, A
1998-02-01
The authors present a case of prenatal diagnosis of cloacal anomaly, characterized by the presence of oligohydramnios and cystic pelvic mass with changing features during observation. Postnatal study confirmed the presence of a recto-cloacal fistula, with a high confluence of the urinary, genital and intestinal systems. Both parents had a chromosome 9 inversion (p11q13), but the child was chromosomally normal. PMID:9561584
R.Vlokh; M. Kostyrko
2006-01-01
Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.
Directory of Open Access Journals (Sweden)
R. Vlokh
2006-12-01
Full Text Available Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.
Anomaly mediation in superstring theory
International Nuclear Information System (INIS)
We study anomaly mediated supersymmetry breaking in type IIB string theory and use our results to test the supergravity formula for anomaly mediated gaugino masses. We compute 1-loop gaugino masses for models of D3-branes on orbifold singularities with 3-form fluxes by calculating the annulus correlator of 3-form flux and two gauginos in the zero momentum limit. Consistent with supergravity expectations we find both anomalous and running contributions to 1-loop gaugino masses. For background Neveu-Schwarz H-flux we find an exact match with the supergravity formula. For Ramond-Ramond flux there is an off-shell ambiguity that precludes a full matching. The anomaly mediated gaugino masses, while determined by the infrared spectrum, arise from an explicit sum over UV open string winding modes. We also calculate brane-to-brane tree-level gravity mediated gaugino masses and show that there are two contributions coming from the dilaton and from the twisted modes, which are suppressed by the full T6 volume and the untwisted T2 volume respectively. (orig.)
Anomaly mediation in superstring theory
Energy Technology Data Exchange (ETDEWEB)
Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theoretique, Ecole Polytechnique, CNRS, Palaiseau (France)
2010-08-15
We study anomaly mediated supersymmetry breaking in type IIB string theory and use our results to test the supergravity formula for anomaly mediated gaugino masses. We compute 1-loop gaugino masses for models of D3-branes on orbifold singularities with 3-form fluxes by calculating the annulus correlator of 3-form flux and two gauginos in the zero momentum limit. Consistent with supergravity expectations we find both anomalous and running contributions to 1-loop gaugino masses. For background Neveu-Schwarz H-flux we find an exact match with the supergravity formula. For Ramond-Ramond flux there is an off-shell ambiguity that precludes a full matching. The anomaly mediated gaugino masses, while determined by the infrared spectrum, arise from an explicit sum over UV open string winding modes. We also calculate brane-to-brane tree-level gravity mediated gaugino masses and show that there are two contributions coming from the dilaton and from the twisted modes, which are suppressed by the full T{sup 6} volume and the untwisted T{sup 2} volume respectively. (orig.)
Gauge/Gravity Duality (Gauge Gravity Duality)
International Nuclear Information System (INIS)
Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.
Hajela, D. P.
1972-01-01
The equations of motion of a geodetic satellite in the earth's gravitational field expressed by gravity anomalies require the evaluation, amongst others, of the partial derivatives of the disturbing force with respect to individual gravity anomalies. Data are discussed on how anomaly blocks should be subdivided so that the partial derivatives may be numerically evaluated for each subdivision, and then finally meaned to give the value representative of the whole blocks, with accuracies better than 2 to 3 percent for all blocks. The number of subdivisions is large for the blocks nearest to the satellite subpoint and decreases away from it. The actual values of this spherical distance and the actual subdivision of the mean gravity anomaly blocks was determined numerically for 184 15 deg x 15 deg equal area blocks. Satellite heights above the earth of 400 km, 800 km and 1600 km were considered. The computer times for the suggested scheme were compared with alternative solutions.
Poincare gauge in electrodynamics
International Nuclear Information System (INIS)
The gauge presented here, which we call the Poincare gauge, is a generalization of the well-known expressions phi = -rxE0 and A = 1/2 B0 x r for the scalar and vector potentials which describe static, uniform electric and magnetic fields. This gauge provides a direct method for calculating a vector potential for any given static or dynamic magnetic field. After we establish the validity and generality of this gauge, we use it to produce a simple and unambiguous method of computing the flux linking an arbitrary knotted and twisted closed circuit. The magnetic flux linking the curve bounding a Moebius band is computed as a simple example. Arguments are then presented that physics students should have the opportunity of learning early in their curriculum modern geometric approaches to physics. (The language of exterior calculus may be as important to future physics as vector calculus was to the past.) Finally, an appendix illustrates how the Poincare gauge (and others) may be derived from Poincare's lemma relating exact and closed exterior differential forms