WorldWideScience

Sample records for gamma-ray irradiated elastomer

  1. Detecting onset of chain scission and crosslinking of gamma-ray irradiated elastomer surfaces using frictional force microscopy

    Banerjee, S.(Tata Institute of Fundamental Research-HECR, Mumbai, India); Sinha, N K; Gayathri, N.; Ponraju, D; Dash, S.; Tyagi, A. K.; Raj, Baldev

    2005-01-01

    We report here that atomic force microscope (AFM) in frictional force mode can be used to detect onset of chain scission and crosslinking in polymeric and macromolecular samples upon irradiation. A systematic investigation to detect chain scission and crosslinking of two elastomers: (1) Ethylene-propylene-diene monomer rubber (EPDM) and (2) Fluorocarbon rubber (FKM) upon gamma-ray irradiation has been carried out using frictional force microscopy (FFM). From the AFM results we observed that b...

  2. Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly (ether-block-amide) thermoplastic elastomers.

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2013-01-01

    Both gamma ray and electron beam irradiation are widely used as a means of medical device sterilisation. However, it is known that the radiation produced by both processes can lead to undesirable changes within biomedical polymers. The main objective of this research was to conduct a comparative study on the two key radiosterilisation methods (gamma ray and electron beam) in order to identify the more detrimental process in terms of the mechanical, structural, chemical and thermal properties of a common biomedical grade polymer. Poly (ether-block-amide) (PEBA) was prepared by injection moulding ASTM testing specimens and these were exposed to an extensive range of irradiation doses (5-200 kGy) in an air atmosphere. The effect of varying the irradiation dose concentration on the resultant PEBA properties was apparent. For instance, the tensile strength, percentage elongation at break and shore D hardness can be increased/decreased by controlling the aforementioned criteria. In addition, it was observed that the stiffness of the material increased with incremental irradiation doses as anticipated. Melt flow index demonstrated a dramatic increase in the melting strength of the material indicating a sharp increase in molecular weight. Conversely, modulated differential scanning calorimetry established that there were no significant alterations to the thermal transitions. Noteworthy trends were observed for the dynamic frequency sweeps of the material, where the crosslink density increased according to an increase in electron beam irradiation dose. Trans-vinylene unsaturations and the carbonyl group concentration increased with an increment in irradiation dose for both processes when observed by FTIR. The relationship between the irradiation dose rate, mechanical properties and the subsequent surface properties of PEBA material is further elucidated throughout this paper. This study revealed that the gamma irradiation process produced more adverse effects in the PEBA

  3. Gamma-ray spectroscopy on irradiated fuel rods

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  4. Gamma ray irradiation for sludge solubilization and biological nitrogen removal

    This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewage sludge. The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. The gamma ray irradiation showed effective sludge solubilization efficiencies. Both soluble chemical oxygen demand (SCOD) and biochemical oxygen demand (BOD5) increased by gamma ray irradiation. The feasibility of the solubilized sludge carbon source for a biological nitrogen removal was also investigated. A modified continuous bioreactor (MLE process) for a denitrification was operated for 20 days by using synthetic wastewater. It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal. - Research highlights: → This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewagesludge. → The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. → It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal.

  5. Effect of gamma ray irradiation on sodium borate single crystals

    Kalidasan, M.; Asokan, K.; Baskar, K.; Dhanasekaran, R.

    2015-12-01

    In this work, the effects of 5 kGy, 10 kGy and 20 kGy doses of gamma ray irradiation on sodium borate, Na2[B4O5(OH)4]·(H2O)8 single crystals have been studied. Initially these crystals were grown by solution growth technique and identified as monoclinic using X-ray diffraction analysis. X-ray rocking curves confirm the formation of crystalline defects due to gamma rays in sodium borate single crystals. The electron paramagnetic resonance spectra have been recorded to identify the radicals created due to gamma ray irradiation in sodium borate single crystals. The thermoluminescence glow curves due to the defects created by gamma rays in this crystal have been observed and their kinetic parameters were calculated using Chen's peak shape method. The optical absorption increases and photoluminescence spectral intensity decreases for 5 kGy and 20 kGy doses gamma ray irradiated crystals compared to pristine and 10 kGy dose irradiated one. The effect of various doses of gamma rays on vibrational modes of the sodium borate single crystals was studied using FT-Raman and ATR-FTIR spectral analysis. The dielectric permittivity, conductance and dielectric loss versus frequency graphs of these crystals have been analyzed to know the effect of gamma ray irradiation on these parameters.

  6. Inactivation of citrus tristeza virus by gamma ray irradiation

    The total exposure of gamma ray and the intensity of gamma ray per hour for the inactivation of citrus tristeza virus (CTV) and also the effect on citrus tissues are described. The budwoods of Morita navel orange infected with a severe seedling-yellow strain of CTV were irradiated with gamma ray from a 60Co source for 20 -- 52 hours. The buds or small tissue pieces of the irradiated budwoods were subsequently grafted onto Mexcan lime. CTV was easily inactivated by the irradiation from 10 to 18 kR for from 20 to 52 hours. The higher the total exposure, the higher the rate of inactivation. The CTV in the budwoods was almost inactivated after the irradiation with 20 kR. When the total exposure to gamma ray on budwoods was the same, CTV was more efficiently inactivated by the irradiation for long period with low intensity of gamma ray per hour than that for short period with high intensity per hour. Gamma ray irradiation was effective to eliminate CTV from citrus tissues. (Mori, K.)

  7. Gamma-ray irradiation tests of High-Tc SQUID

    Gamma-ray irradiation tests of High-Tc SQUIDs were carried out to examine their workability in nuclear reactor environments. The SQUIDs were made of a HoBa2Cu3O7-x superconductive thin film on SrTiO3 substrates. Some were encapsulated in separate cases of glass-fiber-rein-forced epoxy resin. Gamma-ray irradiation was performed with a Co-60 gamma-ray source. Irradiation dose rates were (8.1 to 12.2) x 103 Gy/h (i.e., (1.0 to 1.5) x 106 R/h), and the maximum absorption dose was about 10.4 MGy. During and after irradiation, noises of SQUIDs were measured with a power spectrum analyzer. Changes in modulation voltage were also investigated. No gamma-ray induced noise was observed during irradiation. The noise level and modulation voltage did not change until a total irradiation dose of about 3 MGy, and after that it decreased slightly. We concluded that the tested high-Tc SQUIDs are very resistant to gamma-ray irradiation, and thus the application of high-Tc SQUIDs in inspection of reactor components seems promising. (author)

  8. Thermal decomposition of ammonium perchlorate during gamma-ray irradiation

    To assess radiation damage effects in propellants, pyrotechnics, and similar materials, thermal decomposition measurements were made on ammonium perchlorate powders and crystals during gamma-ray irradiation. Gas evolution studies were made on single crystals and powders of ammonium perchlorate, both at room temperature and at 2270C. The results are discussed. (U.S.)

  9. Influence of gamma ray irradiation on metakaolin based sodium geopolymer

    Effects of gamma irradiation on metakaolin based Na-geopolymer have been investigated by external irradiation. The experiments were carried out in a gamma irradiator with 60Co sources up to 1000 kGy. Various Na-geopolymer with three H2O/Na2O ratios have been studied in terms of hydrogen radiolytic yield. The results show that hydrogen production increases linearly with water content. Gamma irradiation effects on Na-geopolymer microstructure have been investigated with porosity measurements and X-ray pair distribution function analysis. A change of pore size distribution and a structural relaxation have been found after gamma ray irradiation

  10. Degradation of dibutyl phthalate in water by the aid of metals under {gamma}-ray irradiation

    Yoshida, Tomoko; Tanabe, Tetsuo [Nagoya Univ., Center for Integrated Research in Science and Engineering, Nagoya, Aichi (Japan); Miyashita, Yoshinori; Yoshida, Hisao; Hattori, Tadashi [Nagoya Univ., Department of Applied Chemistry, Nagoya, Aichi (Japan)

    2001-09-01

    The degradation of dibutyl phthalate (DBP), one of endocrine disrupters, by {gamma}-ray irradiation was enhanced by the effective energy conversion of {gamma}-ray through the interaction with some kind of metal materials. (author)

  11. Apoptosis and necrosis in testes irradiated with gamma rays

    The present study focused on sub-microscopical investigation of apoptotic and necrotic cells in the testes of dogs subjected to single local irradiation with gamma rays at three different doses, 1.5 Gy, 3 Gy and 4 Gy, on days 1, 15, 30, 45, 120 and 150 after irradiation. On day 1 after irradiation, no necrotic cells were observed in the testicular tissue. The first cells in which apoptosis was observed on days 15 and 30 after irradiation with the lower dose were spermatogonia, spermatocytes and round spermatids. These cells showed morphological changes typical of apoptosis. Their depletion was observed on day 45 after irradiation and they were found in the lumen of seminiferous tubuli. Some dead cells were eliminated from seminiferous tubuli by phagocytosis by means of Sertoli cells. After irradiation with higher doses of gamma rays some cells of seminiferous epithelium showed morphological signs of apoptosis while other manifested necrosis. Sertoli cells and Leydig cells were considerably resistant to radiation. However, after irradiation with the highest dose of 4 Gy sporadic cells showed signs of apoptosis. On day 120 after irradiation the testes contained no necrotic cells and by day 150 spermiogenesis was recovered. (authors)

  12. Thermoluminescence of Simulated Interstellar Matter after Gamma-ray Irradiation

    Koike, K; Koike, C; Okada, M; Chihara, H

    2002-01-01

    Interstellar matter is known to be strongly irradiated by radiation and several types of cosmic ray particles. Simulated interstellar matter, such as forsterite $\\rm Mg_{2}SiO_{4}$, enstatite $\\rm MgSiO_{3}$ and magnesite $\\rm MgCO_{3}$ has been irradiated with the $\\rm ^{60}Co$ gamma-rays in liquid nitrogen, and also irradiated with fast neutrons at 10 K and 70 K by making use of the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL. Maximum fast neutron dose is $10^{17}n_f{\\rm /cm^{2}}$). After irradiation, samples are stored in liquid nitrogen for several months to allow the decay of induced radioactivity. We measured the luminescence spectra of the gamma ray irradiated samples during warming to 370K using a spectrophotometer. For the forsterite and magnesite, the spectra exhibit a rather intense peak at about 645 -- 655 nm and 660 nm respectively, whereas luminescence scarcely appeared in olivine sample. The spectra of forsterite is very similar to the ERE of the Red Rectangle.

  13. Synergistic effects of neutron and gamma ray irradiation of a commercial CHMOS microcontroller

    This paper presents the experimental results of a combined irradiation environment of neutron and gamma rays on 80C196KC20, which is a 16-bit high performance member of the MCS96 microcontroller family. The electrical and functional tests were made in three irradiation environments: neutron, gamma rays, combined irradiation of neutron and gamma rays. The experimental results show that the neutron irradiation can affect the total ionizing dose behaviour. Compared with the single radiation environment, the microcontroller exhibits considerably more severe degradation in neutron and gamma ray synergistic irradiation. This phenomenon may cause a significant hardness assurance problem. (condensed matter: structure, thermal and mechanical properties)

  14. A commercial gamma-ray irradiation plant in Japan

    In 1973, a commercial gamma-ray irradiation plant was constructed in Takasaki, about 100 km north of Tokyo. The plant has been used for both production of irradiated commercial products and irradiation services. The irradiation services are being made available for sterilization of both medical appliances such as disposable medical syringes, catheters, surgical sutures, and sterilization of feed stuffs for animals. Treatment of plastic materials and colouring of both crystals and glass wares are also undertaken. This facility can accommodate 600 kCi of 60Co and has a monthly treating capacity of 12,000 packages ( a standard carton of 340 mm x 400 mm x 500 mm) at an irradiation dose of 1 Mrad/hr. A receiving port for packages is on the second floor and the outlet of the irradiated packages on the first floor, with three lines of connecting loop conveyors between them, and the irradiation compartment in the center section. The space arrangement of the facility is well designed and gravity can be utilized for the transportation of the packages. Polymer impregnated coral is put on the market for ornamental building material on an order contract basis. (author)

  15. Gamma-ray Irradiation Induces Useful Morphological Variation in Bermudagrass

    Songul SEVER MUTLU

    2015-12-01

    Full Text Available Bermudagrass, Cynodon dactylon (L. Pers. is a widely used warm-season turfgrass species in warmer regions of the world. Gamma (ɣ irradiation has been used to generate useful variations in turfgrass breeding for various morphological traits. The objective of the present study was to measure and determine variations in morphology and turfgrass characteristics of a native drought resistant bermudagrass germplasm irradiated with 70, 90 or 110 Gy using a 60Co source. The stolons containing a single node were irradiated and immediately planted for regeneration in a greenhouse at the Akdeniz University, Antalya, Turkey. Selected mutants regenerated from the irradiated stolons were clonally propagated and transplanted into plastic pots for further observations of turfgrass characteristics.  Survival rates of stolons exposed to 70, 90 and 110 Gy were 76%, 43% and 17% respectively, 6 weeks after treatment. Dosages of 85 and 57 Gy were determined as LD50 and LD20 for the cuttings, respectively. The linear reduction of survival rate with increasing gamma-rays was highly correlated (r2=0.99. A total of four mutant lines (0.3 % of the irradiated plants showed a distinct dwarfed growth habit. Three of these lines were originated from 70 Gy and one from 110 Gy. These mutant lines exhibited more dwarf growth habit, higher shoot density, finer leaf texture than parental genotype. Mutant lines developed in this study can be used for the development of improved bermudagrass cultivars for landscaping and sports turf.

  16. Gamma Rays Irradiation Effects on Polysulfones at Elevated Temperature

    Polysulfone has excellent mechanical and thermal properties. Its application covers a wide rage such as nuclear facilities and space environment. The radiation chemical scheme on polysulfone is not well established as it undergoes both scission and cross-linking. In this study, the temperature dependence of the irradiation effect on polysulfone was studied by measuring glass transition temperature, gel fraction, molecular weight and gas evolution. Polysulfone film of 50 micrometer thickness was irradiated with gamma rays at dose rate of 5-7 kGy/h to absorbed dose of 0.1-4 MGy under vacuum in glass ampoules at room temperature, 100, 150, 180, 210 degree. Glass transition temperature (Tg) measured with differential scanning calorimeter lowered with dose upon irradiation at room temperature and 100 centigrade, though Tg rose upon irradiation above 180 centigrade, respectively. Gel fraction in chloroform at room temperature was measured. Pristine polysulfone is soluble to chloroform but after irradiation it formed gel. The decrease of gel dose, and the increase of gel fraction were observed with elevation of irradiation temperature. The number average molecular weight measured with gel permeation chromatography decreased with dose at irradiation temperatures except for 210 degree, where slight increase was observed. On the other hand, weight average molecular weight increased at all temperatures. The molecular weight distribution changed towards lower direction and became broad at all cases examined. These results indicate that the predominant scheme is scission but simultaneous cross-linking occurs, especially at elevated temperature. The probability of the cross-linking was increased by irradiation at elevated temperature above 180 degree, though the probability of main chain scission was not changed very much. The yield of evolution of total gas, CO, CO2 and SO2 gases increased at elevated temperature, while yield of evolved H2 was independent of irradiation

  17. Water radiolysis in a crack tip under gamma ray irradiation

    Under a non-irradiation condition, oxidant, e.g., O2 and H2O2, in a crack tip is supplied from the bulk water. But under irradiation conditions, even if the diffusion of radiolytic species is not sufficient, direct radiolysis in the crack tip causes high concentrations of radiolytic species. As a result of measurements and Monte Carlo calculation of gamma ray energy deposition, it has been confirmed that the energy deposition rate in the gap water is larger than that in the bulk water. The energy absorption rate increases as the gap width decreases and reaches 1.3 times that in the bulk water. In order to evaluate crack propagation rate for irradiation assisted stress corrosion cracking (IASCC) of stainless steel, a water radiolysis model in a crevice is proposed. A larger energy deposition rate in the crevice water produces many more radiolytic species, which causes high oxidant concentrations in spite of enhanced recombination of the species at the crevice inner surface. So, for IASCC evaluation, crevice water chemistry plays an important role to determine the crack propagation rate under irradiation. (authors)

  18. Effect of gamma-ray irradiation on starch in sweet popato roots

    Starch contents, as well as the size and molecular weight, in sweet potato roots decreased during steerage at 30 degrees C after gamma-ray irradiation, accompanying the increase of sucrose content. No change in the starch and sucrose contents was observed in unirradiated specimens. By microscopy damaged starch granules were observed only in gamma-ray irradiated root. The results suggested that starch was converted into sucrose unirradiated sweet potato roots by the enzymes responsible for starch-sugar interconversion of which the activities were enhanced by gamma-ray irradiation

  19. Chromatographic study of gamma-ray irradiated degradation of chlorinated hydrocarbon in water

    Degradation of chlorinated hydrocarbon in gamma ray irradiation was examined in order to get information on treatment of groundwater. Water chloroform was sealed into a vial irradiated with gamma ray. Both gas chromatography and ion chromatography were applied for determination of degradation products. Carbon dioxide, carbon monoxide, methane, ethane and chloride ion were detected in the irradiated system. Effect of radiation dose on the gamma ray induced chloroform degradation was investigated. The elimination of chloride ion and the degradation of chloroform were promoted by gamma irradiation in a dose-dependent manner. The G(CHCl3), which was defined as the number of degraded chloroform molecules when absorbed 100eV, was inferred to be 3.1. The degradation mechanism of chloroform irradiated with gamma ray seemed to involve that chloroform reacted with electron from radiolysis of water and the elimination of chloride ion occurred. (author)

  20. Assays of residual antibiotics after treatment of {gamma}-ray and UV irradiation

    Shin, Ji Hye; Nam, Ji Hyun; Lee, Dong Hun [Chungbuk National University, Cheongju (Korea, Republic of); Yu, Seung Ho; Lee, Myun Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-03-15

    The pollution of antibiotics is a major cause of spreading antibiotics resistant bacteria in the environment. Applications of ozonation, UV, and {gamma}-ray irradiations have been introduced to remove antibiotics in the effluents from wastewater treatment system. In this study, we compared the chemical (HPLC) and biological (antimicrobial susceptibility test, AMS) assays in measuring of the concentrations of residual antibiotics after {gamma}-ray and UV irradiation. Most samples were degraded by {gamma}-ray irradiation (1 {approx} 2 kGy). However, lincomycin and tetracycline were not degraded by UV irradiation. The concentration of residual antibiotics, that was treated with {gamma}-ray and UV irradiation, measuring by bioassay was similar to HPLC. The concentrations of {gamma}-ray irradiated cephradine measured by AMS test were 2 times higher than of HPLC assay, indicating AMS test is more sensitive than HPLC assay. These results indicate that {gamma}-ray irradiation technique is more useful than UV irradiation, and biological assay is more useful to detect the antibiotics and toxic intermediates in antibiotics degradation.

  1. Gamma-ray irradiation tests of CMOS sensors used in imaging techniques

    Cappello Salvatore G.; Pace Calogero; Parlato Aldo; Rizzo Salvatore; Tomarchio Elio

    2014-01-01

    Technologically-enhanced electronic image sensors are used in various fields as diagnostic techniques in medicine or space applications. In the latter case the devices can be exposed to intense radiation fluxes over time which may impair the functioning of the same equipment. In this paper we report the results of gamma-ray irradiation tests on CMOS image sensors simulating the space radiation over a long time period. Gamma-ray irradiation tests were carrie...

  2. Application of nondestructive gamma-ray and neutron techniques for the safeguarding of irradiated fuel materials

    Nondestructive gamma-ray and neutron techniques were used to characterize the irradiation exposures of irradiated fuel assemblies. Techniques for the rapid measurement of the axial-activity profiles of fuel assemblies have been developed using ion chambers and Be(γ,n) detectors. Detailed measurements using high-resolution gamma-ray spectrometry and passive neutron techniques were correlated with operator-declared values of cooling times and burnup

  3. Electrical conduction and photoresponses of gamma-ray-irradiated single-stranded DNA/single-walled carbon nanotube composite systems

    Hong, W.; Lee, E.M.; Kim, D.W.; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr

    2015-04-15

    Highlights: •Effects of gamma-ray irradiation on single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. •Barrier for thermally activated conduction in the composite systems modified by the gamma-ray irradiation. •Photoresponses reveal photoexcitation and oxygen photodesorption modified by gamma-ray irradiation. -- Abstract: Effects of gamma-ray irradiation on the electrical conductivity and photoresponse have been studied for single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. The temperature-dependent electrical conductivity of the ssDNA/SWNT composite films, well described by a fluctuation-induced tunneling model, indicated modification of the barrier for thermally activated conduction by the gamma-ray irradiation. Besides, the photoresponse measurements indicated modified photoexcited charge carrier generation and oxygen photodesorption in the composite systems due to the gamma-ray irradiation.

  4. The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers

    Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted on PAN-based intermediate modulus carbon fibers to investigate the structure and surface hydrophilicity of the carbon fibers before and after gamma irradiation. Two methods were used to determine Young’s modulus of the carbon fibers. The results show that gamma ray irradiation improved the degree of graphitization and introduced compressive stress into carbon fiber surface. Gamma ray also improved the carbon fiber surface hydrophilicity through increasing the value of O/C and enhancing the quantity of oxygen functional groups on carbon fibers. No distinct morphology change was observed after gamma ray irradiation. The Young’s modulus of the fibers increased with increasing irradiation dose

  5. The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers

    Li, Bin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Feng, Yi, E-mail: fyhfut@163.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Qian, Gang; Zhang, Jingcheng [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhuang, Zhong; Wang, Xianping [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-11-15

    Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted on PAN-based intermediate modulus carbon fibers to investigate the structure and surface hydrophilicity of the carbon fibers before and after gamma irradiation. Two methods were used to determine Young’s modulus of the carbon fibers. The results show that gamma ray irradiation improved the degree of graphitization and introduced compressive stress into carbon fiber surface. Gamma ray also improved the carbon fiber surface hydrophilicity through increasing the value of O/C and enhancing the quantity of oxygen functional groups on carbon fibers. No distinct morphology change was observed after gamma ray irradiation. The Young’s modulus of the fibers increased with increasing irradiation dose.

  6. Suppressing effect of low-dose gamma-ray irradiation on collagen-induced arthritis

    We previously reported attenuation of autoimmune disease by low-dose gamma-ray irradiation in MRL-lpr/lpr mice. Here, we studied the effect of low-dose gamma-ray irradiation on collagen-induced arthritis (CIA) in DBA/1J mice. Mice were immunized with type II collagen, and exposed to low-dose gamma-rays (0.5 Gy per week for 5 weeks). Paw swelling, redness, and bone degradation were suppressed by irradiation, which also delayed the onset of pathological change and reduced the severity of the arthritis. Production of tumor necrosis factor-alpha, interferon-gamma, and interleukin-6, which play important roles in the onset of CIA, was suppressed by the irradiation. The level of anti-type II collagen antibody, which is essential for the onset of CIA, was also lower in irradiated CIA mice. The population of plasma cells was increased in CIA mice, but irradiation blocked this increase. Since regulatory T cells are known to be involved in suppression of autoimmune disease, the population of CD4+CD25+Foxp3+ regulatory T cells was measured. Intriguingly, a significant increase of these regulatory T cells was found in irradiated CIA mice. Overall, our data suggest that low-dose gamma-ray irradiation could attenuate CIA through suppression of pro-inflammatory cytokines and autoantibody production, and induction of regulatory T cells. (author)

  7. Effect of gamma ray irradiation on seed germination of Ardisia crenata

    The seeds of Ardisia crenata were used as experimental material and treated with gamma ray under the irradiative doses ranging from 50∼500 Gy. The results showed that the seed germination rates were not affected under the irradiative dose of 150 Gy and below. The germination potentiality turned to reduce while the irradiative dose was higher than 250 Gy. And in the range of 300∼500 Gy the germination rates were decreased with the increase of the irradiative dose. (authors)

  8. The Cellular Differences between Acute and Chronic Neutron and Gamma-Ray Irradiation in Mice

    Data on the shortening of the life span in mice by radiation show that an acute dose of gamma-rays may be as much as four times as effective as an equal dose of the same radiation administered chronically. However, for neutrons, chronic and acute administrations are equally effective. An analysis of these effects shows that for gamma-rays a certain fraction of the radiation injury is reparable, and that the value of this fraction depends on the dose and the dose rate. With neutrons, none of the damage appears reparable. For acute irradiation, the RBE is about 2 for shortening of the life span, but for chronic, may be as high as 8. Chromosome aberrations have been scored in liver cells of mice when treated with both chronic and acute doses of both gamma-rays and thermal neutrons. In all cases the percentage of aberrent cells is proportional to the shortening of the life span produced by the treatment. Further, with neutrons, acute and chronic irradiation is equally effective in producing chromosome abberations. For gamma-rays, acute irradiation may produce as much as four times the chromosomal damage as does chronic irradiation. This shows that some chromosomes can heal themselves following small doses of gamma-rays, but there is no chromosome healing following any dose of neutrons. The RBE using chromosome aberrations as a criterion is the same as for life shortening. These results give a firm cellular basis for the known biological differences between gamma rays and neutrons, and in addition give strong support to the concept that natural and radiation-induced aging are caused by spontaneous and radiation-induced mutations, respectively, in the somatic cells of animals. (author)

  9. Mutation induction in Philippine bananas c.v. 'Lakatan' thru gamma ray irradiation

    Banana is the most important crop grown in the Philippines. Among the cultivars grown, 'Lakatan' is the most popular and commands a higher price in the local market. Despite high production, losses due to over ripening, bruising and short shelf life is one of the major constraints in a successful banana industry. The use of chemicals for delayed ripening however, remains an issue of concern due to economic and organic products advocacy. Thus, development and generation of new improved 'Lakatan' cultivar through gamma ray irradiation was carried out. Mutation was induced in 'Lakatan', a popular Philippine cultivar using gamma ray irradiation. Radio sensitivity was established at 50Gy. Morphological, cytological and molecular analysis done showed significant variations between the irradiated samples and the non-irradiated plants. In terms of morphological parameters, gamma ray irradiation affected leaf traits resulting to increased leaf width, leaf length, and number of leaves. Stem girth on the other hand was significantly reduced. Cytological observations showed that gamma irradiation increased the epidermal width, leaf thickness and size of stomates but reduced the number of stomates. For post harvest attributes, gamma irradiation prolonged the shelf life of banana fruits from 11 days to 14 days. Molecular analysis showed that some markers (RAPD and AFLP) were able to detect unique bands in samples irradiated with 50Gy while the SSR markers did not detect any band difference between the irradiated samples and the control. (author)

  10. Performance analysis of gamma-ray-irradiated color complementary metal oxide semiconductor digital image sensors

    The performance parameters of dark output images captured from color complementary metal oxide semiconductor (CMOS) digital image sensors before and after gamma-ray irradiation were studied. The changes of red, green and blue color parameters of dark output images with different gamma-ray doses and exposure times were analyzed with our computer software. The effect of irradiation on the response of blue color was significantly affected at a lower dose. The dark current density of the sensors increases by three orders at > 60 krad compared to that of unirradiated sensors. The maximum and minimum analog output voltages all increase with irradiation doses, and are almost the same at > 120 krad. The signal to noise ratio is 48 dB before irradiation and 35 dB after irradiation of 180 krad. The antiradiation threshold for these sensors is about 100 krad. The primary explanation for the changes and the degradation of device performance parameters is presented. (author)

  11. Influence of irradiation of gamma-ray on the pulping and paper making, (2)

    In kraft pulping and neutral sulphite pulping of gamma-ray irradiated chips, the influence of irradiation on the defiberability of the yielded pulps were investigated. The results were summerized as follows: 1) In kraft pulping, the defiberability becomes inferior by the irradiation of 5 x 105R. 2) In neutral sulphite pulping, the defiberability seems to become somewhat better by the irradiation of 106R. And kapper number does not change within the area of the high pulp yield but it becomes smaller according to the decrease of the total pulping yield by the irradiation of 106R, in comparison with the case of no-irradiation. (author)

  12. Effect of gamma-ray irradiation on cord blood lymphocyte proliferation and NK cell activity

    Objective: To investigate the effects of gamma-ray irradiation on cord blood lymphocyte proliferation and NK cell activity. Methods: Freshly isolated mononuclear cells from human cord blood were irradiated with different doses (0.248-15.872 Gy) of gamma-rays. The lymphocyte proliferation and NK cell activity were measured using 3H-TdR incorporation assay and 3H-TdR release assay, respectively. Results: In dose range of 0.248-15.872 Gy, lymphocyte proliferation was inhibited and the inhibition rate was positively correlated with the irradiation dose(r=0.839, P<0.05). Lymphocyte proliferation was not found in dose range of 3.968-15.872 Gy. Irradiation doses from 0.248 to 1.984 Gy could enhance NK cell activity. The activity of NK cells was reserved after irradiated with 3.968 Gy. Within the dose range of 5.952-15.872 Gy, NK cell activity was significantly inhibited. Conclusion: Lymphocyte proliferation is inhibited and the activity of NK cell is reserved when irradiated with the dose of 3.968 Gy gamma-rays. So if the lymphocytes are irradiated with such a dose before donor lymphocytes infusion or mix-cord blood transplantation, the effect of graft versus host disease (GVHD) could be decreased whereas the effect of graft versus leukemia (GVL) reaction could be reserved simultaneously during adoptive cellular immunotherapy. (authors)

  13. Effects of gamma-ray irradiation on leaching of simulated 133Cs+ radionuclides from geopolymer wasteforms

    Highlights: • γ-ray irradiation caused more Cs+ leaching out from geopolymer wasteform. • Pore structure change induced by irradiation caused the increase of leachability. • Fly-ash-based geopolymer is a potential material for radionuclide immobilization. - Abstract: Leaching of simulated 133Cs+ radionuclides from geopolymer wasteforms was examined with regard to effects from gamma-ray irradiation. Specifically, the compressive strengths, microstructures, pore structures, and leaching resistance of geopolymer wasteforms before and after irradiation were characterized. The leaching experiments were performed by immersion of wasteforms in deionized water, ground water, and seawater. It was found that gamma rays did not produce significant morphological changes, except for changes in the pore size distribution. The cumulative leaching fraction of all the leachants from the irradiated samples increased relative to the non-radiated samples, particularly during long leaching periods (11–42 days). These results, and those from a mercury intrusion porosimeter analysis, can be attributed to irradiation-induced changes in pore structure. All the leaching indexes were greater than the minimum acceptable value of 6.0 set by the American Nuclear Society Standards committee, which indicated that the fly-ash geopolymers are suitable for radionuclide immobilization. However, the effects of gamma-ray irradiation on the immobilization of radionuclides cannot be ignored

  14. Studies of Gamma-Ray-Irradiated Human Immunoglobulin G

    Freeze-dried IgG with incomplete anti-Rh0(D) activity retained its reactivity after irradiation with a dose of 1.5 - 2.5 Mrad γ-rays. A portion of the irradiated protein was insoluble. Gel-filtration on Sephadex G-200 indicated the presence of aggregated IgG in addition to the non-aggregated form. Proteolytic experiments revealed an altered digestibility of the protein with papain after irradiation. (author)

  15. Germination Viability of Maize M1 Seeds (Zea mays L.) after Gamma Ray Irradiation

    Rafiuddin; Dahlan, Dahliana; Musa, Yunus; Rasyid, Burhanuddin; BDR, Muh. Farid

    2013-01-01

    A series of researches was carried out to obtain mutant of maize induced by gamma rays irradiation. This initial report was from a study confirming the best dosage of irradiation at 50% lethal dosage (LD50) conducted at the Laboratory of Seed Science and Technology, Faculty of Agriculture, Hasanuddin University, Makassar from March to June 2012. The research was set up using split plot design of the Randomized Complete Block design. Data were analyzed using analysis of variance...

  16. Effects of gamma-ray irradiation on cellulase secretion of Trichoderma reesei

    Trichoderma reesei was irradiated with gamma rays to investigate the effects of different dosages on cellulase production. Doses above 0.7 kGy induced cell lysis. Cell growth began to be obstructed at 2.0 kGy. As a result, the cells irradiated at 2.0 kGy secreted 1.8 times as much cellulase as the untreated cells

  17. Gamma ray irradiated silicon nanowires: An effective model to investigate defects at the interface of Si/SiOx

    The effect of gamma ray irradiation on silicon nanowires was investigated. Here, an additional defect emerged in the gamma-ray-irradiated silicon nanowires and was confirmed with electron spin resonance spectra. 29Si nuclear magnetic resonance spectroscopy showed that irradiation doses had influence on the Q4 unit structure. This phenomenon indicated that the unique core/shell structure of silicon nanowires might contribute to induce metastable defects under gamma ray irradiation, which served as a satisfactory model to investigate defects at the interface of Si/SiOx

  18. Gamma ray irradiated silicon nanowires: An effective model to investigate defects at the interface of Si/SiOx

    Yin, Kui; Zhao, Yi; Liu, Liangbin; Lee, Shuit-Tong; Shao, Mingwang, E-mail: wxlthefirst@gmail.com, E-mail: xuegi@nju.edu.cn, E-mail: mwshao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and Collaborative Innovation, Center of Suzhou Nano Science and Technology, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123 (China); Wang, Xiaoliang, E-mail: wxlthefirst@gmail.com, E-mail: xuegi@nju.edu.cn, E-mail: mwshao@suda.edu.cn; Xue, Gi, E-mail: wxlthefirst@gmail.com, E-mail: xuegi@nju.edu.cn, E-mail: mwshao@suda.edu.cn [State Key Laboratory of Co-ordination Chemistry, Department of Polymer Science and Engineering, Nanjing University, No. 20, Hankou Road, Nanjing 210093 (China)

    2014-01-20

    The effect of gamma ray irradiation on silicon nanowires was investigated. Here, an additional defect emerged in the gamma-ray-irradiated silicon nanowires and was confirmed with electron spin resonance spectra. {sup 29}Si nuclear magnetic resonance spectroscopy showed that irradiation doses had influence on the Q{sup 4} unit structure. This phenomenon indicated that the unique core/shell structure of silicon nanowires might contribute to induce metastable defects under gamma ray irradiation, which served as a satisfactory model to investigate defects at the interface of Si/SiOx.

  19. Modified the optical and electrical properties of CR-39 by gamma ray irradiation

    A.M. Abdul-Kader

    2014-07-01

    Full Text Available The radiation technique is a useful technology technique to induce suitable modifications of the polymeric materials. In the present work, poly allyl diglycol carbonate (CR-39 solid state nuclear track detector samples were irradiated using different doses (150–950 kGy of gamma ray irradiations. The effect of gamma ray irradiations on the optical and electrical, properties of CR-39 was investigated. The obtained results showed a decrease in the optical energy gap with increasing the gamma dose. Increase in the numbers of carbon atoms (N in a formed cluster with increasing the irradiation dose was observed. Meanwhile, an increase in the Ac conductivity was obtained with increasing the gamma dose. Also, the variation in the dielectric constant and loss with irradiation dose was studied at the room temperature. The results indicate that the gamma ray irradiations in the dose range 150–950 kGy enhance the optical and electrical properties of the CR-39 polymer samples.

  20. Qualities of Patin Fishball Irradiated by Gamma Rays (60Co)

    An experiment on patin fishball quality using gamma irradiation (60Co) has been conducted. Samples were irradiated at 0, 1, 3 and 5 kGy and stored in refrigerator at temperature 10 oC for sixty days. Samples were analysed every fifteen days, except content of fat and protein that analysed only at the beginning and the end of storage. The purpose of this experiment is to know the quality changes of patin fishball irradiated during storage, by measuring of chemical (content of fat, protein, water, TVB value, pH value) and microbiology (TPC aerobic and anaerobic bacteria) changes. The results showed that irradiation did not affect macro nutrient contents (content of fat, protein and water) of patin fishball during storage but irradiation can affect TVB and pH values. Irradiation at 1 kGy can reduce one logarithmic cycle of total aerobic and anaerobic bacteria. The storage life of irradiated patin fishball treated at 1, 3 and 5 kGy could be extended up to 15, 30 and 60 days, respectively. Control samples the storage life could be extended less than 15 days. (author)

  1. Physico-chemical characterization of gamma rays irradiated crotamine

    Ionizing radiation can change the molecular structure and affect the biological properties of biomolecules. It has been employed to attenuate animal toxins. Crotamine, a toxin from Crotalus durissus terrificus (Cdt), is a highly basic polypeptide (pI - 10.3), with myotoxic activity and molecular weight of 4882 Da. It is composed of 42 amino acids residues and reticulated by three disulfide bonds. This study aimed the characterization of irradiated crotamine using Circular Dichroism (CD), Fluorescence Spectroscopy and Differential Scanning Calorimetry (DSC) techniques. We used size exclusion and ion-exchange chromatography to purify it from Cdt crude venom. The pure crotamine was irradiated with 2.0 kGy from a 60Co source. Native and irradiated crotamine were analyzed in a fluorescence spectrophotometer (Hitachi F-4500), under excitation wavelength at 275 nm and the emission was scanned from 300 to 500 nm. The analysis of fluorescence quenching showed that the irradiated form displayed a lower quantum yield when compared to the native form. CD spectra, obtained from a Jasco, J-180 spectropolarimeter, of native and irradiated crotamine solutions, showed a discrete change between the samples, from apparently ordered conformation to a random coil. Finally, the thermodynamics analysis, realized in a calorimeter METTLER TOLEDO, DSC 822e, showed that irradiation promoted changes in the calorimetric profile. Our results indicate that irradiation leads to progressive changes in the structure of the toxin, which could explain the decrease in myotoxic activity. (author)

  2. Selection of variants with high levels of biotin from cultured green Lavandula vera cells irradiated with gamma rays

    Cultured green Lavandula vera cells were irradiated with various dosages of gamma rays which increased the variation in the amount of free biotin produced by the cell clones. Variant sublines containing much more free biotin than the original line were obtained by repeated selection. The effectiveness of gamma rays for the induction of the variant sublines is described

  3. Low temperature gamma-ray irradiation effects on polymer materials

    The gamma radiation induced degradation of glass fiber reinforced plastic (GFRP) and polymethylmethacrylate (PMMA) at 77K was examined by flexural test and gas analysis after irradiation and compared by the irradiation at room temperature. The decrease in flexural strength at break was much less at 77K than at RT. The evolution of CH4, CO and CO2 was also depressed at 77K. The temperature dependence of the degradation closely relates to the local molecular motion of matrix resin during irradiation. Polytetrafluoroethylene (PTFE) was also studied by irradiation at RT, 77K and 4K in terms of tensile elongation and molecular weight. The degradation was much less at 77K and 4K than at RT, and the same between 77K and 4K. (author)

  4. Sensitivity of P-Channel MOSFET to X- and Gamma-Ray Irradiation

    Milić Pejović

    2013-01-01

    Full Text Available Investigation of Al-gate p-channel MOSFETs sensitivity following irradiation using 200 and 280 kV X-ray beams as well as gamma-ray irradiation of 60Co in the dose range from 1 to 5 Gy was performed in this paper. The response followed on the basis of threshold voltage shift and was studied as a function of absorbed dose. It was shown that the most significant change in threshold voltage was in the case of MOSFET irradiation in X-ray fields of 200 kV and when the gate voltage was +5 V. For practical applications in dosimetry, the sensitivity of the investigated MOSFETs was also satisfactory for X-ray tube voltage of 280 kV and for gamma rays. Possible processes in gate oxide caused by radiation and its impact on the response of MOSFETs were also analyzed in this paper.

  5. Gamma-ray irradiation induced bulk photochromism in WO3-P2O5 glass

    Shen, Wei; Baccaro, Stefania; Cemmi, Alessia; Xu, Xiaoqing; Chen, Guorong

    2015-11-01

    In the present work, photochromism of WO3-P2O5 glass under gamma-ray irradiation was reported. As-prepared glass samples with different WO3 content are all optically transparent in the visible wavelength range thanks to the addition of a small amount of oxidizing couple Sb2O3-NaNO3. The photochromic properties are identified by transmission spectra of the glasses before and after irradiation. The results show that the irradiation induced darkening results from the reduction of W6+ to W5+ or W4+. The existence of WO6 clusters in glasses of high WO3 content is proved by XPS, which is the main reason for the obvious photochromic effects. The WO3-P2O5 glass is a promising candidate in gamma-ray sensitive detector.

  6. Gamma-ray irradiation tests of CMOS sensors used in imaging techniques

    Cappello Salvatore G.

    2014-01-01

    Full Text Available Technologically-enhanced electronic image sensors are used in various fields as diagnostic techniques in medicine or space applications. In the latter case the devices can be exposed to intense radiation fluxes over time which may impair the functioning of the same equipment. In this paper we report the results of gamma-ray irradiation tests on CMOS image sensors simulating the space radiation over a long time period. Gamma-ray irradiation tests were carried out by means of IGS-3 gamma irradiation facility of Palermo University, based on 60Co sources with different activities. To reduce the dose rate and realize a narrow gamma-ray beam, a lead-collimation system was purposely built. It permits to have dose rate values less than 10 mGy/s and to irradiate CMOS Image Sensors during operation. The total ionizing dose to CMOS image sensors was monitored in-situ, during irradiation, up to 1000 Gy and images were acquired every 25 Gy. At the end of the tests, the sensors continued to operate despite a background noise and some pixels were completely saturated. These effects, however, involve isolated pixels and therefore, should not affect the image quality.

  7. Electrochemical and corrosion behavior of passive film on stainless steels after gamma-ray irradiation

    The nature and structure of passive film on AISI 304L and AISI 446 stainless steels, after bare metal anodic oxidation and after the subsequent galvanostatic reduction or gamma-ray irradiation of the oxide film formed, were investigated by XPS and Electrochemical Impedance Spectroscopy (EIS). Atomic Absorption Spectroscopic (AAS) analysis of irradiated solution was also undertaken. Results obtained from XPS measurement indicated that gamma-ray irradiation can have significant effects on the stability of passive film due to the release of iron and corresponding enrichment in chromium oxides. The EIS technique was used to elucidate the physical structure of passive film after irradiation and galvanostatic reduction. The passive film formed on AISI 304L and AISI 446 stainless steels have a compact structure. The galvanostatic treatment leads to a film composed of two layers, the external one showing a spongy-like structure, while the gamma-ray irradiation treatment leads to a thinner compact film exhibiting higher capacitive behavior compared to that of unirradiated samples

  8. Effect of Low Dose gamma-ray Irradiation on the Germination and Growth in Red Pepper (Capcicum annuum L.)

    This study was conducted to determine the effect of low dose gamma-ray irradiation in red pepper. The germination percentage, plant, the number of flower, chlorophyll contents, leaf length and width were observed from plants grown with red pepper seeds irradiated with various low dose of gamma-ray. The germination percentage of irradiation group treatmented gamma-ray was much higher than that of the control. Specially the germination percentage after sowing red pepper seeds on paper towel was higher than 1,000 and 2,000 rad irradiation group. The height of plants grown with red pepper seeds irradiated with gamma-ray was increased in 100, 200 and 400 rad irradiation group compared to that of the control. The height of plant from 2,400 rad irradiation group, however, was shorter than that of the control. Nutrient contents of leaves of plants grown with red pepper seeds irradiated with various dose of gamma-ray were significantly increased in 800 and 1,200 rad irradiation group. Electric conductivity (EC) of the water used for seed germination was lower irradiation group than control group. Therefore, there was the possibility to increase the germination and plant growth with gamma-ray of adequate low dose

  9. Gamma-ray irradiation of a boreal forest ecosystem

    A long-term radiation ecology research project called Field Irradiator - Gamma (FIG) began at the Whiteshell Nuclear Research Establishment in 1968. The experimental area is in southeastern Manitoba and is located on the western edge of the Precambrian shield. The project studies the ecological effects continuous exposure to a gradient of gamma radiation has on a mixed boreal forest ecosystem. The gradient ranges from 1 to 460,000 times the natural background radiation level. This paper describes the forest, the gamma irradiator and its radiation field, and the research program

  10. Effect of gamma-ray and electron irradiation on the response of solid-state track detectors

    Specimens of muscovite mica were first exposed to fission fragments and then to various gamma-ray fields from a 60Co source ranging from 1.9 x 103 to 1.6 x 104 Mrad dose. The results show that the average etched width of fission-fragment tracks decreases with increasing gamma-ray dose. Shallow pits were observed in etched specimens when the gamma-ray dose exceeded 5 x 103 Mrad. Numerous shallow etch pits caused by the gamma-ray irradiation interfered with the observation of fission tracks in the specimens. No shallow etch pits were observed in the specimen annealed for 100 min at 6000C before the gamma-ray irradiation. Pre-annealing extends the ''safety limits'' of gamma background below which muscovite mica can be used to observe fission tracks without any gamma-ray interference. Gamma-ray and electron irradiation caused significant increase of the resistance to thermal decomposition of muscovite mica. The resistance increased markedly in the dose range from 5 x 103 to 8 x 103 Mrad. These phenomena suggest the use of mica to assess radiation doses of gamma rays and electrons up to several thousand megarads. (author)

  11. Glasses, Coatings, Glues and Gamma-ray Irradiation

    Barcala, J.M.; Fernandez, M. G.; Ferrando, A.; Fuentes, J.; Josa, M. I.; Molinero, A.; Oller, J. C. [Ciemat. Madrid (Spain); Arce, P.; Calvo, E.; Figueroa, C. F.; Rodrigo, T.; Vila, I.; Virto, A. L. [Universidad de Cantabria. Santander (Spain); Beigveder, J. M.; Genova, I.; Perez, G.; Ruiz, J. A. [CIDA. Madrid (Spain)

    2001-07-01

    Most of the alignment systems for LHC experiments use optomechanical elements confirming a network of points that are monitored by laser beams. LHC experiments, working at the expected nominal luminosity, will induce an extremely high irradiation. basic components such as glasses, coatings and glues may change and their performance may degrade significantly. We have tested various components and identified some of them that can stand 10 years of LHC operation. (Author) 11 refs.

  12. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  13. One-step synthesis of graphene-Pt nanocomposites by gamma-ray irradiation

    Tokai, Akihiro; Okitsu, Kenji; Hori, Fuminobu; Mizukoshi, Yoshiteru; Iwase, Akihiro

    2016-06-01

    We developed a one-step gamma-ray irradiation method to synthesize nanocomposites composed of graphene and Pt nanoparticles from aqueous solution containing graphene and Pt(IV) complex ions in the presence of 2-propanol (IPA) or sodium dodecyl sulfate (SDS). It was confirmed that gamma-ray irradiation provided carbonyl groups on graphene and Pt nanoparticles formed from the radiolytic reduction of Pt(IV) complex ions were deposited onto the carbonyl modified graphene. In the presence of IPA, small Pt nanoparticles were deposited on graphene, but large Pt nanoparticles were deposited in the presence of SDS: the size of Pt nanoparticles formed was larger in the presence of SDS than IPA. Based on the results, formation and deposition mechanisms of Pt nanoparticles were proposed.

  14. Study of uptake and endocytosis of gamma rays-irradiated crotoxin by mice peritoneal macrophages

    The purpose was to investigate the uptake and endocytosis of 2000 Gy 60Co irradiated crotoxin through mouse peritoneal macrophages, correlating with native one and another non related protein, the ovalbumin. Native (CTXN) or 2000 Gy 60 Co γ-rays (dose rate 540 Gy/hour) irradiated crotoxin (CTXI) or ovalbumin processed of same manner (OVAN - OVAI) were offered to mouse peritoneal macrophages and their uptake was evaluated by immunohistochemistry and quantitative in situ ELISA. The involvement of scavenger receptors (ScvR) was evaluated by using blockers drugs (Probuco-PBC or Dextran Sulfate - SD) or with nonspecific blocking using fetal calf serum (FBS). The morphology and viability of macrophages were preserved during the experiments. CTXI showed irradiation-induced aggregates and formation of oxidative changing were observed on this protein after gamma rays treatment. By immunohistochemistry we could observe heavy stained phagocytic vacuole on macrophages incubated with CTXI, as compared with CTXN. Quantitatively by in situ ELISA, the sema pattern was observed, displaying a 2-fold CTXI incorporation. In presence of PBC or SD we could find a significant decrease of CTXI uptake but not of CTXN. However the CTXN uptake was depressed by FBS, not observed with CTXI. OVA, after gamma rays treatment, underwent a high degradation suffering a potent incorporation and metabolism by macrophages, with a major uptake of OVAI in longer incubation (120 minutes). Gamma rays (60 Co) produced oxidative changes on CTX molecule, leading to a uptake by ScvR-mice peritoneal macrophages, suggesting that the relation antigen-presenting cells and gamma rays-modified proteins are responsible for the better immune response presented by irradiated antigens. (author)

  15. Post irradiation changes of haematological parameters in mammals blood after high dose gamma rays

    In our experiment we monitored post irradiation changes of haematological parameters in rats after single total - body dose of gamma rays 15 Gy. Significant decrease was in the erythrocyte count at 6th day (P th day (P th day. In the white blood picture in all experimental groups was leukopenia (P < 0.001), which was characterized by neutrophilia (P < 0.001) and lymphopenia (P < 0.001). (authors)

  16. Economic effectiveness of irradiation with gamma rays on maize grains

    Gamma irradiation of maize grains before sowing increses the yield and improves the quality of agricultural produce. The positive results consist in the net income from silage maize from 45 to 85 per ha and from the grain maize from 85 to 109,9 per ha; the level of raw protein from the silage maize with 11,30% and from the grain maize with 6 to 12%; the level of feed units from the silage maize with 5 to 13% and from grain maize with 6 to 12%. Such direct effect in the same time is a stimulating one and raises the effectiveness of the animal production due to the better feeding of animals

  17. Allogenic bone rods with freeze drying and gamma rays irradiation for treatment of fracture

    Opened reduction and internal fixation are the usual treatment of fracture, but both methods need a second operation for removal implants. The benefits of the bone rods are that they can avoid the removement of internal fixation and will be absorbed spontaneously. The bone rods are made of allogeneic compact bones with freeze-drying and gamma rays irradiation supplied by Shanxi Provincial Tissue Bank. The purpose of this study is to evaluate allograft reaction, the stability of the internal fixation, osteoinduction in the treatment of fracture using allogeneic bone rods with freeze drying and gamma rays irradiation. From May 1997 to May 1998, fourteen cases (male 12, female 2) of treatment were reviewed. The mean age was 37.3 (21-5 1). There were 3 medial malleolus fractures, 7 tibia and fibula fractures, 1 ulna and radius fracture, 1 lateral condyle of humerus fracture. The clinical results were satisfactory. Because the strength of the bone rods are weaker than that of screws, the bone rods are only indicated in the fixation of cancellous bones fracture and unloaded bone fracture. It can be used as a supplementary fixation of loaded bone. It is not indicated for fixation of comminuted fracture. More than two bone rods may be used in the fixation of fracture in order to get stability of the fracture and decrease stress between rods which will prevent the break of the bone rods. Allogeneic bone rods with freeze-drying and gamma rays irradiation can be used as implants of non-immunogenicity. There are no allograft reactions in all cases (including fever, leukocytosis, exudation or swelling in the wound). Although plenty of experimental studies have showed that freeze drying with gamma rays irradiation (below 50 KGy) would not destroy BMP of bone allograft, but there is no osteoinduction in our cases. The healing of a fracture and bridging external callus are similar as other operations. This new technique may have the following advantages compare with the screws: 1

  18. Removal of endocrine disruptors PAEs in drinking water by gamma-ray irradiation

    Phthalic acid esters (PAEs) belong to environmental endocrine disruptor. The dimethyl phthalate (DMP), diethyl phthalate (DEP) and di-n-butyl phthalate (DBP) were selected for the radiation study. The removal efficiencies of DMP, DEP and DBP in drinking water by gamma-ray irradiation are discussed. The results show that these PAEs could be efficiently removed by gamma-ray irradiation. The removal efficiencies of DMP, DEP and DBP (12 mg/L) in aqueous solutions by 0.8 kGy gamma-ray treatment were 96.6%, 94.5% and 86.2%. The absorbed dose needed for the removal of total carbon in aqueous solutions was much larger than the doses for PAEs degradation. When 2 kGy was selected, the removal efficiencies of TC for DMP, DEP and DBP were only 23.6%, 14.3% and 12.9%. The study results also show that the radiation degradation reaction of PAEs should be divided into two stages: low dose addition reaction and high dose ring-opening reaction. This study is of significance in the disposal of micro-polluted drinking water. (authors)

  19. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation.

    Polf, J C; Peterson, S; McCleskey, M; Roeder, B T; Spiridon, A; Beddar, S; Trache, L

    2009-11-21

    In this paper, we present results of initial measurements and calculations of prompt gamma ray spectra (produced by proton-nucleus interactions) emitted from tissue equivalent phantoms during irradiations with proton beams. Measurements of prompt gamma ray spectra were made using a high-purity germanium detector shielded either with lead (passive shielding), or a Compton suppression system (active shielding). Calculations of the spectra were performed using a model of both the passive and active shielding experimental setups developed using the Geant4 Monte Carlo toolkit. From the measured spectra it was shown that it is possible to distinguish the characteristic emission lines from the major elemental constituent atoms (C, O, Ca) in the irradiated phantoms during delivery of proton doses similar to those delivered during patient treatment. Also, the Monte Carlo spectra were found to be in very good agreement with the measured spectra providing an initial validation of our model for use in further studies of prompt gamma ray emission during proton therapy. PMID:19864704

  20. Possibilities for creating high protein bean forms by irradiation with cesium 137 gamma-rays

    Six Columbia lines bean plants suitable for direct combine-harvesting are used to induced mutation variations. The seeds are irradiated presowing with gamma-rays (Cs-137) in two ways - only once with 120 Gy and six times 4 hours daily with 20 Gy. The applied irradiation resulted into increase variability in protein content of the seeds of M2 plants. Variations of diverse character are established, depending on the genotype varieties. Mutant forms of more than 29% protein content which are of interest to the plant breeding, are obtained. 12 refs., 3 tabs. (author)

  1. An aberration in gamma-ray enhanced reactivation of irradiated adenovirus in ataxia telangiectasia fibroblasts

    Ataxia telangiectasia (AT) is a rare human genetic disorder which includes a predisposition to lymphoreticular cancers and a hypersensitivity to conventional radiotherapy. Furthermore, AT cells in vitro exhibit a hypersensitivity to ionising radiation that appears to be correlated with an increased frequency of chromosomal aberrations, a resistance of de novo DNA synthesis to inhibition by radiation-induced DNA damage, a reduced mitotic delay and possible defects in DNA repair. A sensitive viral assay has been used to investigate the capacity of gamma-irradiated AT cells to support the replication of undamaged virus, as well as the extent to which the survival of radiation-damaged virus was affected by gamma-irradiation of these host cells prior to infection. The expression of such enhanced reactivation (ER) of both u.v.-irradiated and gamma-irradiated adenovirus type 2 (Ad2) was examined in a variety of normal and AT human fibroblast strains. For immediate infection of normal human fibroblasts, both a decrease in unirradiated virus expression and an increase in ER were observed with increasing gamma-ray dose to the cells. In contrast, AT fibroblasts were found to be deficient in gamma-ray ER of irradiated Ad2, and this defect appeared to be related to a marked relative radioresistance of unirradiated virus expression in AT compared to normal cells. (author)

  2. Genetic variation of natural orchid phalaenopsis amabilis (L.) blume produce gamma ray irradiation

    New cultivars of Phalaenopsis amabilis (L.) Blume were obtained through gamma-rays Co-60 irradiation. The result showed phenotypic variation which justifies a molecular biology observation to investigate whether the variation was caused by the change on cultivar’s genotypic traits. A study to describe the genetic variability among individuals of the irradiated cultivars was then conducted using RAPD Technique. The materials used were cultivars obtained by 0, 15, 20, 25, 20+20 and 40 Gray irradiations. DNA genome of each plant was isolated and was amplified with 22 primers randomly. The PCR analysis was done with 1.5 % agarose. The DNA analysis used 8 selected primers out of 22. Polymorphism and molecular diversity were analyzed with Nei’s gene diversity method through GenAlex 6.1 program. The study showed that genetic diversity might be detected at the early growth stage of the gamma ray Co-60 irradiated cultivars using RAPD, and irradiation dose of 15 and 40 Gray gave high genetic diversity compared to control. (author)

  3. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 1013 n/cm 2 and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed

  4. Effect of slow irradiation of gamma rays on growth, yield and quality of Coleus forskohlii briq

    Terminal cuttings of coleus cv Garmai is slowly irradiated by using lead filter in the gamma chamber. It has been observed that LD50 of gamma rays was observed at 40Gy dose. Similarly the LD50 for EMS was 1.00 %. Based on this data treatments were formulated in Randomized Block Design and the terminal cuttings were planted in the main field for observation. The results of the study V1M1 indicated that the combined effect of mutagens at higher dosage shows reduced growth characters than the untreated control. The treatment with 50Gy gamma rays + 0.5% EMS exhibited maximum number of tubers (25.50) and maximum length of tubers (17.60 cm) than all other treatments. Maximum fresh and dry weight of tubers (580.50 and 71.20 g) was noticed by the untreated control. The maximum forskolin content (0.66 %) was exerted by the treatment 20Gy gamma rays + 0.5% EMS. However, most of other treatments exhibited same forskolin content (0.42%). The secondary shoots were considered as the second vegetative generation. Secondary shoots were obtained by cutting back the primary shoot and planted for the study of V2M1 generation. The data on plant height expressed at higher side than that earlier generation. The quality parameters like essential oil (0.09%) and total alkaloids (1.05%) was greater at very high doses of mutagen. However, the occurrence of forskolin mutant was stabilized over the generations in 20Gy gamma rays + 1.00% EMS treatment. From the study it was inferred that sudden exposure of materials causes more lethality with poor field establishment and the chance of occurrence of mutants were comparatively lesser. (author)

  5. Chemical and physical changes of packaging materials for food by gamma-ray irradiation

    Kawamura, Yoko; Yamada, Takashi [National Inst. of Health Sciences, Tokyo (Japan)

    2000-02-01

    Film and sheet of polyethylene and polystyrene added with BHT, Irganox 1076, Irgafos 168 and Irganox 1010 as antioxidant were treated by gamma-ray irradiation. The change of additive residues, monomer and decomposition products of additives, the tensile strength and change of tone and odor were studied. Polystyrene was the most stable for irradiation. Polypropylene products and large amount of decomposition products indicated very decrease of tensile strength. Polyethylene was more stable than polypropylene, but yellowing was very large. Acetic acid, propion acid, 2-butanone and 2, 4-penyanedione in the decomposition products were controlled by adding antioxidants. Their irradiated decompositions, DTBBQ and 2, 4-DP, were observed. Decreasing of the tensile strength of polypropylene was improved by addition of Irganox 1010 and Irgafos 168. The antioxidants were decreased by irradiation, especially BHC and Irgafos 168. (S.Y.)

  6. Chemical and physical changes of packaging materials for food by gamma-ray irradiation

    Film and sheet of polyethylene and polystyrene added with BHT, Irganox 1076, Irgafos 168 and Irganox 1010 as antioxidant were treated by gamma-ray irradiation. The change of additive residues, monomer and decomposition products of additives, the tensile strength and change of tone and odor were studied. Polystyrene was the most stable for irradiation. Polypropylene products and large amount of decomposition products indicated very decrease of tensile strength. Polyethylene was more stable than polypropylene, but yellowing was very large. Acetic acid, propion acid, 2-butanone and 2, 4-penyanedione in the decomposition products were controlled by adding antioxidants. Their irradiated decompositions, DTBBQ and 2, 4-DP, were observed. Decreasing of the tensile strength of polypropylene was improved by addition of Irganox 1010 and Irgafos 168. The antioxidants were decreased by irradiation, especially BHC and Irgafos 168. (S.Y.)

  7. Gamma-ray irradiation on polystyrene in the presence of crosslinking agents

    The radiation induced crosslinking of polystyrene is difficult because of its aromatic units, and the polymer degrades when irradiated in air. Therefore, the authors studied the effects of gamma-ray irradiation on polystyrene in the presence of polyfunctional monomers such as trimethyl propanetrimethacrylate (TMPTM), dimethyleneglycol bisallycarbonate (DEGBAC), etc. These monomers readily polymerize by irradiation with small dose. When polystyrene was mixed with 20% by weight of TMPTM, the toluene insoluble polymer obtained after the irradiation with a dose of 10 Mrad had a polystyrene TMPTM ratio of 1 and with a dose of 20 Mrad, the radio became 6. Since TMPTM alone polymerizes with a dose much smaller than these doses, it is likely that the chain breaking and recombination between polystyrene and poly TMPTM takes place. In the case of DEGBAC, the dose required for crosslinking of polystyrene was higher than that with TMPTM. The relationships between doses and radiochemical yields for gelation and degradation for various polyfunctional monomers are presented

  8. Influence of gamma-ray irradiation on Faraday effect of Cu-doped germano-silicate optical fiber

    Influence of gamma-ray irradiation on the Faraday effect of the Cu-doped germano-silicate optical fiber was investigated. The Verdet constant of the gamma-ray irradiated optical fiber at 660 nm was measured to be 3.07 rad T−1 m−1, 1.46 times larger than that of before the irradiation at total dose of 1200 Gy. Cu-related radiation-induced defect centers and Cu metal particles which were reduced from Cu2+ ions by the irradiation are thought to be responsible for the increase in the Verdet constant of the optical fiber

  9. Safeguards on the depleted uranium used in gamma ray irradiator as shield material

    Depleted uranium used in gamma ray irradiator as the shielding material was not completely investigated and properly reported by the Atomic Energy Act until now, The IAEA required to report the status of the companies using small amount of uranium and information for 42 NDT companies was declared in 1999. And IAEA inspector visited some company to confirm their declarations. The Additional protocol proposed as the strengthened safeguards system by the IAEA, which was ratified through the national assembly on February 9, 2004, and was entered into force on February 19, 2004. The government is investigating the amount, purpose and location of depleted uranium in the area of non-nuclear use.

  10. Borohydride-reducible components in soluble collagen irradiated with gamma rays in solution

    Irradiation with 100 krad of gamma rays of neutral-soluble rat skin collagen decreased the content of aldol cross-links by a factor of three, whereas it did not affect the content of allysine. On reduction with tritiated sodium borohydride, five new components were detected showing different stability towards acid and alkali. (author) tetracycline. The results of kinetic and autoradiographic studies and microscopical analysis of bone preparations suggest that stable strontium inhibits the mineralization of newly formed bone tissue without affecting the physicochemical processes related to ion exchange. (author)

  11. Synergism of. gamma. -ray irradiation and temperature on the deterioration of flame-retardant cables

    Okamoto, Shinichi (Radiation Center of Osaka Prefecture, Sakai (Japan)); Katayama, Shiro; Takeya, Chikashi; Hayakawa, Tsutomu; Iwata, Seiji

    1981-03-01

    Characteristic changes of frame-retardant cables, C*V and P*N having excellent resistance to heating and ..gamma..-ray irradiation for nuclear power generating stations, were studied under combined environments of ..gamma..-ray irradiation (2 x 10 sup(g) r and less) and elevated temperature (150/sup 0/C and 170/sup 0/C). They included the changes in appearance, elongation, insulation resistance, AC breakdown voltage, and power factor. The synergistic effects were observed in them. That is, the synergism of PVC (V) and Neoprene rubber (N) appeared after irradiation with 2.5 x 10/sup 7/ r at 150/sup 0/C, while that of XLPE (C*) and EPR (P*) appeared under conditions of heavier exposure doses at higher temperature. These test conditions were more severe than normal service condition in the plant which was assumed as 40 years at 70/sup 0/C and total dosage of 70 mega-rads. The mechanism of deterioration in characteristics of the cables in this test may be different from that of aging in the plant.

  12. BROCCOLI Spears Yield Affected By GAMMA Rays Irradiated Seeds And Foliar Application Of Some Growth Regulators

    Two field experiments were carried out during 2004/2005 and 2005/2006 winter growing seasons at the experimental farm of Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt.The experiments were conducted to study the effect of pre-sowing broccoli seeds (cv. F1 175) irradiated with different doses of gamma rays (2, 3 and 4 Gy). The plants were sprayed with GA3 at rate of 50 ml/liter/fed and 20 ml/liter/fed for NAA. Main spear fresh and dry weight per plant, total spears fresh and dry weight per plant, total spears yield, ascorbic acid, TSS, carbohydrates, total chlorophyll, NPK and total protein content of spears were evaluated. The results showed that broccoli seeds irradiated with gamma rays up to 4 Gy pre-sowing increased the abovementioned parameters with different magnitudes comparing with the non-irradiated control plants except spears N, P and protein contents showed decrease in their values comparing with un-treated plants.It could be concluded that the foliar application of GA3 and NAA on broccoli spears increased all the abovementioned parameters, except spears N, P and protein contents showed decrease in their values.

  13. Influence of gamma rays irradiation to chlorphyriphos insecticides residues in grapes (vitis vinifera L.)

    Simulation methods to determination of chlorphyriphos insecticides residue in grapes cause effect gamma rays, was done. Fruits of grapes soaked with chlorpyriphos insecticide solution high level concentrated (100 ppm; 200 ppm; and 300 ppm) for 3 (three minutes). The treatment of the sample was direct of extraction after soaks; extract after storage for one week after soak, and extract after soak after storage for one week after irradiation at 0.5 kGy; 1.0 kGy; and 1.5 kGy dose. Extraction methods using ethyl acetate solvent, and using sodium sulphate as to dryed water level in grapes, and then extractan was injected to chromatography gas use electron capture detector. The result indicated that occur of descent of chlorpyrifos residues from eachs soaked consequence at storage for one week was amount 7,55; 8,42; and 18,88% respectively, while of consequence irradiation of gamma ray at 0,5 kGy doses, will be descent of chlorpyrifos residues in amount 13,90; 19,16; and 52,79% respectively, and at 1,0 kGy doses irradiation will be descent in amount 34,45; 36,15 and 49,79%, respectively. (author)

  14. Evaluation of the effect of gamma-ray irradiation on starch by near-infrared spectroscopy

    In order to evaluate the effect of gamma-ray irradiation on starch, near-infrared absorption spectra of four groups of starch samples, control, 10, 20 and 30 kGy irradiated, were measured. By the preliminary analysis, it was revealed that 1 702 and 2 100 nm were effective in predicting the irradiation dose on starch. On the other hand, samples were divided into calibration and validation set. The multi-regression analysis of the calibration set was carried out with adopting 1702 or 2100nm as the first wavelength, and the resulting calibration curves were named calibration A and B. Using these calibration curves, the irradiation dose of the validation set was predicted. Although the accuracy of the prediction was poor, it seemed that the non-irradiated and the irradiated samples could be discriminated by an appropriate borderline. Therefore, a new irradiation index was defined as non-irradiated = 0 and irradiated = 1. In the same way as the case of four groups, calibration C and D, in addition, calibration E, which using 1702 nm only, were developed and the irradiation index of the validation set was predicted. Although there were a few samples that could not be accurately predicted with calibration C and D, there was only one wrong discrimination with calibration E and its prediction accuracy was 96.2%

  15. Study on influences of rabbit thyroids irradiated by 60Co-gamma ray

    Effects of radiotherapy on the thyroid gland were evaluated with rabbits. gamma ray of 3.000R was irradiated locally. Thyroid hormone T4 and T3 were assayed by RIA method, blood flow was estimated by sup(99m)Tc-MAA uptake, and histopathological changes were also studied. T4 and T3 markedly decreased one day after irradiation, and a decrease of T4 was greater than that of T3. T4 and T3 continued to decrease until 3 days after irradiation, then, began to increase slowly, 7 days after irradiation, and almost returned to the initial level 14 days after irradiation. T4 kept the level thereafter with little changes, but T3 tended to decrease. sup(99m)Tc uptake decreased sharply one day after irradiation and continued to decrease gradually. It began to increase slowly 28 days after and almost returned to about 2/3 the initial level 56 days after irradiation. Histopathological study revealed no remarkable changes except degeneration and proliferation of follicular epithelium 14 days after irradiation. Changes in T4 and T3 due to decreased thyroid function after irradiation was comparatively parallel to histopathological changes. However, changes in blood flow and those in T4 and T3 were parallel with each other only at the time immediately after irradiation and at the end of the follow-up. This tendency was marked in T4. (Ueda, J.)

  16. Electron beam and gamma ray irradiated polymer electrolyte films: Dielectric properties

    S. Raghu

    2016-04-01

    Full Text Available In this study, polymer electrolyte films were irradiated with electron beam (EB and Gamma ray (GR at 50 and 150 kGy. The induced chemical changes in films due to irradiations have been confirmed from the Fourier Transform Infra red (FT-IR spectra. The X-ray Diffractometry (XRD results show that crystallinity decreases by ∼20% in EB and ∼10% in GR irradiated films respectively compared to non-irradiated film. The micro structural arrangement was investigated by Scanning Electronic Microscopy (SEM and the images reveal that there is a substantial improvement in the surface morphology in irradiated films. The real (ε′ and imaginary (ε″ dielectric constant and AC conductivity are found to increase with increase in irradiation dose. Improved dielectric properties and conductivity (1.74 x 10−4 & 1.15 x 10−4 S/cm, respectively, for EB and GR irradiated films at room temperature after irradiation and it confirm that EB and GR irradiation can be simple and effective route to obtaining highly conductive polymer electrolytes. From this study it is confirm that EB is more effectiveness than GR irradiation.

  17. Hydrogen loss from elastomers subjected to ion irradiation

    Research highlights: → Hydrogen release from irradiated elastomers is more pronounced with respect to polymers. → Hydrogen release from irradiated elastomers is governed by inelastic energy losses (ionization). → Hydrogen content in irradiated elastomers saturates at about 10 at.%. - Abstract: Hydrogen release from various elastomers upon irradiation with H+, He+ and Ar+ ions has been studied using nuclear reaction analysis (NRA) method. A massive loss of hydrogen atoms upon irradiation has been noted, the results point to the saturation of hydrogen content at about 10 at.%. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons.

  18. The influence of irradiation of gamma-rays on the pulping and paper making, (4)

    The influence of gamma-irradiation on the beating properties of unbleached kraft pulps was studied, and the changes of the mechanical and chemical properties of the sheet made from those pulps were also investigated. The results obtained were as follows: (1) When the unbeaten pulp was treated with gamma-ray, the degree of polymerization of cellulose was decreased rapidly and the formation of aldehyde and carboxyl groups in pulp was observed in addition to that the beating time of irradiated pulps was reduced comparing with non-irradiated pulp. These effects increased roughly in proportion to the radiation dose. (2) Gamma-irradiation was more effective in wet state (moisture content = 70 - 80%) than air dry state. This may be due to the degradation products of water by gamma-irradiation. (3) The mechanical properties (breaking length, tear and burst factors) of the sheets made from irradiated pulps were considerably deteriorated at 107R, but there was a slight deterioration up to 106R. (4) Comparing the result of the mechanical properties, the strengths of the various sheets were shown in the following order: the sheet irradiated after paper making gt the sheet irradiated before beating (air dry state) gt the sheet irradiated before beating (wet state). (author)

  19. Study on 99Mo production by solution irradiation method (2). Characterization of aqueous molybdate solutions under gamma-ray irradiation

    The solution irradiation method is proposed as a new production technique for 99Mo, which is the parent nuclide of 99mTc used as a radiopharmaceutical. In this new method, an aqueous molybdenum solution is irradiated with neutrons in a nuclear reactor, and more efficient and lower-cost 99Mo production than conventional 99Mo production can be realized by using the 98Mo (n,γ) 99Mo reaction and the molybdenum adsorbent of PZC. Aiming at the practical application of this method, unirradiation tests, gamma-ray irradiation tests, and neutron irradiation tests should be needed in order to characterize the aqueous molybdenum solution as the irradiation target. In the present study, using two kinds of aqueous molybdate solutions (an aqueous ammonium molybdate solution and an aqueous potassium molybdate solution) selected as candidates for the irradiation target of the new method, the compatibility between the solutions and structural materials, the chemical stability, the circulation characteristics, the radiolysis, and the gamma heating of the solutions were investigated under gamma-ray irradiation. In addition, the integrity of PZC was investigated under gamma-ray irradiation. As a result, the following were found: 1) the compatibility between the solutions and stainless steel is very well, 2) the solutions are chemically stable and have a smooth circulation, 3) the ratios of hydrogen in the gases generated by the radiolysis of the solutions are higher than that of pure water, 4) the effect of gamma heating on the solutions is the same level as that on pure water, and 5) the integrity of PZC is maintained. (author)

  20. Effects of gamma ray irradiation on the struvite crystallization of livestock wastewater

    Yoo, Byeong Hak; Jo, Seong Hui; Lee, Myun Joo; Kim, Tak Hyun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-12-15

    The struvite crystallization was applied to remove NH{sub 4}{sup +} in livestock wastewater. The ammonium ions can be very toxic to the aquatic creatures. In this experiments, the livestock wastewater from Gongju livestock wastewater treatment plant was used. The behaviors of various parameters such as pH, mole ratio of Mg{sup 2+} : NH{sub 4}{sup +}: PO{sub 4}{sup 3-} and reaction temperature for struvite crystallization of livestock wastewater and the effect of gamma ray irradiation were evaluated. As results, for the pH variation, the NH{sub 4}{sup +} removal efficiency showed the highest, 88%, at pH 9 {approx} 9.25. The removal efficiency of NH{sub 4}{sup +}, Mg{sup 2+} and PO{sub 4}{sup 3-} was showed highest when same molar ratio of Mg{sup 2+} and PO{sub 4}{sup 3-} were applied. The NH{sub 4}{sup +} removal efficiency showed 82% at 7 .deg. C, and 90% at 30 .deg. C, with temperature. When the wastewater was irradiated with 20 kGy of gamma ray, NH{sub 4}{sup +} was removed as much as 83%.

  1. Digested livestock wastewater treatment using gamma-ray irradiation and struvite crystallization

    Kim, Tak Hyun; Lee, Sang Ryul; Nam, Youn Ku; Lee, Myun Joo [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Livestock wastewater generally contains high strength of organics (COD), ammonia nitrogen (NH{sub 4}{sup +} -N), phosphate phosphorus (PO{sub 4}{sup 3-} -P) and suspended solids. It is very difficult to treat by conventional wastewater treatment techniques. In this study, struvite crystallization was carried out to treat the digested livestock wastewater. 1.0 :1.2 :1.2 was determined as an optimal NH{sub 4}+ :Mg{sup 2+} : PO{sub 4}{sup 3-} mol ratio of struvite crystallization. For the digested livestock wastewater, COD, NH{sub 4}{sup +} -N and PO{sub 4}{sup 3-} -P removal efficiencies by struvite crystallization were 72.4%, 98.9%, and 74.8%, respectively. Gamma-ray irradiation was carried out prior to struvite crystallization of livestock wastewater. The enhancement of struvite crystallization efficiency could be obtained by the pretreatment of gamma-ray irradiation due to the decrease of COD, NH{sub 4}{sup +} -N and PO{sub 4}{sup 3-} -P concentration.

  2. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  3. Effect of gamma rays on sex ratio, emergence and lifespan of cucurbits fruit fly dacus ciliatus (low) irradiated as pupae

    The result showed the pupae at the age 1 or 2 days old was very sensitive to all doses of gamma rays, the percentage of adults emerged was zero at the dose of 45 gray and highest and the gigh percentage of adults emergence was recorded when the pupae irradiated at five days ald and the mean percentage of emerged adults was approximated with that of the control group. This study also showed that there was an effect of gamma radiation on the average percentage of deformed at adult stage and it was about 1:1 (male: female). On the other hand, the mean lifespan of females and mice s adult were decreased as the dose of gamma rays increases and the pupae irradiated at youngest ages. The longest life span of females was recorded when the pipa irradiated at five days old with any of the gamma rays dose. (Author)

  4. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  5. Relationship between free volume and mechanical properties of polyurethane irradiated by gamma rays

    Polyurethane was irradiated at various gamma radiation doses up to 1,000 kGy at room temperature in nitrogen. Positron annihilation lifetime spectroscopy, tensile test and dynamic mechanical analysis were used to find the relationship between free volume and mechanical properties. An increase of the free volume fraction in soft segments (SS) and a decrease of the free volume fraction in hard segments (HS) during gamma radiation was observed and analyzed. The results showed that HS in polyurethane had the excellent resistance to gamma radiation, whereas SS had a tendency to degrade. The reason for the decrease of the strain at break and the ultimate tensile strength was analyzed, which showed the changes in the mechanical properties of polyurethane irradiated by gamma rays were mainly determined by the changes of free volume in SS. If the resistance properties of polyurethanes exposed to radiations need to be improved, SS should be paid more attention to. (author)

  6. Survival of embryo irradiated with gamma rays by embryo culture in Brassica pekinensis Rupr

    The effect of irradiation on the survival rates and embryonic development of Brassica pekinensis RUPR. (Varieties; Kashin, Kohai 65 nichi and kairyochitose) was investigated. The purpose of this study was to seek ways of increasing the survival rates of embryos such as B.oleracea obtained through embryo culture techniques after irradiation doses affecting seed fertility and germination, for the purpose of increasing mutation rates. Embryos at different developmental stages ranging from the globular to the early heart stages were irradiated with 20 KR of gamma rays at the daily rate 0L 20 KR or 10 KR (Fig.1 and Table 1). The embryos were excised from ovules 4 to 10 days after irradiation and cultured on White's medium. The shooting and rooting rates on the 34th day of culture were higher at the dose of 10 KR/day than 20 KR/day and were lower when the materials were irradiated at the young embryonic stage (Table 3). Varietal differences in the shooting and rooting rates were also observed. The irradiated embryos survived mainly in the state of callus. It was concluded that the embryo culture technique was successful when applied to irradiated embryos excised at the young embryonic stage and that the technique affected B.pekinensis less than B.oleracea

  7. Detection of irradiated fresh fruits treated by e-beam or gamma rays

    Marin-Huachaca, Nélida Simona; Lamy-Freund, Maria Tereza; Mancini-Filho, Jorge; Delincée, Henry; Villavicencio, Anna Lúcia C. H.

    2002-03-01

    Since about 1990, the amount of commercially irradiated food products available worldwide has increased. Commercial irradiation of foods has been allowed in Brazil since 1973 and now more than 20 different food products are approved. Among these products are a number of fresh fruits which may be irradiated for insect disinfestation, to delay ripening and to extend shelf-life. Today, there is a growing interest to apply radiation for the treatment of fruits instead of using fumigation or e.g. vapour-heat treatments, and an increased international trade in irradiated fruits is expected. To ensure free consumer choice, methods to identify irradiated foods are highly desirable. In this work, three detection methods for irradiated fruits have been employed: DNA Comet Assay, the half-embryo test and ESR. Both electron-beam (e-beam) and gamma rays were applied in order to compare the response with these two different kinds of radiation. Fresh fruits such as oranges, lemons, apples, watermelons and tomatoes were irradiated with doses in the range 0, 0.50, 0.75, 1.0, 2.0 and 4.0kGy. For analysis, the seeds of the fruits were utilized. Both DNA Comet Assay and the half-embryo test enabled an easy identification of the radiation treatment. However, under our conditions, ESR measurements were not satisfactory.

  8. Detection of irradiated fresh fruits treated by e-beam or gamma rays

    Since about 1990, the amount of commercially irradiated food products available worldwide has increased. Commercial irradiation of foods has been allowed in Brazil since 1973 and now more than 20 different food products are approved. Among these products are a number of fresh fruits which may be irradiated for insect disinfestation, to delay ripening and to extend shelf-life. Today, there is a growing interest to apply radiation for the treatment of fruits instead of using fumigation or e.g. vapour-heat treatments, and an increased international trade in irradiated fruits is expected. To ensure free consumer choice, methods to identify irradiated foods are highly desirable. In this work, three detection methods for irradiated fruits have been employed: DNA Comet Assay, the half-embryo test and ESR. Both electron-beam (e-beam) and gamma rays were applied in order to compare the response with these two different kinds of radiation. Fresh fruits such as oranges, lemons, apples, watermelons and tomatoes were irradiated with doses in the range 0, 0.50, 0.75, 1.0, 2.0 and 4.0 kGy. For analysis, the seeds of the fruits were utilized. Both DNA Comet Assay and the half-embryo test enabled an easy identification of the radiation treatment. However, under our conditions, ESR measurements were not satisfactory

  9. Biochemical and pharmacological characterization of irradiated crotamine by gamma rays of 60Co

    The serum production in Brazil, the only effective treatment in cases of snakebites, uses horses that although large size, have reduced l lifespan compared with horses not immunized. Ionizing radiation has been shown as an excellent tool in reducing the toxicity of venoms and toxins isolated, and promote the achievement of better immunogens for serum production, and contributing to the welfare of serum-producing animals. It is known, however, that the effects of ionizing radiation on protein are characterized by various chemical modifications, such as fragmentation, cross-linking due to aggregation and oxidation products generated by water radiolysis. However, the action of gamma radiation on toxins is not yet fully understood structurally and pharmacologically, a fact that prevents the application of this methodology in the serum production process. So we proposed in this paper the characterization of crotamine, an important protein from the venom of Crotalus durissus terrificus species, irradiated with 60Co gamma rays. After isolating the toxin by chromatographic techniques and testing to prove the obtaining of pure crotamine, it was irradiated with gamma rays and subjected to structural analysis, Fluorescence and Circular Dichroism. Using high hydrostatic pressure tests were also conducted in order to verify that the conformational changes caused by radiation suffer modifications under high pressures. From the pharmacological point of view, muscle contraction tests were conducted with the objective of limiting the action of crotamine in smooth muscle as well as the change in the action of toxin caused structural changes to the front. Analysis of Circular Dichroism and Fluorescence showed changes in structural conformation of crotamine when subjected to gamma radiation and that such changes possibly occurring in the secondary and tertiary structure of the protein. The observed in pharmacological tests showed that the irradiated crotamine was less effective in

  10. Chemical and Biological Studies on Cumin Fruits Irradiated by GAMMA Rays for Conservation

    The aim of this study was to investigate the effect of different doses of gamma irradiation (0, 5, 10 and 15 KGy) and different storage periods (0, 3 and 6 months) in different package materials (cotton or polyethylene bags) on essential oil quality and chemical composition of cumin (Cuminum cyminum) fruits. On the other hand antimicrobial activity of treated cumin fruits essential oil and its extracts at 0, 5000, 10000, 20000 and 40000 ppm were investigated. Results showed that the highest essential oil % was obtained from fruits stored for 3 months in cotton bag without gamma irradiation. Concerning the effect of essential oil as antimicrobial agent, the highest antibacterial activity was obtained by essential oil isolated from irradiated polyethylene packed fruits at 5 KGy then stored for 3 months (Staphylococcus aureus) or irradiated polyethylene packed ones at 15 KGy without storage (Salmonella typhimurium). On the other hand, the highest antifungal activity against Aspergillus niger and Penicillium digitatum was obtained by essential oil isolated from unirradiated packed in polyethylene fruits then stored for 6 months. Non-stored packed in cotton bag fruits irradiated with gamma rays at 10 KGy produced essential oil with highest antiyeastal activity. Cumin fruits extract at 40000 ppm when combined with different treatments presented the highest antimicrobial activity (represents as inhibition zone) against all studied microbes except with P. digitatum. Cumin extract at 40000 ppm when extracted from irradiated packed fruits in polyethylene bags with gamma rays at 5 KGy without storage or with 6 months storage or irradiated at 15 KGy of packed fruits in cotton bag with storage for 3 months presented the highest significant inhibition zones against S. aureus. The same concentration of extracted cumin from uni radiated packed in cotton bag fruits and storage for 6 months presented the highest inhibition zone of S. typhimurium. Also, with the same concentration

  11. Effect of gamma irradiation dose on the fabrication of α-elastin nanoparticles by gamma-ray crosslinking

    Nanoparticles were prepared utilizing the thermosensitive aggregation of α-elastin and gamma-ray crosslinking. We investigated the effect of the α-elastin irradiation doses to verify the yield of crosslinked nanoparticles. Aqueous solution of α-elastin (10 mg/ml) was used for the aggregation on raising temperature above its cloudy point (CP), followed by gamma-ray crosslinking. A slow heating process (1.9 oC/min) effectively led to aggregation of polypeptide and irradiation with more than 15 kGy yielded stable crosslinked nanoparticles with diameters less than ca. 200 nm and a narrow size distribution.

  12. A comparative experiments for tube agglutination test of pullorum antiserum with gamma ray Co60 irradiated salmonella pullorum

    An agglutinability between naturally infected positive chicken serum of pullorum disease and hyperimmunized rabbit antiserum was compared. And the following results were obtained and summarized. On the agglutinability, Salmonella pullorum antigen which irradiated gamma-ray was better than another both formalized and heated antigen. Time of judgemented as positive titer in the tube agglutination test to the naturally infected positive chicken serum was it most suitable for 12 hours at 37°C. Agglutination titer of positive immune chicken serum against gamma-ray irradiate Salmonella pullorum were as 320 approximately 640x. (author).

  13. Reaction of nuclear graphite with oxygen under gamma-ray irradiation

    The reaction of four kinds of nuclear graphites with oxygen under Co-60 gamma-ray irradiation were examined in the gas flow at 1atm, at temperatures 25 - 2040C and gamma dose rates 3.8 - 12.5 x 105R/hr. Air and oxygen diluted with helium were also used as the atmosphere. Radiation induced oxidation rates of the graphites in pure oxygen at dose rate 12.5 x 105R/hr were found to be 6.6 - 7.5 x 108g/g.hr, showing little differences between the graphites. Over all oxidation rate of the graphites increased with temperature, but the radiation induced rate kept constant with temperature. The increase of the over all rate at high temperatures was concluded to be due to the increase in thermally induced oxidation rate. The radiation induced oxidation rate was expressed as R = 8.3 x 10-12(D)sup(0.64), where R is the radiation induced oxidation rate in g/g.hr and D is the dose rate in R/hr. Oxidation rate of the graphite in air was about 40% of that in pure oxygen, and that in the oxygen diluted with helium was constant 15% in 0.2 - 1.0 vol.% oxygen. It was shown that the gamma-rays in a reactor would little influence oxidation of the structural graphite at high temperatures. (author)

  14. Effects of gamma Rays Irradiation on resistance of Pseudomonas aeruginosa in various condition

    The investigation of gamma tays 60Co irradiation effect on resistance of bacteri P.aeruginosa has been done.The objective of the research was to know the D10 value of bacteria P.aeruginosa. By using of distilled water,talc and peanut powder as carrier in dry,wet,O2 and N2 condition the bacteria of P.aeruginosa were irradiated on gamma rays of 60Co with dose of O to 2.5 kGy,and with dose rate of 5 and 10 kGy/h.After irradiation the bacteria of P. aeruginosa were cultured in media of the Tryptone Soya Agar and incubatedat temperature of 32±2oC for 3 days. The survival colonies were calculated,and the data were used to make the curve and to determine the D10 value. The results of the experiments showed that D10 value of irradiated bacteria of P.aeruginosain the disitilled water,talc and peanut powder as carrier were not high significant.Nevertheless the D10 value of the irradiated at dose rate 10kGy/h show more higher tendency than at dose rate 5kGy/h. The D10 value of irradiated bacteria in the N2 condition was higher,if compared with in the O2 condition

  15. EFFECT OF GAMMA RAY IRRADIATION ON INTERLAMINAR SHEAR STRENGTH OF GLASS FIBER REINFORCED PLASTICS AT 77 K

    It is known that an organic material is damaged by gamma ray irradiation, and the strength after irradiation has dependence on the gamma ray dose. These issues are important not only to make global understanding of electric insulating performance of glass fiber reinforced plastics (GFRP) under irradiation condition but also to develop new insulation materials. This paper presents the dependence of fracture mode and interlaminar shear strength (ILSS) on the material and the gamma ray irradiation effect on the fracture mode and the ILSS. 6 mm radius loading nose and supports were used to prompt ILS fracture for a short beam test. A 2.5 mm thick small specimen machined out of a 13 mm thick G-10CR GFRP plate (sliced specimen) showed lower ILSS and translaminar shear (TLS) fracture, although the same size specimen prepared from a 2.5 mm G-10CR GFRP plate (non-sliced specimen) showed ILS fracture and the higher ILSS. Both type of specimens showed the degradation of ILSS after gamma ray irradiation. The fracture mode of the non-sliced specimen changed from ILS to TLS fracture and no bending fracture was observed. The resistance to shear deformation of glass cloth/epoxy laminate structure would be damaged by the irradiation

  16. biotechnological studies on the irradiated potato (solanum tuberosum) with gamma rays

    Bacterial wilt or brown rot disease caused by Ralstonia solanacearum causes extensive annual losses of different crops especially potato crop. It is considered as one of the limiting factors for potato production and exportation in Egypt. Therefore, the main purposes of this study were to investigate the effect of gamma rays on two potato cultivars (Diamant and Spunta). And, to obtain new genotypes of potato resistant to bacterial wilt disease. This study was carried out in the field and Biotechnology laboratory of the Plant Res. Dept., Nuclear Res. Center, Inshas, Egypt and Genetics Dept., Faculty of Agricultural., Cairo Univ., during 2008-2011. In the field experiment, dry tubers of potato cultivars were irradiated by different doses of gamma rays (20, 30 and 40 Gy) to study the effect of gamma rays on the vegetative and yield traits. The results showed that there are no significant differences between cultivars for all studied traits except a number of tubers per plant trait. Also, there are only highly significant and significant differences between treatments for weight of tubers per plant and number of tubers per plant traits, respectively. However, there are only significant differences between the interactions of cultivars and treatments for plant height and weight of tubers per plant traits. Six genotypes were selected from M1V2 generation depending on high yield for RAPD analysis to determine their genetic variability from its parents at molecular level using 11 primers. The results of RAPD analysis showed that 11 primers generated 56 distinct bands of which 31 (55.4%) were considered as polymorphic. The similarity indices of six genotypes of potato and its parents ranged from 70 to 91%. The highest genetic similarity 91% was found between D20 genotype and its parent D0 (Diamant control). On the other hand, the lowest genetic similarity 70% was found between S30, S40 genotypes and its parent S0 (Spunta control). In the artificial infection experiment

  17. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L−1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the ∙OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while ∙H and eaq− played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation. - Highlights: • Gamma irradiation was efficient for removing cyclohexanebutyric acid from water. • The degradation kinetics of cyclohexanebutyric acid followed pseudo first-order reaction. • OH radical played a major role for oxidative degradation. • Some possible intermediate products were identified

  18. A study on the irradiation effect of 60Co gamma ray on dental polymethylmethacrylate bonded parts

    In this paper we describe an experimental study on the irradiation effect of 60Co gamma ray on dental polymethylmethacrylate (P.M.M.A.) welding part, hot and cold polymerizing adhesion part. It was found that from the result of tension test, no remarkable change of mechanical property is found with any of the bonded parts by the irradiation dose up to 107 r., and no deterioration by irradiation is observed. And then, according to the results of bending test, it is found that, although the three different bonded parts have different features, the strength of the welded part and of the part adhered by hot polymerizing adhesive becomes lower by irradiation, and bending strength of the three parts converges on 6 kg/mm2 after irradiation within a range of 106 - 107 r.. Joint efficiency (= bonded part strength/base material strength) of 65 - 75% in tension and 50 - 62% in bending can be adopted. Fracture of the base material and of the Welded part are similar, and prove high bonding strength. (author)

  19. Gamma rays irradiation process on a restored painting from the XVII century

    The aim of this work is to emphasize the importance of a previous study of the materials composition and behavior of any art work which will be treated by gamma radiation, as well as to use complementary procedures to prevent recontamination after the treatment, since this is a non residual method. As an example the object of study is a Peruvian painting from the 17th century, which has been restored, contaminated by mould, treated by gamma rays, put in a hermetic acrylic box and showed microorganisms growth after six years. A new treatment was performed using the same process and a complementary method using cloistering with anoxia atmosphere to prevent recontamination. Before the first irradiation the influence of irradiation process on the original painting and on the materials used in the restoration process were investigated. These data were extremely important in the decision of the use gamma irradiation again on the same art work. The results obtained allowed concluding that the irradiation with the recommended dose of 6.0 kGy (at the first time) was not sufficient to kill all the fungi specimens in the art work. On the other hand the irradiation with the dose of 6.0 kGy (at the first time) and 9.0 kGy (at the second time), according to the literature, would not damage the restored painting. (author)

  20. Comparative nephrotoxicity of native or Co-60 gamma rays irradiated crotoxin in mice

    Snake venoms are complex mixtures of proteins and peptides with a wide spectrum of physiological targets such as the blood coagulation and cardiovascular systems and the motor end plate among others. Acute renal failure is a common complication in accidents with the South American rattlesnake. The toxin involved in this pathology is the crotoxin, a major component of the venom in terms of concentration and toxicity. Snake venoms, when irradiated with 60Co gamma rays present a significant decrease in toxicity while the immunogenic properties of its components are preserved. The use of irradiated venom is an attractive alternative for antisera production since it might reduce the appearance of renal lesions improving the welfare and lifespan of those animals employed on antivenom production. At the present work, we have compared the effects of native and irradiated crotoxin on the mice renal function. Tubular lesions were observed in all the samples from the animal group injected with native crotoxin. Animals injected with the irradiated toxin presented alteration only after 30 minutes and 1 hour after injection. These data suggest that the onset of the renal lesions is delayed and that the severity of the lesions might be lower when using irradiated crotoxin. (author)

  1. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  2. Comparative nephrotoxicity of native or Co-60 gamma rays irradiated crotoxin in mice

    Rocha, Andre Moreira; Alves, Glaucie J.; Aires, Raquel da Silva; Turibio, Thompson O.; Thomazi, Gabriela O. Coelho; Spencer, Patrick J.; Nascimento, Nanci do, E-mail: andrerocha@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nascimento-Rocha, Josefa M.; Magalhaes Filho, Asterio Souza, E-mail: 0304@prof.itpacporto.com.br [Instituto Tocantinense Presidente Antonio Carlos Porto (ITPAC), Porto Nacional, TO (Brazil)

    2015-07-01

    Snake venoms are complex mixtures of proteins and peptides with a wide spectrum of physiological targets such as the blood coagulation and cardiovascular systems and the motor end plate among others. Acute renal failure is a common complication in accidents with the South American rattlesnake. The toxin involved in this pathology is the crotoxin, a major component of the venom in terms of concentration and toxicity. Snake venoms, when irradiated with {sup 60}Co gamma rays present a significant decrease in toxicity while the immunogenic properties of its components are preserved. The use of irradiated venom is an attractive alternative for antisera production since it might reduce the appearance of renal lesions improving the welfare and lifespan of those animals employed on antivenom production. At the present work, we have compared the effects of native and irradiated crotoxin on the mice renal function. Tubular lesions were observed in all the samples from the animal group injected with native crotoxin. Animals injected with the irradiated toxin presented alteration only after 30 minutes and 1 hour after injection. These data suggest that the onset of the renal lesions is delayed and that the severity of the lesions might be lower when using irradiated crotoxin. (author)

  3. Gamma rays irradiation process on a restored painting from the XVII century

    Rizzo, Marcia M. [MRIZZO Laboratorio de Conservacao e Restauracao de Bens Culturais Ltda., Sao Paulo, SP (Brazil)], e-mail: mrizzo@mrizzo.com.br; Machado, Luci D.B.; Rela, Paulo R.; Kodama, Yasko [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: prela@ipen.br, e-mail: lmachado@ipen.br, e-mail: ykodama@ipen.br

    2009-07-01

    The aim of this work is to emphasize the importance of a previous study of the materials composition and behavior of any art work which will be treated by gamma radiation, as well as to use complementary procedures to prevent recontamination after the treatment, since this is a non residual method. As an example the object of study is a Peruvian painting from the 17th century, which has been restored, contaminated by mould, treated by gamma rays, put in a hermetic acrylic box and showed microorganisms growth after six years. A new treatment was performed using the same process and a complementary method using cloistering with anoxia atmosphere to prevent recontamination. Before the first irradiation the influence of irradiation process on the original painting and on the materials used in the restoration process were investigated. These data were extremely important in the decision of the use gamma irradiation again on the same art work. The results obtained allowed concluding that the irradiation with the recommended dose of 6.0 kGy (at the first time) was not sufficient to kill all the fungi specimens in the art work. On the other hand the irradiation with the dose of 6.0 kGy (at the first time) and 9.0 kGy (at the second time), according to the literature, would not damage the restored painting. (author)

  4. The effect of red ginseng extract on superoxide dismutase activity in the kidney of gamma-ray irradiated mice

    This study was prepared to observe the change of enzyme activities in kidney treated with red ginseng extract in the gamma ray irradiated mice. Determine the activity of SOD, peroxidase, catalase in the kidney a period of 1 day, 2 day, 3 day, 4 day, 5 day after a saline injection or injection of red ginseng extract or gamma ray irradiated group into four classify. The activity SOD and catalase showed a tendency to increase and recovery at the early state but pay no regard. Where ase, the activity of peroxide restored and increased pay regard. A physiological saline injection group after gamma ray irradiation showed a tendency to diminish after remarkable increase of activity of SOD, peroxidase and catalase than control group. Injection group of red ginseng extract after gamma ray irradiation observed rapid recovery on activity of SOD, peroxidase, catalase than a saline injection group. Experimental result suggested that injection of red ginseng extract after irradiation have the recovery effect on the changed of activity of SOD, peroxidase and catalase against radiation injury

  5. The effect of red ginseng extract on superoxide dismutase activity in the kidney of gamma-ray irradiated mice

    Park, Yong Soon [Kunsan Vocational College, Kunsan (Korea, Republic of)

    1992-05-15

    This study was prepared to observe the change of enzyme activities in kidney treated with red ginseng extract in the gamma ray irradiated mice. Determine the activity of SOD, peroxidase, catalase in the kidney a period of 1 day, 2 day, 3 day, 4 day, 5 day after a saline injection or injection of red ginseng extract or gamma ray irradiated group into four classify. The activity SOD and catalase showed a tendency to increase and recovery at the early state but pay no regard. Where ase, the activity of peroxide restored and increased pay regard. A physiological saline injection group after gamma ray irradiation showed a tendency to diminish after remarkable increase of activity of SOD, peroxidase and catalase than control group. Injection group of red ginseng extract after gamma ray irradiation observed rapid recovery on activity of SOD, peroxidase, catalase than a saline injection group. Experimental result suggested that injection of red ginseng extract after irradiation have the recovery effect on the changed of activity of SOD, peroxidase and catalase against radiation injury.

  6. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    May, J.C. E-mail: may@cber.fda.gov; Rey, L.; Lee, C.-J

    2002-03-01

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0 deg. C or frozen in liquid nitrogen.

  7. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0 deg. C or frozen in liquid nitrogen

  8. Life shortening and carcinogenesis in mice irradiated at the perinatal period with gamma rays

    This study elucidates the life-span radiation effects in mice irradiated at the perinatal period in comparison to mice irradiated at the young adult period. B6C3F1 female mice were irradiated at 17 days of prenatal age, at 0 days of postnatal age, or as young adults at 15 weeks of age with 190, 380, or 570 rads of 137Cs gamma rays. Mice irradiated at the late fetal period showed dose-dependent life shortening of somewhat lesser magnitude than that seen after neonatal or young adult irradiation. Mice exposed at the late fetal period were highly susceptible to induction of pituitary tumors for which the latent period was the longest of all induced neoplasms. Incidence of lung tumors in mice irradiated at the late fetal period with 190 and 380 rads was higher than in controls. Malignant lymphomas of the lymphocytic type developed in excess, after a short latent period, in mice irradiated fetally with the highest dose; susceptibility of prenatally exposed mice was lower than that of early postnatally exposed mice. Liver tumors developed more frequently in mice irradiated in utero than in controls; susceptibility to induction of this type of neoplasm was highest at the neonatal period. In general, carcinogenic response of mice exposed at the late fetal period resembled that of neonatally exposed mice but was quite different from that of young adult mice. Mice exposed as young adults have no, or low, susceptibility to induction of pituitary, lung, and liver tumors; and a higher susceptibility to induction of myeloid leukemias and Harderian gland tumors. 19 refs., 4 figs., 3 tabs

  9. Rhizobium sp. effects, irradiated with ultraviolet and gamma rays, on nodulation of P. vulgaris (L.) bean

    Indigenous isolates of Rhizobium sp. from the root nodules of bean were selected. There of these isolates and a R. leguminosarum biovar phaseoli (SEMIA 4064) strain, used as a reference, were irradiated with ultraviolet (UV) light and gamma-Rays (γ-R). The relations between survival and fluence of UV, and survival and absorbed dose of γ-R were linear for the strain of reference. The D37 values, for this rhizobial strain were 43 j.m-2 for the UV-treatment, and 32 Gy for the γ-rays treatment. Through a greenhouse experiment the irradiated isolates were inoculated on bean seedlings (P. vulgaris L, Variety IPA-8), in an attempt to evaluate sensitivity of the host-plants and possible effects on their nodulation. Significant differences were observed only for root dry matter yield. For all the other evaluated parameters variance was of such magnitude that it was not possible to detect significance of the effects. The isolates tested showed difference in responses to nodulation, due to the effects of irradiations. The host plant (IPA-8) seemed to be sensitive to the possible modifications in the irradiated isolates. (author). 10 refs, 6 figs, 1 tab

  10. Ageing evaluation of low voltage cables and insulators with gamma ray irradiation and thermal accelerated ageing tests

    To optimize lifetime prediction method of cables and to understand cable ageing mechanism, ageing evaluation of low voltage cables and insulators with gamma ray irradiation and thermal accelerated ageing tests were conducted. Insulators had no indication of the ageing after 1000 hours of the accelerated ageing tests. (author)

  11. Diversity analysis of mangosteen (Garcinia mangostana irradiated by gamma-ray based on morphological and anatomical characteristics

    MUH RAHMAD SUHARTANTO

    2010-01-01

    Full Text Available Widiastuti A, Sobir, Suhartanto MR. 2010. Diversity analysis of mangosteen (Garcinia mangostana L. irradiated by gamma-ray based on morphological and anatomical characteristics. Nusantara Bioscience 2: 23-33. The aim of this research was to increase genetic variability of mangosteen (Garcinia mangostana L. irradiated by gamma rays dosage of 0 Gy, 20 Gy, 25 Gy, 30 Gy,35 Gy and 40 Gy. Plant materials used were seeds collected from Cegal Sub-village, Karacak Village, Leuwiliang Sub-district, Bogor District, West Java. Data was generated from morphological and anatomical characteristics. The result indicated that increasing of gamma ray dosage had inhibited ability of seed to growth, which needed longer time and decreased seed viability. Morphologically, it also decreased plant heigh, stem diameter, leaf seizure, and amount of leaf. Anatomically, stomatal density had positive correlation with plant height by correlation was 90% and 74%. Gamma rays irradiation successfully increase morphological variability until 30%. Seed creavage after irradiation increased variability and survival rate of mangosteen.

  12. The destructive degradation of some organic textile dye compounds using gamma ray irradiation

    The destructive degradation of 8 coloured reactive and direct dye compounds currently used in the textile industry has been investigated. These dyes are: Levafix Blue ERA (LB), Levafix Brilliant Red E4BA (LBR), Levafix Brilliant Yellow EGA (LBY), Drimarene Scarlet F3G (DS), Drimarene Brilliant Green X3G (DBG), Fast Yellow RL (FY), Fast Violet 2RL (FV) and Fast Orange 3R (FO). The process of degradation of the respective dye has been followed spectrophotometrically at the characteristic lmax. The variation of the colour intensity of aerated aqueous solution of the investigated dyes has been measured as a function of gamma irradiation dose. In all cases, the amplitude of the absorption bands of the dye compound was found to decrease with the increase of the gamma dose. Irradiation was carried out for actual waste and distilled water. By comparing the heights of the absorption maxima in both the visible and ultraviolet ranges, it was found that complete decolouration is attained at lower doses than that needed for the process of degradation of the dye. The kinetics of the degradation process has been traced and the kinetic constant, k1, was calculated and found to be concentration dependent indicating a first order reaction in all cases. The radiation-chemical yield (G-value) as a measure of the efficiency of gamma ray to degrade the respective dye was calculated for all dye compounds and it was found that the G-value in all cases increases exponentially for low radiation doses and changes linearly for high radiation doses. Also the K* value (the efficiency coefficient of dye radiolysis) was calculated and compared for the different dye compounds e.g. for FO, FY and FV dyes, the K* values were found to range from 5.5x109 to 1.92x10-7 mol·L-1'·cm-1. In addition to the study of a single dye compound in solution, mixtures of different dyes (3 dyes) were also subjected to g-ray irradiation simulating more closely actual waste effluents. Also the effect of some other

  13. Study of irradiated bothropstoxin-1 with {sup 60}Co gamma rays: immune system behavior

    Caproni, P.; Baptista, J.A.; Almeida, T.L. de; Nascimento, N. [Nuclear and Energy Research Institute (IPEN/CNEN-SP), SP (Brazil). Biotechnology Center; Passos, L.A.C. [State University of Campinas (UNICAMP), SP (Brazil). Lab. of Genetics and Embryo Cryopreservation

    2009-07-01

    Ionizing radiation has been successfully employed to modify the immunological properties of biomolecules. Very promising results were obtained when crude animal venoms, as well as isolated toxins, were treated with 60Co gamma rays, yielding toxoids with good immunogenicity. The achievement of modified antigens with lower toxicity and preserved or improved immunogenicity can be very useful. Ionizing radiation has already been proven to be a powerful tool to attenuate snake venom toxicity without affecting, and even increasing, their immunogenic properties. However, little is known about the modifications that irradiated molecules undergo and even less about the immunological response that such antigens elicit. In the present work, we investigated the immunological behavior of bothropstoxin-1, a K49 phospholipase, before and after irradiation. Structural modifications of the toxin were analyzed by SDS-PAGE. Isogenic mice were immunized with either the native or the irradiated toxin. The circulating antibodies were isotyped and titrated by ELISA. According to our data, irradiation promoted structural modifications in the toxin characterized by higher molecular weight forms of proteins (aggregates and oligomers). The results also indicated that irradiated toxins were immunogenic and antibodies elicited by them were able to recognize the native toxin in ELISA. These findings suggest that irradiation of toxic proteins can promote significant modifications in their structures; however they still retain many of the original antigenic and immunological properties of native proteins. Also, our data indicate that irradiated proteins induce higher titers of IgG2a and IgG2b, suggesting that Th1 cells are predominantly involved in the immune response. (author)

  14. Effects of acid/alkaline pretreatment and gamma-ray irradiation on extracellular polymeric substances from sewage sludge

    In order to investigate the mechanism of extracellular polymeric substances (EPS) influencing sludge characteristics, variations of extractable EPS from municipal sewage sludge by acid/alkaline pretreatment and gamma-ray irradiation were studied. The changes in constituents of EPS were analyzed by UV–vis spectra and SEM images. The effects of alkaline pretreatment and gamma-ray irradiation on the functional groups in EPS were investigated by Fourier transform infrared (FTIR) spectrometer. Results showed that the extractable EPS increased clearly with increasing irradiation dose from 0 to 15 kGy. UV–vis spectra indicated that a new absorption band from 240 nm to 300 nm existed in all irradiated samples, apart from acid condition. The results of FTIR spectroscopic analysis indicated that, irradiation influenced major functional groups in EPS, such as protein and polysaccharide, and these effects were clearer under alkaline condition. SEM images provided that after alkaline hydrolysis, gamma-ray irradiation was more effective in resulting in the sludge flocs and cells broken, compared with acid pretreatment (pH 2.50). - Highlights: • Effects of acid/alkaline pretreatment and gamma irradiation on EPS were examined. • Gamma irradiation and alkaline treatment generated remarkable synergistic effects. • The combined application could promote sludge disintegration and solubilization

  15. Radiation chemistry in alanine irradiated with {gamma}-rays and ion beams

    Koizumi, Hitoshi; Ichikawa, Tsuneki; Yoshida, Hiroshi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1997-01-01

    In order to extend the application of alanine dosimetry, the behavior of free radicals in solid {alpha}-alanine irradiated with {gamma}-rays and with ion beams was studied by electron spin resonance. Stable neutral radicals are produced through the decomposition of originally generated ion radicals in alanine irradiated at 300 K, while at 77 K the ion radicals are stable, and also do not decompose. The rate of the combination reaction of the neutral radicals and of the ion radicals was studied by measuring the saturation behavior of the radical concentration in {gamma}-radiolysis at 300 and at 77 K. The yield of the neutral radicals was compared between 0.5, 1,2 and 3 MeV H{sup +}, 0.5, 1, and 3 MeV He{sup +}, 175 MeV Ar{sup 8+} and 460 MeV Ar{sup 13+} ion irradiations. Dependence of the radical yield on the radiation quality is understood more in terms of the rate of the combination reaction between the ion radicals than with that between the neutral radicals, and has to do with high local dose within the ion tracks. (Author).

  16. Mutation Breeding of various spray chrysanthemum cultivars by gamma-ray irradiation

    This study was carried out to analyze mutation rate and spectrum of chrysanthemum by gamma-ray irradiation. Five flower types, 16 cultivars including 'Geumsu', 'Hwiparam', 'Ilwol', 'Magic', 'Moonlight', 'Noblewine', 'Pinky', 'Progy', 'Sangtte', 'Waterfog', 'Whitneypangpang', 'Yelloweye', 'Yellowpangpang', 'Yesmiso', 'Yesmorning', and 'Yestogether' were irradiated as 30, 50, and 70 Gy dose during 24 hours. As a result, mutation rate was identified as the highest in single type among five flower types, but there was a little difference according to cultivars. Mutation rate was increased in proportion to irradiation dose in anemone, pompon, and spider type cultivars, but there wasn't clear in single and semi-double type cultivars. Mutation spectrum was identified as the highest in the cultivar 'Noblewine'. The most sensitive cultivars to radiation were revealed as 'Noblewine' and 'Yesmorning' and the least were Moonlight', 'Waterfog', and 'Yellowpangpang'. Consequently, there was much difference in radio-sensitivity according to cultivars of chrysanthemum and flower type was correlated a little with mutation rate

  17. Minisatellite and HPRT mutations in V79 and human cells irradiated with gamma rays

    The induction of mutations at the Hprt locus and minisatellite sequences was studied in V79 cells, peripheral blood lymphocytes (PBL) and lymphoblastoid cells (CCRF-CEM) exposed to gamma rays. In V79 cells the Hprt mutant frequency increased with dose at least up to 6.0 Gy, whereas the number of HPRT mutant lymphocytes increased up to 3 Gy. Clones derived from single irradiated cells were screened for mutations at minisatellite sequences by DNA fingerprint analysis. In V79 cells, a dose-response curve for minisatellite alterations was obtained up to 4.5 Gy. In contrast, very few mutations at minisatellite sequences (2/137) were detected among clones isolated from PBL of two donors irradiated with 1-4 Gy. Similar results were observed in lymphoblastoid CCRF-CEM cells irradiated with 2-3 Gy (4 mutants/180 clones), suggesting that in human lymphoid cells minisatellite DNA is more stable than in other mammalian and human cell lines. (author)

  18. X and gamma rays irradiation tests for evaluating performances of Italian dosimetry services

    The ENEA (Italian Agency for New Technologies, Energy and the Environment)-EDP Group (Personal Dosimetry Experts) has already evaluated the reliability of more than 50% of the 70 Italian personal dosimetry services, which agreed to test their dosimeters through X and gamma irradiation in air. Film,TL and both film and TL are used as detectors. The X and gamma rays energy ranges from 30 keV to 1.250 keV (beam defined by ISO 4037). Exposures range from 5.2 10-6 C/kg to 1.3 10-3 C/kg. Some dosimeters have been irradiated with a single energy level and others with two energy levels. For each one of the nearly 4.000 dosimeters already tested, the ratio R has been calculated: R = Xv/Xa where: Xv is the exposure evaluated by the service, Xa is the actual exposure. The R distributions have been analysed for the dosimeters using film or TL as detectors, as a function of irradiation energy and as a function of exposure values. The results obtained by all tested services are commented. Separate comments deal also with possible reasons of the failures to pass the tests

  19. Study of stability of humic acids from soil and peat irradiated by gamma rays

    Humic acids samples (one deriving from a sedimentary soil and other from a peat), in aqueous media, were irradiated with gamma rays, in doses of 10, 50 and 100 kGy, in order to understand their chemical behavior after the irradiation. The material, before and after irradiation, was analyzed by Elemental Analysis, Functional Groups (carboxylic acids and phenols), UV/Vis Spectroscopy (E4/E6 ratio), IR spectroscopy, CO2 content and Gel permeation Chromatography (GPC) ). The Elemental Analysis showed the humic acid derived from a peat had a most percentage quantity of Carbon and Hydrogen than the material from a sedimentary soil. From the UV/Vis Spectroscopy, it was observed a decrease of E4/E6 ratio with an increase of the applied dose. The data from GPC are in agreement with this. The results showed that the molecular weight of the material increased by exposing it to a larger radiolitical dose. The peat material was less affected by the gamma radiation than the soil material. The carboxylic groups were responsible by radiochemical behavior of the material. (author)

  20. Meiotic chromosome behaviours in M1 generation of bread wheat irradiated by gamma-rays

    Growing plants of bread wheat (Triticum aestivum L. 2 n=6x=42, AABBDD) were subjected to acute or chronic irradiation by gamma-rays from 60Co and meiotic chromosome behaviours of PMCS in M1 generation were cytologically compared. Both acute and chronic irradiations produced different types of chromosomal aberrations at the meiotic stages. Among them, translocation type was the most frequent, followed by univalent type. A mixed type, i. e. translocation accompanying one or more univalents was often detected. Even normal type which lacked translocation and univalent included laggards and briclges without exception. Other meiotic abnormalities such as deletion, iso-chromosome and micronuclei were observed frequently in both treatments. Dose dependency of translocation frequency was not recognized in this experiment. In chronic irradiation, different chromosome numbers and meiotic behaviours were found not only among florets of a spike but also among anthers of a floret. A number of plants with aneuploid-like grass types occurred at a high frequency in M1, especially with low exposure

  1. Investigation of effects of gamma ray irradiation on pyrolysis properties of glove-box panel materials

    The glove box (GB) is a device with some plastic components and is used for the containment of radioactive materials. In a MOX fuel fabrication facility, MOX is also handled in the GB. Since the plastic panel, which has the largest area in the GB, is used over a long period, it is exposed to a high dose of MOX continuously. In this study, to confirm whether the containment capability of GB can be maintained even under external thermal stress, the effects of gamma ray irradiation with 60Co on the pyrolysis properties of the common panel materials were investigated by TG-DTA. As a result, polymethylmethacrylate showed a large peak of the mass loss rate at about 260 degrees under the nonirradiation and air condition, but it separated into lower and higher temperature sides above 25 kGy. This effect was not observed up to 10 kGy for polymethylmethacrylate and up to 880 kGy for polycarbonate. By comparison with the estimated total dose of the GB panel irradiated in the operation period, it was found that the irradiation from MOX does not significantly affect the pyrolysis properties of the GB panel in the actual facility. (author)

  2. Evaluation of myotoxic activity of Bothropstoxin-1 irradiated with 60Co gamma rays

    Ionizing radiation has been successfully employed to modify the immunological properties of biomolecules and has been proven to be a powerful tool to attenuate snake venoms toxicity without affecting their immunogenic properties. Snake venoms and their isolated toxins showed structural modifications after gamma radiation process, in aqueous solution, mainly by water radiolysis sub products. Free radical scavengers, such as NaNO3 and t-butanol, present selective effects on specific radical from water radiolysis. The NaNO3 has affinity by aqueous electron, while the t-butanol has affinity by hydroxyl radical. At the present work, we have investigated the myotoxic activity of Bothropstoxin-1 (BTHX-1), a K49 phospholipase, present in Bothrops jararacussu crude venom, before and after irradiation process, with or without scavenger substances presence. BTHX-1 was irradiated with 2 kGy of 60Co gamma rays, in aqueous solution and in the presence of oxygen. BALB/c mice were inoculated with either native or irradiated toxin, with or without scavenger substances. After 3 hours, blood samples were collected and the myotoxic activity was evaluated by LDH (lactate dehydrogenase) release. The muscular tissue damage was directly related to the LDH amounts released. Irradiated Bothropstoxin-1, with or without NaNO3 substance, caused less damage than their native counterpart. But irradiated toxin, in the presence of t-butanol, was so myotoxic as the native BTHX-1. These results indicate that irradiation of toxic proteins can promote significant modifications on their structures, but still retaining many of the original biological properties of their native counterparts. Additionally, some scavengers substances can change these gamma radiation effects. (author)

  3. Effects of gamma-ray irradiation on leaching of simulated {sup 133}Cs{sup +} radionuclides from geopolymer wasteforms

    Deng, Ning; An, Hao; Cui, Hao, E-mail: cuihao@nju.edu.cn; Pan, Yang; Wang, Bing; Mao, Linqiang; Zhai, Jianping

    2015-04-15

    Highlights: • γ-ray irradiation caused more Cs{sup +} leaching out from geopolymer wasteform. • Pore structure change induced by irradiation caused the increase of leachability. • Fly-ash-based geopolymer is a potential material for radionuclide immobilization. - Abstract: Leaching of simulated {sup 133}Cs{sup +} radionuclides from geopolymer wasteforms was examined with regard to effects from gamma-ray irradiation. Specifically, the compressive strengths, microstructures, pore structures, and leaching resistance of geopolymer wasteforms before and after irradiation were characterized. The leaching experiments were performed by immersion of wasteforms in deionized water, ground water, and seawater. It was found that gamma rays did not produce significant morphological changes, except for changes in the pore size distribution. The cumulative leaching fraction of all the leachants from the irradiated samples increased relative to the non-radiated samples, particularly during long leaching periods (11–42 days). These results, and those from a mercury intrusion porosimeter analysis, can be attributed to irradiation-induced changes in pore structure. All the leaching indexes were greater than the minimum acceptable value of 6.0 set by the American Nuclear Society Standards committee, which indicated that the fly-ash geopolymers are suitable for radionuclide immobilization. However, the effects of gamma-ray irradiation on the immobilization of radionuclides cannot be ignored.

  4. Study on the gamma-ray irradiation behavior of mesoporous silica adsorbents functionalized with phosphine oxide and phosphonic acid ligands

    The resistance of mesoporous silica adsorbents bearing phosphine oxide (SBA-P(O)Pr2) and phosphonic acid (SBA-P(O)(OH)2) to gamma-ray irradiation (in air and 2 mol/ L HNO3 solution) was systematically evaluated. The change in the composition, structure and (U(VI)) adsorption ability of the adsorbents was examined. Both the organophosphorus ligands functionalized adsorbents exhibited remarkable durability under gamma-ray irradiation up to a total dose of 5 x 105 Gy. The mesoporous silica framework and the two classes of organophosphorus ligands were well-reserved without irradiation damage. Moreover, after irradiation, the adsorbents still maintained an effective adsorption of U(VI) in high acidic or pH range solutions. (author)

  5. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS

    Clark, E.

    2011-09-22

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Polymeric materials become damaged by exposure over time to ionizing radiation. Despite the limited lifetime, polymers have unique engineering material properties and polymers continue to be used in tritium handling systems. In tritium handling systems, polymers are employed mainly in joining applications such as valve sealing surfaces (eg. Stem tips, valve packing, and O-rings). Because of the continued need to employ polymers in tritium systems, over the past several years, programs at the Savannah River National Laboratory have been studying the effect of tritium on various polymers of interest. In these studies, samples of materials of interest to the SRS Tritium Facilities (ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, Teflon{reg_sign}), Vespel{reg_sign} polyimide, and the elastomer

  6. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    60Co-gamma irradiators have long been used for foods sterilization, plant mutation and development of radio-protective agents, radio-sensitizers and other purposes. The Applied Radiological Science Research Institute of Cheju National University has a multipurpose gamma irradiation facility loaded with a MDS Nordin standard 60Co source (C188), of which the initial activity was 400 TBq (10,800 Ci) on February 19, 2004. This panoramic gamma irradiator is designed to irradiate in all directions various samples such as plants, cultured cells and mice to administer given radiation doses. In order to give accurate doses to irradiation samples, appropriate methods of evaluating, both by calculation and measurement, the radiation doses delivered to the samples should be set up. Computational models have been developed to evaluate the radiation dose distributions inside the irradiation chamber and the radiation doses delivered to typical biolological samples which are frequently irradiated in the facility. The computational models are based on using the MCNPX code. The horizontal and vertical dose distributions has been calculated inside the irradiation chamber and compared the calculated results with measured data obtained with radiation dosimeters to verify the computational models. The radiation dosimeters employed are a Famer's type ion chamber and MOSFET dosimeters. Radiation doses were calculated by computational models, which were delivered to cultured cell samples contained in test tubes and to a mouse fixed in a irradiation cage, and compared the calculated results with the measured data. The computation models are also tested to see if they can accurately simulate the case where a thick lead shield is placed between the source and detector. Three tally options of the MCNPX code, F4, F5 and F6, are alternately used to see which option produces optimum results. The computation models are also used to calculate gamma ray energy spectra of a BGO scintillator at

  7. Effects of acid/alkaline pretreatment and gamma-ray irradiation on extracellular polymeric substances from sewage sludge

    Xie, Shuibo; Wu, Yuqi; Wang, Wentao; Wang, Jingsong; Luo, Zhiping; Li, Shiyou

    2014-04-01

    In order to investigate the mechanism of extracellular polymeric substances (EPS) influencing sludge characteristics, variations of extractable EPS from municipal sewage sludge by acid/alkaline pretreatment and gamma-ray irradiation were studied. The changes in constituents of EPS were analyzed by UV-vis spectra and SEM images. The effects of alkaline pretreatment and gamma-ray irradiation on the functional groups in EPS were investigated by Fourier transform infrared (FTIR) spectrometer. Results showed that the extractable EPS increased clearly with increasing irradiation dose from 0 to 15 kGy. UV-vis spectra indicated that a new absorption band from 240 nm to 300 nm existed in all irradiated samples, apart from acid condition. The results of FTIR spectroscopic analysis indicated that, irradiation influenced major functional groups in EPS, such as protein and polysaccharide, and these effects were clearer under alkaline condition. SEM images provided that after alkaline hydrolysis, gamma-ray irradiation was more effective in resulting in the sludge flocs and cells broken, compared with acid pretreatment (pH 2.50).

  8. Perna perna (LINNAEUS, 1758) mussels irradiated by {sup 60}CO gamma rays cytotoxicity evaluation

    Martini, Gisela A.; Pusceddu, Fabio H.; Rogero, Sizue O.; Rogero, Jose Roberto, E-mail: gisela.martini@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The aim of the present work was the study of ionizing radiation effects on aquatic biota regarding the location of nuclear facilities nearby coastal areas assuming the risk of leaks and nuclear accidents. Bivalve mollusks have been widely used in the monitoring of aquatic environment studies mainly for their sessile habit and pollutants bioconcentration ability. So marine mussel Perna perna (Bivalvia: Mytilidae) was used as organism test in this study. The study of radioactive toxicity was performed by cytotoxicity test exposing the organisms to 11Gy gamma radiation dose. After radiation the neutral red retention assay evaluated the lysosomal membrane integrity in the mussel hemocytes. 50% lethal dose assay (LD50) of gamma radiation on Perna perna mussels was carried out by exposure the organisms to {sup 60}Co gamma rays at doses ranging from 0 to 3000 Gy. The result of gamma radiation LD50 for these mussels was 1068 Gy and the neutral red retention time of irradiated organisms was about 47% lower than the control, non irradiated organisms. With the obtained results is expected to contribute in the study to identify the range of ionizing radiation doses which can cause toxic effects in marine invertebrates. (author)

  9. Perna perna (LINNAEUS, 1758) mussels irradiated by 60CO gamma rays cytotoxicity evaluation

    The aim of the present work was the study of ionizing radiation effects on aquatic biota regarding the location of nuclear facilities nearby coastal areas assuming the risk of leaks and nuclear accidents. Bivalve mollusks have been widely used in the monitoring of aquatic environment studies mainly for their sessile habit and pollutants bioconcentration ability. So marine mussel Perna perna (Bivalvia: Mytilidae) was used as organism test in this study. The study of radioactive toxicity was performed by cytotoxicity test exposing the organisms to 11Gy gamma radiation dose. After radiation the neutral red retention assay evaluated the lysosomal membrane integrity in the mussel hemocytes. 50% lethal dose assay (LD50) of gamma radiation on Perna perna mussels was carried out by exposure the organisms to 60Co gamma rays at doses ranging from 0 to 3000 Gy. The result of gamma radiation LD50 for these mussels was 1068 Gy and the neutral red retention time of irradiated organisms was about 47% lower than the control, non irradiated organisms. With the obtained results is expected to contribute in the study to identify the range of ionizing radiation doses which can cause toxic effects in marine invertebrates. (author)

  10. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    Scaff, L A M

    2001-01-01

    Physical factors associated to total body irradiation using sup 6 sup 0 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this wo...

  11. Broccoli yield and yield quality as affected by gamma rays seeds irradiation and foliar application of some nutrients

    Two field experiments were carried out during 1999/2000 and 2000/2001 winter growing seasons at the Atomic Energy Authority (AEA) in Inshas, Egypt. The experiment was conducted to study the effect of pre-sowing seeds irradiation with different doses of gamma rays (0, 2, 3 and 4 Gy) and foliar application of different nutrients (Zn, B, S and S+K) on spear diameter, main spear fresh and dry weight per plant, total spear fresh weight per plant, total spear yield besides NPK in leaves at 90 days after transplanting and NPK and total protein content in spears at maturity. In general, exposing broccoli seeds to different gamma ray doses up to 4 Gy prior to sowing increased the above mentioned parameters with different magnitudes comparing with the non-irradiated control plants. There were no significant differences between 3 Gy and 4 Gy treatments during the two growing seasons. With respect to the effect of nutrient application on the studied parameters, all nutrients application significantly increased all the above mentioned parameters. The highest result was detected with B application. Regarding to the interaction of gamma ray with nutrients application, the highest value of all above mentioned parameters was detected with B application and 3 Gy of gamma ray

  12. Obtainment of a drug delivery system from PVAL irradiated by gamma rays

    The poly(vinyl alcohol) (PVAL) is a polymer used as biomaterial. In this work the PVAL was irradiated by gamma rays from 60Co source with doses up to 200 kGy. The PVAL was used to prepare hydrogels that may be used as a drug delivery system in ocular implant, for pair PVAL/dihidroxypropoximethyl guanine, where the last one is used for treatment of people with retinite caused by cytomegalovirus. The dose effect was studied on various properties of PVAL: the molecular weight by viscosity, the crosslink degree (Gcross-link= 8,5) calculated from gel dose (Dg = 7,8 kGy), the average molecular weight between crosslinks, crosslinking density, tensile strength at break and the degree of crystallinity by differential scanning calorimetry. Formation and thermal decay radical were studied by electronic paramagnetic resonance. It was used the technique of superposition and subtraction of spectra obtained at various temperatures (77 K, 125 K, 170 K, 230 K and 280 K). The radicals formed were identified on irradiated PVAL on vacuum and air at 77K with 20 kGy. The thermal decay showed that air caused polymer oxidation, even after end the irradiation, because the ·OH, RO· and ROO · radicals were formed. The dose effect on molecular structure of PVAL was studied by transmission spectroscopy on infrared region and nuclear magnetic resonance of proton. The PVAL structural alteration was not observed up to 200kGy, although crosslink occurred on PVAL. The PVAL hydrogel formation occurred at doses upper 70 kGy and drug controlled released occurred with zero order kinetic on PVAL hydrogel irradiated with 80 kGy. (author)

  13. Comparison of the effects of gamma ray and e-beam irradiation on the quality of minced beef during storage

    This study was conducted to compare the microbiological and physicochemical qualities of minced beef irradiated with gamma ray of e-beam at the absorbed doses from 5 to 20 kGy. The total bacterial counts of minced beef were decreased depending upon the irradiation doses, but sterilizing effect of gamma irradiation was higher than that of e-beam irradiation. The contents of malondialdegyde of minced beef were increased depending upon irradiation doses as well as storage periods (p< 0.05). Volatile basic nitrogen in minced beef was constantly increased during storage, but the increasing rate were retarded by irradiation. The hunter's color values(L*, a* and b*) of gamma or e-beam irradiated minced beef were decreased as irradiation dose increasing. Meanwhile, the quality changes of gamma irradiated samples were faster than e-beam irradiated samples

  14. Effects of gamma ray and electron-beam irradiations on survival of anaerobic and facultatively anaerobic bacteria

    An extension of the approval for food irradiation is desired due to the increase in the incidence of food poisoning in the world. One anaerobic (Clostridium perfringens) and four facultatively anaerobic (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enteritidis) bacteria irradiated with gamma ray or electron beam (E-beam) were tested in terms of survival on agar under packaging atmosphere. Using pouch pack, effects of two irradiations on survival of anaerobic and facultatively anaerobic bacteria were evaluated comparatively. E-beam irradiation was more effective than gamma ray irradiation in decreasing the lethal dose 10% (D10) value of B. cereus at 4 deg C, slightly more effective in that of E. coli O157, and similarly effective in that of the other three bacteria at 4 deg C. The gamma irradiation of the bacteria without incubation at 4 deg C before irradiation was more effective than that of the bacteria with incubation overnight at 4 deg C before irradiation in decreasing the D10 values of these bacteria (B. cereus, E. coli O157, and L. monocytogenes). Furthermore, ground beef patties inoculated with bacteria were irradiated with 1 kGy by E-beam (5 MeV) at 4 deg C. The inoculated bacteria in the 1-9 mm beef patties were killed by 1 kGy E-beam irradiation and some bacteria in more than 9 mm beef patties were not killed by the irradiation. (author)

  15. Breeding of Setonami, a new variety of mat rush by gamma ray irradiation

    A new variety of mat rush, Setonami, was obtained from Asanagi by the following procedure. 24 growing plants of Asanagi were irradiated with the gamma ray from a Co-60 source at the distance of 9 m. The cumulative dose was 68 KR, and the dose rate was 363 R/day. It was carried out in a gamma field at the Institute of Radiation Breeding from April to December, 1963. They were brought back to the Tobu Branch, Hiroshima Prefectural Agricultural Experiment Station, divided into 480 individuals, and planted in a paddy field. Thereafter, they were selectively cultivated by clonal separation from December, 1964. In December, 1969, the cuttings of one of the strains were distributed among the prefectures concerned, and their productivity and local adaptability were tested. It was found in these tests that they were excellent, and they were named Setonami in June, 1982. Although the growth pattern is of a tiller type, Setonami produces long stems exceeding 105 cm with a large number of tillers. It bears very few flowers, and its florescence is short. The dried stems show beautiful luster. The stems are as thick as Asanagi, but supple. The yield of Setonami is more than that of Asanagi. The tatami-facing production with Setonami per unit planted area is more than that of Asanagi, and the quality is superior. (Kako, I.)

  16. Effect that atmospheric pressure exerts to DC tracking of polyethylene irradiated with gamma ray

    In the testing method of tracking resistance carried out generally, particular stipulation is not made on atmospheric pressure. But there is the case that electric and electronic equipments are used in the place of low pressure. The lowering of atmospheric pressure affects the phenomenon of tracking deterioration, and it is sufficiently conceivable that tracking resistance changes. So far, the effect that atmospheric pressure exerts on tracking resistance at the time of applying AC voltage has been mainly studied, however recently, DC voltage has become widely utilized, and the elucidation of DC tracking phenomena has become important. The experiment of irradiating Co-60 gamma ray to polyethylene and obtaining the basic data on the effect that atmospheric pressure exerts to DC tracking using those samples was carried out. The experimental setup, the samples and the tracking resistance test are reported. The relation of the weight loss with atmospheric pressure, the relation of the maximum erosion depth and atmospheric pressure, the measurement of the amount of residual carbide and the tracking resistance using brass electrodes are described. (K.I.)

  17. Stability Test For Sorghum Mutant Lines Derived From Induced Mutations with Gamma-Ray Irradiation

    Sorghum breeding program had been conducted at the Center for the Application of Isotopes and Radiation Technology, BATAN. Plant genetic variability was increased through induced mutations using gamma-ray irradiation. Through selection process in successive generations, some promising mutant lines had been identified to have good agronomic characteristics with high grain yield. These breeding lines were tested in multi location trials and information of the genotypic stability was obtained to meet the requirements for officially varietal release by the Ministry of Agriculture. A total of 11 sorghum lines and varieties consisting of 8 mutant lines derived from induced mutations (B-100, B-95, B-92, B-83, B-76, B-75, B-69 and Zh-30) and 3 control varieties (Durra, UPCA-S1 and Mandau) were included in the experiment. All materials were grown in 10 agro-ecologically different locations namely Gunungkidul, Bantul, Citayam, Garut, Lampung, Bogor, Anyer, Karawaci, Cianjur and Subang. In each location, the local adaptability test was conducted by randomized block design with 3 replications. Data of grain yield was used for evaluating genotypic stability using AMMI approach. Results revealed that sorghum mutation breeding had generated 3 mutant lines (B-100, B-76 and Zh-30) exhibiting grain yield significantly higher than the control varieties. These mutant lines were genetically stable in all locations so that they would be recommended for official release as new sorghum varieties to the Ministry of Agriculture. (author)

  18. Stability Test For Sorghum Mutant Lines Derived From Induced Mutations with Gamma-Ray Irradiation

    S. Human

    2011-12-01

    Full Text Available Sorghum breeding program had been conducted at the Center for the Application of Isotopes and Radiation Technology, BATAN. Plant genetic variability was increased through induced mutations using gamma-ray irradiation. Through selection process in successive generations, some promising mutant lines had been identified to have good agronomic characteristics with high grain yield. These breeding lines were tested in multi location trials and information of the genotypic stability was obtained to meet the requirements for officially varietal release by the Ministry of Agriculture. A total of 11 sorghum lines and varieties consisting of 8 mutant lines derived from induced mutations (B-100, B-95, B-92, B-83, B-76, B-75, B-69 and Zh-30 and 3 control varieties (Durra, UPCA-S1 and Mandau were included in the experiment. All materials were grown in 10 agro-ecologically different locations namely Gunungkidul, Bantul, Citayam, Garut, Lampung, Bogor, Anyer, Karawaci, Cianjur and Subang. In each location, the local adaptability test was conducted by randomized block design with 3 replications. Data of grain yield was used for evaluating genotypic stability using AMMI approach. Results revealed that sorghum mutation breeding had generated 3 mutant lines (B-100, B-76 and Zh-30 exhibiting grain yield significantly higher than the control varieties. These mutant lines were genetically stable in all locations so that they would be recommended for official release as new sorghum varieties to the Ministry of Agriculture

  19. Radiolytic degradation of hexabromocyclododecane in waste water from thermal insulation-treatment factory with gamma ray irradiation

    Radiolytic, and radiolytic/biological decompositions of hexabromocyclododecane (HBCD) in primary and ultimate waste waters from a thermal insulation-treatment process and a factory of polyester process are studied with gamma ray irradiation. Concentrations and degradation ratios of HBCD, and Br- concentrations are determined before and after gamma ray irradiation. Also, total organic carbon (TOC), chemical oxygen demand (COD), and biochemical oxygen demand (BOD) are determined to evaluate the decomposition of total organic compounds. As a result, about 72.5% of HBCD in ultimate waste water were decomposed with dose of 100 kGy. Furthermore, about 98% of HBCD, nearly all organic compounds were removed after the combination of radiolytic/biological treatments. (author)

  20. Effects of gamma-ray irradiation on optical properties of ZnO-PbO-B2O3 glasses

    Sharma, G.; Thind, K.S.; Manupriya, -;

    2006-01-01

    Effects of gamma-ray irradiation on some optical properties of xZnO(.)2xPbO(.)(1-3x)B2O3 glasses have been studied in the wavelength range 300-800 nm. Decrease in transmittance indicates the formation of color-center defects. Values for the energy-band gap, the width of the energy tail above the...

  1. Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed

    Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Jae-Kyung [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Graduate school of Food and Biotechnology, Korea University, Seoul 146-701 (Korea, Republic of); Srinivasan, Periasamy; Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [Graduate school of Food and Biotechnology, Korea University, Seoul 146-701 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Tamarind (Tamarindus indica L) seed polysaccharide (TSP) is of great important due to its various biological activities. The present investigation was carried out to compare extraction yield, morphological characteristics, average molecular weights and antioxidant activities of TSP from gamma- and electron beam (EB)-irradiated tamarind kernel powder. The tamarind kernel powder was irradiated with 0, 5 and 10 kGy by gamma ray (GR) and electron beam, respectively. The extraction yield of TSP was increased significantly by EB and GR irradiation, but there was no significant difference between irradiation types. Morphological studies by scanning electron microscope showed that TSP from GR-irradiated tamarind seed had a fibrous structure, different from that of EB irradiated with a particle structures. The average molecular weight of TSP was decreased by the irradiation, and EB treatment degraded more severely than GR. Superoxide radical scavenging ability and total antioxidant capacity of EB-treated TSP showed higher than those of GR-treated TSP.

  2. Experimental validation of the new nanodosimetry-based cell survival model for mixed neutron and gamma-ray irradiation

    The new nanodosimetry-based linear-quadratic (LQ) formula has been reviewed for mixed-LET irradiation. V-79 Chinese hamster cells have been irradiated with a mixed-LET field of fission neutrons and gamma rays at University of Maryland Training Reactor (MUTR). The results show that the experimental survival curve agrees well with that predicted by the new nanodosimetry-based LQ model. The experimental study described in this note, therefore, serves as a validation for the new model to be used for mixed-LET radiotherapies, e.g. 252Cf brachytherapy

  3. Experimental validation of the new nanodosimetry-based cell survival model for mixed neutron and gamma-ray irradiation

    Wang, C.-K. Chris; Zhang, Xin; Gifford, Ian; Burgett, Eric; Adams, Vince; Al-Sheikhly, Mohamad

    2007-09-01

    The new nanodosimetry-based linear-quadratic (LQ) formula has been reviewed for mixed-LET irradiation. V-79 Chinese hamster cells have been irradiated with a mixed-LET field of fission neutrons and gamma rays at the University of Maryland Training Reactor (MUTR). The results show that the experimental survival curve agrees well with that predicted by the new nanodosimetry-based LQ model. The experimental study described in this note, therefore, serves as a validation for the new model to be used for mixed-LET radiotherapies, e.g. 252Cf brachytherapy.

  4. Experimental validation of the new nanodosimetry-based cell survival model for mixed neutron and gamma-ray irradiation

    Wang, C-K Chris [Nuclear/Radiological Engineering/Medical Physics Program Neely Research Center, Georgia Institute of Technology, 900 Atlantic Drive, Atlanta, GA 30332-0425 (United States); Zhang Xin [Nuclear/Radiological Engineering/Medical Physics Program Neely Research Center, Georgia Institute of Technology, 900 Atlantic Drive, Atlanta, GA 30332-0425 (United States); Gifford, Ian [Department of Materials and Bioengineering, University of Maryland, College Park, MD 20742-2115 (United States); Burgett, Eric [Nuclear/Radiological Engineering/Medical Physics Program Neely Research Center, Georgia Institute of Technology, 900 Atlantic Drive, Atlanta, GA 30332-0425 (United States); Adams, Vince [Department of Materials and Bioengineering, University of Maryland, College Park, MD 20742-2115 (United States); Al-Sheikhly, Mohamad [Department of Materials and Bioengineering, University of Maryland, College Park, MD 20742-2115 (United States)

    2007-09-07

    The new nanodosimetry-based linear-quadratic (LQ) formula has been reviewed for mixed-LET irradiation. V-79 Chinese hamster cells have been irradiated with a mixed-LET field of fission neutrons and gamma rays at University of Maryland Training Reactor (MUTR). The results show that the experimental survival curve agrees well with that predicted by the new nanodosimetry-based LQ model. The experimental study described in this note, therefore, serves as a validation for the new model to be used for mixed-LET radiotherapies, e.g. {sup 252}Cf brachytherapy.

  5. Production of acetic from ethanol solution by acetobactor acetigenum and effect of gamma-ray irradiation on the bacteria

    Umar, J.M. [National Atomic Energy Agency, Jakarta (Indonesia). Center for Application of Isotopes and Radiation; Matsuhashi, Shinpei; Hashimoto, Shoji

    1996-03-01

    A preliminary study on fermentation of acetic acid by S. cerevisiae and A. acetigenum was carried out to obtain information to develop the effective utilization technology of agricultural liquid wastes. Aqueous solutions of glucose and/or ethanol were used as a model of agricultural liquid waste. The effect of gamma-ray irradiation on A. acetigenum for enhancement of the fermentation was also examined. In this study, irradiated A. acetigenum had activity to produce acetic acid even after loss the activity to grow. (author).

  6. Production of acetic acid from ethanol solution by acetobactor acetigenum and effect of gamma-ray irradiation on the bacteria

    A preliminary study on fermentation of acetic acid by S. cerevisiae and A. acetigenum was carried out to obtain information to develop the effective utilization technology of agricultural liquid wastes. Aqueous solutions of glucose and/or ethanol were used as a model of agricultural liquid waste. The effect of gamma-ray irradiation on A. acetigenum for enhancement of the fermentation was also examined. In this study, irradiated A. acetigenum had activity to produce acetic acid even after loss the activity to grow. (author)

  7. Sterilization experiment of crocidolomia binotalis zeller by gamma ray irradiation and its control application

    Experiments have been conducted to study C. binotalis control initiated with the rearing method and ended with the release of sterile irradiated insects. Rearing of cabbage pest using modified artificial diet of Pieris rapae gave better result compared to that with natural diet. The larval viability was 58% and 25.9% from the artificial and the natural diet respectively. Gamma ray doses of 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.45 kGy were introduced to six-day-old sexed pupae in nitrogen and air atmosphere. A 100% sterility on males was obtained at 0.45 kGy in both air and nitrogen atmosphere. 100% sterility on females was found at 0.25 kGy in nitrogen and 0.2 kGy in air atmosphere. The effect of dose on the percentage of sterile and mating competitiveness were not significantly different (P ≥0.05). A significant correlation (r=0.8774) was found between the percentage of fertility and the mating competitiveness of irradiated insects. The lower the fertility of the insects the less mating competitiveness they have. 0.4 kGy was considered to be adequate for sterilization of C. binotalis. It produced a high percentage of sterility besides moderate mating competitiveness, 84.52% and 0.57% respectively. 0.4 kGy seemed to give 3 days shorter longevity of moth than the normal one. The number of F1 larval population was not significantly different if the released insects were either females or males or mixed sexes. The ratio of 9:1 of the sterile and normal insects under laboratory, field-cage, and in the field indicated that the sterile insect technique has the potential to suppress F1 population by about 50% due to the mating competitiveness of the radiosterilized insect still maintained at the level of 0.57. (author). 17 refs

  8. The effects of prenatal irradiation with a low doses of gamma-rays on spatial memory in adult rats

    Pregnant females of Wistar-strain rats were irradiated (sham-irradiated) with a dose of 1 Gy of gamma-rays on the 16th day of pregnancy. The progeny of both irradiated and control animals was tested in Morris' water maze for spatial memory at age of 4 months. The time needed to find the hidden platform and the swimming-track were recorded using a computer aided video-tracking method. The test was repeated after 24 hours (short-time memory) and after one week (long-time memory). In short-time memory test the irradiated females needed in comparison with controls a statistically significantly longer time and a longer swimming track to find the platform. No significant differences were found in male. In long-term memory test no significant differences in both parameters followed were found in either of sexes. The results suggest, that irradiation with a low dose of gamma-rays during the period of the embryonic development of the brain can negatively influence the short-term spatial memory, but has no effect on long-time memory in rats. (authors)

  9. The design of a gamma-ray irradiation plant—shanghai irradiation center

    Fugen, Chen; Xiangrong, Xue; Zewu, Yao

    Shanghai Irradiation Center, situated in western suburb of Shanghai, was completed in March, 1986. The intensity of Co 60 is 177 KCuries at present, and untimate loading will be 500 K Curies. The Center is designed mainly for food radiation preservation and sterilization of medical devices and tools. Its processing ability is 10 T/hr for potatoes.

  10. The design of a gamma-ray irradiation plant - Shanghai Irradiation Center

    Shanghai Irradiation Center, situated in western suburb of Shanghai, was completed in March, 1986. The intensity of Co60 is 177 K Curies at present, and ultimate loading will be 500 K Curies. The Center is designed mainly for food radiation preservation and sterilization of medical devices and tools. Its processing ability is 10 T/hr for potatoes. (author)

  11. Preliminary research on death pattern in PC12 cell after high-dose of gamma-ray irradiation

    Objective: To investigate the death pattern of pheochromocyoma cell line (PC12 cell) irradiated with ionizing radiation and to search for a model of radiation-induced neuron injury in vitro. Methods: PC12 cell was irradiated with different doses of 60Co γ-rays. The effect of radiation on cell cycle, development, differentiation and death rate were detected by flow cytometry, light microscope, and transmission electron microscope (TEM). Results: Irradiated PC12 cell showed cell cycle retardation and differentiation, but some cells died due to swelling. Apoptosis was observed in few cells. TEM examination indicated that mitochondrion and endoplasmic reticulum were dilated markedly, chromatin was concentrated and scattered near karyotheca or around the nucleolus, which characterized oncosis. Conclusions: PC12 cell died through oncosis after gamma-ray irradiation of high-dose, and can be used as a radiation-induced neuron injury model. (authors)

  12. Evaluation of induced radioactivity in 10 MeV-electron irradiated spices, (1); [gamma]-ray measurement

    Furuta, Masakazu; Katayama, Tadashi; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Shibata, Setsuko; Toratani, Hirokazu (Osaka Prefectural Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology); Takeda, Atsuhiko

    1994-02-01

    Black pepper, white pepper, red pepper, ginger and turmeric were irradiated with 10 MeV electrons from a linear accelerator to a dose of 100 kGy and radioactivity was measured in order to estimate induced radioactivity in the irradiated foods. Induced radioactivity could not be detected significantly by [gamma]-ray spectrometry in the irradiated samples except for spiked samples which contain some photonuclear target nuclides in the list of photonuclear reactions which could produce radioactivity below 10 MeV. From the amount of observed radioactivities of short-lived photonuclear products in the spiked samples and calculation of H[sub 50] according to ICRP Publication 30, it was concluded that the induced radioactivity and its biological effects in the 10 MeV electron-irradiated natural samples were negligible in comparison with natural radioactivity from [sup 40]K contained in the samples. (author).

  13. Effects of oxygen and moisture content on the radiation damage in barley seeds irradiated with fast neutrons and gamma rays

    In gamma-irradiated barley seeds the effect of moisture content seems to modify the oxygen effect. If gamma-irradiated seeds (4% H2O content) are soaked in oxygen-free water before being transferred to oxygenated water, the oxygen-sensitive centres decay. The decay rate is a function of temperature and is shown to be most likely due to how fast the target molecules are hydrated. When low moisture content seeds were irradiated with fast neutrons in the SNIF, a moisture content effect was also obtained. However, contrary to what was found with gamma-irradiated seeds, no effect of oxygen was obtained. This excludes the possibility that gamma-contamination caused the moisture content effect. A model explaining the difference between the effect of neutrons and gamma-rays, respectively, is discussed. (author). 13 refs, 1 fig., 2 tabs

  14. Two CdZnTe detector-equipped gamma-ray spectrometers for attribute measurements on irradiated nuclear fuel

    Some United States Department of Energy-owned spent fuel elements from foreign research reactors (FRRs) are presently being shipped from the reactor location to the US for storage at the Idaho National Engineering and Environmental Laboratory (INEEL). Two cadmium zinc telluride detector-based gamma-ray spectrometers have been developed to confirm the irradiation status of these fuels. One spectrometer is configured to operate underwater in the spent fuel pool of the shipping location, while the other is configured to interrogate elements on receipt in the dry transfer cell at the INEEL's Interim Fuel Storage Facility (IFSF) Both units have been operationally tested at the INEEL. (author)

  15. Two CdZnTe Detector-Equipped Gamma-ray Spectrometers for Attribute Measurements on Irradiated Nuclear Fuel

    Some United States Department of Energy-owned spent fuel elements from foreign research reactors (FRRs) are presently being shipped from the reactor location to the US for storage at the Idaho National Engineering and Environmental Laboratory (INEEL). Two cadmium zinc telluride detector-based gamma-ray spectrometers have been developed to confirm the irradiation status of these fuels. One spectrometer is configured to operate underwater in the spent fuel pool of the shipping location, while the other is configured to interrogate elements on receipt in the dry transfer cell at the INEEL's Interim Fuel Storage Facility (IFSF). Both units have been operationally tested at the INEEL

  16. Modifications of heterosis in hybrids between two inbred lines of maize (Zea Mays L.) irradiated with gamma rays

    A study of the effect of gamma radiation (3700 R) on heterosis in maize was carried out. Seeds of two inbred lines were irradiated with 3700R and crossed. Hybrid seeds obtained from these crossings were sown in the field according to a balanced lattice square design, 4 x 4 with 10 repetitions, and various quantitative characters were scored and analyzed. It is concluded that gamma-rays may modify combining ability o these inbred lines, accompanied by change in plant height, car number, ear length, weight of 100 kernels and husked car weight of the hybrids. (Author)

  17. Prompt gamma ray measurement in the KUR irradiation room by Cd-Zn-Te semiconductor detector for PG-SPECT

    Prompt gamma-rays from 10B(n,αγ)7Li reaction yielded in polyethylene plate containing 30 wt% 10B and/or 50 ppm 10B water phantom were measured in the medical irradiation room at the KUR-HWNIF, by Cd-Zn-Te semiconductor detector with tungsten collimator which has a hole of 3 mm diameter and 8 cm and/or 14 cm length. An application possibility of Cd-Zn-Te semiconductor detector to PG-SPECT was examined experimentally for BNCT. (author)

  18. Gamma-ray irradiation and post-irradiation at room and elevated temperature response of pMOS dosimeters with thick gate oxides

    Pejović Momčilo M.

    2011-01-01

    Full Text Available Gamma-ray irradiation and post-irradiation response at room and elevated temperature have been studied for radiation sensitive pMOS transistors with gate oxide thickness of 100 and 400 nm, respectively. Their response was followed based on the changes in the threshold voltage shift which was estimated on the basis of transfer characteristics in saturation. The presence of radiation-induced fixed oxide traps and switching traps - which lead to a change in the threshold voltage - was estimated from the sub-threshold I-V curves, using the midgap technique. It was shown that fixed oxide traps have a dominant influence on the change in the threshold voltage shift during gamma-ray irradiation and annealing.

  19. Utilization of gamma-ray irradiation for hydrogen production from water

    The present work is devoted to the effective use of gamma-ray from radioactive waste for hydrogen production from water. Radioactivity such as gamma-radiation is a long-term residual energy of nuclear reactions in which most of the energy is released spontaneously. Its high penetration power and low energy density, unfortunately, make the effective use of gamma-radiation from residues of the fuel recycling process very difficult. For the production of hydrogen by gamma-ray radiolysis of water, effective conversion of gamma-ray into the low-energy electrons and photons between a few eV and several tens of eV, i.e., appreciable increase in the energy deposition in water, was essential. This is because water molecule is inert towards gamma-ray radiation due to extremely low cross-sections. We have proposed a technique using special metal structures to increase the amount of the low-energy electrons ejected into water. In order to investigate the optimum metal structure, we have studied the mechanisms of generating lower-energy electrons and photons in water containing metals of various geometrical arrangements, by simulating the electron-photon transport processes in metal and water using the Monte-Carlo N-Particle (MCNP) code, We then demonstrated that the deposition energy to water can increase by carefully controlling the thickness of a metal component and its proximity with the adjacent component. Experimental work then showed that the optimal structure actually leads to enhanced hydrogen evolution from water.

  20. NPK, protein content and yield of broccoli as affected by gamma rays seeds irradiation and phosphorus fertilizer rates

    Two field experiments were carried out during 1999/2000 and 2000/2001 winter growing seasons at the experimental farm of Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt. The experiments were conducted to study the effect of pre sowing-seeds irradiation with different doses of gamma rays (0, 2, 3 and 4 Gy) and different phosphorus fertilizer application rates, 0, 30, 60 and 90 k P2O5 /fed) on NPK content of leaves and spear, and protein content in spears at maturity, spear diameter, main spear fresh and dry weight per plant, total spear fresh weight per plant and total spear yield. In general, exposing broccoli seeds to different gamma ray doses up to 4 Gy prior to sowing increased the above mentioned parameters with different magnitudes comparing with the non-irradiated control plants. The highest percentage of increase was obtained by exposing broccoli seeds to 3 Gy. There were non-significant differences between 3 and 4 Gy treatments during the two growing seasons. With respect to the effect of phosphorus fertilizer application rates on the studied parameters, increasing phosphorus application rates up to 90 kg P2O5/fed increased the above mentioned parameters. The highest percentage of increase was obtained by applying 90 kg P2O5/fed. The interaction, gamma ray and P level showed phosphorus there were significant differences in main spear fresh and dry weight per plant, total spear yield and spear diameter in first season. The highest value was obtained by 3 Gy and 90 kg P2O5/fed. Also there were significant effects on NPK content in broccoli leaves at 90 days after transplanting (DAT) except P in second season and nonsignificant values of broccoli spear at harvest except N, K in first season. The highest protein content of broccoli spears at harvest was obtained with 2 Gy and 30 kg P25/fed

  1. Wavelet analysis of scintillation discharge current on DC tracking resistance of gamma-ray irradiated polyethylene and polycarbonate

    The use of organic insulating materials in environments such as space and nuclear power stations is spreading rapidly. There is increasing concern about the reliability of electrical insulation in these environments due to radiation effects on the surface characteristics of polymeric materials. Irradiation effects on tracking resistance should be investigated due to the increasing usage of organic materials in radiation-prone environments. This paper presents a study on the DC tracking resistance of gamma-ray irradiated polyethylene and polycarbonate materials by use of the International Electrotechnical Commission (IEC) Publication (Publ.) 112 method. Polyethylene and polycarbonate materials as the test samples were irradiated in air up to 1 x 105 Gy and 1 x 106 Gy with dosage rates of 104 Gy/h using a 60Co gamma source. The total radiation effects on erosion depth, weight loss, contact angle and scintillation discharge energy levels were studied. A gaussian wavelet analysis was applied to show these scintillation discharge energy levels. (author)

  2. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    Ferreto, H. F. R., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Parra, D. F., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br; Lugão, A. B., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br [Center of Chemistry and Environment, Institute of Energy and Nuclear Research - IPEN (Brazil); Gaia, R., E-mail: renan-gaia7@hotmail.com [Faculdades Oswaldo Cruz (Brazil)

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  3. Tuning the grade of graphene: Gamma ray irradiation of free-standing graphene oxide films in gaseous phase

    Dumée, Ludovic F., E-mail: ludovic.dumee@deakin.edu.au [Institute for Frontier Materials, Deakin University, Pigdons Road, Waurn Ponds 3216 (Australia); Feng, Chunfang; He, Li; Allioux, Francois-Marie; Yi, Zhifeng; Gao, Weimin [Institute for Frontier Materials, Deakin University, Pigdons Road, Waurn Ponds 3216 (Australia); Banos, Connie; Davies, Justin B. [Australian Nuclear Science and Technology Organisation, Illawarra Road, Lucas Heights 2234 (Australia); Kong, Lingxue, E-mail: lingxue.kong@deakin.edu.au [Institute for Frontier Materials, Deakin University, Pigdons Road, Waurn Ponds 3216 (Australia)

    2014-12-15

    Graphical abstract: - Highlights: • Gaseous gamma ray irradiation on graphene oxide. • Impact of the radicals formation on the surface functionalization. • Evaluation of morphological and crystallinity changes across the material. • New route to the formation of pre-assembled graphene oxide 3D architectures. - Abstract: A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N{sub 2} or H{sub 2}. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm{sup −1} to as high as 23 S cm{sup −1}. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon

  4. Monte Carlo simulation of prompt gamma-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    Qin, Jianguo; Liu, Rong; Zhu, Tonghua; Zhang, Xinwei; Ye, Bangjiao

    2015-01-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt gamma-rays in detectors for depleted uranium spherical shells under D-T neutrons irradiation. In the first step, the gamma-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the gamma-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4-3 MeV for the prompt gamma-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated.

  5. Development of high yielding mutants of Brassica campestris L. cv. Toria selection through gamma rays irradiation

    Homogeneous seeds of Brassica campestris L. cv. Toria selection were treated with different doses of gamma rays (750, 1000 and 1250 Gy) to induce genetic variability for the selection of new genotypes with improved agronomic traits. After passing through different stages of selection, two promising mutants were selected for further studies. Two selected mutants along with 5 other entries including parent variety were evaluated for yield and yield components in yield trials for two consecutive years. The mutant TS96-752 was significantly (P less than or equal to 0.05) superior to all other entries in grain yield but at par with FSD 86028-3

  6. Dominant lethal mutation induced by continuous irradiation of 60Co gamma rays in mice

    Female and male mice were exposed to 60Co gamma rays for 10 days, the accumulative doses were 0.396-2.024 and 0.462-2.552 Gy respectively. The number of dominant lethal mutations was calculated as follows: PRE = CL - (ED + LD + VIA). The results showed that Preimplantation Loss (PRE) ranged from 1.222 to 3.714 for female mice and 0.0345 to 2.2308 for male mice. In both cases a linear dose-effect relationship was observed. The PRE of oocytes is 1.66 times higher than that of spermatids

  7. Investigation of photoneutron and capture gamma-ray production in Pb and W under irradiation from 16N decay radiation

    Highlights: • MCNP used to investigate (γ,n) and (n,γ) in Pb and W due to interaction with 16N decay γ-rays and β. • Evidence of photoneutrons and capture gamma rays observed. • Bremsstrahlung from 16N beta spectrum insufficient to generate photoneutrons. - Abstract: Lead and tungsten are potential alternative materials for shielding reactor ex-core components with high 16N activity when available space limits application of concrete. Since the two materials are vulnerable to photonuclear reactions, the nature and intensity of the secondary radiation resulting from (γ,n) and (n,γ) reactions when 16N decay radiation interact with these materials need to be well known for effective shielding design. In this study the MCNP code was used to calculate the photoneutron and capture gamma-ray spectra in the two materials when irradiated by 16N decay radiation. It was observed that some of the photoneutrons generated in the two materials lie in the low-energy range which is considered optimum for (n,γ) reactions. Lead is more transparent to the photoneutrons when compared to tungsten. The calculations also revealed that the bremsstrahlung generated by the beta spectrum was not sufficient to trigger any additional photoneutrons. Both energetic and less energetic capture gamma-rays are observed when photoneutrons interact with nuclei of the two materials. Depending on the strength of the 16N source term, the secondary radiation could affect the effectiveness of the shield and need to be considered during design

  8. Mutation induction by gamma-rays and carbon ion beam irradiation in banana (Musa spp.): a study with an emphasis on the response to Black sigatoka disease

    Gamma-rays and carbon ion beam irradiation methods were applied to study critical doses, genetic variability and the response to Black sigatoka disease. 'Cavendish Enano', 'Williams', 'Orito' and 'FHIA-01' cultivars of banana were studied. Both gamma-rays and carbon ion beam irradiation methods had different biological effects when banana explants were exposed to them. In both methods, increased dose caused increased mortality. 'FHIA-01' tolerated high doses of gamma-rays but was susceptible to high doses of carbon ion beam irradiation. The results suggest that the response in 'FHIA-01' can be explored using other dose intervals between 150 and 300 Gy. Weight and height were also reduced drastically when high doses of gamma-rays and carbon ion beams were applied. The LD50 of cultivars 'FHIA-01' and 'Orito' revealed high sensitivity to both gamma-rays and carbon ion beams. DNA deletion in 'FHIA-01' occurred by using gamma-rays at doses of 200 and 300 Gy, suggesting that 'FHIA-01' is definitely a promising cultivar with a high sensitivity response to gamma-ray exposure, and that there is a high chance of improving its fruit quality by mutation induction. Sigmoid drooping leaf, a putative mutation of 'FHIA-01', was generated. This mutation is heritable as mother plant and sucker showed the same characteristics. Future research could be conducted on the relationship of leaf shape to fruit quality and production. Hexaploid cells were detected by flow cytometry (five plants in 'Cavendish Enano' and one in 'Williams'), signifying that chromosome duplication can be induced by carbon ion beams. Variation in the leaves such as being abnormal, double, long, rudimentary, spindled and yellow spotted leaf was visible, suggesting that long-term chronic irradiation (gamma-rays) directly affects active cell division at the meristem level, resulting in severe damage or even death of the meristems. During the juglone toxin experiment on gamma-ray-irradiated plants, 20 plants were

  9. Temperature effects of gamma-rays irradiation on radiation resistance of organic insulator for super conducting magnet in fusion reactor

    If glass fiber reinforced plastic (GFRP) is used as insulator material for super conducting magnets in a fusion reactor, then the radiation resistance of GFRP in cryogenic environments must be evaluated. The irradiation temperature dependence of radiation degradation of GFRP (Bisphenol-A epoxy resin) was examined. GFRP was exposed to gamma rays at 77K and room temperature. The changes in mechanical properties and the gas evolution were investigated. The flexural strength at break decreased to half of the initial value with 25 MGy at 77K. The evolution of CO and CO2 was much less at 77K than at room temperature. The radiation degradation showed a large dependence on irradiation temperature

  10. Induction of mutant resistant to alternaria blotch of apple by gamma-ray irradiation

    Yoshioka, Toji [Hokuriku National Agricultural Experiment Station, Joetsu, Niigata (Japan); Ito, Yuji [National Inst. of Agrobiological Resources, Tsukuba, Ibaraki (Japan); Masuda, Tetsuo [National Institute of Fruit Tree Science, Morioka, Iwate (Japan)

    2000-07-01

    Apple cultivars resistant to Alternaria blotch disease have been produced by cross-breeding, but it is difficult to produce resistance by crossing without changing the properties of cultivar because the gene composition of the cultivar tree is almost heterozygous. This study aimed to investigate the resistant mutation in Alternaria blotch susceptible and semiresistant cultivars. The resistance to Alternaria blotch pathogen or AM toxin is classified into the following three groups: 1) highly sensitive group including Indo, Redgold and Starking delicious, 2) semi-resistant group including Fuji, Orin and Golden delicious and 3) resistant group including Gala and Tsugaru. After gamma ray exposure of 80 Gy (at 5 Gy/hour), AM-toxin insensitive clones were selected in the VM{sub 6} generation. These selected mutants could be rooted and habituated under field conditions. The degree of disease resistance was assessed by AM toxin treatment and Alternaria blotch fungi spore inoculation test. The leaves of these mutants were changed to variegated at high temperature, suggesting that some mutation related to chloroplast might have occurred. Alternaria blotch resistant strains could be produced by exposing to {gamma}ray and selecting with AM toxin in shoot-tip culture system, but the functional effects of the AM toxin in Alternaria blotch and also the mechanism in the mutant lines were still unclear. (M.N.)

  11. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1∼3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a dose

  12. Investigation of photoneutron and capture gamma-ray production in Pb and W under irradiation from 16N decay radiation

    Kebwaro, Jeremiah Monari; Zhao, Yaolin; He, Chaohui

    2015-09-01

    Lead and tungsten are potential alternative materials for shielding reactor ex-core components with high 16N activity when available space limits application of concrete. Since the two materials are vulnerable to photonuclear reactions, the nature and intensity of the secondary radiation resulting from (γ,n) and (n,γ) reactions when 16N decay radiation interact with these materials need to be well known for effective shielding design. In this study the MCNP code was used to calculate the photoneutron and capture gamma-ray spectra in the two materials when irradiated by 16N decay radiation. It was observed that some of the photoneutrons generated in the two materials lie in the low-energy range which is considered optimum for (n,γ) reactions. Lead is more transparent to the photoneutrons when compared to tungsten. The calculations also revealed that the bremsstrahlung generated by the beta spectrum was not sufficient to trigger any additional photoneutrons. Both energetic and less energetic capture gamma-rays are observed when photoneutrons interact with nuclei of the two materials. Depending on the strength of the 16N source term, the secondary radiation could affect the effectiveness of the shield and need to be considered during design.

  13. Effect Of Gamma Ray Irradiation On Streptococcus Agalactiae Growth For Vaccine Agent Of Mastitis Disease In Dairy Cattle

    A study has been conducted to determine the effect of gamma ray irradiation to attenuate infectivity of S. agalactiae as dominant bacteria causing mastitis in dairy cattle. The aim of the study is obtaining optimum irradiation dosage to provide radio vaccine for mastitis. S. agalactiae isolate bacteria of which has reach the mid log-phase was cultured and divided into 6 treatment groups of irradiation doses, i.e. 0, 0.2, 0.4, 0.6, 0.8, and 1.0 kGy. Following irradiation, bacteria were then cultured in BHI agar media for colony counting to determine the LD50, resulting 7.5x108; 5.0x107; 7.0x106; 9.5x105; 1.5x104; and 3.5x103 cell/ml, respectively. Result of this study shows the higher irradiation doses the lower number of bacteria per ml, and LD50, which found to be under 0.2 kGy of irradiation dose

  14. Selection and characterization of tomato plants for osmotic stress tolerance derived from a gamma ray irradiation

    Kang, Kwon Kyoo; Jung, Yu Jin [Hankyong National University, Anseong (Korea, Republic of)

    2010-09-15

    The present study has been performed to select the osmotic tolerant lines using polyethylene glycol (PEG 6000)through an in vitro and in vivo mutagensis with a gamma-ray. During the screening, we selected three mutant lines that seemed to confer elevated osmotic tolerance in high concentrations of PEG 6000. Fruits of these mutants (Os-HK101, Os-HK102 and Os-HK103) were those of the wild type. Also the chlorophyll contents were few decreased more in the three mutant lines than the WT plants. Our results suggest that the Os-HK101 is characterized as osmotic stress tolerance considering the sugar concentration and lycopine content. It is expected that the result of this study can be used for breeding more competitive species with respect to contents in sugar or functional chemicals from the selected osmotic resistant lines.

  15. New method for the estimation of the mutation rate in acute and chronic gamma-ray irradiation of growing plants

    In the case of irradiation of seeds of self-pollinated and disomic plant materials, the frequency of mutated plants appearing in the M2 generation divided by the Mendelian ratio is an index, as proposed by Gaul (1960), that enables the direct estimation of the mutation rate, representing the ratio of the number of mutated cells to the number of survived cells after treatment of mutagen. In the case of chronic irradiation of growing plants throughout the entire life cycle from germination to maturity, on the other hand, the mutations induced at the stage preceding the differentiation of the male and female organs appear at the M2 generation, the but mutations induced after this critical time are observed in the M2 plants in the heterozygous condition and are detected only at the M3 generation. Therefore, the mutation rate can not be correctly estimated only on the basis of the frequency of mutants either in the M2 or M3 generation. A new method for the estimation of the mutation rate by combining the data of the frequency of mutants and the M2 and M3 generation, which is comparable to Gaul's method for seed irradiation, is proposed. Application of this method to the data of acute and chronic gamma-ray irradiation of growing barley revealed that a much higher mutation rate was observed after irradiation at a higher daily exposure rate, when the plants were treated with the same accumulated dose

  16. Characteristic evaluation of papain irradiated with {sup 60}Co {gamma}-rays for the purpose of sterilization

    Furuta, Masakazu; Ohashi, Isao; Oka, Masahito; Hayashi, Toshio [Osaka Prefectural Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology

    1998-09-01

    To establish irradiation sterilization method for hybrid biomedical materials containing bioactive molecules together with artificial polymers, we employed dry powder and aqueous solution of papain as a model and examined radiation tolerance with {sup 60}Co {gamma}-rays. The dry powder and frozen aqueous solution showed significant resistance after 30-kGy irradiation, indicating that commercial irradiation sterilization method for disposable medical supplies was applicable. Unfrozen aqueous solutions (10mg/ml), in contrast, showed significant drop of enzymatic activity within the early period of irradiation (ca. 0.5kGy) but 40% of the activity was recovered at ca. 3-kGy before total inactivation at 15kGy. Taking various conditions including dose rate, concentration of enzyme, oxygen and nitrogen bubbling into irradiation inactivation experiments, we demonstrated that inactivation of papain could be controlled under anoxic condition, such as nitrogen bubbling, increasing sample volume at high dose rates and high concentration of enzyme where dissolved oxygen was consumed rapidly. It is suggested that radiation inactivation of papain in the aqueous solution was occurred through reversible oxidation of the sulfhydryl group at the active site by free radicals derived from radiolysis of water and dissolved oxygen. (author)

  17. Assessment of differences between X and gamma rays in order to validate a new generation of irradiators for insect sterilization

    Mastrangelo, Thiago; Walder, Julio M.M., E-mail: piaui@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil); Parker, Andrew G.; Jessup, Andrew; Orozco-Davila, Dina; Islam, Amirul; Dammalage, Thilakasiri, E-mail: A.Jessup@iaea.or [Joint FAO/IAEA-UN A-2444, Seibersdorf (Austria). Insect Pest Control Subprogramme; Pereira, Rui, E-mail: R.Cardoso-Pereira@iaea.or [Joint FAO/IAEA-UN, Vienna (Austria). Insect Pest Control Subprogramme

    2009-07-01

    Recent fears of terrorism provoked an increase in delays and denials of transboundary shipments of radioisotopes. This represents a serious constraint to sterile insect technique (SIT) programs around the world as they rely on the use of ionizing energy from radioisotopes for insect sterilization. In order to validate a novel Xray irradiator, a series of studies on Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) were carried out, comparing the relative biological effectiveness (RBE) between X-rays and traditional gamma radiation from {sup 60}Co. Male C. capitata pupae and pupae of both sexes of A. fraterculus, both 24 to 48 h before adult emergence, were irradiated with doses ranging from 15 to 120 Gy and 10 to 70 Gy respectively. Estimated mean doses of 91.2 Gy of X and 124.9 Gy of gamma radiation induced 99% sterility in C. capitata males. Irradiated A. fraterculus were 99% sterile at about 40-60 Gy for both radiation treatments. Standard quality control parameters were not significantly affected by the two types of radiation. There were no significant differences between X and gamma radiation regarding mating indices. The RBE did not differ significantly between the tested X and gamma radiation, and X-rays are as biologically effective for SIT purposes as gamma rays are. This work confirms the suitability of this new generation of X-ray irradiators for pest control programs in UN Member States. (author)

  18. Effects of gamma-rays irradiation in seed of mungbean (vigna radiata (L.) wilczek) composition of media on shoot regeneration of explants from node of cotyledon

    Study the effects of gamma-rays irradiation and composition and media on shoot regeneration of explants from node of cotyledon of mungbean. Wallet variety have been conducted. The explants derived of irradiated seeds of 10-20 Gy of gamma rays were planted in the 0.7% agar solution. One day after planting in the agar media the embryo axis of germinate seed were removed and the node of cotyledon were cultured in the regeneration media as examples. The results shown that shoot regeneration was influenced by media composition and the doses of gamma rays irradiation in seed. In the MURASHIGE and SKOOG medium which contain of BAP or 2-iP or Kinetin with 3 ppm concentrate respectively the explants could produced 100% of shoots. However, the highest. number of produced shoot (3 shoots) was showed in the medium which contained of BAP. The medium with I ppm concentrate od BAP could produced 100% shoot regeneration and the maximum number of shoots (4 shoots) per explant was showed in with 5 ppm. concentrate of BAP. The effectivity off BAP for shoot regeneration by enrichment of 12 ppm Ag2SO4 in the media. Irradiation of 10-20 Gy gamma rays on seeds of mungbean walet variety could improved shoot regeneration of explants from node cotyledon. (author)

  19. Monte Carlo simulation of prompt gamma-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    Qin, Jianguo; Lai, Caifeng; Liu, Rong; Zhu, Tonghua; Zhang, Xinwei; Ye, Bangjiao

    2015-01-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt gamma-rays in detectors for depleted uranium spherical shells under D-T neutrons irradiation. In the first step, the gamma-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the g...

  20. Induction of mutant resistant to alternaria blotch of apple by gamma-ray irradiation

    Apple cultivars resistant to Alternaria blotch disease have been produced by cross-breeding, but it is difficult to produce resistance by crossing without changing the properties of cultivar because the gene composition of the cultivar tree is almost heterozygous. This study aimed to investigate the resistant mutation in Alternaria blotch susceptible and semiresistant cultivars. The resistance to Alternaria blotch pathogen or AM toxin is classified into the following three groups: 1) highly sensitive group including Indo, Redgold and Starking delicious, 2) semi-resistant group including Fuji, Orin and Golden delicious and 3) resistant group including Gala and Tsugaru. After gamma ray exposure of 80 Gy (at 5 Gy/hour), AM-toxin insensitive clones were selected in the VM6 generation. These selected mutants could be rooted and habituated under field conditions. The degree of disease resistance was assessed by AM toxin treatment and Alternaria blotch fungi spore inoculation test. The leaves of these mutants were changed to variegated at high temperature, suggesting that some mutation related to chloroplast might have occurred. Alternaria blotch resistant strains could be produced by exposing to γray and selecting with AM toxin in shoot-tip culture system, but the functional effects of the AM toxin in Alternaria blotch and also the mechanism in the mutant lines were still unclear. (M.N.)

  1. Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation

    The formation and conversion processes of defect centers in low water peak single mode optical (LWPSM) fiber irradiated with gamma rays were investigated at room temperature using electron spin resonance. Germanium electron center (GEC) and self-trapped hole center (STH) occur when the fibers are irradiated with 1 and 5 kGy cumulative doses, respectively. With the increase in irradiation doses, the GEC defect centers disappear, and new defect centers such as E' centers (Si and Ge) and nonbridge oxygen hole centers (NBOHCs) generate. The generation of GEC and STH is attributed to the electron transfer, which is completely balanced. This is the main reason that radiation-induced attenuation (RIA) of the LWPSM fiber is only 10 dB/km at communication window. The new defect centers come from the conversion of GEC and STH to E' centers and NBOHC, and the conversion processes cause bond cleavage, which is the root cause that the RIA of the LWPSM fiber significantly increases up to 180 dB/km at working window. Furthermore, the concentration of new defect centers is saturated easily even by increasing cumulative doses.

  2. Modification of morphological traits of common beans through gamma-ray irradiation: analysis of three consecutive generations

    The objective of this investigation were to study the effects of different levels of gamma-rays on some morphological characteristics of a nearly-white seed coat color bean (Phaseolus vulgaris L.) cultivar, and to determine the radiation level which would generate the greatest genetic variability. Breeder seeds of EMGOPA 201 - Ouro cv, a beige seed coat color cultivar, were submitted to gamma-ray irradiation (60 Co). Treatments consisted of eight levels of radiation: 0,10, 15, 20, 25, 30, 35 and 40 Krad. The experimental design was a randomized complete block with four replications. In the field, plots consisted of 100 seeds. The following data were collected: percent germination, plant height, final stand, plant yield and yield components, number of chlorotic and albino mutants, leaf mutants, growth habit alterations, earliness, seed coat brightness, halo color, seed size and format. Among traits greatest variations were observed seed morphology. Seed coat color varied from completely white to a dark-brownish color. Halo color was also modified from yellow (normal) to pink. Brightness of seeds varied from opaque to bright. Seed varied from squared to rounded, and from very small to large. treatments with 20 and 25 Krad generated the greatest variability for several morphological traits from the M1 to M3 generations, a dosage equivalent to the LD50 observed in the M1 generation. Traits such as percent germination, plant height and some yield components were highly and negatively affected by increasing levels of radiation. Modification of yield components as well as many unusual characteristics with late onset were observed in advanced generations, suggesting that late selection would also be useful. (author)

  3. Modification of surface properties of silica-alumina by irradiation with gamma-rays

    Coprecipitated silica-alumina gel was prepared to contain 11.8 mol.% alumina. The gel was calcined at 523, 673, 823, 973 and 1173 K. The calcination products were irradiated by γ-rays (15-75 Mrad). Nitrogen adsorption at 77 K, water vapour adsorption at 303 K, pyridine chemisorption at 423 K were measured for non-irradiated and γ irradiated silica-alumina samples. The dehydration of isopropanol was measured at 553 K and at a carrier gas flow rate = 25 ml/min. ''gamma-Irradiation (30-75 Mrad) caused appreciable changes in textural properties of silica-alumina. The extents of these changes depend on the irradiation dose and on the pre-calcination temperature. Irradiation with γ-rays decreased the surface acid density and consequently the activity of the irradiated sample towards acid catalyzed reactions decreased. (author)

  4. Detection of DNA damage in cultured cells induced by the potentiating effects of low-dose gamma-ray irradiation by nick translation

    When mouse L-5178Y cells were irradiated either at room temperature or during low temperature treatment, irradiation effects could be detected by nick translation if cells were incubated at 37oC. The doses of gamma-ray capable of producing detectable nicks were found to be 0.5-1.0 Gy for gamma-ray irradiation at room temperature or 0.1-2.0 Gy for that at low temperature , which is considerably lower than the conventional limits of detection. A damage to DNA was induced by maintaining L-5178Y cells at 0oc for several hours then incubating at 37oC. The delay in repair of low temperature-induced damage was demonstrated in the irradiated cells during the low temperature treatment. (author). 17 refs., 4 figs

  5. Gamma-ray-enhanced reactivation of irradiated adenovirus in Xeroderma pigmentosum and Cockayne syndrome fibroblasts

    A γ-ray-enhanced reactivation (γRER) of uv-irradiated as well as of γ-irradiated human adenovirus type 2 (Ad 2) was detected following infection of normal, Xeroderma pigmentosum (XP), and Cockayne syndrome (CS) fibroblasts that had been preirradiated with γ rays. Gamma-irradiated or nonirradiated fibroblasts were infected with either nonirradiated or irradiated Ad 2, and 48 hr after infection cells were examined for the presence of viral structural antigens (Vag) using immunofluorescent staining. Results obtained using seven different normal fibroblast strains showed that irradiation of host monolayers with 1 krad immediately prior to infection resulted in a γRER factor +-SE of 4.5 +- 1.6 for uv-irradiated virus and 4.3 +- 1.3 for γ-irradiated virus. CS fibroblasts, as well as excision repair-deficient XP fibroblasts from complementation groups A and D, were all found to be capable of expressing γRER of irradiated Ad 2. XP variant cells expressed lower levels of γRER compared to most normal strains, suggesting a possible role for cellular postreplication repair in the mechanism responsible for ER in human cells. An excision-deficient XP fibroblast strain belonging to complementation group A, but derived from a patient afflicted with the severe De Sanctis-Cacchione form of XP, although proficient in γRER of γ-irradiated Ad 2, yielded barely detectable levels of γRER for uv-irradiated Ad 2

  6. measurement of absorbed dose in mix-dp phantom irradiated by x and gamma rays

    It has been done of x-rays dan gamma rays absorbed dose measurement of mix-dp phantom of 70 kVp.90kvp and 110 kvp x rays kxo-12 medical exposure and cobalt-60 gamma (50 ci) by UD-170A BeO-TLD. Ionization chamber 12 cc NIRS-R2 as reference dosemeter, which was calibrated on primer dosemeter. In X-rays energy used, it was done of absorbed dose measurement on Mix-Dp phantom surface and depth (d= 10cm) beam field area 10 x 10 cm, focus distance (FSD), s=80 cm dose measurement of 90 kvp X-rays on Mix-Dp phantom surface, depth and scattering (d=15 cm) beam field area 12 x 12 cm, focus distance (FSD),s=79 cm and measurement of absorbed dose Co-60 gamma: 5 R, 10R, 20 R, 30R, 40R and 50R by dose rate 0.434 R/min. It was shown that in clinical, effective energy range of X-rays relative lower than dose range Co-60 gamma. BeO-TLD characteristic on energy dependence is low based on TI sensitivity ± 1.3 for energy below 100 keV. Relation between absorbed dose and TL response to 90 kVp X-rays shown that rperm=0.990, r ber=0.995 and r sact=0.962. In measurement of Co-60 gamma absorbed dose by BeO-TLD shown TI sensitivity decrease ± 0.900. The result still needed corrections to achieve optimum measurement of absorbed dose X-rays and gamma by UD-170A BeO-TLD, which were performed optimum fading time and anealling temperature

  7. Change in microflora of sewage sludge by gamma-ray irradiation

    Total bacteria of activated dewatered sludge cake of Takasaki city which amounted to 2 x 109 per gram diminished rapidly with the radiation dose, but slowly after 0.5 Mrad, and 103 per gram survived even after 10 Mrad irradiation. However, coliforms which amounted to 8 x 107 per gram were inactivated below 0.5 Mrad irradiation. The predominant bacteria in non-irradiated sludge were Pseudomonas cepacia and it mainly survived up to 2 Mrad, but Bacillus were predominant at 0.5 to 0.7 Mrad irradiation. The main residual flora from 2 to 5 Mrad was composed of Pseudomonas soranacearum, P. cepacia and P. delafieldii, and the main residual flora in more than 5 Mrad irradiated sludge was P. flava. These typical strains of Pseudomonas in phosphate buffer were radiation sensitive, and their D10 values were from 0.005 to 0.021 Mrad under aerobic irradiation conditions. (author)

  8. Effect of gamma-ray irradiation on the unloaded animal model

    Choi, Jong-Il; Yoon, Min-Chul; Sung, Nak-Yoon; Kim, Jae-Hun; Jong Lee, Yun; Lee, Ki-Soo; Choi, In-Ho; Nam, Gung Uk; Lee, Ju-Woon

    During the space flight, human beings encountered the extreme conditions such as the cosmic ray irradiation and microgravity. There have been developed the animal models to simulate the microgravity condition in laboratory, but no study was carried out to investigate the combined effect of microgravity and exposure to irradiation. In this study, it was examined the effect of gamma irradiation on the suspension model. Rats were divided into four groups, Group I was loaded and not exposed to gamma irradiation, Group 2 was unloaded and not exposed, Group 3 was loaded and exposed to gamma irradiation at the dose of 50 mSV, and Group 4 was unloaded and exposed to gamma irradiation at the same dose. It was measured body, muscles and tissues weights and the biological analysis and the hematological response in blood samples were conducted. Anti-gravity tissue weight was only changed between loading and un-loading condition. However, there was no difference between irradiation exposed and not exposed unloaded groups. To know the difference of protein expression in anti-gravity tissues, 2 dimensional electrophoresis was performed. It has been found that the expression levels of several proteins were different by unloading condition and by irradiation exposed condition, respectively. These results provided the information on the combined effect of irradiation and microgravity to simulate space flight, and could be useful to search the candidate material for the countermeasure against space environment.

  9. Low temperature gamma ray irradiation effects on polymer materials (4)-gas analysis of GFRP and CFRP

    Gas analysis was carried out at RT after gamma-irradiation at room temperature and 77K for glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) having the same epoxy resin matrix. Gas yield from CFRP was less than that from GFRP at RT, but comparable at 77 K. The yields of CO and CO2 showed a large dependence on the irradiation temperature, i.e. they were much less at 77 K. Radiation resistance of GFRP and CFRP towards 77 K irradiation is expected to be higher than that towards RT irradiation. (author)

  10. Irradiation with low-dose gamma ray enhances tolerance to heat stress in Arabidopsis seedlings.

    Zhang, Liang; Zheng, Fengxia; Qi, Wencai; Wang, Tianqi; Ma, Lingyu; Qiu, Zongbo; Li, Jingyuan

    2016-06-01

    Gamma irradiation at low doses can stimulate the tolerance to environmental stress in plants. However, the knowledge regarding the mechanisms underlying the enhanced tolerance induced by low-dose gamma irradiation is far from fully understood. In this study, to investigate the physiological and molecular mechanisms of heat stress alleviated by low-dose gamma irradiation, the Arabidopsis seeds were exposed to a range of doses before subjected to heat treatment. Our results showed that 50-Gy gamma irradiation maximally promoted seedling growth in response to heat stress. The production rate of superoxide radical and contents of hydrogen peroxide and malondialdehyde in the seedlings irradiated with 50-Gy dose under heat stress were significantly lower than those of controls. The activities of antioxidant enzymes, glutathione (GSH) content and proline level in the gamma-irradiated seedlings were significantly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components related to heat tolerance were stimulated by low-dose gamma irradiation under heat shock. Our results suggest that low-dose gamma irradiation can modulate the physiological responses as well as gene expression related to heat tolerance, thus alleviating the stress damage in Arabidopsis seedlings. PMID:26945467

  11. Frequency dependent gamma-ray irradiation response of Sm2O3 MOS capacitors

    The frequency dependent irradiation influences on Sm2O3 MOS capacitors have been investigated and possible use of Sm2O3 in MOS-based radiation sensor was discussed in this study. To examine their gamma irradiation response over a range of doses, the fabricated MOS capacitors were irradiated up to 30 grays. Capacitance–Voltage (C–V) measurements were recorded for various doses and the influences of irradiation were determined from the mid-gap and flat-band voltage shifts. In addition, the degradations of irradiation have been studied by impedance based leakage current–voltage (J–V) characteristics. The results demonstrate that J–V characteristics have not been significantly change by irradiation and implying that the excited traps have a minor effect on current for given dose ranges. However, the frequency of applied voltage during the C–V measurements affects the irradiation response of devices, significantly. The variations on the electrical characteristics may be attributed to the different time dependency of acceptor and donor-like interface states. In spite of the variations on the device characteristics, low frequency measurements indicate that Sm2O3 is a potential candidate to be used as a dielectric layer in MOS based irradiation sensors

  12. Low temperature gamma-ray irradiation effects of polymer materials on mechanical property

    A low temperature γ-ray irradiation equipment was constructed for the evaluation of the radiation resistance of polymer materials used in low temperature environment. The change of mechanical property by irradiation at 77 K was studied for glass fiber reinforced plastic (GFRP), poly(methyl methacylate) (PMMA) and poly(tetra fluoroethylene)(PTFE), and compared with that by irradiation at room temperature. The decrease in flexural strength or in elongation at break showed a big difference between 77 K and room temperature irradiation. The ratio of dose at half strength or half elongation by 77 K and room temperature irradiation was 25 for GFRP, 17 for PMMA and 5 for PTFE. (author)

  13. A new mutant gene su-1 in corn obtained by irradiation with low doses of gamma rays

    This paper provides a description of a sugar corn mutant obtained by irradiation of wetted kernels of Romanesc de Studina variety with low doses of gamma rays (300 R). This mutant influences the structure of the endosperm similarly to the su-1 genes developed spontaneously which resulted in the corn variety Zea mays saccharata thousands of years ago. Although the mutant is a multiple allele of the su-1 locus in chromosome IV it differs widely from the spontaneous mutant. The length of the ears is much reduced, varying between 4 and 6 cm, with numbers of kernels per ear varying between 45 and 72. Attempts to improve the cob size and the number of kernels by breeding and propagation in an insulated area led to no result. Crossing the mutants with the sugar hybrid Delicious resulted in sugar type progeny which confirms the common position of the mutant gene induced by irradiation and the spontaneous su-1 gene. The progenies of sugar mutant x Delicious are 38-43 % lower in cob vigor and 36-46% lower in kernel number. (author). 2 figs, 2 tab., 16 refs

  14. The influence of irradiation of gamma-rays on the pulping and paper making, (3)

    Dissolving pulp (DP) containing no lignin and cold soda pulp containing much amount of lignin were used for the study of the influence of gamma irradiation. Experiments were made in the presence of air, water, methanol, acetic anhydride, acetic anhydride + methanol, dioxane, dimethyl sulfoxide and 1% NaOH solution. Irradiation was made for 100 hours at 20 - 21 deg. C; total irradiation dose was 1.47 x 107 R. (1) In case of dimethyl sulfoxide, and especially in case of 1% NaOH solution, the yield decreased by irradiation, with cold soda pulp particularly. (2) In case of the pulp immersed in water, the brightness of pulp was not improved by irradiation, but in methanol, it was remarkably improved. Since the improvement was observed in both DP and cold soda pulps, it is caused by the action of oxidizing bleach with small amount of oxygen in the air remaining in the material, instead of the change in the quality of lignin. (3) By infrared analysis, methanol did not react with the lignin in cold soda pulp even under irradiation. (4) The acetylation was accelerated by irradiation. (J.P.N.)

  15. Effect of pH on paste properties of irradiated corn starch by gamma-rays

    The degradation of starch by γ-irradiation and the effect of pH on gelatinization of starch after irradiation were investigated. Paste viscosities were markedly affected by pH on gelatinization and a decrease in the viscosity of irradiated starch was stimulated by increasing pH. On the other hand, the solubility of irradiated starch increased significantly at the high pH. The granule structure of irradiated starch easily disintegrated at alkaline pH. Remarkable dissolution from the surface of the irradiated starch granules was observed after heating at high pH only a filamentous network frame remained, but the unirradiated one collapsed and folded. It was seen that alkali treatment after irradiation reduces the required dose to obtain low viscosity starch. The required dose to produce a low viscosity starch, for example Ajinomoto Essan Sizer 600 grade, was ca. 3 Mrad at pH 11.0 and ca. 5 Mrad at pH 7.0, whereas it was ca. 7 Mrad without pH adjustment. (author)

  16. Effect of cobalt 60 gamma-ray irradiation on the hatching process of chicken eggs

    An experiment on fertilized chicken eggs was carried out to determine the effects of 60Co irradiation on the embryos, their fatality, and growth impairment or deformity, in particular. The experimental groups, consisting of 10 eggs each, recieved a 60Co irradiation of 50 to 2,000 rads on any one day between day 0 and day 20 of incubation. The larger the irradiation dose, the greater was the number of dead embryos. The fatality was higher in the groups receiving irradiation in the earlier stage (1st week). The resultant death was a chronic one. The irradiation also caused body weight decrease and growth impairment. A decrease in the brain and liver weights was noted, suggesting insufficiency in these organs. Deformity occurred in 4%, most of which involved impairments of skeletal growth, of the bones of the extremities and the bill, in particular. Administration of the SH amino acid, cysteine tended to alleviate the adverse effects of the 60Co irradiation. These results for fertilized chicken eggs suggest the possibility of abortion and the occurrence of deformities in human fetuses if they should be subjected to 60Co irradiation. (author)

  17. Effects of gamma-ray irradiation on a cyanate ester/epoxy resin

    Effects of γ-ray irradiation on a cyanate ester/epoxy resin composed of dicyanate ester of bisphenol A (DCBA) and diglycidyl ether of bisphenol A (DGEBA) were investigated by changes in physicochemical and mechanical properties after the γ-ray irradiation with dose of 100 MGy as maximum at around 40 °C under vacuum. After the irradiation, gases of hydrogen, carbon monoxide and carbon dioxide were evolved, glass transition temperature decreased, and flexural strength also decreased. It was concluded that ether linkages bonded to cyanurate, isocyanurate and oxazolidinone structures are mainly decomposed by the irradiation. After 100 MGy irradiation, the flexural strength of DCBA/DGEBA was maintained more than 170 MPa which is 90% of initial value of 195 MPa. Flexural modulus and density slightly increased to the values of 3.9 GPa and 1.211 g/cm3 from initial values of 3.4 GPa and 1.199 g/cm3, respectively. - Highlights: • A cyanate ester/epoxy resin was irradiated by γ-rays with dose of 100 MGy in vacuum. • Viscoelastic property, structural change and gas evolution were investigated. • Ether linkages in the network structure were mainly decomposed by the irradiation. • The flexural strength of resin was maintained >170 MPa which is 90% of initial value

  18. Identification of gamma ray irradiated wheat by electron spin resonance, DNA comet assay and germination test

    In several countries, there has been an increase in the use of radiation for food processing thus improving the quality and sanitary conditions, inhibiting pathogenic microorganisms, delaying the natural aging process and so extending product lifetime. The need to develop analytical methods to detect these irradiated products is also increasing. The goal of this research was to identify wheat irradiated using three different techniques: Electron spin resonance, DNA comet assay and germination test, for comparison. Wheat variety IAC 289 and husked wheat variety IAC 355 was from Instituto Agronomico de Campinas. Grains were irradiated with a gamma 60Co source (Gammacell 220 GC) in the Centro de Energia Nuclear na Agricultura and in the Instituto de Pesquisas Energeticas e Nucleares. Dose rate used were 1.6 kGy/h and 5.8 kGy/h. Applied doses were 0.0 kGy ; 0.10 kGy ; 0.25 kGy ; 0.50 kGy ; 0.75 kGy ; 1.0 kGy and 2.0 kGy. After irradiation, grains were analyzed over a 6 month period. It is possible to use E8R to identify irradiated husked wheat until 3 weeks after the date of irradiation. Comet assay was a qualitative test that we used to identify irradiated wheat at least 6 months after storage. The germination test make possible the identification and the better criteria was the shoot length. (author)

  19. Effectiveness of gamma-ray chronic irradiation on in vitro mutagenesis in crops

    Effects of chronic or acute irradiations were compared using in vitro culture on inducing the mutation in model crops. In chrysanthemum, combined method with irradiation and in vitro culture can solve the problem of chimera formation in induced mutants, and provided 10 times greater mutation frequency than usual plant irradiation. The chronic culture method showed the widest color spectrum, whereas, the acute culture indicated a relatively low mutation rate and a very limited flower color spectrum in chrysanthemum. Flower color mutation of the regenerators could be induced more from petals and buds than from leaves. These facts are supposed that the gene loci fully expressed on floral organs may be unstable for mutation by mutagenesis or culture. It may be likely to control a direction of desired mutation on using explants with specific gene loci activated. In sugarcane, the chronic culture method extended quantitative characteristics of regenerated clonal lines toward not only the negative but positive direction. On the other hand, the acute culture method showed lower quantitative mutation as the irradiation dose rose. In chronic irradiation, regenerated mutant lines in sugarcane indicate generally little decrease in chromosome number and wider variations with relatively less damage. In acute irradiation, regenerated mutant lines show remarkable decrease of chromosome numbers in sugarcane mutant lines as the irradiation dose rose. There is close positive correlation between chromosome number and biomass of each mutant line. The chromosome number estimation is a proper indicator to monitor damage of adopted irradiation methods. Possible reason why the chronic culture methods indicate higher frequency and wider spectrum on mutation is demonstrated. . Problems solved and prospect of chronic irradiation and in vitro techniques are discussed. (Author)

  20. H2 production through oxide irradiation: Comparison of gamma rays and vacuum ultraviolet excitation

    The production of molecular hydrogen by gamma radiolysis and vacuum ultra violet photolysis of dried and hydrated nano-porous titania and zirconia nanoparticles has been studied. The nanoparticles were prepared as free standing films using a surface sol-gel process on cellulose. A significant hydrogen production was observed for both TiO2 and ZrO2 in vacuum ultra violet or gamma irradiation. This production could be optimized by controlling the amount of water and by introducing hydroxyl radical scavengers in the irradiated systems. The mechanism underlying hydrogen production seems qualitatively different in gamma and in vacuum ultra violet (VUV) irradiation. (authors)

  1. Formation of color centers in CdF/sub 2/ crystals irradiated by gamma rays

    Kaipov, B.; Tavshunskii, G.A.; Gapparov, N.

    1975-01-01

    After irradiation in liquid nitrogen, an ultraviolet absorption band in the region of 350 nm was induced in all samples. This band is maintained during annealing of thermoemission peaks below 170/sup 0/K. On annealing above this temperature the absorption band at 350 nm vanished, and the EPR signal with g = 2.014 induced by the gamma irradiation at 77/sup 0/K vanished at the same time. This behavior is attributed to the formation of localized holes by the gamma irradiation. (SJR)

  2. SAXS investigations of structural changes after gamma ray irradiation of potato starch and starch suspensions

    The products obtained after gamma irradiation with doses 9.1, 18.2, 36.3, 54.5 kGy of native starch and water suspensions of starch were investigated using small-angle X-ray scattering (SAXS). Relations between changes in the scattering curves (diminution of the intensity of the reflection related to distance d≅100 A and elevation of scattering curves) connected with destruction of long-range ordering in starch granules, and the conditions of the irradiation process were observed. Iradiation influences the long-range ordering more intensively in cases of native starch as compared with water suspensions of starch irradiated. (orig.)

  3. Photoluminescence spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532-nm laser radiation and gamma-rays

    Sharma, Suresh C. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)], E-mail: sharma@uta.edu; Murphree, Jay; Chakraborty, Tonmoy [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2008-11-15

    We have investigated temporal behavior of the photoluminescence (PL) spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532 nm laser radiation and gamma-rays. Under {approx}100 W/cm{sup 2} laser radiation, the PL intensity (I{sub PL}) increases with irradiation time upto about 500 s and thereafter declines linearly. The wavelength of the PL emission ({lambda}{sub peak}) exhibits a blue-shift with exposure time. Upon simultaneous irradiation by 100 W/cm{sup 2} 532-nm laser, as well as 0.57 and 1.06 MeV gamma-rays, the temporal behaviors of both I{sub PL} and {lambda}{sub peak} are significantly different; I{sub PL} increases to a saturation level, and the magnitude of the blue-shift in {lambda}{sub peak} is reduced. We discuss possible mechanisms underlying these results.

  4. Study on the changes in phyicochemical properties of seafood cooking drips by gamma ray irradiation

    Choi, Jong Il; Kim, Yeon Joo; Kim, Jae Hun; Yoon, Yo Han; Song, Beom Seok; Lee, Ju Woon [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Chun, Byung Soo; Ahn, Dong Hyun [Pukyong National University, Busan (Korea, Republic of); Lee, Ju Yeoun [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-03-15

    Cooking drips which were obtained as by-product after seafood processing in the food industries, still contain lots of proteins, carbohydrates, and other functional materials. But, the seafood cooking drips are easily contaminated because of its rich nutrients, and their color are very dark. This study was conducted to investigate the effect of gamma irradiation on the quality of seafood cooking drips including Hizikia fusiformis, Enteroctopus dofleini, and Thunnus thynnus. The Hunter's color values (L, Brightness) of H. fusiformis, and T.thynnus, were increased with increasing irradiation doses, showing becoming bright. The crude protein content and crude lipid content were increased by gamma irradiation. These results indicated that gamma irradiation increased extraction efficiency of available compounds in cooking drips.

  5. Study on the changes in phyicochemical properties of seafood cooking drips by gamma ray irradiation

    Cooking drips which were obtained as by-product after seafood processing in the food industries, still contain lots of proteins, carbohydrates, and other functional materials. But, the seafood cooking drips are easily contaminated because of its rich nutrients, and their color are very dark. This study was conducted to investigate the effect of gamma irradiation on the quality of seafood cooking drips including Hizikia fusiformis, Enteroctopus dofleini, and Thunnus thynnus. The Hunter's color values (L, Brightness) of H. fusiformis, and T.thynnus, were increased with increasing irradiation doses, showing becoming bright. The crude protein content and crude lipid content were increased by gamma irradiation. These results indicated that gamma irradiation increased extraction efficiency of available compounds in cooking drips

  6. Behavior of Random Hole Optical Fibers under Gamma Ray Irradiation and Its Potential Use in Radiation Sensing Applications

    Anbo Wang

    2007-05-01

    Full Text Available Effects of radiation on sensing and data transmission components are of greatinterest in many applications including homeland security, nuclear power generation, andmilitary. A new type of microstructured optical fiber (MOF called the random hole opticalfiber (RHOF has been recently developed. The RHOFs can be made in many differentforms by varying the core size and the size and extent of porosity in the cladding region.The fibers used in this study possessed an outer diameter of 110 μm and a core ofapproximately 20 μm. The fiber structure contains thousands of air holes surrounding thecore with sizes ranging from less than 100 nm to a few μm. We present the first study ofthe behavior of RHOF under gamma irradiation. We also propose, for the first time to ourknowledge, an ionizing radiation sensor system based on scintillation light from ascintillator phosphor embedded within a holey optical fiber structure. The RHOF radiationresponse was compared to normal single mode and multimode commercial fibers(germanium doped core, pure silica cladding and to those of radiation resistant fibers (puresilica core with fluorine doped cladding fibers. The comparison was done by measuringradiation-induced absorption (RIA in all fiber samples at the 1550 nm wavelength window(1545 ± 25 nm. The study was carried out under a high-intensity gamma ray field from a 60Co source (with an exposure rate of 4x104 rad/hr at an Oak Ridge National Laboratory gamma ray irradiation facility. Linear behavior, at dose values less than 106 rad, was observed in all fiber samples except in the pure silica core fluorine doped cladding fiber which showed RIA saturation at 0.01 dB. RHOF samples demonstrated low RIA (0.02 and 0.005 dB compared to standard germanium doped core pure silica cladding (SMF and MMF fibers. Results also showed the possibility of post-fabrication treatment to improve the radiation resistance of the RHOF fibers.

  7. Dose Response and Optical Properties of Dyed Poly Vinyl Alcohol-Trichloroacetic Acid Polymeric Blends Irradiated with Gamma-Rays

    Susilawati

    2009-01-01

    Full Text Available Problem statement: The effects of gamma irradiation on optical properties of cresol-red dyed Poly Vinyl Alcohol (PVA blended with Trichloroacetic Acid (TCA for possible use in dosimetry and measurement of radiation dose in gamma rays have been studied using both Raman spectroscopy and UV-Visible spectrophotometer method. Approach: The dosimeters are composed of Poly Vinyl Alcohol (PVA, Trichloroacetic Acid (TCA at various concentrations are 20, 25, 30 and 35%, and acid-base indicator cresol-red dyed. Results: The dosimeters were irradiated to doses up 12 kGy using 60Co gamma ray source at a constant dose rate. The polymeric films undergo color change from purple to yellow due to radiation-induced acid formation. The molecular vibrational spectra were measured using Raman spectroscopy, resulting in a decrease of the Raman intensity inelastic scattering of C-Cl molecular stretching from TCA with increasing dose. The absorption spectra were measured using UV-visible spectrophotometer in the wavelength range 350-700 nm, resulting in a decrease of the absorbance at 575 nm band peak with increasing dose. The dose sensitivity D0 increases with increasing TCA concentration for both scattering and absorption methods. The optical absorption studies show that the direct and indirect optical energy band gaps and optical activation energies are dependent on dose and TCA concentration. Conclusion: The shift in the optical band gap Eg values towards lower energy with radiation dose leads to a shift of the optical activation energy DeltaE value towards the lower energy region with increasing dose. The optical band gap (Eg and the absorption edge decrease with increasing dose attributed to the structural disorder of polymer blends due to dehydrochlorination of trichloroacetic acid with increasing dose. The energy width of the tail of localized state in the forbidden band gap was evaluated using the Urbach-edges method. It was found that the activation energy

  8. Characterization of Amylopectin irradiated by gamma rays using viscosity and radius gyration technique

    Food irradiation is one of the most applicable methods that have been used in food industry especially to preserve food. Besides preservation of food, irradiation can also reduce microorganism, inhibit budding and others. However, this method can be misused by some irresponsible organization or person such as irradiate the food over the dose limit value. Therefore, the detection method is important to detect any misused in irradiation method. The objective of this research is to identify any changes in the structure of amylopectin by using radius gyration technique. Besides that, the viscosity of the sample is also determined by using Rheometer. The last objective of this research is to find a relationship between radius gyration and irradiation dose can be determined. Amylopectin and cassava powder were the sample in this research. The samples were irradiated in the gamma-cell at 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, and 10.0 kGy doses. 0 kGy were the controlled sample. The sample were made into gel to analysed using Rheometer and Small Angle X-ray Scattering (SAXS). The viscosity of the sample were analysed by using Rheometer while the radius gyration of the sample were analysed by using SAXS. Hence, the result of this experiment is, the viscosity of amylopectin reduces as the doses increases. But, at 10 kGy, the viscosity of the cassava starch was increased significantly. For the SAXS analysis, it is shows that the graph for amylopectin were fluctuates. While, for cassava starch the radius gyration increases with doses. Hence, the rheometer technique is suitable to be develop as a detection method in food irradiation. Further research should be done to improve the detection technique in food irradiation. (author)

  9. Gamma ray irradiated goat milk: comparative sensorial analysis with pasteurized goat milk

    Goat milk consumption has increased in the last years, due to its better digestibility and for constituting a good alternative to cow milk for intolerant people. Brazil has over 10 millions goats, mainly in the Northeast area. Considering that it is very important to increase the shelf-life for this product, this work was done to test the gamma-radiation as a preservation method, evaluating acceptability by sensorial analysis compared with pasteurized milk. The goat milk was bought in the Animal Production Department/ESALQ/USP, Piracicaba, and irradiated with 3,5 kGy in the Food Irradiation Laboratory/CENA/USP, using a cobalt-60 irradiator, type Gammabeam-650, from Nordion, Canada. After irradiation, the samples were maintained under refrigeration at 5 deg C and submitted to sensorial analysis at 1st, 7th and 15th days by 30 untrained tasters. The results indicated, by Tukey test, a significant preference for the pasteurized milk in comparison to the irradiated one, because a hard caprine flavor was developed by the irradiation. (author)

  10. Gamma-ray irradiation effect on the absorption and luminescence spectra of Nd:GGG and Nd:GSGG laser crystals

    Sun Dunlu [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China); Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)], E-mail: dlsun@aiofm.ac.cn; Luo Jianqiao; Zhang Qingli [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China); Xiao Jingzhong [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Xu Jiayue [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jiang Haihe; Yin Shaotang [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China)

    2008-12-15

    Laser crystals Nd{sup 3+}:Gd{sub 3}Ga{sub 5}O{sub 12} (Nd:GGG) and Nd{sup 3+}:Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (Nd:GSGG) were grown by Czochralski method. The influence of gamma-ray irradiation on their absorption and luminescence spectra has been investigated. Two additional absorption (AA) bands induced by gamma-ray irradiation appear in the spectra of Nd:GGG crystal while only a very weak AA band appears for the Nd:GSGG crystal. This indicated that Nd:GSGG crystal has stronger ability to resist the color center formation by irradiation. The intensity of the excitation and emission spectra of Nd:GGG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, a luminescence strengthening effect was observed in Nd:GSGG crystal after exposure to the same irradiation dose. The results showed that the Nd:GSGG crystal is a promising candidate used under radiation environments such as in outer space.

  11. Gamma-ray irradiation effect on the absorption and luminescence spectra of Nd:GGG and Nd:GSGG laser crystals

    Laser crystals Nd3+:Gd3Ga5O12 (Nd:GGG) and Nd3+:Gd3Sc2Ga3O12 (Nd:GSGG) were grown by Czochralski method. The influence of gamma-ray irradiation on their absorption and luminescence spectra has been investigated. Two additional absorption (AA) bands induced by gamma-ray irradiation appear in the spectra of Nd:GGG crystal while only a very weak AA band appears for the Nd:GSGG crystal. This indicated that Nd:GSGG crystal has stronger ability to resist the color center formation by irradiation. The intensity of the excitation and emission spectra of Nd:GGG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, a luminescence strengthening effect was observed in Nd:GSGG crystal after exposure to the same irradiation dose. The results showed that the Nd:GSGG crystal is a promising candidate used under radiation environments such as in outer space

  12. Structure alteration and immunological properties of {sup 60}Co gamma rays irradiated bothropstoxin-I

    Baptista, Janaina A.; Yonamine, Camila Myiagui; Caproni, Priscila; Casare, Murilo; Spencer, Patrick Jack; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: janabap@gmail.com; Andrade Junior, Heitor Franco de; Vieira, Daniel Perez; Galisteo Junior, Andres Jimenez [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Instituto de Medicina Tropical de Sao Paulo, SP (Brazil). Lab. de Protozoologia

    2007-07-01

    About 20000 ophidic accidents are registered every year in Brazil. Serum therapy with equine antisera is the only efficient treatment. The venoms employed for immunization are fairly toxic and some venoms present low immunogenicity. Thus, the obtention of modified antigens with lower toxicity and preserved or improved immunogenicity would be useful. These toxins, when submitted to gamma radiation, in aqueous solution, present structural modifications. This occurs due to reactions with the radiolysis products of water. Some scavenger substances, such as NaNO{sub 3} and t-butanol, remove selectively the water radiolysis products. Ionizing radiation has proven to be a powerful tool to attenuate snake venoms toxicity without affecting and even increasing their immunogenic properties. However, the immune mechanisms involved in recognition, processing and presentation of irradiated antigens are yet unclear. In the present work, we investigated the immunological behavior of bothropstoxin-I (Bthx-1), before and after irradiation, in the presence of selective scavengers. Isogenic mice were immunized with either the native or the irradiated toxin, either with or without scavengers. After three immunizations, serum samples were collected and the antibody titers and isotypes were determined by Enzyme Linked Immuno Sorbent Assay. The antigenic characterization of native and irradiated bothropstoxin-I was performed by Western blot. The detection of expression of murine cytokines (IFN-{gamma} and IL-10) was analyzed by RT-PCR (Reverse Transcriptase-Polymerase Chain Reaction). According to our data, irradiation process has promoted structural modifications in the toxin, characterized by higher molecular weight forms of the protein (aggregates and oligomers). Our data also indicate that irradiated toxins, alone or in the presence of NaNO{sub 3}, an aqueous electron scavenger, were immunogenic and the antibodies elicited by them were able to recognize the native toxin. On the other

  13. Studies of agregates produced during venom irradiation of Crotalus durissus terrificus with gamma ray

    Literature data show that 2.0 kGy dose of gamma radiation, generated by 60 Co source, reduces the toxic activity of Crotalus durissus terrificus venon, without altering its immunogenic capacity. When crotoxin, main toxin from crotalic venom, was irradiated with the same dose, toxicity was laos reduced and the immunogenicity was maintained. This fact was attributed to aggregates(compounds with high molecular weight generated during irradiation), that showed no toxicity but were able to induce the antibodies formation against native venom. Crotalus durissus terrificus venom was irradied with 2.0, 3.0, 5.0 and 10.0 kGy doses and submitted to molecular exclusion chromatography, in order to find an efficient dose that produces large amounts of non toxic but still immunogeneic aggregates. After being isolated, the products of irradiation were evaluated for the amount produced, molecular ateration, and toxic and immunogenic activities. The results from different doses irradiated venom were compared with native one, and 2.0 kGg dose was confirmed to be most efficient in the association of toxicity attenuation with maintenance of immunogenicity of the crotalic venom, while other doses, in spite of being efficient in the toxicity attenuation, they were not able to keep the immunogenicity property. So, the dose of 2.0 kGy could be used to immunize animals in order to improve anticrotalic sera production. (author). 14 refs., 6 figs., 4 tabs

  14. Stage differences in developmental disorders in ICR mouse embryos irradiated with gamma-rays

    This study was designed to determine precisely the radiosensitive period in the development of ICR mouse embryos during which external malformations and growth retardation tend to occur. Female and male mice were placed together for only three hours to allow fairly precise identification of the time of conception. The pregnant mice were divided into 31 groups, which were irradiated in turn with 1.5 Gy gamma radiation at 6-hour intervals during the period of organogenesis. They were then observed on day 18 of gestation. Items recorded were intrauterine death, external malformations, sex ratio and fetal body weight. Death of the embryo/fetus, especially death in the early period of organogenesis, was most frequent in mice irradiated between days 6.75 and 8.25 of gestation, but there was no statistically significant difference in the frequency of early- and late-period deaths between irradiated and control groups. The types and frequencies of external malformations observed differed according to the exposure period. The most highly sensitive period for each malformation lasted no more than 12 hours. Reduction of fetal body weight was a good indicator of radiation effects, and was observed mostly in the groups irradiated between days 9.75 and 11.00 of gestation. The sex ratio was not affected by the period in which irradiation was performed. (author)

  15. Thermal characterization of the HDPE/LDPE blend (10/90) irradiated using gamma-rays

    Puig, C.C., E-mail: cpuig@usb.v [Universidad Simon Bolivar, Departamento de Ciencia de los Materiales, Grupo de Polimeros USB, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Albano, C., E-mail: calbano@ivic.v [Instituto Venezolano de Investigaciones Cientificas (IVIC), Centro de Quimica, Laboratorio de Polimeros, Apdo. 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Universidad Central de Venezuela, Facultad de Ingenieria, Escuela de Ingenieria Quimica, Laboratorio de Polimeros, Caracas (Venezuela, Bolivarian Republic of); Laredo, E. [Universidad Simon Bolivar, Departamento de Fisica, Grupo de Fisica de Materiales Amorfos y Cristalinos, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Quero, E. [Universidad Simon Bolivar, Departamento de Ciencia de los Materiales, Grupo de Polimeros USB, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Karam, A. [Instituto Venezolano de Investigaciones Cientificas (IVIC), Centro de Quimica, Laboratorio de Polimeros, Apdo. 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2010-05-01

    Gamma irradiation effect over the properties of slow cooled and fast cooled HDPE/LDPE 10/90 blend was studied. The blend and the neat polyethylenes were irradiated at room temperature in the presence of air using the following doses (4.8 kGy/h): 0, 50, 150, 400 and 1000 kGy. Differential scanning calorimetry (DSC) experiments were carried out using the following heating rates: 5, 10 and 20 deg. C/min. DSC results for the slow and fast cooled blend showed traces with three melting peaks and with increasing irradiation dose two melting peaks were obtained, i.e. the high melting peak shifts toward lower temperatures to merge with the intermediate melting peak into one endotherm. No changes in crystal structure by X-ray diffraction were found as a result of samples irradiation. Radiation crosslinking prevents crystal rearrangements during heating in the DSC. Gel content and melt flow index (MFI) measurements showed that radiation induced a high degree of crosslinking for all samples; gel content values were above 50% and a drop of more than 90% in the MFI was found. Irradiation of slow cooled samples resulted in larger values of gel content and lower MFI values than for fast cooled samples, mainly because of the higher degree of crosslinking for the former.

  16. The effect of gamma-rays on the hemoglobin of whole-body irradiated mice

    Changes in the UV-visible absorption spectrum of mouse hemoglobin as a result of whole body irradiation were studied. White albino adult mice were exposed to a Cs-137 γ-source at a dose rate of 47.5 Gy/h to different absorbed dose values ranging from 1 to 8 Gy. Blood specimens were taken 24 h after irradiation. The UV-visible absorption spectra of hemoglobin of irradiated and control mice were measured in the wavelength range from 200 to 700 nm. The obtained results showed significant changes in the bands measured at 340 nm, in the Soret band measured at 410 nm, also, the α- and β-bands measured at 537 and 572 nm showed significant decrease in intensity with the absorbed dose increase. The absorbance measured at 630 nm showed no significant changes. The radiation effect on the animal hemoglobin was discussed on the basis of the obtained results. (Author)

  17. Effect of the irradiation on Salmonella enteretidis var. typhimurium with gamma rays from 60Co

    The use of ionizinf radiation to the destruction of microrganisms responsible for food deterioration, and productive of feeding toxinfections constitute their usefulness for actually peaceful goals of nuclear energy. The feeding toxinfections are, among us, produced in their most part by Salmonella enteritidis var. typhimurim. One hundred nineteen samples of milk containing about 150.000 bacteria per ml, by means doses ranging from 100 to 1.100 gy, two samples of surviving bacteria were again irradiated by doses up to 2.5000 Gy. The bacteria not previously irradiated were throughly killed by means of doses of 1.100 Gy. Salmonella enteritidis var. typhimurium was inactivated by means of 1.200 and 1.900 Gy doses. It was concluded that 60-Cobalt gamma radiation minimal lethal dose to Salmonella enteritidis var. typhimurium is 1.200 Gy; the re-irradiation to the survivors prompts the forthcoming of more resistant germs. (author)

  18. Development and characterization of biodegradable polymer blends - PHBV/PCL irradiated with gamma rays

    Rosario, F. [Faculdade de Tecnologia da Zona Leste (FATEC-ZL), Sao Paulo, SP (Brazil). Centro Paulo Souza; Casarin, S.A.; Agnelli, J.A.M. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Souza Junior, O.F. de [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2010-07-01

    This paper presents the results of a study that aimed to develop PHBV biodegradable polymer blends, in a major concentration with PCL, irradiate the pure polymers and blends in two doses of gamma radiation and to analyze the changes in chemical and mechanical properties. The blends used in this study were from natural biodegradable copolymer poly (hydroxybutyrate-valerate) (PHBV) and synthetic biodegradable polymer poly (caprolactone) (PCL 2201) with low molar mass (2,000 g/mol). Several samples were prepared in a co-rotating twin-screw extruder and afterwards, the tensile specimens were injected for the irradiation treatment with 50 kGy to 100 kGy doses and for the mechanical tests. The characterization of the samples before and after the irradiation treatments was performed through scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and mechanical tensile tests. (author)

  19. Development and characterization of biodegradable polymer blends - PHBV/PCL irradiated with gamma rays

    This paper presents the results of a study that aimed to develop PHBV biodegradable polymer blends, in a major concentration with PCL, irradiate the pure polymers and blends in two doses of gamma radiation and to analyze the changes in chemical and mechanical properties. The blends used in this study were from natural biodegradable copolymer poly (hydroxybutyrate-valerate) (PHBV) and synthetic biodegradable polymer poly (caprolactone) (PCL 2201) with low molar mass (2,000 g/mol). Several samples were prepared in a co-rotating twin-screw extruder and afterwards, the tensile specimens were injected for the irradiation treatment with 50 kGy to 100 kGy doses and for the mechanical tests. The characterization of the samples before and after the irradiation treatments was performed through scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and mechanical tensile tests. (author)

  20. Irradiation effect of Co-60 gamma rays in YBCO thick films

    Galvanomagnetic properties of YBa2Cu3O7-δ thick films under the action of 60Co γ-rays up to an exposure of 450 kGy are reported. The variation of physical parameters such as resistivity in the normal state, critical temperature and critical current density, as well as the increase of pinning energies with irradiation, suggests that these property changes are dominated by irradiated-induced randomly distributed oxygen defects. The three-dimensional collective pinning theory is used along with some approximations to estimate the pinning energies and critical current density. A comparison of the experimental data with the theoretical predictions demonstrates the importance of irradiation-induced oxygen defects as effective pinning centres. (author)

  1. Growth evaluation of avocado selections irradiated with gamma rays Co 60

    The vegetative growth of two years old avocado selections treated with 2 krads of gamma irradiation compared with not irradiated trees (control) was evaluated determining tree height, trunk diameter, shoots length, inter nodes number and growth habit, finding that the irradiated selections Colinmex, 175 PLS and 39 PMe have modified their growth habits towards more horizontal tendency, minor shoots length and more inter nodes. Also in this article is presented an evaluation of the scion development of 10 avocado selections treated with 0,1,3,5 and 7 krad, finding variation in the sensibility of the materials after eight months grafted, Colin V-101, 131 PLS and 175 PLS exhibited only 12 % survival meanwhile Colin V-33 and Colinmex had 70 % survival, but only in the 1 krad dosage, because at higher doses the graft wood died. (Author)

  2. Physico chemical and microbiological changes in nopal (Opuntia spp.) irradiated with gamma rays of cobalt 60

    The objective of this work is to study the physico-chemical and microbiological changes which take place in the nopal (Opuntia spp.) after they have been irradiated and stored at environment and refrigeration temperatures in order to determine the level of irradiation dose more adequate for getting them an increase in the storage life, as well as to determine the physico-chemical changes attributed to the irradiation doses used, comparing the obtained results with those ones of non-irradiated nopal samples, which are considered as control samples. The radiation source used was a GAMMABEAM-651 PT, property of the Nuclear Sciences Institute of UNAM. The nopals studied are of the variety (Milpa Alta, Opuntia ficus) which were cut and packed in polyethylene bags with and without nitrogen. In order to find the adequate dose level it was used a lot of 200 samples which were treated in sets of 10. They were irradiated in doses of 0.5 to 10 kGy at a dose reason of 3.7 kGy/h. The adequate doses for getting an increase in the storage life, where there was not darkness were of 1.5 and 2.0 kGy, allowed doses in the NOM-033-SSA1-1993, it was not found any change in acceptability by flavour, but so in the titled activity values and sugars. The lowest loss of weight was found in the 1.5 kGy dose without nitrogen and the highest in the 2.0 kGy with nitrogen dose. Likewise was determined that with the irradiation treatment in the recommended doses it is diminished the microorganisms growth, obtaining an improvement in the general appearance of the nopals during their storage period. (Author)

  3. A comparative study on experimental and theoretical ESR spectra of lactic acid polymers irradiated by gamma rays

    Homo polymers of L-Lactic acid (LLA) and D,L-Lactic acid (DLLA), being biocompatible and absorbable in body iluids have recently found wide applications in the preparation of surgical sutures, controlled drug delivery systems, burn wound coverings etc. For sometime these polymers have also been prepared in the form of plates and screws for mandibular fracture fixation, tissue implants. Their chemical sensitivities against relatively high temperatures and hydrolysis with water make them unsuitable for conventional sterilization techniques like hot water vapor and ethylene oxide. Sterilization of the devices made of these polymers is therefore possible by gamma ray irradiation. This has initiated a number of research works in order to better understand the effects of ionizing radiation on this polymer. The aim of this study is to determine the possible radical types, their location on macromolecular structure and the reasons for peak shifts in the experimental and theoretical ESR spectra. Polymer samples were irradiated in air and in vacuum (10□□ torr) to 25 kGy sterilization dose at the dose rate 0.59 kGy/h and at room temperature by 60Co γ-irradiator. Despite being chemically the same radical type, some differences were observed in the splitting of peaks of PLLA and PDLLA samples. These differences were determined and compared by means of fitting studies. Firstly, PLLA was characterized and its g and hyperfine splitting values were found as 2.0032±0.0002 and 20.37±0.2. In the characterization study of PDLLA, it was found that one of the nearest two radicals was on the upper and the other one was on the lower plane of PDLLA chain. (author)

  4. Irradiation effect on enzymatic activity of papain with {sup 60}Co-{gamma} rays

    Furuta, Masakazu; Ohashi, Isao; Oka, Masahito; Hayashi, Toshio [Osaka Prefecture Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology

    1998-12-31

    An investigation was made on the durability of enzyme activity against {sup 60}Co-{gamma} irradiation at a dose up to 55 kGy/h using dry powder and aqueous solution of papain preparations on the market. Hybrid materials including bioactive molecules combined with biocompatible synthetic polymers are expected to have biocompatible properties and also biomimetic functions as a component of artificial organs for human body. The activity of papain in an aqueous solution was rapidly decreased at the early stage of irradiation through oxidation of SH group at its active site with active oxygen produced by the irradiation and then, partially recovered since SH group was reproduced in an anoxic state after O{sub 2} consumption in the solution irradiated at a high dose. A usual radiation method for sterilization was found applicable to decontamination of dry and frozen preparations of papain. When suitable conditions for radiation were chosen and N{sub 2} gas was purged to suppress the formation of free radicals, it was possible to keep the enzyme activity at more than 50% of the initial activity after radiation at 30 kGy. (M.N.)

  5. Work hardening characteristics of gamma-ray irradiated Al-5356 alloy

    Effects of γ-irradiation and deformation temperatures on the hardening behavior of Al-5356 alloy have been investigated by means of stress–strain measurements. Wire samples irradiated with different doses (ranging from 500 to 2000 kGy) were strained at different deformation temperatures Tw (ranging from 303 to 523 K) and a constant strain rate of 1.5×10−3 s−1. The effect of γ-irradiation on the work-hardening parameters (WHP): yield stress σy, fracture stress σf, total strain εT and work-hardening coefficient χp of the given alloy was studied at the applied deformation temperature range. The obtained results showed that γ-irradiation exhibited an increase in the WHP of the given alloy while the increase in its deformation temperature showed a reverse effect. The mean activation energy of the deformation process was calculated using an Arrhenius-type relation, and was found to be ∼80 kJ/mole, which is close to that of grain boundary diffusion in aluminum alloys

  6. Isothermal Crystallization Kinetics of HDPE/HA Compounds Irradiated with Sterilization Doses of Gamma Rays

    The objective of this work was to study the isothermal crystallization of High Density Polyethylene/Hydroxyapatite nanocomposites, with 2 and 5 ppc of HA, irradiated with 25 kGy (sterilization dose) of γ-Ray from a 60Co source, at a rate of 4.8 kGy/h in air and at room temperature. The selected crystallization temperatures were 118, 117, 116 and 115 degree. The crystallization kinetics was analyzed using the Avrami's model whose parameters were optimized using a non-linear regression technique. Regression results show that the Avrami exponent varies between 1.8 and 1.5, meaning that the spherulitic growth is mainly two dimensional. Values for specific crystallization constant 'k' were found to be higher for HDPE/HA compounds than for pure HDPE, clearly indicating the presence of an HA nucleation effect. It was also observed that values for the specific crystallization constant 'k' decreases with increasing temperatures, being this effect more noticeable for HDPE/HA compounds than for pure HDPE. Regarding to irradiated samples, their 'k' values were found to be lower than those for non irradiated samples, the difference getting more significant with decreasing crystallization temperature. Simulation of experimental data with the Avrami's model show a clear influence of the crystallization temperature, the HA content in the sample and the amount of applied radiation. It was also observed that the Avrami model correlates satisfactorily experimental data for not irradiated samples of pure HDPE and HDPE/HA compounds at the highest crystallization (Tc). However, as the crystallization temperature decreases, the values simulated with the Avrami model increasingly deviate from experimental data, specifically at the highest values of the relative crystallinity. This effect is even stronger on irradiated samples of HDPE and HDPE/HA compounds

  7. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+:Y3A15O12 (Nd:YAG) and Yb3+:Y3A15O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340 nm. The former is contributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100Mrad gamma-ray In contrast, the same dose irradiation does not impair the fluorescent properties of Yb:YAG crystal. These results indicate that Yb:YAG crystal possesses the advantage over Nd:YAG crystal that has better reliability for applications in harsh radiant environment. (fundamental areas of phenomenology (including applications))

  8. Detection of corn starch irradiated with low doses of gamma rays. Pt. 4

    Hydrogen peroxide and malonaldehyde, which are both radiolysis products of stark, appear not to react with each other when mixed into unirradiated starch. Amino acids, when mixed into unirradiated starch containing malonaldehyde, cause the malonaldehyde to disappear at a measurable rate. This suggests that the malonaldehyde reacts with amino acids rather than with the peroxide, and that this is a more likely path for the disappearance of manlonaldehyde from irradiated starch. (orig.)

  9. Effect of 60Co gamma-ray irradiation on dilute aqueous solutions of surfactants

    Present work deals with the effects of gamma irradiation from 60Co γ-ray source upon aqueous solutions of three kinds of surfactants. When dilute aqueous solutions of sodium dodecyl sulfate (SDS, anionic), cethyl trimethyl ammonium chloride (CTAC, cationic), and polyoxyethylene lauryl ether (POE, non-ionic) were irradiated with γ-rays at a room temperature, the residual concentration, products, surface tension, and forming power were examined by colorimetric method, IR spectrophotometric method, gaschromatography, Ross-Miles method, and Traube's stalagmometer etc. These surfactants were decomposed by the irradiation and thus the surface tension increased and the forming power, on the contrary, decreased with dose. Radiation chemical yields (G-value) of the degradation were about 1 for the solutions of SDS and CTAC, and about 0.3 for the POE solution. From the experimental results, it was found that following chemical reactions seem to occur followed by the radiolysis of water: a) bond cleavage of ester for SDS, of CN for CTAC, and of oxyethylene for POE, b) hydrogen abstraction from the surfactants, c) production of CO bond in the presence of dissolved oxygen. (auth.)

  10. Functionalization and magnetization of carbon nanotubes using Co-60 gamma-ray irradiation

    Functionalized magnetic carbon nanotubes (CNTs) can be used in the biological and biomedical fields as biosensors, drug delivery systems, etc., which makes research into processes for manufacturing modified CNTs quite important. In this paper, Co-60 gamma irradiation is shown to be an effective tool for fabricating functionalized and magnetized CNTs. After the Co-60 gamma irradiation, the presence of carboxylic functional groups on the CNT walls was confirmed by their Fourier transform infrared spectra, and the presence of Fe3O4 was verified by the X-ray diffraction patterns. The functionalized and magnetized CNTs produced using Co-60 gamma irradiation have excellent dispersion properties. The techniques for functionalizing and magnetizing CNTs are introduced in this paper, and applications of the modified CNTs will be reported after more data are gathered. - Highlights: Dispersion ability of carbon nanotubes (CNTs) was improved by functionalization. CNTs were easily manipulated by precipitation of magnetic nanoparticles. Our product can be used as versatile biosensor substrate for biomarker screening

  11. Thermoluminescence of CsCl:Ce crystals irradiated with gamma rays

    UV-visible absorption spectrum of CsCl:Ce crystal shows two sharp bands at 267nm and 205nm. Upon γ-irradiation the characteristic F and V bands form, which are similar to those observed in pure CsCl. Three glow peaks at 363 K, 378 K and 408 K have been identified in the irradiated crystals. The resistance of the 408 K peak to F-bleaching, is more compared to the lower temperature peaks. The TL emission spectra show emission bands at 445nm and 388nm. The 388nm band is attributed to the emission of Ce3+ ions and the 445nm band is attributed to the emission of Eu2+ ions, which were present as unintentional impurities. These results are correlated with the photoluminescence spectra. The thermoluminescence emission of γ-irradiated CsCl:Ce crystal appears to be due to the energy transfer from the recombining F-center electron and V-center pair, to the nearby Ce3+ and Eu2+ ions in the lattice. (author). 11 refs., 5 figs

  12. Functionalization and magnetization of carbon nanotubes using Co-60 gamma-ray irradiation

    Chen, C.Y.; Fu, M.J.; Tsai, C.Y. [Division of Isotope Application, Institute of Nuclear Energy Research, Atomic Energy Council, P.O. BOX 3-27 Longtan, Taoyuan County 32546, Taiwan (R.O.C.) (China); Lin, F.H. [Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (R.O.C.) (China); Chen, K.Y., E-mail: chenky@iner.gov.tw [Division of Isotope Application, Institute of Nuclear Energy Research, Atomic Energy Council, P.O. BOX 3-27 Longtan, Taoyuan County 32546, Taiwan (R.O.C.) (China)

    2014-10-01

    Functionalized magnetic carbon nanotubes (CNTs) can be used in the biological and biomedical fields as biosensors, drug delivery systems, etc., which makes research into processes for manufacturing modified CNTs quite important. In this paper, Co-60 gamma irradiation is shown to be an effective tool for fabricating functionalized and magnetized CNTs. After the Co-60 gamma irradiation, the presence of carboxylic functional groups on the CNT walls was confirmed by their Fourier transform infrared spectra, and the presence of Fe{sub 3}O{sub 4} was verified by the X-ray diffraction patterns. The functionalized and magnetized CNTs produced using Co-60 gamma irradiation have excellent dispersion properties. The techniques for functionalizing and magnetizing CNTs are introduced in this paper, and applications of the modified CNTs will be reported after more data are gathered. - Highlights: Dispersion ability of carbon nanotubes (CNTs) was improved by functionalization. CNTs were easily manipulated by precipitation of magnetic nanoparticles. Our product can be used as versatile biosensor substrate for biomarker screening.

  13. Chemical changes in the chloroform-paraffin system irradiated by 60Co gamma-rays, 1

    It has been reported that the chloroform-paraffin-dye system have excellent sensitivity for radiation as a solid chemical dosimeter or a phantom. However, the chemical changes in the irradiated system are not examined in detail. In the present study, the effect of paraffin on changes in the above system of a liquid state irradiated by 60Co γ-rays was examined by using various normal paraffin, and the other variable factors on the changes were done. When the chloroform solution and the solution containing 25 per cent of paraffin by volume with 5.0 x 15-5 mol/liter of Methyl Yellow as a dye were irradiated by 2000 R, G values for the formation of hydrogen chloride in the both solutions were 8.4 and 10.8, respectively, and were little affected by the kind of those, from C6 (hexane) to C36 (hexatria-contane). These results suggest that chlorine radical formed by radiolysis of chloroform may react with hydrogen atom from paraffin, thereby increasing the amount of hydrogen chloride. Presence of oxygen increased G value of the chloroform solution from 7.6 to 8.4, but did little that of the solution containing paraffin. (author)

  14. Induction of skin papillomas in the rabbit, Oryctologus cuniculus, by bites of a blood-sucking insect, Cimex lectularius, irradiated by gamma rays

    Bed bugs, Cimex lectularius, irradiated with gamma rays were allowed to suck blood from shaved areas of the skin of rabbits, Oryctolagus cuniculus, 2 times/week for 5 months and then once weekly for another 5 months. This significantly induced the formation of skin papillomas and sweat gland hyperplasia in five out of nine experimental animals. It is speculated that the saliva of the irradiated bugs was activated by gamma rays and was responsible for the induction of skin papillomas. Because bed bugs play a significant role in the transmission of virus, it is also speculated that there is a virus in the saliva of bugs; this virus may be activated by gamma radiation and causes the development of papillomas in the skin

  15. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation

    Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP-BIC-HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close. (paper)

  16. Quality assessment of coffee beans with ESR and gamma-ray irradiation

    Peroxy radical formation in raw coffee beans of different qualities and origins from all over the world has been studied with electron spin resonance (ESR) analysis. The γ-ray equivalent absorbed dose (ED) which creates the same concentration of radicals is obtained by the additive γ-ray irradiation of the coffee beans. The ED and the cup quality is somewhat inversely related suggesting that the peroxidation of the unsaturated fatty acid is somewhat indicative of the degree of the aromatic decomposition and rancidity. (author)

  17. Oxygen formation in gamma-ray irradiation of Fe2+ -Cu2+ solutions

    Bjergbakke, Erling; Hart, E.J.

    1971-01-01

    The mechanism of O2 formation has been studied in 60 Co γ-ray-irradiated Fe(II) + Cu(II) solutions at 0.01 N HClO4 and at 0.01, 0.08, and 0.80 N H2 SO4. In the H2 SO4 system, ${\\rm G}({\\rm O}_{2})$ rises to plateau levels near 0.02 as the ${\\rm CuSO}_{4}/{\\rm FeSO}_{4}$ ratio increases. The plateau...

  18. Gamma-ray irradiation induce suppression of TNF-α production via up-regulation of maitogen-activated protein kinase phosphatase-1

    Complete text of publication follows. Ionizing irradiation induces DNA damage and activates a lot of signalling pathways, such as ATM and p53, due to repair the DNA damage. On the other hand, irradiation also induces activation of extracellular signal regulated protein kinase (ERK1/2) through trans-activation of EGF receptor. However, EGF-receptor-independent signalling pathways induced by irradiation are unclear. Here, we studied gamma-ray irradiation-induced signaling pathways focusing mitogen-activated kinase (MAPK), such as ERK1/2 and p38 MAPK in human keratinocyte HaCat cells, which express EGF receptor, and mouse macrophage RAW264.7 cells, which express EGF receptor at low level. These cells were irradiated by gamma-ray (0.05-2.5 Gy) from 137Cs source (0.96 Gy/min), and phosphorylated MAPKs were detected by immune blotting. Gamma-ray irradiation (0.1- 2.5Gy) induced phosphorylation of ERK1/2 in HaCat cells. However, dephosphorylation of p38 MAPK was occurred 15 min after the irradiation, indicating activation of MAPK phosphatase (MKP). On the other hand, dephosphorylation of not only p38 MAPK but also ERK1/2 were induced 15 min after irradiation (0.5 Gy) in RAW264.7 cells. At the same time point, expression of MKP-1, which dephosphorylates ERK1/2 and p38 MAPK, was significantly increased. Up-regulation of MKP-1 and dephosphorylation of p38 MAPK were also observed in irradiated mouse peritoneal macrophage. Because phosphorylation of p38 MAPK mediates pro-inflammatory cytokines, such as TNF-α , we examined the change in production of TNF-α after irradiation. Production of TNF-α was suppressed in 0.5 Gy irradiated RAW264.7 cells. In conclusion, our results suggest that gamma-ray irradiation induces up-regulation of MKP-1, leading to dephosphorylation of p38 MAPK and suppression of TNF-α production in RAW264.7cells, though ERK1/2 is activated through activation of EGF receptor in HaCat cells.

  19. Mechanical Property Of Zeolite-PVA Composite Mixture Irradiated By Gamma Ray Of Co-60

    Experiment on preparation of zeolite-polyvinyl alcohol composite for absorbance materials have been done by curring using Gamma γ-ray of Co-60. Zeolite with the particles size of 60 mesh was mixed with polyvinyl alcohol (PVA) at the concentration of the mixture were 6,9, and 12% by weight, than they were poured into glass tube (length = 100 mm; diameter = 10 mm) and irradiated at the doses of 10, 20, 30 dan 40 kGy with the dose rate of 7,5 kGy/ hr. Parameters observed were density, compressive strength, and hardness. Experimental results showed that polyvinyl alcohol in the mixture was significant effect to density and compressive strength, where as the irradiation dose was highly significant effect to compressive strength. The effect interaction between dose and polyvinyl alcohol concentration factors had significant effect to density or compressive strength. Almost all samples have pencil hardness of 4 - 5 H, for composite containing 6 % PVA, has pencil hardness of 2 - 3 H

  20. Trace the polymerization induced by gamma-ray irradiated silica particles

    Lee, Hoik; Ryu, Jungju; Kim, Myungwoong; Im, Seung Soon; Kim, Ick Soo; Sohn, Daewon

    2016-08-01

    A γ-ray irradiation to inorganic particles is a promising technique for preparation of organic/inorganic composites as it offers a number of advantages such as an additive-free polymerizations conducted under mild conditions, avoiding undesired damage to organic components in the composites. Herein, we demonstrated a step-wise formation mechanism of organic/inorganic nanocomposite hydrogel in detail. The γ-ray irradiation to silica particles dispersed in water generates peroxide groups on their surface, enabling surface-initiated polymerization of acrylic acid from the inorganic material. As a result, poly(acrylic acid) (PAA) covers the silica particles in the form of a core-shell at the initial stage. Then, PAA-coated silica particles associate with each other by combination of radicals at the end of chains on different particles, leading to micro-gel domains. Finally, the micro-gels are further associated with each other to form a 3D network structure. We investigated this mechanism using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Our result strongly suggests that controlling reaction time is critical to achieve specific and desirable organic/inorganic nanocomposite structure among core-shell particles, micro-gels and 3D network bulk hydrogel.

  1. Synergism of. gamma. -ray irradiation and temperature on the deterioration of flame-retardant cables, 2

    Okamoto, Shinichi (Radiation Center of Osaka Prefecture, Sakai (Japan)); Katayama, Shiro; Takeya, Chikashi; Hayakawa, Tsutomu; Iwata, Seiji

    1982-03-01

    Following our previous paper, aging tests of two flame-retardant cables, C*V and P*N, were conducted under combined environment of heat (90 and 120/sup 0/C) and radiation (2.5 x 10/sup 7/ -- 2 x 10/sup 8/..gamma..) and characteristic changes were measured in order to study synergism at reduced temperature. As a result, synergism appeared in C* (RF-XL PE) and P* (FR-EPR) after heavier dosage at elevated temperature owing to their excellent resistance to heat and radiation. On the contrary, V (PVC) showed synergism after irradiation of 2.5 x 10/sup 7/..gamma.. at 90 and 120/sup 0/C, and N(Neoprene) showed synergism after irradiation of 2.5 x 10/sup 7/..gamma.. and less at 90/sup 0/C and over. It is clear that elongation is the best index of investigating the deterioration of characteristics because of its continuous and uniform change. Also, the degradation of electrical characteristics occured in C* and P* simultaneously with or later than that of mechanical ones.

  2. Coloration of fluorophosphate glasses containing fluorescein molecules by heat treatment or gamma ray irradiation

    The 70SnF2·30P2O5 glasses containing 25-500 ppm of fluorescein exhibit change in color from light yellow to reddish orange (absorption maximum, λ=500 nm) when heated at 240degC for 120-180 min. The fluorophosphate glasses also change the color from light yellow to reddish brown (λ=480 nm) when irradiated with 60Co γ-rays of 5x104 Gy. The P-F stretching mode observed in the Fourier transformed infrared (FT-IR) spectra showed an increase in peak intensity along with the coloration, suggesting a cleavage of the weak chemical bond between fluoride ions (F-) and fluorescein molecules. The coloration is ascribed to change of the molecular structure of fluorescein from non-crystalline to crystalline type. ESR spectra of γ-ray irradiated 70SnF2·30P2O5 glasses showed a poorly resolved doublet, which was ascribed to a hole-trapped PO3F- center produced by electron scattering: PO3F2- → PO3F- + e-. (author)

  3. Preparation of hydrogels for atopic dermatitis containing natural herbal extracts by gamma-ray irradiation

    Lim, Youn-Mook; An, Sung-Jun; Kim, Hae-Kyoung [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong Jeongeup-si Jellabuk-do, 580-185 (Korea, Republic of); Kim, Yun-Hye [AMOTECH Co., Ltd., Kimpo-City, Kyungki-do (Korea, Republic of); Youn, Min-Ho; Gwon, Hui-Jeong; Shin, Junhwa [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong Jeongeup-si Jellabuk-do, 580-185 (Korea, Republic of); Nho, Young-Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong Jeongeup-si Jellabuk-do, 580-185 (Korea, Republic of)], E-mail: ycnho@kaeri.re.kr

    2009-07-15

    Atopic dermatitis (AD) is a familial and chronic inflammatory pruritic skin disease that affects a large number of children and adults in industrialized countries. It is known that one of the prominent features of AD and chronic pruritus is partially due to the histamine released from mast cell. In this work, hydrogel patches with natural herbal extracts were prepared by 'freezing and thawing', and a gamma irradiation. It showed eminent healing results as a consequence of long-term moisturizing effects and natural herbal extracts on atopic wounds. Besides its non-toxicity and human harmlessness, it can be easily attached to or detached from the skin without any trace and help patients to feel refreshment when attached. Based on this work, the hydrogel patches we made can be potentially used as an alternative remedy for not only pruritus in AD, but other dermatitis.

  4. Decomposition of colored wastewater for recycling water by gamma-ray irradiation

    Utilization of advanced treated water from wastewater treatment plants for the restoration of waterway is in progress to improve the waterside environment. However, the colored wastewater containing molasses pigments, melanoidins, is not decolorized by activated sludge process, and the water can not be applied for recycling water. We have studied the radiation treatment for decolorization of wastewater discharged from baker's yeast factory. The decolorization after decomposition of colored biorefractory organic substances in wastewater, enhancement in biodegradability and effective decrease in values of COD were observed after gammaray irradiation. Although the decrease in values of COD was observed, however chromaticity was not improved after the combined treatment of wastewater by radiation together with activated sludge. The result suggests that it is necessary to find the optimum conditions for stimulation of sludge in the combined treatment. (author)

  5. Study On Effect Of Immune Stimulation Of Gamma-Ray Irradiated Chitosan On Tilapia

    Low molecular weight chitosan (LMWC) powder and oligochitosan solution were prepared by γ-irradiation method. The efficiency of the degradation process was demonstrated by gel permeation chromatography (GPC) analysis of the average molecular weight of degraded chitosan. Results showed that the molecular weights decreased with increasing doses. For LMWC molecular weight reduces from 120,000 Da to 40,000 Da when dose raises from 0 kGy to 50 kGy and oligochitosan reduces to 6100 Da at 20 kGy. Tilapia fish, which was fed with LMWC and oligochitosan 100 ppm for 45 days, was challenged with Streptococcus agalactiae bacteria to investigate immune response. The results also exhibited that oligochitosan has effect of immune response higher than LMWC. The effect of various concentrations (50 ppm, 100 ppm, 150 ppm) was investigated. Results showed that oligochitosan 100 ppm shows survival rate the highest. (author)

  6. Effects of 2.0 Gy of 60Co gamma rays irradiation on rat embryos

    Pregnant rats of Donryu strain were exposed to a whole-body 60Co γ ray irradiation of a single dose of 2.0 Gy (Dose rate: 0.5 Gy/min) on day 7, 8, 9, 10 or 11 of gestation (sperm day = day 0). The rats were sacrificed on day 18 and the offspring were examined for external and visceral malformations. Malformed embryos occurred between days 7 and 11 with the highest incidence occurring on day 9. Dose with 2.0 Gy increased the rate of resorption or death (52.1 %), in the survivors, caused congenital malformation in a majority of embryos (86.5 %) on day 8 of gestation. There is an increase in malformation (93.3 %) and growth retardation, but no increase in mortality (42.9 %) on day 9 of gestation. Relatively few anomalies resulted from irradiation on day 7 of gestation. The peak day for cardiovascular anomalies occurred on day 9 (88.3 % of all survival embryos) with high levels also occurring on day 8 (86.5 %). Cardiovascular anomalies consisted of VSD, hypoplasia of the pulmonary trunk, coarctation of the aorta, double aortic arch, right aortic arch, riding aorta, complete transposition of the aorta, persistent atrioventricular canal, vascular ring, aberrant right subclavian artery and others. Similar anomalies, but at a lower incidence, were produced by 60Co γ ray at dose levels of 2.0 Gy on day 10 or 11 of gestation. Cases of cleft lip and cleft palate or facial cleft were observed seventeen fetuses on day 9 of gestation (31 %). Exencephaly occurred in nine embryos treated on day 9 (16.1 %) and in one embryos treated on day 10. Tail defects appeared with treatment on day 9 with the latter predominating on day 11. The present study show that maximum resorption (52.1 %) was seen with treatment on day 8 whereas the highest rate of malformation (93.3 %) was observed with treatment on day 9. (J.P.N.)

  7. Control of drug releasing from biodegradable polymer drug delivery system by gamma-ray irradiation

    In order to introduce the drug to the target organ, we developed a gel to control the drug releasing velocity by response to change of temperature by means of γ-ray irradiation to gelatin-GMA modified dextran mixture aqueous solution. A certain level of molecular weight of drug is necessary. The response to the temperature (change of drug releasing velocity) was affected by the concentration of gelatin and the modification rate of GMA. The Higuchi equation was applied to the releasing of β-galactosidase from gelatin-dextran gel and the releasing velocity was calculated. The releasing velocity decreased with increasing GMA modification rate at 37degC and 15degC. The releasing velocity of β-galactosidase decreased with increasing the concentration of gelatin at 15degC, but the velocity increased with increasing the concentration at 37degC. These results indicated that the good drug releasing conditions are obtained by controlling the GMA modification rate and the concentration of gelatin. (S.Y.)

  8. Effect of extremely low temperature gamma ray irradiation on polymer materials

    Polymer materials and composite materials are used in such extreme situation as the environment of nuclear fusion reactors, and such use is expected to increase hereafter. In the thermonuclear fusion reactors of magnetic confinement type, superconducting magnets are used for those of next period, and as their insulator materials, glass fiber-reinforced plastics (GFRP) are used. This GFRP is exposed to radiation at extremely low temperature, and the cumulative dose is estimated as 30 - 50 MGy. It is necessary to select or develop the material that withstands such environment, and it is demanded to acquire the reliable data. In order to study the radiation resistance at extremely low temperature of the composite materials and various polymer materials, which are used as the insulator materials for the superconducting magnets of nuclear fusion reactors, the extremely low temperature irradiation testing facility was manufactured, and the evaluation of radiation resistance has been advanced. The testing facility, the experiemtnal method and the results are reported. (K.I.)

  9. Radio protective effects of calcium channel blockers (Deltiazem) on survival of Saccharomyces cerevisiae cells irradiated with different doses of gamma rays

    Investigations of radioprotective effects of Deltiazem (as one of the commonly used calcium channel blockers, which is used in the treatment of acute and chronic angina and spasmo angina, in addition to the treatment of different types of essential hypertension) has been carried on Saccharomyces Cerevisiae cells. Cells cultures of the most famous yeast Saccharomyces Cerevisiae (bakers yeast) were irradiated with different doses of gamma rays. Results revealed that the necessary dose of gamma rays that leads to 10% of survived cellular population (D10 value) was about 256 Gy. This irradiation dose was used then in all irradiation experiments on culture of S. Cerevisiae cells in which different concentrations of Deltiazem (55, 110, 165 mg/Kg medium) were added before and after irradiation in order to study the radio protective effect of Deltiazem. Results showed that Deltiazem enhances survival percentage of irradiated S. Cerevisiae cultures in a concentration dependent manner. This study confirmed our previous works, which had demonstrated that Deltiazem protects lethally and supralethally irradiated rats, and enhances survival of pre-irradiated Deltiazem treated animals.(author)

  10. Late effects of protracted whole-body irradiation of beagles by cobalt-60 gamma rays

    So that a stronger basis for extrapolation of low-level radiation effects to man can be provided, existing data from small laboratory animals are being supplemented by studies in a longer lived animal, the dog. Beagle dogs are exposed to continuous cobalt-60 irradiation either throughout life or until predetermined total doses are accumulated. The radiation-specific excess-mortality rate and associated causes of death will be related to both dose rate and total dose. The ongoing studies also emphasize the pathogenesis of myelogenous leukemia. At dose rates of 3.75 to 26.25 rads/day, given continuously, responses were consistent, highly dose-rate dependent, and limited primarily to the hematopoietic system. At rates as low as 0.3 rad/day, the hematopoietic system is still the limiting factor for survival, but below 3.75 rads/day present evidence suggests that the responses are independent of dose rate. Longitudinal studies of peripheral blood and bone marrow detected four preclinical phases of myelogenous leukemia. These phases were characterized by standard hematologic end points, ultrastructural features, in vitro cloning assays, and the acute radiation sensitivity of stem cells. Results suggest that an induced error-prone repair mechanism is the basis for the onset of radiation-induced myelogenous leukemia. Interim data from dogs given terminated exposures suggest that the types of tumors and times to death are different from controls but the numbers of tumors are not yet greater than in controls. 26 refs., 12 figs., 5 tabs