WorldWideScience

Sample records for gauge anomalies gravitational

  1. Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders

    Wen, Xiao-Gang

    2013-08-01

    In this paper, we systematically study gauge anomalies in bosonic and fermionic weak-coupling gauge theories with gauge group G (which can be continuous or discrete) in d space-time dimensions. We show a very close relation between gauge anomalies for gauge group G and symmetry-protected trivial (SPT) orders (also known as symmetry-protected topological (SPT) orders) with symmetry group G in one-higher dimension. The SPT phases are classified by group cohomology class Hd+1(G,R/Z). Through a more careful consideration, we argue that the gauge anomalies are described by the elements in Free[Hd+1(G,R/Z)]⊕Hπ˙d+1(BG,R/Z). The well known Adler-Bell-Jackiw anomalies are classified by the free part of Hd+1(G,R/Z) (denoted as Free[Hd+1(G,R/Z)]). We refer to other kinds of gauge anomalies beyond Adler-Bell-Jackiw anomalies as non-ABJ gauge anomalies, which include Witten SU(2) global gauge anomalies. We introduce a notion of π-cohomology group, Hπ˙d+1(BG,R/Z), for the classifying space BG, which is an Abelian group and include Tor[Hd+1(G,R/Z)] and topological cohomology group Hd+1(BG,R/Z) as subgroups. We argue that Hπ˙d+1(BG,R/Z) classifies the bosonic non-ABJ gauge anomalies and partially classifies fermionic non-ABJ anomalies. Using the same approach that shows gauge anomalies to be connected to SPT phases, we can also show that gravitational anomalies are connected to topological orders (i.e., patterns of long-range entanglement) in one-higher dimension.

  2. Relative Entropy, Mixed Gauge-Gravitational Anomaly and Causality

    Bhattacharyya, Arpan; Hung, Ling-Yan

    2016-01-01

    In this note we explored the holographic relative entropy in the presence of the 5d Chern-Simons term, which introduces a mixed gauge-gravity anomaly to the dual CFT. The theory trivially satisfies an entanglement first law. However, to quadratic order in perturbations of the stress tensor $T$ and current density $J$, there is a mixed contribution to the relative entropy bi-linear in $T$ and $J$, signalling a potential violation of the positivity of the relative entropy. Miraculously, the term vanishes up to linear order in a derivative expansion. This prompted a closer inspection on a different consistency check, that involves time-delay of a graviton propagating in a charged background, scattered via a coupling supplied by the Chern-Simons term. The analysis suggests that the time-delay can take either sign, potentially violating causality for any finite value of the CS coupling.

  3. Gauge Theories of Gravitation

    Blagojević, Milutin

    2012-01-01

    During the last five decades, gravity, as one of the fundamental forces of nature, has been formulated as a gauge field theory of the Weyl-Cartan-Yang-Mills type. The resulting theory, the Poincar\\'e gauge theory of gravity, encompasses Einstein's gravitational theory as well as the teleparallel theory of gravity as subcases. In general, the spacetime structure is enriched by Cartan's torsion and the new theory can accommodate fermionic matter and its spin in a perfectly natural way. The present reprint volume contains articles from the most prominent proponents of the theory and is supplemented by detailed commentaries of the editors. This guided tour starts from special relativity and leads, in its first part, to general relativity and its gauge type extensions a la Weyl and Cartan. Subsequent stopping points are the theories of Yang-Mills and Utiyama and, as a particular vantage point, the theory of Sciama and Kibble. Later, the Poincar\\'e gauge theory and its generalizations are explored and specific topi...

  4. Gravitational Wave - Gauge Field Oscillations

    Caldwell, R R; Maksimova, N A

    2016-01-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  5. Holographic Gravitational Anomaly in First and Second Order Hydrodynamics

    Megias, Eugenio

    2013-01-01

    We compute, in the framework of the fluid/gravity correspondence, the transport coefficients of a relativistic fluid affected by chiral and gauge-gravitational anomalies, including external electromagnetic fields. The computation is performed at first and second order in the hydrodynamical expansion. We use a 5-dim holographic model with pure gauge and mixed gauge-gravitational Chern-Simons terms in the action. We reproduce at first order previous results on the anomaly induced current of a magnetic field and a vortex in a relativistic fluid, and compute at second order the anomalous and non anomalous transport coefficients by using a Weyl covariant formalism. We find a dissipative and anomalous correction to the chiral magnetic conductivity due to the time dependence of the magnetic field. We also find a new contribution from the mixed gauge-gravitational anomaly to the shear waves dispersion relation. The role played by the chiral and gravitational anomalies in other transport coefficients is discussed.

  6. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly*,**

    Megías Eugenio

    2014-03-01

    Full Text Available We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.

  7. Konishi anomaly approach to gravitational F-terms

    David, J R; Narain, K S; David, Justin R.; Gava, Edi

    2003-01-01

    We study gravitational corrections to the effective superpotential in theories with a single adjoint chiral multiplet, using the generalized Konishi anomaly and the gravitationally deformed chiral ring. We show that the genus one correction to the loop equation in the corresponding matrix model agrees with the gravitational corrected anomaly equations in the gauge theory. An important ingrediant in the proof is the lack of factorization of chiral gauge invariant operators in presence of a supergravity background. We also find a genus zero gravitational correction to the superpotential, which can be removed by a field redefinition.

  8. Kahn's anomaly approach to gravitational F-terms

    We study gravitational corrections to the effective superpotential in theories with a single adjoint chiral multiplet, using the generalized Konishi anomaly and the gravitationally deformed chiral ring. We show that the genus one correction to the loop equation in the corresponding matrix model agrees with the gravitational corrected anomaly equations in the gauge theory. An important ingredient in the proof is the lack of factorization of chiral gauge invariant operators in presence of a supergravity background. We also find a genus zero gravitational correction to the superpotential, which can be removed by a field redefinition. (author)

  9. Konishi anomaly approach to gravitational F-terms

    We study gravitational corrections to the effective superpotential in theories with a single adjoint chiral multiplet, using the generalized Konishi anomaly and the gravitationally deformed chiral ring. We show that the genus one correction to the loop equation in the corresponding matrix model agrees with the gravitational corrected anomaly equations in the gauge theory. An important ingredient in the proof is the lack of factorization of chiral gauge invariant operators in presence of a supergravity background. We also find a genus zero gravitational correction to the superpotential, which can be removed by a field redefinition. (author)

  10. Gravitational anomaly and transport phenomena

    Landsteiner, Karl; Megías Fernández, Eugenio; Pena-Benítez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficie...

  11. Gravitational Gauge Interactions of Scalar Field

    WU Ning

    2003-01-01

    Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian hasstrict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory.Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar fieldminimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian forscalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressedby gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.

  12. Gravitational Gauge Interactions of Scalar Field

    WUNing

    2003-01-01

    Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian has strict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory. Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar field minimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian for scalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressed by gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.

  13. Gravitation and Gauge Symmetries

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  14. Gravitational Gauge Interactions of Dirac Field

    WU Ning

    2004-01-01

    Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge tield, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.

  15. Gravitation as a gauge theory

    We present gauge theories of gravitation based, respectively, on the general linear group GL(n, R) and its inhomogeneous extension IGL(n, R). [SO(n-1,1) and ISO(n-1,1) for torsion-free manifolds]. Noting that the geometry of the conventional gauge theories can be described in terms of a principal fiber bundle, and that their action is a scalar in such a superspace, we construct principal fiber bundles based on the above gauge groups and propose to describe gravitation in terms of their corresponding scalar curvatures. To ensure that these manifolds do indeed have close ties with the space-time of general relativity, we make use of the notion of the parallel transport of vector fields in space-time to uniquely relate the connections in space-time to the gauge potentials in fiber bundles. The relations turn out to be similar to that suggested earlier by Yang. The actions we obtain are related to those of Einstein and Yang but are distinct from both and have an Einstein limit. The inclusion of internal symmetry leads to the analogs of Einstein-Yang-Mills equations. A number of variations and less attractive alternatives based on the subgroups of the above groups are also discussed

  16. Unification of Gravitation and Gauge Fields

    Huang, Xin-Bing

    2004-01-01

    In this letter, I indicate that complex daor field should also have spinor suffixes. The gravitation and gauge fields are unified under the framework of daor field. I acquire the elegant coupling equation of gravitation and gauge fields, from which Einstein's gravitational equation can be deduced.

  17. Global gravitational anomalies and transport

    Chowdhury, Subham Dutta

    2016-01-01

    We investigate the constraints imposed by global gravitational anomalies on parity odd induced transport coefficients in even dimensions for theories with chiral fermions, gravitinos and self dual tensors. The $\\eta$-invariant for the large diffeomorphism corresponding to the $T$ transformation on a torus constraints the coefficients in the thermal effective action up to mod 2. We show that the result obtained for the parity odd transport for gravitinos using global anomaly matching is consistent with the direct perturbative calculation. In $d=6$ we see that the second Pontryagin class in the anomaly polynomial does not contribute to the $\\eta$-invariant which provides a topological explanation of this observation in the `replacement rule'. We then perform a direct perturbative calculation for the contribution of the self dual tensor in $d=6$ to the parity odd transport coefficient using the Feynman rules proposed by Gaum\\'{e} and Witten. The result for the transport coefficient agrees with that obtained usin...

  18. Anomaly cancellation condition in lattice gauge theory

    We show that, to all orders of powers of the gauge potential, a gauge anomaly Α defined on 4-dimensional infinite lattice can always be removed by a local counterterm, provided that Α depends smoothly and locally on the gauge potential and that Α reproduces the gauge anomaly in the continuum theory in the classical continuum limit: The unique exception is proportional to the anomaly in the continuum theory. This follows from an analysis of nontrivial local solutions to the Wess-Zumino consistency condition in lattice gauge theory. Our result is applicable to the lattice chiral gauge theory based on the Ginsparg-Wilson Dirac operator, when the gauge field is sufficiently weak parallel-U(n,μ) - 1-parallel < ε', where U(n,μ) is the link variable and ε' a certain small positive constant. (author)

  19. Singlet deflected anomaly/gauge mediation

    de Blas, J.; Delgado, A

    2011-01-01

    We study an extension of the standard anomaly/gauge mediation scenario where the messenger fields have direct interactions with an extra gauge singlet. This realizes a phenomenologically viable NMSSM-like scenario free of the mu-b_mu problem. Current cosmological constraints imply a small size for the anomaly-mediation contributions, unless some source of R-parity violation is permitted. In the latter case the allowed regions in the parameter space can be substantially larger than in the corr...

  20. Gauge anomalies in Lorentz-violating QED

    Santos, Tiago R S

    2016-01-01

    In this work we study the issue of gauge anomalies in Lorentz-violating QED. To do so, we opt to use the BRST formalism within of the algebraic renormalization approach, reducing our study to a cohomology problem. Since that this approach is independent of the renormalization scheme, the results here obtained are expected to be general. We find that the Lorentz-violating QED is free of gauge anomalies to all orders in perturbation theory.

  1. Singlet deflected anomaly/gauge mediation

    We study an extension of the standard anomaly/gauge mediation scenario where the messenger fields have direct interactions with an extra gauge singlet. This realizes a phenomenologically viable NMSSM-like scenario free of the μ-bμ problem. Current cosmological constraints imply a small size for the anomaly-mediation contributions, unless some source of R-parity violation is permitted. In the latter case the allowed regions in the parameter space can be substantially larger than in the corresponding gauge-mediation scenario.

  2. Gravitation as Gauge theory of Poincare Group

    The geometrical approach to gauge theories, based on fiber-bundles, is shown in detail. Several gauge formalisms for gravitation are examined. In particular, it is shown how to build gauge theories for non-semisimple groups. A gravitational theory for the Poincare group, with all the essential characteristics of a Yang-Mills theory is proposed. Inonu-Wigner contractions of gauge theories are introduced, which provide a Lagrangian formalism, equivalent to a Lagrangian de Sitter theory supplemented by weak constraints. Yang and Einstein theories for gravitation become particular cases of a Yang-Mills theory. The classical limit of the proposed formalism leads to the Poisson equation, for the static case. (Author)

  3. Gravitational anomaly and hydrodynamics in AdS/CFT

    Using a holographic model with a pure gauge and mixed gauge-gravitational Chern-Simons terms in the action, we analyze the anomalous induced current of a vortex in the relativistic fluid via the chiral vortical effect, which is analogous to the anomalous current induced by a magnetic field via the chiral magnetic effect. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid characterized by a term proportional to T2. The numerical value of this term is not renormalized compared to the weak coupling result [1]. We also address on a general formalism to unify the two inequivalent implementations to the chemical potential for an anomalous symmetry presented in [2]. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Realistic anomaly mediation with bulk gauge fields

    We present a simple general framework for realistic models of supersymmetry breaking driven by anomaly mediation. We consider a 5-dimensional 'brane universe' where the visible and hidden sectors are localized on different branes, and the standard model gauge bosons propagate in the bulk. In this framework there can be charged scalar messengers that have contact interactions with the hidden sector, either localized in the hidden sector or in the bulk. These scalars obtain soft masses that feed into visible sector scalar masses at two loop order via bulk gauge interactions. This contribution is automatically flavor-blind, and can be naturally positive. If the messengers are in the bulk this contribution is automatically the same order of magnitude as the anomaly mediated contribution, independent of the brane spacing. If the messengers are localized to a brane the two effects are of the same order for relatively small brane spacings. The gaugino masses and A terms are determined completely by anomaly mediation. In order for anomaly mediation to dominate over radion mediation the radion must be is stabilized in a manner that preserves supersymmetry, with supergravity effects included. We show that this occurs in simple models. We also show that the mu problem can be solved by the vacuum expectation value of a singlet in this framework. (author)

  5. Gauge Anomalies and Neutrino Seesaw Models

    Neves Cebola, Luis Manuel

    Despite the success of the Standard Model concerning theoretical predictions, there are several experimental results that cannot be explained and there are reasons to believe that there exists new physics beyond it. Neutrino oscillations, and hence their masses, are examples of this. Experimentally it is known that neutrinos masses are quite small, when compared to all Standard Model particle masses. Among the theoretical possibilities to explain these tiny masses, the seesaw mechanism is a simple and well-motivated framework. In its minimal version, heavy particles are introduced that decouple from the theory in the early universe. To build consistent theories, classical symmetries need to be preserved at quantum level, so that there are no anomalies. The cancellation of these anomalies leads to constraints in the parameters of the theory. One attractive solution is to realize the anomaly cancellation through the modication of the gauge symmetry. In this thesis we present a short review of some features of t...

  6. Holographic entanglement entropy and gravitational anomalies

    Castro, Alejandra; Iqbal, Nabil; Perlmutter, Eric

    2014-01-01

    We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal worldline into a ribbon, and that the anomalous contribution to the CFT entanglement entropy is given by the twist in this ribbon. The entanglement functional may also be interpreted as the worldline action for a spinning particle -- that is, an anyon -- in three-dimensional curved spacetime. We demonstrate that the minimization of this action results in the Mathisson-Papapetrou-Dixon equations of motion for a spinning particle in three dimensions. We work out several simple examples and demonstrate agreement with CFT calculations.

  7. Gauge Symmetries and Holographic Anomalies of Chern-Simons and Transgression AdS Gravity

    Mora, Pablo

    2014-01-01

    We review the issue of gauge and gravitational anomalies with backgrounds, maybe offering a new outlook on some aspects of these questions. We compute the holographic anomalies of hypothetical theories dual, in the sense of the AdS-CFT correspondence, to Chern-Simons AdS gravities. Those anomalies are either gauge anomalies associated to the AdS gauge group of the theory or diffeomorphism anomalies, with each kind related to the other. As a result of using suitable action principles por Chern-Simons AdS gravities, coming from Transgression forms, we obtain finite results without the need for further regularization. Our results are of potential interest for Lovelock gravity theories, as it has been shown that the boundary terms dictated by the transgressions for Chern-Simons gravities are also suitable to regularize Lovelock theories. The Wess-Zumino consistency condition ensures that anomalies of the generic form computed here should appear for these and other theories.

  8. Gravitational Goldstone fields from affine gauge theory

    Tresguerres, R

    2000-01-01

    In order to facilitate the application of standard renormalization techniques, gravitation should be decribed, if possible, in pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincare or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring the "hidden" piece responsible for this behavior within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide a general mathematical scheme clarifying the foundations of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the aff...

  9. Spinning black holes in a gauge theory of gravitation

    Babeţi (Pretorian), Simona

    2013-11-01

    Spinning black holes are presented in terms of gauge fields in a commutative gauge theory of gravitation. The field strength tensor comes as a consequence of the particular ansatz for gauge fields. In order to obtain spinning black holes in a noncommutative gauge theory of gravitation is used an analytical procedure conceived in GRTensorII. To calculate the leading noncommutative corrections and to choose an appropriate noncommutative parameter are used recursive relations. The gauge fields and the field strength tensor for a spinning mass preserves some features of other cosmological solutions in the gauge theory of gravitation and the noncommutative corrections are expected to provide some important physical insights.

  10. Adler-bell-jackiw anomaly in lattice gauge theory

    The axial anomaly in lattice gauge theory with Wilson fermion is discussed. Under weak coupling approximation, we calculate the anomaly term systematically by path integral method. The result agrees with that obtained in continuum theory

  11. Adler-Bell-Jackiw anomaly in lattice gauge theory

    The axial anomaly in lattice gauge theory with Wilson fermion is discussed. Under the weak coupling approximation, we calculate the anomaly term systematically by the path-integral method. The result agrees with that obtained in continuum theory

  12. Quantum gravitational anomaly as a dark matter

    Kazinski, P O

    2015-01-01

    The general properties of a perfect relativistic fluid resulting from the quantum gravitational anomaly are investigated. It is found that, in the limit of a weak gravitational field, this fluid possesses a polytropic equation of state characterized by two universal constants: the polytropic constant and the natural polytropic index. Based on the astrophysical data, the estimates for the polytropic constant are given. It is shown that this fluid can describe a considerable part of the cold dark matter. The quantum theory of such a fluid is constructed in the framework of the background field method. The Ward identities associated with the entropy and vorticity conservation laws are derived. The leading gradient corrections to the pressure of the perfect fluid are found and the restrictions on their form are obtained. These restrictions guarantee, in particular, the absence of ghosts in the model. The second order nonlinear corrections to the equations of motion of a perfect relativistic fluid are analyzed and...

  13. Classifying gauge anomalies through SPT orders and classifying anomalies through topological orders

    Wen, Xiao-Gang

    2013-01-01

    In this paper, we systematically study gauge anomalies in bosonic and fermionic weak-coupling gauge theories with gauge group G (which can be continuous or discrete). We argue that, in d space-time dimensions, the gauge anomalies are described by the elements in Free[H^{d+1}(G,R/Z)]\\oplus H_\\pi^{d+1}(BG,R/Z). The well known Adler-Bell-Jackiw anomalies are classified by the free part of the group cohomology class H^{d+1}(G,R/Z) of the gauge group G (denoted as Free[H^{d+1}(G,\\R/\\Z)]). We refer other kinds of gauge anomalies beyond Adler-Bell-Jackiw anomalies as nonABJ gauge anomalies, which include Witten SU(2) global gauge anomaly. We introduce a notion of \\pi-cohomology group, H_\\pi^{d+1}(BG,R/Z), for the classifying space BG, which is an Abelian group and include Tor[H^{d+1}(G,R/Z)] and topological cohomology group H^{d+1}(BG,\\R/\\Z) as subgroups. We argue that H_\\pi^{d+1}(BG,R/Z) classifies the bosonic nonABJ gauge anomalies, and partially classifies fermionic nonABJ anomalies. We also show a very close rel...

  14. Removal of chiral anomalies in abelian gauge theories

    It is shown that chiral anomalies can be removed in abelian gauge theories. After a discussion of the two dimensional case where exact solutions are available we study the four dimensional theory. We use perturbation theory, i.e. analyse the triangle Feynman integrals, and determine the general subtraction structure of the gauge current. Then we show that gauges exist for which current conservation holds and the theory is gauge invariant. As far as the generating functional is concerned the anomaly is employed first as gauge fixing condition. After rewriting the interaction in a gauge invariant form the gauge fixing condition can be imposed as usual. In our approach the integration over the gauge group remains trivial. (author)

  15. Gauge Gravitational Field in a Fractal Space-Time

    M. Agop; Camelia Popa; Anca Harabagiu

    2008-01-01

    Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT=2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the quantum mechanics. Subsequently, the gauge gravitational field on a fractal space-time is given. Then, the gauge group, the gauge-covariant derivative, the strength tensor of the gauge field, the gauge-invariant Lagrangean, the field equations of the gauge potentials and the gauge energy-momentum tensor are determined. Finally, using this model, a Reissner Nordstrom type metric is obtained.

  16. Gravitational Shielding Effect in Gauge Theory of Gravity

    WU Ning

    2004-01-01

    In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.

  17. Gauge Symmetry of the Heat-Kernel and Anomaly Formulas

    Ichinose, S; Ichinose, Shoichi; Ikeda, Noriaki

    1996-01-01

    We consider a gauge symmetry in a quantum Hilbert space. The symmetry leads to that of the heat-kernel and of the anomaly formulae which were previously obtained by the authors. This greatly simplifies and clarifies the structure of the formulae. We explicitly obtain the anomaly formulae in two and four dimensions, which ``unify'' all kinds of anomaly. The symmetry corresponds to that of the counterterm formulae in the background field method. As an example, the non-abelian anomaly is considered.

  18. Regularized path integrals and anomalies -- U(1) chiral gauge theory

    Kopper, Christoph; Lévêque, Benjamin

    2011-01-01

    We analyse the origin of the Adler anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [1]. Here we analyse U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-p...

  19. Gauge Approach to Gravitation and Regular Big Bang Theory

    Minkevich, A. V.

    2005-01-01

    Field theoretical scheme of regular Big Bang in 4-dimensional physical space-time, built in the framework of gauge approach to gravitation, is discussed. Regular bouncing character of homogeneous isotropic cosmological models is ensured by gravitational repulsion effect at extreme conditions without quantum gravitational corrections. The most general properties of regular inflationary cosmological models are examined. Developing theory is valid, if energy density of gravitating matter is posi...

  20. Maps for currents and anomalies in noncommutative gauge theories

    Banerjee, Rabin; Kumar, Kuldeep

    2004-01-01

    We derive maps relating currents and their divergences in non-abelian U(N) noncommutative gauge theory with the corresponding expressions in the ordinary (commutative) description. For the U(1) theory, in the slowly-varying-field approximation, these maps are also seen to connect the star-gauge-covariant anomaly in the noncommutative theory with the standard Adler--Bell--Jackiw anomaly in the commutative version. For arbitrary fields, derivative corrections to the maps are explicitly computed...

  1. A New Anomaly-Free Gauged Supergravity in Six Dimensions

    Avramis, S D; Randjbar-Daemi, S; Avramis, Spyros D.; Kehagias, Alex

    2005-01-01

    We present a new anomaly-free gauged N=1 supergravity model in six dimensions. The gauge group is $E_7 \\times G_2 \\times U(1)_R$, with all hyperinos transforming in the product representation {56,14). The theory admits monopole compactifications to $R^4 \\times S^2$, leading to D=4 effective theories with broken supersymmetry and massless fermions.

  2. A new anomaly-free gauged supergravity in six dimensions

    We present a new anomaly-free gauged N = 1 supergravity model in six dimensions. The gauge group is E7 - G2 x U(1)R, with all hyperinos transforming in the product representation (56, 14). The theory admits monopole compactifications to R4 x S2, leading to D = 4 effective theories with broken supersymmetry and massless fermions. (author)

  3. Gravitation, gauge theories and differential geometry

    The purpose of this article is to outline various mathematical ideas, methods, and results, primarily from differential geometry and topology, and to show where they can be applied to Yang-Mills gauge theories and Einstein's theory of gravitation.We have several goals in mind. The first is to convey to physicists the bases for many mathematical concepts by using intuitive arguments while avoiding the detailed formality of most textbooks. Although a variety of mathematical theorems will be stated, we will generally give simple examples motivating the results instead of presenting abstract proofs. Another goal is to list a wide variety of mathematical terminology and results in a format which allows easy reference. The reader then has the option of supplementing the descriptions given here by consulting standard mathematical references and articles such as those listed in the bibliography. Finally, we intend this article to serve the dual purpose of acquainting mathematicians with some basic physical concepts which have mathematical ramifications; physical problems have often stimuladed new directions in mathematical thought. (orig./WL)

  4. Gravitational Anomalies in the Solar System?

    Iorio, Lorenzo

    2014-01-01

    Mindful of the anomalous perihelion precession of Mercury discovered by U. Le Verrier in the second half of the nineteenth century and its successful explanation by A. Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known bodies have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the Universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gra...

  5. Spherically-symmetric gravitational fields in the metric-affine gauge theory of gravitation

    Minkevich, A. V.; Vasilevski, Yu. G.

    2003-01-01

    Geometric structure of spherically-symmetric space-time in metric-affine gauge theory of gravity is studied. Restrictions on curvature tensor and Bianchi identities are obtained. By using certain simple gravitational Lagrangian the solution of gravitational equations for vacuum spherically-symmetric gravitational field is obtained.

  6. Classical Solution of Field Equation of Gravitational Gauge Field and Classical Tests of Gauge Theory of Gravity

    Wu, Ning; Zhang, Dahua

    2005-01-01

    A systematic method is developed to study classical motion of a mass point in gravitational gauge field. First, the formulation of gauge theory of gravity in arbitrary curvilinear coordinates is given. Then in spherical coordinates system, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the Schwarzschild solution. In gauge theory of gravity, the equation of motion of a classical mass point in gravitational gauge field is given by Ne...

  7. Regularized path integrals and anomalies -- U(1) axial gauge theory

    Kopper, Christoph

    2011-01-01

    We analyse the origin of the Adler anomaly of axial U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [1]. Here we analyse U(1) axial gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-photon amplitude leads to a violation of the Slavnov-Taylor-Identities which cannot be restored on taking the UV limit in the renormalized theory. We point out that this fact is related to the nonanalyticity of this amplitude in the infrared region.

  8. Regularized path integrals and anomalies: U(1) chiral gauge theory

    We analyze the origin of the Adler-Bell-Jackiw anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [Kopper, C. and Mueller, V. F., 'Renormalization of spontaneously broken SU(2) Yang-Mills theory with flow equations', Rev. Math. Phys. 21, 781 (2009)]. Here we analyze U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-photon amplitude leads to a violation of the Slavnov-Taylor identities which cannot be restored on taking the UV limit in the renormalized theory. We point out that this fact is related to the nonanalyticity of this amplitude in the infrared region.

  9. Functorial QFT, Gauge Anomalies and the Dirac Determinant Bundle

    Mickelsson, J; Mickelsson, Jouko; Scott, Simon

    1999-01-01

    Using properties of the determinant line bundle for a family of elliptic boundary value problems, we explain how the Fock space functor defines an axiomatic quantum field theory which formally models the Fermionic path integral. The 'sewing axiom' of the theory arises as an algebraic pasting law for the determinant of the Dirac operator. We show how representations of the boundary gauge group fit into this description and that this leads to a Fock functor description of certain gauge anomalies.

  10. The physical observer II: Gauge and diff anomalies

    Larsson, T. A.

    2008-01-01

    In a companion paper we studied field theory in the presence of a physical observer with quantum dynamics. Here we describe the most striking consequence of this assumption: new gauge and diff anomalies arise. The relevant cocycles depend on the observer's spacetime trajectory and can hence not appear in QFT, where this quantity is never introduced. Diff anomalies necessarily arise in every locally nontrivial, non-holographic theory of quantum gravity. Cancellation of the divergent parts of t...

  11. Global gauge anomaly of classical groups in even dimension

    Explicit expression of global gauge anomaly coefficients A(ω) of locally anomaly-free representation ω of classical groups SU(N), Sp(2N) and SO(N) have been calculated in even dimensional space-time by uses of group theory and homotopy theory. As a by-product, we will prove some modular relations involving the n-th Kynkin indices Q/sub n/(ω) of these groups. 11 refs

  12. Gauge Theory Amplitudes In Twistor Space And Holomorphic Anomaly

    Cachazo, Freddy; Svrcek, Peter; Witten, Edward

    2004-01-01

    We show that, in analyzing differential equations obeyed by one-loop gauge theory amplitudes, one must take into account a certain holomorphic anomaly. When this is done, the results are consistent with the simplest twistor-space picture of the available one-loop amplitudes.

  13. Gauge-covariant bimetric theory of gravitation and electromagnetism

    Israelit, M.; Rosen, N.

    1983-10-01

    The Weyl theory of gravitation and electromagnetism, as modified by Dirac, contains a gauge-covariant scalar ..beta.. which has no geometric significance. This is a flaw if one is looking for a geometric description of gravitation and electromagnetism. A bimetric formalism is therefore introduced which enables one to replace ..beta.. by a geometric quantity. The formalism can be simplified by the use of a gauge-invariant physical metric. The resulting theory agrees with the general relativity for phenomena in the solar system.

  14. Non-abelian gauge extensions for B-decay anomalies

    Boucenna, Sofiane M; Fuentes-Martin, Javier; Vicente, Avelino; Virto, Javier

    2016-01-01

    We study the generic features of minimal gauge extensions of the Standard Model in view of recent hints of lepton-flavor non-universality in $B$-decays. We classify the posible models according to the symmetry-breaking pattern and the source of flavor non-universality. We find that in viable models the $\\mathrm{SU(2)}_L$ factor is embedded non-trivially in the extended gauge group, and that gauge couplings should be universal, hinting to the presence of new degrees of freedom sourcing non-universality. We construct an explicit model satisfying our criteria, and discuss the role of gauge mixing and its phenomenological relevance in the context of the anomalies.

  15. On Gravitational anomaly and Hawking radiation near weakly isolated horizon

    Wu, Xiaoning; Sun, Jia-Rui

    2008-01-01

    Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near weekly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of black hole horizon.

  16. Gravitational Leptogenesis in the Axion Inflation with an SU(2) gauge field

    Maleknejad, Azadeh

    2016-01-01

    We present a natural leptogenesis mechanism in models of axion inflation with a classical SU(2) gauge field. The gauge field is coupled to the axion with a Chern-Simons interaction and comprises a tiny fraction of the total energy, $\\frac{\\rho_{_{\\rm YM}}}{\\rho_{_{\\rm tot}}}\\lesssim\\epsilon^2$. However, it has spin-2 fluctuations which break the parity and leads to the generation of chiral gravitational waves during inflation. By the gravitational anomaly in SM, it naturally creates a net lepton number density, sufficient to explain the matter asymmetry. We show that this mechanism can generate the observed value of baryon to photon number density in a natural range of parameters and yet has a small chiral tensor power spectrum on large scales.

  17. Gravitational anomalies, gerbes, and hamiltonian quantization

    Ekstrand, C.; Mickelsson, J.

    1999-01-01

    In [Carey, A.L., J. Mickelsson, and M. K. Murray: Comm. Math. Phys. 183, 707 (1997)] Schwinger terms in hamiltonian quantization of chiral fermions coupled to vector potentials were computed, using some ideas from the theory of gerbes, with the help of the family index theorem for a manifold with boundary. Here, we generalize this method to include gravitational Schwinger terms.

  18. Gravitational anomalies, gerbes and hamiltonian quantization

    Ekstrand, C

    2000-01-01

    In [Carey, A.L., J. Mickelsson, and M. K. Murray: Comm. Math. Phys. 183, 707 (1997)] Schwinger terms in hamiltonian quantization of chiral fermions coupled to vector potentials were computed, using some ideas from the theory of gerbes, with the help of the family index theorem for a manifold with boundary. Here, we generalize this method to include gravitational Schwinger terms.

  19. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    Lee, Hye-Sung [W& M

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  20. Gravitational F-terms through anomaly equations and deformed chiral rings

    We study effective gravitational F-terms, obtained by integrating an U(N) adjoint chiral superfield Φ coupled to the N = 1 gauge chiral superfield Wα and supergravity, to arbitrary orders in the gravitational background. The latter includes in addition to the N = 1 Weyl superfield Gα β γ, the self-dual graviphoton field strength Fαβ of the parent, broken N = 2 theory. We first study the chiral ring relations resulting from the above non-standard gravitational background and find agreement, for gauge invariant operators, with those obtained from the dual closed string side via Bianchi identities for Ν = 2 supergravity coupled to vector multiplets. We then derive generalized anomaly equations for connected correlators on the gauge theory side, which allow us to solve for the basic one-point function 2/(z-Φ) > to all orders in F2. By generalizing the matrix model loop equation to the generating functional of connected correlators of resolvents, we prove that the gauge theory result coincides with the genus expansion of the associated matrix model, after identifying the expansion parameters on the two sides. (author)

  1. Gravitational F-terms through anomaly equations and deformed chiral rings

    We study effective gravitational F-terms, obtained by integrating an U(N) adjoint chiral superfield Φ coupled to the N = 1 gauge chiral superfield Wα and supergravity, to arbitrary orders in the gravitational background. The latter includes in addition to the N = 1 Weyl superfield Gαβγ, the self-dual graviphoton field strength Fαβ of the parent, broken N = 2 theory. We first study the chiral ring relations resulting from the above non-standard gravitational background and find agreement, for gauge invariant operators, with those obtained from the dual closed string side via Bianchi identities for N = 2 supergravity coupled to vector multiplets. We then derive generalized anomaly equations for connected correlators on the gauge theory side, which allow us to solve for the basic one-point function 2/(z - Φ)> to all orders in F2. By generalizing the matrix model loop equation to the generating functional of connected correlators of resolvents, we prove that the gauge theory result coincides with the genus expansion of the associated matrix model, after identifying the expansion parameters on the two sides. (author)

  2. Anomaly of discrete family symmetries and gauge coupling unification

    Anomaly of a discrete symmetry is defined as the Jacobian of the path-integral measure. Assuming that anomaly at low energy is cancelled by the Green–Schwarz (GS) mechanism at a fundamental scale, we investigate possible Kac–Moody levels for anomalous discrete family symmetries. As the first example we consider discrete abelian Baryon number and Lepton number symmetries in the minimal supersymmetric standard model with see-saw mechanism, and find that the ordinary unification of gauge couplings is not consistent with the GS conditions, indicating a possible existence of further Higgs doublets. Next we consider the recently proposed supersymmetric model with Q6 family symmetry. In this model, the GS conditions are such that the gauge coupling unification appears close to the Planck scale. (author)

  3. Chiral rings and anomalies in supersymmetric gauge theory

    Motivated by recent work of Dijkgraaf and Vafa, we study anomalies and the chiral ring structure in a supersymmetric U(N) gauge theory with an adjoint chiral superfield and an arbitrary superpotential. A certain generalization of the Konishi anomaly leads to an equation which is identical to the loop equation of a bosonic matrix model. This allows us to solve for the expectation values of the chiral operators as functions of a finite number of 'integration constants'. From this, we can derive the Dijkgraaf-Vafa relation of the effective superpotential to a matrix model. Some of our results are applicable to more general theories. For example, we determine the classical relations and quantum deformations of the chiral ring of N=1 super Yang-Mills theory with SU(N) gauge group, showing, as one consequence, that all supersymmetric vacua of this theory have a nonzero chiral condensate. (author)

  4. Diffeomorphism cohomology and gravitational anomalies: Pt. 2

    Using the spectral sequencies technique, it is studied the local polynomial cohomology space of the operator S deltasub(GAMMAsub(c1))sup(L) - Csup(lambda)(x)deltasub(lambda) -deltasub(lambda)Csup(lambda)(x), which is isomorphic to the local functional cohomology of the operator deltasub(GAMMAsub(c1))sup(L) which induces general co-ordinate transformations in four-dimensional space-time. In the Faddeev-Popov (PHI II) charge-one sector, it is found that all the anomalies have the form Δ(x) deltasub(lambda)Csup(lambda)(x)Δ-circumflex(x), where Csup(lambda)(x) is the ghost field, and Δ-circumflex(x) is a PHI II charge-zero anomaly

  5. Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory

    The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)

  6. Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory

    Schmidt, Torsten

    2009-05-13

    The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)

  7. Regularized path integrals and anomalies: U(1) chiral gauge theory

    Kopper, Christoph; Lévêque, Benjamin

    2012-02-01

    We analyze the origin of the Adler-Bell-Jackiw anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [Kopper, C. and Müller, V. F., "Renormalization of spontaneously broken SU(2) Yang-Mills theory with flow equations," Rev. Math. Phys. 21, 781 (2009)], 10.1142/S0129055X0900375X. Here we analyze U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-photon amplitude leads to a violation of the Slavnov-Taylor identities which cannot be restored on taking the UV limit in the renormalized theory. We point out that this fact is related to the nonanalyticity of this amplitude in the infrared region.

  8. Gravitational self-force from radiation-gauge metric perturbations

    Pound, Adam; Barack, Leor

    2014-01-01

    Calculations of the gravitational self-force (GSF) in curved spacetime require as input the metric perturbation in a sufficiently regular gauge. A basic challenge in the program to compute the GSF for orbits around a Kerr black hole is that the standard procedure for reconstructing the perturbation is formulated in a class of radiation gauges, in which the particle singularity is non-isotropic and extends away from the particle's location. Here we present two practical schemes for calculating the GSF using a radiation-gauge reconstructed metric as input. The schemes are based on a detailed analysis of the local structure of the particle singularity in the radiation gauges. We identify 3 types of radiation gauges: two containing a radial string-like singularity emanating from the particle, either in one direction ("half-string" gauges) or both directions ("full-string" gauges); and a third type containing no strings but with a jump discontinuity across a surface intersecting the particle. Based on a flat-space...

  9. Could the Pioneer anomaly have a gravitational origin?

    If the Pioneer anomaly has a gravitational origin, it would, according to the equivalence principle, distort the motions of the planets in the Solar System. Since no anomalous motion of the planets has been detected, it is generally believed that the Pioneer anomaly can not originate from a gravitational source in the Solar System. However, this conclusion becomes less obvious when considering models that either imply modifications to gravity over long distances or gravitational sources localized to the outer Solar System, given the uncertainty in the orbital parameters of the outer planets. Following the general assumption that the Pioneer spacecraft move geodesically in a spherically symmetric space-time metric, we derive the metric disturbance that is needed in order to account for the Pioneer anomaly. We then analyze the residual effects on the astronomical observables of the three outer planets that would arise from this metric disturbance, given an arbitrary metric theory of gravity. Providing a method for comparing the computed residuals with actual residuals, our results imply that the presence of a perturbation to the gravitational field necessary to induce the Pioneer anomaly is in conflict with available data for the planets Uranus and Pluto, but not for Neptune. We therefore conclude that the motion of the Pioneer spacecraft must be nongeodesic. Since our results are model-independent within the class of metric theories of gravity, they can be applied to rule out any model of the Pioneer anomaly that implies that the Pioneer spacecraft move geodesically in a perturbed space-time metric, regardless of the origin of this metric disturbance

  10. A gravitational gauge field theory based on Stephenson-Kilmister-Yang gravitation with scalar and spinor fields as gravitating matter sources

    Shen, Jian Qi

    2016-05-01

    A gravitational gauge theory with a spin-affine connection (Lorentz connection) as a rotational gauge potential (fundamental dynamical variable) is suggested for reformulating the theory of Stephenson-Kilmister-Yang gravity, in which the Einstein field equation of gravity is a first-integral solution of a spin-connection gravitational gauge field equation. A heavy intermediate field φ that accompanies a matter field \\varphi is introduced in order to remove the conventional dimensionful gravitational coupling. Such a \\varphi -φ coupling can lead to dimensionless gravitational coupling (i.e., the gravitational constant is dimensionless) in the present gravitational gauge field theory. A low-energy effective Lagrangian density for the matter field can be obtained by integrating out the accompanying heavy field in generating functional of path integral formalism, and therefore, a dimensionful gravitational coupling coefficient (Einstein gravitational constant) emerges. Such a dimensionless coupling of gravity, where the dimensionful coupling is emergent at low energies, is considered for scalar and spinor fields, which serve as gravitating matter fields (gravitational source). Though there are higher derivatives (e.g., third- and fourth-order partial derivatives) of the scalar and spinor fields in the low-energy effective Lagrangian densities, the ordinary equations of motion of the scalar and spinor fields can also be emergent from the present gravitational gauge theory. Therefore, the Einstein gravity can be recovered from the present gravitational gauge theory. In addition to the gravitational Lagrangian of the spacetime-rotational gauge potential (i.e., spin-affine connection), the Lagrangian of a spacetime-translational gauge potential (i.e., vierbein) is also constructed. Thus, the present dimensionless gravitational gauge coupling preserves local rotational and translational gauge symmetries. Since the spin-connection gravitational gauge field equation is a

  11. On the gravitational origin of the Pioneer Anomaly

    Siutsou, I. A.; Tomilchik, L. M.

    2009-01-01

    From Doppler tracking data and data on circular motion of astronomical objects we obtain a metric of the Pioneer Anomaly. The metric resolves the issue of manifest absence of anomaly acceleration in orbits of the outer planets and extra-Pluto objects of the Solar system. However, it turns out that the energy-momentum tensor of matter, which generates such a gravitational field in GR, violates energy dominance conditions. At the same time the equation of state derived from the energy-momentum ...

  12. Gauge field, strings, solitons, anomalies and the speed of life

    Niemi, Antti J

    2014-01-01

    It's been said that "mathematics is biology's next microscope, only better; biology is mathematics' next physics, only better". Here we aim for something even better. We try to combine mathematical physics and biology into a picoscope of life. For this we merge techniques which have been introduced and developed in modern mathematical physics, largely by Ludvig Faddeev to describe objects such as solitons and Higgs and to explain phenomena such as anomalies in gauge fields. We propose a synthesis that can help to resolve the protein folding problem, one of the most important conundrums in all of science. We apply the concept of gauge invariance to scrutinize the extrinsic geometry of strings in three dimensional space. We evoke general principles of symmetry in combination with Wilsonian universality and derive an essentially unique Landau-Ginzburg energy that describes the dynamics of a generic string-like configuration in the far infrared. We observe that the energy supports topological solitons, that perta...

  13. Gravitational anomalies and one-dimensional behavior of black holes

    Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)

    2015-12-15

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)

  14. Gravitational anomalies and one-dimensional behavior of black holes

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole’s entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S.) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S. on the power is S. ∝P1/2, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry’s formula, while in the latter situation its value decreases

  15. Gravitational anomalies and one-dimensional behavior of black holes

    Majhi, Bibhas Ranjan, E-mail: bibhas.majhi@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam (India)

    2015-12-08

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole’s entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S{sup .}) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S{sup .} on the power is S{sup .} ∝P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry’s formula, while in the latter situation its value decreases.

  16. Gravitational anomalies and one-dimensional behavior of black holes

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P1/2, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)

  17. A Gauge-theoretical Treatment of the Gravitational Field: Classical

    Gomes, Henrique

    2008-01-01

    In the geometrodynamical setting of general relativity one is concerned mainly with Riemannian metrics over a manifold $M$. We show that for the space Riem$(M)$, we have a natural principal fiber bundle (PFB) structure. This construction makes the gravitational field amenable to exactly the same gauge-theoretic treatment given in [Littlejohn] where it is used to separate rotational and vibrational degrees of freedom of $n$-particle systems, both classically and quantum mechanically. Furthermore, we show how the gauge connection in this PFB setting can be seen as a realization of Mach's Principle of Relative Motion, in accordance with Barbour's et al work on timeless gravitational theories. We show Barbour's reconstruction of GR is obtained by requiring the connection to be the one induced by the deWitt metric in Riem$(M)$. As a simple application of the gauge theory, we put the ADM lagrangian in a Kaluza-Klein context, and from conservation of charge we derive an interesting condition on the three-dimensional...

  18. Unified spin gauge theory of electroweak and gravitational interactions

    A spin guage theory describing fundamental fermions and their electroweak and gravitational interactions is proposed. It is modelled on an eight-dimensional curved manifold M and uses its associated Clifford algebra. The elements of the algebra are represented by 16 x 16 matrices and the fermions are represented by sixteen-component column vectors. The frame field is introduced as a result of factorising the fermion mass term in the Lagrangian density and is included in an extended covariant derivative. The usual gauge theoretic technique of defining free bosonic Lagrangians from the fermion covariant derivative, when applied to the extended covariant derivative, gives the correct mass matrix for the photon, W and Z bosons, together with the Einstein-Hilbert gravitational Lagrangian density modified at short distances by a term quadratic in the curvature coefficients. Transformation of the Lagrangian by an inner automorphism of the Clifford algebra gives the correct mass and interaction terms for the up and down quarks. (author)

  19. Gravitational Contributions to Gauge Green's Functions and Asymptotic Free Power-Law Running of Gauge Coupling

    Tang, Yong

    2011-01-01

    We perform an explicit one-loop calculation for the gravitational contributions to the two-, three- and four-point gauge Green's functions with paying attention to the quadratic divergences. It is shown for the first time in the diagrammatic calculation that the Slavnov-Taylor identities are preserved even if the quantum graviton effects are included at one-loop level, such a conclusion is independent of the choice of regularization schemes. We also present a regularization scheme independent calculation based on the gauge condition independent background field framework of Vilkovisky-DeWitt's effective action with focusing on both the quadratic divergence and quartic divergence that is not discussed before. With the harmonic gauge condition, the results computed by using the traditional background field method can consistently be recovered from the Vilkovisky-DeWitt's effective action approach by simply taking a limiting case, and are found to be the same as the ones yielded by the diagrammatic calculation. ...

  20. Trace anomaly, massless scalars, and the gravitational coupling of QCD

    Armillis, Roberta; Corianò, Claudio; Delle Rose, Luigi

    2010-09-01

    The anomalous effective action describing the coupling of gravity to a non-Abelian gauge theory can be determined by a variational solution of the anomaly equation, as shown by Riegert long ago. It is given by a nonlocal expression, with the nonlocal interaction determined by the Green’s function of a conformally covariant operator of fourth order. In recent works it has been shown that this interaction is mediated by a simple pole in an expansion around a Minkowski background, coupled in the infrared in the massless fermion limit. This result relies on the local formulation of the original action in terms of two auxiliary fields, one physical scalar and one ghost, which take the role of massless composite degrees of freedom. In the gravity case, the two scalars have provided ground in favor of some recent proposals of an infrared approach to the solution of the dark energy problem, entirely based on the behavior of the vacuum energy at the QCD phase transition. As a test of this general result, we perform a complete one-loop computation of the effective action describing the coupling of a non-Abelian gauge theory to gravity. We confirm the appearance of an anomaly pole which contributes to the trace part of the TJJ correlator and of extra poles in its trace-free part, in the quark and gluon sectors, describing the coupling of the energy-momentum tensor (T) to two non-Abelian gauge currents (J).

  1. Trace anomaly, massless scalars, and the gravitational coupling of QCD

    The anomalous effective action describing the coupling of gravity to a non-Abelian gauge theory can be determined by a variational solution of the anomaly equation, as shown by Riegert long ago. It is given by a nonlocal expression, with the nonlocal interaction determined by the Green's function of a conformally covariant operator of fourth order. In recent works it has been shown that this interaction is mediated by a simple pole in an expansion around a Minkowski background, coupled in the infrared in the massless fermion limit. This result relies on the local formulation of the original action in terms of two auxiliary fields, one physical scalar and one ghost, which take the role of massless composite degrees of freedom. In the gravity case, the two scalars have provided ground in favor of some recent proposals of an infrared approach to the solution of the dark energy problem, entirely based on the behavior of the vacuum energy at the QCD phase transition. As a test of this general result, we perform a complete one-loop computation of the effective action describing the coupling of a non-Abelian gauge theory to gravity. We confirm the appearance of an anomaly pole which contributes to the trace part of the TJJ correlator and of extra poles in its trace-free part, in the quark and gluon sectors, describing the coupling of the energy-momentum tensor (T) to two non-Abelian gauge currents (J).

  2. Primordial Gravitational Waves from Axion-Gauge Fields Dynamics

    Dimastrogiovanni, Emanuela; Fujita, Tomohiro

    2016-01-01

    Inspired by the chromo-natural inflation model of Adshead&Wyman, we reshape its scalar content to relax the tension with current observational bounds. Besides an inflaton, the setup includes a spectator sector in which an axion and SU(2) gauge fields are coupled via a Chern-Simons-type term. The result is a viable theory endowed with an alternative production mechanism for gravitational waves during inflation. The gravitational wave signal sourced by the spectator fields can be much larger than the contribution from standard vacuum fluctuations, it is distinguishable from the latter on the basis of its chirality and, depending on the theory parameters values, also its tilt. This production process breaks the well-known relation between the tensor-to-scalar ratio and the energy scale of inflation. As a result, even if the Hubble rate is itself too small for the vacuum to generate a tensor amplitude detectable by upcoming experiments, this model still supports observable gravitational waves.

  3. Gravitational Self-force in a Radiation Gauge

    Keidl, Tobias S; Friedman, John L; Kim, Dong-Hoon; Price, Larry R

    2010-01-01

    In this, the first of two companion papers, we present a method for finding the gravitational self-force in a radiation gauge for a particle moving on a geodesic in a Schwarzschild or Kerr spacetime. The method involves a mode-sum renormalization of a spin-weight $\\pm 2$ perturbed Weyl scalar and the subsequent reconstruction from a Hertz potential of the renormalized perturbed metric. We show that the Hertz potential is uniquely specified by the requirement that it have no angular harmonics with $\\ell\\leq 2$. The resulting perturbed metric is singular only at the position of the particle: It is smooth on the axis of symmetry. An extension of an earlier result by Wald is needed to show that the perturbed metric is determined up to a gauge transformation and an infinitesimal change in the black hole mass and spin. We show that the singular behavior of the metric and self-force has the same power-law behavior in $L=\\ell+1/2$ as in a Lorenz gauge (with different coefficients). We compute the singular Weyl scalar...

  4. Electric/magnetic duality for chiral gauge theories with anomaly cancellation

    De Rydt, Jan; Schmidt, Torsten T.; Trigiante, Mario; Proeyen, Antoine; Zagermann, Marco

    2008-01-01

    We show that 4D gauge theories with Green-Schwarz anomaly cancellation and possible generalized Chern-Simons terms admit a formulation that is manifestly covariant with respect to electric/magnetic duality transformations. This generalizes previous work on the symplectically covariant formulation of anomaly-free gauge theories as they typically occur in extended supergravity, and now also includes general theories with (pseudo-)anomalous gauge interactions as they may occur in global or local...

  5. Massive to gauge field reduction and gravitational wave zone information

    Deser, S

    2016-01-01

    We show explicitly that massive, Abelian, vector, just like (properly defined) massive tensor, fields limit smoothly to their massless, gauge, versions: they emit only maximal helicity radiation and mediate Coulomb and (special relativistic) Newtonian, forces between their (conserved) sources. Our main motivation, though, is to show that the recent gravitational wave detection probably cannot directly rule out very long-range gravity: Even though the waves were emitted in a strong field regime, their being detected in the weak field wave zone means the above equivalences apply. There remains the, not unlikely, possibility that no strong field generation of radiation in massive models can reproduce the observed ring-down patterns. Separately, the smooth linear limiting behaviors show that the discontinuity lies not in the mass alone, but rather in Abelian versus non-Abelian, Yang-Mills and General Relativity, regimes, whose respective massive versions are known to be non-physical.

  6. Chiral Imprint of a Cosmic Gauge Field on Primordial Gravitational Waves

    Bielefeld, Jannis

    2014-01-01

    A cosmological gauge field with isotropic stress-energy introduces parity violation into the behavior of gravitational waves. We show that a primordial spectrum of inflationary gravitational waves develops a preferred handedness, left- or right-circularly polarized, depending on the abundance and coupling of the gauge field during the radiation era. A modest abundance of the gauge field would induce parity-violating correlations of the cosmic microwave background temperature and polarization patterns that could be detected by current and future experiments.

  7. Gravitational Waves in Bouncing Cosmologies from Gauge Field Production

    Ben-Dayan, Ido

    2016-01-01

    We calculate the gravitational waves (GW) spectrum produced in various Early Universe scenarios from gauge field sources, thus generalizing earlier inflationary calculations to bouncing cosmologies. We consider generic couplings between the gauge fields and the scalar field dominating the energy density of the Universe. We analyze the requirements needed to avoid a backreaction that will spoil the background evolution. When the scalar is coupled only to $F \\tilde F$ term, the sourced GW spectrum is exponentially enhanced and parametrically the square of the vacuum fluctuations spectrum, ${\\cal P}^s_T\\sim ({\\cal P}^v_T)^2$, giving an even bluer spectrum than the standard vacuum one. When the scalar field is also coupled to $F^2$ term, the amplitude is still exponentially enhanced, but the spectrum can be arbitrarily close to scale invariant (still slightly blue), $n_T\\gtrsim 0$, that is distinguishable form the slightly red inflationary one. Hence, we have a proof of concept of observable GW on CMB scales in a...

  8. Stochastic quantization and gauge-fixing of the linearized gravitational field

    Due to the indefiniteness of the Euclidean gravitational action the Parisi-Wu stochastic quantization scheme fails in the case of the gravitational field. Therefore we apply a recently proposed modification of stochastic quantization that works in Minkowski space and preserves all the advantages of the original Parisi-Wu method; in particular no gauge-fixing is required. Additionally stochastic gauge-fixing may be introduced and is also studied in detail. The graviton propagators obtained with and without stochastic gauge-fixing all exhibit a noncausal contribution, but apart from this effect the gauge-invariant quantities are the same as those of standard quantization. (Author)

  9. Resolution of axial anomaly problem in supersymmetric gauge theories

    The explicit form of transformation is found which converters the operators, involved in axial anomaly, from the renormalization scheme obeying the Adler-BaAdeen theorem to a supersymmetric one. It is shown that there is no contradiction between axial current and superconformal anomalies. In supersymmetric scheme the axial current and its anomaly belong to the corresponding supermultiplets

  10. Adler-Bardeen theorem and cancellation of gauge anomalies to all orders in nonrenormalizable theories

    Anselmi, Damiano

    2015-05-01

    We prove the Adler-Bardeen theorem in a large class of general gauge theories, including nonrenormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry, and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost numbers satisfy a variant of the Kluberg-Stern-Zuber conjecture. We show that if the gauge anomalies are trivial at one loop, for every truncation of the theory there exists a subtraction scheme where they manifestly vanish to all orders, within the truncation. Outside the truncation the cancellation of gauge anomalies can be enforced by fine-tuning local counterterms. The framework of the proof is worked out by combining a recently formulated chiral dimensional regularization with a gauge invariant higher-derivative regularization. If the higher-derivative regularizing terms are placed well beyond the truncation, and the energy scale Λ associated with them is kept fixed, the theory is superrenormalizable and has the property that, once the gauge anomalies are canceled at one loop, they manifestly vanish from two loops onwards by simple power counting. When the Λ divergences are subtracted away and Λ is sent to infinity, the anomaly cancellation survives in a manifest form within the truncation and in a nonmanifest form outside. The standard model coupled to quantum gravity satisfies all the assumptions, so it is free of gauge anomalies to all orders.

  11. Universal bundle for gravity, local index theorem, and covariant gravitational anomalies

    Kelnhofer, G

    1994-01-01

    Consistent and covariant Lorentz and diffeomorphism anomalies are investigated in terms of the geometry of the universal bundle for gravity. This bundle is explicitly constructed and its geometrical structure will be studied. By means of the local index theorem for families of Bismut and Freed the consistent gravitational anomalies are calculated. Covariant gravitational anomalies are shown to be related with secondary characteristic classes of the universal bundle and a new set of descent equations which also contains the covariant Schwinger terms is derived. The relation between consistent and covariant anomalies is studied. Finally a geometrical realization of the gravitational BRS, anti-BRS transformations is presented which enables the formulation of a kind of covariance condition for covariant gravitational anomalies.

  12. Adler-Bardeen theorem and cancellation of gauge anomalies to all orders in nonrenormalizable theories

    Anselmi, Damiano

    2015-01-01

    We prove the Adler-Bardeen theorem in a large class of general gauge theories, including nonrenormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost number satisfy a variant of the Kluberg-Stern--Zuber conjecture. We show that if the gauge anomalies are trivial at one loop, for every truncation of the theory there exists a subtraction scheme where...

  13. Mathematical Derivation of Chiral Anomaly in Lattice Gauge Theory with Wilson's Action

    Hattori, T G; Hattori, Tetsuya; Watanabe, Hiroshi

    1998-01-01

    Chiral U(1) anomaly is derived with mathematical rigor for a Euclidean fermion coupled to a smooth external U(1) gauge field on an even dimensional torus as a continuum limit of lattice regularized fermion field theory with the Wilson term in the action. The present work rigorously proves for the first time that the Wilson term correctly reproduces the chiral anomaly.

  14. Gravitational anomalies in higher dimensional Riemann-Cartan space

    By applying the covariant Taylor expansion method of the heat kernel, the covariant Einstein anomalies associated with a Weyl fermion of spin 1/2 in four-, six- and eight-dimensional Riemann-Cartan space are manifestly given. Many unknown terms with torsion tensors appear in these anomalies. The Lorentz anomaly is intimately related to the Einstein anomaly even in Riemann-Cartan space. The explicit form of the Lorentz anomaly corresponding to the Einstein anomaly is also obtained

  15. One-loop anomalies and Wess-Zumino terms for general gauge theories

    One-loop anomalies and their dependence on antifields for general gauge theories are investigated within a Pauli-Villars regularization scheme. For on-shell theories i.e. with open algebras or on-shell reducible theories, the antifield dependence is cohomologically non-trivial. The associated Wess-Zumino term depends also on antifields. In the classical basis the antifield-independent part of the WZ term is expressed in terms of the anomaly and finite gauge transformations by introducing gauge degrees of freedom as the extra dynamical variables. The complete WZ term is reconstructed from the antifield-independent part. (orig.)

  16. Parity anomaly in D=3 Chern-Simons gauge theory

    Ultraviolet divergences are calcelled in the effective action of the D=3 Chern-Simons gauge theory but regularization is needed. It is impossible to introduce gauge invariant regularization and conserve the parity of the classical action. As a result, in the limit when regularization is moved the finite contribution to the effective action induced by parity violating regulators remains. 18 refs

  17. Space-time dependent couplings In N = 1 SUSY gauge theories: Anomalies and central functions

    We consider N = 1 supersymmetric gauge theories in which the couplings are allowed to be space-time dependent functions. Both the gauge and the superpotential couplings become chiral superfields. As has recently been shown, a new topological anomaly appears in models with space-time dependent gauge coupling. Here we show how this anomaly may be used to derive the NSVZ β-function in a particular, well-determined renormalisation scheme, both without and with chiral matter. Moreover we extend the topological anomaly analysis to theories coupled to a classical curved superspace background, and use it to derive an all-order expression for the central charge c, the coefficient of the Weyl tensor squared contribution to the conformal anomaly. We also comment on the implications of our results for the central charge a expected to be of relevance for a four-dimensional C-theorem. (author)

  18. Anomaly-free U(1) gauge symmetries in neutrino seesaw flavor models

    Cebola, Luis M; Felipe, Ricardo Gonzalez

    2013-01-01

    Adding right-handed neutrino singlets and/or fermion triplets to the particle content of the Standard Model allows for the implementation of the seesaw mechanism to give mass to neutrinos and, simultaneously, for the construction of anomaly-free gauge group extensions of the theory. We consider Abelian extensions based on an extra U(1)_X gauge symmetry, where X is an arbitrary linear combination of the baryon number B and the individual lepton numbers L_{e,mu,tau}. By requiring cancellation of gauge anomalies, we perform a detailed analysis in order to identify the charge assignments under the new gauge symmetry that lead to neutrino phenomenology compatible with current experiments. In particular, we study how the new symmetry can constrain the flavor structure of the Majorana neutrino mass matrix, leading to two-zero textures with a minimal extra fermion and scalar content. The possibility of distinguishing different gauge symmetries and seesaw realizations at colliders is also briefly discussed.

  19. On the problem of axial anomaly in supersymmetric gauge theories

    The explicit relation is found between the axial current obeying the Adler-Bardeen theorem and the supersymmetric one belonging to a supermultiplet. It is shown that the axial and superconformal anomalies are consistent in all orders of perturbation theory

  20. Distinguishing anomaly-mediation from gauge-mediation with a Wino NLSP

    Kribs, G D

    2000-01-01

    A striking consequence of supersymmetry breaking communicated purely via the superconformal anomaly is that the gaugino masses are proportional to the gauge beta functions. This result, however, is not unique to anomaly-mediation. We present examples of ``generalized'' gauge-mediated models with messengers in standard model representations that give nearly identical predictions for the gaugino masses, but positive (mass)^2 for all sleptons. There are remarkable similarities between an anomaly-mediated model with a small additional universal mass added to all scalars and the gauge-mediated models with a long-lived Wino next-to-lightest supersymmetric particle (NLSP), leading to only a small set of observables that provide robust distinguishing criteria. These include ratios of the heaviest to lightest selectrons, smuons, and stops. The sign of the gluino soft mass an unambiguous distinction, but requires measuring a difficult class of one-loop radiative corrections to sparticle interactions. A high precision m...

  1. On gravitational dressing of 2D field theories in chiral gauge

    After giving a pedagogical review of the chiral gauge approach to 2D gravity, with particular emphasis on the derivation of the gravitational Ward identities, we discuss in some detail the interpretation of matter correlation functions coupled to gravity in chiral gauge. We argue that in chiral gauge no explicit gravitational dressing factor, analogue to the Liouville exponential in conformal gauge, is necessary for left-right symmetric matter operators. In particular, we examine the gravitationally dressed four-point correlation function of products of left and right fermions. We solve the corresponding gravitational Ward identity exactly: in the presence of gravity this four-point function exhibits a logarithmic short-distance singularity, instead of the power-law singularity in the absence of gravity. This rather surprising effect is non-perturbative in the gravitational coupling and is a sign for logarithms in the gravitationally dressed operator product expansions. We also discuss some perturbative evidence that the chiral Gross-Neveu model may remain integrable when coupled to gravity. (orig.)

  2. Chiral anomalies in higher-derivative supersymmetric 6D gauge theories

    We show that the recently constructed higher-derivative 6D SYM theory involves internal chiral anomaly breaking gauge invariance. The anomaly is cancelled when adding to the theory an adjoint matter hyper-multiplet. One shows that as the effective charge grows at high energies, the theories are not consistently defined nonperturbatively. Constructing a nontrivial 6D theory that would be internally consistent both perturbatively and nonperturbatively remains a major challenge. (author)

  3. Axial anomaly in the presence of the Aharonov-Bohm gauge field

    The axial anomaly for Euclidean Dirac fermions in the presence of a background Aharonov-Bohm gauge potential was computed. The non-perturbative result depends on the self-adjoint extensions of the Dirac operator. The role of the quantum mechanical parameters involved in the expression for the axial anomaly is discussed. A derivation of the effective action by means of the stereographic projection is also considered. (authors). 14 refs

  4. Overconnections and the energy-tensors of gauge and gravitational fields

    Canarutto, Daniel

    2015-01-01

    A geometric construction for obtaining a prolongation of a connection to a connection of a bundle of connections is presented. This determines a natural extension of the notion of canonical energy-tensor which suits gauge and gravitational fields, and shares the main properties of the energy-tensor of a matter field in the jet space formulation of Lagrangian field theory, in particular with regards to symmetries of the Poincar\\'e-Cartan form. Accordingly, the joint energy-tensor for interacting matter and gauge fields turns out to be a natural geometric object, whose definition needs no auxuliary structures. Various topics related to energy-tensors, symmetries and the Einstein equations in a theory with interacting matter, gauge and gravitational fields can be viewed under a clarifying light. Finally, the symmetry determined by the "Komar super potential" is expressed as a symmetry of the gravitational Poincar\\'e-Cartan form.

  5. Gauged WZW models for space-time groups and gravitational actions

    Mora, Pablo; Pais, Pablo(Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia, Chile); Willison, Steven

    2011-01-01

    In this paper we investigate gauged Wess-Zumino-Witten models for space-time groups as gravitational theories, following the trend of recent work by Anabalon, Willison and Zanelli. We discuss the field equations in any dimension and study in detail the simplest case of two space-time dimensions and gauge group SO(2,1). For this model we study black hole solutions and we calculate their mass and entropy which resulted in a null value for both.

  6. Perturbative analysis of the Gauss-law anomaly in chiral gauge theories

    We discuss the Gauss-law constraint in chiral gauge theories. A unitarity condition for the Gauss constraint is introduced and shown to be equivalent to the diagrammatic form of the Ward identities. We give a simple derivation of the chiral anomaly and relate it to the breakdown of the unitarity condition

  7. Gauge theories of gravitation a reader with commentaries

    Blagojevic, Milutin

    2013-01-01

    In the last five decades, the gauge approach to gravity has represented a research area of increasing importance for our understanding of the physics of fundamental interactions. A full clarification of the gauge dynamics of gravity is expected to be the last missing link to the hidden structure of a consistent unification of all the fundamental interactions, based on the gauge principle. The aim of the present reprint volume, with commentaries by Milutin Blagojevi & 263; and Friedrich W Hehl, is to introduce graduate and advanced undergraduate students of theoretical or mathematical physics, or any other interested researcher, to the field of classical gauge theories of gravity. This is not just an ordinary reprint volume; it is a guide to the literature on gauge theories of gravity. The reader is encouraged first to study the introductory commentaries and to become familiar with the basic content of the reprints and related ideas, then he/she can choose to read a specific reprint or reprints, and after ...

  8. Adler-Bardeen theorem and manifest anomaly cancellation to all orders in gauge theories

    Anselmi, Damiano

    2014-01-01

    We reconsider the Adler-Bardeen theorem for the cancellation of gauge anomalies to all orders, when they vanish at one loop. Using the Batalin-Vilkovisky formalism and combining the dimensional-regularization technique with the higher-derivative gauge-invariant regularization, we prove the theorem in the most general perturbatively unitary renormalizable gauge theories coupled to matter in four dimensions, and identify the subtraction scheme where anomaly cancellation to all orders is manifest, namely no subtractions of finite local counterterms are required from two loops onwards. Our approach is based on an order-by-order analysis of renormalization, and, differently from most derivations existing in the literature, does not make use of arguments based on the properties of the renormalization group. As a consequence, the proof we give also applies to conformal field theories and finite theories.

  9. Adler-Bardeen theorem and manifest anomaly cancellation to all orders in gauge theories

    Anselmi, Damiano

    2014-10-01

    We reconsider the Adler-Bardeen theorem for the cancellation of gauge anomalies to all orders, when they vanish at one loop. Using the Batalin-Vilkovisky formalism and combining the dimensional-regularization technique with the higher-derivative gauge invariant regularization, we prove the theorem in the most general perturbatively unitary renormalizable gauge theories coupled to matter in four dimensions, and identify the subtraction scheme where anomaly cancellation to all orders is manifest, namely no subtractions of finite local counterterms are required from two loops onwards. Our approach is based on an order-by-order analysis of renormalization, and, differently from most derivations existing in the literature, does not make use of arguments based on the properties of the renormalization group. As a consequence, the proof we give also applies to conformal field theories and finite theories.

  10. Adler-Bardeen theorem and manifest anomaly cancellation to all orders in gauge theories

    Anselmi, Damiano [Pisa Univ. (Italy). Dipt. di Fisica ' ' Enrico Fermi' ' ; INFN, Sezione di Pisa (Italy)

    2014-10-15

    We reconsider the Adler-Bardeen theorem for the cancellation of gauge anomalies to all orders, when they vanish at one loop. Using the Batalin-Vilkovisky formalism and combining the dimensional-regularization technique with the higher-derivative gauge invariant regularization, we prove the theorem in the most general perturbatively unitary renormalizable gauge theories coupled to matter in four dimensions, and we identify the subtraction scheme where anomaly cancellation to all orders is manifest, namely no subtractions of finite local counterterms are required from two loops onwards. Our approach is based on an order-by-order analysis of renormalization, and, differently from most derivations existing in the literature, does not make use of arguments based on the properties of the renormalization group. As a consequence, the proof we give also applies to conformal field theories and finite theories. (orig.)

  11. Adler-Bardeen theorem and manifest anomaly cancellation to all orders in gauge theories

    We reconsider the Adler-Bardeen theorem for the cancellation of gauge anomalies to all orders, when they vanish at one loop. Using the Batalin-Vilkovisky formalism and combining the dimensional-regularization technique with the higher-derivative gauge invariant regularization, we prove the theorem in the most general perturbatively unitary renormalizable gauge theories coupled to matter in four dimensions, and we identify the subtraction scheme where anomaly cancellation to all orders is manifest, namely no subtractions of finite local counterterms are required from two loops onwards. Our approach is based on an order-by-order analysis of renormalization, and, differently from most derivations existing in the literature, does not make use of arguments based on the properties of the renormalization group. As a consequence, the proof we give also applies to conformal field theories and finite theories. (orig.)

  12. Gravitational and gauge couplings in Chern-Simons fractional spin gravity

    Boulanger, Nicolas; Valenzuela, Mauricio

    2015-01-01

    We propose an extension of Vasiliev's supertrace operation for the enveloping algebra of Wigner's deformed oscillator algebra to the fractional spin algebra given in arXiv:1312.5700. The resulting three-dimensional Chern-Simons theory unifies the Blencowe-Vasiliev higher spin gravity with fractional spin fields and internal gauge potentials. For integer or half-integer fractional spins, infinite dimensional ideals arise and decouple, leaving finite dimensional gauge algebras gl(2l+1) or gl(l|l+1) and various real forms thereof. We derive the relation between gravitational and internal gauge couplings.

  13. Gauge theory duals of black hole – black string transitions of gravitational theories on a circle

    We study the black hole – black string phase transitions of gravitational theories compactified on a circle using the holographic duality conjecture. The gauge theory duals of these theories are maximally supersymmetric and strongly coupled 1 + 1 dimensional SU(N) Yang-Mills theories compactified on a circle, in the large N limit. We perform the strongly coupled finite temperature gauge theory calculations on a lattice, using the recently developed exact lattice supersymmetry methods based on topological twisting and orbifolding. The spatial Polyakov line serves as relevant order parameter of the confinement – deconfinement phase transitions in the gauge theory duals

  14. Some remarks on BRS transformations, anomalies and the cohomology of the Lie algebra of the group of gauge transformations

    We show that ghosts in gauge theories can be interpreted as Maurer-Cartan forms in the infinite dimensional group G of gauge transformations. We examine the cohomology of the Lie algebra of G and identify the coboundary opeator with the BRS operator. We describe the anomalous terms encountered in the renormalization of gauge theories (triangle anomalies) as elements of these cohomology groups. (orig.)

  15. Canonical (anti-)commutation rules in QCD abd unbroken gauge invariance, QCD - the two central anomalies and canonical structure

    Minkowski, Peter

    2012-01-01

    The regularities at large distances of complete gauge invariance in QCD are shown to bear nontrivial consequences for the selection among inequivalent representations of canonical commutation (anticommutation) rules for gauge boson (quark) fields. The trace anomaly forces a modification of the gauge boson Lagrangean and by this of the entire associated canonical structure.

  16. Conservation laws in the SLsub(2,C) gauge theory of gravitation

    A one-parameter family of new Lagrangian densities for the SLsub(2,C) gauge theory of gravitation is proposed. The relation between the laws of conservation and the SLsub(2,C) symmetry of general relativity through the Noether theorem is investigated

  17. Hawking radiation from gravity's rainbow via gravitational anomaly

    Zeng Xiao-Xiong; Yang Shu-Zheng; Chen De-You

    2008-01-01

    Based on the anomaly cancellation method,initiated by Robinson and Wilczek,we investigates Hawking radiation from the modified Schwarzschild black hole from gravity's rainbow from the anomaly point of view.Unlike the general Schwarzschild space-time,the metric of this black hole depends on the energies of probes.The obtained result shows to restore the underlying general covariance at the quantum level in the effective field,the covariant compensating flux of energy-momentum tensor,which is related to the energies of the probes,should precisely equal to that of a (1+1)-dimensional blackbody at the Hawking temperature.

  18. Higgs and gravitational scalar fields together induce Weyl gauge

    Scholz, Erhard

    2014-01-01

    A common biquadratic potential for the Higgs field $h$ and an additional scalar field $\\phi$, non minimally coupled to gravity, is considered in locally scale symmetric approaches to standard model fields in curved spacetime. A common ground state of the two scalar fields exists and couples both fields to gravity, more precisely to scalar curvature $R$. In Einstein gauge ($\\phi = const$, often called "Einstein frame"), also $R$ is scaled to a constant. This condition makes perfect sense, even in the general case, in the Weyl geometric approach. There it has been called {\\em Weyl gauge}, because it was first considered by Weyl in the different context of his original scale geometric theory of gravity of 1918. Now it seems to get new meaning as a combined effect of electroweak theory and gravity, and their common influence on atomic frequencies.

  19. Higgs and gravitational scalar fields together induce Weyl gauge

    Scholz, Erhard

    2014-01-01

    A common biquadratic potential for the Higgs field $h$ and an additional scalar field $\\phi$, non minimally coupled to gravity, is considered in locally scale symmetric approaches to standard model fields in curved spacetime. A common ground state of the two scalar fields exists and couples both fields to gravity, more precisely to scalar curvature $R$. In Einstein gauge ($\\phi = const$, often called "Einstein frame"), also $R$ is scaled to a constant. This condition makes perfect sense, even...

  20. Gauge Coupling Field, Currents, Anomalies and N=1 Super-Yang-Mills Effective Actions

    Ambrosetti, Nicola; Derendinger, Jean-Pierre; Hartog, Jelle

    2016-01-01

    Working with a gauge coupling field in a linear superfield, we construct effective Lagrangians for N=1 super-Yang-Mills theory fully compatible with the expected all-order behaviour or physical quantities. Using the one-loop dependence on its ultraviolet cutoff and anomaly matching or cancellation of R and dilatation anomalies, we obtain the Wilsonian effective Lagrangian. With similar anomaly matching or cancellation methods, we derive the effective action for gaugino condensates, as a function of the real coupling field. Both effective actions lead to a derivation of the NSVZ beta function from algebraic arguments only. The extension of results to N=2 theories or to matter systems is briefly considered. The main tool for the discussion of anomalies is a generic supercurrent structure with 16_B+16_F operators (the S multiplet), which we derive using superspace identities and field equations for a fully general gauge theory Lagrangian with the linear gauge coupling superfield, and with various U(1)_R currents...

  1. Adler-Bardeen theorem and cancellation of gauge anomalies to all orders in nonrenormalizable theories

    Anselmi, Damiano

    2015-01-01

    We prove the Adler-Bardeen theorem in a large class of general gauge theories, including nonrenormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost number satisfy a variant of the Kluberg-Stern--Zuber conjecture. We show that if the gauge anomalies are trivial at one loop, for every truncation of the theory there exists a subtraction scheme where they manifestly vanish to all orders, within the truncation. Outside the truncation the cancellation of gauge anomalies can be enforced by fine-tuning local counterterms. The framework of the proof is worked out by combining a recently formulated chiral dimensional regularization with a gauge invariant higher-derivative regularization. If the higher-derivative regularizing terms are placed well beyond the truncation, and the energy scale $\\Lambda$ associated with them is kept fixed, the theory is super-renormalizable and...

  2. Anomalies and Entanglement Entropy

    Nishioka, Tatsuma

    2015-01-01

    We initiate a systematic study of entanglement and Renyi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.

  3. Anomalies and entanglement entropy

    Nishioka, Tatsuma; Yarom, Amos(Department of Physics, Technion, Haifa, 32000, Israel)

    2016-01-01

    We initiate a systematic study of entanglement and Renyi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanish...

  4. Equation of Motion of a Mass Point in Gravitational Field and Classical Tests of Gauge Theory of Gravity

    A systematic method is developed to study the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.

  5. Characteristic slepton signal in anomaly mediated SUSY breaking models via gauge boson fusion at the LHC

    Datta, A; Datta, Anindya; Huitu, Katri

    2003-01-01

    We point out that slepton pairs produced via gauge boson fusion in anomaly mediated supersymmetry breaking (AMSB) model have very characteristic and almost clean signal at the Large Hadron Collider. In this letter, we discuss how one lepton associated with missing energy and produced in between two high-$p_T$ and high-mass forward jets can explore quite heavy sleptons in this scenario.

  6. Massive to gauge field reduction and gravitational wave zone information

    Deser, S.

    2016-07-01

    I analyze the possible relevance of LIGO's gravitational wave detection to the viability of massive gravity models. In GR, a wave zone, where the linearized approximation holds, is guaranteed to exist and the observed wave's amplitude profile can be sufficiently related to the emitting strong field interior to verify that, in this case, it was due to an inspiraling black hole merger. After an excursion to massive spin 1's massless limit, linear massive tensor theory is shown explicitly to propagate only (retarded) maximal, helicity 2, modes to O( m) as m→ 0; however, we don't know if the full theory has a similar "wave zone" governed by the linear model. Even if it does, a much more serious obstacle for massive gravity is to construct a time-varying strong field event to compare with the strong field footprint of LIGO's observed signals.

  7. String theory applications in gravitational problems and gauge theories

    Siampos, Konstadinos

    2010-01-01

    In this dissertation, we review the study of quark and monopole bound-state potentials within the gauge/gravity correspondence. Their behaviors often differ from what is expected on general physical grounds and field-theory considerations. We identify the configurations of physical interest by examining the stability of the string (brane) solutions dual to the flux tubes between the bound states. In particular, we formulate and prove several general statements concerning the perturbative stability of such string (brane) solutions, relevant for these configurations in a general class of backgrounds. We apply the results to N = 4 SYM and N = 1 at finite temperature and at generic points of the Coulomb branch. In all cases, the problematic regions are found to be unstable and hence physically irrelevant.

  8. Gauged Two Higgs Doublet Model confronts the LHC 750 GeV diphoton anomaly

    Huang, Wei-Chih; Tsai, Yue-Lin Sming; Yuan, Tzu-Chiang

    2016-08-01

    In light of the recent 750 GeV diphoton anomaly observed at the LHC, we study the possibility of accommodating the deviation from the standard model prediction based on the recently proposed Gauged Two Higgs Doublet Model. The model embeds two Higgs doublets into a doublet of a non-abelian gauge group SU(2)H, while the standard model SU(2)L right-handed fermion singlets are paired up with new heavy fermions to form SU(2)H doublets, and SU(2)L left-handed fermion doublets are singlets under SU(2)H. An SU(2)H scalar doublet, which provides masses to the new heavy fermions as well as the SU(2)H gauge bosons, can be produced via gluon fusion and subsequently decays into two photons with the new fermions circulating the triangle loops to account for the deviation from the standard model prediction.

  9. Gauged Two Higgs Doublet Model confronts the LHC 750 GeV di-photon anomaly

    Huang, Wei-Chih; Yuan, Tzu-Chiang

    2015-01-01

    In light of the recent 750 GeV di-photon anomaly observed at the LHC, we check the possibility of accommodating the deviation from the Standard Model~(SM) prediction based on the Gauged Two Higgs Doublet Model, which has been proposed lately. The model embeds two Higgs doublets into a doublet of a non-abelian gauge group $SU(2)_H$, while the SM $SU(2)_L$ right-handed fermion singlets are paired up with new heavy fermions to form $SU(2)_H$ doublets, and $SU(2)_L$ left-handed fermion doublets are singlets under $SU(2)_H$. An $SU(2)_H$ scalar doublet, which provides a mass to the new heavy fermions as well as the $SU(2)_H$ gauge bosons, can be produced via gluon fusion and subsequently decays into two photons with the help of the new fermions to account for the deviation from the SM prediction.

  10. Gauge theory and gravitation: an approach to a fiber bundle formalism

    The thesis is composed of two different parts. A formal complete and rigorous mathematical part-of topics of differential manilfolds, exterior calculus, riemannian geometry, principal fiber bundle (p.f.) with connections and linear connections and a second part of application of this mathematical formalism concerning physical theories, particularly the Maxwell eletromagnetism (EM), gauge theory of Yang-Mills (Y-M), the GRT, and the gravitation theory of Einstein-Cartan. (E.C.)

  11. Gauge-invariant gravitational wave modes in pre-big bang cosmology

    The t<0 branch of pre-big bang cosmological scenarios is subject to a gravitational wave instability. The unstable behaviour of tensor perturbations is derived in a very simple way in Hwang's covariant and gauge-invariant formalism developed for extended theories of gravity. A simple interpretation of this instability as the effect of an ''antifriction'' is given, and it is argued that a universe must eventually enter the expanding phase. (orig.)

  12. Post-Newtonian effects in the quadratic Poincaré gauge theory of gravitation

    Gladchenko, M. S.; Zhytnikov, V. V.

    1994-10-01

    The post-Newtonian approximation of the Poincaré gauge theory (PGT) of gravitation with an arbitrary Lagrangian is calculated. The constraints on the parameters of the PGT which follow from light deflection and retardation experiments and composition-independent fifth-force data are obtained. It is shown that modern experimental data cannot rule out the existence of massive torsion particles with both large and very small masses.

  13. Geometrodynamics of gauge fields on the geometry of Yang-Mills and gravitational gauge theories

    Mielke, Eckehard W

    2016-01-01

    This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed. Since the discovery of the Higgs boson, concepts of spontaneous symmetry breaking in gravity have come again into focus, and, in this revised edition, these will be exposed in geometric terms. Quantizing gravity remains an open issue: formulating it as a de Sitter t...

  14. Gravitational and gauge couplings in Chern-Simons fractional spin gravity

    Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio

    2016-01-01

    We propose an extension of Vasiliev's supertrace operation for the enveloping algebra of Wigner's deformed oscillator algebra to the fractional spin algebra given in arXiv:1312.5700. We provide a necessary and sufficient condition for the consistency of the supertrace, through the existence of a certain ground state projector. We build this projector and check its properties to the first two orders in the number operator and to all orders in the deformation parameter. We then find the relation between the gravitational and internal gauge couplings in the resulting unified three-dimensional Chern-Simons theory for Blencowe-Vasiliev higher spin gravity coupled to fractional spin fields and internal gauge potentials. We also examine the model for integer or half-integer fractional spins, where infinite dimensional ideals arise and decouple, leaving finite dimensional gauge algebras gl(2 ℓ + 1) or gl( ℓ| ℓ + 1) and various real forms thereof.

  15. Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models

    Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free ZN symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z6 symmetry, proton hexality P6, which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LHuLHu. In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1)X FN models in which the Z3 symmetry baryon triality, B3, arises from U(1)X breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B3-conserving FN models. (orig.)

  16. Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models

    Luhn, C.

    2006-05-15

    Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z{sub N} symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z{sub 6} symmetry, proton hexality P{sub 6}, which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH{sub u}LH{sub u}. In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1){sub X} FN models in which the Z{sub 3} symmetry baryon triality, B{sub 3}, arises from U(1){sub X} breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B{sub 3}-conserving FN models. (orig.)

  17. The Adler-Bardeen theorem for the axial U(1) anomaly in a general non-Abelian gauge theory

    A general, regularization-scheme-independent proof of the nonrenormalization theorem for the anomaly of a U(1) axial current in a renormalizable gauge theory is presented. The gauge group may be an arbitrary compact Lie group. The validity of the theorem is traced back to some finiteness properties allowing for a well defined but particular choice of the anomaly operators. Whereas in the case of a purely Abelian gauge group this choice amounts to a physically reasonable normalization at zero energy, the general non-Abelian case awaits a deeper understanding

  18. Minimal anomaly-free chiral fermion sets and gauge coupling unification

    Cebola, Luis M; Felipe, R Gonzalez; Simoes, C

    2014-01-01

    We look for minimal chiral sets of fermions beyond the Standard Model that are anomaly-free and, simultaneously, vector-like particles with respect to colour SU(3) and electromagnetic U(1). We then study whether the addition of such particles to the Standard Model particle content allows for the unification of gauge couplings at a high energy scale, above $5.0 \\times 10^{15}$ GeV so as to be safely consistent with proton decay bounds. The possibility to have unification at the string scale is also considered. Inspired in grand unified theories, we also search for minimal chiral fermion sets that belong to SU(5) multiplets. Restricting to representations up to dimension 50, we show that some of these sets can lead to gauge unification at the GUT and/or string scales.

  19. Neveu-Schwarz 5-branes in type-IIA supergravity and gravitational anomalies

    We construct a gravitational-anomaly-free effective action for the coupled system of type-IIA D=10 dynamical supergravity interacting with a NS5-brane. The NS5-brane is considered as elementary in that the associated current is a δ function supported on its world volume. Our approach is based on a Chern kernel which encodes the singularities of the three-form field strength near the brane in an SO(4)-invariant way and provides a solution for its Bianchi identity in terms of a two-form potential. A dimensional reduction of the recently constructed anomaly-free effective action for an elementary M5-brane in D=11 is seen to reproduce our ten-dimensional action. The Chern-kernel approach provides in particular a concrete realization of the anomaly cancellation mechanism envisaged by Witten

  20. Global anomalies in six dimensions

    Applying Witten's formula for global gauge and gravitational anomalies to six dimensional supergravities, we find: (a) The perturbatively anomaly free N=4 chiral supergravity coupled to 21 tensor multiplets is global anomaly free for any choice of space-time manifold with vanishing third Betti number (b3). (b) The perturbatively anomaly free matter coupled N=2 chiral supergravities with arbitrary number of tensor multiplets, whose Yang-Mills gauge groups do not include G2, SU(2), or SU(3) are free of global anomalies if the theory is formulated on S6. In the case of 9 tensor multiplets coupled to supergravity this result holds for any spacetime with vanishing b3. (c) The N=6 chiral supergravity has perturbative gravitational anomalies, and therefore the global anomalies need not be considered in this case. (author)

  1. Hypercharge Flux in IIB and F-theory: Anomalies and Gauge Coupling Unification

    Mayrhofer, Christoph; Weigand, Timo

    2013-01-01

    We analyse hypercharge flux GUT breaking in F-theory/Type IIB GUT models with regards to its implications for anomaly cancellation and gauge coupling unification. To this aim we exploit the Type IIB limit and consider 7-brane configurations that for the first time are guaranteed to exhibit net hypercharge flux restriction to matter curves. We show that local F-theory models with anomalies of type U(1)_Y-U(1)^2 in the massless spectrum can be consistent only if such additional U(1)s are globally geometrically massive (in the sense that they arise from non-Kahler deformations of the Calabi-Yau four-fold). We also show that the known hypercharge flux induced splitting of the gauge couplings in IIB models at tree-level can be reduced by a factor of 5 by employing a more F-theoretic twisting of U(1) flux by hypercharge flux bringing it to well within MSSM 2-loop results. In the case of net restriction of hypercharge flux to matter curves this tree-level splitting becomes more involved, is tied to the vacuum expect...

  2. Gravitational Waves from the Phase Transition of a Non-linearly Realised Electroweak Gauge Symmetry

    Kobakhidze, Archil; Yue, Jason

    2016-01-01

    Within the Standard Model with non-linearly realised electroweak symmetry, the LHC Higgs boson may reside in a singlet representation of the gauge group. Several new interactions are then allowed, including anomalous Higgs self-couplings, which may drive the electroweak phase transition to be strongly first-order. In this paper we investigate the cosmological electroweak phase transition in a simplified model with an anomalous Higgs cubic self- coupling. We look at the feasibility of detecting gravitational waves produced during such a transition in the early universe by future space-based experiments. We find that for the range of relatively large cubic couplings, $111~{\\rm GeV}~ \\lesssim |\\kappa| \\lesssim 118~{\\rm GeV}$, $\\sim $mHz frequency gravitational waves can be observed by eLISA, while BBO will potentially be able to detect waves in a wider frequency range, $0.1-10~$mHz.

  3. Ultrashort Optical Pulses in a Fermi Liquid and Duality of Gauge Gravitation

    Konobeeva, N. N.; Belonenko, M. B.

    2016-07-01

    The problem of the propagation of ultrashort pulses, including both two-dimensional and three-dimensional pulses, in a Fermi liquid is considered with the help of representations of the duality of gauge gravitation. The electromagnetic field is considered classically on the basis of the Maxwell equations. The effective equation so obtained is analyzed numerically and the dynamics of the state of the electromagnetic field are elucidated in the planar case, and also when it is localized in two/three spatial dimensions.

  4. Membrane Paradigm, Gravitational $\\Theta$-Term and Gauge/Gravity Duality

    Fischler, Willy

    2015-01-01

    Following the membrane paradigm, we explore the effect of the gravitational $\\Theta$-term on the behavior of the stretched horizon of a black hole in (3+1)-dimensions. We reformulate the membrane paradigm from a quantum path-integral point of view where we interpret the macroscopic properties of the horizon as effects of integrating out the region inside the horizon. The gravitational $\\Theta$-term is a total derivative, however, using our framework we show that this term affects the transport properties of the horizon. In particular, the horizon acquires a third order parity violating, dimensionless transport coefficient which affects the way localized perturbations scramble on the horizon. Then we consider a large-N gauge theory in (2+1)-dimensions which is dual to an asymptotically AdS background in (3+1)-dimensional spacetime to show that the $\\Theta$-term induces a non-trivial contact term in the energy-momentum tensor of the dual theory. As a consequence, the dual gauge theory in the presence of the $\\T...

  5. Hidden symmetries, gravitational anomalies, and superalgebras of Dirac type operators on curved spaces

    Full text: (author)The intimate relation between Killing-Yano tensors and non-standard supersymmetries is pointed out. The gravitational anomalies are absent if the hidden symmetry is associated to a Killing-Yano tensor. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac type operators involved in interesting algebraic structures as dynamical algebras or even infinite dimensional algebras or superalgebras. The general results are applied to the 4-dimensional Euclidean Taub-NUT space. One presents the infinite dimensional superalgebra of Dirac type operators on Taub-NUT space that can be seen as a twisted loop algebra

  6. Anomalies of Density, Stresses, and the Gravitational Field in the Interior of Mars

    Chuikova, N A; Maksimova, T G; 10.3103/S0027134912020075

    2012-01-01

    We determined the possible compensation depths for relief harmonics of different degrees and orders. The relief is shown to be completely compensated within the depth range of 0 to 1400 km. The lateral distributions of compensation masses are determined at these depths and the maps are constructed. The possible nonisostatic vertical stresses in the crust and mantle of Mars are estimated to be 64 MPa in compression and 20 MPa in tension. The relief anomalies of the Tharsis volcanic plateau and symmetric feature in the eastern hemisphere could have arisen and been maintained dynamically due to two plumes in the mantle substance that are enriched with fluids. The plumes that originate at the core of Mars can arise and be maintained by the anomalies of the inner gravitational field achieving +800 mGal in the region of plume formation, - 1200 mGal above the lower mantle-core transition layer, and -1400 mGal at the crust.

  7. Gravitational energy for GR and Poincaré gauge theories: A covariant Hamiltonian approach

    Chen, Chiang-Mei; Nester, James M.; Tung, Roh-Suan

    2015-08-01

    Our topic concerns a long standing puzzle: The energy of gravitating systems. More precisely we want to consider, for gravitating systems, how to best describe energy-momentum and angular momentum/center-of-mass momentum (CoMM). It is known that these quantities cannot be given by a local density. The modern understanding is that (i) they are quasi-local (associated with a closed 2-surface), (ii) they have no unique formula, (iii) they have no reference frame independent description. In the first part of this work, we review some early history, much of it not so well known, on the subject of gravitational energy in Einstein's general relativity (GR), noting especially Noether's contribution. In the second part, we review (including some new results) much of our covariant Hamiltonian formalism and apply it to Poincaré gauge theories of gravity (PG), with GR as a special case. The key point is that the Hamiltonian boundary term has two roles, it determines the quasi-local quantities, and furthermore, it determines the boundary conditions for the dynamical variables. Energy-momentum and angular momentum/CoMM are associated with the geometric symmetries under Poincaré transformations. They are best described in a local Poincaré gauge theory. The type of spacetime that naturally has this symmetry is Riemann-Cartan spacetime, with a metric compatible connection having, in general, both curvature and torsion. Thus our expression for the energy-momentum of physical systems is obtained via our covariant Hamiltonian formulation applied to the PG.

  8. Gravitational Energy for GR and Poincare Gauge Theories: a Covariant Hamiltonian Approach

    Chen, Chiang-Mei; Tung, Roh-Suan

    2015-01-01

    Our topic concerns a long standing puzzle: the energy of gravitating systems. More precisely we want to consider, for gravitating systems, how to best describe energy-momentum and angular momentum/center-of-mass momentum (CoMM). It is known that these quantities cannot be given by a local density. The modern understanding is that (i) they are quasi-local (associated with a closed 2-surface), (ii) they have no unique formula, (iii) they have no reference frame independent description. In the first part of this work we review some early history, much of it not so well known, on the subject of gravitational energy in Einstein's general relativity (GR), noting especially Noether's contribution. In the second part we review (including some new results) much of our covariant Hamiltonian formalism and apply it to Poincar\\'e gauge theories (GR is a special case). The key point is that the Hamiltonian boundary term has two roles, it determines the quasi-local quantities, and, furthermore it determines the boundary con...

  9. Equation of Motion of a Mass Point in Gravitational Field and Classical Tests of Gauge Theory of Gravity

    WU Ning; ZHANG Da-Hua

    2007-01-01

    A systematic method is developed to study the classical motion of a mass point in gravitational gauge field.First,by using Mathematica,a spherical symmetric solution of the field equation of gravitational gauge field is obtained,which is just the traditional Schwarzschild solution.Combining the principle of gauge covariance and Newton's second law of motion,the equation of motion of a mass point in gravitational field is deduced.Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field,we can discuss classical tests of gauge theory of gravity,including the deflection of light by the sun,the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun.It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.

  10. Reconstruction of regional mean sea level anomalies from tide gauges using the neural network approach

    Wenzel, M.; Schroeter, J.

    2009-04-01

    Regional mean sea level anomalies (SLA) are estimated from tide gauge values directly using the neural network approach. A neural network is an artificial neural system, a computational model inspired by the notion of neurophysical processes. It consists of several processing elements called neurons, which are interconnected with each other exchanging information. In this presentation a backpropagation network (BPN) is used. In this type of network the neurons are ordered into layers: an input layer on the top, one or more hidden layers below and an output layer at the bottom. The connection strength between the neurons are estimated in a training phase, i.e. the BNP learns from given examples. For our purpose 56 tide gauges are selected from the PSMSL data set that comply with the following conditions: 1) there are more than 11 annual mean values given in [1993,2005] 2) more than 50 annual mean values are given in [1900,2007] and 3) the tide gauge is neighboured by at least one ocean point on a 1x1 degree grid. The selected tide gauges are GIA corrected using the Peltier ICE5G_VM4_L90 dataset available on the PSMSL web site. For each ocean region (trop. Indian, ... South Atlantic to Global Ocean) a separate BPN is trained that uses all tide gauges to compute the regional mean SLA's. To avoid possible problems with the local reference frame all computations are done in the space of temporal derivatives. Beyond that, this makes the data more suitable for the BPN because it better limits the possible range of the numerical values. Furthermore, known regional mean target values are needed to train the BPN. These are derived from gridded satellite altimetry data either processed by GFZ Potsdam (TOPEX/Poseidon data only) and/or the dataset available on the CSIRO sea level web side (combined TOPEX and Jason data). Although every tide gauge has more then 50 years of data, many values are missing, especially prior to 1950. To fill these data gaps at the input layer of the

  11. No one-loop gauge anomalies for a Lorentz-violating quantum electrodynamics: evaluation of the three-photon vertex

    Identification of the diagrams that can lead to gauge anomalies in the (minimal) Lorentz- and CPT-violating extension of quantum electrodynamics reveal these to be the electron self-energy and vertex correction (related to the Ward–Takahashi identity), the photon self-energy (related to the vacuum polarization tensor transversality) and the three-photon vertex diagrams. All but the latter were explicitly verified to be free of anomalies to first order in loop expansion. Here we provide this remaining evaluation and verify the absence of anomalies in this process. (paper)

  12. Realistic quantum fields with gauge and gravitational interaction emerge in the generic static structure

    Bashinsky, Sergei

    2015-01-01

    We study a finite basic structure that possibly underlies the observed elementary quantum fields with gauge and gravitational interactions. Realistic wave functions of locally interacting quantum fields emerge naturally as fitting functions for the generic distribution of many quantifiable properties of arbitrary static objects. We prove that in any quantum theory with the superposition principle, evolution of a current state of fields unavoidably continues along alternate routes with every conceivable Hamiltonian for the fields. This applies to the emergent quantum fields too. Yet the Hamiltonian is unambiguous for isolated emergent systems with sufficient local symmetry. The other emergent systems, without specific physical laws, cannot be inhabitable. The acceptable systems are eternally inflating universes with reheated regions. We see how eternal inflation perpetually creates new short-scale physical degrees of freedom and why they are initially in the ground state. In the emergent quantum worlds probabi...

  13. Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation

    Scheck, Florian

    2012-01-01

    The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...

  14. Anomaly-Free Supergravities in Six Dimensions

    Avramis, S D

    2006-01-01

    This thesis reviews minimal N=2 chiral supergravities coupled to matter in six dimensions with emphasis on anomaly cancellation. In general, six-dimensional chiral supergravities suffer from gravitational, gauge and mixed anomalies which render the theories inconsistent at the quantum level. Consistency is restored if the anomalies of the theory cancel via the Green-Schwarz mechanism or generalizations thereof. The anomaly cancellation conditions translate into a certain set of constraints for the gauge group of the theory as well as on its matter content. For the case of ungauged theories these constraints admit numerous solutions but, in the case of gauged theories, the allowed solutions are remarkably few. In this thesis, we examine these anomaly cancellation conditions in detail and we present all solutions to these conditions under certain restrictions on the allowed gauge groups and representations, imposed for practical reasons. We also briefly examine anomaly cancellation in the context of Horava-Witt...

  15. Small-scale structures of dark matter and flux anomalies in quasar gravitational lenses

    Metcalf, R. Benton; Amara, Adam

    2012-02-01

    We investigate the statistics of flux anomalies in gravitationally lensed quasi-stellar objects as a function of dark matter halo properties such as substructure content and halo ellipticity. We do this by creating a very large number of simulated lenses with finite source sizes to compare with the data. After analysing these simulations, we conclude the following. (1) The finite size of the source is important. The point source approximation commonly used can cause biased results. (2) The widely used Rcusp statistic is sensitive to halo ellipticity as well as the lens' substructure content. (3) For compact substructure, we find new upper bounds on the amount of substructure from the fact that no simple single-galaxy lenses have been observed with a single source having more than four well separated images. (4) The frequency of image flux anomalies is largely dependent on the total surface mass density in substructures and the size-mass relation for the substructures, and not on the range of substructure masses. (5) Substructure models with the same size-mass relation produce similar numbers of flux anomalies even when their internal mass profiles are different. (6) The lack of high image multiplicity lenses puts a limit on a combination of the substructures' size-mass relation, surface density and mass. (7) Substructures with shallower mass profiles and/or larger sizes produce less extra images. (8) The constraints that we are able to measure here with current data are roughly consistent with Λ cold dark matter (ΛCDM) N-body simulations.

  16. On loop corrections to string effective field theories: Field-dependent gauge couplings and σ-model anomalies

    We show that certain one-loop corrections to superstring effective four-dimensional lagrangians, involving non-harmonic field-dependent renormalization of gauge couplings, can be consistently written in a standard N=1 supergravity form, preserving target-space duality. The preservation of target-space duality is due both to a four-dimensional Green-Schwarz mechanism and to local terms, coming from non-local chiral superfields, originated by mixed gauge-σ-model anomaly diagrams. In some models, the Green-Schwarz mechanism is sufficient to achieve complete anomaly cancellation. In more general models automorphic functions, generated by the integration over the heavy string modes, are required to preserve target-space duality. (orig.)

  17. Distinguishing anomaly mediation from gauge mediation with a W-ino next-to-lightest supersymmetric particle

    A striking consequence of supersymmetry breaking communicated purely via the superconformal anomaly is that the gaugino masses are proportional to the gauge β functions. This result, however, is not unique to anomaly mediation. We present examples of ''generalized'' gauge-mediated models with messengers in standard model representations that give nearly identical predictions for the gaugino masses, but positive (mass)2 for all sleptons. There are remarkable similarities between an anomaly-mediated model with a small additional universal mass added to all scalars and the gauge-mediated models with a long-lived W-ino next-to-lightest supersymmetric particle, leading to only a small set of observables that provide robust distinguishing criteria. These include ratios of the heaviest to lightest selectrons, smuons, and top squarks. The sign of the gluino soft mass is an unambiguous distinction, but requires measuring a difficult class of one-loop radiative corrections to sparticle interactions. A high precision measurement of the Higgs-boson-b-b(bar sign) coupling is probably the most promising interaction from which this sign might be extracted. (c) 2000 The American Physical Society

  18. Anomalies.

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  19. Does the Neptunian system of satellites challenge a gravitational origin for the Pioneer anomaly?

    Iorio, Lorenzo

    2009-01-01

    If the Pioneer Anomaly was a genuine dynamical effect of gravitational origin, it should also affect the orbital motions of the solar system's bodies moving in the space regions in which the PA manifested itself in its presently known form, i.e. as a constant and uniform acceleration approximately directed towards the Sun with a non-zero magnitude (8.74+/-1.33) x 10^-10 m s^-2 after 20 au from the Sun. We preliminarily investigate its effects on the orbital motions of the Neptunian satellites Triton, Nereid and Proteus, located at about 30 au from the Sun, both analytically and numerically. The analytical calculations show that the PA-induced radial and transverse perturbations of Triton are of the order of a few km yr^-1, those of Nereid are about 10+/-100 km yr^-1, while Proteus experiences radial and transverse shifts of the order of 0.1 km yr^-1. The out-of-plane perturbations are negligible, apart from that of Nereid which amounts to about 20 km yr^-1. The corresponding orbital uncertainties obtained fro...

  20. Gauge theories, time-dependence of the gravitational constant and antigravity in the early universe

    It is shown that the interaction of the gravitational field with matter leads to a strong modification of the effective gravitational constant in the early universe. In certain cases this leads even to the change of sign of the gravitational constant, i.e. to antigravity in the early universe. (orig.)

  1. Hawking radiation from the dilaton-(anti) de Sitter black hole via covariant anomaly

    Han Yi-Wen; Bao Zhi-Qing; Hong Yun

    2009-01-01

    Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton-(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential.

  2. Hawking radiation from the dilaton—(anti) de Sitter black hole via covariant anomaly

    Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton—(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential. (general)

  3. Exact solutions of the SO(3)-Yang-Mills-Higgs-system coupled to gravitation within Poincare gauge theory

    We present new exact spherically symmetric solutions of the Wu-Yang-t'Hooft monopole and Julia-Zee dyon type of the SO(3)-Yang-Mills-(Higgs-)fields coupled to gravitation through a particular quadratic Poincare gauge field theory. The space-time metrics are of the Reissner-Nordstroem, DeSitter, and AntiDeSitter form with non-vanishing torsion always being present. Due to a free function occurring, the solutions given admit arbitrary vector torsion. We conclude that the local Cauchy-Kowalevski problem is not well posed even in the limit of vanishing Yang-Mills and Higgs fields. (author)

  4. BRS cohomology and topological anomalies

    The occurrence of non-abelian anomalies in gauge theories and gravitation, first discovered via perturbative techniques, is now completely explained from the mathematical point of view by means of the family index theorem of Atiyah and Singer. Here we make contact between this approach and BRS cohomology, by showing that they yield the same non-abelian anomalies, provided a certain restriction to ''local'' functionals is not introduced from the very beginning. In particular, this solves the ''unicity'' problem for this kind of anomalies. Local BRS cohomology is still relevant for the abelian case. (orig.)

  5. Heineman Prize Lecture: Anomaly Cancellation: A Retrospective

    Schwarz, John

    2002-04-01

    The mechanism by which gauge and gravitational anomalies cancel in certain string theories is reviewed. A few new tricks are introduced to make the derivation a little simpler, and the string-theoretic interpretation a little clearer, than in the original 1984 work.

  6. Energy-momentum tensor and transformation properties of the gauge potentials in gravitation theory

    Sukhov, Andrei M.

    1991-04-01

    It is shown that the transformation properties of the translational gauge potentials eαi(x), will be chosen in another way [compared with the exposition of Hehl et al., Rev. Mod. Phys. 48, 393 (1976)]. The term containing the total (symmetric) energy-momentum tensor remains in the variation of the action. This approach allows us to change the transformation properties of the gauge potentials and the conservation laws of energy momentum.

  7. AdS solutions in gauge supergravities and the global anomaly for the product of complex two-cycles

    Cohomological methods are applied for the special set of solutions corresponding to rotating branes in arbitrary dimensions, AdS black holes (which can be embedded in ten or eleven dimensions), and gauge supergravities. A new class of solutions is proposed, the Hilbert modular varieties, which consist of the 2n-fold product of the two-spaces Hn /Γ (where Hn denotes the product of n upper half-planes, H 2, equipped with the co-compact action of Γ is contained in SL(2, R)n) and (H n)*/Γ (where (H 2)*=H 2Γ and Γ is a congruence subgroup of SL(2, R) n). The cohomology groups of the Hilbert variety, which inherit a Hodge structure (in the sense of Deligne), are analyzed, as well as bifiltered sequences, weight and Hodge filtrations, and it is argued that the torsion part of the cuspidal cohomology is involved in the global anomaly condition. Indeed, in the presence of the cuspidal part, all cohomology classes can be mapped to the boundary of the space and the cuspidal contribution can be involved in the global anomaly condition. (orig.)

  8. Constraints on Small-Scale Structures of Dark Matter from Flux Anomalies in Quasar Gravitational Lenses

    Metcalf, R Benton

    2010-01-01

    We address the question of whether the LambdaCDM model produces enough substructure in galaxy scale dark matter halos to cause the observed image flux anomalies in lensed QSOs observed in the radio and mid-infrared. We create a very large number of simulated lenses with finite source sizes to compare with the data. After analysing these simulations, our conclusions are: 1) The finite size of the source is important. The point source approximation commonly used can cause large and biased results. 2) When we randomly select lens models that are distorted from a Singular Isothermal Ellipsoid in reasonable ways, but do not contain substructure, the flux anomalies are not reproduced. 3) We find new upper bounds on the amount of substructure from the constraint that no simple single-galaxy lenses have been observed with a single source having more than four well separated images. 4) The lower bound on the amount of substructure is set by the frequency of image flux anomalies and is largely a bound on the surface ma...

  9. A Nonperturbative Regulator for Chiral Gauge Theories

    Grabowska, Dorota M

    2015-01-01

    We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.

  10. Arbitrary parameters in implicit regularization and democracy within perturbative description of 2-dimensional gravitational anomalies

    We show that the Implicit Regularization Technique is useful to display quantum symmetry breaking in a complete regularization independent fashion. Arbitrary parameters are expressed by finite differences between integrals of the same superficial degree of divergence whose value is fixed on physical grounds (symmetry requirements or phenomenology). We study Weyl fermions on a classical gravitational background in two dimensions and show that, assuming Lorentz symmetry, the Weyl and Einstein Ward identities reduce to a set of algebraic equations for the arbitrary parameters which allows us to study the Ward identities on equal footing. We conclude in a renormalization independent way that the axial part of the Einstein Ward identity is always violated. Moreover whereas we can preserve the pure tensor part of the Einstein Ward identity at the expense of violating the Weyl Ward identities we may as well violate the former and preserve the latter

  11. Arbitrary parameters in implicit regularization and democracy within perturbative description of 2-dimensional gravitational anomalies

    Souza, L A M; Nemes, M C; Souza, Leonardo A. M.; Sampaio, Marcos

    2006-01-01

    We show that the Implicit Regularization Technique is useful to display quantum symmetry breaking in a complete regularization independent fashion. Arbitrary parameters are expressed by finite differences between integrals of the same superficial degree of divergence whose value is fixed on physical grounds (symmetry requirements or phenomenology). We study Weyl fermions on a classical gravitational background in two dimensions and show that, assuming Lorentz symmetry, the Weyl and Einstein Ward identities reduce to a set of algebraic equations for the arbitrary parameters which allows us to study the Ward identities on equal footing. We conclude in a renormalization independent way that the axial part of the Einstein Ward identity is always violated. Moreover whereas we can preserve the pure tensor part of the Einstein Ward identity at the expense of violating the Weyl Ward identities we may as well violate the former and preserve the latter.

  12. Anomalies of the Entanglement Entropy in Chiral Theories

    Iqbal, Nabil

    2015-01-01

    We study entanglement entropy in theories with gravitational or mixed U(1) gauge-gravitational anomalies in two, four and six dimensions. In such theories there is an anomaly in the entanglement entropy: it depends on the choice of reference frame in which the theory is regulated. We discuss subtleties regarding regulators and entanglement entropies in anomalous theories. We then study the entanglement entropy of free chiral fermions and self-dual bosons and show that in sufficiently symmetric situations this entanglement anomaly comes from an imbalance in the flux of modes flowing through the boundary, controlled by familiar index theorems. In two and four dimensions we use anomalous Ward identities to find general expressions for the transformation of the entanglement entropy under a diffeomorphism. (In the case of a mixed anomaly there is an alternative presentation of the theory in which the entanglement entropy is not invariant under a U(1) gauge transformation. The free-field manifestation of this pheno...

  13. An anomaly-free model in six dimensions

    We show that a gauged supergravity theory based on E6xE7xU(1) is free of gauge and gravitational anomalies in six dimensions. It compactifies to (Minkowski)4xS2 by the standard monopole mechanism. With a monopole of strength n in E6, the resulting four-dimensional theory exhibits chiral SO(10)xU(1) with 2|n| families (and no antifamilies). Supersymmetry is broken. (author)

  14. The Holographic Weyl anomaly

    Henningson, M; Henningson, Mans; Skenderis, Kostas

    1998-01-01

    We calculate the Weyl anomaly for conformal field theories that can be described via the adS/CFT correspondence. This entails regularizing the gravitational part of the corresponding supergravity action in a manner consistent with general covariance. Up to a constant, the anomaly only depends on the dimension d of the manifold on which the conformal field theory is defined. We present concrete expressions for the anomaly in the physically relevant cases d = 2, 4 and 6. In d = 2 we find for the central charge c = 3 l/ 2 G_N in agreement with considerations based on the asymptotic symmetry algebra of adS_3. In d = 4 the anomaly agrees precisely with that of the corresponding N = 4 superconformal SU(N) gauge theory. The result in d = 6 provides new information for the (0, 2) theory, since its Weyl anomaly has not been computed previously. The anomaly in this case grows as N^3, where N is the number of coincident M5 branes, and it vanishes for a Ricci-flat background.

  15. Interpretation of a short-term anomaly in the gravitational microlensing event MOA-2012-BLG-486

    A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambiguity between the planetary and binary-source interpretations. In this paper, we present the analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive planetary signals.

  16. Measuring the Size of Quasar Broad-Line Clouds Through Time Delay Light-Curve Anomalies of Gravitational Lenses

    Wyithe, S; Wyithe, Stuart; Loeb, Abraham

    2002-01-01

    Intensive monitoring campaigns have recently attempted to measure the time delays between multiple images of gravitational lenses. Some of the resulting light-curves show puzzling low-level, rapid variability which is unique to individual images, superimposed on top of (and concurrent with) longer time-scale intrinsic quasar variations which repeat in all images. We demonstrate that both the amplitude and variability time-scale of the rapid light-curve anomalies, as well as the correlation observed between intrinsic and microlensed variability, are naturally explained by stellar microlensing of a smooth accretion disk which is occulted by optically-thick broad-line clouds. The rapid time-scale is caused by the high velocities of the clouds (~5x10^3 km/s), and the low amplitude results from the large number of clouds covering the magnified or demagnified parts of the disk. The observed amplitudes of variations in specific lenses implies that the number of broad-line clouds that cover ~10% of the quasar sky is ...

  17. Nonperturbative Regulator for Chiral Gauge Theories?

    Grabowska, Dorota M.; Kaplan, David B.

    2016-05-01

    We propose a nonperturbative gauge-invariant regulator for d -dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in d +1 dimensions with quantum gauge fields that reside on one d -dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local d -dimensional interpretation only if the chiral fermion representation is anomaly free. A physical realization of this construction would imply the existence of mirror fermions in the standard model that are invisible except for interactions induced by vacuum topology, and which could gravitate differently than conventional matter.

  18. Nonperturbative Regulator for Chiral Gauge Theories?

    Grabowska, Dorota M; Kaplan, David B

    2016-05-27

    We propose a nonperturbative gauge-invariant regulator for d-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in d+1 dimensions with quantum gauge fields that reside on one d-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local d-dimensional interpretation only if the chiral fermion representation is anomaly free. A physical realization of this construction would imply the existence of mirror fermions in the standard model that are invisible except for interactions induced by vacuum topology, and which could gravitate differently than conventional matter. PMID:27284646

  19. Gravitation

    Without gravity, you would float into space. Gravity pulls matter together: it holds us onto the Earth, it holds the Earth in orbit around the sun and it holds our solar system in orbit about the centre of the galaxy. Everything with mass feels the attraction of gravity. The strength of the attraction between 2 objects depends on their masses. Despite its omnipresence, gravity is the weakest of the 4 forces. It is insignificant at the scale of human beings: when a group of visitors walks past, gravity doesn't pull you towards them! At even smaller scales, the gravitational pull between the electron and the proton is about 1040 times weaker than the electromagnetic attraction between them. Text for the interactive: Why does the same mass weigh more on the Earth than on the moon ?

  20. Quantum Gauge General Relativity

    WU Ning

    2004-01-01

    Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein's field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.

  1. Anomalies and topology

    The lectures given cover the topological effects in gauge field theories, fermionic chiral anomalies, and some relationships between the two. Gauge field theories in three and four space-time dimensions are considered. Topological terms as external U(1) functional gauge potential connections in field space are discussed. Both the structure and physical impact of anomalies are described. 17 refs

  2. A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: Climatology, anomalies and trends

    Elsayed, Ahmed Mohammed Hussain El Kenawy

    2015-05-01

    Many arid and semi-arid regions have sparse precipitation observing networks, which limits the capacity for detailed hydrological modelling, water resources management and flood forecasting efforts. The objective of this work is to evaluate the utility of relatively high-spatial resolution rainfall products to reproduce observed multi-decadal rainfall characteristics such as climatologies, anomalies and trends over Saudi Arabia. Our study compares the statistical characteristics of rainfall from 53 observatories over the reference period 1965-2005, with rainfall data from six widely used gauge-based products, including APHRODITE, GPCC, PRINCETON, UDEL, CRU and PREC/L. In addition, the performance of three global climate models (GCMs), including CCSM4, EC-EARTH and MRI-I-CGCM3, integrated as part of the Fifth Coupled Model Intercomparison Project (CMIP5), was also evaluated. Results indicate that the gauge-based products were generally skillful in reproducing rainfall characteristics in Saudi Arabia. In most cases, the gauge-based products were also able to capture the annual cycle, anomalies and climatologies of observed data, although significant inter-product variability was observed, depending on the assessment metric being used. In comparison, the GCM-based products generally exhibited poor performance, with larger biases and very weak correlations, particularly during the summertime. Importantly, all products generally failed to reproduce the observed long-term seasonal and annual trends in the region, particularly during the dry seasons (summer and autumn). Overall, this work suggests that selected gauge-based products with daily (APHRODITE and PRINCETON) and monthly (GPCC and CRU) resolutions show superior performance relative to other products, implying that they may be the most appropriate data source from which multi-decadal variations of rainfall can be investigated at the regional scale over Saudi Arabia. Discriminating these skillful products is

  3. Gauged $U(1)_{L_\\mu - L_\\tau}$ model in light of muon $g-2$ anomaly, neutrino mass and dark matter phenomenology

    Patra, Sudhanwa; Rao, Soumya; Sahoo, Nirakar; Sahu, Narendra

    2016-01-01

    Gauged $U(1)_{L_\\mu - L_\\tau}$ model has been advocated for a long time in light of muon $g-2$ anomaly, which is a more than $3\\sigma$ discrepancy between the experimental measurement and the standard model prediction. We augment this model with three right-handed neutrinos $(N_e, N_\\mu, N_\\tau)$ and a vector-like singlet fermion $(\\chi)$ to explain simultaneously the non-zero neutrino mass and dark matter content of the Universe, while satisfying anomalous muon $g-2$ constraints. It is shown...

  4. Gauge Model with Massive Gravitons

    WU Ning

    2003-01-01

    Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.

  5. Path integral quantization of gravitational interactions

    Some of the local symmetry properties of quantum field theory in curved space-time and quantized gravitational interactions are discussed. We concentrate on local symmetry properties, and thus the asymptotically flat space-time is assumed, whenever necessary, in the hope that the precise boundary conditions will not modify the short distance structure in quantum theory. We adopt the DeWitt-Faddeev-Popov prescription of the Feynman path integral with a complete gauge fixing. The topics discussed include: (i) A brief review of the path integral derivation of chiral anomalies in flat space-time. (ii) The specification of the gravitational path integral measure, which avoids all the ''fake'' gravitational anomalies, and the applications of this path integral prescription to 1) effective potential in generalized Kaluza-Klein theory, 2) 4-dimensional conformal anomalies, 3) conformal symmetry in pure conformal gravity, 4) bosonic string theory as a gravitational theory in d = 2, 5) Virasoro condition and the Wheeler-DeWitt equation in the path integral formalism, 6) gravitational anomalies and the definition of the energy-momentum tensor. (author)

  6. Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g-2 anomaly.

    Merkel, H; Achenbach, P; Ayerbe Gayoso, C; Beranek, T; Beričič, J; Bernauer, J C; Böhm, R; Bosnar, D; Correa, L; Debenjak, L; Denig, A; Distler, M O; Esser, A; Fonvieille, H; Friščić, I; Gómez Rodríguez de la Paz, M; Hoek, M; Kegel, S; Kohl, Y; Middleton, D G; Mihovilovič, M; Müller, U; Nungesser, L; Pochodzalla, J; Rohrbeck, M; Ron, G; Sánchez Majos, S; Schlimme, B S; Schoth, M; Schulz, F; Sfienti, C; Sirca, S; Thiel, M; Tyukin, A; Weber, A; Weinriefer, M

    2014-06-01

    A massive, but light, Abelian U(1) gauge boson is a well-motivated possible signature of physics beyond the standard model of particle physics. In this Letter, the search for the signal of such a U(1) gauge boson in electron-positron pair production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron is described. Exclusion limits in the mass range of 40  MeV/c^{2} to 300  MeV/c^{2}, with a sensitivity in the squared mixing parameter of as little as ε^{2}=8×10^{-7} are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge boson. PMID:24949757

  7. Search for light massive gauge bosons as an explanation of the $(g-2)_\\mu$ anomaly at MAMI

    Merkel, H; Gayoso, C Ayerbe; Beranek, T; Beričič, J; Bernauer, J C; Böhm, R; Bosnar, D; Correa, L; Debenjak, L; Denig, A; Distler, M O; Esser, A; Fonvieille, H; Friščić, I; de la Paz, M Gómez Rodríguez; Hoek, M; Kegel, S; Kohl, Y; Middleton, D G; Mihovilovič, M; Müller, U; Nungesser, L; Pochodzalla, J; Rohrbeck, M; Ron, G; Majos, S Sánchez; Schlimme, B S; Schoth, M; Schulz, F; Sfienti, C; Širca, S; Thiel, M; Tyukin, A; Weber, A; Weinriefer, M

    2014-01-01

    A massive, but light abelian U(1) gauge boson is a well motivated possible signature of physics beyond the Standard Model of particle physics. In this paper, the search for the signal of such a U(1) gauge boson in electron-positron pair-production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron (MAMI) is described. Exclusion limits in the mass range of 40 MeV up to 300 MeV with a sensitivity in the mixing parameter of down to $\\epsilon^2 = 8\\times 10^{-7}$ are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge boson.

  8. Galilean Anomalies and Their Effect on Hydrodynamics

    Jain, Akash

    2015-01-01

    We extend the null background construction of [arXiv:1505.05677,arXiv:1509.04718] to include torsion and a conserved spin current, and use it to study gauge and gravitational anomalies in Galilean theories coupled to torsional Newton-Cartan backgrounds. We establish that the relativistic anomaly inflow mechanism with an appropriately modified anomaly polynomial, can be used to generate these anomalies. Similar to relativistic case, we find that Galilean anomalies also survive only in even dimensions. Further, these anomalies only effect the gauge and rotational symmetries of a Galilean theory; in particular the Milne boost symmetry remains non-anomalous. We also extend the transgression machinery used in relativistic fluids to fluids on null backgrounds, and use it to determine how these anomalies affect the constitutive relations of a Galilean fluid. Unrelated to Galilean fluids, we propose an analogue of the off-shell second law of thermodynamics for relativistic fluids introduced by [arXiv:1106.0277], to i...

  9. Gravitational interaction of fermion antisymmetric tensor fields

    The coupling is investigated of classical and quantum antisymmetric tensor fields describing fermions with the gauge gravitational field. It is shown that within the framework of the classical Einstein-Cartan theory the new generalized nonlinear fermion theory can be formulated, which turns out to be the correct microscopic description of the Weyssenhoff spinning fluid. The one-loop gravitational counterterms and the conformal stress tensor and the axial vector current anomalies are obtained. The differences between the antisymmetric tensor fermions and the usual Dirac spinor fields are discussed. (author)

  10. Gauge Fixing in the Maxwell Like Gravitational Theory in Minkowski Spacetime and in the Equivalent Lorentzian Spacetime

    da Rocha, Roldao; Rodrigues Jr, Waldyr A.

    2008-01-01

    In a previous paper we investigate a Lagrangian field theory for the gravitational field (which is there represented by a section g^a of the orthonormal coframe bundle over Minkowski spacetime. Such theory, under appropriate conditions, has been proved to be equivalent to a Lorentzian spacetime structure, where the metric tensor satisfies Einstein field equations. Here, we first recall that according to quantum field theory ideas gravitation is described by a Lagrangian theory of a possible m...

  11. Gauged $U(1)_{L_\\mu - L_\\tau}$ model in light of muon $g-2$ anomaly, neutrino mass and dark matter phenomenology

    Patra, Sudhanwa; Sahoo, Nirakar; Sahu, Narendra

    2016-01-01

    Gauged $U(1)_{L_\\mu - L_\\tau}$ model has been advocated for a long time in light of muon $g-2$ anomaly, which is a more than $3\\sigma$ discrepancy between the experimental measurement and the standard model prediction. We augment this model with three right-handed neutrinos $(N_e, N_\\mu, N_\\tau)$ and a vector-like singlet fermion $(\\chi)$ to explain simultaneously the non-zero neutrino mass and dark matter content of the Universe, while satisfying anomalous muon $g-2$ constraints. It is shown that in a large parameter space of this model we can explain positron excess, observed at PAMELA, Fermi-LAT and AMS-02, through dark matter annihilation, while satisfying the relic density and direct detection constraints.

  12. One-loop effective actions and 2D hydrodynamics with anomalies

    We revisit the study of a 2D quantum field theory in the hydrodynamic regime and develop a formalism based on Euclidean one-loop partition functions that is suitable to analyze transport properties due to gauge and gravitational anomalies. To do so, we generalize the method of a modified Dirac operator developed for zero-temperature anomalies to finite temperature, chemical potentials and rotations

  13. Gravitational cubic interactions for a simple mixed-symmetry gauge field in AdS and flat backgrounds

    Boulanger, Nicolas [Service de Mecanique et Gravitation, Universite de Mons-UMONS, 20 Place du Parc, 7000 Mons (Belgium); Skvortsov, E D [P. N. Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow (Russian Federation); Zinoviev, Yu M, E-mail: nicolas.boulanger@umons.ac.be, E-mail: skvortsov@lpi.ru, E-mail: Yurii.Zinoviev@ihep.ru [Institute for High Energy Physics Protvino, Moscow Region 142280 (Russian Federation)

    2011-10-14

    Cubic interactions between the simplest mixed-symmetry gauge field and gravity are constructed in anti-de Sitter (AdS) and flat backgrounds. Non-Abelian cubic interactions are obtained in AdS following various perturbative methods including the Fradkin-Vasiliev construction, with and without Stueckelberg fields. The action that features the maximal number of Stueckelberg fields can be considered in the flat limit without loss of physical degrees of freedom. The resulting interactions in flat space are compared with a classification of vertices obtained via the antifield cohomological perturbative method. It is shown that the gauge algebra becomes Abelian in the flat limit, in contrast to what happens for totally symmetric gauge fields in AdS. (paper)

  14. Geometrical formulation of gauge theories

    We review some basic aspects of the geometry of gauge theories. Particularly, we introduce the concepts gauge potential, field intensity, matter field, gauge groups and symmetry of a physical configuration and we discuss the spontaneous symmetry breaking and the gauge theories of gravitation. 26 refs

  15. Unification of Electromagnetic Interactions and Gravitational Interactions

    Wu, Ning

    2002-01-01

    Unified theory of gravitational interactions and electromagnetic interactions is discussed in this paper. Based on gauge principle, electromagnetic interactions and gravitational interactions are formulated in the same manner and are unified in a semi-direct product group of U(1) Abel gauge group and gravitational gauge group.

  16. Unification of Electromagnetic Interactions and Gravitational Interactions

    WU Ning

    2002-01-01

    Unified theory of gravitational interactions and electromagnetic interactions is discussed in this paper.Based on gauge principle, electromagnetic interactions and gravitational interactions are formulated in the same mannerand are unified in a semi-direct product group of U(1) Abelian gauge group and gravitational gauge group.

  17. Unification of Electromagnetic Interactions and Gravitational Interactions

    WUNing

    2002-01-01

    Unified theory of gravitational interactions and electromagnetic interactions is discussed in this paper.Based on gauge principle,electromagnetic interactions and gravitational interactions are formulated in the same manner and are unified in a semi-direct product group of U(1) Abelian gauge group and gravitational gauge group.

  18. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian gauge theories, and gravitation. 3. ed.; Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation

    Scheck, Florian [Mainz Univ. (Germany). Fachbereich Physik

    2010-07-01

    Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [German] Stringente Darstellung der Feldtheorie, vermittelt den Zusammenhang von der klassischen Elektrodynamik bis zu modernen Eichtheorien. Die kompakte Darstellung ist ideal fuer das Bachelor-Studium. Neues Kapitel zur Allgemeinen Relativitaetstheorie. Vertieft das Erlernte durch zahlreiche Anwendungsbeispiele aus Laserphysik, Metamaterialien uvm. Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation ist der dritte von fuenf Baenden zur Theoretischen Physik von Professor Scheck. Der Zyklus Theoretische Physik umfasst: Band 1: Mechanik. Von den Newtonschen Gesetzen zum deterministischen Chaos. Band 2: Nichtrelativistische Quantentheorie. Vom Wasserstoffatom zu den Vielteilchensystemen. Band 3: Klassische Feldtheorie

  19. Chiral anomaly on a lattice

    Mickelsson, J

    1996-01-01

    A calculation of the chiral anomaly on a finite lattice without fermion doubling is presented . The lattice gauge field is defined in the spirit of noncommutative geometry. Standard formulas for the continuum anomaly are obtained as a limit.

  20. Current commutator anomalies and chiral anomalies in the canonical formalism

    Without recourse to the Bjorken-Johnson-Low (BJL) method, current-current and current-electric-field commutator anomalies are evaluated in chiral gauge theories in two- and four-dimensional spacetime with the help of a gauge covariant regularization method. The results are consistent with previous analyses through the BJL method, and partially confirmed Faddeev's conjecture on the commutator anomalies of the Gauss law constraint operators within the canonical formalism. The chiral anomalies of the current divergence are derived from these commutator anomalies in the Weyl gauge where current-electric-field commutator anomalies play important roles

  1. The conformal anomaly and the neutral currents sector of the Standard Model

    We elaborate on the structure of the graviton-gauge-gauge vertex in the electroweak theory, obtained by the insertion of the complete energy-momentum tensor (T) on 2-point functions of neutral gauge currents (VV'). The vertex defines the leading contribution to the effective action which accounts for the conformal anomaly and related interaction between the Standard Model and gravity. The energy-momentum tensor is derived from the curved spacetime Lagrangian in the linearized gravitational limit, and with the inclusion of the term of improvement of a conformally coupled Higgs sector. As in the previous cases of QED and QCD, we find that the conformal anomaly induces an effective massless scalar interaction between gravity and the neutral currents in each gauge invariant component of the vertex. This is described by the exchange of an anomaly pole. We show that for a spontaneously broken theory the anomaly can be entirely attributed to the poles only for a conformally coupled Higgs scalar. In the exchange of a graviton, the trace part of the corresponding interaction can be interpreted as due to an effective dilaton, using a local version of the effective action. We discuss the implications of the anomalous Ward identity for the TVV' correlator for the structure of the gauge/gauge/effective dilaton vertex in the effective action. The analogy between these effective interactions and those related to the radion in theories with large extra dimensions is pointed out.

  2. Anomalies and gravity

    Mielke, E W

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j_5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four--form F^ F= dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed.

  3. Anomalies and gravity

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed

  4. Cohomology and Topological Anomalies

    Ekstrand, C

    2001-01-01

    The chiral anomaly can be considered as an object defined either on the space of gauge potentials or on the orbit space. We will discuss the relation between the two descriptions. We will also relate to the cohomology of the group of gauge transformations.

  5. Cohomology and Topological Anomalies

    Ekstrand, Christian

    2000-01-01

    The chiral anomaly can be considered as an object defined either on the space of gauge potentials or on the orbit space. We will discuss the relation between the two descriptions. We will also relate to the cohomology of the group of gauge transformations.

  6. Analogue of the Witten effect in the Poincare gauge theory of gravity

    The gravitational contribution to the chiral anomaly is analysed in the framework of the Poincare gauge theory. It is shown that an additional CP-violating term 8*RR in the effective Lagrangian is equivalent to a shift in the mass of the Taub-NUT metric as felt by fermions. This analogue of the Witten effect is discussed in conjunction with the appearance of torsion in recently found exact solutions. (author)

  7. Renormalizable Quantum Gauge Theory of Gravity

    WU Ning

    2002-01-01

    The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.

  8. Gravitation and electromagnetism

    B. G. Sidharth

    2002-01-01

    Maxwell's equations comprise both electromagnetic and gravitational fields. The transverse part of the vector potential belongs to magnetism, the longitudinal one is concerned with gravitation. The Coulomb gauge indicates that longitudinal components of the fields propagate instantaneously. The delta-function singularity of the field of the divergence of the vector potential, referred to as the dilatation center, represents an elementary agent of gravitation. Viewing a particle as a source or...

  9. The Holographic Supercurrent Anomaly

    Chaichian, Masud

    2004-01-01

    The \\gamma-trace anomaly of supersymmetry current in a supersymmetric gauge theory shares a superconformal anomaly multiplet with the chiral R-symmetry anomaly and the Weyl anomaly, and its holographic reproduction is a valuable test to the AdS/CFT correspondence conjecture. We investigate how the \\gamma-trace anomaly of the supersymmetry current of {\\cal N}=1 four-dimensional supersymmetric gauge theory in an {\\cal N}=1 conformal supergravity background can be extracted out from the ${\\cal N}=2$ gauged supergravity in five dimensions. It is shown that the reproduction of this super-Weyl anomaly originates from the following two facts: First the {\\cal N}=2 bulk supersymmetry transformation converts into {\\cal N}=1 superconformal transformation on the boundary, which consists of {\\cal N}=1 supersymmetry transformation and special conformal supersymmetry (or super-Weyl) transformation; second the supersymmetry variation of the bulk action of five-dimensional gauged supergravity is a total derivative. The non-co...

  10. Testing local Lorentz invariance with gravitational waves

    Kostelecký, V. Alan; Mewes, Matthew

    2016-06-01

    The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.

  11. Testing local Lorentz invariance with gravitational waves

    Kostelecky, Alan; Mewes, Matthew

    2016-01-01

    The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.

  12. Anomaly Constraints on Monopoles and Dyons

    Csaki, Csaba; Terning, John; Shirman, Yuri

    2010-01-01

    Fermions with magnetic charges can contribute to anomalies. We derive the axial anomaly and gauge anomalies for monopoles and dyons, and find eight new gauge anomaly cancelation conditions in a general theory with both electric and magnetic charges. As a byproduct we also extend the Zwanziger two-potential formalism to include the theta parameter, and elaborate on the condition for CP invariance in theories with fermionic dyons.

  13. Ward identities and gauge independence in general chiral gauge theories

    Anselmi, Damiano

    2015-01-01

    Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized $\\Gamma $ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized $\\Gamma $ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on...

  14. Theory of gravitational interactions

    Gasperini, Maurizio

    2013-01-01

    This reference textbook is an up-to-date and self-contained introduction to the theory of gravitational interactions. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field. A second, advanced part then discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap which is present in the context of the traditional approach to general relativity, and which usually makes students puzzled about the role of gravity. The necessary notions of differential geometry are reduced to the minimum, leaving more room for those aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. Theory of Gravitational Interactions will be o...

  15. Gauge Model Based on Group G×SU(2)

    ZET Gheorg-he; MANTA Vasile; POPA Camelia

    2008-01-01

    We present a model of gauge theory based on the symmetry group G×SU(2) where G is the gravitational gauge group and SU(2) is the internal group of symmetry.We employ the spacetime of four-dimensional Minkowski,endowed with spherical coordinates,and describe the gauge fields by gauge potentials.The corresponding strength field tensors are calculated and the field equations are written.A solution of these equations is obtained for the case that the gauge potentials have a particular form with spherical symmetry.The solution for the gravitational potentials induces a metric of Schwarzschild type on the gravitational gauge group space.

  16. Black hole spectra in holography: Consequences for equilibration of dual gauge theories

    Alex Buchel

    2015-07-01

    Full Text Available For a closed system to equilibrate from a given initial condition there must exist an equilibrium state with the energy equal to the initial one. Equilibrium states of a strongly coupled gauge theory with a gravitational holographic dual are represented by black holes. We study the spectrum of black holes in Pilch–Warner geometry. These black holes are holographically dual to equilibrium states of strongly coupled SU(N N=2⁎ gauge theory plasma on S3 in the planar limit. We find that there is no energy gap in the black hole spectrum. Thus, there is a priori no obstruction for equilibration of arbitrary low-energy states in the theory via a small black hole gravitational collapse. The latter is contrasted with phenomenological examples of holography with dual four-dimensional CFTs having non-equal central charges in the stress–energy tensor trace anomaly.

  17. Anomalies and elliptic operators

    The coefficients of asymptotic expansion Spexp(-tA) at t→0 are calculated for the quantum field theory operators. It is shown how to apply these results to the calculations of axial and conformal anomalies, the charge renormalization in gauge theory and effective action in twodimensional electrodynamics

  18. Nucleonic gauges

    Techniques employed in nuclear gauges for the measurement of level, thickness, density and moisture are described. The gauges include both transmission and backscatter gauges and utilize alpha particles, beta particles, neutrons or gamma radiation

  19. How to test gravitation theories by means of gravitational-wave measurements

    Thorne, K. S.

    1974-01-01

    Gravitational-wave experiments are a potentially powerful tool for testing gravitation theories. Most theories in the literature predict rather different polarization properties for gravitational waves than are predicted by general relativity; and many theories predict anomalies in the propagation speeds of gravitational waves.

  20. Observational manifestations of anomaly inflow

    Boyarsky, Alexey; Ruchayskiy, Oleg; Shaposhnikov, Mikhail

    2005-01-01

    In theories with chiral couplings, one of the important consistency requirements is that of the cancellation of a gauge anomaly. In particular, this is one of the conditions imposed on the hypercharges in the standard model. However, anomaly cancellation condition of the standard model looks unnatural from the perspective of a theory with extra dimensions. Indeed, if our world were embedded into an odd-dimensional space, then the full theory would be automatically anomaly-free. In this paper ...

  1. To theory of gravitational interaction

    Minkevich, A. V.

    2008-01-01

    Some principal problems of general relativity theory and attempts of their solution are discussed. The Poincare gauge theory of gravity as natural generalization of Einsteinian gravitation theory is considered. The changes of gravitational interaction in the frame of this theory leading to the solution of principal problems of general relativity theory are analyzed.

  2. Path Integrals and Anomalies in Curved Space

    Bastianelli and van Nieuwenhuizen's monograph 'Path Integrals and Anomalies in Curved Space' collects in one volume the results of the authors' 15-year research programme on anomalies that arise in Feynman diagrams of quantum field theories on curved manifolds. The programme was spurred by the path-integral techniques introduced in Alvarez-Gaume and Witten's renowned 1983 paper on gravitational anomalies which, together with the anomaly cancellation paper by Green and Schwarz, led to the string theory explosion of the 1980s. The authors have produced a tour de force, giving a comprehensive and pedagogical exposition of material that is central to current research. The first part of the book develops from scratch a formalism for defining and evaluating quantum mechanical path integrals in nonlinear sigma models, using time slicing regularization, mode regularization and dimensional regularization. The second part applies this formalism to quantum fields of spin 0, 1/2, 1 and 3/2 and to self-dual antisymmetric tensor fields. The book concludes with a discussion of gravitational anomalies in 10-dimensional supergravities, for both classical and exceptional gauge groups. The target audience is researchers and graduate students in curved spacetime quantum field theory and string theory, and the aims, style and pedagogical level have been chosen with this audience in mind. Path integrals are treated as calculational tools, and the notation and terminology are throughout tailored to calculational convenience, rather than to mathematical rigour. The style is closer to that of an exceedingly thorough and self-contained review article than to that of a textbook. As the authors mention, the first part of the book can be used as an introduction to path integrals in quantum mechanics, although in a classroom setting perhaps more likely as supplementary reading than a primary class text. Readers outside the core audience, including this reviewer, will gain from the book a

  3. Gauge-invariance in one-loop quantum cosmology

    Vasilevich, D V

    1995-01-01

    We study the problem of gauge-invariance and gauge-dependence in one-loop quantum cosmology. We formulate some requirements which should be satisfied by boundary conditions in order to give gauge-independent path integral. The case of QED is studied in some detail. We outline difficulties in gauge-invariant quantization of gravitational field in a bounded region.

  4. Local Poincaré Symmetry in Gauge Theory of Gravity

    MA Jian-Feng; MA Yong-Ge

    2009-01-01

    It is well known that the Poincaré gauge theories of gravity do not have the structure of a standard gauge theory. Nevertheless, we show that a general form of action for the gravitational gauge fields in the gauge theory does possess local Poincaré invariance.

  5. Methods of Contemporary Gauge Theory

    Makeenko, Yuri

    2005-11-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  6. Ward identities and gauge independence in general chiral gauge theories

    Anselmi, Damiano

    2015-07-01

    Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized Γ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized Γ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.

  7. Anomaly poles as common signatures of chiral and conformal anomalies

    One feature of the chiral anomaly, analyzed in a perturbative framework, is the appearance of massless poles which account for it. They are identified by a spectral analysis of the anomaly graph and are usually interpreted as being of an infrared origin. Recent investigations show that their presence is not just confined in the infrared, but that they appear in the effective action under the most general kinematical conditions, even if they decouple in the infrared. Further studies reveal that they are responsible for the non-unitary behaviour of these theories in the ultraviolet (UV) region. We extend this analysis to the case of the conformal anomaly, showing that the effective action describing the interaction of gauge fields with gravity is characterized by anomaly poles that give the entire anomaly and are decoupled in the infrared (IR), in complete analogy with the chiral case. This complements a related analysis by Giannotti and Mottola on the trace anomaly in gravity, in which an anomaly pole has been identified in the corresponding correlator using dispersion theory in the IR. Our extension is based on an exact computation of the off-shell correlation function involving an energy-momentum tensor and two vector currents (the gauge-gauge-graviton vertex) which is responsible for the appearance of the anomaly.

  8. Gravitational Model of the Three Elements Theory

    Frederic Lassiaille

    2012-01-01

    The gravitational model of the three elements theory is an alternative theory to dark matter. It uses a modification of Newton’s law in order to explain gravitational mysteries. The results of this model are explanations for the dark matter mysteries, and the Pioneer anomaly. The disparity of the gravitational constant measurements might also be explained. Concerning the Earth flyby anomalies, the theoretical order of magnitude is the same as the experimental one. A very small change of the p...

  9. Toward a gauge field theory of gravity.

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  10. Reissner-Nordstr(o)m-de-Sitter-type Solution by a Gauge Theory of Gravity

    V. Enache; Camelia Popa; V. P(a)un; M. Agop

    2008-01-01

    We use the theory based on a gravitational gauge group (Wu's model) to obtain a spherical symmetric solution of the field equations for the gravitational potential on a Minkowski spacetime. The gauge group, the gauge covariant derivative, the strength tensor of the gauge field, the gauge invariant Lagrangean with the cosmological constant, the field equations of the gauge potentials with a gravitational energy-momentum tensor as well as with a tensor of the field of a point like source are determined. Finally, a Reissner-Nordstr(o)m-de Sitter-type metric on the gauge group space is obtained.

  11. Energy-Momentum and Gauge Conservation Laws

    Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.

    1998-01-01

    We treat energy-momentum conservation laws as particular gauge conservation laws when generators of gauge transformations are horizontal vector fields on fibre bundles. In particular, the generators of general covariant transformations are the canonical horizontal prolongations of vector fields on a world manifold. This is the case of the energy-momentum conservation laws in gravitation theories. We find that, in main gravitational models, the corresponding energy-momentum flows reduce to the...

  12. Anomalies, Becchi-Rouet-Stora cohomology, and effective theories

    A survey is made of the known Becchi-Rouet-Stora (BRS) cohomology and potential anomalies in ''nonrenormalizable'' effective gauge theories with and without supersymmetry. The probable existence of higher-dimension Abelian anomalies is mentioned. Supersymmetric theories have complicated BRS cohomology, but at least for N=1 and D=4, it appears that this does not give rise to corresponding anomalies so long as the gauge anomalies are eliminated

  13. The "Parity" Anomaly On An Unorientable Manifold

    Witten, Edward

    2016-01-01

    The "parity" anomaly -- more accurately described as an anomaly in time-reversal or reflection symmetry -- arises in certain theories of fermions coupled to gauge fields and/or gravity in a spacetime of odd dimension. The "parity" anomaly has traditionally been studied on orientable manifolds only, but recent developments involving topological superconductors have made it clear that one can get more information by asking what happens on an unorientable manifold. In this paper, we analyze the "parity" anomaly for fermions coupled to gauge fields and gravity in $2+1$ dimensions. We consider applications to gapped boundary states of a topological superconductor and to M2-branes in string/M-theory.

  14. Gauge parameter dependence in gauge theories (revised: subsection 2.3)

    Kraus, E; Sibold, K.

    1994-01-01

    Dependence on the gauge parameters is an important issue in gauge theories: physical quantities have to be independent. Extending BRS transformations by variation of the gauge parameter into a Grassmann variable one can control gauge parameter dependence algebraically. As application we discuss the anomaly coefficient in the Slavnov-Taylor identity, $S$-matrix elements, the vector two-point-function and the coefficients of renormalization group and Callan-Symanzik equation.

  15. Gravity, Gauge Theories and Geometric Algebra

    Lasenby, Anthony; Doran, Chris; Gull, Stephen

    2004-01-01

    A new gauge theory of gravity is presented. The theory is constructed in a flat background spacetime and employs gauge fields to ensure that all relations between physical quantities are independent of the positions and orientations of the matter fields. In this manner all properties of the background spacetime are removed from physics, and what remains are a set of `intrinsic' relations between physical fields. The properties of the gravitational gauge fields are derived from both classical ...

  16. Anomalous transport due to scale anomaly

    Chernodub, M.N.

    2016-01-01

    We show that the scale anomaly in field theories leads to new anomalous transport effects that emerge in external electromagnetic field in inhomogeneous gravitational background. In inflating geometry the QED scale anomaly generates electric current which flows in opposite direction with respect to background electric field. In static spatially inhomogeneous gravitational background the dissipationless electric current flows transversely both to the magnetic field axis and to the gradient of ...

  17. Anomalous transport due to scale anomaly

    Chernodub, M N

    2016-01-01

    We show that the scale anomaly in field theories leads to new anomalous transport effects that emerge in external electromagnetic field in inhomogeneous gravitational background. In inflating geometry the QED scale anomaly generates electric current which flows in opposite direction with respect to background electric field. In static spatially inhomogeneous gravitational background the dissipationless electric current flows transversely both to the magnetic field axis and to the gradient of the inhomogeneity. The anomalous currents are proportional to the beta function of the theory.

  18. Scalar Gravitational Waves

    Mottola, Emil

    2016-03-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.

  19. Low-scale gauge mediation with a 100 TeV gravitino

    Asano, Masaki; Nakai, Yuichiro; Yokozaki, Norimi

    2016-03-01

    We propose a new framework of low-scale gauge-mediated supersymmetry (SUSY) breaking with a gravitino mass of O(100 ) TeV . The usual 4D gauge mediation models predict a light gravitino and suffer from cosmological problems. In our framework, a heavy gravitino in gauge mediation is realized with a flat extra dimension, whose compactification scale is around the grand unified theory scale. Superparticle masses of the visible sector from gravity/anomaly mediation are suppressed, and they are purely generated by the usual gauge mediation on the visible brane. Importantly, the Higgs Bμ-term vanishes at the leading order, which enables us to obtain the suitable μ -Bμ relation for the electroweak symmetry breaking. We discuss such models considering two possibilities of the SUSY breaking source: (1) Scherk-Schwarz SUSY breaking which we call Scherk-Schwarz gauge mediation and (2) gravitational SUSY breaking localized on a hidden brane. In case (2), the cosmological moduli problem may be relaxed as well.

  20. Low-Scale Gauge Mediation with a 100 TeV Gravitino

    Asano, Masaki; Yokozaki, Norimi

    2015-01-01

    We propose a new framework of low-scale gauge-mediated supersymmetry (SUSY) breaking with a gravitino mass of O(100) TeV. The usual 4D gauge mediation models predict a light gravitino and suffer from cosmological problems. In our framework, a heavy gravitino in gauge mediation is realized with a flat extra-dimension, whose compactification scale is around the grand unified theory scale. Superparticle masses of the visible sector from gravity/anomaly mediation are suppressed, and they are purely generated by usual gauge mediation on the visible brane. Importantly, the Higgs Bmu-term vanishes at the leading order, which enables us to obtain the suitable mu-Bmu relation for the electroweak symmetry breaking. We discuss such models considering two possibilities of the SUSY breaking source: 1) Scherk-Schwarz SUSY breaking which we call Scherk-Schwarz Gauge Mediation and 2) gravitational SUSY breaking localized on a hidden brane. In the case 2), the cosmological moduli problem may be relaxed as well.

  1. 引力的Weyl—U(1)规范场理论及其宇宙%The WeyI-U(1) Gauge field theory of gravitation and it's universe

    郭巍; 郭应焕; 郭振华

    2012-01-01

    By analyzing the general theory of relativity does not naturally given that the gravitational field (as substance) of the energy and momentum of these important physical quantities. Relativity system is underdetermined problem, since the system has no definite solution. It is the theory, and other forms of interaction more independent impede the unity of the four interactions. In order to overcome these difficulties, the Weyl-U(1)gauge field theory of gravity is given. In the same approximation gives consistent results and general relativity, and more concise expression , a model of the universe is gotten .there are some new ideas of space and time. These possible applications are discussed for some mysterious nature phenomena which are never explained.%通过分析认为广义相对论不能自然地给出引力场(作为物质)的能量、动量这些重要的物理量。广义相对论体系是欠定问题,在自系统无定解。它和其他相互作用的理论形式较独立,有碍四种相互作用的统一。为了克服这些困难,本文提出了引力的Weyl-U(1)规范场理论。在相同近似下给出的结果和广义相对论一致,而表达方式更简明。文中得到一个宇宙模型,对时空有一些新观点。还提出了本理论对自然界一些解释不了的神秘现象的可能应用。

  2. Lattice regularization of chiral gauge theories to all orders of perturbation theory

    Lüscher, Martin

    2000-01-01

    In the framework of perturbation theory, it is possible to put chiral gauge theories on the lattice without violating the gauge symmetry or other fundamental principles, provided the fermion representation of the gauge group is anomaly-free. The basic elements of this construction (which starts from the Ginsparg-Wilson relation) are briefly recalled and the exact cancellation of the gauge anomaly, at any fixed value of the lattice spacing and for any compact gauge group, is then proved rigoro...

  3. Quaternion gauge theory of dyonic fields

    Outlining the idea of quaternion non-Abelian gauge formalism and that of the structural symmetry between generalized fields of dyons and gravito-dyons, it is shown that this formulation characterizes the Abelian and non-Abelian structure of dyons in terms of pure real and imaginary unit quaternions. Extending this formalism to the case of gravito-dyons it has been shown that pure imaginary unit quaternions advocate the curvature in the theory of gravito-dyons and hence the SL(2,c) gauge group of gravitation plays the same role as that of SU(2) gauge group does in non-Abelian gauge theory. Furthermore, we have unified the theories of electromagnetism and gravitation in terms of single parameter α by means of quaternion-gauge formalism and the corresponding field equations have also been derived in a unique and consistent way. (author)

  4. Quaternion gauge theory of dyonic fields

    Bisht, P.S. (Kumaun Univ., Almora (India). Dept. of Physics); Negi, O.P.S.; Rajput, B.S.

    1991-01-01

    Outlining the idea of quaternion non-Abelian gauge formalism and that of the structural symmetry between generalized fields of dyons and gravito-dyons, it is shown that this formulation characterizes the Abelian and non-Abelian structure of dyons in terms of pure real and imaginary unit quaternions. Extending this formalism to the case of gravito-dyons it has been shown that pure imaginary unit quaternions advocate the curvature in the theory of gravito-dyons and hence the SL(2,c) gauge group of gravitation plays the same role as that of SU(2) gauge group does in non-Abelian gauge theory. Furthermore, we have unified the theories of electromagnetism and gravitation in terms of single parameter {alpha} by means of quaternion-gauge formalism and the corresponding field equations have also been derived in a unique and consistent way. (author).

  5. Gauge and Einstein Gravity from Non-Abelian Gauge Models on Noncommutative Spaces

    Vacaru, Sergiu I.

    2000-01-01

    Following the formalism of enveloping algebras and star product calculus we formulate and analyze a model of gauge gravity on noncommutative spaces and examine the conditions of its equivalence to general relativity. The corresponding Seiberg-Witten maps are established which allow the definition of respective dynamics for a finite number of gravitational gauge field components on noncommutative spaces.

  6. Small neutrino masses from gravitational θ -term

    Dvali, Gia; Funcke, Lena

    2016-06-01

    We present how a neutrino condensate and small neutrino masses emerge from a topological formulation of gravitational anomaly. We first recapitulate how a gravitational θ -term leads to the emergence of a new bound neutrino state analogous to the η' meson of QCD. Then we show the consequent formation of a neutrino vacuum condensate, which effectively generates small neutrino masses. Afterwards we outline numerous phenomenological consequences of our neutrino mass generation model. The cosmological neutrino mass bound vanishes since we predict the neutrinos to be massless until the phase transition in the late Universe, T ˜meV . Coherent radiation of new light particles in the neutrino sector can be detected in prospective precision experiments. Deviations from an equal flavor rate due to enhanced neutrino decays in extraterrestrial neutrino fluxes can be observed in future IceCube data. These neutrino decays may also necessitate modified analyses of the original neutrino spectra of the supernova SN 1987A. The current cosmological neutrino background only consists of the lightest neutrinos, which, due to enhanced neutrino-neutrino interactions, either bind up, form a superfluid, or completely annihilate into massless bosons. Strongly coupled relic neutrinos could provide a contribution to cold dark matter in the late Universe, together with the new proposed particles and topological defects, which may have formed during neutrino condensation. These enhanced interactions could also be a source of relic neutrino clustering in our Galaxy, which possibly makes the overdense cosmic neutrino background detectable in the KATRIN experiment. The neutrino condensate provides a mass for the hypothetical B -L gauge boson, leading to a gravity-competing force detectable in short-distance measurements. Prospective measurements of the polarization intensities of gravitational waves can falsify our neutrino mass generation model.

  7. Anomaly-induced charges in baryons

    Eto, Minoru; Hashimoto, Koji; Iida, Hideaki; Ishii, Takaaki; Maezawa, Yu

    2011-01-01

    We show that quantum chiral anomaly of QCD in magnetic backgrounds induces a novel structure of electric charge inside baryons. To illustrate the anomaly effect, we employ the Skyrme model for baryons, with the anomaly-induced gauged Wess-Zumino term (\\pi_0 + (multi-pion)) E_i B_i. Due to this term, the Skyrmions giving a local pion condensation ((\\pi_0 + (multi-pion)) \

  8. Solution to the Cosmological Constant Problem by Gauge Theory of Gravity

    WU Ning; Germano Resconi; ZHENG Zhi-Peng; XU Zhan; ZHANG Da-Hua; RUAN Tu-Nan

    2003-01-01

    Based on geometry picture of gravitational gauge theory, the cosmological constant is determined theoreti-cally. The cosmological constant is related to the average energy density of gravitational gauge field. Because the energydensity of gravitational gauge field is negative, the cosmological constant is positive, which generates repulsive force onstars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude of theorder of about 10-52m-2, which is well consistent with experimental results.

  9. Spin and orbital angular momentum of the tensor gauge field

    Chen, Xiang-Song; Zhu, Ben-Chao; Murchadha, Niall Ó

    2011-01-01

    Following the recent studies of the trickiness in spin and orbital angular momentum of the vector gauge fields, we perform here a parallel analysis for the tensor gauge field, which has certain relation to gravitation. Similarly to the vector case, we find a nice feature that after removing all gauge degrees of freedom the angular momentum of the tensor gauge field vanishes for a stationary system. This angular momentum also shows a one-parameter invariance over the infinitely many ways of co...

  10. Entropy for gravitational Chern-Simons terms by squashed cone method

    Guo, Wu-zhong

    2015-01-01

    In this paper we investigate the entropy of gravitational Chern-Simons terms for the horizon with non-vanishing extrinsic curvatures, or the holographic entanglement entropy for arbitrary entangling surface. In 3D we find no anomaly of entropy appears. But the squashed cone method can not be used directly to get the correct result. For higher dimensions the anomaly of entropy would appear, still, we can not use the squashed cone method directly. That is becasuse the Chern-Simons action is not gauge invariant. To get a reasonable result we suggest two methods. One is by adding a boundary term to recover the gauge invariance. This boundary term can be derived from the variation of the Chern-Simons action. The other one is by using the Chern-Simons relation $d\\bm{\\Omega_{4n-1}}=tr(\\bm{R}^{2n})$. We notice that the entropy of $tr(\\bm{R}^{2n})$ is a total derivative locally, i.e. $S=d s_{CS}$. We propose to identify $s_{CS}$ with the entropy of gravitational Chern-Simons terms $\\Omega_{4n-1}$. In the first method ...