WorldWideScience

Sample records for frost susceptible soil

  1. Predictive modeling of freezing and thawing of frost-susceptible soils.

    Science.gov (United States)

    2015-09-01

    Frost depth is an essential factor in design of various transportation infrastructures. In frost : susceptible soils, as soils freezes, water migrates through the soil voids below the freezing line : towards the freezing front and causes excessive he...

  2. Frost heave susceptibility of saturated soil under constant rate of freezing

    Science.gov (United States)

    Ryokai, K.; Iguro, M.; Yoneyama, K.

    Introduced are the results of experiments carried out to quantitatively obtain the frost heave pressure and displacement of soil subjected to artificial freezing or freezing around in-ground liquefied natural gas storage tanks. This experiment is conducted to evaluate the frost heave susceptibility of saturated soil under overconsolidation. In other words, this experiment was carried out to obtain the relation of the over-burden pressure and freezing rate to the frost heave ratio by observing the frost heave displacement and freezing time of specimens by freezing the specimens at a constant freezing rate under a constant overburden pressure, while letting water freely flow in and out of the system. Introduced are the procedures for frost heave test required to quantitatively obtain the frost heave displacement and pressure of soil. Furthermore, the relation between the frost heave susceptibility and physical properties of soil obtained by this test is reported.

  3. Frost susceptibility of granular subbase materials contaminated by deicing chemicals

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Orlander, Tobias; Doré, Guy

    2013-01-01

    The increase in urban population in arctic areas leads to an increased demand for transportation infrastructures (such as roads and airfields) in the regions. This challenges the road constructions in terms of condition, bearing capacity and maintenance. It is believed that deicing agents used...... on roads and airfields enter the granular subbase materials and thereby makes the soil more frost-susceptible. In this project a series of isothermal frost heave tests has been carried out on granular subbase material from the runway at Kuujjuaq Airport, Québec, Canada. The tests have been carried out...

  4. Molecular polarizabilities and susceptibilities from Frost-model wavefunctions

    International Nuclear Information System (INIS)

    Amos, A.T.; Yoffe, J.A.

    1975-01-01

    Average polarizabilities and susceptibilities of a number of molecules are computed from Frost-model wavefunctions using a form of symmetry-adapted double perturbation theory. The anisotropy of α and chi is found for a few molecules using the elliptical Gaussian form of the Frost model. The results obtained are in reasonable agreement with experiment and other calculated values

  5. Frost Heave in Colloidal Soils

    KAUST Repository

    Peppin, Stephen; Majumdar, Apala; Style, Robert; Sander, Graham

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates

  6. Optimum soil frost depth to alleviate climate change effects in cold region agriculture.

    Science.gov (United States)

    Yanai, Yosuke; Iwata, Yukiyoshi; Hirota, Tomoyoshi

    2017-03-21

    On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.

  7. Optimum soil frost depth to alleviate climate change effects in cold region agriculture

    Science.gov (United States)

    Yanai, Yosuke; Iwata, Yukiyoshi; Hirota, Tomoyoshi

    2017-03-01

    On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.

  8. Effect of snow cover on soil frost penetration

    Science.gov (United States)

    Rožnovský, Jaroslav; Brzezina, Jáchym

    2017-12-01

    Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.

  9. Frost susceptibility of sub-base gravel used in Pearl-Chain Bridges: an experimental investigation

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Andersen, Iben Brøndum

    2016-01-01

    This study investigates frost susceptibility of sub-base gravel determined by the ASTM D5918-13 standard as a conservative estimate of the frost heave risk of fill in overfilled arch bridges, particularly in Pearl-Chain Bridges. Frost heave of granular materials has been of great research interes...

  10. Frost Heave in Colloidal Soils

    KAUST Repository

    Peppin, Stephen

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates to accommodate the ice lenses, and a heave regime during which liquid is sucked into the consolidated soil from an external reservoir, and the added volume causes the soil to heave. The ice fraction is found to vary inversely with thefreezing velocity V , while the rate of heave is independent of V , consistent with field and laboratoryobservations. © 2011 Society for Industrial and Applied Mathematics.

  11. Measuring soil frost depth in forest ecosystems with ground penetrating radar

    Science.gov (United States)

    John R. Butnor; John L. Campbell; James B. Shanley; Stanley. Zarnoch

    2014-01-01

    Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperatures and the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonally frozen ground is hampered by our inability to adequately characterize the frequency, depth, duration and intensity of soil frost events. We evaluated the use of...

  12. Full-scale chilled pipeline frost heave testing, Fairbanks, Alaska, USA

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, B. [Northern Engineering and Scientific, Anchorage, AK (United States); Isaacs, R.M. [RMI Associates, Camano Island, WA (United States); Myrick, J.E. [Myrick International, Tyler, TX (United States)

    2010-07-01

    This paper discussed a chilled pipeline frost-heave testing facility that was developed to simulate and record the rate of frost heave and frost-bulb growth for a buried, chilled pipeline in frost-susceptible soil and to determine the effectiveness of different mitigation techniques. The test facility, which was established near Fairbanks, Alaska, in 1979, has 10 test sections using 1.22-metre-diameter pipe. The testing involved un-insulated, insulated, and insulated with over-excavation and gravel berm configurations as well as the frost heave of the chilled pipeline. The test facility was described in detail. Frost heave and frost-bulb growth measurements from the first 10 months of testing were presented, as these are the first data to enter the public domain. The testing was undertaken to investigate the frost-heave relationships between sections, to better understand frost heave in permafrost, to explore possible mitigation options, and to advance the predicative capabilities of frost heave models. 12 refs., 1 tab., 17 figs.

  13. Predicting forest dieback in Maine, USA: a simple model based on soil frost and drought

    Science.gov (United States)

    Allan N.D. Auclair; Warren E. Heilman; Blondel. Brinkman

    2010-01-01

    Tree roots of northern hardwoods are shallow rooted, winter active, and minimally frost hardened; dieback is a winter freezing injury to roots incited by frost penetration in the absence of adequate snow cover and exacerbated by drought in summer. High soil water content greatly increases conductivity of frost. We develop a model based on the sum of z-scores of soil...

  14. Impacts of a water stress followed by an early frost event on beech (Fagus sylvatica L.) susceptibility to Scolytine ambrosia beetles - Research strategy and first results

    Science.gov (United States)

    La Spina, Sylvie; de Cannière, Charles; Molenberg, Jean-Marc; Vincke, Caroline; Deman, Déborah; Grégoire, Jean-Claude

    2010-05-01

    Climate change tends to induce more frequent abiotic and biotic extreme events, having large impacts on tree vitality. Weakened trees are then more susceptible to secondary insect outbreaks, as it happened in Belgium in the early 2000s: after an early frost event, secondary Scolytine ambrosia beetles attacks were observed on beech trees. In this study, we test if a combination of stress, i.e. a soil water deficit preceding an early frost, could render trees more attractive to beetles. An experimental study was set in autumn 2008. Two parcels of a beech forest were covered with plastic tents to induce a water stress by rain interception. The parcels were surrounded by 2-meters depth trenches to avoid water supply by streaming. Soil water content and different indicators of tree water use (sap flow, predawn leaf water potential, tree radial growth) were followed. In autumn 2010, artificial frost injuries will be inflicted to trees using dry ice. Trees attractivity for Scolytine insects, and the success of insect colonization will then be studied. The poster will focus on experiment setting and first results (impacts of soil water deficit on trees).

  15. Severe soil frost reduced losses of carbon and nitrogen from the forest floor during simulated snowmelt: A laboratory experiment

    Science.gov (United States)

    Andrew B. Reinmann; Pamela H. Templer; John L. Campbell

    2012-01-01

    Considerable progress has been made in understanding the impacts of soil frost on carbon (C) and nitrogen (N) cycling, but the effects of soil frost on C and N fluxes during snowmelt remain poorly understood. We conducted a laboratory experiment to determine the effects of soil frost on C and N fluxes from forest floor soils during snowmelt. Soil cores were collected...

  16. Two-dimensional model of coupled heat and moisture transport in frost-heaving soils

    International Nuclear Information System (INIS)

    Guymon, G.L.; Berg, R.L.; Hromadka, T.V.

    1984-01-01

    A two-dimensional model of coupled heat and moisture flow in frost-heaving soils is developed based upon well known equations of heat and moisture flow in soils. Numerical solution is by the nodal domain integration method which includes the integrated finite difference and the Galerkin finite element methods. Solution of the phase change process is approximated by an isothermal approach and phenomenological equations are assumed for processes occurring in freezing or thawing zones. The model has been verified against experimental one-dimensional freezing soil column data and experimental two-dimensional soil thawing tank data as well as two-dimensional soil seepage data. The model has been applied to several simple but useful field problems such as roadway embankment freezing and frost heaving

  17. Frost heaving of planted tree seedlings in the boreal forest of northern Sweden

    International Nuclear Information System (INIS)

    Goulet, France

    2000-01-01

    maximum frost heaving of the seedlings. In the third field experiment snow cover also showed to be an important factor in regard to frost heaving of tree seedlings. In a snow-free treatment combined with soil scarification, an uplift of 14.6 cm was measured during a winter season. In contrast no vertical displacement was observed under a simulated snow cover. The strong influence of snow on the extent of frost heaving indicates that further investigation should be focused on the interaction between maximum frost heaving and snow depth. In the laboratory freezing chamber experiment it was demonstrated that soil from spodic B horizon is less susceptible to frost heaving than soil from E horizon. Needle ice did not grow at all on soil samples from E horizon during a 3-day test, neither on fresh, nor on oven dried samples. On fresh samples of soil from Bs horizon, needle ices reached a maximum height of 9.7 cm in average. The use of theodolite and wooden dowels to estimate the extent of frost heaving in this study allowed to follow the process during the frost heaving period. A vertical uplift in millimetres could be recorded. A development of reliable measuring methods which allow a continuous estimation of the extent of frost heaving damage during the whole process, would undoubtedly represent an important step towards a better understanding of frost heaving of tree seedlings

  18. Frost heaving of planted tree seedlings in the boreal forest of northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, France

    2000-07-01

    maximum frost heaving of the seedlings. In the third field experiment snow cover also showed to be an important factor in regard to frost heaving of tree seedlings. In a snow-free treatment combined with soil scarification, an uplift of 14.6 cm was measured during a winter season. In contrast no vertical displacement was observed under a simulated snow cover. The strong influence of snow on the extent of frost heaving indicates that further investigation should be focused on the interaction between maximum frost heaving and snow depth. In the laboratory freezing chamber experiment it was demonstrated that soil from spodic B horizon is less susceptible to frost heaving than soil from E horizon. Needle ice did not grow at all on soil samples from E horizon during a 3-day test, neither on fresh, nor on oven dried samples. On fresh samples of soil from Bs horizon, needle ices reached a maximum height of 9.7 cm in average. The use of theodolite and wooden dowels to estimate the extent of frost heaving in this study allowed to follow the process during the frost heaving period. A vertical uplift in millimetres could be recorded. A development of reliable measuring methods which allow a continuous estimation of the extent of frost heaving damage during the whole process, would undoubtedly represent an important step towards a better understanding of frost heaving of tree seedlings.

  19. Crushed aggregates for roads and their properties for frost protection

    Science.gov (United States)

    Kuznetsova, Elena; Willy Danielsen, Svein

    2015-04-01

    Crushed aggregates for roads and their properties for frost protection Elena Kuznetsova, NTNU and Svein Willy Danielsen, SINTEF With natural (fluvial, glaciofluvial) sand/gravel resources being rapidly depleted in many countries, the last decade has seen a significant trend towards using more alternative materials for construction purpose. In Norway the development and implementation of crushed aggregate technology has been the most important way to get around the problem with increased resource scarcity. Today Norway is one the European countries with the highest percentage of crushed/manufactured aggregates. A crushed product will reveal a different particle size distribution, a sharper, more angular particle shape, and not least - a significantly different mineral composition. The latter may often be characterised by more polymineral composition, and it will also much more depend on the local bedrock. When handled with care and knowledge, these differences can give the user a lot of new opportunities relating to materials design. Norwegian road construction practice has changed significantly during the last 40 years due to the replacement of gravel by crushed rock materials in the granular layers of the pavements. The use of non-processed rock materials from blasting was allowed in the subbase layer until 2012. This was a reason for a lot of problems with frost heaving due to inhomogeneity of this material, and in practice it was difficult to control the size of large stones. Since 2012 there is a requirement that rock materials for use in the subbase layer shall be crushed (Handbook N200, 2014). During the spring 2014 The Norwegian Public Roads Administration introduced a new handbook with requirements for roads construction in Norway, including new specifications for the frost protection layer. When pavements are constructed over moist and/or frost susceptible soils in cold and humid environments, the frost protection layer also becomes a very important part

  20. Simulation of Soil Frost and Thaw Fronts Dynamics with Community Land Model 4.5

    Science.gov (United States)

    Gao, J.; Xie, Z.

    2016-12-01

    Freeze-thaw processes in soils, including changes in frost and thaw fronts (FTFs) , are important physical processes. The movement of FTFs affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere, and then the land surface hydrothermal process. In this study, a two-directional freeze and thaw algorithm for simulating FTFs is incorporated into the community land surface model CLM4.5, which is called CLM4.5-FTF. The simulated FTFs depth and soil temperature of CLM4.5-FTF compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen soil). Because the soil temperature profile within a soil layer can be estimated according to the position of FTFs, CLM4.5 performed better in soil temperature simulation. Permafrost and seasonally frozen ground conditions in China from 1980 to 2010 were simulated using the CLM4.5-FTF. Numerical experiments show that the spatial distribution of simulated maximum frost depth by CLM4.5-FTF has seasonal variation obviously. Significant positive active-layer depth trends for permafrost regions and negative maximum freezing depth trends for seasonal frozen soil regions are simulated in response to positive air temperature trends except west of Black Sea.

  1. Design of Frost Resistant Pavement Structure Based on Road Weather Stations (RWSs Data

    Directory of Open Access Journals (Sweden)

    Audrius Vaitkus

    2016-12-01

    Full Text Available Frost is a decisive factor influencing pavement performance in cold countries. In the EU, millions of euros are spent annually on winter maintenance. About one-third of the maintenance budget is allocated to rehabilitation due to the negative impact of frost. The negative effect of frost is restricted by using non-frost-susceptible materials within the frost zone and regulating water accumulation. However, experience shows that the thickness of constructed pavement structure is often inadequate and that frost penetrates into the subgrade of frost-susceptible materials. The aim of this paper is to introduce the thickness calculation approach of the frost resistant pavement structure using road weather station (RWS data. The subgrade susceptibility to frost and the number of equivalent single axle loads (ESALs are considered as factors too. The calculated thickness of the frost resistant pavement structure is corrected according to the specific local conditions. After performing a statistical analysis of 2012–2014 data pertaining to 26 RWSs, Lithuania was divided into four regions according to the maximum frost depths, where the maximum values depending on RWS location varied from 110.4 cm to 179.1 cm.

  2. Leaf fall, humus depth, and soil frost in a northern hardwood forest

    Science.gov (United States)

    George Hart; Raymond E. Leonard; Robert S. Pierce

    1962-01-01

    In the mound-and-depression microtopography of the northern hardwood forest, leaves are blown off the mounds and collect in the depressions. This influence of microtopography on leaf accumulation is responsible for much of the variation in humus depth; and this, in turn, affects the formation and depth of soil frost.

  3. Frost evolution in tailings

    International Nuclear Information System (INIS)

    1991-04-01

    A review was carried out on the physical and thermal mechanisms of permafrost evaluation in soils and uranium tailings. The primary mechanism controlling permafrost evolution is conductive heat transfer with the latent heat of fusion of water being liberated as phase change occurs. Depending on the soil properties and freezing rate, pore water can be expelled from the frost front or pore water can migrate towards the frost front. Solute redistribution may occur as the frost front penetrates into the soil. The rate of frost penetration is a function of the thermal properties of the tailings and the climatic conditions. Computer modelling programmes capable of modelling permafrost evolution were reviewed. The GEOTHERM programme was selected as being the most appropriate for this study. The GEOTHERM programme uses the finite element method of thermal analysis. The ground surface temperature is determined by solving the energy balance equations a the ground surface. The GEOTHERM programme was used to simulate the permafrost evolution in the Key Lake Mine tailings located in north central Saskatchewan. The analyses indicated that the existing frozen zones in the tailing pond will eventually thaw if an average snow depth covers the tailings. Hundreds of years are required to thaw the tailings. If minimal snow cover is present the extent of the frozen zone in the tailings will increase

  4. The periglacial engine of mountain erosion – Part 1: Rates of frost cracking and frost creep

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Egholm, David Lundbek; Knudsen, Mads Faurschou

    2015-01-01

    present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sediment thickness. Our results yield new insights into how climate and sediment transport properties combine to scale the intensity of periglacial processes. The thickness...... of the soil mantle strongly modulates the relation between climate and the intensity of mechanical weathering and sediment flux. Our results also point to an offset between the conditions that promote frost cracking and those that promote frost creep, indicating that a stable climate can provide optimal...

  5. Frost resistance of reproductive tissues during various stages of development in high mountain plants.

    Science.gov (United States)

    Neuner, Gilbert; Erler, Agnes; Ladinig, Ursula; Hacker, Jürgen; Wagner, Johanna

    2013-01-01

    Frost resistance of reproductive vs aboveground vegetative structures was determined for six common European high alpine plant species that can be exposed to frosts throughout their whole reproductive cycle. Freezing tests were carried out in the bud, anthesis and fruit stage. Stigma and style, ovary, placenta, ovule, flower stalk/peduncle and, in Ranunculus glacialis, the receptacle were separately investigated. In all species, the vegetative organs tolerated on an average 2-5 K lower freezing temperatures than the most frost-susceptible reproductive structures that differed in their frost resistance. In almost all species, stigma, style and the flower stalk/peduncle were the most frost-susceptible reproductive structures. Initial frost damage (LT₁₀) to the most susceptible reproductive structure usually occurred between -2 and -4°C independent of the reproductive stage. The median LT₅₀ across species for stigma and style ranged between -3.4 and -3.7°C and matched the mean ice nucleation temperature (-3.7 ± 1.4°C). In R. glacialis, the flower stalk was the most frost-susceptible structure (-5.4°C), and was in contrast to the other species ice-tolerant. The ovule and the placenta were usually the most frost-resistant structures. During reproductive development, frost resistance (LT₅₀) of single reproductive structures mostly showed no significant change. However, significant increases or decreases were also observed (2.1 ± 1.2 K). Reproductive tissues of nival species generally tolerated lower temperatures than species occurring in the alpine zone. The low frost resistance of reproductive structures before, during and shortly after anthesis increases the probability of frost damage and thus, may restrict successful sexual plant reproduction with increasing altitude. Copyright © Physiologia Plantarum 2012.

  6. Water relation response to soil chilling of six olive (Olea europaea L.) cultivars with different frost resistance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, D.; Gijon, M. C.; Marino, J.; Moriana, A.

    2010-07-01

    The relationship between the water relations of six olive cultivars exposed to different soil temperatures (14 0.1, 9.9 0.1 and 5.8 0.2 degree centigrade) and their inherent frost resistance (as determined by two different methods) was investigated. Soil chilling was achieved by introducing pots of olive plants into water baths. The water relations of these plants were compared to those of plants kept under conditions of room temperature. The cultivars Frantoio, Picual and Changlot Real began to show significant dehydration below 14 degree centigrade, while Cornicabra, Arbequina and Ascolana Tenera showed this below 10 degree centigrade. This response is probably due to delayed stomatal closure. Only Cornicabra and Picual showed a significant reduction in leaf conductance (below 10 degree centigrade and 6 degree centigrade respectively). This absence of stomatal control led to a significantly greater dehydration in Ascolana Tenera. These variations in response to the soil chilling temperature suggest that different mechanisms may be at work, and indicate that would be necessary to study the influence of rootstock in the frost resistance of olive plants. The variations recorded grouped the cultivars as either resistant (Cornicabra), tolerant (Picual, Ascolana Tenera and Arbequina), or sensitive (Frantoio and Changlot Real). This classification is in line with the frost resistance reported for these cultivars in the literature, and with the results obtained in the present work using the stomatal density and ion leakage methods of determining such resistance. (Author) 40 refs.

  7. The periglacial engine of mountain erosion – Part 1: Rates of frost cracking and frost creep

    Directory of Open Access Journals (Sweden)

    J. L. Andersen

    2015-10-01

    Full Text Available With accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion patterns significantly changed the large-scale morphology of many mountain ranges worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially prevails in some mid- to high-latitude landscapes. Previous models have advocated a frost-driven control on debris production at steep headwalls and glacial valley sides. Here we investigate the important role that periglacial processes also play in less steep parts of mountain landscapes. Understanding the influences of frost-driven processes in low-relief areas requires a focus on the consequences of an accreting soil mantle, which characterises such surfaces. We present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sediment thickness. Our results yield new insights into how climate and sediment transport properties combine to scale the intensity of periglacial processes. The thickness of the soil mantle strongly modulates the relation between climate and the intensity of mechanical weathering and sediment flux. Our results also point to an offset between the conditions that promote frost cracking and those that promote frost creep, indicating that a stable climate can provide optimal conditions for only one of those processes at a time. Finally, quantifying these relations also opens up the possibility of including periglacial processes in large-scale, long-term landscape evolution models, as demonstrated in a companion paper.

  8. Frost at the Viking Lander 2 Site

    Science.gov (United States)

    1977-01-01

    Photo from Viking Lander 2 shows late-winter frost on the ground on Mars around the lander. The view is southeast over the top of Lander 2, and shows patches of frost around dark rocks. The surface is reddish-brown; the dark rocks vary in size from 10 centimeters (four inches) to 76 centimeters (30 inches) in diameter. This picture was obtained Sept. 25, 1977. The frost deposits were detected for the first time 12 Martian days (sols) earlier in a black-and-white image. Color differences between the white frost and the reddish soil confirm that we are observing frost. The Lander Imaging Team is trying to determine if frost deposits routinely form due to cold night temperatures, then disappear during the warmer daytime. Preliminary analysis, however, indicates the frost was on the ground for some time and is disappearing over many days. That suggests to scientists that the frost is not frozen carbon dioxide (dry ice) but is more likely a carbon dioxide clathrate (six parts water to one part carbon dioxide). Detailed studies of the frost formation and disappearance, in conjunction with temperature measurements from the lander's meteorology experiment, should be able to confirm or deny that hypothesis, scientists say.

  9. Frost hardiness of tree species is independent of phenology and ...

    Indian Academy of Sciences (India)

    The differences in timing in bud burst between species have been interpreted as an adaptation to late frost events in spring. Thus, it has been suggested that the degree of frost susceptibility of leaves is species-specific and depends on the species' phenology and geographic distribution range. To test for relationships ...

  10. Long-term enhanced winter soil frost alters growing season CO2 fluxes through its impact on vegetation development in a boreal peatland.

    Science.gov (United States)

    Zhao, Junbin; Peichl, Matthias; Nilsson, Mats B

    2017-08-01

    At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO 2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO 2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short-term (1-3 years) and long-term (11 years) effects on CO 2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m -2  s -1 , corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m -2  s -1 ) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO 2 fluxes, suggesting that winter climate change could considerably alter the growing season CO 2 exchange in boreal peatlands through its effect on vegetation development. © 2017 John Wiley & Sons Ltd.

  11. Preliminary soil-slip susceptibility maps, southwestern California

    Science.gov (United States)

    Morton, Douglas M.; Alvarez, Rachel M.; Campbell, Russell H.; Digital preparation by Bovard, Kelly R.; Brown, D.T.; Corriea, K.M.; Lesser, J.N.

    2003-01-01

    This group of maps shows relative susceptibility of hill slopes to the initiation sites of rainfall-triggered soil slip-debris flows in southwestern California. As such, the maps offer a partial answer to one part of the three parts necessary to predict the soil-slip/debris-flow process. A complete prediction of the process would include assessments of “where”, “when”, and “how big”. These maps empirically show part of the “where” of prediction (i.e., relative susceptibility to sites of initiation of the soil slips) but do not attempt to show the extent of run out of the resultant debris flows. Some information pertinent to “when” the process might begin is developed. “When” is determined mostly by dynamic factors such as rainfall rate and duration, for which local variations are not amenable to long-term prediction. “When” information is not provided on the maps but is described later in this narrative. The prediction of “how big” is addressed indirectly by restricting the maps to a single type of landslide process—soil slip-debris flows. The susceptibility maps were created through an iterative process from two kinds of information. First, locations of sites of past soil slips were obtained from inventory maps of past events. Aerial photographs, taken during six rainy seasons that produced abundant soil slips, were used as the basis for soil slip-debris flow inventory. Second, digital elevation models (DEM) of the areas that were inventoried were used to analyze the spatial characteristics of soil slip locations. These data were supplemented by observations made on the ground. Certain physical attributes of the locations of the soil-slip debris flows were found to be important and others were not. The most important attribute was the mapped bedrock formation at the site of initiation of the soil slip. However, because the soil slips occur in surficial materials overlying the bedrocks units, the bedrock formation can only serve as

  12. The magnetic susceptibility of soils in Krakow, southern Poland

    Science.gov (United States)

    Wojas, Anna

    2017-06-01

    Studies into the magnetic susceptibility have been used to assess the soils contamination in the Krakow area. The results of topsoil (over a 2 × 2 km grid), subsoil (37 shallow holes) and soil samples (112) measurements were presented as maps of soil magnetic susceptibility (both volume and mass) illustrating the distribution of parameters in topsoil horizon (0-10 cm) and differential magnetic susceptibility maps between topsoil horizon and subsoil (40-60 cm). All evidence leads to the finding that the highest values of magnetic susceptibility of soil are found exclusively in industrial areas. Taking into consideration the type of land use, the high median value (89.8 × 10-8 m3kg-1) was obtained for samples of cultivated soils and is likely to be connected with occurrence of fertile soil (chernozem). Moreover, enrichment of soils with Pb and Zn accompanies magnetic susceptibility anomalies in the vicinity of the high roads and in the steelworks area, respectively.

  13. Frost heave modelling of buried pipelines using non-linear Fourier finite elements

    International Nuclear Information System (INIS)

    Wan, R. G.; You, R.

    1998-01-01

    Numerical analysis of the response of a three-dimensional soil-pipeline system in a freezing environment using non-linear Fourier finite elements was described as an illustration of the effectiveness of this technique in analyzing plasticity problems. Plastic deformations occur when buried pipeline is under the action of non-uniform frost heave. The three-dimensional frost heave which develops over time including elastoplastic deformations of the soil and pipe are computed. The soil heave profile obtained in the numerical analysis was consistent with experimental findings for similar configurations. 8 refs., 8 figs

  14. Frost risks in the Mantaro river basin

    Directory of Open Access Journals (Sweden)

    G. Trasmonte

    2008-04-01

    Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  15. Frost hardiness of tree species is independent of phenology and macroclimatic niche.

    Science.gov (United States)

    Hofmann, M; Bruelheide, H

    2015-03-01

    The differences in timing in bud burst between species have been interpreted as an adaptation to late frost events in spring. Thus, it has been suggested that the degree of frost susceptibility of leaves is species-specific and depends on the species' phenology and geographic distribution range. To test for relationships between frost tolerance and phenology as well as between frost tolerance and distribution range across Central European tree species, we studied the frost hardiness of closed buds before bud burst and of freshly opened buds at the time of bud burst. We hypothesized that species with early bud burst and species distributed in eastern and northern areas were more frost tolerant than species with late bud burst and species distributed in western and southern areas. Frost hardiness was estimated by exposing twigs to 11 frost temperatures between -4 °C and -80 °C and by assessing tissue damage by the electrolyte leakage method. In contrast to our hypotheses, neither frost hardiness of closed buds nor frost hardiness of freshly opened buds were related to any variable describing species' macroclimatic niche. Furthermore, frost hardiness of freshly opened buds did not differ among species. Thus, the investigated species with early bud burst take higher risks of frost damage than the species with late bud bursts. These findings indicate that frost hardiness might not play the key role in limiting the geographic distribution ranges previously anticipated.

  16. Ice Segregation and Frost Heaving.

    Science.gov (United States)

    1984-01-01

    to a buried chilled gas pipeline by continual frost ’. ’- heave during the service life or to a buried liquefied gas tank is a more _ recent concern...M). Lule en: Uiversity of Lulea. Pehner, E., 1982. Aspects of ice lens fornmation. P ing of the Third International Syvosium on Ground Freezi, Hanover...Soils. Lalea, Sweden: Uiversity ofLulea. . Berg, R. L., G. Guymon and J. Ingersoll, 1979. Conference on soil-water . problems in cold regions. Cold

  17. Estimating winter survival of winter wheat by simulations of plant frost tolerance

    NARCIS (Netherlands)

    Bergjord Olsen, A.K.; Persson, T.; Wit, de A.; Nkurunziza, L.; Sindhøj, E.; Eckersten, H.

    2018-01-01

    Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this

  18. Managing potato biodiversity to cope with frost risk in the high Andes: a modeling perspective.

    Science.gov (United States)

    Condori, Bruno; Hijmans, Robert J; Ledent, Jean Francois; Quiroz, Roberto

    2014-01-01

    Austral summer frosts in the Andean highlands are ubiquitous throughout the crop cycle, causing yield losses. In spite of the existing warming trend, climate change models forecast high variability, including freezing temperatures. As the potato center of origin, the region has a rich biodiversity which includes a set of frost resistant genotypes. Four contrasting potato genotypes--representing genetic variability--were considered in the present study: two species of frost resistant native potatoes (the bitter Solanum juzepczukii, var. Luki, and the non-bitter Solanum ajanhuiri, var. Ajanhuiri) and two commercial frost susceptible genotypes (Solanum tuberosum ssp. tuberosum var. Alpha and Solanum tuberosum ssp. andigenum var. Gendarme). The objective of the study was to conduct a comparative growth analysis of four genotypes and modeling their agronomic response under frost events. It included assessing their performance under Andean contrasting agroecological conditions. Independent subsets of data from four field experiments were used to parameterize, calibrate and validate a potato growth model. The validated model was used to ascertain the importance of biodiversity, represented by the four genotypes tested, as constituents of germplasm mixtures in single plots used by local farmers, a coping strategy in the face of climate variability. Also scenarios with a frost routine incorporated in the model were constructed. Luki and Ajanhuiri were the most frost resistant varieties whereas Alpha was the most susceptible. Luki and Ajanhuiri, as monoculture, outperformed the yield obtained with the mixtures under severe frosts. These results highlight the role played by local frost tolerant varieties, and featured the management importance--e.g. clean seed, strategic watering--to attain the yields reported in our experiments. The mixtures of local and introduced potatoes can thus not only provide the products demanded by the markets but also reduce the impact of frosts

  19. Managing potato biodiversity to cope with frost risk in the high Andes: a modeling perspective.

    Directory of Open Access Journals (Sweden)

    Bruno Condori

    Full Text Available Austral summer frosts in the Andean highlands are ubiquitous throughout the crop cycle, causing yield losses. In spite of the existing warming trend, climate change models forecast high variability, including freezing temperatures. As the potato center of origin, the region has a rich biodiversity which includes a set of frost resistant genotypes. Four contrasting potato genotypes--representing genetic variability--were considered in the present study: two species of frost resistant native potatoes (the bitter Solanum juzepczukii, var. Luki, and the non-bitter Solanum ajanhuiri, var. Ajanhuiri and two commercial frost susceptible genotypes (Solanum tuberosum ssp. tuberosum var. Alpha and Solanum tuberosum ssp. andigenum var. Gendarme. The objective of the study was to conduct a comparative growth analysis of four genotypes and modeling their agronomic response under frost events. It included assessing their performance under Andean contrasting agroecological conditions. Independent subsets of data from four field experiments were used to parameterize, calibrate and validate a potato growth model. The validated model was used to ascertain the importance of biodiversity, represented by the four genotypes tested, as constituents of germplasm mixtures in single plots used by local farmers, a coping strategy in the face of climate variability. Also scenarios with a frost routine incorporated in the model were constructed. Luki and Ajanhuiri were the most frost resistant varieties whereas Alpha was the most susceptible. Luki and Ajanhuiri, as monoculture, outperformed the yield obtained with the mixtures under severe frosts. These results highlight the role played by local frost tolerant varieties, and featured the management importance--e.g. clean seed, strategic watering--to attain the yields reported in our experiments. The mixtures of local and introduced potatoes can thus not only provide the products demanded by the markets but also reduce the

  20. Restoring sedges and mosses into frost heaving iron fens, San Juan Mountains, Colorado

    Directory of Open Access Journals (Sweden)

    R.A. Chimner

    2011-08-01

    Full Text Available Rare iron fens in the San Juan Mountains of Colorado are frequently in poor condition due to mining, roads and ditches, which have left much of the fen completely bare of vegetation. Natural revegetation is slow to occur in the bare areas because of severe frost heave in the cold mountain climate. Therefore, experimental revegetation plots were conducted in a factorial design with mulching and no mulching, crossed with moss diaspores, sedge transplants, and moss and sedge combined. Mulching influenced surface soil temperatures by reducing the midday highs and increasing the night-time lows, which decreased the frequency and amount of frost heave. Peat moisture also modified frost heave, with the greatest frost heaving occurring near 75 % peat moisture content (water table 10–20 cm below the surface and the least when soils were either wetter or drier. Moss survival was dependent on mulch, with no moss surviving in plots without mulch. Mulching also increased sedge transplant survival. In summary, mulching significantly increased the success of vegetation restoration efforts for frost heave areas in mountain fens.

  1. The Physics of Frost Heave and Ice-Lens Growth

    KAUST Repository

    Peppin, Stephen S. L.

    2013-01-01

    The principle cause of frost heave is the formation of segregated ice-ice lenses-in freezing soil columns. Despite much experimental and theoretical work, there remain many questions about the fundamental process by which this occurs. Frost-heave models fall into two main classes: capillary and frozen-fringe models. Which model is appropriate depends on whether there is a frozen fringe; these are difficult to observe but some experimental evidence does exist. Recent advances have revitalized the capillary model, such as the engulfment model and the concept of geometrical supercooling. Key experimental and theoretical challenges remain to be resolved. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved.

  2. Spring frost vulnerability of sweet cherries under controlled conditions.

    Science.gov (United States)

    Matzneller, Philipp; Götz, Klaus-P; Chmielewski, Frank-M

    2016-01-01

    Spring frost is a significant production hazard in nearly all temperate fruit-growing regions. Sweet cherries are among the first fruit varieties starting their development in spring and therefore highly susceptible to late frost. Temperatures at which injuries are likely to occur are widely published, but their origin and determination methods are not well documented. In this study, a standardized method was used to investigate critical frost temperatures for the sweet cherry cultivar 'Summit' under controlled conditions. Twigs were sampled at four development stages ("side green," "green tip," "open cluster," "full bloom") and subjected to three frost temperatures (-2.5, -5.0, -10.0 °C). The main advantage of this method, compared to other approaches, was that the exposition period and the time interval required to reach the target temperature were always constant (2 h). Furthermore, then, the twigs were placed in a climate chamber until full bloom, before the examination of the flowers and not further developed buds started. For the first two sampling stages (side green, green tip), the number of buds found in open cluster, "first white," and full bloom at the evaluation date decreased with the strength of the frost treatment. The flower organs showed different levels of cold hardiness and became more vulnerable in more advanced development stages. In this paper, we developed four empirical functions which allow calculating possible frost damages on sweet cherry buds or flowers at the investigated development stages. These equations can help farmers to estimate possible frost damages on cherry buds due to frost events. However, it is necessary to validate the critical temperatures obtained in laboratory with some field observations.

  3. Spring frost vulnerability of sweet cherries under controlled conditions

    Science.gov (United States)

    Matzneller, Philipp; Götz, Klaus-P.; Chmielewski, Frank-M.

    2016-01-01

    Spring frost is a significant production hazard in nearly all temperate fruit-growing regions. Sweet cherries are among the first fruit varieties starting their development in spring and therefore highly susceptible to late frost. Temperatures at which injuries are likely to occur are widely published, but their origin and determination methods are not well documented. In this study, a standardized method was used to investigate critical frost temperatures for the sweet cherry cultivar `Summit' under controlled conditions. Twigs were sampled at four development stages ("side green," "green tip," "open cluster," "full bloom") and subjected to three frost temperatures (-2.5, -5.0, -10.0 °C). The main advantage of this method, compared to other approaches, was that the exposition period and the time interval required to reach the target temperature were always constant (2 h). Furthermore, then, the twigs were placed in a climate chamber until full bloom, before the examination of the flowers and not further developed buds started. For the first two sampling stages (side green, green tip), the number of buds found in open cluster, "first white," and full bloom at the evaluation date decreased with the strength of the frost treatment. The flower organs showed different levels of cold hardiness and became more vulnerable in more advanced development stages. In this paper, we developed four empirical functions which allow calculating possible frost damages on sweet cherry buds or flowers at the investigated development stages. These equations can help farmers to estimate possible frost damages on cherry buds due to frost events. However, it is necessary to validate the critical temperatures obtained in laboratory with some field observations.

  4. Measurements of seasonal frost depth by frost tube in Japan

    Science.gov (United States)

    Harada, K.; Yoshikawa, K.; Iwahana, G.; Stanilovskaya, J. V.; Sawada, Y.; Sone, T.

    2017-12-01

    Since 2011 winter season, frost depths have been measured as an outreach program in Hokkaido, northern part of Japan, where seasonal ground freezing occurs in winter. Frost depths were measured in elementary, junior high and high schools in order to emphasis their interest for earth sciences. At schools, using simple frost tube, measurements were conducted directly once a week by students or teacher during ground freezing under no snow-removal condition. A lecture was made in class and a frost tube was set at schoolyard, as the same tube and protocol as UAF's Permafrost Outreach Program, using clear tube with blue-colored water. In 2011 winter season, we started measurements at three schools, and the number of school extended to 32 in 2016 season, 26 elementary schools, 5 junior high schools and one high school. We visited schools in summer time or just before frost season to talk about the method of measurement, and measurements by students started just after ground freezing. After the end of frozen period, we visited schools again to explain results of each school or another schools in Japan, Alaska, Canada or Russia. The measured frost depths in Hokkaido ranged widely, from only a few centimeter to more than 50 cm. However, some schools had no frost depth due to heavy snow. We confirmed that the frost depth strongly depends on air temperature and snow depth. The lecture was made to student why the frost depth ranged widely, and the effect of snow was explained by using the example of igloo. In order to validate the effect of snow and to compare frost depths, we tried to measure frost depths under snow-removal and no snow-removal conditions at the same elementary school. At the end of December, depths had no significant difference between these conditions, and the difference went to 14 cm after one month, with about 30 cm of snow depth. After these measurements and lectures, students noticed snow has a role as insulator and affects the frost depth.

  5. Robert Frost on Writing.

    Science.gov (United States)

    Barry, Elaine

    This book is a collection of Frost's letters, reviews, introductions, lectures, and interviews on writing dating back to 1913. It provides Frost's view of literature, and its relation to language and social order. Part one, "Frost as a Literary Critic," discusses the scope of Frost's criticism and Frost as both critical theorist and…

  6. Soil susceptibility to compaction under use conditions in southern Brazil

    Directory of Open Access Journals (Sweden)

    Michael Mazurana

    Full Text Available ABSTRACT The degree of soil compaction is intensified by its inadequate management, compaction being variable depending on soil type since even under identical management conditions, different types have different abilities to withstand load. The objective of this study was to evaluate the susceptibility to compaction of different classes of soils under no-tillage (NT croping system compared to the original condition. Thus, i soils with the same source material have distinct resistance to compression with increased NT adoption time; ii the most sensitive indicators of this change are the ratios mass:volume and volume:volume and; iii there is a relationship between resistance and compaction susceptibility with the amount and type of oxide. Soil samples were collected in areas under NT and under natural condition in order to assess the impact imposed by the NT on the attributes density and porosity, precompression stress and compressibility index and relate them to the oxide type of, and content in, the soils under study. The results show that the density and macroporosity were those most affected by the NT agricultural use, regardless of soil type, that is, its dynamic is related more to soil use and less to mineralogical characteristics. The soil resistance and compaction susceptibility were higher in soil developed in basalt, followed by those developed in sandstone and granite. Both the organic matter content and type and concentration of iron oxides were related to the soil resistance and susceptibility to compaction.

  7. How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment.

    Science.gov (United States)

    Ladinig, Ursula; Hacker, Jürgen; Neuner, Gilbert; Wagner, Johanna

    2013-03-01

    In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxifraga bryoides, S. moschata, S. caesia), differing in growth form, altitudinal distribution and phenology, frost resistance of reproductive and vegetative shoots was assessed in different reproductive stages. Intact plants were exposed to simulated night frosts between -2 and -14 °C in temperature-controlled freezers. Nucleation temperatures, freezing damage and subsequent reproductive success (fruit and seed set, seed germination) were determined. During all reproductive stages, reproductive shoots were significantly less frost resistant than vegetative shoots (mean difference for LT50 -4.2 ± 2.7 K). In most species, reproductive shoots were ice tolerant before bolting and during fruiting (mean LT50 -7 and -5.7 °C), but were ice sensitive during bolting and anthesis (mean LT50 around -4 °C). Only R. glacialis remained ice tolerant during all reproductive stages. Frost injury in reproductive shoots usually led to full fruit loss. Reproductive success of frost-treated but undamaged shoots did not differ significantly from control values. Assessing the frost damage risk on the basis of summer frost frequency and frost resistance shows that, in the alpine zone, low-statured species are rarely endangered as long as they are protected by snow. The situation is different in the subnival and nival zone, where frost-sensitive reproductive shoots may become frost damaged even when covered by snow. Unprotected individuals are at high risk of suffering from frost damage, particularly

  8. Experimental and numerical study on frost heave of saturated rock under uniform freezing conditions

    Science.gov (United States)

    Lv, Zhitao; Xia, Caichu; Li, Qiang

    2018-04-01

    A series of freezing experiments are conducted on saturated sandstone and mortar specimens to investigate the frost heave of saturated rock under uniform freezing conditions. The experimental results show that the frost heave of saturated rock is isotropic under uniform freezing conditions. During the freezing process, three stages are observed in the curves of variation of total frost heaving strain versus time: the thermal contraction stage, the frost heaving stage and the steady stage. Moreover, the amount of final stable frost heave first increases and then decreases with decrease in freezing temperature, and the maximum final stable frost heave occurs at different freezing temperature in saturated sandstone and mortar. Furthermore, a coupled thermal-mechanical (TM) model of frost heave of saturated rock is proposed in which a constraint coefficient \\zeta is used to consider the susceptibility of the internal rock grain structure to the expansion of pore ice. Then, numerical simulations are implemented with COMSOL to solve the governing equations of the TM model. Comparisons of the numerical results with the experimental results are performed to demonstrate the reliability of the model. The influences of elastic modulus and porosity on frost heave are also investigated, and the results show that the total frost heaving strain decreases non-linearly with increasing elastic modulus, and the decrease is significant when the elastic modulus is less than 3000 MPa, or approximately five times the elastic modulus of ice. In addition, the total frost heaving strain increases linearly with increasing porosity. Finally, an empirical equation between total frost heaving strain and freezing temperature is proposed and the equation well describes the variation of total frost heaving strain with freezing temperature.

  9. Reduction in soil loss from erosion-susceptible soils amended with humic substances from oxidized coal

    International Nuclear Information System (INIS)

    Piccolo, A.; Pietramellara, G.; Mbagwu, J.S.C.

    1997-01-01

    Soils that pose high risk of erosion require amendment with either natural or synthetic soil conditioners to reduce soil loss hazards. The objective of this study was to evaluate the potential of using coal-derived humic substances (as soil conditioners) to reduce runoff erosion on erosion-susceptible soils. Surface samples of severely degraded soils from Principina in Tuscany and Bovolone in Venice in Italy were used to assess the effects of five rates (0, 0.05, 0.01, 0.50 and 1.00 g/kg) of humic acids (HA) on soil loss and other hydrological parameters. The results showed that amending erosion-susceptible soils with low rates of coal-derived humic substances is a potentially effective soil management practice for reducing erosion rates

  10. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    Energy Technology Data Exchange (ETDEWEB)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  11. A study on frost formation

    OpenAIRE

    青木, 和夫

    1986-01-01

    When humid air is exposed to a cold surface whose temperature is below 0 \\C\\, frost deposition occurs and continues to accumulate on the surface. Frost deposition is an important phenomenon in cryogenic industries for use in air conditioners, refrigerators and freeze-out purification, because it causes the drop of thermal efficiency on heat exchangers.This paper presented a review of our previous studies on frost formation with emphasis on the frost growth process, the frost structure, the gr...

  12. Crusting susceptibility in some allic Colombian soils

    International Nuclear Information System (INIS)

    Arias, Dora M; Madero E E; Amezquita E

    2001-01-01

    Many lab methods were used: dry and water soil aggregates stability, instability index and erosion index and their results were related with soil characteristics like texture, Fe and Al oxides and organic matter. Soil samples collected within 0-2.5 and 2.5-5 cm of the soil surface came from terrains with many kinds of both forest and savanna intervened systems. Those results were analyzed like a completely randomized designed. It was found that significative changes in oxides content could increase soil-crusting susceptibility unless soil humus was up to was up to 4%. In this sense, pastures or its rotation with rice and leguminous offer a best alternative for intervening these natural systems. Intensive land husbandry or monocultures with low stubble soil incorporation caused an increase in physical instability at the top of soil. Dry soil stability test and instability index were most adequate for these soils

  13. Enhanced by Frost

    Science.gov (United States)

    2005-01-01

    30 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of south polar layered terrain. Their appearance in this July 2005 springtime image is enhanced by bright patches of carbon dioxide frost. The frost is left over from the previous southern winter season; by summer, the frost would be gone. Location near: 84.6oS, 203.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  14. Frost on Utopia Planitia

    Science.gov (United States)

    1977-01-01

    This Viking Lander 2 picture from Utopia Planitia shows the first clear indication of frost accumulation on the Martian surface seen by lander cameras. The picture, looking due north, was obtained with a blue filter at 12:59 p.m. local lander time, Sept. 13, 1977. The season is late winter. Frost appears as a white accumulation around the bottom of rocks, in a trench dug by the lander sampler arm, and in scattered patches on the darker surface. The shadow of the lander, including the camera (center) and the meteorology boom (left), appears in foreground. As the sun moves, the shadow is moving from left to right, exposing areas covered by frost and previously protected from the sun by the lander shadow. (Another image taken one-half hour later suggests the frost patches have become smaller.) Apparently frost, formed during the Martian night, at least partially disappears during the warmer daytime. The composition of the frost, whether carbon dioxide or water or a mixture of the two (CO2 clathrate), is not known. Measurements from the meteorology instrument indicate minimum nighttime temperatures of 160 Kelvin (-171 Fahrenheit). At the time the image was taken, the temperature had risen to 175 Kelvin (-144 Fahrenheit). The atmospheric pressure was 8.835 millibars. This combination of pressure and temperature are inconsistent with carbon dioxide frost formation, but plausible near-surface mechanisms might have resulted in conditions favorable for CO2 frost formation. Viking orbiter thermal mapping and water vapor instruments indicate temperatures might have been slightly lower than measured by the lander, suggesting that the frost is more likely CO2 than H20. A remote, but possible, explanation is that the material is an extremely bright dust deposit. Color images to be taken will be able to discount this interpretation. The mechanism for frost deposition is unknown. Possibilities include formation directly on the surface, precipitation as snow, or material blown to

  15. Utility and Value of Satellite-Based Frost Forecasting for Kenya's Tea Farming Sector

    Science.gov (United States)

    Morrison, I.

    2016-12-01

    Frost damage regularly inflicts millions of dollars of crop losses in the tea-growing highlands of western Kenya, a problem that the USAID/NASA Regional Visualization and Monitoring System (SERVIR) program is working to mitigate through a frost monitoring and forecasting product that uses satellite-based temperature and soil moisture data to generate up to three days of advanced warning before frost events. This paper presents the findings of a value of information (VOI) study assessing the value of this product based on Kenyan tea farmers' experiences with frost and frost-damage mitigation. Value was calculated based on historic trends of frost frequency, severity, and extent; likelihood of warning receipt and response; and subsequent frost-related crop-loss aversion. Quantification of these factors was derived through inferential analysis of survey data from 400 tea-farming households across the tea-growing regions of Kericho and Nandi, supplemented with key informant interviews with decision-makers at large estate tea plantations, historical frost incident and crop-loss data from estate tea plantations and agricultural insurance companies, and publicly available demographic and economic data. At this time, the product provides a forecasting window of up to three days, and no other frost-prediction methods are used by the large or small-scale farmers of Kenya's tea sector. This represents a significant opportunity for preemptive loss-reduction via Earth observation data. However, the tea-growing community has only two realistic options for frost-damage mitigation: preemptive harvest of available tea leaves to minimize losses, or skiving (light pruning) to facilitate fast recovery from frost damage. Both options are labor-intensive and require a minimum of three days of warning to be viable. As a result, the frost forecasting system has a very narrow margin of usefulness, making its value highly dependent on rapid access to the warning messages and flexible access

  16. Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks.

    Science.gov (United States)

    Guillaume, Charrier; Isabelle, Chuine; Marc, Bonhomme; Thierry, Améglio

    2018-05-01

    Frost damages develop when exposure overtakes frost vulnerability. Frost risk assessment therefore needs dynamic simulation of frost hardiness using temperature and photoperiod in interaction with developmental stage. Two models, including or not the effect of photoperiod, were calibrated using five years of frost hardiness monitoring (2007-2012), in two locations (low and high elevation) for three walnut genotypes with contrasted phenology and maximum hardiness (Juglans regia cv Franquette, J. regia × nigra 'Early' and 'Late'). The photothermal model predicted more accurate values for all genotypes (efficiency = 0.879; Root Mean Standard Error Predicted (RMSEP) = 2.55 °C) than the thermal model (efficiency = 0.801; RMSEP = 3.24 °C). Predicted frost damages were strongly correlated to minimum temperature of the freezing events (ρ = -0.983) rather than actual frost hardiness (ρ = -0.515), or ratio of phenological stage completion (ρ = 0.336). Higher frost risks are consequently predicted during winter, at high elevation, whereas spring is only risky at low elevation in early genotypes exhibiting faster dehardening rate. However, early frost damages, although of lower value, may negatively affect fruit production the subsequent year (R 2  = 0.381, P = 0.057). These results highlight the interacting pattern between frost exposure and vulnerability at different scales and the necessity of intra-organ studies to understand the time course of frost vulnerability in flower buds along the winter. © 2017 John Wiley & Sons Ltd.

  17. Frost heave in He

    International Nuclear Information System (INIS)

    Mizusaki, T.; Hiroi, M.

    1995-01-01

    Frost heave occurs in various phenomena in natural environment. It has been studied in helium on porous glasses under perfect ice-segregation condition. The maximum frost heave pressure was investigated for various conditions and was in good agreement with the thermodynamical prediction. The dynamical properties of frost heave are discussed and some of the preliminary results of the growth rate measurement are presented. (orig.)

  18. QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance.

    Science.gov (United States)

    Klein, Anthony; Houtin, Hervé; Rond, Céline; Marget, Pascal; Jacquin, Françoise; Boucherot, Karen; Huart, Myriam; Rivière, Nathalie; Boutet, Gilles; Lejeune-Hénaut, Isabelle; Burstin, Judith

    2014-06-01

    Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea. The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9-71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.

  19. Robert Frost: Teacher "Earner, Learner, Yearner."

    Science.gov (United States)

    Vogel, Nancy Sue

    An account of Robert Frost's teaching, along with an assessment of it, are presented. Material consulted includes Frost's published letters, prose, and poetry; Lawrance Thompson's authorized biography; Lesley Frost's "New Hampshire's Child: The Derry Journals of Lesley Frost;" and additional sources such as films and periodicals,…

  20. Non-stationary temporal characterization of the temperature profile of a soil exposed to frost in south-eastern Canada

    Directory of Open Access Journals (Sweden)

    F. Anctil

    2008-05-01

    Full Text Available The objective of this work was to compare time and frequency fluctuations of air and soil temperatures (2-, 5-, 10-, 20- and 50-cm below the soil surface using the continuous wavelet transform, with a particular emphasis on the daily cycle. The analysis of wavelet power spectra and cross power spectra provided detailed non-stationary accounts with respect to frequencies (or periods and to time of the structure of the data and also of the relationships that exist between time series. For this particular application to the temperature profile of a soil exposed to frost, both the air temperature and the 2-cm depth soil temperature time series exhibited a dominant power peak at 1-d periodicity, prominent from spring to autumn. This feature was gradually damped as it propagated deeper into the soil and was weak for the 20-cm depth. Influence of the incoming solar radiation was also revealed in the wavelet power spectra analysis by a weaker intensity of the 1-d peak. The principal divergence between air and soil temperatures, besides damping, occurred in winter from the latent heat release associated to the freezing of the soil water and the insulation effect of snowpack that cease the dependence of the soil temperature to the air temperature. Attenuation and phase-shifting of the 1-d periodicity could be quantified through scale-averaged power spectra and time-lag estimations. Air temperature variance was only partly transferred to the 2-cm soil temperature time series and much less so to the 20-cm soil depth.

  1. Land susceptibility to soil erosion in Orashi Catchment, Nnewi South, Anambra State, Nigeria

    Science.gov (United States)

    Odunuga, Shakirudeen; Ajijola, Abiodun; Igwetu, Nkechi; Adegun, Olubunmi

    2018-02-01

    Soil erosion is one of the most critical environmental hazards that causes land degradation and water quality challenges. Specifically, this phenomenon has been linked, among other problems, to river sedimentation, groundwater pollution and flooding. This paper assesses the susceptibility of Orashi River Basin (ORB) to soil erosion for the purpose of erosion control measures. Located in the South Eastern part of Nigeria, the ORB which covers approximately 413.61 km2 is currently experiencing one of the fastest population growth rate in the region. Analysis of the soil erosion susceptibility of the basin was based on four factors including; rainfall, Land use/Land cover change (LULC), slope and soil erodibility factor (k). The rainfall was assumed to be a constant and independent variable, slope and soil types were categorised into ten (10) classes each while the landuse was categorised into five classes. Weight was assigned to the classes based on the degree of susceptibility to erosion. An overlay of the four variables in a GIS environment was used to produce the basin susceptibility to soil erosion. This was based on the weight index of each factors. The LULC analysis revealed that built-up land use increased from 26.49 km2 (6.4 %) in year 1980 to 79.24 km2 (19.16 %) in 2015 at an average growth rate of 1.51 km2 per annum while the light forest decreased from 336.41 km2 (81.33 %) in 1980 to 280.82 km2 (67.89 %) in 2015 at an average rate 1.59 km2 per annum. The light forest was adjudged to have the highest land cover soil erosion susceptibility. The steepest slope ranges between 70 and 82° (14.34 % of the total land area) and was adjudged to have the highest soil susceptibility to erosion. The total area covered of the loamy soil is 112.37 km2 (27.07 %) with erodibility of 0.7. In all, the overlay of all the variables revealed that 106.66 km2 (25.70 %) and 164.80 km2 (39.7 %) of the basin has a high and very high susceptibility to soil erosion. The over 50

  2. Frost resistance in alpine woody plants.

    Science.gov (United States)

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  3. Frost resistance of alpine woody plants

    Directory of Open Access Journals (Sweden)

    Gilbert eNeuner

    2014-12-01

    Full Text Available This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research.Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover.Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate.In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers and fruits and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  4. Winter climate controls soil carbon dynamics during summer in boreal forests

    International Nuclear Information System (INIS)

    Haei, Mahsa; Öquist, Mats G; Ilstedt, Ulrik; Laudon, Hjalmar; Kreyling, Juergen

    2013-01-01

    Boreal forests, characterized by distinct winter seasons, store a large proportion of the global terrestrial carbon (C) pool. We studied summer soil C-dynamics in a boreal forest in northern Sweden using a seven-year experimental manipulation of soil frost. We found that winter soil climate conditions play a major role in controlling the dissolution/mineralization of soil organic-C in the following summer season. Intensified soil frost led to significantly higher concentrations of dissolved organic carbon (DOC). Intensified soil frost also led to higher rates of basal heterotrophic CO 2 production in surface soil samples. However, frost-induced decline in the in situ soil CO 2 concentrations in summer suggests a substantial decline in root and/or plant associated rhizosphere CO 2 production, which overrides the effects of increased heterotrophic CO 2 production. Thus, colder winter soils, as a result of reduced snow cover, can substantially alter C-dynamics in boreal forests by reducing summer soil CO 2 efflux, and increasing DOC losses. (letter)

  5. Polygons in Martian Frost

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-428, 21 July 2003This June 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polygonal pattern developed in seasonal carbon dioxide frost in the martian southern hemisphere. The frost accumulated during the recent southern winter; it is now spring, and the carbon dioxide frost is subliming away. This image is located near 80.4oS, 200.2oW; it is illuminated by sunlight from the upper left, and covers an area 3 km (1.9 mi) across.

  6. Continuous Real-time Measurements of Vertical Distribution of Magnetic Susceptibility In Soils

    Science.gov (United States)

    Petrovsky, E.; Hulka, Z.; Kapicka, A.; Magprox Team

    Measurements of top-soil magnetic susceptibility are used in approximative outlining polluted areas. However, one of the serious limitations of the method is discrimina- tion between top-soil layers enhanced by atmospherically deposited anthropogenic particles from those dominated by natural particles migrating from magnetically-rich basement rocks. For this purpose, measurements of vertical distribution of magnetic susceptibility along soil profiles is one of the most effective ways in estimating the effect of lithogenic contribution. Up to now, in most cases soil cores have to be mea- sured in laboratory. This method is quite time consuming and does not allow flexible decision about the suitability of the measured site for surface magnetic mapping. In our contribution we will present a new device enabling continuous real-time measure- ments of vertical distribution of magnetic susceptibility directly in field, performed in holes after soil coring. The method is fast, yielding smooth curves (6 data points per 1 mm dept), at least as sensitive as laboratory methods available until now, and at- tached notebook enables direct, on-line control of the lithogenic versus anthropogenic contributions.

  7. Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance.

    Science.gov (United States)

    Frederiks, T M; Christopher, J T; Sutherland, M W; Borrell, A K

    2015-06-01

    Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Frost on Mars Rover Opportunity

    Science.gov (United States)

    2004-01-01

    Frost can form on surfaces if enough water is present and the temperature is sufficiently low. On each of NASA's Mars Exploration Rovers, the calibration target for the panoramic camera provides a good place to look for such events. A thin frost was observed by Opportunity's panoramic camera on the rover's 257th sol (Oct. 13, 2004) 11 minutes after sunrise (left image). The presence of the frost is most clearly seen on the post in the center of the target, particularly when compared with the unsegmented outer ring of the target, which is white. The post is normally black. For comparison, note the difference in appearance in the image on the right, taken about three hours later, after the frost had dissipated. Frost has not been observed at Spirit, where the amount of atmospheric water vapor is observed to be appreciably lower. Both images were taken through a filter centered at a wavelength of 440 nanometers (blue).

  9. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    Science.gov (United States)

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  10. Frost-related dieback of Swedish and Estonian Salix plantations due to pathogenic and ice nucleation-active bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cambours, M.A.

    2004-07-01

    During the past decade, important dieback has been observed in short-rotation forestry plantations of Salix viminalis and S. dasyclados in Sweden and Estonia, plantations from which the isolation of ice nucleation-active (INA) and pathogenic bacteria has also been reported. This thesis investigates the connection between bacterial infection and frost as a possible cause for such damage, and the role played by internal and external factors (e.g. plant frost sensitivity, fertilisation) in the dieback observed. Bacterial floras isolated from ten Salix clones growing on fertilised/unfertilised mineral soil or nitrogen-rich organic soil, were studied. Culturable bacterial communities present both in internal necrotic tissues and on the plant surface (i.e. epiphytes) were isolated on two occasions (spring and autumn). The strains were biochemically characterised (with gram, oxidase and fluorescence tests), and tested for ice nucleation-activity. Their pathogenic properties were studied with and without association to a freezing stress. Certain strains were eventually identified with BIOLOG plates and 16S rRNA analysis. A high number of culturable bacterial strains was found in the plant samplings, belonging mainly to Erwinia and Sphingomonas spp.; pathogenic and INA communities being mostly Erwinia-, Sphingomonas- and Xanthomonas-like. The generally higher plant dieback noted in the field on nutrient-rich soils and for frost sensitive clones was found connected to higher numbers of pathogenic and INA bacteria in the plants. We thus confirm Salix dieback to be related to a synergistic effect of frost and bacterial infection, possibly aggravated by fertilisation.

  11. Designing Base and Subbase to Resist Environmental Effects on Pavements

    Science.gov (United States)

    2018-02-02

    MnDOTs current pavement thickness design procedures do not characterize the effects of subgrade soil frost susceptibility. Previous research indicates frost action is the most severe environmental factor on pavement performance. The most accepted ...

  12. Ground level air convection produces frost damage patterns in turfgrass.

    Science.gov (United States)

    Ackerson, Bruce J; Beier, Richard A; Martin, Dennis L

    2015-11-01

    Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass (Cynodon species Rich.), zoysiagrass (Zoysia species Willd.), and buffalograss [Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.

  13. Ground level air convection produces frost damage patterns in turfgrass

    Science.gov (United States)

    Ackerson, Bruce J.; Beier, Richard A.; Martin, Dennis L.

    2015-11-01

    Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass ( Cynodon species Rich.), zoysiagrass ( Zoysia species Willd.), and buffalograss [ Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.

  14. Frosting characteristics and heating performance of a direct-expansion solar-assisted heat pump for space heating under frosting conditions

    International Nuclear Information System (INIS)

    Huang, Wenzhu; Ji, Jie; Xu, Ning; Li, Guiqiang

    2016-01-01

    Highlights: • Frosting and heating performance of DX-SAHP under frosting conditions is investigated. • The conditions when DX-SAHP frosts are studied. • The frosting process is observed during 360 min of operating. • The effect of ambient temperature, relative humidity and solar irradiation is analyzed. - Abstract: Direct expansion solar-assisted heat pump system (DX-SAHP) is promising in energy saving applications, but the performance of DX-SAHP under frosting conditions is rarely reported in the published literatures. In this paper, a DX-SAHP system with bare solar collectors for space heating is designed and experimentally investigated in the enthalpy difference lab with a solar simulator. The system is tested under a range of frosting conditions, with the ambient temperatures from 7 °C to −3 °C, the relative humidities of 50%, 70% and 90% and the solar irradiances of 0 W/m"2, 100 W/m"2, 200 W/m"2 and 300 W/m"2. The conditions when the DX-SAHP system frosts are studied. Results show that solar irradiance as low as 100 W/m"2 can totally prevent frosting when the ambient temperature is above −3 °C and the relative humidity is 70%. Besides, the frosting process is observed to be slower than that of fin-and-tube heat exchangers. The evaporator is not seriously frosted and the system performance is not significantly influenced after 360 min of continuous operating. Moreover the effects of ambient parameters, including the ambient temperature and the relative humidity, especially solar irradiation, on the system performance are studied and analyzed. Solar irradiation can effectively prevent or retard frosting, and also improve the heating performance of the DX-SAHP system. The DX-SAHP system is proved to be applicable under frosting conditions.

  15. Historical Perspectives in Frost Heave Research: The Early Works of S. Taber and G. Beskow

    Science.gov (United States)

    1991-12-01

    beginning of freezing. In addition, if the quite efficiently plowed by motor power, the effect of different types of soils are separated by a sharp...frozen clay is not greater than unfro- efficient forthe coarse soils (sand) in adry condition can zen clay, but in coarser soils, the coefficient of con...will reduce the heaving and smooth and slopes slightly outwards with depth. Forex - eliminate the frost boils. Of course, the effect of deep ample

  16. Effect of Postsowing Compaction on Cold and Frost Tolerance of North China Plain Winter Wheat

    Directory of Open Access Journals (Sweden)

    Caiyun Lu

    2017-01-01

    Full Text Available Improper postsowing compaction negatively affects soil temperature and thereby cold and frost tolerance, particularly in extreme cold weather. In North China Plain, the temperature falls to 5 degrees below zero, even lower in winter, which is period for winter wheat growing. Thus improving temperature to promote wheat growth is important in this area. A field experiment from 2013 to 2016 was conducted to evaluate effects of postsowing compaction on soil temperature and plant population of wheat at different stages during wintering period. The effect of three postsowing compaction methods—(1 compacting wheel (CW, (2 crosskill roller (CR, and (3 V-shaped compacting roller after crosskill roller (VCRCR—on winter soil temperatures and relation to wheat shoot growth parameters were measured. Results showed that the highest soil midwinter temperature was in the CW treatment. In the 20 cm and 40 cm soil layer, soil temperatures were ranked in the following order of CW > VCRCR > CR. Shoot numbers under CW, CR, and VCRCR treatments were statistically 12.40% and 8.18% higher under CW treatment compared to CR or VCRCR treatments at the end of wintering period. The higher soil temperature under CW treatment resulted in higher shoot number at the end of wintering period, apparently due to reduced shoot death by cold and frost damage.

  17. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  18. Tolerância de frutos de pessegueiro a geadas Fruit frost tolerance in peach

    Directory of Open Access Journals (Sweden)

    André Paulo Assmann

    2008-12-01

    Full Text Available Este trabalho teve como objetivo avaliar a tolerância de frutos de pessegueiro aos danos ocasionados pela geada. A geada ocorreu no dia 5 de setembro de 2006, sendo que a temperatura mínima, a 1,5 m do solo, foi de - 1,06ºC. Foram avaliados 28 genótipos de pessegueiro em diferentes estádios fenológicos. O delineamento experimental foi o inteiramente casualizado, com três repetições (plantas de pessegueiro, procedendo-se à avaliação em seis ramos por planta. No dia em que ocorreu a geada, foram mensurados o número de frutos por ramo, diâmetro sutural médio dos frutos, número total de gemas vegetativas, percentual de brotação e percentual de brindilas formadas a partir das gemas brotadas. Uma segunda avaliação foi realizada 15 dias após a primeira, para avaliar o percentual de queda de frutos e o diâmetro sutural médio dos frutos remanescentes. Genótipos bem enfolhados e cujos frutos apresentavam endocarpo endurecido, no momento da ocorrência da geada, foram tolerantes ao dano ocasionado pelo frio; frutos com diâmetro sutural inferior a 20 mm foram suscetíveis à geada, enquanto frutos com diâmetro sutural superior a 30 mm apresentaram boa tolerância, independentemente do genótipo avaliado.The aim of this work was to evaluate the fruit damage tolerance in different peach tree genotypes after natural freeze. The frost happened on September 5, 2006, and the minimum temperature, 1.5 meters over soil, was -1.06ºC. Twenty- eight peach tree genotypes, in different stages of development, were evaluated, in a completely random design, in three replication (plants and six branches by plants. Immediately after frost, we measured the number of fruits per branches, average fruit suture diameter, percentage of sprouts and percentage of twigs in formation. A second evaluation was accomplished fifteen days after the first one in order to assess the percentage of fruit drop and the average remaining fruit suture diameter. Genotypes

  19. How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment

    OpenAIRE

    Ladinig, Ursula; Hacker, J?rgen; Neuner, Gilbert; Wagner, Johanna

    2013-01-01

    In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxif...

  20. Metabolic Response of Soil Microorganisms to Frost: A New Perspective from Position-specific 13C Labeling

    Science.gov (United States)

    Bore, E. K.; Apostel, C.; Halicki, S.; Dippold, M. A.; Kuzyakov, Y.

    2016-12-01

    Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen

  1. Frost on Mars

    Science.gov (United States)

    2008-01-01

    This image shows bluish-white frost seen on the Martian surface near NASA's Phoenix Mars Lander. The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). Frost is expected to continue to appear in images as fall, then winter approach Mars' northern plains. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Future bloom and blossom frost risk for Malus domestica considering climate model and impact model uncertainties.

    Science.gov (United States)

    Hoffmann, Holger; Rath, Thomas

    2013-01-01

    The future bloom and risk of blossom frosts for Malus domestica were projected using regional climate realizations and phenological ( = impact) models. As climate impact projections are susceptible to uncertainties of climate and impact models and model concatenation, the significant horizon of the climate impact signal was analyzed by applying 7 impact models, including two new developments, on 13 climate realizations of the IPCC emission scenario A1B. Advancement of phenophases and a decrease in blossom frost risk for Lower Saxony (Germany) for early and late ripeners was determined by six out of seven phenological models. Single model/single grid point time series of bloom showed significant trends by 2021-2050 compared to 1971-2000, whereas the joint signal of all climate and impact models did not stabilize until 2043. Regarding blossom frost risk, joint projection variability exceeded the projected signal. Thus, blossom frost risk cannot be stated to be lower by the end of the 21st century despite a negative trend. As a consequence it is however unlikely to increase. Uncertainty of temperature, blooming date and blossom frost risk projection reached a minimum at 2078-2087. The projected phenophases advanced by 5.5 d K(-1), showing partial compensation of delayed fulfillment of the winter chill requirement and faster completion of the following forcing phase in spring. Finally, phenological model performance was improved by considering the length of day.

  3. Conducting field trials for frost tolerance breeding in cereals.

    Science.gov (United States)

    Cattivelli, Luigi

    2014-01-01

    Cereal species can be damaged by frost either during winter or at flowering stage. Frost tolerance per se is only a part of the mechanisms that allow the plants to survive during winter; winterhardiness also considers other biotic or physical stresses that challenge the plants during the winter season limiting their survival rate. While frost tolerance can also be tested in controlled environments, winterhardiness can be determined only with field evaluations. Post-heading frost damage occurs from radiation frost events in spring during the reproductive stages. A reliable evaluation of winterhardiness or of post-heading frost damage should be carried out with field trials replicated across years and locations to overcome the irregular occurrence of natural conditions which satisfactorily differentiate genotypes. The evaluation of post-heading frost damage requires a specific attention to plant phenology. The extent of frost damage is usually determined with a visual score at the end of the winter.

  4. GIS-based soil liquefaction susceptibility map of Mumbai city for earthquake events

    Science.gov (United States)

    Mhaske, Sumedh Yamaji; Choudhury, Deepankar

    2010-03-01

    The problem of liquefaction of soil during seismic event is one of the important topics in the field of Geotechnical Earthquake Engineering. Liquefaction of soil is generally occurs in loose cohesionless saturated soil when pore water pressure increases suddenly due to induced ground motion and shear strength of soil decreases to zero and leading the structure situated above to undergo a large settlement, or failure. The failures took place due to liquefaction induced soil movement spread over few square km area continuously. Hence this is a problem where spatial variation involves and to represent this spatial variation Geographic Information System (GIS) is very useful in decision making about the area subjected to liquefaction. In this paper, GIS software GRAM++ is used to prepare soil liquefaction susceptibility map for entire Mumbai city in India by marking three zones viz. critically liquefiable soil, moderately liquefiable soil and non liquefiable soil. Extensive field borehole test data for groundwater depth, standard penetration test (SPT) blow counts, dry density, wet density and specific gravity, etc. have been collected from different parts of Mumbai. Simplified procedure of Youd et al. (2001) is used for calculation of factor of safety against soil liquefaction potential. Mumbai city and suburban area are formed by reclaiming lands around seven islands since 1865 till current date and still it is progressing in the area such as Navi Mumbai and beyond Borivali to Mira road suburban area. The factors of safety against soil liquefaction were determined for earthquake moment magnitude ranging from Mw = 5.0 to 7.5. It is found that the areas like Borivali, Malad, Dahisar, Bhandup may prone to liquefaction for earthquake moment magnitude ranging from Mw = 5.0 to 7.5. The liquefaction susceptibility maps were created by using GRAM++ by showing the areas where the factor of safety against the soil liquefaction is less than one. Proposed liquefaction

  5. A Gentle Frost: Poet Helen Frost Talks about the Healing Power of Poetry and Her Latest Novel

    Science.gov (United States)

    Margolis, Rick

    2006-01-01

    This article presents an interview with poet Helen Frost. Frost talked about how poetry can help at-risk children. She also related the challenges she faced when she wrote her latest book titled "The Braid."

  6. Winter frost resistance of Pinus cembra measured in situ at the alpine timberline as affected by temperature conditions.

    Science.gov (United States)

    Buchner, Othmar; Neuner, Gilbert

    2011-11-01

    Winter frost resistance (WFR), midwinter frost hardening and frost dehardening potential of Pinus cembra L. were determined in situ by means of a novel low-temperature freezing system at the alpine timberline ecotone (1950 m a.s.l., Mt Patscherkofel, Innsbruck, Austria). In situ liquid nitrogen (LN₂)-quenching experiments should check whether maximum WFR of P. cembra belonging to the frost hardiest conifer group, being classified in US Department of Agriculture climatic zone 1, suffices to survive dipping into LN₂ (-196 °C). Viability was assessed in a field re-growth test. Maximum in situ WFR (LT₅₀) of leaves was frost hardening treatment (12 days at -20 °C followed by 3 days at -50 °C) to induce maximum WFR. Temperature treatments applied in the field significantly affected the actual WFR. In January a frost hardening treatment (21 days at -20 °C) led to a significant increase of WFR (buds: -62 °C to frost dehardening (buds: -32.6 °C to -10.2 °C; leaves: -32.7 to -16.4 °C) followed by significantly earlier bud swelling and burst in late winter. Strikingly, both temperature treatments, either increased air temperature (+10.1 °C) or increased soil temperature (+6.5 °C), were similarly effective. This high readiness to frost harden and deharden in winter in the field must be considered to be of great significance for future winter survival of P. cembra. Determination of WFR in field re-growth tests appears to be a valuable tool for critically judging estimates of WFR obtained on detached twigs in an ecological context.

  7. [Infrared spectroscopic analysis of Guilin watermelon frost products].

    Science.gov (United States)

    Huang, Dong-lan; Chen, Xiao-kang; Xu, Yong-qun; Sun, Su-qin; Zhou, Qun; Lu, Wen-guan

    2012-08-01

    The objective of the present study is to analyze different products of Guilin watermelon frost by Fourier transform infrared spectroscopy (FTIR), second derivative infrared spectroscopy and two-dimensional correlation spectroscopy (2D-IR) under thermal perturbation. The structural information of the samples indicates that samples from the same factory but of different brands had some dissimilarities in the IR spectra, and the type and content of accessories of them were different compared with conventional IR spectra of samples, peaks at 638 and 616 cm(-1) all arise from anhydrous sodium sulfate in watermelon frost spray and watermelon frost capsule; the characteristic absorption peaks of the sucrose, dextrin or other accessories can be seen clearly in the spectra of watermelon frost throat-clearing buccal tablets, watermelon frost throat tablets and watermelon frost lozenge. And the IR spectra of watermelon frost lozenge is very similar to the IR spectra of sucrose, so it can be easily proved that the content of sucrose in watermelon frost lozenge is high. In the 2D-IR correlation spectra, the samples presented the differences in the position, number and relative intensity of autopeaks and correlation peak clusters. Consequently, the macroscopical fingerprint characters of FTIR, second derivative infrared spectra and 2D-IR spectra can not only provide the information about main chemical constituents in medical materials, but also analyze and identify the type and content of accessories in Guilin watermelon frost. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.

  8. Visualization of frosting phenomena by using neutron radiography

    International Nuclear Information System (INIS)

    Yoshimura, Tomoya; Matsumoto, Ryosuke; Umekawa, Hisashi; Ami, Takeyuki; Saito, Yasushi

    2012-01-01

    This study focuses on the frost formation on the fin-tube heat exchanger using neutron radiography. The visualization of the frost formation was estimated by the attenuation of the neutron beam through the water. The visualization image of the neutron radiography shows clearly the frost formation phenomena on the fin-tube heat exchanger. The rapid frost formation was observed at the fin and tube edges. Local mass transfer coefficient can be calculated from the differential images of the neutron radiography. (author)

  9. Soil magnetic susceptibility: A quantitative proxy of soil drainage for use in ecological restoration

    Science.gov (United States)

    Grimley, D.A.; Wang, J.-S.; Liebert, D.A.; Dawson, J.O.

    2008-01-01

    Flooded, saturated, or poorly drained soils are commonly anaerobic, leading to microbially induced magnetite/maghemite dissolution and decreased soil magnetic susceptibility (MS). Thus, MS is considerably higher in well-drained soils (MS typically 40-80 ?? 10-5 standard international [SI]) compared to poorly drained soils (MS typically 10-25 ?? 10-5 SI) in Illinois, other soil-forming factors being equal. Following calibration to standard soil probings, MS values can be used to rapidly and precisely delineate hydric from nonhydric soils in areas with relatively uniform parent material. Furthermore, soil MS has a moderate to strong association with individual tree species' distribution across soil moisture regimes, correlating inversely with independently reported rankings of a tree species' flood tolerance. Soil MS mapping can thus provide a simple, rapid, and quantitative means for precisely guiding reforestation with respect to plant species' adaptations to soil drainage classes. For instance, in native woodlands of east-central Illinois, Quercus alba , Prunus serotina, and Liriodendron tulipifera predominantly occur in moderately well-drained soils (MS 40-60 ?? 10-5 SI), whereas Acer saccharinum, Carya laciniosa, and Fraxinus pennsylvanica predominantly occur in poorly drained soils (MS Urbana, IL, U.S.A.). Through use of soil MS maps calibrated to soil drainage class and native vegetation occurrence, restoration efforts can be conducted more successfully and species distributions more accurately reconstructed at the microecosystem level. ?? 2008 Society for Ecological Restoration International.

  10. Limits of out-of-phase susceptibility in magnetic granulometry of rocks and soils

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Pokorný, J.; Chadima, Martin

    2015-01-01

    Roč. 59, č. 2 (2015), s. 294-308 ISSN 0039-3169 Institutional support: RVO:67985831 Keywords : out-of-phase susceptibility * frequency-dependent susceptibility measurement accuracy * environmetal magnetism * loess * soil * paleoclimatic reconstruction Subject RIV: DE - Earth Magnetism , Geodesy, Geography Impact factor: 0.818, year: 2015

  11. The suspension (Frost) suture: experience and applications.

    Science.gov (United States)

    Connolly, Karen L; Albertini, John G; Miller, Christopher J; Ozog, David M

    2015-03-01

    The Frost suture is a well-known surgical technique for providing upward tension on the lower lid to prevent or correct ectropion after surgical interventions in the periorbital area. Despite its relatively common use, comprehensive information on executing this technique is not readily available. To review eyelid anatomy, indications, and proper technique for performing the Frost suture, as well as potential complications. A review of the literature on Frost sutures was performed. Cadaveric dissection was performed to demonstrate placement of the Frost suture. The Frost suture is a useful method to reduce the risk of ectropion after surgery near the lower eyelid. Downward pull on the lid can occur with normal wound contracture even if ectropion is not present with the initial repair, reinforcing the need for preventive measures. Potential complications of this technique include superficial skin erosion of the upper lid, corneal abrasion, and blockage of the field of vision while the suture is in place.

  12. Exploring new alleles for frost tolerance in winter rye.

    Science.gov (United States)

    Erath, Wiltrud; Bauer, Eva; Fowler, D Brian; Gordillo, Andres; Korzun, Viktor; Ponomareva, Mira; Schmidt, Malthe; Schmiedchen, Brigitta; Wilde, Peer; Schön, Chris-Carolin

    2017-10-01

    Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs. Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr-2) in Triticeae. The Puma allele at the Fr-R2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the Fr-R2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.

  13. GEOSTATISTICAL BASED SUSCEPTIBILITY MAPPING OF SOIL EROSION AND OPTIMIZATION OF ITS CAUSATIVE FACTORS: A CONCEPTUAL FRAMEWORK

    Directory of Open Access Journals (Sweden)

    ABDULKADIR T. SHOLAGBERU

    2017-11-01

    Full Text Available Soil erosion hazard is the second biggest environmental challenges after population growth causing land degradation, desertification and water deterioration. Its impacts on watersheds include loss of soil nutrients, reduced reservoir capacity through siltation which may lead to flood risk, landslide, high water turbidity, etc. These problems become more pronounced in human altered mountainous areas through intensive agricultural activities, deforestation and increased urbanization among others. However, due to challenging nature of soil erosion management, there is great interest in assessing its spatial distribution and susceptibility levels. This study is thus intend to review the recent literatures and develop a novel framework for soil erosion susceptibility mapping using geostatistical based support vector machine (SVM, remote sensing and GIS techniques. The conceptual framework is to bridge the identified knowledge gaps in the area of causative factors’ (CFs selection. In this research, RUSLE model, field studies and the existing soil erosion maps for the study area will be integrated for the development of inventory map. Spatial data such as Landsat 8, digital soil and geological maps, digital elevation model and hydrological data shall be processed for the extraction of erosion CFs. GISbased SVM techniques will be adopted for the establishment of spatial relationships between soil erosion and its CFs, and subsequently for the development of erosion susceptibility maps. The results of this study include evaluation of predictive capability of GIS-based SVM in soil erosion mapping and identification of the most influential CFs for erosion susceptibility assessment. This study will serve as a guide to watershed planners and to alleviate soil erosion challenges and its related hazards.

  14. Soil magnetic susceptibility mapping as a pollution and provenance tool: an example from southern New Zealand

    Science.gov (United States)

    Martin, A. P.; Ohneiser, C.; Turnbull, R. E.; Strong, D. T.; Demler, S.

    2018-02-01

    The presence or absence, degree and variation of heavy metal contamination in New Zealand soils is a matter of ongoing debate as it affects soil quality, agriculture and human health. In many instances, however, the soil heavy metal concentration data do not exist to answer these questions and the debate is ongoing. To address this, magnetic susceptibility (a common proxy for heavy metal contamination) values were measured in topsoil (0-30 cm) and subsoil (50-70 cm) at grid sites spaced at 8 km intervals across ca. 20 000 km2 of southern New Zealand. Samples were measured for both mass- and volume-specific magnetic susceptibility, with results being strongly, positively correlated. Three different methods of determining anomalies were applied to the data including the topsoil-subsoil difference method, Tukey boxplot method and geoaccumulation index method, with each method filtering out progressively more anomalies. Additional soil magnetic (hysteresis, isothermal remanence and thermomagnetic) measurements were made on a select subset of samples from anomalous sites. Magnetite is the dominant remanence carrying mineral, and magnetic susceptibility is governed by that minerals concentration in soils, rather than mineral type. All except two anomalous sites have a dominant geogenic source (cf. anthropogenic). By proxy, heavy metal contamination in southern New Zealand soils is minimal, making them relatively pristine. The provenance of the magnetic minerals in the anomalous sites can be traced back to likely sources in outcrops of igneous rocks within the same catchment, terrane or rock type: a distance of Soil provenance is a key step when mapping element or isotopic distribution, vectoring to mineralization or studying soil for agricultural suitability, water quality or environmental regulation. Measuring soil magnetic susceptibility is a useful, quick and inexpensive tool that usefully supplements soil geochemical data.

  15. Condensation and frost formation in heat exchangers

    International Nuclear Information System (INIS)

    Rostami, A.A.

    1982-01-01

    The occurence of condensation and of frost formation are considered for air to heat exchangers with emphasis on how such occurrences would affect the performance of such heat exchangers when they are used in ventilating applications. The formulations which predict performance are developed for parallel, counter flow and cross flow with either formation or condensation, and for condensation the consequences for evaporation of condensate and of the effect of longitudinal conduction in the walls of the exchanger are also considered. For the prediction of the exchanger performance with frost formation there must be specified the growth of the frost layer with time and existing theories for this growth are examined, a new method of calculation of the growth is presented and this is shown to give results for the growth that are in accord with available experimental evidence. This new theory for the growth of a frost layer is used to predict the performance of a parallel flow exchanger under conditions in which frost formation occurs, by successively applying the steady state performance calculation for time increments over which the frost layer build-up is calculated for these time increments. The calculation of counter flow exchanger performance by this method, while feasible, is so time consuming that only the general aspects of the calculation are considered

  16. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  17. Frosting and defrosting of air-coils - results from laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P

    1997-12-31

    Frosting of air-coils is an important factor in the design and operation of air-source heat pumps, heat recovery ventilators, cooling and refrigeration equipment etc. This report presents results from laboratory testing of two brine-cooled air-coils under frosting conditions. The coils have the same number of plane, continuous fins, 4 tube rows with 12 tubes in each row, tube spacing of 50 mm and fin spacing of 3 and 6 mm respectively. The original purpose of the test program was to compare various possible indicators of coil frosting and to analyze the possible effects of different control strategies on coil capacity and the COP of the system (the analysis will be presented in a separate report). Tests involved inlet air temperatures of -7 and +2 degC, variation of humidity between 70 and 100% RH (including simulated rain), velocities in the range 1 to 4 m/s, and specific cooling loads from 50 to 150 W/m{sup 2}. Test results include variations due to frosting of e.g. cooling capacity, COP, air flow and pressure drop, fan power, air outlet temperature and humidity, coil temperature, frost mass, and frosting time. Results also include the subsequently required defrost time, defrost energy and collected mass of defrost water. The frosting process was interrupted when the air flow had decreased to 30% of the original value with a non-frosted coil. The results clearly show the advantage of demand controlled defrosting with variations in frosting time between 2 h with high humidity/high specific cooling load up to, for practical purposes, infinite frosting times with low humidity/low specific cooling load. The accumulated frost mass during one frosting cycle varied from less than 0.02 kg/m{sup 2} up to approximately 0.4 kg/m{sup 2}. 23 refs, 93 figs, 89 tabs

  18. Frosting and defrosting of air-coils - results from laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P.

    1996-12-31

    Frosting of air-coils is an important factor in the design and operation of air-source heat pumps, heat recovery ventilators, cooling and refrigeration equipment etc. This report presents results from laboratory testing of two brine-cooled air-coils under frosting conditions. The coils have the same number of plane, continuous fins, 4 tube rows with 12 tubes in each row, tube spacing of 50 mm and fin spacing of 3 and 6 mm respectively. The original purpose of the test program was to compare various possible indicators of coil frosting and to analyze the possible effects of different control strategies on coil capacity and the COP of the system (the analysis will be presented in a separate report). Tests involved inlet air temperatures of -7 and +2 degC, variation of humidity between 70 and 100% RH (including simulated rain), velocities in the range 1 to 4 m/s, and specific cooling loads from 50 to 150 W/m{sup 2}. Test results include variations due to frosting of e.g. cooling capacity, COP, air flow and pressure drop, fan power, air outlet temperature and humidity, coil temperature, frost mass, and frosting time. Results also include the subsequently required defrost time, defrost energy and collected mass of defrost water. The frosting process was interrupted when the air flow had decreased to 30% of the original value with a non-frosted coil. The results clearly show the advantage of demand controlled defrosting with variations in frosting time between 2 h with high humidity/high specific cooling load up to, for practical purposes, infinite frosting times with low humidity/low specific cooling load. The accumulated frost mass during one frosting cycle varied from less than 0.02 kg/m{sup 2} up to approximately 0.4 kg/m{sup 2}. 23 refs, 93 figs, 89 tabs

  19. Effect of variations in air speed on cross-flow cylinder frosting

    International Nuclear Information System (INIS)

    Monaghan, P.F.; Cassidy, S.F.; Oosthuizen, P.H.

    1990-01-01

    In this paper the effect of fluctuating air speed on frost growth and heat transfer to a cylinder in cross-flow is discussed. Frost-growth of up to 20 hours is simulated using an experimentally validated finite difference computer model. Graphical results are presented for frost mass, frost depth, frost surface temperature and heat transfer versus time under both steady and fluctuating air speed conditions. In general, it is found that a thinner, more dense frost layer develops under fluctuating air speed conditions giving improved heat transfer. This phenomenon may be explained by the increased frequency of frost surface thaw/freeze cycles when fluctuating air speed conditions prevail

  20. Machine learning modelling for predicting soil liquefaction susceptibility

    Directory of Open Access Journals (Sweden)

    P. Samui

    2011-01-01

    Full Text Available This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN based on multi-layer perceptions (MLP that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N160] and cyclic stress ratio (CSR. Further, an attempt has been made to simplify the models, requiring only the two parameters [(N160 and peck ground acceleration (amax/g], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  1. Effect of frost on phosphorescence for thermographic phosphor thermometry

    Science.gov (United States)

    Kim, Dong; Kim, Mirae; Kim, Kyung Chun

    2017-12-01

    In this study, we analyzed phosphorescence lifetime and its accuracy by growing frost for thermographic phosphor thermometry in a low-temperature environment. Mg4FGeO6:Mn particles were coated on an aluminum plate and excited with a UV-LED to obtain phosphorescence signals. The surface temperature was maintained at  -20, -15, -10 °C, and the phosphorescence signal was acquired as the frost grew for 3700 s. The lifetime was calculated and compared with the calibration curve under no-frost conditions. The error of the measured lifetime was within 0.7% of that in the no-frost conditions. A 2D surface temperature profile of the target plate was successfully obtained with the frost formation.

  2. Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces.

    Science.gov (United States)

    Liu, Xiaolin; Chen, Huawei; Zhao, Zehui; Wang, Yamei; Liu, Hong; Zhang, Deyuan

    2017-11-07

    Frost accretion on surfaces may cause severe problems and the high-efficiency defrosting methods are still urgently needed in many application fields like heat transfer, optical and electric power system, etc. In this study, a nano-needle superhydrophobic surface is prepared and the frosting/defrosting experiments are conducted on it. Three steps are found in the defrosting process: melting frost shrinking and splitting, instantaneous self-triggered deforming followed by deformation-induced movements (namely, in-situ shaking, rotating, rolling, and self-jumping). The self-jumping performance of the melting frost is extremely fascinating and worth studying due to its capability of evidently shortening the defrosting process and reducing (even avoiding) residual droplets after defrosting. The study on the melting frost self-jumping phenomena demonstrates that the kinetic energy transformed from instantaneous superficial area change in self-triggered deforming step is the intrinsic reason for various melting frost self-propelled movements, and when the transformed energy reaches a certain amount, the self-jumping phenomena occur. And some facilitating conditions for melting frost self-jumping phenomena are also discussed. This work will provide an efficient way for defrosting or an inspiration for further research on defrosting.

  3. Slope and Land Use Changing Effects on Soil Properties and Magnetic Susceptibility in Hilly Lands, Yasouj Region

    Directory of Open Access Journals (Sweden)

    rouhollaah vafaeezadeh

    2017-02-01

    Full Text Available Introduction: Land use changes are the most reasons which affect natural ecosystem protection. Forest soils have high organic matter and suitable structure, but their land use management change usually affects soil properties and decreases soil quality. There are several outcomes of such land use changes and intensification: accelerated soil erosion and decline of soil nutrient conditions, change of hydrological regimes and sedimentation and loss of primary forests and their biodiversity. Establishing effects of land use and land cover changes on soil properties have implications for devising management strategies for sustainable use. Forest land use change in Yasouj caused soil losses and decreased soil quality. The objectives of this study were to assess some soil physical and chemical properties and soil magnetic susceptibility changes in different land uses and slope position. Materials and Methods: Soil samples were taken from natural forest, degraded forest and dryland farm from different slops (0-10, 10-20 and 20-30 percent in sout east of Yasouj. They were from 0–10 cm depth in a completely randomized design with five replications. Soil moisture and temperature regimes in the study area are xeric and mesic, respectively. Particle size distribution was determined by the hydrometer method and soil organic matter, CaCO3 equivalent and bulk density was determined using standard procedures described in Methods of Soil Analysis book. Magnetic susceptibility was measured at low and high frequency of 0.46 kHz (χlf and 4.6 kHz (χHf respectively with a Bartington MS2D meter using approximately 20 g of soil held in a four-dram clear plastic vial. Frequency dependent susceptibility (χfd is expressed as the difference between the high and the low frequency measurements as a percentage of χ at low frequency. Results and Discussion: Soil texture was affected by land use change from silty clay loam in forest to silty loam in dry land farm

  4. Frost monitoring of fruit tree with satellite data

    Science.gov (United States)

    Fan, Jinlong; Zhang, Mingwei; Cao, Guangzheng; Zhang, Xiaoyu; Liu, Chenchen; Niu, Xinzan; Xu, Wengbo

    2012-09-01

    The orchards are developing very fast in the northern China in recent years with the increasing demands on fruits in China. In most parts of the northern China, the risk of frost damage to fruit tree in early spring is potentially high under the background of global warming. The growing season comes earlier than it does in normal year due to the warm weather in earlier spring and the risk will be higher in this case. According to the reports, frost event in spring happens almost every year in Ningxia Region, China. In bad cases, late frosts in spring can be devastating all fruit. So lots of attention has been given to the study in monitoring, evaluating, preventing and mitigating frost. Two orchards in Ningxia, Taole and Jiaozishan orchards were selected as the study areas. MODIS data were used to monitor frost events in combination with minimum air temperature recorded at weather station. The paper presents the findings. The very good correlation was found between MODIS LST and minimum air temperature in Ningxia. Light, middle and severe frosts were captured in the study area by MODIS LST. The MODIS LST shows the spatial differences of temperature in the orchards. 10 frost events in April from 2000 to 2010 were captured by the satellite data. The monitoring information may be hours ahead circulated to the fruit farmers to prevent the damage and loss of fruit trees.

  5. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  6. Physical and eco-physiological aspects in forecasting and crop protection of fruit trees from late frost

    International Nuclear Information System (INIS)

    Zinoni, Franco; Antolini, Gabriele; Palara, Ugo; Rossi, Federica; Reggidori, Giampiero

    2005-01-01

    Late frosts represent for fruit production one of the most relevant natural hazards worldwide, considering severity and extent of damage, whose occurrence is constantly increasing, concomitantly to the increase of climate variability. Therefore, impacts on affected farms and local economy are often devastating, but information about how to protect plants from freezing is relatively limited. The research in the field of forecast, risk hazard assessment and protection is directed towards the reduction of the risk level, acting together with new trends in selection of resistant cvs. Crop vulnerability is jointly determined by genetic peculiarities of the various species and cvs, but a determinant role is played by phenology and agronomic practices. The orchard structural features, tree canopy characteristics and tree arrangement in rows are determinant in conditioning energy and radiation exchanges between soil and the surrounding atmosphere, thus on the exchange processes that are responsible of radiation frosts, mainly occurring in Spring, when plant sensibility is at its maximum. The knowledge of local meteorology, together with the weather reports, which can forecast risk situations, should support the acquisition of passive protection systems and to improve the active ones. The correct evaluation of frost risk holds a great importance in fruit orchard programming and in the choice of protection systems and, therefore, the drawing up of risk maps which correlate the topographical characteristics of soil with the tolerance level of the different fruit tree species [it

  7. Frost damage of concrete subject to confinement

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2016-01-01

    When internal frost damage is observed in real concrete structures, the usual pattern is cracks with a preferred orientation parallel to the exposed surface. When exposing concrete with poor frost resistance to a standardised freeze/thaw test in the laboratory, the orientations of the resulting...

  8. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys

    Science.gov (United States)

    Feng, Libang; Yan, Zhongna; Shi, Xueting; Sultonzoda, Firdavs

    2018-02-01

    Ice formation and frost deposition on cryogenic equipment and systems can result in serious problems and huge economic loss. Hence, it is quite necessary to develop new materials to prevent icing and frosting on cold surfaces in engineering fields. Here, a superhydrophobic aluminum alloy with enhanced anti-frosting, anti-icing, and self-cleaning performance has been developed by a facile one-step method. The anti-frosting/icing performance of superhydrophobic aluminum alloys is confirmed by frosting/icing time delay, consolidating and freezing temperature reduction, and lower amount of frost/ice adhesion. Meanwhile, the excellent self-cleaning performance is authenticated by the fact that simulated pollution particles can be cleaned out by rolling water droplets completely. Finally, based on the classical nucleation theory, anti-icing and anti-frosting mechanisms of the superhydrophobic aluminum alloys are deduced. Results show that grounded on "air cushion" and "heat insulation" effect, a larger nucleation barrier and a lower crystal growth rate can be observed, which, hence, inhibit ice formation and frost deposition. It can be concluded that preparing superhydrophobic surfaces would be an effective strategy for improving anti-icing, anti-frosting, and self-cleaning performance of aluminum alloys.

  9. Polygons in Seasonal Frost

    Science.gov (United States)

    2004-01-01

    8 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime scene in the south polar region of the red planet. A patch of bright frost--possibly water ice--is seen in the lower third of the image. Polygon patterns that have developed in the ice as it sublimes away can be seen; these are not evident in the defrosted surfaces, so they are thought to have formed in the frost. This image is located near 82.6oS, 352.5oW. Sunlight illuminates this scene from the upper left; the image covers an area 3 km (1.9 mi) wide.

  10. Morphological and genetic perspectives of peach fruit responses to spring frost

    Science.gov (United States)

    Spring frost is one of the most unpredictable cropping factors in many peach production areas. A severe spring frost can wipe out an entire peach crop whereas a mild spring frost may naturally help thinning as is common practice in commercial peach production. The extent of frost damage depends on t...

  11. Uremic frost: a harbinger of impending renal failure.

    Science.gov (United States)

    Saardi, Karl M; Schwartz, Robert A

    2016-01-01

    Uremic frost is a striking cutaneous finding seen in patients with severe kidney disease. Familiarity with this condition can be a life-saving signal to initiate urgent dialysis. Uremic frost generally occurs at blood urea nitrogen levels of approximately 200 mg/dl, although it may arise with less severe uremia. Recently confirmed urea transporters in the skin may play a role in the development of uremic frost. Alternatively, damage to the cutaneous microvasculature and pilosebaceous units, as seen in chronic kidney disease, could account for the high levels of urea deposited outside the skin. The treatment of uremic frost is largely aimed at correcting the underlying cause of uremia and the other life-threatening conditions associated with renal failure. © 2015 The International Society of Dermatology.

  12. Frost trends and their estimated impact on yield in the Australian wheatbelt.

    Science.gov (United States)

    Zheng, Bangyou; Chapman, Scott C; Christopher, Jack T; Frederiks, Troy M; Chenu, Karine

    2015-06-01

    Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957-2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Coupling of THALES and FROST using MPI Method

    International Nuclear Information System (INIS)

    Park, Jin Woo; Ryu, Seok Hee; Jung, Chan Do; Jung, Jee Hoon; Um, Kil Sup; Lee, Jae Il

    2013-01-01

    This paper presents the coupling method between THALES and FROST and the simulation results with the coupled code system. In this study, subchannel analysis code THALES and transient fuel performance code FROST were coupled using MPI method as the first stage of the development of the multi-dimensional safety analysis methodology. As a part of the validation, the CEA ejection accident was simulated using the coupled THALES-FROST code and the results were compared with the ShinKori 3 and 4 FSAR. Comparison results revealed that CHASER using MPI method predicts fuel temperatures and heat flux quantitatively well. Thus it was confirmed that the THALES and FROST are properly coupled. In near future, ASTRA, multi-dimensional core neutron kinetics code, will be linked to THALESFROST code for the detailed three-dimensional CEA ejection analysis. The current safety analysis methodology for a CEA ejection accident based on numerous conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KNF is developing the multi-dimensional safety analysis methodology to enhance the consequences of the CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, subchannel analysis code THALES, and transient fuel performance analysis code FROST are being coupled using message passing interface(MPI). For the first step, THALES and FROST are coupled and tested

  14. SO2 frost - UV-visible reflectivity and Io surface coverage

    Science.gov (United States)

    Nash, D. B.; Fanale, F. P.; Nelson, R. M.

    1980-01-01

    The reflectance spectrum in the range 0.24-0.85 microns of SO2 frost is measured in light of the discovery of SO2 gas in the atmosphere of Io and the possible discovery of the frost on its surface. Frost deposits up to 1.5 mm thick were grown in vacuum at 130 K and bi-directional reflectance spectra were obtained. Typical SO2 frost is found to exhibit very low reflectivity (2-5%) at 0.30 microns, rising steeply at 0.32 microns to attain a maximum reflectivity (75-80%) at 4.0 microns and uniformly high reflectivity throughout the visible and near infrared. Comparison with the full disk spectrum of Io reveals that no more than 20% of the surface can be covered with optically thick SO2 frost. Combinations of surface materials including SO2 frost which can produce the observed spectrum are indicated.

  15. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.

    Science.gov (United States)

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad

    2014-12-01

    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.

  16. Detection of superparamagnetic particles in soils developed on basalts using frequency- and amplitude-dependent magnetic susceptibility

    Science.gov (United States)

    Grison, H.; Petrovsky, E.; Kapicka, A.

    2016-12-01

    In rock, soil and environmental studies dealing with magnetic methods, the frequency-dependent magnetic susceptibility (κFD%) is parameter generally accepted as a tool for identification of ultrafine superparamagnetic (SP) particles. This parameter became an indicator of pedogenic magnetic fraction (increased pedogenesis). Despite the number of studies using this parameter, knowledge about threshold values of κFD% is not clear enough and this parameter may be misinterpreted. Moreover, in strongly magnetic soils, magnetic signal of the SP (mostly pedogenic) minerals may be masked by dominant lithological signal, carried by coarse-grain mineral fraction; therefore, influence of pedogenesis is hard to detect. The aim of this contribution is to compare results in determination of ultrafine SP magnetic particles in soils determined using different instruments: (a) Bartington MS2B dual-frequency meter, and (b) more sensitive AGICO Kappameter MFK1-FA. The values of the κFD % obtained by the Bartington MS2B varied from 0.9 to 5.8% (mass-specific magnetic susceptibility from 119 to 1533 × 10-8 m3/kg) while the AGICO MFK1-FA varied from 3.7 to 8.2% (mass-specific magnetic susceptibility from 295 to 1843 × 10-8 m3/kg). Although both instruments suggest significant portion of SP magnetic particles, the results can't be interpreted using the generally accepted threshold values based on Bartington data. However, our results suggest that relation between the mass-specific magnetic susceptibility and κFD% along whole soil profile may serve as suitable tool in discriminating between lithogenic and pedogenic control of magnetic fraction in the soil profile. Moreover, we propose new concept of identification of SP particles, based on field-dependent magnetic susceptibility. Its behaviour shows distinct features with significant change at amplitudes of about 100 A/m. Below this value, susceptibility decreases with increasing amplitude, reflecting saturation of magnetization due

  17. Frost resistance of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1999-01-01

    Frost resistance of fibre reinforced concrete with 2.5-4.2% air and 6-9% air (% by volume in fresh concrete) casted in the laboratory and in-situ is compared. Steel fibres with hooked ends (ZP, length 30 mm) and polypropylene fibres (PP, CS, length 12 mm) are applied. It is shown that· addition...... of 0.4-1% by volume of fibres cannot replace air entrainment in order to secure a frost resistant concrete; the minimum amount of air needed to make the concrete frost resistant is not changed when adding fibres· the amount of air entrainment must be increased when fibres are added to establish...

  18. Frost-covered dunes

    Science.gov (United States)

    1999-01-01

    MOC image of dunes in Chasma Boreale, a giant trough in the north polar cap. This September 1998 view shows dark sand emergent from beneath a veneer of bright frost left over from the northern winter that ended in July 1998.

  19. Frost in Charitum Montes

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-387, 10 June 2003This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle view of the Charitum Montes, south of Argyre Planitia, in early June 2003. The seasonal south polar frost cap, composed of carbon dioxide, has been retreating southward through this area since spring began a month ago. The bright features toward the bottom of this picture are surfaces covered by frost. The picture is located near 57oS, 43oW. North is at the top, south is at the bottom. Sunlight illuminates the scene from the upper left. The area shown is about 217 km (135 miles) wide.

  20. Forecast of Frost Days Based on Monthly Temperatures

    Science.gov (United States)

    Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.

    2009-04-01

    Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.

  1. Passive anti-frosting surfaces using microscopic ice arrays

    Science.gov (United States)

    Ahmadi, Farzad; Nath, Saurabh; Iliff, Grady; Boreyko, Jonathan

    2017-11-01

    Despite exceptional advances in surface chemistry and micro/nanofabrication, no engineered surface has been able to passively suppress the in-plane growth of frost occurring in humid, subfreezing environments. Motivated by this, and inspired by the fact that ice itself can evaporate nearby liquid water droplets, we present a passive anti-frosting surface in which the majority of the surface remains dry indefinitely. We fabricated an aluminum surface exhibiting an array of small metallic fins, where a wicking micro-groove was laser-cut along the top of each fin to produce elevated water ``stripes'' that freeze into ice. As the saturation vapor pressure of ice is less than that of supercooled liquid water, the ice stripes serve as overlapping humidity sinks that siphon all nearby moisture from the air and prevent condensation and frost from forming anywhere else on the surface. Our experimental results show that regions between stripes remain dry even after 24 hours of operation under humid and supercooled conditions. We believe that the presented anti-frosting technology has the potential to help solve the world's multi-billion dollar frosting problem that adversely affects transportation, power generation, and HVAC systems.

  2. Nitrogen frost migration on Triton: A historical model

    International Nuclear Information System (INIS)

    Spencer, J.R.

    1990-01-01

    The author presents the results of numerical simulations of the seasonal migration of nitrogen frost on Triton, constrained by Voyager observations of atmospheric pressure, temperature, and albedo distribution. Most of the exposed nitrogen is probably seasonal frost, whose migration can produce major variations in atmospheric pressure. For instance, models explored here predict a tenfold pressure drop in the coming decade. The observed albedo patterns can be understood if fresh nitrogen frost is relatively dark butt brightens with increasing insolation in a manner analogous to the Martian southern CO 2 cap

  3. Heat transfer from a tube immersed in a fluidized bed with frosting

    International Nuclear Information System (INIS)

    Torikoshi, K.; Kawabata, K.; Yamashita, H.

    1990-01-01

    Heat-transfer and flow-visualization experiments were performed for a single cooled tube immersed horizontally in a fluidized bed under frosting conditions. Measurements were made from local and average heat-transfer coefficients around the cooled tube surface. Glass beads having nominal diameters of 0.43 mm, 0.89 mm, and 1.6 mm were employed as the bed material. The 30 mm diameter tube was located 100 mm above the distributor. All the results obtained under frosting conditions were for an air temperature of about 5 degrees C and an air relative humidity of about 80 percent. The heat-transfer coefficient with frosting evaluated in this investigation includes the heat-transfer coefficient from the frost surface to the bed and the thermal resistance of the frost layer. Comparisons are made to heat-transfer data without frosting. The heat transfer is found to be larger with frosting than without frosting under the fluidization state

  4. Experimental measurements of the effects of frost formation on heat exchanger performance

    International Nuclear Information System (INIS)

    Emery, A.F.; Siegel, B.L.

    1990-01-01

    Frost formation on compact heat exchangers can lead to reductions in heat transfer of the order of 50 to 75% and to substantial increases in pressure drop. These effects are dependent upon the spatial pattern of the frost deposition, the growth history of the frost, and the thicknesses of the frost. This paper describes a series of experiments to measure the effects of frost when cold air (260 - 273 K) is passing through the exchanger. It is found that the thermal performance is a function of time and specific humidity levels while the pressure is function only of the frost thickness and surface roughness

  5. Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces

    OpenAIRE

    Liu, Xiaolin; Chen, Huawei; Zhao, Zehui; Wang, Yamei; Liu, Hong; Zhang, Deyuan

    2017-01-01

    Frost accretion on surfaces may cause severe problems and the high-efficiency defrosting methods are still urgently needed in many application fields like heat transfer, optical and electric power system, etc. In this study, a nano-needle superhydrophobic surface is prepared and the frosting/defrosting experiments are conducted on it. Three steps are found in the defrosting process: melting frost shrinking and splitting, instantaneous self-triggered deforming followed by deformation-induced m...

  6. Effects of Surface Wettability on the Porosity and Wickability of Frost

    Science.gov (United States)

    Witt, Katherine; Ahmadi, Farzad; Boreyko, Jonathan

    2017-11-01

    The wicking of liquids through porous media has been studied for many materials, but never for frost, despite its implications for arctic oil spills and oil-infused surfaces. Here, we characterize silicone oils wicking up frost sheets. A layer of frost was grown on aluminum plates of varying surface wettability: superhydrophilic, hydrophilic, hydrophobic, and superhydrophobic. Once the desired frost thickness was grown, a humidity chamber was used to maintain the frost at the dew point and the bottom of the plate was dipped in a reservoir of fluorescent silicone oil. For all surfaces, the wicking rate of the oil increased with increasing wettability. For the wetting surfaces, this is manifested in the length vs. time data following the classical Washburn equation, exhibiting a power slope of about 1/2 and resulting in a larger effective pore radius with increasing wettability. However, we observed that on the non-wetting surfaces, the discrete distribution of the frosted dew droplets resulted in a new scaling law with a slope much less than 1/2, especially for the superhydrophobic surface which promoted jumping-droplet condensation. This research shows that the wicking of oil up a layer of frost can give insight into the morphology of frost. Conversely, if the underlying wettability of a frost sheet can be controlled, the spread of oil can be widely tuned. This work was supported by a Virginia Space Grant Consortium Undergraduate Research Scholarship (PMPTX7EP).

  7. Soil and water pollution studies from a waste site deposit in Bantama, Kumasi, Ghana using magnetic susceptibility measurements

    International Nuclear Information System (INIS)

    Hadi, M.; Preko, K.; Ashia, T.

    2012-01-01

    The magnetic susceptibility of soil and water samples from around the Uadara barracks waste site deposit in Bantama, a suburb of Kumasi was measured with the aim of investigating the potential threat of pollution to the soil, streams, fish ponds and other water sources at the site around Armed Forces Senior High School campus which shares the same premises with the barracks. The studied soil samples were picked from the near surface (∼10 cm depth) along profiles taken from the waste site towards the stream and the ponds. Again, water samples were picked along the stream and from ten (10) ponds aligned along the stream. Laboratory measurements of the magnetic susceptibility were done using the Bartington MS2 metre and the MS2B dual frequency sensor for the soil samples, and the MS2G sensor for the water samples. The soil samples from the site registered an average magnetic susceptibility of 180. 04 x 10 -5 SI whereas the water samples recorded an average of -2.3 x 10 -6 SI showing a significant increment in comparison with the standard water magnetic susceptibility of -9.04 x 10 -6 SI. Thus, not withstand the lithology of the area studied, the presence of heavy metals and other chemical waste materials form the Uadara barracks garbage deposit site were found to greatly pollute the soil and particularly the water bodies around the Armed Forces Senior High School. (au)

  8. On the Effective Thermal Conductivity of Frost Considering Mass Diffusion and Eddy Convection

    Science.gov (United States)

    Kandula, Max

    2010-01-01

    A physical model for the effective thermal conductivity of water frost is proposed for application to the full range of frost density. The proposed model builds on the Zehner-Schlunder one-dimensional formulation for porous media appropriate for solid-to-fluid thermal conductivity ratios less than about 1000. By superposing the effects of mass diffusion and eddy convection on stagnant conduction in the fluid, the total effective thermal conductivity of frost is shown to be satisfactorily described. It is shown that the effects of vapor diffusion and eddy convection on the frost conductivity are of the same order. The results also point out that idealization of the frost structure by cylindrical inclusions offers a better representation of the effective conductivity of frost as compared to spherical inclusions. Satisfactory agreement between the theory and the measurements for the effective thermal conductivity of frost is demonstrated for a wide range of frost density and frost temperature.

  9. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  10. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Frosted branch angiitis associated with rapidly progressive glomerulonephritis.

    Directory of Open Access Journals (Sweden)

    Gupta Amod

    2002-01-01

    Full Text Available Simultaneous occurrence of frosted branch angiitis and immune-mediated rapidly progressive glomerulonephritis is reported. The two diseases possibly share a common immune mechanism. Patients of frosted branch angiitis should undergo complete systemic evaluation including renal function tests even if the patient is systemically asymptomatic.

  12. Frost for the trees: Did climate increase erosion in unglaciated landscapes during the late Pleistocene?

    Science.gov (United States)

    Marshall, Jill A; Roering, Joshua J; Bartlein, Patrick J; Gavin, Daniel G; Granger, Darryl E; Rempel, Alan W; Praskievicz, Sarah J; Hales, Tristram C

    2015-11-01

    Understanding climatic influences on the rates and mechanisms of landscape erosion is an unresolved problem in Earth science that is important for quantifying soil formation rates, sediment and solute fluxes to oceans, and atmospheric CO2 regulation by silicate weathering. Glaciated landscapes record the erosional legacy of glacial intervals through moraine deposits and U-shaped valleys, whereas more widespread unglaciated hillslopes and rivers lack obvious climate signatures, hampering mechanistic theory for how climate sets fluxes and form. Today, periglacial processes in high-elevation settings promote vigorous bedrock-to-regolith conversion and regolith transport, but the extent to which frost processes shaped vast swaths of low- to moderate-elevation terrain during past climate regimes is not well established. By combining a mechanistic frost weathering model with a regional Last Glacial Maximum (LGM) climate reconstruction derived from a paleo-Earth System Model, paleovegetation data, and a paleoerosion archive, we propose that frost-driven sediment production was pervasive during the LGM in our unglaciated Pacific Northwest study site, coincident with a 2.5 times increase in erosion relative to modern rates. Our findings provide a novel framework to quantify how climate modulates sediment production over glacial-interglacial cycles in mid-latitude unglaciated terrain.

  13. Influence of Soil Temperature on Meloidogyne incognita Resistant and Susceptible Cotton, Gossypium hirsutum

    OpenAIRE

    Carter, William W.

    1982-01-01

    The degree of resistance by a cotton plant to Meloidogyne incognita is affected by soil temperature, particularly in moderately resistant cultivars, The total number of nematodes in the resistant and moderately resistant rools at 35 C was equal to, or greater than, the number in susceptible roots at 20, 25, or 30 C. A shift in numbers to developing and egg-bearing forms of nematodes in the susceptible cultivar as tentperature increased indicates development was affected by temperature rather ...

  14. Numerical and experimental investigation on frosting of energy-recovery ventilator

    Science.gov (United States)

    Bilodeau, Stephane; Mercadier, Yves; Brousseau, Patrick

    Frosting of energy-recovery ventilators results in two major problems: increase of pressure losses and reduction of heat transfer rates. Frost formation of heat and mass exchangers used in these ventilation systems is investigated both experimentally and numerically. A numerical model for the prediction of the thermal behavior of the exchanger is presented. The model is validated with experimental data and is then employed to conduct a parametric study. Results indicate that the absolute humidity is the prevailing parameter for characterizing the frosting phenomenon. A frost-mass-fraction chart is established in terms of the absolute humidity of the warm exhaust stream and of the temperature of the cold supply stream. The effect of time and mass flowrate is also evaluated. The transient three-dimensional model shows that the absolute humidity and the temperature of both air flows vary nonlinearly in the frosted zone.

  15. Frost behavior of a fin surface with temperature variation along heat exchanger fins

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kim, Min Soo; Lee, Kwan Soo; Kim, Ook Joong

    2007-01-01

    This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer

  16. Frost risk for overwintering crops in a changing climate

    Science.gov (United States)

    Vico, Giulia; Weih, Martin

    2013-04-01

    Climate change scenarios predict a general increase in daily temperatures and a decline in snow cover duration. On the one hand, higher temperature in fall and spring may facilitate the development of overwintering crops and allow the expansion of winter cropping in locations where the growing season is currently too short. On the other hand, higher temperatures prior to winter crop dormancy slow down frost hardening, enhancing crop vulnerability to temperature fluctuation. Such vulnerability may be exacerbated by reduced snow cover, with potential further negative impacts on yields in extremely low temperatures. We propose a parsimonious probabilistic model to quantify the winter frost damage risk for overwintering crops, based on a coupled model of air temperature, snow cover, and crop minimum tolerable temperature. The latter is determined by crop features, previous history of temperature, and snow cover. The temperature-snow cover model is tested against meteorological data collected over 50 years in Sweden and applied to winter wheat varieties differing in their ability to acquire frost resistance. Hence, exploiting experimental results assessing crop frost damage under limited temperature and snow cover realizations, this probabilistic framework allows the quantification of frost risk for different crop varieties, including in full temperature and precipitation unpredictability. Climate change scenarios are explored to quantify the effects of changes in temperature mean and variance and precipitation regime over crops differing in winter frost resistance and response to temperature.

  17. Modeling the airside dynamic behavior of a heat exchanger under frosting conditions

    International Nuclear Information System (INIS)

    Gao, Tieyu; Gong, Jianying

    2011-01-01

    A general distributed model with a non-steady-state heat exchanger model coupled with a frost model was developed to study the dynamic behavior of an airside heat exchanger in an air-to-water heat pump heater/chiller unit. The effects of water vapor diffusion and uneven fin temperature distribution were considered. The model was found to agree well with reported experimental results. Compared with the routine model, the present model has higher precision of frost layer thickness especially on the fin surface. Results include the propagation of frost formation along the tube and its effect on the dynamic characteristics of refrigerant, air, and tube sides. According to the results, the temperature difference between air and tube surface temperature was proposed to be the main driving force of frosting. Tube surface temperature is the most important factor affecting frosting when there is little variation in air humidity. Frost at the fin base was found to be thicker than that at the fin tip due to the fact that the frost layer grows faster with lower tube surface temperature

  18. Forecasting Frost Damage: Follow the Water

    Science.gov (United States)

    Rempel, A. W.

    2015-12-01

    Frost damage takes place when the pressure exerted against pore walls exceeds the cohesive strength of water-infiltrated rock and causes cracks to extend. Elegant theoretical treatments supported by meticulous field and laboratory observations have combined to unravel the basic mechanical and thermodynamic controls in idealized systems. Frost damage is most vigorous when conditions are cold enough that the net pressure exerted against the pore walls can cause crack extension, yet warm enough to enable the flow that supplies further ice growth in the newly opened space. This insight is applied here to develop practical geomorphic process laws for the effects of frost damage at the larger scales that are relevant for describing the evolution of landscapes. To this end, a direct connection is made between the intensity of frost damage and the porosity increase that results from gradients in water flux under conditions that are cold enough for ice-rock interactions to propagate cracks. This implies that the annual temperature variation at the ground surface can be combined with considerations of heat and mass transport to derive rigorous forecasts of the potential for frost damage that are tied to the increases in water mass that accompany solidification in porous rock. As an example, the image shows the depth-integrated porosity change λ promoted by crack growth at temperatures colder than -ΔTc over an annual cycle for different choices of mean annual temperature MAT and surface amplitude A (assuming a thermal diffusivity of 1 mm2/s and a power-law relationship between permeability and undercooling with exponent α=4, such that a base value of 10-14m2 is reached at a reference undercooling of 0.1 ºC). The abrupt onset in cracking once MAT decreases below a threshold is produced by the requirement that undercooling surpass ΔTc in order to generate sufficient pressures to propagate cracks. The eventual reduction and gradual tail in λ at colder MAT is produced by

  19. Climate change and spring frost damages for sweet cherries in Germany

    Science.gov (United States)

    Chmielewski, Frank-M.; Götz, Klaus-P.; Weber, Katharina C.; Moryson, Susanne

    2018-02-01

    Spring frost can be a limiting factor in sweet cherry ( Prunus avium L.) production. Rising temperatures in spring force the development of buds, whereby their vulnerability to freezing temperatures continuously increases. With the beginning of blossom, flowers can resist only light frosts without any significant damage. In this study, we investigated the risk of spring frost damages during cherry blossom for historical and future climate conditions at two different sites in NE (Berlin) and SW Germany (Geisenheim). Two phenological models, developed on the basis of phenological observations at the experimental sweet cherry orchard in Berlin-Dahlem and validated for endodormancy release and for warmer climate conditions (already published), were used to calculate the beginning of cherry blossom in Geisenheim, 1951-2015 (external model validation). Afterwards, on the basis of a statistical regionalisation model WETTREG (RCP 8.5), the frequency of frost during cherry blossom was calculated at both sites for historical (1971-2000) and future climate conditions (2011-2100). From these data, we derived the final flower damage, defined as the percentage of frozen flowers due to single or multiple frost events during blossom. The results showed that rising temperatures in this century can premature the beginning of cherry blossom up to 17 days at both sites, independent of the used phenological model. The frequency and strength of frost was characterised by a high temporal and local variability. For both sites, no significant increase in frost frequency and frost damage during blossom was found. In Geisenheim, frost damages significantly decreased from the middle of the twenty-first century. This study additionally emphasises the importance of reliable phenological models which not only work for current but also for changed climate conditions and at different sites. The date of endodormancy release should always be a known parameter in chilling/forcing models.

  20. The vulnerability of silver fir populations to damage from late frosts

    Directory of Open Access Journals (Sweden)

    Klisz Marcin

    2016-03-01

    Full Text Available The aim of the study was to determine the vulnerability of selected silver fir populations to damage from late frost in the climatic conditions of south-eastern Poland. To determine the vulnerability of apical and lateral shoots to damage caused by late frosts, we observed four test plots in 2009 and 2014, each containing progenies of selected seed stands. Our statistical analyses were based on a model incorporating the following variables: site, year, type of frost damage, population as well as the possible interaction between these variables. Significant differences between the populations were found in terms of their sensitivity to damage from low temperature occurring during the growth period. Furthermore, we indirectly demonstrated differences in the severity of late frost on the experimental plots, as well as the intensity and variability of late frost shoot damage. Based on these results, we divided the studied populations into two groups of low (EF, KRA1 and NAR and high (LES2 and BAL2 sensitivity to late frost damage.

  1. Frost related dieback in Estonian energy plantations of willows in relation to fertilisation and pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cambours, M.A.; Nejad, P. [Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala (Sweden); Heinsoo, K. [Institute of Zoology and Botany, Estonian Agricultural University, Riia 181, 51014 Tartu (Estonia); Granhall, U. [Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, 750 07 Uppsala (Sweden)

    2006-03-15

    Two 9-year old Estonian Salix plantations suffering from dieback were studied: one situated on poor mineral soil and divided into fertilised and unfertilised plots (Saare plantation) and another growing on a well-decomposed and nitrogen-rich organic soil, without fertiliser application (Kambja plantation). Bacteria from internal tissues of visually damaged shoots from seven clones were isolated in spring and autumn. The strains were subsequently biochemically characterised and tested for ice nucleation activity and pathogenicity on Salix. Some strains were also analysed with 16S rRNA. High numbers of culturable bacteria were found, belonging mainly to Erwinia, Sphingomonas, Pseudomonas and Xanthomonas spp. Fertilised plots were significantly more colonised by bacteria than unfertilised plots and also more extensively damaged, showing a lower density of living plants after 7 years of culture. More ice nucleation active (INA) strains were found in Saare fertilised plots and at Kambja than in Saare unfertilised plots. Likewise, most pathogenic strains were isolated from Saare fertilised plots and from Kambja. For some of the willow clones studied, dieback appeared to be related to both clonal frost sensitivity and abundance of INA and pathogenic bacteria. The plantations probably suffered from the presence of high amounts of pathogens and from frost related injuries aggravated by INA bacteria. Most probably the fertilisation at Saare and the nitrogen-rich soil at Kambja created a favourable environment for bacterial development and led to high dieback levels after the first harvest. (author)

  2. Pavement mechanic response of sulfate saline soil subgrade section based on fluid–structure interaction model

    Directory of Open Access Journals (Sweden)

    Xueying Zhao

    2017-11-01

    Full Text Available It is a consensus that salt heaving and frost heaving are urgent and typical distress in the sulfate saline soil area. To further investigate the microscopic performance of pavement structure in this special area, Jinan-Dongying Freeway in Shandong Province is selected as a case study engineering and the mechanic responses under salt heaving, frost heaving and traffic loads were analyzed through the finite element (FE Program (ANSYS. In this paper, the process of salt heaving and frost heaving was divided into 3 stages and FE models were established based on fluid–structure interaction (FSI model. It is shown that under both effects of salt heaving and frost heaving, the tensile stress of asphalt surface course could be up to 96.75% of its tensile strength, which means its tensile strength was seriously inadequate; however, traffic loads could help to dramatically counteract effects of salt heaving and frost heaving, which could decrease 40–80% of the tensile stress in asphalt surface course. It is also shown that in Jinan-Dongying Freeway effects of salt heaving had slightly larger effects on pavement compared with that of frost heaving, probably because salt heaving occurred from the top to the bottom of subgrade. However, as a whole, in sulfate saline soil area, compared with general area, crack resistance of asphalt courses and foundation treatment should always be strengthened. Keywords: Sulfate saline soil subgrade, Asphalt pavement, Pavement mechanic, FEM, FSI, Cracks and bulging

  3. Frost on Dunes

    Science.gov (United States)

    2005-01-01

    18 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark dunes on a crater floor during the southern spring. Some of the dunes have frost on their south-facing slopes. Location near: 52.3oS, 326.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  4. Applying Fibre-Optic Distributed Temperature Sensing to Near-surface Temperature Dynamics of Broadacre Cereals During Radiant Frost Events.

    Science.gov (United States)

    Stutsel, B.; Callow, J. N.

    2017-12-01

    Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature

  5. [Research on quality changes in ginseng stems and leaves before and after frost].

    Science.gov (United States)

    Zhao, Yan; Ma, Shuang; Cai, En-Bo; Liu, Shuang-Li; Yang, He; Zhang, Lian-Xue; Wang, Shi-Jie

    2014-08-01

    The present study is to investigate the quality changes of ginseng stems and leaves before and after frost. The contents changes of ginsenoside, free amino acid, and total phenolic compounds, as well as DPPH radical scavenging effect before and after frost were measured. The content of 9 ginsenoside monomer in ginseng stems was decreased except for Rg, and Re after frost, but in ginseng leaves was all decreased. The total content of amino acids was decreased in ginseng stems after frost, while increased in ginseng leaves. The content of phenolic compounds in ginseng stems and leaves were both decreased after frost while the ability of DPPH radical scavenging was improved. The factor of frost has great impact on the quality of ginseng stems and leaves.

  6. Observed variations in U.S. frost timing linked to atmospheric circulation patterns.

    Science.gov (United States)

    Strong, Courtenay; McCabe, Gregory J

    2017-05-23

    Several studies document lengthening of the frost-free season within the conterminous United States (U.S.) over the past century, and report trends in spring and fall frost timing that could stem from hemispheric warming. In the absence of warming, theory and case studies link anomalous frost timing to atmospheric circulation anomalies. However, recent efforts to relate a century of observed changes in U.S. frost timing to various atmospheric circulations yielded only modest correlations, leaving the relative importance of circulation and warming unclear. Here, we objectively partition the U.S. into four regions and uncover atmospheric circulations that account for 25-48% of spring and fall-frost timing. These circulations appear responsive to historical warming, and they consistently account for more frost timing variability than hemispheric or regional temperature indices. Reliable projections of future variations in growing season length depend on the fidelity of these circulation patterns in global climate models.

  7. Frost as a first wall for the ICF laboratory microfusion facility

    International Nuclear Information System (INIS)

    Orth, C.D.

    1989-01-01

    The authors introduce the concept of using frost as the first wall of the ICF Laboratory Microfusion Facility being designed to produce 200-1000 MJ of thermonuclear yield. They present one design incorporating 2cm of frost deposited at 0.1 g/cm/sup 3/ on an LN-cooled fiber-reinforced polymer substrate. They calculate that such a frost layer will protect the substrate from ablation by target x rays and debris, and from shock-induced spallation. Postshot washdown with water should permit low-activation operation, and should preserve the original wall properties. The authors expect the impact of the frost on laser optics to be minimal, and expect the preshot lifetime of thermally unprotected cryogenic targets to be extended by operating the wall at 100-150 K. Moreover, they believe that such a frost first wall involves little technical risk, and will be inexpensive to construct and operate

  8. Frost as a first wall for the ICF Laboratory Microfusion Facility

    International Nuclear Information System (INIS)

    Orth, C.D.

    1988-01-01

    We introduce the concept of using frost as the first wall of the ICF Laboratory Microfusion Facility being designed to produce 200--1000 MJ of thermonuclear yield. We present one design incorporating 2 cm of frost deposited at 0.1 g/cm 3 on an LN-cooled fiber-reinforced polymer substrate. We calculate that such a frost layer will protect the substrate from ablation by target x rays and debris, and from shock-induced spallation. Postshot washdown with water should permit low-activation operation, and should preserve the original wall properties. We expect the impact of the frost on laser optics to be minimal, and expect the preshot lifetime of thermally unprotected cryogenic targets to be extended by operating the wall at 100-150 K. Moreover, we believe that such a frost first wall will involve little technical risk, and will be inexpensive to construct and operate. 4 refs., 1 fig

  9. Species ecology determines the role of nitrogen nutrition in the frost tolerance of pine seedlings.

    Science.gov (United States)

    Toca, Andrei; Oliet, Juan A; Villar-Salvador, Pedro; Maroto, Judit; Jacobs, Douglass F

    2018-01-01

    Frost determines the evolution and distribution of plants in temperate and cold regions. Several environmental factors can influence frost acclimation of woody plants but the magnitude and direction of the effect of nitrogen (N) availability is controversial. We studied the effect of N availability on root and shoot frost tolerance in mid-fall and in winter in seedlings of four pines of contrasting ecology: Pinus nigra J.F. Arnold, P. pinaster Ait., P. pinea L. and P. halepensis Mill.. Organ N and soluble sugar concentration, and timing of cessation of shoot elongation were measured to assess the physiological mechanisms underlying frost acclimation. Nitrogen was supplied at high and low rates only during the pre-hardening period and at a moderate N rate during hardening in the fall. Shoot frost tolerance increased over winter while root frost tolerance did not change in any species. Pre-hardening N availability affected the frost tolerance of both roots and shoots, although the effect was species-specific: high N reduced the overall root and shoot frost tolerance in P. pinea and P. halepensis, and increased the frost tolerance in P. nigra, but had no effect in P. pinaster. Nitrogen supply in the fall consistently increased frost tolerance in all species. Differences in frost tolerance among species and N treatments were not explained by variations in organ N or soluble carbohydrate concentration, nor by timing of cessation of shoot elongation; however, the most frost tolerant species ceased elongation earlier than the least frost tolerant species. Despite the close phylogenetic relatedness of the studied species, the effect of N availability on seedling frost tolerance differed among species, indicating that species ecology (especially frost acclimation physiology) and timing of N supply drives the effect of N availability on frost tolerance of pine species. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please

  10. Analysis Of First Fall And Last Spring Advection and Radiation-Advection Frosts In Azerbaijan Provinces

    International Nuclear Information System (INIS)

    Noohi, K.; Pedram, M.; Sahraian, F.; Kamali, G. A.

    2007-01-01

    Atmospheric Science and Meteorological Research Center (ASMERC)Dates of first fall and last spring frosts on the basis of minimum shelter temperature equal or less than 0°C were determined for 12 synoptic stations for period 1986-2000 in Azerbaijan region. The advection frost was determined based on using of synoptic maps and studying of meteorological elements in different hours. In this work, we found that series of first fall and last spring advection and radiation-advection frosts are random and normally distributed. This study shows that on the average advection frosts start from 6 to 40 days later than radiation-advection frosts in fall and ends 2 to 25 days earlier in spring. Potential growing season that is interval between last spring and first fall advection frost is found to be from 5 to 65 days longer than the growing season defined by the interval from last spring to first fall occurrences of minimum temperature equal or less than 0°C. Crop protection against radiation frosts can bring about too much benefit. To assess whether practical protection of some special crops against radiation frosts is done or not, the number of radiation frosts before first advection frost in fall and after last advection frost in spring, were determined

  11. Frost formation under different gaseous atmospheres

    International Nuclear Information System (INIS)

    Fukada, Satoshi; Tsuru, Hisanori; Nishikawa, Masabumi

    1995-01-01

    Rates of water frost growth in a vessel with a cooled horizontal plate were experimentally determined under reduced pressure atmospheres of hydrogen, helium, methane and nitrogen. The mass deposited on the cooled surface under each of the atmospheres was almost in proportion to time. The Sherwood number under the condition of no mist formation, Sh 0 , in the atmospheres of methane and nitrogen was in good agreement with Catton's equation for natural convection between horizontal parallel plates. Sh 0 in a hydrogen atmosphere was unity, which corresponds to control by molecular diffusion in the stagnant gas. The tendency of the decrease in Sh due to mist formation could be evaluated well by multiplying Sh 0 by a factor ζ CSM . The ζ CSM value was calculated based on the critical supersaturation model as a function of the two interface temperatures and the total pressure. Frost growth rates under each atmosphere were in proportion to [(T S1 -T W1 )t/(1+1/A S1 )] 0.5 . The proportional constant for hydrogen was greater than that for any other tested gas. Agreement and disagreement of the frost effective thermal conductivity with previous models were discussed. (author)

  12. Identification of Heavy Metal Pollution Derived From Traffic in Roadside Soil Using Magnetic Susceptibility.

    Science.gov (United States)

    Yang, Pingguo; Ge, Jing; Yang, Miao

    2017-06-01

    The study integrates surface and vertical distribution of magnetic susceptibility and heavy metal contents (Pb, Cu, Zn and Fe) to characterize the signature of vehicle pollutants in roadside soils at Linfen city, China. Sites with reforestation and without vegetation cover were investigated. The results showed that magnetic susceptibility and heavy metal contents were higher at the roadside without trees than in the reforest belt. The variations of magnetic susceptibility and heavy metal contents decreased both with distance and with depth. The maximum value was observed at 5-10 m away from the roadside edge. The vertical distribution in soil revealed accumulation of pollutants in 0-5 cm topsoils. The average contents were higher than the background values and in the order Fe (107.21 g kg -1 ), Zn (99.72 mg kg -1 ), Pb (90.99 mg kg -1 ), Cu (36.14 mg kg -1 ). Coarse multi domain grains were identified as the dominating magnetic particles. Multivariate statistical and SEM/EDX analyses suggested that the heavy metals derived from traffic sources. Trees act as efficient receptors and green barrier, which can reduce vehicle derived pollution.

  13. Delayed frost formation on hybrid nanostructured surfaces with patterned high wetting contrast

    Science.gov (United States)

    Hou, Youmin; Zhou, Peng; Yao, Shuhuai

    2014-11-01

    Engineering icephobic surfaces that can retard the frost formation and accumulation are important to vehicles, wind turbines, power lines, and HVAC systems. For condensation frosting, superhydrophobic surfaces promote self-removal of condensed droplets before freezing and consequently delay the frost growth. However, a small thermal fluctuation may lead to a Cassie-to-Wenzel transition, and thus dramatically enhance the frost formation and adhesion. In this work, we investigated the heterogeneous ice nucleation on hybrid nanostructured surfaces with patterned high wetting contrast. By judiciously introducing hydrophilic micro-patches into superhydrophobic nanostructured surface, we demonstrated that such a novel hybrid structure can efficiently defer the ice nucleation as compared to a superhydrophobic surface with nanostructures only. We observed efficient droplet jumping and higher coverage of droplets with diameter smaller than 10 μm, both of which suppress frost formation. The hybrid surface avoids the formation of liquid-bridges for Cassie-to-Wenzel transition, therefore eliminating the `bottom-up' droplet freezing from the cold substrate. These findings provide new insights to improve anti-frosting and anti-icing by using heterogeneous wettability in multiscale structures.

  14. Frost and leaf-size gradients in forests: global patterns and experimental evidence.

    Science.gov (United States)

    Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin

    2018-05-16

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  15. [Comparison of red edge parameters of winter wheat canopy under late frost stress].

    Science.gov (United States)

    Wu, Yong-feng; Hu, Xin; Lü, Guo-hua; Ren, De-chao; Jiang, Wei-guo; Song, Ji-qing

    2014-08-01

    In the present study, late frost experiments were implemented under a range of subfreezing temperatures (-1 - -9 degrees C) by using a field movable climate chamber (FMCC) and a cold climate chamber, respectively. Based on the spectra of winter wheat canopy measured at noon on the first day after the frost experiments, red edge parameters REP, Dr, SDr, Dr(min), Dr/Dr(min) and Dr/SDr were extracted using maximum first derivative spectrum method (FD), linear four-point interpolation method (FPI), polynomial fitting method (POLY), inverted Gaussian fitting method (IG) and linear extrapolation technique (LE), respectively. The capacity of the red edge parameters to detect late frost stress was explicated from the aspects of the early, sensitivity and stability through correlation analysis, linear regression modeling and fluctuation analysis. The result indicates that except for REP calculated from FPI and IG method in Experiment 1, REP from the other methods was correlated with frost temperatures (P frost temperatures (P frost temperatures which indicated that LE method is the best for REP extraction. In Experiment 1 and 2, only Dr(min) and Dr/Dr(min), calculated by FD method simultaneously achieved the requirements for the early (their correlations with frost temperatures showed a significant level P frost temperatures al- ways keep a consistent direction). Dr/SDr calculated from FD and IG methods always had a low sensitivity in Experiment 2. In Experiment 1, the sensitivity of Dr/SDr from FD was moderate and IG was high. REP calculated from LE method had a lowest sensitivity in the two experiments. Totally, Dr(min) and Dr/Dr(min) calculated by FD method have the strongest detection capacity for frost temperature, which will be helpful to conducting the research on early diagnosis of late frost injury to winter wheat.

  16. Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees.

    Science.gov (United States)

    Charrier, Guillaume; Ngao, Jérôme; Saudreau, Marc; Améglio, Thierry

    2015-01-01

    Freezing stress is one of the most important limiting factors determining the ecological distribution and production of tree species. Assessment of frost risk is, therefore, critical for forestry, fruit production, and horticulture. Frost risk is substantial when hazard (i.e., exposure to damaging freezing temperatures) intersects with vulnerability (i.e., frost sensitivity). Based on a large number of studies on frost resistance and frost occurrence, we highlight the complex interactive roles of environmental conditions, carbohydrates, and water status in frost risk development. To supersede the classical empirical relations used to model frost hardiness, we propose an integrated ecophysiologically-based framework of frost risk assessment. This framework details the individual or interactive roles of these factors, and how they are distributed in time and space at the individual-tree level (within-crown and across organs). Based on this general framework, we are able to highlight factors by which different environmental conditions (e.g., temperature, light, flood, and drought), and management practices (pruning, thinning, girdling, sheltering, water aspersion, irrigation, and fertilization) influence frost sensitivity and frost exposure of trees.

  17. Changes in phenology and frost risks of

    Directory of Open Access Journals (Sweden)

    Thomas Kartschall

    2015-04-01

    Full Text Available For a retrospective period of 110 years between 1901 and 2010 (observed data, and for the subsequent future period between 2011 and 2100 we calculated the phenological development (bud burst, harvest ripeness, and in particular the spring frost risk (frost after bud burst, as one important derived variable for grapevine (Vitis vinifera L. cv Riesling for the whole of Germany. For the future climate we included two different scenarios (RCP8.5, RCP2.6 each of them containing a triple set with minimum, medium and maximum temperature increase. The time period between 1981 and 2010 as the last three decades in the observed data was chosen as reference. In general we found an acceleration of the phenological development (all main phases mainly beginning in the late 1980s. For the three-decade period between 2031 and 2060 this acceleration will reach 11±3$11\\pm3$ days in the RCP8.5-scenario. The acceleration for the other stages behaved similarly and results in an earlier harvest ripeness of 13±1$13\\pm1$ days. Since a warmer spring in general leads to earlier bud burst, but does not reduce the risk of frost events during this period in the same manner, changes in the risk of spring frost damage were relatively small. For the coming decades this risk will not decrease for all traditional German viticultural regions in the RCP8.5-scenarios; on the contrary, our results suggest it is likely to increase. The results showed an increasing spring frost risk not only for the debated “upcoming” potential viticultural areas in eastern Germany, an effect which will partly also reach the southernmost viticultural areas. This effect in northern and eastern Germany is due to earlier bud burst together with the stronger continental influence, but for the southern and western regions of Germany is mainly due to the even earlier bud burst. This could modify the regionally nuanced character of German wines.

  18. Dedicated Low Latitude Diurnal CO2 Frost Observation Campaigns by the Mars Climate Sounder

    Science.gov (United States)

    Piqueux, S.; Kass, D. M.; Kleinboehl, A.; Hayne, P. O.; Heavens, N. G.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.

    2017-12-01

    In December 2016 (Ls≈280, MY33) and July 2017 (Ls≈30, MY34), the Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) conducted two distinct observation campaigns. The first one aimed at 1) confirming the presence of low latitude diurnal CO2 frost on Mars, and 2) refining the estimated mass of carbon dioxide condensed at the surface, whereas the second campaign was designed to 3) search for temporally and spatially varying spectral characteristics indicative of frost properties (i.e., crystal size, contamination, etc.) and relationship to the regolith. To meet these goals, MCS acquired thermal infrared observations of the surface and atmosphere at variable local times (≈1.70-3.80 h Local True Solar Time) and in the 10°-50°N latitude band where very low thermal inertia material (frost distribution and spectral properties. In addition, pre-frost deposition surface cooling rates are found to be consistent with those predicted by numerical models (i.e., 1-2K per hour). Finally, we observe buffered surface temperatures near the local frost point, indicating a surface emissivity ≈1. (i.e., optically thin frost layers, or dust contaminated frost, or slab-like ice) and no discernable frost metamorphism. We will present a detailed analysis of these new and unique observations, and elaborate on the potential relationship between the regolith and this recurring frost cycle.

  19. Fast Decline of Pythium zingiberum in Soil and Its Recolonization by Cultivating Susceptible Host Plants

    OpenAIRE

    ICHITANI, Takio; SHIMIZU, Tokiya

    1984-01-01

    This experiment demonstrates the fast decline of Pythium zingiberum in soil and its recolonization by cultivating mioga, susceptible host plant, and discusses growth and survival of the pathogen in the host rhizosphere in cultivated fields.

  20. Long-term water absorption tests for frost insulation materials taking into account frost attack

    Directory of Open Access Journals (Sweden)

    Toni A. Pakkala

    2014-01-01

    Full Text Available Water absorption of several different frost insulation materials was tested for four years. The test took into account both immersion and frost attack to materials. On the basis of the research the water absorption on XPS specimens is significantly minor compared to EPS specimens that were studied. The most significant result was that freezing of test specimens did not affect on water absorption of XPS specimens but had a major effect on water absorption of EPS specimens. With frozen EPS specimen the absorption continued increasing even after 48 months of immersion. Presumably the reason for such a behaviour is that the pore structure of EPS is not able to resist the tension caused by freezing water and therefore cracks are formed. Thus, more water absorbs inside the EPS through the cracks and it causes cracking deeper in the specimen which is why absorption increases after every freezing period.

  1. Community impacts of mid-May frost event during an anomalously warm spring

    Science.gov (United States)

    Hufkens, K.; Sonnentag, O.; Keenan, T. F.; Richardson, A. D.; Melaas, E. K.; Bailey, A.; O'Keefe, J.; Friedl, M. A.

    2011-12-01

    Global land and ocean surface temperatures of 2010 have gone on record as one of the warmest of the last 131 years. In the northeastern US extraordinarily warm spring temperatures were recorded, averaging +3 °C above the long term mean, causing very early leaf development. However, the entire northeastern US region was hit by a severe frost event. Leveraging the coincidence of an anomalously warm spring and a late spring frost event we assess species specific responses of these combined extremes for three northern hardwood species(sugar maple, American beech, yellow birch) across an elevational gradient. We integrated ground observations with satellite and near-surface remote sensing data to address the following questions: 1) How did different species respond to a gradient in altitude / freezing temperatures? 2) How does phenological strategy influence this response? 3) To what extent were regional effects measurable? 4) How did the late spring frost event alter the carbon balance of a northern hardwood forest? 5) Finally, what changes do we foresee in community ecology? Our results show an early onset for all species, triggered by the anomalously warm spring. However, the three species responded differently to a late spring frost event. Where both yellow birch and American beech remained largely unaffected by frost, by comparison, sugar maple showed severe frost damage with increasing altitude resulting in leaf loss and delayed canopy development. Conservative estimates of gross carbon exchange losses due to the frost event ranged from 63 g C m-2 to 156 g C m-2, or ~5% to ~13 % of the annual gross carbon exchange of a northern hardwood forest. Our results suggest that the additional pressure on forest succession at high altitude range margins due to late spring frost events may provide a competitive advantage for yellow birch and American beech, at the expense of sugar maple. Consequently, a late spring frost does not only affect the short term carbon balance

  2. Risk analysis of first and last frost occurrences in central Alborz region, Iran

    NARCIS (Netherlands)

    Rahimi, M.; Khalili, A.; Hajjam, S.; Kamali, G.A.; Stigter, C.J.

    2007-01-01

    Central Alborz is one of the important agricultural regions of Iran. Occurrence of the first frost in fall and the last frost in spring causes damage to the crops in this region every year. Information about the probable dates of frost occurrence helps farmers in preventing or reducing the damages

  3. Pavement mechanic response of sulfate saline soil subgrade section based on fluid–structure interaction model

    OpenAIRE

    Xueying Zhao; Aiqin Shen; Yinchuang Guo; Peng Li; Zhenhua Lv

    2017-01-01

    It is a consensus that salt heaving and frost heaving are urgent and typical distress in the sulfate saline soil area. To further investigate the microscopic performance of pavement structure in this special area, Jinan-Dongying Freeway in Shandong Province is selected as a case study engineering and the mechanic responses under salt heaving, frost heaving and traffic loads were analyzed through the finite element (FE) Program (ANSYS). In this paper, the process of salt heaving and frost heav...

  4. Effects of straw mulching on soil evaporation during the soil thawing ...

    Indian Academy of Sciences (India)

    Qiang Fu

    2018-03-27

    Mar 27, 2018 ... Materials and methods. 2.1 Study area ... 110 days, and the frost-free period is approximately. 140 days. ..... flow to the soil surface was sufficient to meet the evaporative ..... Impact of ambient conditions on evaporation from porous media ... through integrated modeling of the atmospheric boundary layer and ...

  5. Impact of abiotic factors on frost resistance and cold acclimation in Salix species and clones

    Energy Technology Data Exchange (ETDEWEB)

    Fircks, H. von [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Short Rotation Forestry

    1996-12-31

    The effects of mineral nitrogen, photoperiod and day-night temperature on frost resistance and growth cessation in Salix species and clones are discussed. Increased nitrogen supply and imbalances between nitrogen and other elements might cause extensive frost damage in plants of Salix. Vegetation frosts below -3 deg C reduces the level of annual yield. Although Salix clones differ in resistance to freezing stress, the capacity to recover and grow after frosts are equal essential properties which affect the growth and biomass production of shoots after night frosts in June. Early autumn frosts causing freezing damage not only may delay the onset of growth cessation and cold acclimation, but also affect the winter survival of shoots. Increased nitrogen supply prior to cold acclimation postponed growth cessation and cold acclimation. Differences in nutrient status in plants cause also differences in retranslocation of mineral nutrients. Absence of damaging autumn frosts allow plants irrespective of nitrogen status to develop a frost resistance of at least - 80 deg C. 21 refs, 1 fig, 3 tabs

  6. Soil frost-induced soil moisture precipitation feedback and effects on atmospheric states

    Science.gov (United States)

    Hagemann, Stefan; Blome, Tanja; Ekici, Altug; Beer, Christian

    2016-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact large-scale hydrology and climate over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Results show a large improvement in the simulated discharge. On one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction of soil moisture leads to a positive

  7. Experimental study on frosting control of mobile air conditioning system with microchannel evaporator

    International Nuclear Information System (INIS)

    Qu Xiaohua; Shi Junye; Qi Zhaogang; Chen Jiangping

    2011-01-01

    In this paper, a newly developed frost control system is proposed. System bench tests and vehicle test in wind tunnel have been carried out to explore the anti-frosting performance of automotive air conditioning system with microchannel evaporator. The experimental results are compared with the baseline conventional laminated evaporator system. The test results show that the installation position of temperature sensor can dramatically affect the anti-frosting performance. The clutch switching on/off temperature range of the microchannel evaporator is also experimentally studied. The test results show that, with a proper installation position and on/off temperature range, the system COP can be improved, and meanwhile the panel vents' air off temperature can be reduced, and temperature swing can be reduced. - Highlights: → The frost control systems were tested with microchannel and laminated evaporators separately. → The installation position of temperature sensor affects the anti-frosting performance. → Temperature control range affects the anti-frosting performance. → The panel vents' air off temperature and swing can be reduced by proper control parameters. → The system COP can be improved by proper control parameters.

  8. Tints, Shades and Frost

    Science.gov (United States)

    Sterling, Joan

    2009-01-01

    This article describes a classroom art project inspired by the work of Robert Frost, one of the most acclaimed and beloved American poets of all time. Using tints and shades in a composition, this project demonstrates how quality literature may be incorporated into elementary art lessons in a very useful way, making art an important complement to…

  9. CO2 Frost Phenomenon for Binary System of Methane-Carbon Dioxide Mixtures

    Directory of Open Access Journals (Sweden)

    Gede Wibawa

    2015-12-01

    Full Text Available In the present study, the CO2 frost phenomenon of CH4-CO2 mixtures has been observed for the rational design of CO2 removal from natural gas using a controlled freeze out area. The CO2 frost conditions were estimated using the ZNE method and process simulation software (Aspen HYSYS® v7.3. The experiment was carried out using a double pipe heat exchanger (DPHE with the concentration of CO2 in the gas mixture at 5 and 10% and pressure of the gas mixture from 1 to 20 bar. The equilibrium temperature predictions of the ZNE method and the process simulation software only had a slight difference, with a magnitude deviation of less than 1% for pressures below 20 bar and 3% for pressures in the range of 20-30 bar, respectively. In the experimental study, CO2 frost formation was detected at pressures of 1, 5, 10 and 20 bar. The locations of the initial CO2 frost formation were determined using a pressure drop indicator associated with the predicted frost temperatures obtained from the ZNE method and the process simulation software. For all studied variables, the locations of initial CO2 frost formation were found at 0.887-1.531 m from the inlet.

  10. Dissecting the genetic architecture of frost tolerance in Central European winter wheat.

    Science.gov (United States)

    Zhao, Yusheng; Gowda, Manje; Würschum, Tobias; Longin, C Friedrich H; Korzun, Viktor; Kollers, Sonja; Schachschneider, Ralf; Zeng, Jian; Fernando, Rohan; Dubcovsky, Jorge; Reif, Jochen C

    2013-11-01

    Abiotic stress tolerance in plants is pivotal to increase yield stability, but its genetic basis is still poorly understood. To gain insight into the genetic architecture of frost tolerance, this work evaluated a large mapping population of 1739 wheat (Triticum aestivum L.) lines and hybrids adapted to Central Europe in field trials in Germany and fingerprinted the lines with a 9000 single-nucleotide polymorphism array. Additive effects prevailed over dominance effects. A two-dimensional genome scan revealed the presence of epistatic effects. Genome-wide association mapping in combination with a robust cross-validation strategy identified one frost tolerance locus with a major effect located on chromosome 5B. This locus was not in linkage disequilibrium with the known frost loci Fr-B1 and Fr-B2. The use of the detected diagnostic markers on chromosome 5B, however, does not allow prediction of frost tolerance with high accuracy. Application of genome-wide selection approaches that take into account also loci with small effect sizes considerably improved prediction of the genetic variation of frost tolerance in wheat. The developed prediction model is valuable for improving frost tolerance because this trait displays a wide variation in occurrence across years and is therefore a difficult target for conventional phenotypic selection.

  11. Time as An Important Soil-Forming Factor Influencing Modern and Ancient Magnetic Susceptibility Enhancement Along the Delaware River Valley, USA

    Science.gov (United States)

    Stinchcomb, G. E.; Peppe, D. J.; Driese, S. G.

    2011-12-01

    Magnetic susceptibility is an increasingly popular low-cost method for rapidly assessing paleoclimate and paleoenvironmental impact on buried soils. The goal of this study is to determine the primary influence(s) on soil magnetic susceptibility along floodplain, terrace and upland soils in the middle Delaware River Valley, USA, using environmental magnetic, pedologic, and stratigraphic techniques. Two-hundred thirty samples were collected from age-constrained sandy, quartz-rich, floodplain, terrace, and upland soils (Entisols, Inceptisols). A Kruskal-Wallis (K-W) and post-hoc Tukey-Kramer (T-K) (α=0.05) multiple comparisons analysis on 176 mass-specific low-field susceptibility (Xlf) assays show that A and B horizons are magnetically enhanced compared to C and E horizons (ptesting show that Xlf results, when grouped by floodplain-terrace designation (i.e., chronofunction) are significantly different (p<0.0001). The older T3 terrace and upland Xlf values (0.34±0.14 10^-6 m^3 kg^-1) are greater than the younger T2 terrace (0.18±0.06 10^-6 m^3 kg^-1) values, which are greater than modern floodplain (0.09±0.01 10^-6 m^3 kg^-1) Xlf values. These data suggest that longer intervals of soil formation enhance the Χlf value. This hypothesis is further supported when 159 Xlf values are plotted vs. age for the entire Holocene. A locally-weighted regression smoothing curve (LOESS) shows two distinct intervals of magnetic enhancement during previously established dry intervals, the early and late-middle Holocene. We hypothesize that prolonged drought during the early and middle Holocene reduced flood frequency and magnitude and the likelihood of soil burial, resulting in longer soil forming intervals and higher Xlf values. Although precipitation influences the Xlf signature, the results from this study suggest that the magnetic susceptibility values of well-drained buried floodplain soils along the Delaware River Valley are partly a function of time.

  12. Vulnerability assessment to frost disaster in dieng volcanic highland using spatial multi-criteria evaluation

    Science.gov (United States)

    Pradana, A.; Rahmanu, Y. A.; Prabaningrum, I.; Nurafifa, I.; Hizbaron, D. R.

    2018-04-01

    Dieng Volcanic Highland is one of frost disaster prone area which is very unique phenomenon in tropical region. Frost indicated by appearance of frozen dew or ice layer on the ground or vegetation surface due air inversion and cold temperatures during midnight in dry season. Appearance of frost significantly causes plant damage and losses on agricultural land, while the impacts were strongly influenced by level of vulnerability within agricultural communities. This study aims to analyze the impact of frost on agricultural land in Dieng, to identify characteristics of physical, social, economic vulnerability and coping capacity of agricultural communities to frost disaster in Dieng, and to estimate total vulnerability of frost disasters in Dieng through SMCE scenario. Research was conducted in Dieng Village, Wonosobo and Dieng Kulon Village, Banjarnegara. Method to assess vulnerability level is performed by Spatial Multi Criteria Evaluation (SMCE) method using ILWIS software through a combination of physical, social, and economic vulnerability regarding frost hazard, as well as coping capacity of farmers. Data collected by interview within different agricultural plots using questionnaire and in-depth interview method on frost affected agricultural land. Impact of frost mostly causes damage on potato agricultural land than any other types of commodities, such as carrot, leek or cabbage. Losses varies in range of 0 million to 55 million rupiah, at most events in range of 10 million to 15 million rupiah during frost season on July-August-September. Main factors determining vulnerability comes from crop losses, preparedness effort, and type of commodity. Agricultural land dominated by high level physical vulnerability (95.37 percent), high level social vulnerability (70.79 percent), moderate level economic vulnerability (79.23 percent) and moderate level coping capacity (73.18 percent). All five scenarios indicated that level of total vulnerability vary only from

  13. Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L.) stand in south-eastern Germany based on repeated digital photographs.

    Science.gov (United States)

    Menzel, Annette; Helm, Raimund; Zang, Christian

    2015-01-01

    Damage by late spring frost is a risk deciduous trees have to cope with in order to optimize the length of their growing season. The timing of spring phenological development plays a crucial role, not only at the species level, but also at the population and individual level, since fresh new leaves are especially vulnerable. For the pronounced late spring frost in May 2011 in Germany, we studied the individual leaf development of 35 deciduous trees (mainly European beech Fagus sylvatica L.) at a mountainous forest site in the Bayerischer Wald National Park using repeated digital photographs. Analyses of the time series of greenness by a novel Bayesian multiple change point approach mostly revealed five change points which almost perfectly matched the expected break points in leaf development: (i) start of the first greening between day of the year (DOY) 108-119 (mean 113), (ii) end of greening, and (iii) visible frost damage after the frost on the night of May 3rd/4th (DOY 123/124), (iv) re-sprouting 19-38 days after the frost, and (v) full maturity around DOY 178 (166-184) when all beech crowns had fully recovered. Since frost damage was nearly 100%, individual susceptibility did not depend on the timing of first spring leaf unfolding. However, we could identify significant patterns in fitness linked to an earlier start of leaf unfolding. Those individuals that had an earlier start of greening during the first flushing period had a shorter period of recovery and started the second greening earlier. Thus, phenological timing triggered the speed of recovery from such an extreme event. The maximum greenness achieved, however, did not vary with leaf unfolding dates. Two mountain ashes (Sorbus aucuparia L.) were not affected by the low temperatures of -5°C. Time series analysis of webcam pictures can thus improve process-based knowledge and provide valuable insights into the link between phenological variation, late spring frost damage, and recovery within one stand.

  14. [Occurrence and control of frost in Tilia amurensis and Fraxinus mandshurica young plantations].

    Science.gov (United States)

    Chen, X; Zhang, Y; Ma, H

    2000-12-01

    The changes of minimum temperature periodical biological phenomena and frost in yound Tilia amurensis and Fraxinus mandshurica plantation stands were systematically analyzed based on the vertical gradient observation and plot investigation. Meanwhile, the resistance of Tilia amurensis to late frost was also studied. The results showed that the phenophase of T. amurensis was later than that of F. mandshurica. Influenced by significant temperature inversions in this area, the phenophase of T. amurensis and F. mandshurica changed regularly in different aspects and slope positions. The sprouts on west slope started earlier than that on east slope. The higher they grew on the slope, the earlier they sprouted, with the earliest sprout at the top of slope. Late frost in this area only took place when the trees were sprouting, but air temperature decreased significantly at the same time. The degree of injury from the late frost could be controlled effectively by selecting suitable site. Sites down the slope, especially the east slope, were not suitable for T. amurensis and F. mandshurica plantation in this research area. Chemical treatment and biological shading could prevent late frost injury through putting off sprout. Mixed plantations could prevent F. mandshurica and T. anurensis from late frost injury significantly, and the frost injury index and the proportion of the tree number of different injury grades were lower than those in pure stands.

  15. A method for assessing frost damage risk in sweet cherry orchards of South Patagonia

    NARCIS (Netherlands)

    Cittadini, E.D.; Ridder, de N.; Peri, P.L.; Keulen, van H.

    2006-01-01

    Quantification of frost damage risk is important in planning the development of new orchard areas and for decision-making on design and installation of frost control systems. The objective of this study was to develop a comprehensive method to quantify frost damage risk in different sweet cherry

  16. Genetic architecture of winter hardiness and frost tolerance in triticale.

    Directory of Open Access Journals (Sweden)

    Wenxin Liu

    Full Text Available Abiotic stress experienced by autumn-sown crops during winter is of great economic importance as it can have a severe negative impact on yield. In this study, we investigated the genetic architecture of winter hardiness and frost tolerance in triticale. To this end, we used a large mapping population of 647 DH lines phenotyped for both traits in combination with genome-wide marker data. Employing multiple-line cross QTL mapping, we identified nine main effect QTL for winter hardiness and frost tolerance of which six were overlapping between both traits. Three major QTL were identified on chromosomes 5A, 1B and 5R. In addition, an epistasis scan revealed the contribution of epistasis to the genetic architecture of winter hardiness and frost tolerance in triticale. Taken together, our results show that winter hardiness and frost tolerance are complex traits that can be improved by phenotypic selection, but also that genomic approaches hold potential for a knowledge-based improvement of these important traits in elite triticale germplasm.

  17. The effects of design and operating factors on the frost growth and thermal performance of a flat plate fin-tube heat exchanger under the frosting condition

    International Nuclear Information System (INIS)

    Lee, Kwan Soo; Kim, Woo Seung

    1999-01-01

    An experimental study of the effects of various factors(fin pitch, fin arrangement, air temperature, air humidity, and air velocity) on the frost growth and thermal performance of a fin-tube heat exchanger has been conducted under the frosting condition. It is found that the thermal performance of a heat exchanger is closely related to the blockage ratio of the air flow passages due to the frost growth. The maximum allowable blockage ratio is used to determine the criteria for the optimal operating conditions of a fin-tube heat exchanger. It is also shown that heat transfer rate of heat exchanger with staggered fin arrangement increases about 17% and the time required for heat transfer rate to reach a maximum value becomes longer, compared with those of an inline fin-tube heat exchanger under the frosting condition. The energy transfer resistance between the air and coolant decreases with the increase of inlet air temperature and velocity and with decreasing inlet air humidity

  18. A new model for predicting performance of fin-and-tube heat exchanger under frost condition

    International Nuclear Information System (INIS)

    Cui, J.; Li, W.Z.; Liu, Y.; Zhao, Y.S.

    2011-01-01

    Accurate prediction of frost characteristics has crucial influence on designing effective heat exchangers. In this paper, a new CFD (Computational Fluid Dynamics) model has been proposed to predict the frost behaviour. The initial period of frost formation can be predicted and the influence of surface structure can be considered. The numerical simulations have been carried out to investigate the performance of fin-and-tube heat exchanger under frost condition. The results have been validated by comparison of simulations with the data computed by empirical formulas. The transient local frost formation has been obtained. The average frost thickness, heat exchanger coefficient and pressure drop on air side has been analysed as well. In addition, the influence factors have also been discussed, such as fin pitch, relative humidity, air flow rate and evaporating temperature of refrigerant.

  19. Frost-free Dunes

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03291 Frost-free Dunes These dark dunes are frost covered for most of the year. As southern summer draws to a close, the dunes have been completely defrosted. Image information: VIS instrument. Latitude -66.6N, Longitude 37.0E. 34 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. A comparison of Frost expression among species and life stages of Drosophila.

    Science.gov (United States)

    Bing, X; Zhang, J; Sinclair, Brent J

    2012-02-01

    Frost (Fst) is a gene associated with cold exposure in Drosophila melanogaster. We used real-time PCR to assess whether cold exposure induces expression of Fst in 10 different life stages of D. melanogaster, and adults of seven other Drosophila species. We exposed groups of individuals to 0 °C (2 h), followed by 1 h recovery (22 °C). Frost was significantly upregulated in response to cold in eggs, third instar larvae, and 2- and 5-day-old male and female adults in D. melanogaster. Life stages in which cold did not upregulate Fst had high constitutive expression. Frost is located on the opposite strand of an intron of Diuretic hormone (DH), but cold exposure did not upregulate DH. Frost orthologues were identified in six other species within the Melanogaster group (Drosophila sechellia, Drosophila simulans, Drosophila yakuba, Drosophila erecta, Drosophila ananassae and Drosophila mauritiana). Frost orthologues were upregulated in response to cold exposure in both sexes in adults of all of these species. The predicted structure of a putative Frost consensus protein shows highly conserved tandem repeats of motifs involved in cell signalling (PEST and TRAF2), suggesting that Fst might encode an adaptor protein involved in acute stress or apoptosis signalling in vivo. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  1. ISOLATION AND ANTIBIOTIC SUSCEPTIBILITY TESTING OF RAPIDLY-GROWING MYCOBACTERIA FROM GRASSLAND SOILS

    Directory of Open Access Journals (Sweden)

    Martina Kyselková

    2013-08-01

    Full Text Available Rapidly growing mycobacteria (RGM are common soil saprophytes, but certain strains cause infections in human and animals. The infections due to RGM have been increasing in past decades and are often difficult to treat. The susceptibility to antibiotics is regularly evaluated in clinical isolates of RGM, but the data on soil RGM are missing. The objectives of this study was to isolate RGM from four grassland soils with different impact of manuring, and assess their resistance to antibiotics and the ability to grow at 37°C and 42°C. Since isolation of RGM from soil is a challenge, a conventional decontamination method (NaOH/malachite green/cycloheximide and a recent method based on olive oil/SDS demulsification were compared. The olive oil/SDS method was less efficient, mainly because of the emulsion instability and plate overgrowing with other bacteria. Altogether, 44 isolates were obtained and 23 representatives of different RGM genotypes were screened. The number of isolates per soil decreased with increasing soil pH, consistently with previous findings that mycobacteria were more abundant in low pH soils. Most of the isolates belonged to the Mycobacterium fortuitum group. The majority of isolates was resistant to 2-4 antibiotics. Multiresistant strains occurred also in a control soil that has a long history without the exposure to antibiotic-containing manure. Seven isolates grew at 37°C, including the species M. septicum and M. fortuitum known for infections in humans. This study shows that multiresistant RGM close to known human pathogens occur in grassland soils regardless the soil history of manuring.

  2. Increasing frost risk associated with advanced citrus flowering dates in Kerman and Shiraz, Iran: 1960-2010.

    Science.gov (United States)

    Fitchett, Jennifer M; Grab, Stefan W; Thompson, Dave I; Roshan, Gholamreza

    2014-10-01

    Flowering dates and the timing of late season frost are both driven by local ambient temperatures. However, under climatic warming observed over the past century, it remains uncertain how such impacts affect frost risk associated with plant phenophase shifts. Any increase in frost frequency or severity has the potential to damage flowers and their resultant yields and, in more extreme cases, the survival of the plant. An accurate assessment of the relationship between the timing of last frost events and phenological shifts associated with warmer climate is thus imperative. We investigate spring advances in citrus flowering dates (orange, tangerine, sweet lemon, sour lemon and sour orange) for Kerman and Shiraz, Iran from 1960 to 2010. These cities have experienced increases in both T max and T min, advances in peak flowering dates and changes in last frost dates over the study period. Based on daily instrumental climate records, the last frost dates for each year are compared with the peak flowering dates. For both cities, the rate of last frost advance lags behind the phenological advance, thus increasing frost risk. Increased frost risk will likely have considerable direct impacts on crop yields and on the associated capacity to adapt, given future climatic uncertainty.

  3. Water frost on Charon

    Science.gov (United States)

    Buie, Marc W.; Cruikshank, Dale P.; Lebofsky, Larry A.; Tedesco, Edward F.

    1987-01-01

    New spectra of the Pluto-Charon system taken just before and during a total eclipse of the satellite are presented. The spectrum of Charon extracted from the data reveals the signature of water ice. There is no evidence for any methane or ammonia frost on the surface of Charon. The significance of these findings for the evolution of the Pluto-Charon system are discussed.

  4. Frost Forecasting for Fruitgrowers

    Science.gov (United States)

    Martsolf, J. D.; Chen, E.

    1983-01-01

    Progress in forecasting from satellite data reviewed. University study found data from satellites displayed in color and used to predict frost are valuable aid to agriculture. Study evaluated scheme to use Earth-temperature data from Geostationary Operational Environmental Satellite in computer model that determines when and where freezing temperatures endanger developing fruit crops, such as apples, peaches and cherries in spring and citrus crops in winter.

  5. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing.

    Science.gov (United States)

    Augspurger, Carol K

    2013-01-01

    Climate change, with both warmer spring temperatures and greater temperature fluctuations, has altered phenologies, possibly leading to greater risk of spring frost damage to temperate deciduous woody plants. Phenological observations of 20 woody species from 1993 to 2012 in Trelease Woods, Champaign County, Illinois, USA, were used to identify years with frost damage to vegetative and reproductive phases. Local temperature records were used in combination with the phenological observations to determine what combinations of the two were associated with damage. Finally, a long-term temperature record (1889-1992) was evaluated to determine if the frequency of frost damage has risen in recent decades. Frost Frost damage occurred in five years in the interior and in three additional years at only the forest edge. The degree of damage varied with species, life stage, tissue (vegetative or reproductive), and phenological phase. Common features associated with the occurrence of damage to interior plants were (1) a period of unusual warm temperatures in March, followed by (2) a frost event in April with a minimum temperature frost damage increased significantly, from 0.03 during 1889-1979 to 0.21 during 1980-2012. When the criteria were "softened" to frost damage events more common.

  6. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Laustsen, Sara

    2013-01-01

    the difference between poor and satisfactory frost-resistance. Furthermore, the results indicate that voids created directly by SAP protect concrete against frost deterioration just like other air voids; if the concrete contains enough SAP voids, these alone can provide sufficient frost resistance. © 2013 RILEM....

  7. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    Science.gov (United States)

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  8. Micrometeorological and Thermal Control of Frost Flower Growth and Decay on Young Sea Ice

    DEFF Research Database (Denmark)

    Galley, Ryan J.; Else, Brent G. T.; Geilfus, Nicolas-Xavier

    2015-01-01

    -wave radiation balance at the surface. The observed crystal habits of the frost flowers were long needles, betraying their origin from the vapour phase at temperatures between -20°C and -30°C. After a night of growth, frost flowers decayed associated with increased solar radiation, a net surface radiation...... and the physical and thermal properties of the sea ice and atmosphere that form, decay and destroy frost flowers on young sea ice. Frost flower formation occurred during a high-pressure system that caused air temperatures to drop to -30°C, with relative humidity of 70% (an under saturated atmosphere), and very...

  9. Frost heave in helium and other substances

    International Nuclear Information System (INIS)

    Dash, J.G.

    1992-01-01

    A thermomolecular pressure associated with a thermal gradient produces the phenomenon known as 'frost heave' in moisture-containing frozen ground. Thermomolecular pressures can occur in any material. As described here it is known that frost heave or thermomolecular pressures can be exhibited by any material undergoing 'premelting,' where liquid exists at temperatures below the normal solid-liquid phase boundary. Yet, the recent work on 4 He [Hiroi, et a., Phys. Rev.B 40, 6581 (1989)] is the first published study of thermomolecular pressure in nonaqueous material. The striking prominence of the effect presents advantages of further applications of thermomolecular pressure for fundamental research. This paper describes the phenomenon, outlines the theory and discusses some possible static and dynamic studies of quantum liquids

  10. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections.

    Science.gov (United States)

    Liu, Rong; Fang, Li; Yang, Tao; Zhang, Xiaoyan; Hu, Jinguo; Zhang, Hongyan; Han, Wenliang; Hua, Zeke; Hao, Junjie; Zong, Xuxiao

    2017-07-19

    Frost stress is one of the major abiotic stresses causing seedling death and yield reduction in winter pea. To improve the frost tolerance of pea, field evaluation of frost tolerance was conducted on 672 diverse pea accessions at three locations in Northern China in three growing seasons from 2013 to 2016 and marker-trait association analysis of frost tolerance were performed with 267 informative SSR markers in this study. Sixteen accessions were identified as the most winter-hardy for their ability to survive in all nine field experiments with a mean survival rate of 0.57, ranging from 0.41 to 0.75. Population structure analysis revealed a structured population of two sub-populations plus some admixtures in the 672 accessions. Association analysis detected seven markers that repeatedly had associations with frost tolerance in at least two different environments with two different statistical models. One of the markers is the functional marker EST1109 on LG VI which was predicted to co-localize with a gene involved in the metabolism of glycoproteins in response to chilling stress and may provide a novel mechanism of frost tolerance in pea. These winter-hardy germplasms and frost tolerance associated markers will play a vital role in marker-assisted breeding for winter-hardy pea cultivar.

  11. Preparing for climate change: Breeding frost tolerant potatoes adapted to Andean Highlands especially the Altiplano

    Science.gov (United States)

    Frost can have a devastating impact on potato production since most cultivated potatoes are very sensitive to frost and are severely damaged at air temperatures below -2 or -3 C. In the Altiplano of Peru and Bolivia over 60,000 hectares of potato production is impacted by frost. It has been estimate...

  12. Current and emerging screening methods to identify post-head-emergence frost adaptation in wheat and barley.

    Science.gov (United States)

    Frederiks, T M; Christopher, J T; Harvey, G L; Sutherland, M W; Borrell, A K

    2012-09-01

    Cereal crops can suffer substantial damage if frosts occur at heading. Identification of post-head-emergence frost (PHEF) resistance in cereals poses a number of unique and difficult challenges. Many decades of research have failed to identify genotypes with PHEF resistance that could offer economically significant benefit to growers. Research and breeding gains have been limited by the available screening systems. Using traditional frost screening systems, genotypes that escape frost injury in trials due to spatial temperature differences and/or small differences in phenology can be misidentified as resistant. We believe that by improving techniques to minimize frost escapes, such 'false-positive' results can be confidently identified and eliminated. Artificial freezing chambers or manipulated natural frost treatments offer many potential advantages but are not yet at the stage where they can be reliably used for frost screening in breeding programmes. Here we describe the development of a novel photoperiod gradient method (PGM) that facilitates screening of genotypes of different phenology under natural field frosts at matched developmental stages. By identifying frost escapes and increasing the efficiency of field screening, the PGM ensures that research effort can be focused on finding genotypes with improved PHEF resistance. To maximize the likelihood of identifying PHEF resistance, we propose that the PGM form part of an integrated strategy to (i) source germplasm;(ii) facilitate high throughput screening; and (iii) permit detailed validation. PGM may also be useful in other studies where either a range of developmental stages and/or synchronized development are desired.

  13. Frost Multidimensional Perfectionism Scale: the portuguese version

    Directory of Open Access Journals (Sweden)

    Ana Paula Monteiro Amaral

    2013-01-01

    Full Text Available BACKGROUND: The Frost Multidimensional Perfectionism Scale is one of the most world widely used measures of perfectionism. OBJECTIVE: To analyze the psychometric properties of the Portuguese version of the Frost Multidimensional Perfectionism Scale. METHODS: Two hundred and seventeen (178 females students from two Portuguese Universities filled in the scale, and a subgroup (n = 166 completed a retest with a four weeks interval. RESULTS: The scale reliability was good (Cronbach alpha = .857. Corrected item-total correlations ranged from .019 to .548. The scale test-retest reliability suggested a good temporal stability with a test-retest correlation of .765. A principal component analysis with Varimax rotation was performed and based on the Scree plot, two robust factorial structures were found (four and six factors. The principal component analyses, using Monte Carlo PCA for parallel analyses confirmed the six factor solution. The concurrent validity with Hewitt and Flett MPS was high, as well as the discriminant validity of positive and negative affect (Profile of Mood Stats-POMS. DISCUSSION: The two factorial structures (of four and six dimensions of the Portuguese version of Frost Multidimensional Perfectionism Scale replicate the results from different authors, with different samples and cultures. This suggests this scale is a robust instrument to assess perfectionism, in several clinical and research settings as well as in transcultural studies.

  14. Transcriptome profiling of fully open flowers in a frost-tolerant almond genotype in response to freezing stress.

    Science.gov (United States)

    Hosseinpour, Batool; Sepahvand, Sadegh; Kamali Aliabad, Kazem; Bakhtiarizadeh, MohammadReza; Imani, Ali; Assareh, Reza; Salami, Seyed Alireza

    2018-02-01

    Spring frost is a major limiting abiotic stress for the cultivation of almonds [Prunus dulcis (Mill.)] in Mediterranean areas or the Middle East. Spring frost, in particular, damages almond fully open flowers, resulting to significant reduction in yield. Little is known about the genetic factors expressed after frost stress in Prunus spp. as well as in almond fully open flowers. Here, we provide the molecular signature of pistils of fully open flowers from a frost-tolerant almond genotype. The level of frost tolerance in this genotype was determined for all three flowering stages and was confirmed by comparing it to two other cultivars using several physiological analyses. Afterwards, comprehensive expression profiling of genes expressed in fully open flowers was performed after being exposed to frost temperatures (during post-thaw period). Clean reads, 27,104,070 and 32,730,772, were obtained for non-frost-treated and frost-treated (FT) libraries, respectively. A total of 62.24 Mb was assembled, generating 50,896 unigenes and 66,906 transcripts. Therefore, 863 upregulated genes and 555 downregulated genes were identified in the FT library. Functional annotation showed that most of the upregulated genes were related to various biological processes involved in responding to abiotic stress. For the first time, a highly expressed cold-shock protein was identified in the reproductive organ of fruit trees. The expression of six genes was validated by RT-PCR. As the first comprehensive analysis of open flowers in a frost-tolerant almond genotype, this study represents a key step toward the molecular breeding of fruit tree species for frost tolerance.

  15. Temporal and spatial variability of frost-free seasons in the Great Lakes region of the United States

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman; Jeffrey A. Andresen

    2014-01-01

    The frequency and timing of frost events and the length of the growing season are critical limiting factors in many human and natural ecosystems. This study investigates the temporal and spatial variability of the date of last spring frost (LSF), the date of first fall frost (FFF), and the length of the frost-free season (FFS) in the Great Lakes region of the United...

  16. Frost induced damages within porous materials - from concrete technology to fuel cells technique

    Science.gov (United States)

    Palecki, Susanne; Gorelkov, Stanislav; Wartmann, Jens; Heinzel, Angelika

    2017-12-01

    Porous media like concrete or layers of membrane electrode assemblies (MEA) within fuel cells are affected by a cyclic frost exposure due to different damage mechanisms which could lead to essential degradation of the material. In general, frost damages can only occur in case of a specific material moisture content. In fuel cells, residual water is generally available after shut down inside the membrane i.e. the gas diffusion layer (GDL). During subsequent freezing, this could cause various damage phenomena such as frost heaves and delamination effects of the membrane electrode assembly, which depends on the location of pore water and on the pore structure itself. Porous materials possess a pore structure that could range over several orders of magnitudes with different properties and freezing behaviour of the pore water. Latter can be divided into macroscopic, structured and pre-structured water, influenced by surface interactions. Therefore below 0 °C different water modifications can coexist in a wide temperature range, so that during frost exposure a high amount of unfrozen and moveable water inside the pore system is still available. This induces transport mechanisms and shrinkage effects. The physical basics are similar for porous media. While the freezing behaviour of concrete has been studied over decades of years, in order to enhance the durability, the know-how about the influence of a frost attack on fuel cell systems is not fully understood to date. On the basis of frost damage models for concrete structures, an approach to describe the impact of cyclic freezing and thawing on membrane electrode assemblies has been developed within this research work. Major aim is beyond a better understanding of the frost induced mechanisms, the standardization of a suitable test procedure for the assessment of different MEA materials under such kind of attack. Within this contribution first results will be introduced.

  17. Evaluation of the impact of frost resistances on potential altitudinal limit of trees.

    Science.gov (United States)

    Charrier, Guillaume; Cochard, Hervé; Améglio, Thierry

    2013-09-01

    Winter physiology of woody plants is a key issue in temperate biomes. Here, we investigated different frost resistance mechanisms on 1-year-old branches of 11 European tree species from November until budburst: (i) frost hardiness of living cells (by electrolyte leakage method), (ii) winter embolism sensitivity (by percentage loss of conductivity: PLC) and (iii) phenological variation of budburst (by thermal time to budburst). These ecophysiological traits were analyzed according to the potential altitudinal limit, which is highly related to frost exposure. Seasonal frost hardiness and PLC changes are relatively different across species. Maximal PLC observed in winter (PLCMax) was the factor most closely related to potential altitudinal limit. Moreover, PLCMax was related to the mean hydraulic diameter of vessels (indicating embolism sensitivity) and to osmotic compounds (indicating ability of living cells to refill xylem conducting elements). Winter embolism formation seems to be counterbalanced by active refilling from living cells. These results enabled us to model potential altitudinal limit according to three of the physiological/anatomical parameters studied. Monitoring different frost resistance strategies brings new insights to our understanding of the altitudinal limits of trees.

  18. Is shade beneficial for mediterranean shrubs experiencing periods of extreme drought and late-winter frosts?

    Science.gov (United States)

    Valladares, Fernando; Zaragoza-Castells, Joana; Sánchez-Gómez, David; Matesanz, Silvia; Alonso, Beatriz; Portsmuth, Angelika; Delgado, Antonio; Atkin, Owen K

    2008-12-01

    Plants are naturally exposed to multiple, frequently interactive stress factors, most of which are becoming more severe due to global change. Established plants have been reported to facilitate the establishment of juvenile plants, but net effects of plant-plant interactions are difficult to assess due to complex interactions among environmental factors. An investigation was carried out in order to determine how two dominant evergreen shrubs (Quercus ilex and Arctostaphylos uva-ursi) co-occurring in continental, Mediterranean habitats respond to multiple abiotic stresses and whether the shaded understorey conditions ameliorate the negative effects of drought and winter frosts on the physiology of leaves. Microclimate and ecophysiology of sun and shade plants were studied at a continental plateau in central Spain during 2004-2005, with 2005 being one of the driest and hottest years on record; several late-winter frosts also occurred in 2005. Daytime air temperature and vapour pressure deficit were lower in the shade than in the sun, but soil moisture was also lower in the shade during the spring and summer of 2005, and night-time temperatures were higher in the shade. Water potential, photochemical efficiency, light-saturated photosynthesis, stomatal conductance and leaf 13C composition differed between sun and shade individuals throughout the seasons, but differences were species specific. Shade was beneficial for leaf-level physiology in Q. ilex during winter, detrimental during spring for both species, and of little consequence in summer. The results suggest that beneficial effects of shade can be eclipsed by reduced soil moisture during dry years, which are expected to be more frequent in the most likely climate change scenarios for the Mediterranean region.

  19. Soil characterization using patterns of magnetic susceptibility versus effective radium concentration

    Directory of Open Access Journals (Sweden)

    F. Girault

    2011-08-01

    Full Text Available Low-field magnetic susceptibility χm and effective radium concentration ECRa, obtained from radon emanation, have been measured in the laboratory with 129 soil samples from Nepal. Samples along horizontal profiles in slope debris or terrace scarps showed rather homogeneous values of both χm and ECRa. One sample set, collected vertically on a lateritic terrace scarp, had homogeneous values of ECRa while χm increased by a factor of 1 to 10 for residual soils and topsoils. However, for a set of samples collected on three imbricated river terraces, values of ECRa, homogeneous over a given terrace, displayed a gradual increase from younger to older terraces. By contrast, χm showed more homogeneous mean values over the three terraces, with a larger dispersion, however, for the younger one. Similarly, Kathmandu sediments exhibited a large increase in ECRa from sand to clay layers, while χm increased moderately. The combination of χm and ECRa, thus, provides a novel tool to characterize quantitatively various soil groups and may be of interest to distinguish modes of alteration or deposition histories.

  20. Frost hardiness of mycorrhizal and non-mycorrhizal Scots pine under two fertilization treatments.

    Science.gov (United States)

    Korhonen, Anna; Lehto, Tarja; Repo, Tapani

    2015-07-01

    Survival and functioning of mycorrhizal associations at low temperatures are not known well. In an earlier study, ectomycorrhizas did not affect the frost hardiness of Scots pine (Pinus sylvestris L.) roots, but here we studied whether differential nutrient availability would change the result and additionally, alter frost hardiness aboveground. The aim in this experiment was to compare the frost hardiness of roots and needles of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine seedlings raised using two fertilization treatments and two cold-hardening regimes. The fertilization treatments were low (LF) and high (HF) application of a complete nutrient solution. Three hundred mycorrhizal and non-mycorrhizal seedlings were cultivated in growth chambers in four blocks for 16 weeks. For the first 9 weeks, the seedlings grew in long-day and high-temperature (LDHT) with low fertilization and then they were raised for 3 weeks in LDHT with either low or high fertilization. After this, half of the plants in each treatment combination remained in LDHT, and half were transferred to short-day and low-temperature (SDLT) conditions to cold acclimatize. The frost hardiness of the roots and needles was assessed using controlled freezing tests followed by electrolyte leakage tests (REL). Mycorrhizal roots were slightly more frost hardy than non-mycorrhizal roots, but only in the growing-season conditions (LDHT) in low-nutrient treatment. In LDHT and LF, the frost hardiness of the non-mycorrhizal roots was about -9 °C, and that of the non-mycorrhizal HF roots and the mycorrhizal roots in both fertilization levels was about -11 °C. However, no difference was found in the roots within the SDLT regime, and in needles, there was no difference between mycorrhizal and fertilization treatments. The frost hardiness of needles increased by SDLT treatment, being -8.5 and -14.1 °C in LDHT and SDLT, respectively. The dry mass of roots, stems, and needles was lower in LF than in

  1. Designing a Frost Forecasting Service for Small Scale Tea Farmers in East Africa

    Science.gov (United States)

    Adams, E. C.; Nyaga, J. W.; Ellenburg, W. L.; Limaye, A. S.; Mugo, R. M.; Flores Cordova, A. I.; Irwin, D.; Case, J.; Malaso, S.; Sedah, A.

    2017-12-01

    Kenya is the third largest tea exporter in the world, producing 10% of the world's black tea. Sixty percent of this production occurs largely by small scale tea holders, with an average farm size of 1.04 acres, and an annual net income of 1,075. According to a recent evaluation, a typical frost event in the tea growing region causes about 200 dollars in losses which can be catastrophic for a small holder farm. A 72-hour frost forecast would provide these small-scale tea farmers with enough notice to reduce losses by approximately $80 annually. With this knowledge, SERVIR, a joint NASA-USAID initiative that brings Earth observations for improved decision making in developing countries, sought to design a frost monitoring and forecasting service that would provide farmers with enough lead time to react to and protect against a forecasted frost occurrence on their farm. SERVIR Eastern and Southern Africa, through its implementing partner, the Regional Centre for Mapping of Resources for Development (RCMRD), designed a service that included multiple stakeholder engagement events whereby stakeholders from the tea industry value chain were invited to share their experiences so that the exact needs and flow of information could be identified. This unique event allowed enabled the design of a service that fit the specifications of the stakeholders. The monitoring service component uses the MODIS Land Surface Temperature product to identify frost occurrences in near-real time. The prediction component, currently under testing, uses the 2-m air temperature, relative humidity, and 10-m wind speed from a series of high-resolution Weather Research and Forecasting (WRF) numerical weather prediction model runs over eastern Kenya as inputs into a frost prediction algorithm. Accuracy and sensitivity of the algorithm is being assessed with observations collected from the farmers using a smart phone app developed specifically to report frost occurrences, and from data shared through

  2. Frost Damage Detection in Sugarcane Crop Using Modis Images and Srtm Data

    Science.gov (United States)

    Rudorff, B.; Alves de Aguiar, D.; Adami, M.

    2011-12-01

    Brazil is the largest world producer of sugarcane which is used to produce almost equal proportions of either sugar (food) or ethanol (biofuel). In recent years sugarcane crop production has increased fast to meet the growing market demand for sugar and ethanol. This increase has been mainly due to expansion in crop area, but sugarcane production is also subjected to several factors that influence both the agricultural crop yield (tons of stalks/ha) and the industrial yield (kg of sugar/ton of stalks). Sugarcane is a semi-perennial crop that experiences major growth during spring and summer seasons with large demands for water and high temperatures to produce good stalk formation (crop yield). The harvest is performed mainly during fall and winter seasons when water availability and temperature should be low in order to accumulate sucrose in the stalks (industrial yield). These favorable climatic conditions for sugarcane crop are found in several regions in Brazil, particularly in São Paulo state, which is the major sugarcane producer in Brazil being responsible for almost 60% of its production. Despite the favorable climate in São Paulo state there is a certain probability of frost occurrence from time to time that has a negative impact on sugarcane crop, particularly on industrial yield, reducing the amount of sugar in the stalks; having consequences on price increase and product shortage. To evaluate the impact of frost on sugarcane crop, in the field, on a state level, is not a trivial task; however, this information is relevant due to its direct impact on the consumer market. Remote sensing images allow a synoptic view and present great potential to monitor large sugarcane plantations as has been done since 2003 in São Paulo state by the Canasat Project with Landsat type images (http://www.dsr.inpe.br/laf/canasat/en/). Images acquired from sensors with high temporal resolution such as MODIS (Moderate-Resolution Imaging Spectroradiometer) present the

  3. Numerical Model on Frost Height of Round Plate Fin Used for Outdoor Heat Exchanger of Mobile Electric Heat Pumps

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available The objective of this study is to provide the numerical model for prediction of the frost growth of the round plate fin for the purpose of using it as a round plate fin-tube heat exchanger (evaporator under frosting conditions. In this study, numerical model was considering the frost density change with time, and it showed better agreement with experimental data of Sahin (1994 than that of the Kim model (2004 and the Jonse and Parker model (1975. This is because the prediction on the frost height with time was improved by using the frost thermal conductivity reflecting the void fraction and density of ice crystal with frost growth. Therefore, the developed numerical model could be used for frosting performance prediction of the round plate fin-tube heat exchanger.

  4. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.

    Science.gov (United States)

    Chavan, Shreyas; Park, Deokgeun; Singla, Nitish; Sokalski, Peter; Boyina, Kalyan; Miljkovic, Nenad

    2018-05-21

    Frost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets. The relative significance of these two mechanisms is still not understood. Here, we study the significance of the latent heat released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by studying the dynamics of individual water droplet freezing on aluminum-, copper-, and glass-based hydrophobic and superhydrophobic surfaces. The latent heat flux released into the substrate was calculated from the measured droplet sizes and the respective freezing times ( t f ), defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To probe the effect of latent heat release, we performed three-dimensional transient finite element simulations showing that the transfer of latent heat to neighboring droplets is insignificant and accounts for a negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet evaporation during condensation frosting is governed solely by vapor pressure gradients. This study not only provides key insights into the individual droplet freezing process but also

  5. Observations of Chemical Composition in Frost Flower Growth Process and Their Implication in Aerosol Production and Bromine Activation Chemistry

    Science.gov (United States)

    Alvarez-Aviles, L.; Simpson, W. R.; Douglas, T. A.; Sturm, M.; Perovich, D. K.

    2006-12-01

    Frost flowers are believed to be responsible for most of the salt aerosol and possibly the bromine in the gas phase during springtime in Polar Regions. Frost flowers are vapor deposited ice crystals that form on new forming sea ice and wick brine from the sea-ice surface resulting in high salinities. We propose a conceptual model of frost flower growth and chemical fractionation using chemical analysis to support this model. We also consider how the chemical composition of frost flowers can tell us about the role of frost flowers in bromine activation and aerosol production. Our conceptual model is centered in two important events that occur when sea ice grows and the ice surface temperature gets colder. Brine on the sea-ice surface is drawn up the frost flower by capillary forces, therefore the high salinity values found. Secondarily salt hydrates begin to precipitate at certain temperatures. These precipitation reactions modify the chemical composition of the frost flowers and residual brine, and are the main topic of this research. We found variability and generally depletion of sulfate as compared to sea-water composition in most of the mature frost flowers. This result is in agreement with the literature, which proposes the depletion in sulfate occurs because mirabilite (Na2SO4 · 10H2O) precipitates before the brine is wicked. The observation of some slightly sulfate-enhanced samples in addition to depleted samples indicates that the brine/frost flower environment is the location where mirabilite precipitation and separation from residual brine occurs. Frost flowers bromide enhancement factors are all, within analytical limits, identical to sea water, although nearby snow is depleted in bromide. Because of the high salt concentrations in frost flowers, significant bromine activation could occur from frost flowers without being detected by this measurement. However, if all bromide activation occurred on frost flowers, and frost flowers are not depleted in

  6. Exogenous application of molybdenum affects the expression of CBF14 and the development of frost tolerance in wheat.

    Science.gov (United States)

    Al-Issawi, Mohammed; Rihan, Hail Z; Woldie, Wondwossen Abate; Burchett, Stephen; Fuller, Michael P

    2013-02-01

    Wheat is able to cold acclimate in response to low temperatures and thereby increase its frost tolerance and the extent of this acclimation is greater in winter genotypes compared to spring genotypes. Such up-regulation of frost tolerance is controlled by Cbf transcription factors. Molybdenum (Mo) application has been shown to enhance frost tolerance of wheat and this study aimed to investigate the effect of Mo on the development of frost tolerance in winter and spring wheat. Results showed that Mo treatment increased the expression of Cbf14 in wheat under non-acclimating condition but did not alter frost tolerance. However, when Mo was applied in conjunction with exposure of plants to low temperature, Mo increased the expression of Cbf14 and enhanced frost tolerance in both spring and winter genotypes but the effect was more pronounced in the winter genotype. It was concluded that the application of Mo could be useful in situations where enhanced frost resistance is required. Further studies are proposed to elucidate the effect of exogenous of applications of Mo on frost resistance in spring and winter wheat at different growth stages. Crown Copyright © 2012. Published by Elsevier Masson SAS. All rights reserved.

  7. Winter Frost and Fog

    Science.gov (United States)

    2005-01-01

    This somewhat oblique blue wide angle Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the 174 km (108 mi) diameter crater, Terby, and its vicinity in December 2004. Located north of Hellas, this region can be covered with seasonal frost and ground-hugging fog, even in the afternoon, despite being north of 30oS. The subtle, wavy pattern is a manifestation of fog. Location near: 28oS, 286oW Illumination from: upper left Season: Southern Winter

  8. Sand Dunes with Frost

    Science.gov (United States)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  9. Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions

    International Nuclear Information System (INIS)

    Shao, Liang-Liang; Yang, Liang; Zhang, Chun-Lu

    2010-01-01

    Vapor compression heat pumps are drawing more attention in energy saving applications. Microchannel heat exchangers can provide higher performance via less core volume and reduce system refrigerant charge, but little is known about their performance in heat pump systems under frosting conditions. In this study, the system performance of a commercial heat pump using microchannel heat exchangers as evaporator is compared with that using conventional finned-tube heat exchangers numerically and experimentally. The microchannel and finned-tube heat pump system models used for comparison of the microchannel and finned-tube evaporator performance under frosting conditions were developed, considering the effect of maldistribution on both refrigerant and air sides. The quasi-steady-state modeling results are in reasonable agreement with the test data under frost conditions. The refrigerant-side maldistribution is found remarkable impact on the microchannel heat pump system performance under the frost conditions. Parametric study on the fan speed and the fin density under frost conditions are conducted as well to figure out the best trade-off in the design of frost tolerant evaporators. (author)

  10. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

    Science.gov (United States)

    Barber, D. G.; Ehn, J. K.; Pućko, M.; Rysgaard, S.; Deming, J. W.; Bowman, J. S.; Papakyriakou, T.; Galley, R. J.; Søgaard, D. H.

    2014-10-01

    Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near-surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg-1 in frost flowers and 1061 µmol kg-1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine-wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition.

  11. Sewage Effluent Infiltrates Frozen Forest Soil

    Science.gov (United States)

    Alfred Ray Harris

    1976-01-01

    Secondarily treated sewage effluent, applied at the rate of 1 and 2 inches per week, infiltrated a frozen Sparta sand soil forested with jack pine and scrub oak. Maximum frost depth in treated plots averaged 60 cm and in check plots averages 35 cm. Nitrogen was mobile with some accumulation. Phosphorus was absorbed.

  12. Frost sensitivity and nutrient status in a fertilized Norway spruce stand in Denmark

    DEFF Research Database (Denmark)

    Jönsson, A. M.; Ingerslev, M.; Raulund-Rasmussen, K.

    2004-01-01

    by an index of injury, based on conductivity measurements of ion leakage from needles. Despite fertilization, all trees indicated N, P and K deficiency. The foliage, collected in late winter, was generally not very frost sensitive, but foliage from trees with the lowest K and P status were more sensitive......The aim of this study was to assess the effect of the N, P and K status on frost sensitivity of Norway spruce needles in a fertilization experiment situated in a nutrient poor 29-year-old Picea abies stand in western Denmark. The relative difference in frost sensitivity among trees was assessed...... to frost, and the current year needles were more sensitive than the second and third year needles. The advancement of bud burst was assessed in May. Trees with a relatively high N concentration in the current year needles had a more advanced bud burst than trees with a lower N concentration, increasing...

  13. Morning Frost in Trench Dug by Phoenix, Sol 113 (False Color)

    Science.gov (United States)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench. The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench. This image is presented in false color that enhances the visibility of the frost. The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide. Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  14. COMPARISON OF THE FROST RESISTANCE OF BARLEY ...

    African Journals Online (AJOL)

    Preferred Customer

    immediate recovery of the photosynthetic quantum yield after freezing. Landraces which showed the highest cold tolerance were found to acclimatize best. Key words/phrases: Barley, chlorophyll fluorescence, cold acclimation, Ethiopia, frost tolerance. INTRODUCTION. Barley (Hordeum vulgare L.) is a traditional crop.

  15. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-10-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  16. Numerical analysis on the frosting performance of a fin-tube evaporator for a refrigerator

    International Nuclear Information System (INIS)

    Lee, Moo Yeon; Jang, Yong Hee; Kim, Yong Chan; Lee, Ho Sung

    2008-01-01

    The objective of this study is to provide numerical and experimental data that can be used to investigate the performance characteristics of a flat plate fin-tube evaporator in household and commercial refrigerators under frosting conditions. Computer simulations with variations of operating conditions such as air inlet temperature, relative humidity, and geometries were performed to find out optimal design parameters of a fin-tube evaporator for household and commercial refrigerators. The tube-by-tube method was used in the simulation and the frost growth model was considered under frosting conditions. The developed analytical model predicted the decreasing rates of heat transfer capacity and air flow rate ratio within ± 10% compared to the experimental results for a refrigerator under real operating conditions. As a result, the frost thickness at 3 .deg. C and 80% is increased 40% than that of -3 .deg. C and 80%, and the frost thickness at 3 .deg. C and 90% is increased 30% than that of 3 .deg. C and 60%. Accordingly, the operating time of the evaporator in the refrigerator was reduced with the increase of the decreasing rate of air flow rate ratio at each condition

  17. Infra-red thermography for detecting frost pockets on snow-covered clear-fellings

    International Nuclear Information System (INIS)

    Mattsson, J.O.; Odin, H.; Palenius, H.P.

    1983-01-01

    The purpose of the investigation was to find out if IR-thermography from aircraft could be a useful method for registration and studies of regional variation of frost exposition within an area and of distribution of frost risks within individual felling areas. The technique, which was successful, has up till now not been utilized in Sweden for such studies in woodland

  18. Long term pavement performance computed parameter : frost penetration

    Science.gov (United States)

    2008-11-01

    As the pavement design process moves toward mechanistic-empirical techniques, knowledge of seasonal changes in pavement structural characteristics becomes critical. Specifically, frost penetration information is necessary for determining the effect o...

  19. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis

    International Nuclear Information System (INIS)

    Taulavuori, Kari; Prasad, M.N.V.; Taulavuori, Erja; Laine, Kari

    2005-01-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness. - Metal stress may reduce plant frost hardiness

  20. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Taulavuori, Kari [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland)]. E-mail: kari.taulavuori@oulu.fi; Prasad, M.N.V. [Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, Andhra Pradesh (India); Taulavuori, Erja [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland); Laine, Kari [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland)

    2005-05-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness. - Metal stress may reduce plant frost hardiness.

  1. Potential sea salt aerosol sources from frost flowers in the pan-Arctic region

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Now at Department of Earth System Science, University of California, Irvine California USA; Russell, Lynn M. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Burrows, Susannah M. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2016-09-23

    In order to better represent observed wintertime aerosol concentrations at Barrow, Alaska, we implemented an observationally-based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic (60ºN-90ºN) climate. Results show that frost flower salt emissions substantially increase the modeled surface sea salt aerosol concentration in the winter months when new sea ice and frost flowers are present. The parameterization reproduces both the magnitude and seasonal variation of the observed submicron sea salt aerosol concentration at surface in Barrow during winter much better than the standard CESM simulation without a frost-flower salt particle source. Adding these frost flower salt particle emissions increases aerosol optical depth by 10% and results in a small cooling at surface. The increase in salt particle mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 2 W m-2 in the pan-Arctic under the present-day climate.

  2. Germination and seedling frost tolerance differ between the native and invasive range in common ragweed.

    Science.gov (United States)

    Leiblein-Wild, Marion Carmen; Kaviani, Rana; Tackenberg, Oliver

    2014-03-01

    Germination characteristics and frost tolerance of seedlings are crucial parameters for establishment and invasion success of plants. The characterization of differences between populations in native and invasive ranges may improve our understanding of range expansion and adaptation. Here, we investigated germination characteristics of Ambrosia artemisiifolia L., a successful invader in Europe, under a temperature gradient between 5 and 25 °C. Besides rate and speed of germination we determined optimal, minimal and maximal temperature for germination of ten North American and 17 European populations that were sampled along major latitudinal and longitudinal gradients. We furthermore investigated the frost tolerance of seedlings. Germination rate was highest at 15 °C and germination speed was highest at 25 °C. Germination rate, germination speed, frost tolerance of seedlings, and the temperature niche width for germination were significantly higher and broader, respectively, for European populations. This was partly due to a higher seed mass of these populations. Germination traits lacked evidence for adaptation to climatic variables at the point of origin for both provenances. Instead, in the native range, seedling frost tolerance was positively correlated with the risk of frosts which supports the assumption of local adaptation. The increased frost tolerance of European populations may allow germination earlier in the year which may subsequently lead to higher biomass allocation--due to a longer growing period--and result in higher pollen and seed production. The increase in germination rates, germination speed and seedling frost tolerance might result in a higher fitness of the European populations which may facilitate further successful invasion and enhance the existing public health problems associated with this species.

  3. Modelling the effect of low soil temperatures on transpiration by Scots pine

    Science.gov (United States)

    Mellander, Per-Erik; Stähli, Manfred; Gustafsson, David; Bishop, Kevin

    2006-06-01

    For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring-early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70-year-old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high-latitude stands.

  4. Modeling monthly meteorological and agronomic frost days, based on minimum air temperature, in Center-Southern Brazil

    Science.gov (United States)

    Alvares, Clayton Alcarde; Sentelhas, Paulo César; Stape, José Luiz

    2017-09-01

    Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p Brazilian region are the first zoning of these variables for the country.

  5. Influence of low temperature and frost duration on Phytophthora alni subsp. alni viability

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, K.; Filipova, N.; Strnadova, V.

    2012-11-01

    Limits on the survival of P. alni subsp. alni (PAA) due to low temperature can be expected based on previously published laboratory and field studies. This study presents a laboratory experiment to test the influence of low temperature and frost duration on PAA viability. Ten PAA isolates were incubated at different temperatures (-0.1, -2.5, -5.0, -7.5, and -10.0 degree centigrade) and frost durations (0 - 7, 14, 21, and 28 days). A regression analysis confirmed the significant influence of both factors (low temperature and frost duration, and their interaction) on the survival of the pathogen under laboratory conditions. The survival and failure time analysis showed that the survival of the pathogen differs significantly after mild frost (all the isolates tested survived temperatures between -0.1 and -5.0 degree centigrade during the entire testing period) and heavy frost (the pathogen died after 21 days of incubation at -7.5 degree centigrade and after 2 days at -10.0 degree centigrade). Moreover, the viability of the pathogen decreased significantly if the temperature of -5.0 degree centigrade was maintained for at least 1 week and the temperature of -7.5 degree centigrade persisted in laboratory conditions for at least 4 days. The results of the study proved the pathogen to be very sensitive to heavy frost. The low-temperature limits for PAA occur regularly in Central Europe in January. It is probable that these temperatures can reduce PAA populations in diseased black alder stems. The climate change characterised by increases in the lowest minimum winter temperatures in Central Europe (as hypothesised by IPCC) may pose a significant risk for affected alder population in the area. (Author) 21 refs.

  6. Seasonal frost conditions in different periglacial landforms in the Eastern Pyrenees from 2003 to 2015

    Science.gov (United States)

    Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Gómez-Ortiz, Antonio

    2016-04-01

    Glaciers shaped the headwaters and valley floors in the Eastern Pyrenees during the Last Glaciation at elevations above 2100-2200 m. Since the deglaciation of these areas, periglacial processes have generated a wide range of periglacial landforms, such as rock glaciers, patterned ground and debris slopes. The role of soil temperatures is decisive for the degree of activity of periglacial processes: cryoturbation, solifluction, frost weathering, etc. Nowadays, periglacial processes in the Eastern Pyrenees are driven by a seasonal frozen layer extending 5-7 months. In general, at 2100 m the seasonal frost reaches 20 cm depth, while at 2700 m reaches 50 cm depth. However, soil temperatures, and thus, periglacial processes are strongly controlled by the large interannual variability of the snow cover. With the purpose of understanding the rhythm and intensity of soil freezing/thawing in 2003 we set up several monitoring sites along a vertical transect from the valley floors (1100 m) to the high plateaus (2700 m) across the southern slope of the Puigpedrós massif (2914 m), in the Eastern Pyrenees. The monitoring of soil temperatures has been conducted from 2003 to 2015 in different periglacial landforms using UTL and Hobo loggers. These loggers were installed at depths of 5, 20 and 50 cm at five sites: Calmquerdós (2730 m), Malniu (2230 m), La Feixa (2150 m), Meranges (1600 m) and Das (1097 m). Air temperatures used as reference come from two automatic stations of the Catalan Meteorological Survey in Malniu and Das, and with two loggers installed in La Feixa and Meranges. No permafrost regime was detected in none of the sites. Data shows evidence of the control of snow cover on the depth of the frozen layer and on the number of freeze-thaw cycles. Air temperatures at 2000-2200 m show a mean of 150 freeze-thaw cycles per year. In La Feixa, with very thin snow cover, only 67 cycles are recorded at 5 cm depth and 5 cycles at 50 cm depth. In Malniu, located at a higher

  7. Dunes with Frost

    Science.gov (United States)

    2004-01-01

    31 May 2004 Springtime for the martian northern hemisphere brings defrosting spots and patterns to the north polar dune fields. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 76.7oN, 250.4oW. In summer, these dunes would be darker than their surroundings. However, while they are still covered by frost, they are not any darker than the substrate across which the sand is slowly traveling. Dune movement in this case is dominated by winds that blow from the southwest (lower left) toward the northeast (upper right). The picure covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  8. The distribution of water frost on Charon

    Science.gov (United States)

    Buie, Marc W.; Shriver, Scott K.

    1994-01-01

    We present high-spatial-resolution imaging observations of the Pluto-Charon system taken with ProtoCAM on the Infrared Telescope Facility (IRTF). Our dataset consists of measurements from eight nights at widely separated rotational longitudes and covering five wavelengths -- standard J, H, and K, plus two special narrow band filters at 1.5 and 1.75 microns. The relative flux contributions of Pluto and Charon were extracted, when possible, by fitting a two-source Gaussian image model to the observed images. At K, we find the Charon-Pluto magnitude difference to be on average 1.8 mag, somewhat less than the value of 2.2 mag found by Bosh et al. (1992). The average differential magnitude at 1.5 and 1.75 microns is 2.0 and 1.6, respectively. The larger magnitude difference at 1.5 microns is due to a water-frost absorption band on the surface of Charon. Our observations are consistent with a surface of Charon dominated by water frost at all longitudes.

  9. FROST: an ASIC for digital mammography with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergamaschi, A.; Prest, M.; Vallazza, E.; Arfelli, F.; Dreossi, D.; Longo, R.; Olivo, A.; Pani, S.; Castelli, E.

    2003-01-01

    The FRONTier RADiography (FRONTRAD) collaboration is developing a digital system for mammography at the Elettra Synchrotron Light Source in Trieste. The system is based on a silicon microstrip detector array. The ASIC FROST (FRONTRAD Read Out sySTem) was developed as a collaboration between INFN Trieste and Aurelia Microelettronica and is designed to operate in single photon counting mode. FROST provides low-noise and high-gain performances and is able to work at incident photon rates higher than 100 kHz with almost 100% efficiency. The ASIC has been tested and the first images of mammographic test objects will be shown. The acquisition time per breast image should be of about 10 s

  10. Lithology and Bedrock Geotechnical Properties in Controlling Rock and Ice Mass Movements in Mountain Cryosphere

    Science.gov (United States)

    Karki, A.; Kargel, J. S.

    2017-12-01

    Landslides and ice avalanches kill >5000 people annually (D. Petley, 2012, Geology http://dx.doi.org/10.1130/G33217.1); destroy or damage homes and infrastructure; and create secondary hazards, such as flooding due to blocked rivers. Critical roles of surface slope, earthquake shaking, soil characteristics and saturation, river erosional undercutting, rainfall intensity, snow loading, permafrost thaw, freeze-thaw and frost shattering, debuttressing of unstable masses due to glacier thinning, and vegetation burn or removal are well-known factors affecting landslides and avalanches. Lithology-dependent bedrock physicochemical-mechanical properties—especially brittle elastic and shear strength, and chemical weathering properties that affect rock strength, are also recognized controls on landsliding and avalanching, but are not commonly considered in detail in landslide susceptibility assessment. Lithology controls the formation of weakened, weathered bedrock; the formation and accumulation of soils; soil saturation-related properties of grain size distribution, porosity, and permeability; and soil creep related to soil wetting-drying and freeze-thaw. Lithology controls bedrock abrasion and glacial erosion and debris production rates, the formation of rough or smoothed bedrock surface by glaciation, fluvial, and freeze-thaw processes. Lithologic variability (e.g., bedding; fault and joint structure) affects contrasts in chemical weathering rates, porosity, and susceptibility to frost shattering and chemical weathering, hence formation of overhanging outcrops and weakened slip planes. The sudden failure of bedrock or sudden slip of ice on bedrock, and many other processes depend on rock lithology, microstructure (porosity and permeability), and macrostructure (bedding; faults). These properties are sometimes considered in gross terms for landslide susceptibility assessment, but in detailed applications to specific development projects, and in detailed mapping over

  11. Statistical-Synoptic Analysis of the Atmosphere Thickness Pattern of Iran’s Pervasive Frosts

    Directory of Open Access Journals (Sweden)

    Iman Rousta

    2016-08-01

    Full Text Available The present study aimed at analyzing the synoptic pattern of atmospheric thickness of winter pervasive frosts in Iran. To this end, the data related to the daily minimum temperature of a 50-year period (1961–2010 were gathered from 451 synoptic and climatology stations. Then, the instances in which the temperature was below 0 °C for at least two consecutive days and this phenomenon covered at least 50% of the entirety of Iran were selected. Subsequently, the atmosphere thickness pattern was extracted for these days, with the representative day being identified and analyzed through cluster analysis. The results showed that the Siberian high pressure plays a significant role in the occurrence of pervasive frosts in Iran. In some other cases, the northeast–southwest direction of this pattern leads to its combination with the East Europe high pressure, causing widespread frosts in Iran. Furthermore, the interaction between counter clockwise currents in this system and the clockwise currents in the Azores high pressure tongue directs cold weather from northern parts of Europe toward Iran. The formation of blocking systems leads to the stagnation of cold weather over Iran, a phenomenon that results in significant reduction of temperature and severe frosts in these areas. In addition, the omega pattern (the fifth pattern and Deep Eastern European trough and polar low pressure pattern (the fourth pattern were the most dominant and severe frost patterns in Iran respectively.

  12. Spatial variability of soil magnetic susceptibility in an agricultural field located in Eastern Ukraine

    Science.gov (United States)

    Menshov, Oleksandr; Pereira, Paulo; Kruglov, Oleksandr

    2015-04-01

    Magnetic susceptibility (MS) have been used to characterize soil properties. It gives an indirect information about heavy metals content and degree of human impacts on soil contamination derived from atmospheric pollution (Girault et al., 2011). This method is inexpensive in relation to chemical analysis and very useful to track soil pollution, since several toxic components deposited on soil surface are rich in particulates produced by oxidation processes (Boyko et al., 2004; Morton-Bernea et al., 2009). Thus, identify the spatial distribution of MS is of major importance, since can give an indirect information of high metals content (Dankoub et al., 2012). This allows also to distinguish the pedogenic and technogenic origin magnetic signal. For example Ukraine chernozems contain fine-grained oxidized magnetite and maghemite of pedogenic origin formed by weathering of the parent material (Jeleńska et al., 2004). However, to a correct understanding of variables distribution, the identification of the most accurate interpolation method is fundamental for a better interpretation of map information (Pereira et al., 2013). The objective of this work is to study the spatial variability of soil MS in an agricultural fields located in the Tcherkascy Tishki area (50.11°N, 36.43 °E, 162 m a.s.l), Ukraine. Soil MS was measured in 77 sampling points in a north facing slope. To estimate the best interpolation method, several interpolation methods were tested, as inverse distance to a weight (IDW) with the power of 1,2,3,4 and 5, Local Polynomial (LP) with the power of 1 and 2, Global Polynomial (GP), radial basis functions - spline with tension (SPT), completely regularized spline (CRS), multiquatratic (MTQ), inverse multiquatratic (IMTQ), and thin plate spline (TPS) - and some geostatistical methods as, ordinary kriging (OK), Simple Kriging (SK) and Universal Kriging (UK), used in previous works (Pereira et al., 2014). On average, the soil MS of the studied plot had 686

  13. Morning Frost in Trench Dug by Phoenix, Sol 113

    Science.gov (United States)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench. The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench. This image is presented in approximately true color. The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide. Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  14. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean

    Science.gov (United States)

    Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina

    2016-01-01

    Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may

  15. Identification and Verification of QTL Associated with Frost Tolerance Using Linkage Mapping and GWAS in Winter Faba Bean.

    Science.gov (United States)

    Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina

    2016-01-01

    Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may

  16. Plant safety margin against frost damages has declined in Switzerland over the last four decades

    Science.gov (United States)

    Vitasse, Yann; Schneider, Léonard; Klein, Geoffrey; Rixen, Christian; Rebetez, Martine

    2017-04-01

    Winters and early springs have become warmer over the last decades which has in turn promoted earlier plant development in temperate regions. While temperatures will on average continue to increase in the coming decades due to the rise of greenhouse gases concentration in the atmosphere, there is no consensus about how the occurrence of late spring frosts will change. If the frequency and the severity of late spring frosts remain unchanged in the future or advance less than vegetation onset, vulnerable plant organs (young leaves, flowers or dehardened buds) may be more exposed to frost damage. Here we analyzed long-term series of temperature data during the period 1975-2016 at 50 locations in Switzerland. We used different thresholds of growing degree days (GDD) as a proxy for spring phenology of fruit trees based on long-term series of phenological observations. Finally, we tested whether the time lag between the date when the GDD is reached and the latest occurrence of frost has changed over the study period. Overall we found that the safety margin against potential frost damage to plants has slightly decreased during the study period, irrespective of elevation (from 203 to 2283 m). Our results suggest that the cost for preventing frost damages on fruit trees could increase in the coming decades and the introduction of new varieties of fruit trees adapted to warmer climate should be carefully considered as they generally exhibit earlier spring phenology.

  17. Development and Sensitivity Analysis of a Frost Risk model based primarily on freely distributed Earth Observation data

    Science.gov (United States)

    Louka, Panagiota; Petropoulos, George; Papanikolaou, Ioannis

    2015-04-01

    The ability to map the spatiotemporal distribution of extreme climatic conditions, such as frost, is a significant tool in successful agricultural management and decision making. Nowadays, with the development of Earth Observation (EO) technology, it is possible to obtain accurately, timely and in a cost-effective way information on the spatiotemporal distribution of frost conditions, particularly over large and otherwise inaccessible areas. The present study aimed at developing and evaluating a frost risk prediction model, exploiting primarily EO data from MODIS and ASTER sensors and ancillary ground observation data. For the evaluation of our model, a region in north-western Greece was selected as test site and a detailed sensitivity analysis was implemented. The agreement between the model predictions and the observed (remotely sensed) frost frequency obtained by MODIS sensor was evaluated thoroughly. Also, detailed comparisons of the model predictions were performed against reference frost ground observations acquired from the Greek Agricultural Insurance Organization (ELGA) over a period of 10-years (2000-2010). Overall, results evidenced the ability of the model to produce reasonably well the frost conditions, following largely explainable patterns in respect to the study site and local weather conditions characteristics. Implementation of our proposed frost risk model is based primarily on satellite imagery analysis provided nowadays globally at no cost. It is also straightforward and computationally inexpensive, requiring much less effort in comparison for example to field surveying. Finally, the method is adjustable to be potentially integrated with other high resolution data available from both commercial and non-commercial vendors. Keywords: Sensitivity analysis, frost risk mapping, GIS, remote sensing, MODIS, Greece

  18. Delayed condensation and frost formation on superhydrophobic carbon soot coatings by controlling the presence of hydrophilic active sites

    Science.gov (United States)

    Esmeryan, Karekin D.; Castano, Carlos E.; Mohammadi, Reza; Lazarov, Yuliyan; Radeva, Ekaterina I.

    2018-02-01

    Condensation frosting is an undesired natural phenomenon that could be impeded efficiently using appropriate wettability and morphologically patterned surfaces. The icephobic properties of carbon soot and the fabrication scalability of its synthesis method are a good foundation for anti-frosting applications; however, the fundamentals of frost growth and spreading on sooted surfaces have not been examined yet. In this study, we investigate the anti-frosting performance of three groups of superhydrophobic soot coatings by means of 16 MHz quartz crystal microbalances (QCMs). The analysis of the real-time sensor signal of each soot coated QCM pattern shows that frost formation and its propagation velocity depend on the quantity of oxygen functionalities and structural defects in the material. In turn, the reduction of both parameters shifts the onset of frost growth to temperatures below  -20 °C, whereas the interdroplet ice bridging is slowed by a factor of four. Moreover, high-resolution scanning electron micrographs of the samples imply delamination upon defrosting of the soot with spherical-like morphology via polar interactions driven mechanism. These results reveal an opportunity for control of frost incipiency on sooted surfaces by adjusting the synthesis conditions and depositing soot coatings with as low as possible content of hydrophilic active sites.

  19. Coatings to prevent frost

    DEFF Research Database (Denmark)

    Lusada, Ricardo; Holberg, Stefan; Bennedsen, Jeanette Marianne Dalgaard

    2016-01-01

    The ability of hydrophobic, organic–inorganic hybrid coatings to decelerate frost propagation was investigated. Compared to a bare aluminum surface, the coatings do not significantly reduce the freezing probability of supercooled water drops. On both surfaces, the probability for ice nucleation...... at temperatures just below 0°C, for example at −4°C, is low. Freezing of a single drop on aluminum leads, however, to instant freezing of the complete surface. On hydrophobic coatings, such a freezing drop is isolated; the frozen area grows slowly. At −4°C surface temperature in a +12°C/90% relative humidity...

  20. Neural Network-Based Model for Landslide Susceptibility and Soil Longitudinal Profile Analyses

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Barari, Amin; Choobbasti, A. J.

    2011-01-01

    The purpose of this study was to create an empirical model for assessing the landslide risk potential at Savadkouh Azad University, which is located in the rural surroundings of Savadkouh, about 5 km from the city of Pol-Sefid in northern Iran. The soil longitudinal profile of the city of Babol......, located 25 km from the Caspian Sea, also was predicted with an artificial neural network (ANN). A multilayer perceptron neural network model was applied to the landslide area and was used to analyze specific elements in the study area that contributed to previous landsliding events. The ANN models were...... studies in landslide susceptibility zonation....

  1. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis.

    Science.gov (United States)

    Taulavuori, Kari; Prasad, M N V; Taulavuori, Erja; Laine, Kari

    2005-05-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness.

  2. Control of dew and frost formation on leaf by radiative cooling

    International Nuclear Information System (INIS)

    Matsui, T.; Eguchi, H.; Mori, K.

    1981-01-01

    A radiative cooling system was developed to control dew and frost formations and to examine the effect of the radiative cooling on the leaf temperature. The growth chamber was provided with a box which was constructed by using heat insulating materials to minimize the disturbances and to regulate the air current. A cooling coil (cooling surface of 300 cm was equipped at the bottom of the box and manipulated by a refrigerator of 1, 430 kcal hour -1 , and a concave mirror was attached to the ceiling of the box to facilitate the reflection of the radiation from the leaf to the cooling coil. The moisture in air was supplied by flowing the controlled air (0.2 m min -1 ) into the box. The distribution of dew point temperatures was almost uniform horizontally even under vertically slight conversion (downward velocity of 1.3 cm sec -1 ) of the air. The leaf temperature became about 1.0°C lower than the ambient air temperature under the radiative cooling. The dew and the frost were clearly observed on the leaf after the time when the leaf temperature had become lower than the dew point temperature. The dew increased in size in course of time, and the frost varied in shape and in size with the temperatures. Thus, artificial formations of the dew and the frost were made possible by the radiative cooling system developed in this experiment

  3. Frosts during the growing season. Frequency of occurrence and effects on current energy forestry. Sommarfroster. Foerekomster och effekter paa befintliga energiskogsodlingar

    Energy Technology Data Exchange (ETDEWEB)

    Christersson, L; Fircks, H von; Perttu, K

    1984-01-01

    Frost during the summer is very common in Sweden. Two kinds of summer frosts exists; one is called advection frost which is caused by cold air coming down over the country from the north and the other is an inversion frost caused by long-wave radiation from the ground taking place during calm clear nights. In this way the air closest to the ground is cooled. Eleven experimental areas are described as regards prehistory, vegetation, frequency of summer frosts, and energy forestry tests in progress. The amount of frost injuries is reported. Differences in frost hardiness of fast growing Salix clones in the growing state have been demonstrated. The results support the idea that the formation of ice crystals inside the growing tissues always take place around -2 degree C and that this ice crystal formation damages the growing part of the shoot of all tested clones. A fast growing shoot of Salix species has a longer elongation zone and this explains why a fast-growing shoot is more severly damaged than a slowly growing one at the same frost temperature. If the different clones are in a growing state there are only small differences in the amount of frost damage. On the other hand, there are great differences between the clones in the capacity of the surviving lateral buds to sprout. This capacity is foremost seen in clones of the species Salix dasyclados. Two year older shoots of different Salix species have never been damaged by summer frost because summer frosts do not reach the elongating zone of these shoots. In conclusions measures are listed on how to prevent or decrease the injuries caused by summer frosts. With 21 refs.

  4. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Science.gov (United States)

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  5. Effects of air flow maldistribution on refrigeration system dynamics of air source heat pump chiller under frosting conditions

    International Nuclear Information System (INIS)

    Gong Jianying; Gao Tieyu; Yuan Xiuling; Huang Dong

    2008-01-01

    The effects of air flow maldistribution on the performance of an air source heat pump chiller under frosting conditions were investigated experimentally. The results indicated that air flow maldistribution was the dominant factor leading to hunting of the thermostatic expansion valve for medium and/or large size finned tube evaporators. With air flow maldistribution degree (AMD) increasing, frost occurred earlier, and the frost layer grew faster. The operating characteristics became lower when AMD was increased. We found such phenomenon seemed to be related to both the difference of refrigerant outlet superheat and the frosting velocity. In the hunting stage, the frost block effect became the main factor degrading the refrigeration system performance. With AMD increasing, the heat pump system pertinent performance data (suction pressure, evaporation temperature, discharge pressure, refrigerant outlet temperature, etc.) were degraded more dramatically

  6. Nowcasting in the FROST-2014 Sochi Olympic project

    Science.gov (United States)

    Bica, Benedikt; Wang, Yong; Joe, Paul; Isaac, George; Kiktev, Dmitry; Bocharnikov, Nikolai

    2013-04-01

    FROST (Forecast and Research: the Olympic Sochi Testbed) 2014 is a WMO WWRP international project aimed at development, implementation, and demonstration of capabilities of short-range numerical weather prediction and nowcasting technologies for mountainous terrain in winter season. Sharp weather contrasts and high spatial and temporal variability are typical for the region of the Sochi-2014 Olympics. Steep mountainous terrain and an intricate mixture of maritime sub-tropical and Alpine environments make weather forecasting in this region extremely challenging. Goals of the FROST-2014 project: • To develop a comprehensive information resource of Alpine winter weather observations; • To improve and exploit: o Nowcasting systems of high impact weather phenomena (precipitation type and intensity, snow levels, visibility, wind speed, direction and gusts) in complex terrain; o High-resolution deterministic and ensemble mesoscale forecasts in winter complex terrain environment; • To improve the understanding of physics of high impact weather phenomena in the region; • To deliver forecasts (Nowcasts) to Olympic weather forecasters and decision makers and assess benefits of forecast improvement. 46 Automatic Meteorological Stations (AMS) were installed in the Olympic region by Roshydromet, by owners of sport venues and by the Megafon corporation, provider of mobile communication services. The time resolution of AMS observations does not exceed 10 minutes. For a subset of the stations it is even equal to 1 min. Data flow from the new dual polarization Doppler weather radar WRM200 in Sochi was organized at the end of 2012. Temperature/humidity and wind profilers and two Micro Rain Radars (MRR) will supplement the network. Nowcasting potential of NWP models participating in the project (COSMO, GEM, WRF, AROME, HARMONIE) is to be assessed for direct and post-processed (e.g. Kalman filter, 1-D model, MOS) model forecasts. Besides the meso-scale models, the specialized

  7. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Science.gov (United States)

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  8. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Directory of Open Access Journals (Sweden)

    Or Sperling

    Full Text Available Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq. cm(-3 yr(-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  9. Frosting characteristics on hydrophobic and superhydrophobic surfaces: A review

    International Nuclear Information System (INIS)

    Kim, Min-Hwan; Kim, Hisuk; Lee, Kwan-Soo; Kim, Dong Rip

    2017-01-01

    Highlights: • Fabrication methods of hydrophobic metal surfaces were investigated. • Mechanisms of ice crystal formation were reviewed in terms of static contact angle. • Future researches for frost retardation on heat exchanger surfaces were discussed. - Abstract: Fabrication methods of the hydrophobic property on metal surfaces and frosting characteristics on hydrophobic surfaces were investigated. A hydrophobic surface with a static contact angle of less than 150° was implemented by surface coating or etching, and a superhydrophobic surface with a static contact angle of greater than 150° was realized by a hybrid method using both coating and etching. The changes in surface properties affected the behaviors of the early stage frosting from the dry surface to the formation of ice crystals. On the hydrophobic surfaces, ice crystals were formed by freezing after condensation. Isolated-droplet freezing and inter-droplet freezing are mechanisms by which the condensate undergoes a phase change into ice crystals. Through isolated-droplet freezing, a supercooled condensate changes phase into ice crystals by forming ice nuclei based on the classical nucleation theory. In addition, through inter-droplet freezing, ice crystals are propagated due to the difference in saturation vapor pressure between supercooled condensates and ice crystals. The formation and propagation of ice crystals are delayed as the static contact angle increases. Additionally, based on a review, future researches that is needed to improve hydrophobic technologies are discussed.

  10. Genetic engineering: frost damage trial halted.

    Science.gov (United States)

    Budiansky, S

    The University of California at Berkeley has announced the postponement of a planned experiment involving the field testing of bacteria genetically engineered to reduce frost damage to crops. The action came after Jeremy Rifkin, who had earlier filed suit against the National Institutes of Health after its Recombinant DNA Advisory Committee had approved the experiment, threatened to seek a temporary restraining order against the university to halt the experiment.

  11. Heat transfer and pressure drop amidst frost layer presence for the full geometry of fin-tube heat exchanger

    International Nuclear Information System (INIS)

    Kim, Sung Jool; Choi, Ho Jin; Ha, Man Yeong; Kim, Seok Ro; Bang, Seon Wook

    2010-01-01

    The present study numerically solves the flow and thermal fields in the full geometry of heat exchanger modeling with frost layer presence on the heat exchanger surface. The effects of air inlet velocity, air inlet temperature, frost layer thickness, fin pitch, fin thickness, and heat exchanger shape on the thermo-hydraulic performance of a fin-tube heat exchanger are investigated. Heat transfer rate rises with increasing air inlet velocity and temperature, and decreasing frost layer thickness and fin pitch. Pressure drop rises with increasing air inlet velocity and frost layer thickness, and decreasing fin pitch. The effect of fin thickness on heat transfer and pressure drop is negligible. Based on the present results, we derived the correlations, which express pressure drop and temperature difference between air inlet and outlet as a function of air inlet velocity and temperature, as well as frost layer thickness

  12. Fast determination of soil behavior in the capillary zone using simple laboratory tests.

    Science.gov (United States)

    2012-12-01

    Frost heave and thaw weakening are typical problems for engineers building in northern regions. These unsaturated-soil behaviors are : caused by water flowing through the capillary zone to a freezing front, where it forms ice lenses. Although suction...

  13. Short communication. Harvest time in hedgerow Arbequina olive orchards in areas with early frosts

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, P.; Sanchez-Gimeno, A. C.; Benito, M.; Oria, R.; Lasa, J. M.

    2012-11-01

    The shortening of harvest time attained in hedgerow olive (Olea europaea L.) orchards represents an advantage for the adoption of this cropping system in areas that are prone to suffer frost during the harvest period. To establish an optimal harvesting window, we carried out a study of the fruit ripening process on a hedgerow orchard of Arbequina olive trees, located in Zaragoza (Spain). From 2007 to 2009, oil accumulation on the fruit (% of dry weight) and oil yield (grams of oil per 100 fruits) were monitored, from early September to late November. Over the three years both variables peaked around November 15th, indicating that Arbequina reached full ripening earlier than has been reported previously for this variety. In two of the three seasons the orchard suffered several frosts during November. Long term climatic data from this area indicated that the risk of early frosts (< -2 degree centigrade) increases as November progresses with a high risk after November 20{sup t}h. In conclusion, the optimal harvesting period for Arbequina in this area should not extend beyond November 20{sup t}h. A rapid harvesting before this date is advisable to avoid the risk of damage caused by early frost in Zaragoza. Hedgerow planting provides an additional advantage in frost-prone areas, because mechanization of operations permits a short harvest period, easier to fit into the optimal harvesting window. (Author) 20 refs.

  14. Susceptibility of Permafrost Soil Organic Carbon under Warming Climate

    Science.gov (United States)

    Yang, Z.; Wullschleger, S. D.; Liang, L.; Graham, D. E.; Gu, B.

    2015-12-01

    Degradation of soil organic carbon (SOC) that has been stored in permafrost is a key concern under warming climate because it could provide a positive feedback. Studies and conceptual models suggest that SOC degradation is largely controlled by the decomposability of SOC, but it is unclear exactly what portions of SOC are susceptible to rapid breakdown and what mechanisms may be involved in SOC degradation. Using a suite of analytical techniques, we examined the dynamic consumption and production of labile SOC compounds, including sugars, alcohols, and small molecular weight organic acids in incubation experiments (up to 240 days at either -2 or 8 °C) with a tundra soil under anoxic conditions, where SOC respiration and iron(III) reduction were monitored. We observe that sugars and alcohols are main components in SOC accounting for initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products such as acetate and formate are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important roles as an electron acceptor in tundra SOC respiration. These observations corroborate strongly with the glucose addition during incubation, in which rapid CO2 and CH4 production is observed concurrently with rapid production and consumption of organics such as acetate. Thus, the biogeochemical processes we document here are pertinent to understanding the accelerated SOC decomposition with temperature and could provide basis for model predicting feedbacks to climate warming in the Arctic.

  15. The frost peat production; Routapalaturpeen tuotantoketjun tekniikka, talous ja ympaeristoevaikutukset

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T. [Vapo Oy, Jyvaeskylae (Finland); Leiviskae, V. [Oulu Univ. (Finland). Thule Inst.

    1997-12-01

    The frost peat production means the cutting of frozen peat in the winter time. The aim of this study is to test the possibilities to prolong the peat production season and to produce peat pieces for the horticultural peat industry. In the frost peat production method the frozen peat field is sawed throughout the length and breadth of by a circle saw. The sawed peat pieces are loosened from the field by a so-called `splitter`. The circle saw is equipped with the five circle saw blades (diameter 90 cm). The distance of the blades is adjustable. The splitter is equipped with a horizontal position blade (width 35 cm). The dimensions of the peat pieces are changeable, but from the point of drying the upper limit of the side of the peat cube can be 15-20 cm. The frost peat production method is technically suitable for production of slightly decomposed (H1-5) energy and horticultural peat. The energy peat pieces are allowed to dry up 70-75 % moisture content on the cutting field and then the pieces can be ridged by the screening ridger. If necessary, the ridges can be turned over. In the frost peat production, the conventional sod peat winning machines can be used in the following stages of the working tasks: harrowing, ridging, loading, turning of ridges and stockpiling. The measured output of the circle saw was about 45-50 m{sup 3}/h of energy peat and 58-63 m{sup 3}/h of horticultural peat. The output of the splitter was 120-150 m{sup 3}/h. Theoretically, the output of circle saw and the splitter can easily be doubled. Thereafter the production costs will be about 19 FIM/MWh of energy peat and 18,6 FIM/m{sup 3} of horticultural peat

  16. Developing a phenological model for grapevine to assess future frost risk in Luxembourg

    Science.gov (United States)

    Caffarra, A.; Molitor, D.; Pertot, I.; Sinigoy, P.; Junk, J.

    2012-04-01

    Late frost damage represents a significant hazard to grape production in cool climate viticulture regions such as Luxembourg. The main aim of our study is to analyze the frequency of these events for the Luxembourg's winegrowing region in the future. Spring frost injuries on grape may occur when young green parts are exposed to air temperature below 0°C. The potential risk is determined by: (i) minimum air temperature conditions and the (ii) the timing of bud burst. Therefore, we developed and validated a model for budburst of the grapevine (*Vitis vinifera)* cultivar Rivaner, the most grown local variety, based on multi-annual data from 7 different sites across Europe and the US. An advantage of this approach is, that it could be applied to a wide range of climate conditions. Higher spring temperatures were projected for the future and could lead to earlier dates of budburst as well as earlier dates of last frost events in the season. However, so far it is unknown if this will increase or decrease the risk of severe late frost damages for Luxembourg's winegrowing region. To address this question results of 10 regional climate change projections from the FP6 ENSEMBLES project (spatial resolution = 25km; A1B emission scenario) were combined with the new bud burst model. The use of a multi model ensemble of climate change projections allows for a better quantification of the uncertainties. A bias corrections scheme, based on local observations, was applied to the model output. Projected daily minimum air temperatures, up to 2098, were compared to the projected date of bud burst in order to quantify the future frost risk for Luxembourg.

  17. Air-side performance of a parallel-flow parallel-fin (PF{sup 2}) heat exchanger in sequential frosting

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Zhejiang Vocational College of Commerce, Hangzhou, Binwen Road 470 (China); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Hrnjak, P.S. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

    2010-09-15

    The thermal-hydraulic performance in periodic frosting conditions is experimentally studied for the parallel-flow parallel-fin heat exchanger, henceforth referred to as a PF{sup 2} heat exchanger, a new style of heat exchanger that uses louvered bent fins on flat tubes to enhance water drainage when the flat tubes are horizontal. Typically, it takes a few frosting/defrosting cycles to come to repeatable conditions. The criterion for the initiation of defrost and a sufficiently long defrost period are determined for the test PF{sup 2} heat exchanger and test condition. The effects of blower operation on the pressure drop, frost accumulation, water retention, and capacity in time are compared under the conditions of 15 sequential frosting cycles. Pressure drop across the heat exchanger and overall heat transfer coefficient are quantified under frost conditions as functions of the air humidity and air face velocity. The performances of two types of flat-tube heat exchangers, PF{sup 2} heat exchanger and conventional parallel-flow serpentine-fin (PFSF) heat exchanger, are compared and the results obtained are presented. (author)

  18. THE EFFECT OF CULTIVAR AND BEARING TREE ON BUD DIFFERENTIATION, FROST DAMAGE AND FRUIT SET IN APPLE

    Directory of Open Access Journals (Sweden)

    Nikola Pavičić

    2004-06-01

    Full Text Available After severe winter frost, an examination was initiated of frost damage suffered by Idared and Golden Delicious clone B. The cultivars differed significantly in the differentiation intensity, the hare of damaged differentiated buds, but not in share of damaged undifferentiated buds. In both cultivars the bud damage was more intensive on long bearing wood than on spur, regardless differentiation grade. The interaction between the cultivar and the bearing wood was insignificant. The flower bud differentiation was better in Idared, but it also suffered more frost damage than the Golden Delicious clone B with differentiated buds, but not than that with undifferentiated buds. In both cultivars frost damage increases with increase of differentiated flower buds (R2=0.759; P≤0.001. The fruit set was within the limits of expectation only on the spurs of the Golden Delicious clone B, which showed strong tendency towards fruit set on long bearing shoots. In 2000, the yield of the cultivars was almost equal, as the result of thinning due to the frost damage on Idared.

  19. Reduced-molecular-weight derivatives of frost grape polysaccharide

    Science.gov (United States)

    A new Type II arabinogalactan was recently described as an abundant gum exudate from stems of wildfrost grape (Vitus riparia Michx.). The purpose of the current study is to more thoroughly characterize the physical properties of this frost grape polysaccharide (FGP), and develop methods to modify th...

  20. Seasonality of cavitation and frost fatigue in Acer mono Maxim.

    Science.gov (United States)

    Zhang, Wen; Feng, Feng; Tyree, Melvin T

    2017-12-08

    Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation-refilling and freeze-thaw cycles for a whole year. Cavitation resistance was determined from 'vulnerability curves' showing the percent loss of conductivity versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation-refilling cycle, whereas frost fatigue was caused by a freeze-thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12-month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes. © 2017 John Wiley & Sons Ltd.

  1. CRYOLINK: Monitoring of permafrost and seasonal frost in southern Norway

    Science.gov (United States)

    Farbrot, Herman; Hipp, Tobias; Etzelmüller, Bernd; Humlum, Ole; Isaksen, Ketil; Strand Ødegârd, Rune

    2010-05-01

    The modern southern boundary for Scandinavian permafrost is located in the mountains of Southern Norway. Permafrost and seasonal frost are considered key components of the cryosphere, and the climate-permafrost relation has acquired added importance with the increasing awareness and concern of rising air temperatures. The three-year research project CRYOLINK ("Permafrost and seasonal frost in southern Norway") aims at improving knowledge on past and present ground temperatures, seasonal frost, and distribution of mountain permafrost in Southern Norway by addressing the fundamental problem of heat transfer between the atmosphere and the ground surface. Hence, several shallow boreholes have been drilled in August 2008 in three areas (Juvvass, Jetta and Tron) situated along a west-east transect. On most borehole sites air and ground temperatures are measured. Further, vertical arrays of Miniature Temperature Dataloggers (MTDs; Thermochron iBottons®) at fixed heights above the ground surface have been installed to roughly determine the snow depths at the sites, which is also indicated by digital cameras providing daily pictures of snow and weather conditions. In addition individual MTDs have been placed out to measure ground surface temperature at different aspects and snow settings. This presentation will focus on the field set up and give examples of data obtained from the sites.

  2. Frost resistance of building materials

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    materials, has been developed.The importance of the pore structure on the development of stresses in the material during freezing is emphasized. To verify the model, experimental investigations are made on various concretes without air-entrainment and brick tiles with different porosities.Calculations......In this thesis it is shown that the critical degree of saturation is suitable as parameter for the frost resistance of porous building materials. A numerical model for prediction of critical degrees of saturation based on fracture mechanics and phase geometry of two-phase materials, e.g. porous...

  3. Making a case for breeding frost tolerant potatoes adapted to Andean Highlands especially the Altiplano

    Science.gov (United States)

    Although cultivated potatoes are sensitive to mild frost (severely damaged at air temperatures below -2 or -3 C) limited progress has been made in developing frost hardy cultivars. This may be due to the fact that most potato crop grown in North America and Europe has minimal risk to be subjected to...

  4. Past and future changes in frost day indices on Catskill Mountain Region of New York

    Science.gov (United States)

    Changes in frost indices in the New York’s Catskill Mountains region, the location of water supply reservoirs for New York City, have potentially important implications. Frost day is defined as a day with Tmin < 0ºC. The objective of this study was to investigate past and predicted changes in minimu...

  5. Suitability aero-geophysical methods for generating conceptual soil maps and their use in the modeling of process-related susceptibility maps

    Science.gov (United States)

    Tilch, Nils; Römer, Alexander; Jochum, Birgit; Schattauer, Ingrid

    2014-05-01

    In the past years, several times large-scale disasters occurred in Austria, which were characterized not only by flooding, but also by numerous shallow landslides and debris flows. Therefore, for the purpose of risk prevention, national and regional authorities also require more objective and realistic maps with information about spatially variable susceptibility of the geosphere for hazard-relevant gravitational mass movements. There are many and various proven methods and models (e.g. neural networks, logistic regression, heuristic methods) available to create such process-related (e.g. flat gravitational mass movements in soil) suszeptibility maps. But numerous national and international studies show a dependence of the suitability of a method on the quality of process data and parameter maps (f.e. Tilch & Schwarz 2011, Schwarz & Tilch 2011). In this case, it is important that also maps with detailed and process-oriented information on the process-relevant geosphere will be considered. One major disadvantage is that only occasionally area-wide process-relevant information exists. Similarly, in Austria often only soil maps for treeless areas are available. However, in almost all previous studies, randomly existing geological and geotechnical maps were used, which often have been specially adapted to the issues and objectives. This is one reason why very often conceptual soil maps must be derived from geological maps with only hard rock information, which often have a rather low quality. Based on these maps, for example, adjacent areas of different geological composition and process-relevant physical properties are razor sharp delineated, which in nature appears quite rarly. In order to obtain more realistic information about the spatial variability of the process-relevant geosphere (soil cover) and its physical properties, aerogeophysical measurements (electromagnetic, radiometric), carried out by helicopter, from different regions of Austria were interpreted

  6. Detection of the pedogenic magnetic fraction in volcanic soils developed on basalts using frequency-dependent magnetic susceptibility: comparison of two instruments

    Science.gov (United States)

    Grison, Hana; Petrovsky, Eduard; Kapicka, Ales; Hanzlikova, Hana

    2017-05-01

    In studies of the magnetic properties of soils, the frequency-dependent magnetic susceptibility percentage (χFD%) is often used for the identification of ultrafine magnetically superparamagnetic/stable single-domain (SP/SSD) particles. This parameter is commonly used as an indicator for increased pedogenesis. In strongly magnetic soils, the SP/SSD magnetic signal (mostly bio-pedogenic) may be masked by lithological signals; making pedogenesis hard to detect. In this study, we compare results for the detection of ultrafine SP/SSD magnetic particles in andic soils using two instruments: a Bartington MS2B dual-frequency meter and an AGICO Kappabridge MFK1-FA. In particular, the study focuses on the effect of pedogenesis by investigating the relationship between specific soil magnetic and chemical properties (soil organic carbon and pHH2O). The values of χFD% obtained with the MS2B varied from 2.4 to 5.9 per cent, and mass-specific magnetic susceptibility (χLF) from 283 to 1688 × 10-8 m3 kg-1, while values of χFD% and χLF obtained with the MFK1-FA varied from 2.7 to 8.2 per cent and from 299 to 1859 × 10-8 m3 kg-1, respectively. Our results suggest that the detection of the SP/SSD magnetic fraction can be accomplished by comparing relative trends of χFD% along the soil profile. Moreover, the discrimination between bio-pedogenic and lithogenic magnetic contributions in the SP/SSD fraction is possible by comparing the χFD% and χLF data determined in the fine earth (<2 mm) and the coarse fraction (4-10 mm) samples down the soil profile.

  7. Development of a Frost Risk Assessment Tool in Agriculture for a Mediterranean ecosystem Utilizing MODIS satellite observations Geomatics and Surface Data

    Science.gov (United States)

    Louka, Panagiota; Papanikolaou, Ioannis; Petropoulos, George; Migiros, George; Tsiros, Ioannis

    2014-05-01

    Frost risk in Mediterranean countries is a critical factor in agricultural planning and management. Nowadays, the rapid technological developments in Earth Observation (EO) technology have improved dramatically our ability to map the spatiotemporal distribution of frost conditions over a given area and evaluate its impacts on the environment and society. In this study, a frost risk model for agricultural crops cultivated in a Mediterranean environment has been developed, based primarily on Earth Observation (EO) data from MODIS sensor and ancillary spatial and point data. The ability of the model to predict frost conditions has been validated for selected days on which frost conditions had been observed for a region in Northwestern Greece according to ground observations obtained by the Agricultural Insurance Organization (ELGA). An extensive evaluation of the frost risk model predictions has been performed herein to evaluate objectively its ability to predict the spatio-temporal distribution of frost risk in the studied region, including comparisons against physiographical factors of the study area. The topographical characteristics that were taken under consideration were latitude, altitude, slope steepness, topographic convergence and the extend of the areas influenced by water bodies (such as lake and sea) existing in the study area. Additional data were also used concerning land use data and vegetation classification (type and density). Our results showed that the model was able to produce reasonably the spatio-temporal distribution of the frost conditions in our study area, following largely explainable patterns in respect to the study site and local weather conditions characteristics. All in all, the methodology implemented herein proved capable in obtaining rapidly and cost-effectively cartography of the frost risk in a Mediterranean environment, making it potentially a very useful tool for agricultural management and planning. The model presented here has

  8. Research on curing behavior of concrete with anti-frost admixtures at subzero temperature

    Science.gov (United States)

    Ionov, Yulian; Kramar, Ludmila; Kirsanova, Alena; Kolegova, Irina

    2017-01-01

    The purpose of this paper is research on curing behavior of cold-weather concrete with anti-frost admixtures. During the study derivative thermal and X-ray phase analyses were performed and tests were carried out according to the standard GOST technique. The research results obtained reveal the peculiarities of cement hydration and concrete curing at subzero temperatures. The influence of subzero temperatures and anti-frost admixtures on hydrated phases of hardened cement paste and concrete strength formation was studied. It is found that cold-weather concrete does not cure at subzero temperatures, but when defrosting it attains 80 to 85% of its grade strength by the 28th day. Concrete achieves its grade strength when curing in normal conditions in 60 days only. Freezing concrete with anti-frost admixtures results in increase of calcium hydroxide content in hardened cement paste immediately when produced and has increased tendency of concrete to carbonation.

  9. Analysis of heat transfer and frost layer formation on a cryogenic tank wall exposed to the humid atmospheric air

    International Nuclear Information System (INIS)

    Kim, Kyoung-Hoon; Ko, Hyung-Jong; Kim, Kyoungjin; Kim, Yong-Wook; Cho, Kie-Joo

    2009-01-01

    In this paper heat transfer characteristics and frost layer formation are investigated numerically on the surface of a cryogenic oxidizer tank for a liquid propulsion rocket, where a frost layer could be a significant factor in maintaining oxidizer temperature within a required range. Frost formation is modeled by considering mass diffusion of water vapor in the air into the frost layer and various heat transfer modes such as natural and forced convection, latent heat, solar radiation of short wavelength, and ambient radiation of long wavelength. Computational results are first compared with the available measurements and show favorable agreement on thickness and effective thermal conductivity of the frost layer. In the case of the cryogenic tank, a series of parametric studies is presented in order to examine the effects of important parameters such as temperature and wind speed of ambient air, air humidity, and tank wall temperature on the frost layer formation and the amount of heat transfer into the tank. It is found that the heat transfer by solar radiation is significant and also that heat transfer strongly depends on air humidity, ambient air temperature, and wind speed but not tank wall temperature.

  10. Use of LST images from MODIS/AQUA sensor as an indication of frost occurrence in RS

    Directory of Open Access Journals (Sweden)

    Débora de S. Simões

    2015-10-01

    Full Text Available ABSTRACTAlthough frost occurrence causes severe losses in agriculture, especially in the south of Brazil, the data of minimum air temperature (Tmin currently available for monitoring and predicting frosts show insufficient spatial distribution. This study aimed to evaluate the MDY11A1 (LST – Land Surface Temperature product, from the MODIS sensor on board the AQUA satellite as an estimator of frost occurrence in the southeast of the state of Rio Grande do Sul, Brazil. LST images from the nighttime overpass of the MODIS/AQUA sensor for the months of June, July and August from 2006 to 2012, and data from three conventional weather stations of the National Institute of Meteorology (INMET were used. Consistency was observed between Tmin data measured in weather stations and LST data obtained from the MODIS sensor. According to the results, LSTs below 3 ºC recorded by the MODIS/AQUA sensor are an indication of a favorable scenario to frost occurrence.

  11. Assessing Wheat Frost Risk with the Support of GIS: An Approach Coupling a Growing Season Meteorological Index and a Hybrid Fuzzy Neural Network Model

    Directory of Open Access Journals (Sweden)

    Yaojie Yue

    2016-12-01

    Full Text Available Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS, a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008. Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 °C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35°N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is

  12. Hygro thermal simulation to predict the risk of frost damage in masonry : effects of climate change

    NARCIS (Netherlands)

    van Aarle, M.A.P.; Schellen, H.L.; van Schijndel, A.W.M.

    2015-01-01

    According to the Royal Netherlands Meteorological Institute (KNMI) climate change will result in an increase of air temperature and rainfall intensities for the Netherlands in winter in future. In this paper we investigate the effect of the risk of frost damage to masonry. The risk of frost damage

  13. Liquefaction susceptibility of fine-grained soils: preliminary study report. Final report, September 1985-March 1986

    Energy Technology Data Exchange (ETDEWEB)

    Chang, N.Y.

    1987-09-01

    Soil liquefaction, a hazardous ground failure induced by strong motion earthquakes, can cause catastrophic damage to structures such as dams, bridges, power plants, and water-front structures and may involve great losses of life. Examples of liquefaction and resulting damage were observed during the Alaska (1964), Niigata, Japan (1964), and Tangshan, China (1976), earthquakes. Ground failure due to earthquake-induced soil liquefaction may manifest itself as excessive settlement, loss of bearing capacity, sand boiling, and flow slides. The liquefaction potential of clean sands has been studied extensively for the last two decades. However, case histories revealed that liquefied sands were seldom clean. They may contain various percentages of silt or clay or both. In fact, the Chinese observation in the Tansghan earthquake indicated that some cohesive soils may have liquefied. If this indeed had happened, then structures underlain by fine-grained soils, with a marginal safety factor based on the liquefaction criteria normally applied to sands, may actually be unsafe. Thus there is an urgent need for establishing new criteria for the liquefaction susceptibility of soils to include those identified as fine-grained. The author, Professor N.Y. Chang of the University of Colorado at Denver, visited several Chinese agencies and and universities in and near Beijing, China, in the summer of 1985 in an attempt to investigate and verify reported data on the liquefaction of cohesive soils during the Tangshan earthquake of 1976 and to negotiate cooperative research into the problem. This report presents the result of supportive literature review and the findings of the China trip.

  14. Presidential Green Chemistry Challenge: 1998 Academic Award (Draths and Frost)

    Science.gov (United States)

    Presidential Green Chemistry Challenge 1998 award winners, Dr. Karen M. Draths and Professor John W. Frost, used benign, genetically engineered microbes and sugars (instead of benzene) to synthesize adipic acid and catechol.

  15. Survivel, growth, and nutrition of tree seedlings fertilized at planting on Andisol soils in Iceland

    DEFF Research Database (Denmark)

    Oskarsson, Hreinn; Sigurgeirsson, Adalsteinn; Raulund-Rasmussen, Karsten

    2006-01-01

    seedlings, compared to control seedlings. It is concluded that fertilization during afforestation in Iceland and other areas in the world with similar climatic and soil properties could make the difference between plantation success or failure. Growth; Survival; Foliar nutrient concentration; Frost heaving......A field trial was carried out in 1995 to study the effect of fertilization at planting on the survival, growth, and nutrition of tree seedlings planted on Andisol soils at two sites in South Iceland. Nine fertilizer treatments were tested on three tree species Betula pubescens Ehrh., Larix sibirica...... survival and growth. Larger amounts of N increased mortality during the first year. Fertilized trees were less subject to frost heaving than untreated trees. In the year following application of NPK fertilizer the effect was insignificant on the foliar concentration of macronutrients of the fertilized...

  16. Development of a low frost-point generator operating at sub-atmospheric pressure

    Science.gov (United States)

    Cuccaro, R.; Rosso, L.; Smorgon, D.; Beltramino, G.; Tabandeh, S.; Fernicola, V.

    2018-05-01

    A low frost-point generator (INRIM 03) operating at sub-atmospheric pressure has been designed and constructed at the Istituto Nazionale di Ricerca Metrologica (INRIM) as part of a calibration facility for upper-air sounding instruments. This new humidity generator covers the frost-point temperature range between  ‑99 °C and  ‑20 °C and works at any controlled pressure between 200 hPa and 1100 hPa, achieving a complete saturation of the carrier gas (nitrogen) in a single passage through a stainless steel isothermal saturator. The generated humid gas contains a water vapour amount fraction between 14  ×  10‑9 mol mol‑1 and 5  ×  10‑3 mol mol‑1. In this work the design of the generator is reported together with characterisation and performance evaluation tests. A preliminary validation of the INRIM 03 against one of the INRIM humidity standards in the common region is also included. Based on experimental test results, an initial uncertainty evaluation of the generated frost-point temperature, T fp, and water vapour amount fraction, x w, in the limited range down to  ‑75 °C at atmospheric pressure is reported. For the frost-point temperature, the uncertainty budget yields a total expanded uncertainty (k  =  2) of less than 0.028 °C, while for the mole fraction the budget yields a total expanded uncertainty of less than 10‑6 mol mol‑1.

  17. Frosted branch angiitis, neuroretinitis as initial ocular manifestation in Behçet disease

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mujaini

    2011-01-01

    Full Text Available Behçet disease is an idiopathic, multisystem disorder characterized by recurrent episodes of orogenital ulceration and vasculitis of the veins and arteries of all calibers. Ocular involvement may affect the conjunctiva, sclera, uveal tract, vitreous, blood vessels, and retina. Many theories have pointed toward an autoimmune response behind its pathogenesis, which may be triggered by exposure to an infectious agent. Frosted branch angiitis is characterized by vascular inflammation, sheathing, retinal edema, and retinal hemorrhages. The disease may be idiopathic in a majority of the cases or may be associated with ocular and systemic pathology. Association between Behηet disease, Frosted branch angiitis, and neuroretinitis is not reported in literature. This uncommon combination reflects the varied systemic and ocular manifestations in Behηet disease, especially in patients who are not diagnosed and treated in time. We hereby report a case of bilateral frosted branch angiitis and neuroretinitis in a young male from Middle-east, suffering from Behçet disease.

  18. GC13I-0857: Designing a Frost Forecasting Service for Small Scale Tea Farmers in East Africa

    Science.gov (United States)

    Adams, Emily C.; Wanjohi, James Nyaga; Ellenburg, Walter Lee; Limaye, Ashutosh S.; Mugo, Robinson M.; Flores Cordova, Africa Ixmucane; Irwin, Daniel; Case, Jonathan; Malaso, Susan; Sedah, Absae

    2017-01-01

    Kenya is the third largest tea exporter in the world, producing 10% of the world's black tea. Sixty percent of this production occurs largely by small scale tea holders, with an average farm size of 1.04 acres, and an annual net income of $1,075. According to a recent evaluation, a typical frost event in the tea growing region causes about $200 dollars in losses which can be catastrophic for a small holder farm. A 72-hour frost forecast would provide these small-scale tea farmers with enough notice to reduce losses by approximately 80 USD annually. With this knowledge, SERVIR, a joint NASA-USAID initiative that brings Earth observations for improved decision making in developing countries, sought to design a frost monitoring and forecasting service that would provide farmers with enough lead time to react to and protect against a forecasted frost occurrence on their farm. SERVIR Eastern and Southern Africa, through its implementing partner, the Regional Centre for Mapping of Resources for Development (RCMRD), designed a service that included multiple stakeholder engagement events whereby stakeholders from the tea industry value chain were invited to share their experiences so that the exact needs and flow of information could be identified. This unique event allowed enabled the design of a service that fit the specifications of the stakeholders. The monitoring service component uses the MODIS Land Surface Temperature product to identify frost occurrences in near-real time. The prediction component, currently under testing, uses the 2-m air temperature, relative humidity, and 10-m wind speed from a series of high-resolution Weather Research and Forecasting (WRF) numerical weather prediction model runs over eastern Kenya as inputs into a frost prediction algorithm. Accuracy and sensitivity of the algorithm is being assessed with observations collected from the farmers using a smart phone app developed specifically to report frost occurrences, and from data shared

  19. The risk of early and late frost behavior in central México under El Niño conditions

    OpenAIRE

    PERALTA-HERNÁNDEZ, A. R; BARBA-MARTÍNEZ, L. R

    2009-01-01

    The irregular occurrence of cold temperatures (frost) in central México (~19-23° N) produces high agricultural losses each year; the greatest effect is on cold-sensitive crops, which has important socio-economic implications for the region. There is a lack of information on frost-related studies regarding the onset and duration of frosts in central México, especially in response to the El Niño (EN) phenomenon. Due to the land's irregular topography, the weather stations were grouped into 300 ...

  20. Chlorophyll fluorescence as a parameter for frost hardiness in winter wheat. A comparison with other hardiness parameters.

    NARCIS (Netherlands)

    Clement, JMAM; vanHasselt, PR

    1996-01-01

    Frost hardiness of winter wheat leaves (Triticum aestivum L. cv. Urban) was measured during an eight weeks hardening period using chlorophyll fluorescence. Determination of frost induced damage after freezing, measured as the decrease of photochemical capacity of photosystem II (F-V/F-M =

  1. Influence of coffee pruning on the severity of frost damage

    Directory of Open Access Journals (Sweden)

    Armando Androcioli Filho

    2000-01-01

    Full Text Available Frost damages in a field experiment of pruning types and systems for the cultivars of Coffea arabica Catuaí and Mundo Novo, were evaluated at Londrina (23º22’S, 52º10´W, State of Parana, southern Brazil, during the winter of 1990 and 1994. Pruning types evaluated were ‘esqueletamento’ (cutting off all plagiotropic branches at 20-30 cm from the orthotropic branch, ‘decote’ (cutting off the orthotropic branch at 1.5 m and 2.0 m above ground and ‘recepa’ (cutting off the orthotropic branch at 0.8 m above ground, performed on all rows and on alternate rows, and on different sections of the plant. Results indicated that frost damage could increase according to the type and height of pruning. The pruning type ‘esqueletamento’ and prunings at higher levels were more suitable for regions with frost risk. Under severe frost condition, pruning type did not affect the damage in anyone of the treatments evaluated.Foram avaliados os danos causados pelas geadas ocorridas em 1990 e 1994 em cafeeiros de duas cultivares de Coffea arabica L., Catuaí e Mundo Novo, conduzidos em Londrina-PR. Os tipos e sistemas de podas aplicados foram o esqueletamento a 20-30 cm do tronco, decote a 1,5 m e 2,0 m de altura e recepa a 0,80 m de altura. As podas foram feitas em área total e em linhas alternadas e em diferentes partes da planta. Os dados obtidos indicaram que os danos por geada podem ser intensificados em função do tipo e altura da poda. A poda do tipo esqueletamento e as podas altas são mais indicadas para o manejo das lavouras nas regiões mais sujeitas ao fenômeno de geada. No caso de geada severa, todos os cafeeiros foram afetados, independente do tipo de poda.

  2. Distribution of pines in the Iberian Peninsula agrees with species differences in foliage frost tolerance, not with vulnerability to freezing-induced xylem embolism.

    Science.gov (United States)

    Fernández-Pérez, Laura; Villar-Salvador, Pedro; Martínez-Vilalta, Jordi; Toca, Andrei; Zavala, Miguel A

    2018-04-01

    Drought and frosts are major determinants of plant functioning and distribution. Both stresses can cause xylem embolism and foliage damage. The objective of this study was to analyse if the distribution of six common pine species along latitudinal and altitudinal gradients in Europe is related to their interspecific differences in frost tolerance and to the physiological mechanisms underlying species-specific frost tolerance. We also evaluate if frost tolerance depends on plant water status. We studied survival to a range of freezing temperatures in 2-year-old plants and assessed the percentage loss of hydraulic conductivity (PLC) due xylem embolism formation and foliage damage determined by needle electrolyte leakage (EL) after a single frost cycle to -15 °C and over a range of predawn water potential (ψpd) values. Species experiencing cold winters in their range (Pinus nigra J.F. Arnold, Pinus sylvestris L. and Pinus uncinata Raymond ex A. DC.) had the highest frost survival rates and lowest needle EL and soluble sugar (SS) concentration. In contrast, the pines inhabiting mild or cool winter locations (especially Pinus halepensis Mill. and Pinus pinea L. and, to a lesser extent, Pinus pinaster Ait.) had the lowest frost survival and highest needle EL and SS values. Freezing-induced PLC was very low and differences among species were not related to frost damage. Reduction in ψpd decreased leaf frost damage in P. pinea and P. sylvestris, increased it in P. uncinata and had a neutral effect on the rest of the species. This study demonstrates that freezing temperatures are a major environmental driver for pine distribution and suggests that interspecific differences in leaf frost sensitivity rather than vulnerability to freezing-induced embolism or SS explain pine juvenile frost survival.

  3. A new-old approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy

    Science.gov (United States)

    Cascini, Leonardo; Ciurleo, Mariantonietta; Di Nocera, Silvio; Gullà, Giovanni

    2015-07-01

    Rainfall-induced shallow landslides involve several geo-environmental contexts and different types of soils. In clayey soils, they affect the most superficial layer, which is generally constituted by physically weathered soils characterised by a diffuse pattern of cracks. This type of landslide most commonly occurs in the form of multiple-occurrence landslide phenomena simultaneously involving large areas and thus has several consequences in terms of environmental and economic damage. Indeed, landslide susceptibility zoning is a relevant issue for land use planning and/or design purposes. This study proposes a multi-scale approach to reach this goal. The proposed approach is tested and validated over an area in southern Italy affected by widespread shallow landslides that can be classified as earth slides and earth slide-flows. Specifically, by moving from a small (1:100,000) to a medium scale (1:25,000), with the aid of heuristic and statistical methods, the approach identifies the main factors leading to landslide occurrence and effectively detects the areas potentially affected by these phenomena. Finally, at a larger scale (1:5000), deterministic methods, i.e., physically based models (TRIGRS and TRIGRS-unsaturated), allow quantitative landslide susceptibility assessment, starting from sample areas representative of those that can be affected by shallow landslides. Considering the reliability of the obtained results, the proposed approach seems useful for analysing other case studies in similar geological contexts.

  4. Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone Valley.

    Science.gov (United States)

    Meier, Michael; Fuhrer, Jürg; Holzkämper, Annelie

    2018-06-01

    Late spring frost is a severe risk during early plant development. It may cause important economic damage to grapevine production. In a warming climate, late frost risk either could decline due to the reduction in frost days and an advancement of the last day of frost or increase due to a more pronounced shift forward of the start of the active growing period of the plants. These possibilities were analyzed in a case study for two locations in the lower Swiss Rhone Valley (Sion, Aigle) where viticulture is an important part of agriculture. Twelve phenology models were calibrated for the developmental stage BBCH09 (bud burst) using measured or reconstructed temperature data for two vineyards in Changins (1958 to 2012) and Leytron (1977 to 2014) together with observed phenological data. The day of year (DOY) for BBCH09 was then modelled for the years 1951 to 2050 using the best performing phenology model in combination with ten downscaled and bias-corrected climate scenarios. A 100-day period starting with BBCH09 was defined, during which daily mean and minimum temperatures were used to calculate three frost risk indices in each year. These indices were compared between the periods 1961-1990 (reference) and 2021-2050 (climate change scenario). Based on the average of the ensemble of climate model chains, BBCH09 advanced by 9 (range 7-11) (Aigle) and 7 (range 5-8) (Sion) days between the two time periods, similar to the shift in the last day of frost. The separate results of the different model chains suggest that, in the near future, late spring frost risk may increase or decrease, depending on location and climate change projections. While for the reference, the risk is larger at the warmer site (Sion) compared to that at the cooler site (Aigle), for the period 2021-2050, small shifts in both phenology and occurrence of frost (i.e., days with daily minimum temperature below 0 °C) lead to a small decrease in frost risk at the warmer but an increase at the cooler

  5. Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone Valley

    Science.gov (United States)

    Meier, Michael; Fuhrer, Jürg; Holzkämper, Annelie

    2018-01-01

    Late spring frost is a severe risk during early plant development. It may cause important economic damage to grapevine production. In a warming climate, late frost risk either could decline due to the reduction in frost days and an advancement of the last day of frost or increase due to a more pronounced shift forward of the start of the active growing period of the plants. These possibilities were analyzed in a case study for two locations in the lower Swiss Rhone Valley (Sion, Aigle) where viticulture is an important part of agriculture. Twelve phenology models were calibrated for the developmental stage BBCH09 (bud burst) using measured or reconstructed temperature data for two vineyards in Changins (1958 to 2012) and Leytron (1977 to 2014) together with observed phenological data. The day of year (DOY) for BBCH09 was then modelled for the years 1951 to 2050 using the best performing phenology model in combination with ten downscaled and bias-corrected climate scenarios. A 100-day period starting with BBCH09 was defined, during which daily mean and minimum temperatures were used to calculate three frost risk indices in each year. These indices were compared between the periods 1961-1990 (reference) and 2021-2050 (climate change scenario). Based on the average of the ensemble of climate model chains, BBCH09 advanced by 9 (range 7-11) (Aigle) and 7 (range 5-8) (Sion) days between the two time periods, similar to the shift in the last day of frost. The separate results of the different model chains suggest that, in the near future, late spring frost risk may increase or decrease, depending on location and climate change projections. While for the reference, the risk is larger at the warmer site (Sion) compared to that at the cooler site (Aigle), for the period 2021-2050, small shifts in both phenology and occurrence of frost (i.e., days with daily minimum temperature below 0 °C) lead to a small decrease in frost risk at the warmer but an increase at the cooler

  6. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-01-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. The DIII-D neutral beam system has routinely provided up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak. Operation of neutral beams with helium has historically presented a problem in that pulse lengths have been limited to 500 ms due to reliance solely on volume pumping of the helium gas. Helium is not condensed on the cryopanels. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  7. Peach fruit set and buttoning after spring frost

    Science.gov (United States)

    A spring frost occurred on 29 Mar. 2015 at the USDA-ARS Byron station after three weeks of blooming when most fruitlets were forming. Due to severe fruitlet drop, the overall fruit set on a scale of 0-9 was substantially reduced, from 5.61 averaged in 2014 to 2.61 in 2015. In addition, buttons (abno...

  8. The effect of watermelon frost on prostaglandin E2 (PGE2 in inflamed pulp tissue (in vitro study

    Directory of Open Access Journals (Sweden)

    Dennis Dennis

    2009-06-01

    Full Text Available Background: Pulp inflammation can be marked by the increase of prostaglandin E2(PGE2 level compared to normal pulp. The increase of PGE2 may lead to vasodilatation, increase of vascular permeability, pain and bone resorption. Watermelon frost has been well known in Chinese society for pain relief and inflammation in oral cavity and teeth. Purpose: The aim of this study was to investigate that watermelon frost can be used to decrease the PGE2 level. Method: 27 samples of pulp tissues used in this in-vitro study, were extirpated from the patients’ teeth with symptomatic irreversible pulpitis referred to clinic of Conservative Dentistry, RSPGM Faculty of Dentistry, USU. Trial materials were applied to 27 samples i.e. watermelon frost as a trial material and commercial watermelon frost and eugenol to observe their effect on PGE2. PGE2 level of each material was detected through ELISA method by measuring and comparing the absorbance reading of the wells of the samples against standards with a micro plate reader at W1 = 650 nm and W2 = 490 nm. Result: The result showed the biggest effect was found in the third group (eugenol, mean 4.6933, followed by the first group (watermelon frost as a trial material, mean 18,1578 then the second group (commercial watermelon frost, mean 82,2689. OneWay ANOVA revealed that there were significant differences among all trial materials (p < 0.001 on PGE2 level. Conclusion: This study demonstrated that watermelon frost can be used to decrease the PGE2 level in inflamed pulp tissue and led to the acceptance of traditional medicine and natural products as an alternative form of dental care.

  9. Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste

    International Nuclear Information System (INIS)

    Copuroglu, O.; Fraaij, A.L.A.; Bijen, J.M.J.M.

    2006-01-01

    Sodium-monofluorophosphate (Na-MFP) is currently in use as a surface applied corrosion inhibitor in the concrete industry. Its basic mechanism is to protect the passive layer of the reinforcement steel against disruption due to carbonation. Carbonation is known as the most detrimental environmental effect on blast furnace slag cement (BFSC) concrete with respect to frost salt scaling. In this paper the effect of Na-MFP on the microstructure and frost salt scaling resistance of carbonated BFSC paste is presented. The results of electron microscopy, mercury intrusion porosimetry (MIP) and X-ray diffraction (XRD) are discussed. It is found that the treatment modifies the microstructure and improves the resistance of carbonated BFSC paste against frost salt attack

  10. Clay mineralogy and magnetic susceptibility of Oxisols in geomorphic surfaces

    Directory of Open Access Journals (Sweden)

    Livia Arantes Camargo

    2014-06-01

    Full Text Available Studies analyzing the variability of clay minerals and magnetic susceptibility provide data for the delineation of site-specific management areas since many of their attributes are important to agronomy and the environment. This study aimed to evaluate the spatial variability of clay minerals, magnetic susceptibility, adsorbed phosphorus and physical attributes in Oxisols of sandstones in different geomorphic surfaces. For that purpose, soil samples were collected every 25 m along a transect located within the area where the geomorphic surfaces were identified and mapped. The transect occupied the central portion of 500 ha, where it was also sampled for density purposes with one sample per six hectares. Soil samples were collected at a depth of 0.0-0.2 m. The results of the physical, chemical, mineralogical and magnetic susceptibility analyses were subjected to statistical and geostatistical analyses. The nature of the clay minerals and magnetic susceptibility was dependent on the variation of the soil parent material. High values of magnetic susceptibility were associated with the presence of maghemite and magnetite of coarse size. The spatial variability of crystallinity and the content of Fe oxides, as well as magnetic susceptibility, were dependent on the age of the geomorphic surfaces. The youngest surface had greater spatial variability of these attributes. The iron (goethite and hematite and aluminum (gibbsite oxides in the youngest geomorphic surface influenced the low values of soil density and high values of total pore volume, micropores and P adsorption. The characterization of the spatial variability of Fe oxides and susceptibility allowed for the delineation of homogeneous areas.

  11. Siim Nestor soovitab : Ben Frost ja Alexander Robotnik Eclectical / Siim Nestor

    Index Scriptorium Estoniae

    Nestor, Siim, 1974-

    2007-01-01

    Austraalia muusik ja helilooja Ben Frost projektiga "6 guitars" esinemas festivali Eclectica raames 6. sept. Tartu klubis Rock ja Roll ja itaalia diskor Alexander Robotnik 7. sept. klubis Trehv, esinejatest

  12. Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification

    International Nuclear Information System (INIS)

    Wang, Fenghao; Wang, Zhihua; Zheng, Yuxin; Lin, Zhang; Hao, Pengfei; Huan, Chao; Wang, Tian

    2015-01-01

    Highlights: • Experiments are carried out to investigate a novel frost-free ASHPWH system. • Dynamic characteristics of the system are studied at different ambient conditions. • Test results confirm the expected potential to control the frost-free process. • The COP increased 17.9% and 3.4% respectively in comparison with RCD at −3 °C and 3 °C. - Abstract: Air-source heat pump (ASHP) often operates with substantial frost formation on the outdoor heat exchanger at low ambient temperature in winter, it insulates the finned surface and also reduces heat transfer rate, leading to performance degradation or even shutdown of ASHP systems. Although several defrosting methods have been reported, the frosting and defrosting processes reduced energy efficiency and resulted in, in some cases, heat pump breakdown. To solve this problem, a novel frost-free air-source heat pump water heater (ASHPWH) system has been developed, which coupled with an extra heat exchanger coated by a solid desiccant (EHECSD) with an energy storage device (ESD). Based on the previous studies, a further analysis and comprehensive research on the novel frost-free ASHPWH system is presented in this paper. The dynamic characteristics of the novel system are investigated experimentally in different ambient conditions. An experimental setup and experimental procedures are described in detail. Thereafter, the dehumidification efficiency and regeneration efficiency of EHECSD, suction and discharge pressures of the compressor, the temperature of PCM are evaluated during the heating and regeneration modes respectively. Results indicate that the system can keep the evaporator frost-free for 32, 34, 36 min during heating mode at the ambient temperatures of −3 °C, 0 °C and 3 °C and 85% RH. Compared with the reverse-cycle defrosting (RCD), COP of the frost-free ASHPWH are 17.9% and 3.4% higher at the ambient temperature of −3 °C and 3 °C respectively. With this innovative technology, it has

  13. Spatial distribution of topsoil magnetic susceptibility in Sawahlunto City, West Sumatera

    Science.gov (United States)

    Afdal; Wahyuni, E. S.

    2018-03-01

    A research to determine the spatial distribution of top soil magnetic suceptibility at Sawahlunto City, West Sumatra has been conducted. The top soil samples were taken at four locations ie the downtown area, the steam power plant area, the agricultural area, and coal mine area. At each location, the soil samples were taken at 10 points at a depth of 20 cm. Magnetic susceptibility were measured using Bartington MS2B Magnetic Susceptibility Meter. The topsoil samples from Sawahlunto city have relatively low average value of the magnetic susceptibility that is 67.0×10-8 m3/kg. The magnetic susceptibility of topsoil samples from downtown area have the average and the highest value of magnetic susceptibility (100.6×10-8 and 259.9×10-8 m3/kg), and followed by sample from the steam power plant area (98.4×10-8 and 258.0×10-8 m3/kg), the agricultural area (56.2×10-8 and 83.7×10-8 m3/kg), and coal mine area (12.9×10-8 and 26.8×10-8 m3/kg). Soil samples from the steam power plant area have the widest range of magnetic susceptibility value range from 0.3 × 10-8 to 258.0 × 10-8 m3/kg.

  14. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ.

    Science.gov (United States)

    Christensen-Dalsgaard, Karen K; Tyree, Melvin T

    2014-05-01

    Frost has been shown to cause frost fatigue (reduced cavitation resistance) in branch segments in the lab. Here, we studied the change in cavitation resistance and percent loss of conductivity (PLC) from fall to spring over 2 consecutive years in three diffuse-porous species in situ. We used the cavitron technique to measure P25 , P50 and P90 (the xylem pressure causing a 25, 50 and 90% conductivity loss) and PLC and stained functioning vessels. Cavitation resistance was reduced by 64-87% (in terms of P50 ), depending on the species and year. P25 was impacted the most and P90 the least, changing the vulnerability curves from s- to r-shaped over the winter in all three species. The branches suffered an almost complete loss of conductivity, but frost fatigue did not necessarily occur concurrently with increases in PLC. In two species, there was a trade-off between conduit size and vulnerability. Spring recovery occurred by growth of new vessels, and in two species by partial refilling of embolized conduits. Although newly grown and functioning conduits appeared more vulnerable to cavitation than year-old vessels, cavitation resistance generally improved in spring, suggesting other mechanisms for partial frost fatigue repair. © 2013 John Wiley & Sons Ltd.

  15. Recent changes in frost days events characteristics in Uruguay-Southeastern South America.

    Science.gov (United States)

    Renom, Madeleine; De Mello, Santiago

    2015-04-01

    There are few studies about extreme temperature events in Southeastern South America as is it mentioned in the SREX report (2009), although these events generate human health impacts and big economical looses. Southeastern South America is one of the major agricultural production regions worldwide. Particularly in Uruguay, agricultural production represents a high percentage of the GDP and, in the last 15 years there has been a significant increase in the area used for that economic activity. Although frost is not always is considered as an extreme event it causes, in the case of Uruguay, an impact on society, energy consumption and agricultural losses. Previous studies have shown a negative trend in the occurrence of cold nights (TN10) during winter (June-July-August) and autumn (March-April-May) in Uruguay. This work try to determine if these trends affects the occurrences and characteristics of frost days (Tmin< 0°C). Based on a high-quality daily minimum temperature for 11 meteorological stations that cover the period 1950-2009, we analyzed different features of frost days. Long term trends do not present a clear spatial behaviour suggesting that there is a not clear relationship between the percentile based index (TN10) and a fixed index (FD). At monthly scale, May and September show a negative trend, although these months present a low number of cases that difficult the statistical treatment. It is noticeable that from a decadal point of view the last decade (2000-2009) was the decade with fewer occurrences comparing with the rest, while the 90's is the decade that presents more cases. We also analyzed changes in frost period (FP) which commonly extends from May to September. In general all the stations present a decrease in the FP in accordance with the negative trend detected at monthly scale, suggesting a warming in autumn and spring time. Although we detected different behaviour in two stations, one located inner land and the other located on the

  16. Simulating the Probability of Grain Sorghum Maturity before the First Frost in Northeastern Colorado

    Directory of Open Access Journals (Sweden)

    Gregory S. McMaster

    2016-09-01

    Full Text Available Expanding grain sorghum [Sorghum bicolor (L. Moench] production northward from southeastern Colorado is thought to be limited by shorter growing seasons due to lower temperatures and earlier frost dates. This study used a simulation model for predicting crop phenology (PhenologyMMS to estimate the probability of reaching physiological maturity before the first fall frost for a variety of agronomic practices in northeastern Colorado. Physiological maturity for seven planting dates (1 May to 12 June, four seedbed moisture conditions affecting seedling emergence (from Optimum to Planted in Dust, and three maturity classes (Early, Medium, and Late were simulated using historical weather data from nine locations for both irrigated and dryland phenological parameters. The probability of reaching maturity before the first frost was slightly higher under dryland conditions, decreased as latitude, longitude, and elevation increased, planting date was delayed, and for later maturity classes. The results provide producers with estimates of the reliability of growing grain sorghum in northeastern Colorado.

  17. The effects of frost thickness on the heat transfer of finned tube heat exchanger subject to the combined influence of fan types

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jeng-Min; Hsieh, Wen-Chien; Ke, Xin-Ji [Department of Refrigeration, Air Conditioning National Chin-Yi University of Technology, Taichung County, Taiping City 411 (China); Wang, Chi-Chuan [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310 (China)

    2008-05-15

    This study conducts a numerical study concerning the effect of frost thickness on the heat transfer performance of a four rows plate finned tube heat exchanger. Calculations are made under constant air volume and variable air volume conditions. It is found that the initial surge of heat transfer rate in the frosted finned tube heat exchanger is mainly associated with the critical radius effect rather than the surface roughness. The frost thermal conductivity plays an important role in the surge phenomenon. There is hardly any initial surge when frost thermal conductivity is below 0.1 W m{sup -1} K{sup -1}. It is also recommended that a refrigerator should defrost when half of a single flow channel area is blocked by frost. The calculations also reveal that a centrifugal fan is recommended with a small fin-pitch heat exchanger. However, if a long term operation at a thick frost situation is unavoidable, an axial fan should be selected. There is no great difference between selection of an axial fan or centrifugal fan for a larger fin pitch heat exchanger. (author)

  18. Changes of Frost Damage and Treeline Advance for Swiss Stone Pine in the Calimani Mts. (Eastern Carpathians, Romania

    Directory of Open Access Journals (Sweden)

    KERN, Zoltán

    2008-01-01

    Full Text Available Checking the tree-ring structure of 39 living and 9 crossdated dead samples of Swissstone pine (Pinus cembra L. collected from the upper timberline of the CalimaniMts. we haveidentified 59 frost rings over the past 250 years. We found concentrated occurrence of frost events inthree decades: in the 1790s, 1810s and 1910s. No frost ring was observed in two bidecadal periods:1750-1770 and 1850-1870. Out of the analysed interval 1963-2004 is the longest period without frostring occurrence. After 1920 both frequency and severity of frost events seem to decrease compared tothe prior 170 years. We determined the altitude of highest growing stone pine individuals in theBradului Ciont–Pietrosu region in June, 2006. Individuals were sorted into tree-form or bush-likemorphological groups. Mean elevation data of the groups were corrected by an estimated constant biasof GPS measurements (-30 m. Comparing the corrected values to early 20th century inventory data65 m and 95 m upward migration was determined for treeline and boundary of bush-like occurence,respectively. The parallel results suggest that the 20th century advance of the upper forest limit wasdue to the decrease of frost stress at the zone of timberline.

  19. Cryoprotectants are metabolic fuels during long term frost exposure in the earthworm Dendrobaena octaedra.

    DEFF Research Database (Denmark)

    C. Jørgensen, Sofia; Overgaard, Johannes; Holmstrup, Martin

    2008-01-01

    Ectothermic animals that live in the subarctic and temperate regions must have strategies to deal with periods of frost during winter. The earthworm Dendrobaena octaedra is a freeze tolerant species that accumulates large concentrations of the cryoprotectant glucose upon ice formation in the extr......Ectothermic animals that live in the subarctic and temperate regions must have strategies to deal with periods of frost during winter. The earthworm Dendrobaena octaedra is a freeze tolerant species that accumulates large concentrations of the cryoprotectant glucose upon ice formation...

  20. Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter–spring

    Directory of Open Access Journals (Sweden)

    K. Hara

    2017-07-01

    Full Text Available Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl−, Mg2+, K+, Ca2+, Br−, and iodine. Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14–3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl−, Br−, and iodine in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS SO42−. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

  1. Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter-spring

    Science.gov (United States)

    Hara, Keiichiro; Matoba, Sumito; Hirabayashi, Motohiro; Yamasaki, Tetsuhide

    2017-07-01

    Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl-, Mg2+, K+, Ca2+, Br-, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14-3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl-, Br-, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42-. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

  2. Automated cycled sprinkler irrigation for spring frost protection of cranberries

    Science.gov (United States)

    Sprinkler irrigation is essential for preventing spring frost bud damage in cranberry (Vaccinium macrocarpon Ait). Risk-averse growers have been reluctant to adopt the intermittent cycling of irrigation pumps as a standard management practice. In the spring of 2013 and 2014, an experiment was conduc...

  3. Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    KAUST Repository

    Style, Robert W.

    2011-10-14

    We present a physically intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil and the geometrical supercooling of the water in the soil, a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that are currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios and should therefore be useful in the prediction of macroscopic frost-heave rates. © 2011 American Physical Society.

  4. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

    DEFF Research Database (Denmark)

    Barber, D. G.; Ehn, J. K.; Pucko, M.

    2014-01-01

    flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 mu molkg(-1) in frost flowers and 1061 mu molkg(-1) in the surface slush layer. Chamber flux measurements...

  5. Interactions between near-ground temperature and radiation, silvicultural treatments and frost damage to Norway spruce seedlings

    OpenAIRE

    Langvall, Ola

    2000-01-01

    Several different silvicultural treatments were studied in two experiments. In the first, mechanical scarification, slash removal, vegetation control, clear-cut age and seedling types were investigated with respect to frost injury to Norway spruce (Picea abies (L.) Karst.) seedlings. Frost damage was also related to near-ground minimum temperature. In the other experiment, the effects of Scots pine (Pinus sylvestris (L.)) shelterwood density gradients, ranging from dense, uncut forest to comp...

  6. Effects of a Tundra Fire on Soils and Plant Communities along a Hillslope in the Seward Peninsula, Alaska.

    Science.gov (United States)

    1980-11-01

    together with topography, slope, drainage, soil types (HPCq = Histic Pergelic Cryaquept; PCq = Pergelic Cryaquept; PCf = Pergelic Cryofibrist), frost...short distance to the north. the soil moisture environments (Fig. 3): Histic Shallow, weakly expressed, more or less paral- Pergelic Cryaquepts on the...poorly drained foot- lel drainageways occur at intervals of about 100 slope, Pergelic Cryaquepts on the moderately to 150 m along the entire southwest

  7. Evaluations on power ramp data of PWR fuels by FROST and THERMOST codes

    International Nuclear Information System (INIS)

    Murai, K.; Ogawa, S.; Nuno, H.; Kondo, Y.

    1987-01-01

    An evaluation is presented of power ramp data of Mitsubishi's PWR fuel rods tested in R-2, Studsvik, which was analysed by FROST and THERMOST codes. The analyses give good predictions for measured diameter changes and on-power rod elongations. The work indicates that FROST is capable of analysing both radial and axial pellet-cladding mechanism interaction (PCMI) appropriately, and that predicted states of PCMI (i.e. stress and strain which cannot be measured directly) are considered to be reliable. The ramp data used in the present analyses were obtained in two joint programmes with five Japanese PWR utilities (KEPCO, KYEPCO, SEPCO, HEPCO, and JAPCO). (UK)

  8. Anisotropy effect of the clay soil masses on the stress-strain state of transport tunnels

    Directory of Open Access Journals (Sweden)

    Yushkov Boris Semenovich

    2014-09-01

    Full Text Available The article considers the kinds of clay soil mass anisotropy in the form of the spatial heterogeneity of properties of thawed and frozen soils, ambiguity of the frost heaving values and shrinkage in different directions. The questions of anisotropy of the clay soil properties at the positive temperatures are reported. The dependence of the heterogeneity of the physical and mechanical properties of frozen soils from the cryogenic texture, natural arrangement, different types of stratification and interbedding is considered. Indexes of the strength and strain anisotropy are noted. The accounting possibilities of the basic numerical indexes of heaving phenomena from the standpoint of anisotropy of the properties and processes inherent in the freezing through soil are analyzed by substitution in the heaving strain formula. The unevenness of thawed soil shrinkage in vertical and horizontal directions is noted during the freezing of the top layer. The unevenness of shrinkage in different directions is connected with kind of stress and cryogenic texture. Anisotropy of the frost heaving process is considered in the context of one-dimensional and non-one-dimensional problem depending on the amount of the freezing fronts and their direction. There is summarized the effect of anisotropy appearances on the stress-strain state of the transport tunnel. One can conclude that the resulting non-uniformity of heaving and shrinkage in conjunction with anisotropic properties of frozen soils, is a significant component in the complex of power factors determining the optimal design solution of a transport tunnel.

  9. Soil magnetic susceptibility as indicator of radioactive contamination

    International Nuclear Information System (INIS)

    Curda, S.

    2006-01-01

    Measurement of magnetic susceptibility is a method, which is used in many areas of research. The locality Ak-Tjuz is typical example of old ecological load. One of the negative effects represents radioactive contamination. This situation is caused by environmental disaster in 1964. For useful reparation it is really necessary to determinate the surface range of contamination. And measurement of the magnetic susceptibility could be the suitable method for that kind of monitoring. (author)

  10. Delineation of frost characteristics on cold walls by using a new formula for psychrometrics demarcation boundary

    International Nuclear Information System (INIS)

    Ali, Ahmed Hamza H.

    2009-01-01

    In this study, a direct formula that predicts either the frost formation on cold walls is correspondence to psychrometric-subsaturated or supersaturated regions is presented. The developed formula uses the data of the entering air dry-bulb temperature and absolute humidity, and the absolute humidity of the air at saturation corresponding to the coil surface temperature. Cases studies of demarcation criteria for frost formation on evaporator coil using experimental measured data, and on walls of cold storage freezer using measured data from literature are used to validate the formula and it is found that results are completely matches to the graphic plot of the data on the psychrometric chart. In case of cold storage freezers, the result clearly shows that a greater demarcation criteria value indicates frost formation under sever condition that is characterized as snow-like with low density and thermal conductivity.

  11. Purafil-filtration prevents the development of ozone-induced frost injury: A potential role for nitric oxide

    Science.gov (United States)

    Neighbour, E. A.; Pearson, M.; Mehlhorn, H.

    The relationship between exposure to ozone in the summer and the subsequent development of frost hardiness in the autumn was evaluated in recent experiments with red spruce ( Picea rubens Sarg. Syn. P. rubra). When O 3 was added to air filtered only through charcoal (contaminated with nitric oxide (NO)), frost sensitivity in late autumn was increased as measured by conductivity from electrocyte leakage. However, when O 3 was added to air filtered through charcoal and Purafil (no NO), no enhancement of frost sensitivity was found. A possible explanation of this difference, involving the chain-propagating property of NO in the O 3-initiated oxidation of unsaturated hydrocarbons (HCs), is proposed and discussed. N 2O 5, which was found to be generated at approximately 0.02 moles per mole of O 3 in the first year's experiment, only marginally modified O 3 toxicity.

  12. Prediction of Frost Occurrences Using Statistical Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Hyojin Lee

    2016-01-01

    Full Text Available We developed the frost prediction models in spring in Korea using logistic regression and decision tree techniques. Hit Rate (HR, Probability of Detection (POD, and False Alarm Rate (FAR from both models were calculated and compared. Threshold values for the logistic regression models were selected to maximize HR and POD and minimize FAR for each station, and the split for the decision tree models was stopped when change in entropy was relatively small. Average HR values were 0.92 and 0.91 for logistic regression and decision tree techniques, respectively, average POD values were 0.78 and 0.80 for logistic regression and decision tree techniques, respectively, and average FAR values were 0.22 and 0.28 for logistic regression and decision tree techniques, respectively. The average numbers of selected explanatory variables were 5.7 and 2.3 for logistic regression and decision tree techniques, respectively. Fewer explanatory variables can be more appropriate for operational activities to provide a timely warning for the prevention of the frost damages to agricultural crops. We concluded that the decision tree model can be more useful for the timely warning system. It is recommended that the models should be improved to reflect local topological features.

  13. Gamma-ray spectrometry, electrical resistivity, and magnetic susceptibility of agricultural soils in the Northwest region of the Parana State, Brazil; Gamaespectrometria, resistividade eletrica e susceptibilidade magnetica de solos agricolas no noroeste do estado do Parana

    Energy Technology Data Exchange (ETDEWEB)

    Becegato, Valter Antonio [Universidade do Estado de Santa Catarina-UDESC, Centro de Ciencias Agroveterinarias, Lages, SC (Brazil); Ferreira, Francisco Jose Fonseca, E-mail: becegato@cav.udesc.br, E-mail: francisco.ferreira@ufpr.br [Universidade Federal do Parana (LPGA/UFPR), Curitiba, PR (Brazil). Dept. de Geologia. Lab. de Pesquisas em Geofisica Aplicada

    2005-10-15

    Gamma-ray spectrometry, electrical resistivity, and magnetic susceptibility measurements were taken from agricultural areas near the City of Maringa, in the Northwest region of the Parana state, south Brazil, in order to characterize the spatial distribution of radionuclides (K, eU, and eTh), the apparent resistivity, and the magnetic susceptibility determined for soils. Three different types of soils are present in this agricultural area: Alfisoil, clayey texture Oxisoil, both deriving from Lower Cretaceous basalts of the Serra Geral Formation; and medium texture Oxisoil from reworked Serra Geral and Goio-Ere formations, the latter deriving from sandstones of the Upper Cretaceous Caiua Group. It could be observed that in more clayey soils both concentration of radionuclides and susceptibility values are higher than in more sandy soils, especially due to the higher adsorption in the former and to the higher availability of magnetic minerals in the latter. The average ppm and Bq Kg{sup -1} grades for K, eU, and eTh in the areas under anthropic activity are of 1766-54.75, 0.83-10.22, and 1.78-7.27, respectively. These grades are significantly higher than those of non-occupied or non-fertilized areas (1101-34.15 K, 0.14-1.69 eU, and 1.31-5.36 eTh in ppm and Bq Kg-1, respectively.) Correlations were observed between uranium and clay, uranium and magnetic susceptibility, uranium and organic matter, and between electric resistivity and clay grades. Varied concentrations of radionuclides were also observed in different fertilizer formulations applied to soy and wheat cultures. Apparent electric resistivity values between 25 and 647 Ohm.m and magnetic susceptibility values between 0.28 e 1.10 x 10-3 SI due to clay and magnetic minerals represented important soil discrimination factors in the study area that can be incorporated as easy, low-cost soil mapping tools. (author)

  14. Effect of defoliation prior to a frost on postharvest respiration rate, extractable sucrose, and invert sugar concentration of sugarbeet

    Science.gov (United States)

    This study investigated the effect of defoliation prior to a frost on postharvest storage properties of sugarbeet (Beta vulgaris L.). Roots of plants with canopies intact until harvest were compared to roots of plants that had been defoliated prior to a frost on multiple harvest dates following a da...

  15. Aclimatação ao frio e dano por geada em canola Acclimatization to cold and frost-injury in canola

    Directory of Open Access Journals (Sweden)

    Genei Antonio Dalmago

    2010-09-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência da aclimatação ao frio sobre o dano causado pela geada em diferentes estádios fenológicos de genótipos de canola. Foram realizados cinco experimentos em ambiente controlado, em 2006, 2007 e 2008. Os fatores avaliados foram: genótipos, aclimatação (com; sem, intensidades de geada, estádios de desenvolvimento de plantas, regimes de aclimatação e regimes de geada. As variáveis avaliadas foram: queima de folhas, massa de matéria seca, estatura de plantas, duração de subperíodo, componentes de rendimento e rendimento de grãos. A aclimatação ao frio, antes da geada, resultou em menor queima de folhas e maior massa de matéria seca, em comparação a plantas não aclimatadas. As geadas foram prejudiciais a partir de -6°C no início do ciclo de desenvolvimento, principalmente em plantas não aclimatadas, e a partir de -4ºC na floração, com redução do número de síliquas e do número de grãos por síliqua. A aclimatação após as geadas não contribuiu para a tolerância da canola a esse evento. Geadas consecutivas não acarretaram maior prejuízo à canola. A aclimatação de plantas de canola antes da geada reduz os danos, principalmente quando a geada ocorre no início do desenvolvimento das plantas.The objective of this work was to evaluate the influence of cold acclimatization on frost damage at different phenological stages of canola genotypes. Five experiments were carried out under controlled conditions, in 2006, 2007, and 2008. The evaluated factors were: genotypes, acclimatization (with; without, frost gradient, plant developmental stages, acclimatization regimes and frost regimes. The evaluated variables were: leaf scorching symptoms, dry weight, plant height, length of subperiod, yield components and grain yield. The acclimatization before frost resulted in lesser leaf scorching symptoms and higher dry matter in comparison to plants not acclimated. Frosts were

  16. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    Science.gov (United States)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  17. Development and Validation of the Frost Multidimensional Perfectionism Scale--Brief

    Science.gov (United States)

    Burgess, Alexandra M.; Frost, Randy O.; DiBartolo, Patricia Marten

    2016-01-01

    Twenty-five years ago, one of the first empirically validated measures of perfectionism, the Frost et al. Multidimensional Perfectionism Scale (F-MPS) was published. Since that time, psychometric studies of the original F-MPS have provided a plethora of evidence to support the potential development of a shorter yet still psychometrically robust…

  18. Effects of fin pitch and array of the frost layer growth on extended surface of a heat exchanger

    International Nuclear Information System (INIS)

    Yang, Dong Keun; Lee, Kwan Soo

    2003-01-01

    This paper presents the effects of the fin array and pitch on the frost layer growth of a heat exchanger. The numerical results are compared with experimental data of a cold plate to validate the present model, and agree well with experimental data within a maximum error of 8%. The characteristics of the frost formation on staggered fin array are somewhat different from those of in-line array. For fin pitch below 10 mm, the frost layer growth of second fin in the staggered array is affected by that of first fin. The heat transfer of single fin deteriorate with decreasing fin pitch regardless of fin array, however, the thermal performance of a heat exchanger, considering increase of heat surface area, becomes better

  19. Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica).

    Science.gov (United States)

    Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne L

    2016-04-15

    We investigated how concentrations of sensory relevant compounds: glucosinolates (GLSs), flavonoid glycosides, hydroxycinnamic acid derivatives and sugars in kale responded to split dose and reduced nitrogen (N) fertilization, plant age and controlled frost exposure. In addition, frost effects on sensory properties combined with N supply were assessed. Seventeen week old kale plants showed decreased aliphatic GLSs at split dose N fertilization; whereas reduced N increased aliphatic and total GLSs. Ontogenetic effects were demonstrated for all compounds: sugars, aliphatic and total GLSs increased throughout plant development, whereas kaempferol and total flavonoid glycosides showed higher concentrations in 13 week old plants. Controlled frost exposure altered sugar composition slightly, but not GLSs or flavonoid glycosides. Reduced N supply resulted in less bitterness, astringency and pungent aroma, whereas frost exposure mainly influenced aroma and texture. N treatment explained most of the sensory variation. Producers should not rely on frost only to obtain altered sensory properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Research on frost formation in air source heat pump at cold-moist conditions in central-south China

    International Nuclear Information System (INIS)

    Gong, Guangcai; Tang, Jinchen; Lv, Dongyan; Wang, Hongjin

    2013-01-01

    Highlights: ►A dynamic evaporator model is built up. ► The model involves the ratio of the latent heat to sensible heat of wet air. ►A correlation considering d eq is shown below to predict frost accumulation: (M fr v 3 )/(Ψd eq 2 ) =((T a )/(T w ) ) 0.1 ((vτ)/(d eq ) ) 0.7 (l/(d eq ) ) 1.378 X a 1.228 . ►The changing ratio can characterize the early development of system performance. ►The changing ratio can characterize the early development of frost accumulation. -- Abstract: A dynamic evaporator model of air source heat pump (ASHP), considering the ratio of the latent heat to sensible heat of wet air, is presented to analyze the performance of ASHP under frosting. The performance parameters, such as the heating capacity, COP and the outlet temperature of compressor, are simulated with CYCLEPAD. Then a semi-empirical correlation that predicts frost accumulation on the air-side of fin-tube heat exchanger is developed with dimensionless analysis and also modified by a test conducted under cold-moist conditions in winter. In addition, eight influence factors are considered involving the ambient conditions and structures of heat exchanger, whose effects are analyzed as well. Among them, the equivalent diameter of air flow cross-section in fin-tube d eq is especially proposed. Lastly, the relationships between the ratio, the performance parameters and the frost accumulation are discussed in this paper, followed by an evaluation of an optimal defrosting time interval to improve the ASHP’s energy efficiency and operational reliability at cold-moist conditions in central-south China.

  1. There is no direct relationship between N-status and frost hardiness in needles of NH3-exposed Scots pine seedlings

    NARCIS (Netherlands)

    Clement, JMAM; Venema, JH; Van Hasselt, PR

    2000-01-01

    The effect of short-term atmospheric ammonia deposition on frost hardening of needles of three-month-old seedlings of Scots pine (Pinus sylvestris L.) was studied. Plants were frost hardened under short day and moderate temperature conditions in the laboratory during exposure to gaseous NH3

  2. An unusual case of frost bite autoamputation of toes.

    Science.gov (United States)

    Wani, Adil Hafeez; Mohsin, Mir; Darzi, Mohammed Ashraf; Zaroo, Mohammed Inam; Bashir, Sheikh Adil; Zargar, Haroon Rashid; Rasool, Altaf; Bijli, Mohammed Akram; Dar, Hameedullah; Farooq, Peerzada Omar; Ahmed, Sheikh Tariq

    2008-12-16

    We report a case of a 15 year old young female who suffered autoamputation of left mid foot and four digits of right foot following repeated application of snow to relieve the pain in her frost bitten feet. The sociodemographic background, cause, resulting injury and subsequent management are discussed. Such injuries are relatively rare but awareness of the risk of this type of injury is important.

  3. The potential importance of frost flowers, recycling on snow, and open leads for ozone depletion events

    Directory of Open Access Journals (Sweden)

    M. Piot

    2008-05-01

    Full Text Available We present model studies with the one-dimensional model MISTRA to investigate the potential role of frost flowers, recycling on snow, and open leads in the depletion of tropospheric ozone in the Arctic spring. In our model, we assumed frost flower aerosols to be the major source of bromine. We show that a major ozone depletion event can be satisfactorily reproduced only if the recycling on snow of deposited bromine into gas phase bromine is assumed. In the model, this cycling is more efficient than the bromine explosion process and maintains sufficiently high levels of bromine to deplete ozone down to few nmol mol−1 within four days. We assessed the influence of different surface combinations (open lead/frost flowers on the chemistry in the model. Results showed noticeable modifications affecting the composition of aerosols and the deposition velocities. A model run with a series of coupled frost flower fields and open leads, separated by large areas of snow, showed results comparable with field observations. In addition, we studied the effects of modified temperature of either the frost flower field or the ambient airmass. A warmer frost flower field increases the relative humidity and the aerosol deposition rate. The deposition/re-emission process gains in importance, inducing more reactive bromine in the gas phase, and a stronger ozone depletion. A decrease of 1K in airmass temperature shows in our model that the aerosol uptake capacities of all gas phase species substantially increases, leading to enhanced uptake of acids from the gas phase. Consequently, the so-called bromine explosion accelerated and O3 mixing ratios decreased. In our model representation, variations in wind speed affected the aerosol source function and influenced the amount of bromine in the atmosphere and thus the ozone depletion strength. Recent studies have suggested the important role of the precipitation of calcium carbonate (CaCO3

  4. Early spring, severe frost events, and drought induce rapid carbon loss in high elevation meadows.

    Directory of Open Access Journals (Sweden)

    Chelsea Arnold

    Full Text Available By the end of the 20th century, the onset of spring in the Sierra Nevada mountain range of California has been occurring on average three weeks earlier than historic records. Superimposed on this trend is an increase in the presence of highly anomalous "extreme" years, where spring arrives either significantly late or early. The timing of the onset of continuous snowpack coupled to the date at which the snowmelt season is initiated play an important role in the development and sustainability of mountain ecosystems. In this study, we assess the impact of extreme winter precipitation variation on aboveground net primary productivity and soil respiration over three years (2011 to 2013. We found that the duration of snow cover, particularly the timing of the onset of a continuous snowpack and presence of early spring frost events contributed to a dramatic change in ecosystem processes. We found an average 100% increase in soil respiration in 2012 and 2103, compared to 2011, and an average 39% decline in aboveground net primary productivity observed over the same time period. The overall growing season length increased by 57 days in 2012 and 61 days in 2013. These results demonstrate the dependency of these keystone ecosystems on a stable climate and indicate that even small changes in climate can potentially alter their resiliency.

  5. Cross-Cultural Validity of the Frost Multidimensional Perfectionism Scale in Korea

    Science.gov (United States)

    Lee, Dong-gwi; Park, Hyun-joo

    2011-01-01

    This study with 213 South Korean college students (113 men) examined the cross-cultural generalizability of (a) the factor structure of the Frost Multidimensional Perfectionism Scale (F-MPS) and (b) the existence of adaptive perfectionists, maladaptive perfectionists, and nonperfectionists. A confirmatory factor analysis did not support the…

  6. Magnetic susceptibility: a proxy method of estimating increased pollution

    International Nuclear Information System (INIS)

    Kluciarova, D.; Gregorova, D.; Tunyi, I.

    2004-01-01

    A need for rapid and inexpensive (proxy) methods of outlining areas exposed to increased pollution by atmospheric particulates of industrial origin caused scientists in various fields to use and validate different non-traditional (or non-chemical) techniques. Among them, soil magnetometry seems to be a suitable tool. This method is based on the knowledge that ferrimagnetic particles, namely magnetite, are produced from pyrite during combustion of fossil fuel. Besides the combustion processes, magnetic particles can also originate from road traffic, for example, or can be included in various waste-water outlets. In our study we examine the magnetic susceptibility as a convenient measure of determining the concentration of (ferri) magnetic minerals by rapid and non-destructive means. We used for measure KLY-2 Kappabridge. Concentration of ferrimagnetic minerals in different soils is linked to pollution sources. Higher χ values were observed in soils on the territory in Istebne (47383x10 -6 SI ). The susceptibility anomaly may be caused by particular geological circumstances and can be related to high content of ferromagnetic minerals in the host rocks. Positive correlation of magnetic susceptibility are conditioned by industrial contamination mainly by metal working factories and by traffic. The proposed method can be successfully applied in determining heavy metal pollution of soils on the city territories. (authors)

  7. Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda

    Directory of Open Access Journals (Sweden)

    Jean Baptiste Nsengiyumva

    2018-01-01

    Full Text Available Landslides susceptibility assessment has to be conducted to identify prone areas and guide risk management. Landslides in Rwanda are very deadly disasters. The current research aimed to conduct landslide susceptibility assessment by applying Spatial Multi-Criteria Evaluation Model with eight layers of causal factors including: slope, distance to roads, lithology, precipitation, soil texture, soil depth, altitude and land cover. In total, 980 past landslide locations were mapped. The relationship between landslide factors and inventory map was calculated using the Spatial Multi-Criteria Evaluation. The results revealed that susceptibility is spatially distributed countrywide with 42.3% of the region classified from moderate to very high susceptibility, and this is inhabited by 49.3% of the total population. In addition, Provinces with high to very high susceptibility are West, North and South (40.4%, 22.8% and 21.5%, respectively. Subsequently, the Eastern Province becomes the peak under low susceptibility category (87.8% with no very high susceptibility (0%. Based on these findings, the employed model produced accurate and reliable outcome in terms of susceptibility, since 49.5% of past landslides fell within the very high susceptibility category, which confirms the model’s performance. The outcomes of this study will be useful for future initiatives related to landslide risk reduction and management.

  8. Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda

    Science.gov (United States)

    Nsengiyumva, Jean Baptiste; Luo, Geping; Nahayo, Lamek; Huang, Xiaotao; Cai, Peng

    2018-01-01

    Landslides susceptibility assessment has to be conducted to identify prone areas and guide risk management. Landslides in Rwanda are very deadly disasters. The current research aimed to conduct landslide susceptibility assessment by applying Spatial Multi-Criteria Evaluation Model with eight layers of causal factors including: slope, distance to roads, lithology, precipitation, soil texture, soil depth, altitude and land cover. In total, 980 past landslide locations were mapped. The relationship between landslide factors and inventory map was calculated using the Spatial Multi-Criteria Evaluation. The results revealed that susceptibility is spatially distributed countrywide with 42.3% of the region classified from moderate to very high susceptibility, and this is inhabited by 49.3% of the total population. In addition, Provinces with high to very high susceptibility are West, North and South (40.4%, 22.8% and 21.5%, respectively). Subsequently, the Eastern Province becomes the peak under low susceptibility category (87.8%) with no very high susceptibility (0%). Based on these findings, the employed model produced accurate and reliable outcome in terms of susceptibility, since 49.5% of past landslides fell within the very high susceptibility category, which confirms the model’s performance. The outcomes of this study will be useful for future initiatives related to landslide risk reduction and management. PMID:29385096

  9. Clinton, Peck and Frost -- The dawn of North American boletology

    Science.gov (United States)

    Ernst E. Both; Beatriz. Ortiz-Santana

    2010-01-01

    George W. Clinton (a founder and first president of the Buffalo Society of Natural Sciences) launched the mycological career of Peck by obtaining for him the position of botanist of the New York State Cabinet of Natural History and he was responsible for the publication of Frost's "Boleti of New England." This paper discusses the interaction between Peck...

  10. Susceptibility of coarse-textured soils to soil erosion by water in the tropics

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    The application of soil physics for the evaluation of factors of soil erosion in the tropics received considerable attention in the last four decades. In Nigeria, physical characteristics of rainfall such as drop size and drop-size distribution, rainfall intensity at short intervals and kinetic energy of rainfall were evaluated using different methods. Thus, compound erosivity indices were evaluated which showed a similar trend in annual rainfall erosivity with annual rainfall amounts. Attempts have also been made to use geostatistical tools and fractal theory to describe temporal variability in rainfall erosivity. High erosivity aggravates the vulnerability of coarse-textured soils to erosion. These soils, high in sand content were poorly aggregated and structurally weak. Thus, they were easily detached and transported by runoff. Long-term data are needed to describe factors of soil erosion in the tropics but quite often, equipment are not available or poorly maintained where available such that useful data are not collected. A greater cooperation of pure physicists, soil physicists and engineers in the developing nations is needed to improve or design equipment and methods for the characterization of factors of soil erosion in the tropics. (author)

  11. Mapping of QTLs for frost tolerance and heading time using SSR ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-19

    Oct 19, 2008 ... using SSR markers in bread wheat. Omid Sofalian1*, Seyyed A. ... Key words: Bread wheat, frost tolerance, heading time, QTL mapping, single marker analysis, SSR. INTRODUCTION. Abiotic stresses are crucial ... cultivars are divided into two types (winter and spring growth habit) depending on their need ...

  12. Frost Resistance and Permeability of Cement Stabilized Gravel used as Filling Material for Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Hertz, Kristian Dahl

    2014-01-01

    several requirements on its moisture properties. In this paper the frost resistance, the liquid water permeability and the water vapour permeability of cement stabilized gravel are examined for two different cement contents. It is found that a small increase in cement content from 4% to 5% increases...... the 28-days compressive strength from 6.2 MPa to 12.3 MPa. The frost resistance of cement stabilized gravel with 5% cement content is better than for cement stabilized gravel with 4% cement content. The liquid water permeability coefficient and the water vapour permeability coefficient are significantly...

  13. Mapping of QTLs for frost tolerance and heading time using SSR ...

    African Journals Online (AJOL)

    Selection for complex genetic traits, such as frost tolerance, can be simplified in plant breeding programs when linked markers were detected. The use of microsatellite markers for tagging and mapping important genes or QTLs is a goal in wheat genetic projects. In this study, 200 microsatellite markers were studied and ...

  14. Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect.

    Science.gov (United States)

    Sun, Xiaoda; Rykaczewski, Konrad

    2017-01-24

    Inhibition of frost formation is important for increasing efficiency of refrigeration systems and heat exchangers, as well as for preventing the rapid icing over of water-repellant coatings that are designed to prevent accumulation of rime and glaze. From a thermodynamic point of view, this task can be achieved by either increasing hydrophobicity of the surface or decreasing the concentration of water vapor above it. The first approach has been studied in depth, but so far has not yielded a robust solution to the problem of frost formation. In this work, we systematically explore how frost growth can be inhibited by controlling water vapor concentration using bilayer coatings with a porous exterior covering a hygroscopic liquid-infused layer. We lay the theoretical foundation and provide experimental validation of the mass transport mechanism that governs the integral humidity sink effect based on this coating platform as well as reveal intriguing sizing effects about this system. We show that the concentration profile above periodically spaced pores is governed by the sink and source concentrations and two geometrical parameters: the nondimensional pore size and the ratio of the pore spacing to the boundary layer thickness. We demonstrate that when the ratio of the pore spacing to the boundary layer thickness vanishes, as for the nanoporous bilayer coatings, the entire surface concentration becomes uniform and equal to the concentration set by the hygroscopic liquid. In other words, the surface concentration becomes completely independent of the nanopore size. We identified the threshold geometrical parameters for this condition and show that it can lead to a 65 K decrease in the nucleation onset surface temperature below the dew point. With this fundamental insight, we use bilayer coatings to nanoengineer the integral humidity sink effect to provide extreme antifrosting performance with up to a 2 h delay in nucleation onset at 263 K. The nanoporous bilayer

  15. Snow and frost measurements in a watershed-management research program

    Science.gov (United States)

    Richard S. Sartz

    1957-01-01

    I am going to tell you about our snow and frost work on the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire. Hubbard Brook is one of several experimental areas scattered throughout the country on which personnel of the United States Forest Service are seeking to learn how different kinds of forests and methods of managing them affect...

  16. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  17. Urbanization may reduce the risk of frost damage to spring flowers: A case study of two shrub species in South Korea.

    Science.gov (United States)

    Gim, Hyeon-Ju; Ho, Chang-Hoi; Kim, Jinwon; Lee, Eun Ju

    2018-01-01

    Regional warming, owing to urbanization, leads to earlier spring phenological events and may expose plants to hard freeze damage. This study examined the influence of urbanization on the risk of frost damage to spring flowers in South Korea from 1973 to 2015. For the analysis period, we categorized 25 cities into two groups: those showing rapid population growth (rPG) ≥ 200,000, including 13 cities, and those showing no or decreased population growth (nPG), including 12 cities. We then investigated the time from the last frost dates (LFDs) in spring to the first flowering dates (FFDs) for each group. The rPG group experienced significant spring warming of 0.47°C per decade, resulting in earlier LFDs and FFDs. For this group, the advancement of LFD was more rapid than that of FFD, and the days between these two dates increased from 0.42 to 0.47 days per decade, implying a reduced risk of frost damage. Spring warming and the advancement of FFDs and LFDs were relatively small for the nPG group, and the LFDs were rather delayed. Consequently, the days between LFDs and FFDs were reduced from -1.05 to -1.67 days per decade, indicating an increased risk of frost damage. The contrasting changes in the frost-damage risk between the two city groups can be attributed to distinct urban warming at night, which makes the LFDs substantially earlier in the rPG group. Therefore, this study suggests that the warming associated with urbanization may lessen the risk of spring frost damage to plants in rapidly growing urban areas.

  18. Drought and frost tolerance in rhododendron collection of the Mlyňany Arboretum (Slovakia: a screening for future climate

    Directory of Open Access Journals (Sweden)

    Ferus Peter

    2017-12-01

    Full Text Available Rhododendrons are jewels of the Mlyňany Arboretum, Institute of Forest Ecology of the Slovak Academy of Sciences (IFE SAS. Blossoming in May, they attract thousands of visitors. But recently these woody plants have much suffered from climatic extremes such as summer droughts and winter frosts, associated with the advancing climate change. To assess the rhododendron collection’s stability, its drought and frost injury level were tested in field, in summer 2015 and winter 2017, respectively. The tested parameters were: leaf wilting and electrolyte leakage combined with shrub leaf area, insolation level and overall health state. We found that the drought effect was strong or very strong in only ca. 30% rhododendron species and ca. 10% rhododendron cultivars, and that around 60% shrubs showed no or only moderate symptoms of water deficit. The drought injury level was only associated with the genotype. The most tolerant / sensitive genotypes, commonly occurring in the park, were: R. catawbiense, R. ponticum, R. smirnowii, cv. ‘Boursault’, cv. ‘Cunningham’s White’ and cv. ‘Purpureum Elegans’ / R. fortunei and cv. ‘Tamarindos’. On the other hand, the most frequent response to frost in the observed rhododendron genotypes was moderate injury (28 and 37% for species and cultivars, respectively, nevertheless more than 18% species and almost 6% cultivars exhibited strong frost damage. Despite absence of significant differences in the factor-response between the species, we may suggest this decreasing sequence of the genotypes ordered according to their frost resistance: genotypes: cv. ‘Cunningham’s White’ > R. decorum > R. fortunei and cv. ‘Duke of York’ > R. smirnowii > cvs. ‘Purpureum Elegans’ and ‘Tamarindos’ > R. macrophyllum and cv. ‘Nova Zembla’ > R. catawbiense > R. ponticum. These results have been compared with similar works in rhododendron species/cultivars as well as suggested species drought/frost

  19. Man, Nature, and Art in Robert Frost's Poetry | Elimimian | Lwati: A ...

    African Journals Online (AJOL)

    ... and it is along these three aesthetic trajectories that this essay will be divided and addressed. In discussing these areas, an attempt will be made to examine the diversity of Frost's lyricism, the poet's sense of Romanticism, and the particular rhetorical and poetic devices which he employs to elucidate or illuminate his work.

  20. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.

    Science.gov (United States)

    Bocian, Aleksandra; Zwierzykowski, Zbigniew; Rapacz, Marcin; Koczyk, Grzegorz; Ciesiołka, Danuta; Kosmala, Arkadiusz

    2015-11-01

    Abiotic stresses, including low temperature, can significantly reduce plant yielding. The knowledge on the molecular basis of stress tolerance could help to improve its level in species of relatively high importance to agriculture. Unfortunately, the complex research performed so far mainly on model species and also, to some extent, on cereals does not fully cover the demands of other agricultural plants of temperate climate, including forage grasses. Two Lolium perenne (perennial ryegrass) genotypes with contrasting levels of frost tolerance, the high frost tolerant (HFT) and the low frost tolerant (LFT) genotypes, were selected for comparative metabolomic research. The work focused on the analysis of leaf metabolite accumulation before and after seven separate time points of cold acclimation. Gas chromatography-mass spectrometry (GC/MS) was used to identify amino acids (alanine, proline, glycine, glutamic and aspartic acid, serine, lysine and asparagine), carbohydrates (fructose, glucose, sucrose, raffinose and trehalose) and their derivatives (mannitol, sorbitol and inositol) accumulated in leaves in low temperature. The observed differences in the level of frost tolerance between the analysed genotypes could be partially due to the time point of cold acclimation at which the accumulation level of crucial metabolite started to increase. In the HFT genotype, earlier accumulation was observed for proline and asparagine. The increased amounts of alanine, glutamic and aspartic acids, and asparagine during cold acclimation could be involved in the regulation of photosynthesis intensity in L. perenne. Among the analysed carbohydrates, only raffinose revealed a significant association with the acclimation process in this species.

  1. An Experimental Investigation On Minimum Compressive Strength Of Early Age Concrete To Prevent Frost Damage For Nuclear Power Plant Structures In Cold Climates

    International Nuclear Information System (INIS)

    Koh, Kyungtaek; Kim, Dogyeum; Park, Chunjin; Ryu, Gumsung; Park, Jungjun; Lee, Janghwa

    2013-01-01

    Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates

  2. An Experimental Investigation On Minimum Compressive Strength Of Early Age Concrete To Prevent Frost Damage For Nuclear Power Plant Structures In Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyungtaek; Kim, Dogyeum; Park, Chunjin; Ryu, Gumsung; Park, Jungjun; Lee, Janghwa [Korea Institute Construction Technology, Goyang (Korea, Republic of)

    2013-06-15

    Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.

  3. Frosted Branch Angiitis Diagnosed as Neuro-Behçet: A Diagnostic and Etiologic Dilemma

    Directory of Open Access Journals (Sweden)

    Alejandro Portero

    2011-05-01

    Full Text Available Purpose: To report a case of frosted branch angiitis (FBA secondary to neuro-Behçet. Methods: Description, diagnosis, angiogram imaging and follow-up of a 28-year-old female with FBA. Results: ‘Frosted branch angiitis’ is a clinical term applied to three conditions: infiltration of vessels by malignant cells, and sheathing of vessels either secondary to an active disorder or subsequently to a previous inflammatory disease. Our patient’s history of two optic neuropathies and the lack of demyelinating signs in neuroimaging made us consider FBA in the context of neuro-Behçet. Conclusion: Recognition of the category of FBA from the clinical signs is essential to establish the correct diagnosis and prescribe the appropriate treatment.

  4. Bacterial stem blight of alfalfa: A disease that increases frost damage

    Science.gov (United States)

    Alfalfa producers count on the first harvest in late spring to deliver the highest tonnage and best quality of forage of the year. A late frost can significantly reduce both yield and quality. Losses are due not only to the physical damage from freezing of the alfalfa stem and leaves but also from d...

  5. Inter population variability of frost-resistance in provenances of scot pines (Pinusylvestris L.R. hamata Steven in Turkey

    Directory of Open Access Journals (Sweden)

    Özel Halil Barış

    2016-01-01

    Full Text Available Frost-resistance variability of Scotch pine (Pinus sylvestris L. var. hamata Steven seedlings grown in nurseries conditions, originated from 10 provenances, have been analyzed. The provenances from Black Sea region, Central Anatolian region and Eastern Anatolian region in Turkey have been used in selection of seed zones. The results of frost-resistance tests indicated a strong relationship of implemented freezing degrees with injury degrees of Scotch pine needles and photosynthetic productivities. On the other hand, another significant relationship has been determined between chlorophyll fluorescence and ion leakage methods (r=-0.801. This result shows that those two methods can be safely used in determining the damages due to low temperatures. In frost resistance tests, Scotch pine seedlings from different provenances have been frozen at -10, -20, -30 and -40°C. According to the Duncan test results, it has been determined that damage increased as temperature decreased. The damage level at -10°C implementation is 3.5% which can be tolerated by plants. But when the temperature has been decreased to -20°C, the level of damage has increased to 51.25%. As a result of photosynthetic analyses in this phase, it has been determined that there is a statistically significant relationship between provenances and temperature levels. Under the light of those findings, they have determined that the photosynthetic productivity has significantly decreased at temperatures between -20°C and -40°C. This situation conforms to injury index values determined in this study. As a result of injury index and photosynthetic productivity tests used for determining the damage after frost-resistance tests, it has been determined that the provenances of Amasya-Kunduz, Bolu-Aladağ, Düzce-Yığılca, Samsun-Vezirköprü and Eskişehir-Çatacık are more sensitive to frost than other provenances.

  6. Magnetic Soils Profiles in the Volga-Kama Forest-Steppe Region

    Directory of Open Access Journals (Sweden)

    L.A. Fattakhova

    2016-09-01

    Full Text Available The magnetic properties of virgin forest-steppe soils developed on the originally vertically uniform unconsolidated parent material have been investigated. The profile samples of virgin dark-grey forest light-clayey soil derived from a siltstone of the Kazan layer of the Upper Permian and virgin leached medium-thick fertile light-clayey chernozem derived from a Quaternary heavy deluvial loam have been considered. Both soils are characterized by the accumulative type of magnetic susceptibility and F-factor values distribution patterns with depth. In the humus part of the soil profile, magnetics are present pre-dominantly in the < 2.5 µm fraction. The coercivity spectra allowed to determine the contribution of dia-/paramagnetic and ferromagnetic components to magnetic susceptibility. It has been found that magnetic susceptibility enhancement in the organogenic horizons of virgin forest-steppe soils occurs due to the contribution of ferromagnetic components. The results indicate a strong positive linear correlation between the magnetic susceptibility and oxalate-extractable Fe, as well as between the magnetic susceptibility and Schwertmann’s criterion values. Using the method of thermomagnetic analysis of the < 2.5 µm fraction, it has been found that the magnetic susceptibility enhancement in the profiles of forest-steppe soils took place due to the formation of maghemite-magnetite associations. The predominantly ferromagnetic fraction consists of small single-domain grains.

  7. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat.

    Science.gov (United States)

    Zhu, Jie; Pearce, Stephen; Burke, Adrienne; See, Deven Robert; Skinner, Daniel Z; Dubcovsky, Jorge; Garland-Campbell, Kimberly

    2014-05-01

    The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.

  8. Greenhouse gas fluxes in a drained peatland forest during spring frost-thaw event

    Directory of Open Access Journals (Sweden)

    M. K. Pihlatie

    2010-05-01

    Full Text Available Fluxes of greenhouse gases (GHG carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O were measured during a two month campaign at a drained peatland forest in Finland by the eddy covariance (EC technique (CO2 and N2O, and automatic and manual chambers (CO2, CH4 and N2O. In addition, GHG concentrations and soil parameters (mineral nitrogen, temperature, moisture content in the peat profile were measured. The aim of the measurement campaign was to quantify the GHG fluxes during freezing and thawing of the top-soil, a time period with potentially high GHG fluxes, and to compare different flux measurement methods. The forest was a net CO2 sink during the two months and the fluxes of CO2 dominated the GHG exchange. The peat soil was a small sink of atmospheric CH4 and a small source of N2O. Both CH4 oxidation and N2O production took place in the top-soil whereas CH4 was produced in the deeper layers of the peat, which were unfrozen throughout the measurement period. During the frost-thaw events of the litter layer distinct peaks in CO2 and N2O emissions were observed. The CO2 peak followed tightly the increase in soil temperature, whereas the N2O peak occurred with a delay after the thawing of the litter layer. CH4 fluxes did not respond to the thawing of the peat soil. The CO2 and N2O emission peaks were not captured by the manual chambers and hence we conclude that high time-resolution measurements with automatic chambers or EC are necessary to quantify fluxes during peak emission periods. Sub-canopy EC measurements and chamber-based fluxes of CO2 and N2O were comparable, although the fluxes of N2O measured by EC were close to the detection limit of the system. We conclude

  9. Agricultural losses related to frost events: use of the 850 hPa level temperature as an explanatory variable of the damage cost

    Science.gov (United States)

    Papagiannaki, K.; Lagouvardos, K.; Kotroni, V.; Papagiannakis, G.

    2014-09-01

    The objective of this study is the analysis of damaging frost events in agriculture, by examining the relationship between the daily minimum temperature in the lower atmosphere (at an isobaric level of 850 hPa) and crop production losses. Furthermore, the study suggests a methodological approach for estimating agriculture risk due to frost events, with the aim of estimating the short-term probability and magnitude of frost-related financial losses for different levels of 850 hPa temperature. Compared with near-surface temperature forecasts, temperature forecasts at the level of 850 hPa are less influenced by varying weather conditions or by local topographical features; thus, they constitute a more consistent indicator of the forthcoming weather conditions. The analysis of the daily monetary compensations for insured crop losses caused by weather events in Greece shows that, during the period 1999-2011, frost caused more damage to crop production than any other meteorological phenomenon. Two regions of different geographical latitudes are examined further, to account for the differences in the temperature ranges developed within their ecological environment. Using a series of linear and logistic regressions, we found that minimum temperature (at an 850 hPa level), grouped into three categories according to its magnitude, and seasonality, are significant variables when trying to explain crop damage costs, as well as to predict and quantify the likelihood and magnitude of damaging frost events.

  10. Numerical heat transfer model for frost protection of citrus fruits by water from a spraying system

    Directory of Open Access Journals (Sweden)

    Issa Roy J.

    2012-01-01

    Full Text Available A simplified model is developed to simulate the conditions associated with the protection of fruits from frost damage using water from a spraying system. The model simulates the movement of the solidifying water front on a single fruit, and based on that determines the spray frequency needed for a water film to continuously surround the ice-coated fruit to prevent the fruit temperature from dropping below 0ºC. Simulations are presented for the frost protection of sweet oranges (citrus sinensis. The effect of environmental conditions such as air temperature, air velocity, surface radiation and water film evaporation on the development of the ice layer encasing is considered. Simulations show the effect the encasing ice sheet thickness has on the fruit temperature if water from a spraying system is turned off permanently. Experimental tests are also conducted to determine the change in the thermal properties of citrus sinensis for operating temperatures that range from above freezing to sub-freezing. The results of the experimental tests and the numerical simulations shall lead to a better understanding of fruit protection from frost damage by the application of water from a spraying system.

  11. A Computational Model of Water Migration Flux in Freezing Soil in a Closed System

    Institute of Scientific and Technical Information of China (English)

    裘春晗

    2005-01-01

    A computational model of water migration flux of fine porous soil in frost heave was investigated in a closed system. The model was established with the heat-mass conservation law and from some previous experimental results. Through defining an auxiliary function an empirical function in the water migration flux, which is difficult to get, was replaced. The data needed are about the water content along the soft colunm after test with enough long time. We adopt the test data of sample soil colunms in [1] to verify the model. The result shows it can reflect the real situation on the whole.

  12. In live interaction, does familiarity promote attraction or contempt? Reply to Norton, Frost, and Ariely (2011).

    Science.gov (United States)

    Reis, Harry T; Maniaci, Michael R; Caprariello, Peter A; Eastwick, Paul W; Finkel, Eli J

    2011-09-01

    In this reply, we address and refute each of Norton, Frost, and Ariely's (see record 2011-18560-001) specific objections to the conclusion that, ceteris paribus, familiarity breeds liking in live interaction. In particular, we reiterate the importance of studying live interaction rather than decontextualized processes. These rebuttals notwithstanding, we concur with Norton et al.'s call for an integrative model that encompasses both Norton, Frost, and Ariely's (see record 2006-23056-008) results and ours (see record 2011-04644-001), and we point readers toward a description of a possible model presented in our original article. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  13. Can the Frost Multidimensional Perfectionism Scale assess perfeccionismo?

    Science.gov (United States)

    Burgess, Alexandra M; DiBartolo, Patricia Marten; Rendón, María Jose

    2017-07-01

    Although culture-based measurement bias threatens the validity of intergroup comparison research, measurement invariance is often assumed rather than demonstrated by researchers who draw conclusions about cross-cultural similarities or differences. The current article investigates the cross-cultural invariance of a popular measure of perfectionism, the Frost Multidimensional Perfectionism Scale (F-MPS; Frost, Marten, Lahart, & Rosenblate, 1990) for a Hispanic/Latina sample. Perfectionism, which encompasses high goal setting and sensitivity to critical evaluation, is a transdiagnostic risk factor for internalizing psychopathology that especially warrants focus among groups burdened by mental health disparities. Multiple samples were used in a series of analyses to construct a baseline first-order measurement model and test for cross-group equivalence. For model development, confirmatory factor analyses (CFAs) were used with 320 female participants (M age = 19.61 years) who identified primarily (n = 301) as European/European American. Measurement invariance testing was conducted with multigroup CFAs using another sample of female adults (n = 574; Mage = 21.21 years), identifying either as European/European American (n = 217) or Hispanic/Latina/Latin American (n = 357). Evidence was found for invariance across the revised F-MPS factor structure, pattern of factor loadings, and factor variances/covariances. Results indicate that predictive relationships may be compared across these groups, but caution is suggested when interpreting raw mean score differences due to intercept nonequivalence. Further, second-order model testing demonstrated support for the bidimensional model of perfectionism cross-culturally. Future research on perfectionism within the Latino/a population is encouraged using this equivalent item set. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Magnetism of soils applied for estimation of erosion at an agricultural land

    Science.gov (United States)

    Kapicka, Ales; Dlouha, Sarka; Grison, Hana; Jaksik, Ondrej; Kodesova, Radka; Petrovsky, Eduard

    2013-04-01

    A detailed field study on small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic), followed by laboratory analyses, has been carried out in order to test the applicability of magnetic methods in soil erosion estimation. The approach is based on the well-established differentiation in magnetic signature of topsoil from subsoil horizons as a result of "in situ" formation of strongly magnetic iron oxides e.g. (Maher 1986). Introducing a simple tillage homogenization model for predicting magnetic signal after uniform mixing of soil material as a result of tillage and subsequent erosion, Royall (2001) showed that magnetic susceptibility and its frequency dependence can be used to estimate soil loss. Haplic Chernozem is an original dominant soil unit in the wider area, nowadays progressively transformed into different soil units along with intensive soil erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). The side valley represented a major line of concentrated runoff emptying into a colluvial fan (Zadorova et al., 2011; Jaksik et al., 2011). Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points. Bulk soil material for laboratory investigation was gathered from all grid points. Mass specific magnetic susceptibility χ and its frequency dependence kFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin. Thermomagnetic analyses, hysteresis measurement and SEM were used in order to determine dominant ferrimagnetic carriers in top-soil and sub-soil layers. Strong correlation was found between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). At the same time, no correlations were found between the values of kFD and mass specific susceptibility. Values of organic carbon

  15. The effect of leaf shape on the thermoregulation and frost tolerance of an annual vine, Ipomoea hederacea (Convolvulaceae).

    Science.gov (United States)

    Campitelli, Brandon E; Gorton, Amanda J; Ostevik, Katherine L; Stinchcombe, John R

    2013-11-01

    Leaf shape is predicted to have important ecophysiological consequences; for example, theory predicts that lobed leaves should track air temperature more closely than their entire-margined counterparts. Hence, leaf-lobing may be advantageous during cold nights (∼0°C) when there is the risk of damage by radiation frost (a phenomenon whereby leaves fall below air temperature because of an imbalance between radiational heat loss and convective heat gain). Here, we test whether radiation frost can lead to differential damage between leaf shapes by examining a leaf-shape polymorphism in Ipomoea hederacea, where leaves are either lobed or heart-shaped depending on a single Mendelian locus. We logged leaf temperature during midautumn, and measured chlorophyll fluorescence and survival as proxies of performance. Furthermore, we tested if the leaf-shape locus confers freezing tolerance using freezing assays on leaf tissue from different leaf shapes. We found that lobed leaves consistently remain warmer than heart-shaped leaves during the night, but that no pattern emerged during the day, and that temperature differences between leaf shapes were typically small. Furthermore, we found that leaf types did not differ in frost tolerance, but that a 1°C decrease leads to a transition from moderate to complete damage. Our results demonstrate that Ipomoea hederacea leaf shapes do experience different nighttime temperatures, and that only minor temperature differences can lead to disparate levels of freezing damage, suggesting that the differential thermoregulation could result in different levels of frost damage.

  16. Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties

    Science.gov (United States)

    Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka

    2014-05-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of

  17. Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes

    Directory of Open Access Journals (Sweden)

    X. J. Guan

    2010-07-01

    Full Text Available The companion paper (Guan et al., 2010 demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  18. Experimental study of no-frost refrigerator. Part 1: heat transfer through the walls; Estudo experimental de um refrigerador no-frost. Parte 1: transferencia de calor atraves das paredes

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Joaquim Manoel [Escola Tecnica Federal de Santa Catarina, Sao Jose, SC (Brazil)]. E-mail: joaquim@nrva.ufsc.br; Melo, Claudio; Vieira, Luis Antonio Torquato [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica

    2000-07-01

    This paper approaches the heat transfer in permanent regimen trough the walls of a no-frost refrigerator with two compartments with forced internal ventilation. The presented methodology allows the determination of thermal resistances of the walls externally. Also, the heating effect due to the compressor, the condenser and the air distribution between the compartments are investigated.

  19. Limiting Factors for Agricultural Production and Differentiation of Soil Management in Romania

    Science.gov (United States)

    Ioana Moraru, Paula; Rusu, Teodor; Bogdan, Ileana; Ioan Pop, Adrian; Pop, Horia

    2017-04-01

    Romania's land area is 23,839,100 ha; 0.16% of the world's surface. Worldwide, Romania is ranked #83 for areal extent, and it consitutes 4.81% of the Europe's surface (ranked #12). Romania has 14,856,800 ha of agricultural land which represents 62.3% of the total surface; 0.65 ha per capita. At the national level, 72.5% and 27.5% of soils in Romania can be broadly classed as very poor and good/very good, respectively, based on intrinsic soil characteristics, climate, topography, and ground water. Romania has a specific geographical situation, namely: i) Romanian territory is located in the southeast portion of Central Europe at the cross roads of several high and low pressure centers that form regularly at the borders. The influence of these air masses is altered by the presence in the central regions of the Carpathian mountain chain resulting in a diverse climate with average annual rain fall amounts between 350 to 1,400 mm and average annual temperatures between 2 and 11.5°C. ii) At the national level, almost all soils in the international classification system are present in Romania; each soil type having specific properties and characteristics. iii) On approximately 12.5 million ha (7.5 million ha arable), soil fertility is adversely affected by erosion, acidity, low humus content, extreme texture (clay, sand), excessive moisture, chemical pollution etc. These natural and anthropogenic factors dramatically influence agricultural production. Furthermore, soil, climate, topography, etc. vary widely not only across the country, but also on smaller scales, even across fields within the same farm. In Steppe zone limitative climatic factors, which require differentiation towards soil management use, include: long periods of drought, high temperatures, high frequency winds (wind erosion in area of sands), low relative air humidity, and harsh frosts during winter. Negative phenomena most commonly encountered in this area are salinization, excess water, temporary

  20. Possible future changes in South East Australian frost frequency: an inter-comparison of statistical downscaling approaches

    Science.gov (United States)

    Crimp, Steven; Jin, Huidong; Kokic, Philip; Bakar, Shuvo; Nicholls, Neville

    2018-04-01

    Anthropogenic climate change has already been shown to effect the frequency, intensity, spatial extent, duration and seasonality of extreme climate events. Understanding these changes is an important step in determining exposure, vulnerability and focus for adaptation. In an attempt to support adaptation decision-making we have examined statistical modelling techniques to improve the representation of global climate model (GCM) derived projections of minimum temperature extremes (frosts) in Australia. We examine the spatial changes in minimum temperature extreme metrics (e.g. monthly and seasonal frost frequency etc.), for a region exhibiting the strongest station trends in Australia, and compare these changes with minimum temperature extreme metrics derived from 10 GCMs, from the Coupled Model Inter-comparison Project Phase 5 (CMIP 5) datasets, and via statistical downscaling. We compare the observed trends with those derived from the "raw" GCM minimum temperature data as well as examine whether quantile matching (QM) or spatio-temporal (spTimerQM) modelling with Quantile Matching can be used to improve the correlation between observed and simulated extreme minimum temperatures. We demonstrate, that the spTimerQM modelling approach provides correlations with observed daily minimum temperatures for the period August to November of 0.22. This represents an almost fourfold improvement over either the "raw" GCM or QM results. The spTimerQM modelling approach also improves correlations with observed monthly frost frequency statistics to 0.84 as opposed to 0.37 and 0.81 for the "raw" GCM and QM results respectively. We apply the spatio-temporal model to examine future extreme minimum temperature projections for the period 2016 to 2048. The spTimerQM modelling results suggest the persistence of current levels of frost risk out to 2030, with the evidence of continuing decadal variation.

  1. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    detachment. Studies on necessary kinetic energy to detach one kilogram of sediments by raindrop impact have shown that the minimum energy is required for particles of 0.125 mm. Particles between 0.063 to 0.250 mm are the most vulnerable to detachment. This means that soils with high content of particles into vulnerable range, for example silty loam, loamy, fine sandy, and sandy loam are the most susceptible soils to detachment. Many aspects of soil behaviour in the field such as hydraulic conductivity water retention, soil crusting, soil compaction, and workability are influenced strongly by the primary particles. In tropical soils also a negative relation between structure stability and particles of silt, fine sand and very fine sand has been found, this is attributed to low cohesiveness of these particles. The ability of a structure to persist is known as its stability. There are two principal types of stability: the ability of the soil to retain its structure under the action of water, and the ability of the soil to retain its structure under the action of external mechanical stresses. (e.g. by wheels). Both types of stability are related with susceptibility to erosion

  2. Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer.

    Science.gov (United States)

    Kuprian, Edith; Briceño, Verónica F; Wagner, Johanna; Neuner, Gilbert

    2014-10-01

    Over-wintering reproductive buds of many woody plants survive frost by supercooling. The bud tissues are isolated from acropetally advancing ice by the presence of ice barriers that restrict ice growth. Plants living in alpine environments also face the risk of ice formation in summer months. Little knowledge exists, how reproductive structures of woody alpine plants are protected from frost injury during episodic summer frosts. In order to address this question, frost resistance of three common dwarf shrubs, Calluna vulgaris , Empetrum hermaphroditum and Loiseleuria procumbens was measured and ice formation and propagation were monitored in twigs bearing reproductive shoots during various stages of reproductive development (bud, anthesis, and fruit) throughout the alpine summer. Results indicated that, in the investigated species, ice barriers were present at all reproductive stages, isolating the reproductive shoots from ice advancing from the subtending vegetative shoot. Additionally, in the reproductive stems ice nucleating agents that are active at warm, sub-zero temperatures, were absent. The ice barriers were 100% effective, with the exception of L. procumbens , where in 13% of the total observations, the ice barrier failed. The ice barriers were localized at the base of the pedicel, at the anatomical junction of the vegetative and reproductive shoot. There, structural aspects of the tissue impede or prevent ice from advancing from the frozen stem into the pedicel of the reproductive shoot. Under the experimental conditions used in this study, ice nucleation initially occurred in the stem of the vegetative shoot at species-specific mean temperatures in the range of -4.7 to -5.8 °C. Reproductive shoots, however, remained supercooled and ice free down to a range of -7.2 to -18.2 °C or even below -22 °C, the lowest temperature applied in the study. This level of supercooling is sufficient to prevent freezing of reproductive structures at the lowest air

  3. Air void structure and frost resistance

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    ). This observation is interesting as the parameter of total surface area of air voids normally is not included in air void analysis. The following reason for the finding is suggested: In the air voids conditions are favourable for ice nucleation. When a capillary pore is connected to an air void, ice formation...... on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor.......This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test...

  4. TuBaFrost 5: multifunctional central database application for a European tumor bank.

    Science.gov (United States)

    Isabelle, M; Teodorovic, I; Morente, M M; Jaminé, D; Passioukov, A; Lejeune, S; Therasse, P; Dinjens, W N M; Oosterhuis, J W; Lam, K H; Oomen, M H A; Spatz, A; Ratcliffe, C; Knox, K; Mager, R; Kerr, D; Pezzella, F; van de Vijver, M; van Boven, H; Alonso, S; Kerjaschki, D; Pammer, J; Lopez-Guerrero, J A; Llombart Bosch, A; Carbone, A; Gloghini, A; van Veen, E-B; van Damme, B; Riegman, P H J

    2006-12-01

    Developing a tissue bank database has become more than just logically arranging data in tables combined with a search engine. Current demand for high quality samples and data, and the ever-changing legal and ethical regulations mean that the application must reflect TuBaFrost rules and protocols for the collection, exchange and use of tissue. To ensure continuation and extension of the TuBaFrost European tissue bank, the custodianship of the samples, and hence the decision over whether to issue samples to requestors, remains with the local collecting centre. The database application described in this article has been developed to facilitate this open structure virtual tissue bank model serving a large group. It encompasses many key tasks, without the requirement for personnel, hence minimising operational costs. The Internet-accessible database application enables search, selection and request submission for requestors, whereas collectors can upload and edit their collection. Communication between requestor and involved collectors is started with automatically generated e-mails.

  5. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.

    Science.gov (United States)

    Suzuki, Shingo; Fukuda, Satoshi; Fukushi, Yukiharu; Arakawa, Keita

    2017-11-01

    Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (-)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at -4--6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.

  6. Estimativa da susceptibilidade à compactação e do suporte de carga do solo com base em propriedades físicas de solos do Rio Grande do Sul Estimating soil susceptibility to compaction and load support capacity based on physical parameters of soils from Rio Grande do Sul State

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Akiyoshi Sanches Suzuki

    2008-06-01

    Full Text Available O conhecimento das relações entre propriedades físicas e mecânicas do solo pode contribuir no desenvolvimento de funções de pedotransferência, que permitam estimar outras propriedades do solo de difícil mensuração. Neste trabalho, objetivou-se avaliar a relação entre a susceptibilidade à compactação e o suporte de carga com propriedades físicas de solos do sul do Brasil. Foram avaliadas a resistência à penetração, a umidade, a densidade e a compressibilidade de seis solos. A resistência à penetração pode ser estimada pelo modelo que considera a umidade e densidade do solo. Solos com maior densidade inicial apresentaram menor susceptibilidade à compactação e menor deformação, quando submetidos a pressões externas. Quanto maior a resistência do solo à penetração, menor é a deformação e maior é a capacidade de suporte de carga, embora isso não indique solos com qualidade física adequada para as culturas; quanto maior a deformação do solo, maior a susceptibilidade à compactação e menor a capacidade de suporte de carga. A susceptibilidade de um solo à compactação e sua capacidade de suporte de carga podem ser estimadas, respectivamente, pela densidade inicial e pela resistência do solo à penetração.Quantifying the relationship between physical and mechanical soil properties can contribute to the development of pedotransfer functions that allow estimating hard-to-measure soil properties. The objective of this study was to evaluate the interrelations between susceptibility to compaction and load support with some physical properties of soils from Southern Brazil. Penetration resistance, moisture, bulk density and compressibility of six soils were evaluated. In a model including soil moisture and bulk density as independent variables, the relation with penetration resistance values obtained in the field was high. Soils with higher initial bulk density were less susceptible to compaction and exhibited

  7. Subcuticular Suture Technique: Alternative to Frost Suture to Prevent Ectropion After Transcutaneous Incision of Lower Eyelid.

    Science.gov (United States)

    Kudva, Adarsh; Kamath, Abhay; Cariappa, K M; Gadicherla, Srikanth; Dhara, B Vasantha

    2017-12-01

    An ectropion is a complication that can arise from reconstruction in the infraorbital region. Often, this complication occurs despite proper positioning of the lower lid at the time of closure. Various transcutaneous approaches to orbit skeleton have investigated in view of complication arising from them. A subtarsal approach with a postoperative Frost suture gives an advantage to reduce the occurrence of ectropion especially after treatment of orbital floor fractures. This case describes a method of subcuticular suturing technique for subtarsal incision of lower lid which can be used to support the lid during healing period, thus decreasing the rate of ectropion. The technique described here is an alterative method for frost suturing with certain advantages.

  8. Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site

    Science.gov (United States)

    Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.

    2014-12-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a

  9. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.

    Science.gov (United States)

    Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.

  10. Local adaptations to frost in marginal and central populations of the dominant forest tree Fagus sylvatica L. as affected by temperature and extreme drought in common garden experiments.

    Science.gov (United States)

    Kreyling, Juergen; Buhk, Constanze; Backhaus, Sabrina; Hallinger, Martin; Huber, Gerhard; Huber, Lukas; Jentsch, Anke; Konnert, Monika; Thiel, Daniel; Wilmking, Martin; Beierkuhnlein, Carl

    2014-03-01

    Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvaticaL., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions.

  11. An Evaluation of the Factor Structure of the Frost Multidimensional Perfectionism Scale

    Science.gov (United States)

    Harvey, Bronwyn; Pallant, Julie; Harvey, David

    2004-01-01

    The purpose of the study was to investigate whether the six-factor structure of the Frost Multidimensional Perfectionism Scale could be replicated in a community-based sample. A sample of 255 adult participants (55.7% female, 44.3% male) ranging in age from 18 to 78 (mean = 37.0) completed the questionnaire. Based on the screen test and parallel…

  12. Influence of photoperiod and temperature on frost hardiness and free amino acid concentrations in black spruce seedlings

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Because photoperiod and temperature both influence amino acid metabolism in plants, seasonal reductions in day length and temperature may be responsible for the changes in amino acid concentrations that occur in conifers with the onset of winter. Since such fluctuations in conifers occur in association with the development of frost hardiness, it has been suggested that the accumulation of specific free amino acids may be related to the development of frost hardiness. This study was designed to determine the effects of photoperiod and temperature on proline, arginine, and tryptophan concentrations in the shoots of black spruce seedlings in relation to the development of hardiness to -20C.

  13. Experimental investigation of the effect of air velocity on a unit cooler under frosting condition: a case study

    Science.gov (United States)

    Bayrak, Ergin; Çağlayan, Akın; Konukman, Alp Er S.

    2017-10-01

    Finned tube evaporators are used in a wide range of applications such as commercial and industrial cold/freezed storage rooms with high traffic loading under frosting conditions. In this case study, an evaporator with an integrated fan was manufactured and tested under frosting conditions by only changing the air flow rate in an ambient balanced type test laboratory compared to testing in a wind tunnel with a more uniform flow distribution in order to detect the effect of air flow rate on frosting. During the test, operation was performed separately based on three different air flow rates. The parameters concerning test operation such as the changes of air temperature, air relative humidity, surface temperature, air-side pressure drop and refrigerant side capacity etc. were followed in detail for each air flow rate. At the same time, digital images were captured in front of the evaporator; thus, frost thicknesses and blockage ratios at the course of fan stall were determined by using an image-processing technique. Consequently, the test and visual results showed that the trendline of air-side pressure drop increased slowly at the first stage of test operations, then increased linearly up to a top point and then the linearity was disrupted instantly. This point speculated the beginning of defrost operation for each case. In addition, despite detecting a velocity that needs to be avoided, a test applied at minimum air velocity is superior to providing minimum capacity in terms of loss of capacity during test operations.

  14. Performance comparison of air source heat pump with R407C and R22 under frosting and defrosting

    International Nuclear Information System (INIS)

    Liu Zhiqiang; Li Xiaolin; Wang Hanqing; Peng Wangming

    2008-01-01

    The dynamic performance characteristics of the air source heat pump (ASHP) with refrigerants R22 and R407C during frosting and defrosting are studied. The results show that both refrigerant systems have similar performance characteristics, except that the performance of the R407C system deteriorated faster than that of the R22 system under frosting, and the performance of the R407C system attains its steady state faster than that of the R22 system after defrosting. R407C refrigerant can be used in either existing systems or in new systems that were originally designed for R22

  15. Georeferenced measurement of soil EC as a tool to detect susceptible areas to water erosion.

    Science.gov (United States)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    areas presented the highest occurrence of clay dispersion and rill erosion. This would indicate that with one campaign of cultivation of potato under supplementary irrigation are given the conditions that facilitate erosive events. The georeferenced measurement of EC by contact ground sensors and their visualization through digital cartography could be an interesting tool to detect areas susceptible to erosive events. This information would help in decision making for a soil management that tends to avoid or reduce soil losses due to deterioration of physical and chemical properties by the incorporation of sodium by irrigation. Key words: Irrigation, soil sodium, erosion.

  16. Utilizing of magnetic parameters for evaluation of soil erosion rates on two different agricultural sites

    Science.gov (United States)

    Kapicka, A.; Grison, H.; Petrovsky, E.; Jaksik, O.; Kodesova, R.

    2015-12-01

    Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points at Brumovice and 65 at Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in topsoil horizons. The lowest magnetic susceptibility was obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Soil profiles unaffected by erosion were investigated in detail. The vertical distribution of magnetic susceptibility along these "virgin" profiles was measured in laboratory on samples collected with 2-cm spacing. The differences between the distribution of susceptibility in the undisturbed soil profiles and the magnetic signal after uniform mixing of the soil material as a result of erosion and tillage are fundamental for the estimation of soil loss in the studied test fields. Maximum cumulative soil erosion depth in Brumovice and Vidim is around 100 cm and 50 cm respectively. The magnetic method is suitable for mapping at the chernozem localities and measurement of soil magnetic susceptibility is in this case useful and fast technique for quantitative estimation of soil loss caused by erosion. However, it is less suitable (due to lower magnetic differentiation with depth) in areas with luvisol as dominant soil unit. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.

  17. A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea

    Directory of Open Access Journals (Sweden)

    Saro Lee

    2017-01-01

    Full Text Available In this study, the support vector machine (SVM was applied and validated by using the geographic information system (GIS in order to map landslide susceptibility. In order to test the usefulness and effectiveness of the SVM, two study areas were carefully selected: the PyeongChang and Inje areas of Gangwon Province, Korea. This is because, not only did many landslides (2098 in PyeongChang and 2580 in Inje occur in 2006 as a result of heavy rainfall, but the 2018 Winter Olympics will be held in these areas. A variety of spatial data, including landslides, geology, topography, forest, soil, and land cover, were identified and collected in the study areas. Following this, the spatial data were compiled in a GIS-based database through the use of aerial photographs. Using this database, 18 factors relating to topography, geology, soil, forest and land use, were extracted and applied to the SVM. Next, the detected landslide data were randomly divided into two sets; one for training and the other for validation of the model. Furthermore, a SVM, specifically a type of data-mining classification model, was applied by using radial basis function kernels. Finally, the estimated landslide susceptibility maps were validated. In order to validate the maps, sensitivity analyses were carried out through area-under-the-curve analysis. The achieved accuracies from the SVM were approximately 81.36% and 77.49% in the PyeongChang and Inje areas, respectively. Moreover, a sensitivity assessment of the factors was performed. It was found that all of the factors, except for soil topography, soil drainage, soil material, soil texture, timber diameter, timber age, and timber density for the PyeongChang area, and timber diameter, timber age, and timber density for the Inje area, had relatively positive effects on the landslide susceptibility maps. These results indicate that SVMs can be useful and effective for landslide susceptibility analysis.

  18. Identification and behavior of collapsible soils : [technical summary].

    Science.gov (United States)

    2011-01-01

    Collapsible soils are susceptible to large volumetric strains when they become saturated. Numerous soil types : fall in the general category of collapsible soils, including : loess, a well-known aeolian deposit, present throughout : most of Indiana. ...

  19. Simulating the probability of grain sorghum maturity before the first frost in northeastern Colorado

    Science.gov (United States)

    Expanding grain sorghum [Sorghum bicolor (L.) Moench] production northward from southeastern Colorado is thought to be limited by shorter growing seasons due to lower temperatures and earlier frost dates. This study used a simulation model for predicting crop phenology (PhenologyMMS) to predict the ...

  20. LOREF: Air cooler optimisation with reduction of ice and frost formation - Optimisation of lamella air-coolers/evaporators of air/water heat pumps - Part 2: mathematical-physical simulation of the lamella air-coolers with condensate and frost formation; LOREF: Luftkuehler-Optimierung mit Reduktion von Eis- und Frostbildung - Optimierung des Lamellenluftkuehlers/Verdampfers von Luft/Wasser-Waermepumpen - Teil 2: mathematisch-physikalische Simulation des Lamellenluftkuehlers mit Kondensat- und Frostbildung

    Energy Technology Data Exchange (ETDEWEB)

    Sahinagic, R.; Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    The average coefficient of performance (COP) of air/water heat pumps shall be further improved over the next decade. Its success will strongly depend on two measures: by altering the characteristic of the heat pump through continuous operation instead of on/off operation, and further, by reducing the formation of frost and ice. Frost significantly reduces the air flow, and consequently also the heat and mass transfer in the fin tube evaporator. The formation of frost and ice is influenced by a complex interaction between the fin tube evaporator, the characteristic of the fan and of the heat pump itself. An accurate prediction of these processes is required to optimize the design of the fin tube evaporator in combination with fan and heat pump to further improve the overall efficiency. Based on the theory of simultaneous heat and mass transfer combined with partial condensation and desublimation, a simulation program for the prediction of frost and ice formation has been developed, being valid over the wide range of the ambient air (from -10 {sup o}C to 15 {sup o}C and dry to saturated air). The humidity is deposited either as condensate, frost, ice or as a combination of them on the fins and tubes of the evaporator. It was a major challenge to create a correlation for the physical properties of the frost and ice layer in the unsteady processes. By numerous experiments, four regions of physical properties are distinguished, depending on the temperature at the boundary layer between air and frost or ice: condensate above -2.7 {sup o}C, condensate and ice between -3.5 {sup o}C to -2.7 {sup o}C, ice and frost between -5.2 {sup o}C to -3.5 {sup o}C and frost formed directly by desublimation below -5.2 {sup o}C. A high reliability has been obtained with the mathematical-physical simulation program proven over the entire applicable range of air temperature and humidity, temperature difference for heat transfer, air velocity and geometry of the fin tube evaporator. (author)

  1. Experimental Determination of Frost Resistance of Autoclaved Aerated Concrete at Different Levels of Moisture Saturation

    Science.gov (United States)

    Kočí, Václav; Maděra, Jiří; Jerman, Miloš; Černý, Robert

    2018-06-01

    The ability of porous building materials to stand up to moisture phase changes induced by alternating environment is described mostly by means of their frost resistance. However, the test conditions defined by relevant standards might not capture the real situation on building site in various locations. In particular, the prescribed full water saturation of analyzed specimens during the whole time of a freeze/thaw experiment presents an ultimate case only but certainly not an everyday reality. Even the materials of surface layers are mostly exposed to such severe conditions just for a limited period of time. In this paper, the experimental analysis of frost resistance of three different types of autoclaved aerated concrete (AAC) is performed in an extended way, including not only the standard testing but also the investigation of dry- and partially saturated samples. A complementary computational analysis of an AAC building envelope in Central European climate is presented as well, in order to illustrate the likely hygric conditions in the wall. Experimental results show that according to the standard test the loss of compressive strength, as well as the loss of mass after 25 cycles, is acceptable for all studied samples but after 50 cycles only the material with the compressive strength of 4 MPa performs satisfactorily. On the other hand, the tests with initially dried or partially saturated samples indicate a good frost resistance of all studied materials for both 25 and 50 cycles.

  2. Frost damage of bricks composing a railway tunnel monument in Central Japan: field monitoring and laboratory simulation

    Science.gov (United States)

    Thomachot, C.; Matsuoka, N.; Kuchitsu, N.; Morii, M.

    2005-07-01

    Bricks of tunnels and bridges of Usui Pass railway (Japan) exposed to north are subject to frost damage. Average depth of erosion due to detachment of angular blocks is around 1-1.5 cm. In order to assess this weathering and to understand its mechanism, an experimental study was carried out in the field and laboratory. Field monitoring showed the combination of seasonal and diurnal freezing with a maximum of heave when the freezing front reached 5 cm depth. Bricks taken from the site were submitted to unidirectional freezing at capillary and vacuum saturation in the laboratory. Results showed that frost damage of bricks was favoured by high saturation level and repetition of freeze-thaw cycles.

  3. Frost damage of bricks composing a railway tunnel monument in Central Japan: field monitoring and laboratory simulation

    Directory of Open Access Journals (Sweden)

    C. Thomachot

    2005-01-01

    Full Text Available Bricks of tunnels and bridges of Usui Pass railway (Japan exposed to north are subject to frost damage. Average depth of erosion due to detachment of angular blocks is around 1-1.5 cm. In order to assess this weathering and to understand its mechanism, an experimental study was carried out in the field and laboratory. Field monitoring showed the combination of seasonal and diurnal freezing with a maximum of heave when the freezing front reached 5 cm depth. Bricks taken from the site were submitted to unidirectional freezing at capillary and vacuum saturation in the laboratory. Results showed that frost damage of bricks was favoured by high saturation level and repetition of freeze-thaw cycles.

  4. A study of surfactant interaction in cement-based systems and the role of the surfactant in frost protection

    Science.gov (United States)

    Tunstall, Lori Elizabeth

    Air voids are deliberately introduced into concrete to provide resistance against frost damage. However, our ability to control air distribution in both traditional and nontraditional concrete is hindered by the limited amount of research available on air-entraining agent (AEA) interaction with both the solid and solution components of these systems. This thesis seeks to contribute to the information gap in several ways. Using tensiometry, we are able to quantify the adsorption capacity of cement, fly ash, and fly ash carbon for four commercial AEAs. These results indicate that fly ash interference with air entrainment is due to adsorption onto the glassy particles tucked inside carbon, rather than adsorption onto the carbon itself. Again using tensiometry, we show that two of the AEA show a stronger tendency to micellize and to interact with calcium ions than the others, which seems to be linked to the freezing behavior in mortars, since mortars made with these AEA require smaller dosages to achieve similar levels of protection. We evaluate the frost resistance of cement and cement/fly ash mortars by measuring the strain in the body as it is cooled and reheated. All of the mortars show some expansion at temperatures ≥ -42 °C. Many of the cement mortars are able to maintain net compression during this expansion, but none of the fly ash mortars maintain net compression once expansion begins. Frost resistance improves with an increase in AEA dosage, but no correlation is seen between frost resistance and the air void system. Thus, another factor must contribute to frost resistance, which we propose is the microstructure of the shell around the air void. The strain behavior is attributed to ice growth surrounding the void, which can plug the pores in the shell and reduce or eliminate the negative pore pressure induced by the ice inside the air void; the expansion would then result from the unopposed crystallization pressure, but this must be verified by future work

  5. Frost damage of roof tiles: A study on moisture boundary conditions

    OpenAIRE

    Iba, Chiemi; Ueda, Ayumi; Hokoi, Shuichi

    2015-01-01

    Freeze-thaw cycles are the most serious cause of roof tile deterioration; thus, it is important to know the temperature and moisture distributions in tile materials for protection against frost damage. This study focused on moisture boundary conditions for air layers under the tile. Temperature and humidity were measured using model structures with different types of roof tiles. The results showed that the temperatures around the roof were strongly influenced by solar and longwave radiation, ...

  6. A novel louvered fin design to enhance thermal and drainage performances during periodic frosting/defrosting conditions

    International Nuclear Information System (INIS)

    Kim, Min-Hwan; Kim, Hisuk; Kim, Dong Rip; Lee, Kwan-Soo

    2016-01-01

    Highlights: • Thermal and drainage performances of a novel design louvered fin were investigated. • The thermal performance of the asymmetric fin was improved in the re-frosting cycle. • The asymmetric louvered fin exhibited better drainage on the leading edge of fins. • Lower surface tension between fin surface and water droplet improved the drainage. - Abstract: The retention water on fin surface can significantly degrade the thermal performance of heat exchangers under periodic frosting/defrosting conditions, which also leads to a decrease in the energy efficiency of air-source heat pumps. A novel louvered fin design was suggested to improve the drainage and the thermal performance of heat exchanger. The novel louvered fin had an asymmetric louver arrangement by flattening two louvers on the leading edge. The retention water formed on fin surface markedly decreased the heat transfer rate of the conventional symmetric louvered fins in re-frosting cycles. On the other hand, the asymmetric louvered fins improved the drainage performance of the retention water, which enhanced the heat transfer rate. To identify the reason of the difference in drainage performance between two fin geometries, additional experiments were carried out with enlargement models. The improvement in drainage performance of the asymmetric fin design originated from the lowered surface tension between the fin surface and water droplet.

  7. Stone circles: form and soil kinematics.

    Science.gov (United States)

    Hallet, Bernard

    2013-01-01

    Distinct surface patterns are ubiquitous and diverse in soils of polar and alpine regions, where the ground temperature oscillates about 0°C. They constitute some of the most striking examples of clearly visible, abiotic self-organization in nature. This paper outlines the interplay of frost-related physical processes that produce these patterns spontaneously and presents unique data documenting subsurface soil rotational motion and surface displacement spanning 20 years in well-developed circles of soil outlined by gravel ridges. These sorted circles are particularly attractive research targets for a number of reasons that provide focus for this paper: (i) their exceptional geometric regularity captures the attention of any observer; (ii) they are currently forming and evolving, hence the underlying processes can be monitored readily, especially because they are localized near the ground surface on a scale of metres, which facilitates comprehensive characterization; and (iii) a recent, highly successful numerical model of sorted circle development helps to draw attention to particular field observations that can be used to assess the model, its assumptions and parameter choices, and to the considerable potential for synergetic field and modelling studies.

  8. Freezing pattern and frost killing temperature of apple (Malus domestica) wood under controlled conditions and in nature.

    Science.gov (United States)

    Pramsohler, Manuel; Hacker, Jürgen; Neuner, Gilbert

    2012-07-01

    The freezing pattern and frost killing temperatures of apple (Malus domestica Borkh.) xylem were determined by differential thermal analysis and infrared differential thermal analysis (IDTA). Results from detached or attached twigs in controlled freezing experiments and during natural field freezing of trees were compared. Non-lethal freezing of apoplastic water in apple xylem as monitored during natural winter frosts in the field occurred at -1.9 ± 0.4 °C and did not change seasonally. The pattern of whole tree freezing was variable and specific to the environmental conditions. On detached twigs high-temperature freezing exotherms (HTEs) occurred 2.8 K below the temperature observed under natural frosts in the field with a seasonal mean of -4.7 ± 0.5 °C. Microporous apple xylem showed freezing without a specific pattern within a few seconds in IDTA images during HTEs, which is in contrast to macroporous xylem where a 2D freezing pattern mirrors anatomical structures. The pith tissue always remained unfrozen. Increasing twig length increased ice nucleation temperature; for increased twig diameter the effect was not significant. In attached twigs frozen in field portable freezing chambers, HTEs were recorded at a similar mean temperature (-4.6 ± 1.0 °C) to those for detached twigs. Upon lethal intracellular freezing of apple xylem parenchyma cells (XPCs) low-temperature freezing exotherms (LTEs) can be recorded. Low-temperature freezing exotherms determined on detached twigs varied significantly between a winter minimum of -36.9 °C and a summer maximum -12.7 °C. Within the temperature range wherein LTEs were recorded by IDTA in summer (-12.7 ± 0.5 to -20.3 ± 1.1 °C) various tiny clearly separated discontinuous freezing events could be detected similar to that in other species with contrasting XPC anatomy. These freezing events appeared to be initially located in the primary and only later in the secondary xylem. During the LTE no

  9. Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine

    Science.gov (United States)

    Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie

    2013-01-01

    In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227

  10. The Influence of the Antarctic Oscillation (AAO on Cold Waves and Occurrence of Frosts in the State of Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Maikon Passos A. Alves

    2017-03-01

    Full Text Available This paper examines the relationship between the Antarctic Oscillation (AAO, cold waves and occurrence of frosts in the state of Santa Catarina, Brazil, during the winter quarter. Research on this topic can assist different spheres of society, such as public health and agriculture, since cold waves can influence and/or aggravate health problems and frosts can inflict economic losses especially in the agricultural sector. For the purpose of this paper, cold wave is considered as the event in which the daily average surface air temperature was at least two standard deviations below the average value of the series on the day and for two consecutive days or more. The data on the average air temperature and frost occurrences are provided by the Company of Agricultural Research and Rural Extension of Santa Catarina/Center for Environmental Information and Hydrometeorology (EPAGRI/CIRAM. The AAO was subjected to statistical analysis using significance tests for the averages (Student’s t-test and variances (F-test with a significance level of α = 5%. The results show that cold waves are unevenly distributed in the agroecological zones of Santa Catarina. It is found that the AAO is associated with the occurrence of frosts (in the agroecological zones represented by the municipalities of Itajaí and São José in the state of Santa Catarina.

  11. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests

    Directory of Open Access Journals (Sweden)

    Paula Cristina Caruana Martins

    Full Text Available ABSTRACT Traffic of farm machinery during harvest and logging operations has been identified as the main source of soil structure degradation in forestry activity. Soil susceptibility to compaction and the amount of compaction caused by each forest harvest operation differs according to a number of factors (such as soil strength, soil texture, kind of equipment, traffic intensity, among many others, what requires the adequate assessment of soil compaction under different traffic conditions. The objectives of this study were to determine the susceptibility to compaction of five soil classes with different textures under eucalyptus forests based on their load bearing capacity models; and to determine, from these models and the precompression stresses obtained after harvest operations, the effect of traffic intensity with different equipment in the occurrence of soil compaction. Undisturbed soil samples were collected before and after harvest operations, being then subjected to uniaxial compression tests to determine their precompression stress. The coarse-textured soils were less resistant and endured greater soil compaction. In the clayey LVd2, traffic intensity below four Forwarder passes limited compaction to a third of the samples, whereas in the sandy loam PVd all samples from the 0-3 cm layer were compacted regardless of traffic intensity. The Feller Buncher and the Clambunk presented a high potential to cause soil compaction even with only one or two passes. The use of soil load bearing capacity models and precompression stress determined after harvest and logging operations allowed insight into the soil compaction process in forestry soils.

  12. Frost tolerance in wild potatoes : Assessing the predictivity of taxonomic, geographic and ecological factors

    NARCIS (Netherlands)

    Hijmans, R.J.; Jacobs, M.; Bamberg, J.B.; Spooner, D.M.

    2003-01-01

    The use of genetic resources could be more effective and efficient if we were able to predict the presence or absence of useful traits in different populations or accessions. We analyzed the extent to which taxonomic, geographic and ecological factors can predict the presence of frost tolerance in

  13. Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions

    NARCIS (Netherlands)

    Velde, van der I.R.; Steeneveld, G.J.; Wichers Schreur, B.G.J.; Holtslag, A.A.M.

    2010-01-01

    A case of a severe radiation fog during frost conditions is analyzed as a benchmark for the development of a very high resolution NWP model. Results by the Weather Research and Forecasting model (WRF) and the High resolution limited area model (HIRLAM) are evaluated against detailed observations to

  14. Far-UV, visible, and near-IR reflectance spectra of frosts of H2O, CO2, NH3 and SO2

    Science.gov (United States)

    Hapke, B.; Wells, E.; Wagner, J.; Partlow, W.

    1981-01-01

    Measurements in the 0.1-2.5 micron range are presented for the reflectance spectra of the frosts of several volatiles pertinent to the study of comet nuclei. The frost spectra have distinctive features permitting their identification by spectroscopic reflectance remote sensing, notably in the far UV. It is found that: (1) H2O has a minimum at 0.16 microns and a maximum at 0.13 microns; (2) CO2 has minima near 0.21, 0.18 and 0.125 microns, with maxima at 0.19, 0.135 and 0.120 microns; (3) NH3 is bright at wavelengths longer than 0.21 microns, where reflectance drops to a value of only a few per cent at shorter wavelengths; (4) SO2 has a sharp drop at 0.32 microns, with a minimum at 0.18 microns and a maximum at 0.13 microns. The features in the frost spectra largely correspond to absorption line bands in the gas phase.

  15. Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.).

    Science.gov (United States)

    Barrios, Abel; Caminero, Constantino; García, Pedro; Krezdorn, Nicolas; Hoffmeier, Klaus; Winter, Peter; Pérez de la Vega, Marcelino

    2017-06-30

    Frost is one of the main abiotic stresses limiting plant distribution and crop production. To cope with the stress, plants evolved adaptations known as cold acclimation or chilling tolerance to maximize frost tolerance. Cold acclimation is a progressive acquisition of freezing tolerance by plants subjected to low non-freezing temperatures which subsequently allows them to survive exposure to frost. Lentil is a cool season grain legume that is challenged by winter frost in some areas of its cultivation. To better understand the genetic base of frost tolerance differential gene expression in response to cold acclimation was investigated. Recombinant inbred lines (RILs) from the cross Precoz x WA8649041 were first classified as cold tolerant or cold susceptible according to their response to temperatures between -3 to -15 °C. Then, RILs from both extremes of the response curve were cold acclimated and the leaf transcriptomes of two bulks each of eight frost tolerant and seven cold susceptible RILs were investigated by Deep Super-SAGE transcriptome profiling. Thus, four RNA bulks were analysed: the acclimated susceptible, the acclimated tolerant and the respective controls (non-acclimated susceptible and non-acclimated tolerant). Approximately 16.5 million 26 nucleotide long Super-SAGE tags were sequenced in the four sets (between ~3 and 5.4 millions). In total, 133,077 different unitags, each representing a particular transcript isoform, were identified in these four sets. Tags which showed a significantly different abundance in any of the bulks (fold change ≥4.0 and a significant p-value <0.001) were selected and used to identify the corresponding lentil gene sequence. Three hundred of such lentil sequences were identified. Most of their known homologs coded for glycine-rich, cold and drought-regulated proteins, dormancy-associated proteins, proline-rich proteins (PRPs) and other membrane proteins. These were generally but not exclusively over-expressed in the

  16. Influence of coffee pruning on the severity of frost damage

    OpenAIRE

    Androcioli Filho,Armando; Caramori,Paulo Henrique

    2000-01-01

    Frost damages in a field experiment of pruning types and systems for the cultivars of Coffea arabica Catuaí and Mundo Novo, were evaluated at Londrina (23º22’S, 52º10´W), State of Parana, southern Brazil, during the winter of 1990 and 1994. Pruning types evaluated were ‘esqueletamento’ (cutting off all plagiotropic branches at 20-30 cm from the orthotropic branch), ‘decote’ (cutting off the orthotropic branch at 1.5 m and 2.0 m above ground) and ‘recepa’ (cutting off the orthotropic branch at...

  17. Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions

    NARCIS (Netherlands)

    van der Velde, I. R.; Steeneveld, G. J.; Schreur, B. G. J. Wichers; Holtslag, A. A. M.

    2010-01-01

    A case of a severe radiation fog during frost conditions is analyzed as a benchmark for the development of a very high-resolution NWP model Results by the Weather Research and Forecasting model (WRF) and the High Resolution Limited Area Model (H I RLAM) are evaluated against detailed observations to

  18. Relationships between some soil physical and chemical properties with magnetic properties in different soil moisture regimes in Golestan province

    Directory of Open Access Journals (Sweden)

    M. Valaee

    2016-09-01

    Full Text Available Introduction: Soil moisture regime refers to the presence or absence either of ground water or of water held at a tension of less than 1500 kPa in the soil or in specific horizons during periods of the year. It is the most important factor in soil formation, soil evolution and fertility affecting on crop production and management. Also, it widely is practical in soil classification and soil mapping. The soil moisture regime depends on the soil properties, climatic and weather conditions, characteristics of natural plant formations and, in cultivated soils, is affected by the characteristics of crops grown, as well as the cultivation practices. Determination of soil moisture regime within a landscape scale requires high information and data about moisture balance of soil profile during some years according to Soil Survey Manual (2010. This approach is very expensive, labor, time and cost consuming. Therefore, achievement to an alternative approach is seems essential to overcome these problems. The main hypothesis of this study was to use capability of magnetic susceptibility as a cheap and rapid technique could determine the soil moisture regimes. Magnetic properties of soils reflect the impacts of soil mineral composition, particularly the quantity of ferrimagnetic minerals such as maghemite and magnetite. Magnetic susceptibility measurements can serve a variety of applications including the changes in soil forming processes and ecological services, understanding of lithological effects, insight of sedimentation processes and soil drainage. Materials and Methods: This study was conducted in an area located between 36°46َ 10˝ and 37° 2’ 28˝ N latitudes, and 54° 29’ 31˝ and 55° 12’ 47˝ E longitudes in Golestan province, northern Iran. In the study region mean annual temperature varies from 12.4 to 19.4 °C. The average annual rainfall and evapotranspiration varies from 230 mm and 2335 mm in Inchebrun district (Aridic regime, to 732

  19. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region

    NARCIS (Netherlands)

    Siegel-Hertz, Katarzyna; Edel-Hermann, Véronique; Chapelle, E.; Terrat, Sébastien; Raaijmakers, Jos M.; Steinberg, Christian

    2018-01-01

    Disease-suppressive soils are soils in which specific soil-borne plant pathogens cause only limited disease although the pathogen and susceptible host plants are both present. Suppressiveness is in most cases of microbial origin. We conducted a comparative metabarcoding analysis of the taxonomic

  20. Role of planting stock size and fertilizing in initial growth performance of rowan (Sorbus aucuparia L. reforestation in a mountain frost hollow

    Directory of Open Access Journals (Sweden)

    Ivan Kuneš

    2014-08-01

    Full Text Available The aim of study: (1 to compare the survival rate, growth performance and nutrition of large and common-sized planting stock of rowan (Sorbus aucuparia L. on a frost-exposed site and (2 to assess whether fertilizing had any effect on the plantations.Area of study: The Jizera Mts., an area heavily disturbed by air pollution situated on the Czech-Polish border close to GermanyMaterials and methods: Two types of planting stock were tested in a mountain frost hollow on an acidic mountain humic podsol: (a the bare-rooted saplings 131–140 cm tall and (b common-sized containerized transplants 26–35 cm. One half of the saplings and common-sized transplants were left untreated and the other half were fertilized with a low dose (30 g per tree of a slow release fertilizer based on methylene urea and potassium magnesium phosphate. Growth performance and nutrition of plantations were investigated.Main results: Due to serious deformations and stem breakages inflicted by snow and frost, the prospects of common-sized transplants seem much worse than those of saplings. The height growth of saplings was significantly more rapid than that of common-sized transplants. As for growth, neither the saplings nor common-sized transplants did significantly respond to fertilizing. The effects of fertilizing on nutrition of rowans were unconvincing. The extreme temperature events during growth seasons and snow deformations in winters might be the decisive factors influencing growth performance of rowans under referred conditions.Research highlights: On the frost-exposed sites, the height of taller saplings might partly compensate for a missing shelter of forest stand since the terminal leaders are above ground-frost zone.Key words: mountain ash; sapling; common-sized transplants; nutritional status; temperature.Abbreviations: CS – Control Saplings; CT – Control Transplants; FS – Fertilized Saplings; FT – Fertilized Transplants

  1. Influence of wind velocity fluctuation on air temperature difference between the fan and ground levels and the effect of frost protective fan operation

    International Nuclear Information System (INIS)

    Araki, T.; Matsuo, K.; Miyama, D.; Sumikawa, O.; Araki, S.

    2008-01-01

    We invested the influence of wind velocity fluctuation on air temperature difference between the fan (4.8 m) and ground levels (0.5 m) and the effect of frost protective fan operation in order to develop a new method to reduce electricity consumption due to frost protective fan operation. The results of the investigations are summarized as follows: (1) Air temperature difference between the fan (4.8 m) and ground levels (0.5 m) was decreased following an increase in wind velocity, and the difference was less than 1°C for a wind velocity more than 3.0 m/s at a height of 6.5 m. (2) When the wind velocity was more than 2-3 m/s, there was hardly any increase in the temperature of the leaves. In contrast, when the wind velocity was less than 2-3 m/s, an increase in the temperature of the leaves was observed. Based on these results, it is possible that when the wind velocity is greater than 2-3 m, it prevents thermal inversion. Therefore, there would be no warmer air for the frost protective fan to return to the tea plants and the air turbulence produced by the frost protective fan would not reach the plants under the windy condition

  2. Cement mortar-degraded spinney waste composite as a matrix for immobilizing some low and intermediate level radioactive wastes: Consistency under frost attack

    International Nuclear Information System (INIS)

    Eskander, S.B.; Saleh, H.M.

    2012-01-01

    Highlights: ► Spinney fiber is one of the wastes generated from spinning of cotton raw materials. ► Cement mortar composite was hydrated by using the degraded slurry of spinney wastes. ► Frost resistance was assessed for the mortar-degraded spinney waste composite specimens. ► SEM image, FT-IR and XRD patterns were performed for samples subjected to frost attack. - Abstract: The increasing amounts of spinning waste fibers generated from cotton fabrication are problematic subject. Simultaneous shortage in the landfill disposal space is also the most problem associated with dumping of these wastes. Cement mortar composite was developed by hydrating mortar components using the waste slurry obtained from wet oxidative degradation of these spinney wastes. The consistency of obtained composite was determined under freeze–thaw events. Frost resistance was assessed for the mortar composite specimens by evaluating its compressive strength, apparent porosity and mass loss at the end of each period of freeze–thaw up to 45 cycles. Scanning electron microscopy, infrared spectroscopy and X-ray diffraction analyses were performed for samples subjected to frost attack aiming at evaluating the cement mortar in the presence of degraded spinney waste. The cement mortar composite exhibits acceptable resistance and durability against the freeze–thaw treatment that could be chosen in radioactive waste management as immobilizing agent for some low and intermediate level radioactive wastes.

  3. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Science.gov (United States)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  4. Geostatistical validation and cross-validation of magnetometric measurements of soil pollution with Potentially Toxic Elements in problematic areas

    Science.gov (United States)

    Fabijańczyk, Piotr; Zawadzki, Jarosław

    2016-04-01

    Field magnetometry is fast method that was previously effectively used to assess the potential soil pollution. One of the most popular devices that are used to measure the soil magnetic susceptibility on the soil surface is a MS2D Bartington. Single reading using MS2D device of soil magnetic susceptibility is low time-consuming but often characterized by considerable errors related to the instrument or environmental and lithogenic factors. In this connection, measured values of soil magnetic susceptibility have to be usually validated using more precise, but also much more expensive, chemical measurements. The goal of this study was to analyze validation methods of magnetometric measurements using chemical analyses of a concentration of elements in soil. Additionally, validation of surface measurements of soil magnetic susceptibility was performed using selected parameters of a distribution of magnetic susceptibility in a soil profile. Validation was performed using selected geostatistical measures of cross-correlation. The geostatistical approach was compared with validation performed using the classic statistics. Measurements were performed at selected areas located in the Upper Silesian Industrial Area in Poland, and in the selected parts of Norway. In these areas soil magnetic susceptibility was measured on the soil surface using a MS2D Bartington device and in the soil profile using MS2C Bartington device. Additionally, soil samples were taken in order to perform chemical measurements. Acknowledgment The research leading to these results has received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009-2014 in the frame of Project IMPACT - Contract No Pol-Nor/199338/45/2013.

  5. soil fertility management practices by smallholder farmers in vhembe ...

    African Journals Online (AJOL)

    p2333147

    constraints associated with soil fertility management practices used by the farmers. ... nutrients. In addition, these drier areas often have highly degradable soils that are susceptible to soil erosion and eventual decline in soil fertility, especially under ... cases where the selected farm was a “community garden” (a group of.

  6. Bilateral Neuroretinitis and a Unilateral Superior Hemivein Occlusion with Frosted Branch Angiitis Pattern Presenting Simultaneously in Behçet's Disease

    Directory of Open Access Journals (Sweden)

    Roy Schwartz

    2016-03-01

    Full Text Available Purpose: To report a unique case of Behçet's disease that presented with atypical ocular manifestations. Methods: Case report. Results: A 23-year-old homosexual male presented with bilateral anterior uveitis, vitritis, neuroretinitis and a unilateral superior hemivein occlusion with frosted branch angiitis pattern. These were accompanied by systemic findings of recurrent oral aphthous ulcers, erythema nodosum, and neurological and gastrointestinal involvement. A positive HLA-B51 examination supported the diagnosis of Behçet's disease. Conclusion: Neuroretinitis and frosted branch angiitis may be the clinical manifestations of Behçet's disease and may present simultaneously.

  7. Manifestation of a neuro-fuzzy model to produce landslide susceptibility map using remote sensing data derived parameters

    Science.gov (United States)

    Pradhan, Biswajeet; Lee, Saro; Buchroithner, Manfred

    Landslides are the most common natural hazards in Malaysia. Preparation of landslide suscep-tibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. In this study, a new attempt is tried to produce landslide susceptibility map of a part of Cameron Valley of Malaysia. This paper develops an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment for landslide susceptibility mapping. To ob-tain the neuro-fuzzy relations for producing the landslide susceptibility map, landslide locations were identified from interpretation of aerial photographs and high resolution satellite images, field surveys and historical inventory reports. Landslide conditioning factors such as slope, plan curvature, distance to drainage lines, soil texture, lithology, and distance to lineament were extracted from topographic, soil, and lineament maps. Landslide susceptible areas were analyzed by the ANFIS model and mapped using the conditioning factors. Furthermore, we applied various membership functions (MFs) and fuzzy relations to produce landslide suscep-tibility maps. The prediction performance of the susceptibility map is checked by considering actual landslides in the study area. Results show that, triangular, trapezoidal, and polynomial MFs were the best individual MFs for modelling landslide susceptibility maps (86

  8. ASSESSMENT OF CERAMIC TILE FROST RESISTANCE BY MEANS OF THE FREQUENCY INSPECTION METHOD

    Directory of Open Access Journals (Sweden)

    MICHAL MATYSÍK

    2011-06-01

    Full Text Available The paper presents some results of our experimental analysis of ceramic cladding element frost resistance, particular attention being paid to the application of the frequency inspection method. Three different sets of ceramic tiles of the Ia class to EN 14 411 B standard made by various manufacturers have been analyzed. The ceramic tiles under investigation have been subjected to freeze-thaw-cycle-based degradation in compliance with the relevant ČSN EN ISO 10545-12 standard. Furthermore, accelerated degradation procedure has been applied to selected test specimens, consisting in reducing the temperature of water soaked ceramic tiles in the course of the degradation cycles down –70°C. To verify the correctness of the frequency inspection results, additional physical properties of the ceramic tiles under test have been measured, such as, the ceramic tile strength limit, modulus of elasticity and modulus of deformability, resulting from the flexural tensile strength tests, integrity defect and surface micro-geometry tracking. It has been proved that the acoustic method of frequency inspection is a sensitive indicator of the structure condition and can be applied to the ceramic cladding element frost resistance and service life prediction assessment.

  9. Magnetic Measurements of Atmospheric Dust Deposition in Soils

    Science.gov (United States)

    Kapička, Aleš; Petrovský, Eduard; Grison, Hana; Podrázský, Vilém; Křížek, Pavel

    2010-05-01

    Atmospheric dust of anthropogenic origin contains significant portion of minerals characterized by ferrimagnetic properties [1,2]. These minerals, mostly iron oxides, can serve as tracers of industrial pollutants in soil layers. Moreover, recent results, e.g., [3,4] show significant correlation between concentration-dependent magnetic parameters (e.g., low-field magnetic susceptibility) and concentration of heavy metals (e.g., Pb, Zn, Cd). In our paper we have investigated magnetic properties of depth soil profiles from Krušné hory Mountains (Czech Republic), which belong to a highly contaminated, so-called Black Triangle in central Europe. Emissions are determined by considerable concentration of big sources of pollution (power plants burning fossil fuel, metallurgical and chemical industry). Increased values of magnetic susceptibility (25 - 200 × 10-5 SI) were clearly identified in the top-soil layers. Thermomagnetic analyses and SEM observation indicate that the accumulated anthropogenic ferrimagnetics dominate these layers. Magnetic enhancement is limited to depths of 4-7 cm below the soil surface, usually in F-H or top of Ah soil horizons; deeper soil horizons contain mainly magnetically weak materials and are characterized by much lower values of susceptibility (up to 30 × 10-5 SI). Significant magnetic parameters (e.g., Curie temperature Tc) and SEM results of contaminated topsoils are comparable with magnetic parameters of atmospheric dust, collected (using high-volume samplers) at the same localities.

  10. soil groups relative susceptibility to erosion in parts of south-eastern

    African Journals Online (AJOL)

    Dr Obe

    erosion by water determined based on the amount of soil lost during the various runs. Based on ... knowledge of the many factors of soil erosion .... Table 4: Relative erodibility levels of soil groups in lmo and Abia States under 'wet' conditions. Moderately Erodible. Highly Erodible. Very Highly Erodible. 1. Type Dystropepts.

  11. The use of magnetic susceptibility measurements to determine ...

    African Journals Online (AJOL)

    This research work presents a study on the application of magnetic susceptibility measurements and geochemical analysis for mapping or assessing heavy metal pollution in the agricultural soil in road proximity. The research work was also done to check any runoff of heavy metals pollution to the Owabi dam which serves ...

  12. A novel emulsion-forming arabinogalactan gum from the stems of Frost grape (Vitis riparia Michx.)

    Science.gov (United States)

    A novel arabinogalactan polysaccharide (FGP) is described that is produced in large quantities from the cut stems of Frost grape (Vitis riparia Michx.). The sugar composition consists of L-arabinofuranose (L-Araf, 55.2 %) and D-galactopyranose (D-Galp 30.1%), with smaller components of D-xylose (11....

  13. Mapping of soil erosion and redistribution on two agricultural areas in Czech Republic by using of magnetic parameters.

    Science.gov (United States)

    Kapicka, Ales; Stejskalova, Sarka; Grison, Hana; Petrovsky, Eduard; Jaksik, Ondrej; Kodesova, Radka

    2015-04-01

    Soil erosion is one of the major concerns in sustainability of agricultural systems in different areas. Therefore there is a need to develop suitable innovative indirect methods of soil survey. One of this methods is based on well established differentiation in magnetic signature with depth in soil profile. Magnetic method can be applied in the field as well as in the laboratory on collected soil samples. The aim of this study is to evaluate suitability of magnetic method to assess soil degradation and construct maps of cumulative soil loss due to erosion at two morphologically diverse areas with different soil types. Dominant soil unit in the first locality (Brumovice) is chernozem, which is gradually degraded on slopes to regosols. In the second site (Vidim), the dominant soil unit is luvisol, gradualy transformed to regosol due to erosion. Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points in Brumovice and 65 in Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in top soil horizons. Strong correlation was found between the volume magnetic susceptibility (field measurement) and mass- specific magnetic susceptibility measured in the laboratory (Kapicka et al 2013). Values of magnetic susceptibility are spatially distributed depending on terrain position. Higher values were measured at the flat parts (where the original topsoil horizon remained). The lowest values magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Positive correlation between the organic carbon content and volume magnetic susceptibility (R2= 0.89) was found for chernozem area. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing of the

  14. Variation in damage from growing-season frosts among open-pollinated families of red alder.

    Science.gov (United States)

    Kevin C. Peeler; Dean S. DeBell

    1987-01-01

    Repeated growing-season frosts during late April and early May 1985 caused extensive damage to red alder (Alnus rubra Bong.) seedlings in a newly planted research trial in western Washington. About two-thirds of the seedlings were severely damaged (entire stem damaged or necrotic). Such damage varied by family, from 50 percent of seedlings in the...

  15. Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil

    Science.gov (United States)

    Glushakova, A. M.; Kachalkin, A. V.; Chernov, I. Yu.

    2011-08-01

    The annual dynamics of the number and taxonomic composition of yeast communities were studied in the phyllosphere, on the flowers, and on the roots of Indian balsam ( Impatiens glandulifera Royle) and in the mucky gley soil under the thickets of this plant. It was shown that typical phyllosphere yeast communities with a predominance of the red-pigmented species Rhodotorula mucilaginosa and Rhodotorula glutinis and the typical epiphyte Cryptococcus magnus are formed on the leaves of this annual hygrophyte. However, yeast groups with a predominance of the ascosporous species Saccharomyces paradoxus, Kazachstania barnettii, and Torulaspora delbrueckii, which are not typical of soils at all, were found in the mucky gley soil under the thickets of Indian balsam. Thus, the epiphytic and soil yeast complexes under the thickets of Indian balsam are represented by two entirely discrete communities without common species. In other biogeocenoses of the forest zone, the rearrangement of the structure of yeast communities in passing from the aboveground substrates to the soil proceeds gradually, and most of the species can be isolated both from the aboveground parts of plants and from the soil. The strong difference between the yeast communities in the phyllosphere of Indian balsam and in the soil under its thickets is apparently related to the fact that the annual hygrophytes are decomposed very quickly (during several days after the first frosts). Because of this, an intermediate layer between the phyllosphere and the soil (the litter layer), in which epiphytic microorganisms can develop, is not formed under these plants.

  16. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    Science.gov (United States)

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  17. An experimental study on the negative effects of downwards flow of the melted frost over a multi-circuit outdoor coil in an air source heat pump during reverse cycle defrosting

    International Nuclear Information System (INIS)

    Song, Mengjie; Pan, Dongmei; Li, Ning; Deng, Shiming

    2015-01-01

    Highlights: • A special experimental rig was built and its details are reported. • The negative effects of downwards flowing of the melted frost were shown. • Defrosting duration was shortened after installing water collecting trays. • Temperature of melted frost decreased after installing trays. - Abstract: When the surface temperature of the outdoor coil in an air source heat pump (ASHP) unit is lower than both freezing point of water and the air dew point, frost can be formed and accumulated over outdoor coil surface. Frosting affects the energy efficiency, and periodic defrosting therefore is necessary. Reverse cycle defrosting is currently the most widely used defrosting method. A previous related study has indicated that during reverse cycle defrosting, downwards flow of the melted frost over a multi-circuit outdoor coil could affect the defrosting performance, without however giving detailed quantitative analysis of the effects. Therefore an experimental study on the effects has been carried out and a quantitative analysis conducted using the experimental data. In this paper, the detailed description of an experimental ASHP unit which was specifically built up is firstly reported. This is followed by presenting experimental results. Result analysis and conclusions are finally given

  18. On the need for data for the verification of service life models for frost damage

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Engelund, Sven

    1999-01-01

    The purpose of this paper is to draw the attention to the need for the verification of service life models for frost attack on concrete and the collection of relevant data. To illustrate the type of data needed the paper presents models for internal freeze/thaw damage (internal cracking including...

  19. Investigations on the formation of frost on lamella heat-exchangers used in heat pumps; LOREF: Luftkuehler-Optimierung mit Reduktion von Eis- und Frostbildung. Untersuchung der Frostbildung fuer Lamellenluftkuehler von Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Sahinagic, R.; Imholz, M.; Berlinger, L.; Huber, H.; Hilfiker, K. [Hochschule fuer Technik und Architektur (HTA) Lucerne, Institut fuer Produktentwicklung, Thermische Verfahren und Anlagen (TVA), Horw (Switzerland)

    2004-07-01

    This comprehensive final report presents the results of the LOREF project carried out at the University of Applied Science in Horw, Switzerland, on the formation of frost on lamella air-coolers used in heat pumps. The report presents the results of extensive tests on the formation of frost on the lamella of the heat exchangers used in air-water heat pumps. The mathematical relationships and the theory behind the formation of frost on cooled surfaces are discussed in detail. The results of numerical simulations and practical tests are presented. The practical tests involved the observation of ice and frost formation on various surface forms. The results of the physical tests and observations are quoted in detail. The mathematical modelling method used and the associated results are discussed. The report is rounded off with an appendix containing tables, diagrams and photos.

  20. Simulated Frosts At Different Phenological Stages of the Potato Crop and Their Impact On Yields Cv Ccompis: Preliminary Studies

    International Nuclear Information System (INIS)

    Fairlie, T. E.; Ortega, A

    1994-01-01

    The frost damages on the potato crop were simulated through an experiment in the Jiscuani community, in Southern Peru, Puno. Five levels of foliar damage (0, 25, 50, 75 and 100%) in different phenological stages were evaluated for their impact on tuber yield. The most significant phenological damages resulted at plant germination and at the early stolon formation, when foliar damage was higher than 50%. Moreover, the greatest effect on yield was caused at flowering stage (100 days after planting), recording reductions from 15 to 55 % at the different damage levels. The methodology for the frost simulation, cutting foliar sections according damage levels and making further rubbing on foliar area was apparently adequate. (author) [es

  1. Helicity Asymmetry in gamma p -> pi+ n with FROST

    International Nuclear Information System (INIS)

    Strauch, Steffen

    2012-01-01

    The main objective of the FROST experiment at Jefferson Lab is the study of baryon resonances. The polarization observable E for the reaction gamma p to pi+n has been measured as part of this program. A circularly polarized tagged photon beam with energies from 0.35 to 2.35 GeV was incident on a longitudinally polarized frozen-spin butanol target. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer. Preliminary polarization data agree fairly well with present SAID and MAID partial-wave analyses at low photon energies. In most of the covered energy range, however, significant deviations are observed. These discrepancies underline the crucial importance of polarization observables to further constrain these analyses.

  2. Magnetic properties of alluvial soils polluted with heavy metals

    Science.gov (United States)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  3. Effect of pyraclostrobin on postharvest storage and quality of sugarbeet harvested before and after a frost

    Science.gov (United States)

    Pyraclostrobin and other strobilurin fungicides have been reported to have beneficial effects on productivity that cannot be attributed to disease control. Enhanced late-season frost tolerance is one such effect that has been observed for sugarbeet (Beta vulgaris L.) after a late season foliar pyra...

  4. Superabsorbent Polymers as a Means of Improving Frost Resistance of Concrete

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Laustsen, Sara

    2015-01-01

    resistance of concrete. The improvement was attributed to voids created by SAP. As was clearly demonstrated in the paper, it was crucial to document the void structure of the hardened concrete. Other factors than SAP could lead to void formation. For example, residue of surfactant on SAP particles...... as regards total void volume and void size. However, the optimum SAP void structure in relation to frost resistance is not known, and as long as the target is not clear, it is hard to use the design option of controlled void structure in a constructive way....

  5. The interplay between inner and outer frost damage and its implication for accelerated freeze-thaw testing

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    In the present project salt frost scaling was registered during an accelerated freeze-thaw test (CEN/TS 12390-9). After the test, inner damage was evaluated by observing the crack patterns on fluorescence impregnated plane sections. The results indicate that the developments of inner and outer...

  6. A Computational Model of Water Migration Flux in Freezing Soil in a Closed System%封闭系统正冻土水流的一个计算模型

    Institute of Scientific and Technical Information of China (English)

    裘春晗

    2005-01-01

    A computational model of water migration flux of fine porous soil in frost heave was investigated in a closed system. The model was established with the heat-mass conservation law and from some previous experimental results. Through defining an auxiliary function an empirical function in the water migration flux, which is difficult to get, was replaced. The data needed are about the water content along the soil column after test with enough long time. We adopt the test data of sample soil columns in [1] to verify the model. The result shows it can reflect the real situation on the whole.

  7. Puerto Rico Soil Erodibility (Kffact)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Puerto Rico soil erodibility (Kffactor) - low values indicate low vulnerability to erosion, higher values mean higher susceptibility to runoff.

  8. On the freezing of clay soil and water migration into the pavement design

    Directory of Open Access Journals (Sweden)

    Sergeev Andrey Sergeevich

    2014-03-01

    Full Text Available The freezing of the surface layers of the Earth’s crust causes the volume deformation of soil and is expressed in the increase of volume and differential movement of their surface due to freezing of water and formation of ice inclusions. Underestimation of the frost heaving of soils, as well as the untimely application of anti — heaving measures cause the enormous damage to the national economy. All of this results in life reduction and condition deterioration of auto-road operation, as well as increase in non-manufacturing labor costs, building materials and financial means. During the experimental studies we have found that after four stages of freezing and defrosting the physical properties of clay soil change, i.e. the formation of 2-3 mm ice lenses is taking place at the junction of clay soil and sand. The number and dimensions of ice lenses increase with a further tightening of moisture up to 5-6 mm, and 3 zones related to the intensity of freezing are formed.

  9. Study of the thermal behavior of a latent heat cold storage unit operating under frosting conditions

    International Nuclear Information System (INIS)

    Simard, A.P.; Lacroix, M.

    2003-01-01

    A study is performed of the thermal behavior of a latent heat cold storage unit operating under frosting conditions. This unit is employed to maintain the temperature inside the refrigerated compartment of a truck below 265 K. The system consists of parallel plates filled with a phase change material (PCM) that absorbs heat from the flow of warm moist air. A mathematical model for the system is first presented and, next, validated with numerical and experimental data. It is then exploited to assess the effects of design parameters and operating conditions on the performance of the system. The recommended thickness and distance separating the PCM plates are found to be 50x10 -3 and 30x10 -3 m, respectively. The results indicate that the performance of the unit is enhanced by turbulent air flow in spite of the increased pressure loss and accentuated frost growth. The unit also performs well even when the surrounding relative humidity is 100%

  10. Development of frost tolerance in winter wheat as modulated by differential root and shoot temperature

    NARCIS (Netherlands)

    Windt, C.W.; van Hasselt, P.R

    Winter wheat plants (Triticum aestivum L. cv. Urban), grown in nutrient solution, were exposed to differential shoot/root temperatures (i.e., 4/4, 4/20, 20/4 and 20/20 degrees C) for six weeks. Leaves grown at 4 degrees C showed an increase in frost tolerance from - 4 degrees C down to -11 degrees

  11. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes

    International Nuclear Information System (INIS)

    Cwirzen, Andrzej; Penttala, Vesa

    2005-01-01

    The influence of the cement paste-aggregate interfacial transition zone (ITZ) on the frost durability of high-performance silica fume concrete (HPSFC) has been studied. Investigation was carried out on eight non-air-entrained concretes having water-to-binder (W/B) ratios of 0.3, 0.35 and 0.42 and different additions of condensed silica fume. Studies on the microstructure and composition of the cement paste have been made by means of environmental scanning electron microscope (ESEM)-BSE, ESEM-EDX and mercury intrusion porosimetry (MIP) analysis. The results showed that the transition zone initiates and accelerates damaging mechanisms by enhancing movement of the pore solution within the concrete during freezing and thawing cycles. Cracks filled with ettringite were primarily formed in the ITZ. The test concretes having good frost-deicing salt durability featured a narrow transition zone and a decreased Ca/Si atomic ratio in the transition zone compared to the bulk cement paste. Moderate additions of silica fume seemed to densify the microstructure of the ITZ

  12. CLAS+FROST: new generation of photoproduction experiments at jefferson lab

    International Nuclear Information System (INIS)

    Pasyuk, E.

    2009-01-01

    A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to baryon spectroscopy. Photoproduction experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams provide unique conditions for this type of experiments. Recent addition of the Frozen Spin Target (FROST) gives a remarkable opportunity to measure double and triple polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete experiment becomes possible and will allow model independent extraction of the reaction amplitude. An overview of the experiment and its current status is presented. (author)

  13. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    Science.gov (United States)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  14. Autumn frost hardiness in Norway spruce plus tree progeny and trees of the local and transferred provenances in central Sweden.

    Science.gov (United States)

    Hannerz, Mats; Westin, Johan

    2005-09-01

    Reforestation with provenances from locations remote from the planting site (transferred provenances) or the progeny of trees of local provenances selected for superior form and vigor (plus trees) offer alternative means to increase yield over that obtained by the use of seed from unselected trees of the local provenance. Under Swedish conditions, Norway spruce (Picea abies (L.) Karst.) of certain transferred provenances generally has an advantage in productivity relative to the local provenance comparable to that of progeny of plus trees. The aim of this study was to explore the extent to which productivity gains achieved by provenance transfer or the use of plus tree progeny are associated with reductions in autumn frost hardiness, relative to that of trees of the local provenance. In a field trial with 19-year-old trees in central Sweden, bud hardiness was tested on four occasions during the autumn of 2002. Trees of the local provenance were compared with trees of a south Swedish provenance originating 3 degrees of latitude to the south, a Belarusian provenance and the progeny of plus trees of local origin. The Belarusian provenance was the least hardy and the local provenance the most hardy, with plus tree progeny and the south Swedish provenance being intermediate in hardiness. Both the Belarusian provenance and the plus tree progeny were significantly taller than trees of the other populations. Within provenances, tree height was negatively correlated with autumn frost hardiness. Among the plus tree progeny, however, no such correlation between tree height and autumn frost hardiness was found. It is concluded that although the gain in productivity achieved by provenance transfer from Belarus was comparable to that achieved by using the progeny of plus trees of the local provenance, the use of trees of the Belarus provenance involved an increased risk of autumn frost damage because of later hardening.

  15. Soil aggregate stability within morphologically diverse areas

    Czech Academy of Sciences Publication Activity Database

    Jakšík, O.; Kodešová, R.; Kubiš, A.; Stehlíková, I.; Drábek, O.; Kapička, Aleš

    2015-01-01

    Roč. 127, April (2015), s. 287-299 ISSN 0341-8162 R&D Projects: GA MZe QJ1230319 Institutional support: RVO:67985530 Keywords : soil degradation due to erosion * WSA index * coefficients of vulnerability * magnetic susceptibility Subject RIV: DF - Soil Science Impact factor: 2.612, year: 2015

  16. Promoting sustainable potato agriculture in the Andean region by supplemental calcium nutrition and breeding for frost tolerance

    Science.gov (United States)

    Collaborative research in Peru sought to promote sustainable potato production and, mitigate adverse impacts of climate change through two approaches: first calcium amendments to increase crop yield and, second to enhance frost tolerance in native potatoes. All the multi-year, multi-location experim...

  17. Design and Construction of Foundations in Areas of Deep Seasonal Frost and Permafrost.

    Science.gov (United States)

    1980-08-01

    structures in areas of deep seasonal frost and permafrost as developed up to the early 1970’s. It has been pre- pared with the final objective of publication...conditions. 96 .’,’ __________ -_ -- ."- ’ .. : , -. - -i , . .* ,. : . .. . , ,; .. .. ,,.: .’ . .- . : S aM O dPae 4 " Celular Glow ! _ . IoI¢ P...from the interior wall deter- mined by actual measurement at the same Loring AFB building, com- pared with results predicted by flow net analysis and

  18. Physical, rheological, functional and film properties of a novel emulsifier: Frost grape polysaccharide (FGP) from Vitis riparia Michx

    Science.gov (United States)

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essent...

  19. Magnetic and Geochemical Properties of Andic Soils from the Massif Central, France

    Science.gov (United States)

    Grison, H.; Petrovsky, E.; Dlouha, S.; Kapicka, A.

    2014-12-01

    Ferrimagnetic iron oxides are the key magnetic minerals responsible for enhancement of the magnetic susceptibility in soils. Soils with andic properties contain high amount of Fe-oxides, but only few attempts were made to characterize these soils using magnetic methods. Magnetic susceptibility is in particular suitable for its sensitivity and fast measurement; the presence of Fe-oxides can be easily identified directly in the field. The aim of our study is to describe main magnetic and geochemical properties of soils rich in Fe oxides derived from strongly magnetic volcanic basement. The studied sites are located at the basalt parent rock formed during Pleistocene, Pliocene and Miocene. Investigated soils are exposed to the mountainous climate with the perudic soil moisture regime and cryic temperature soil regime. Seven basalt soil profiles with typical andic properties were analyzed down to parent rock by a set of magnetic and geochemical methods. The magnetic susceptibility was measured in situ and in laboratory using the Bartington MS2D and AGICO MFK1. Its temperature dependence was measured in order to assess phase transformations of magnetic minerals using the KLY4. Magnetic data were completed by the hysteresis, IRM and DCD measurements using ADE EV9 VSM. Geochemical data include soil reaction (pH), organic carbon, cations exchange capacity, and extractable iron and aluminium in the soil extracted by a dithionite-citrate, acid-ammonium oxalate and a pyrophosphate solution. Scanning electron microscopy was done for top/sub-soil and rock samples. Geochemical soil properties reflecting iron oxide stability correlate well with mass-specific magnetic susceptibility. Well pronounced relationship was observed between magnetic grain size, precipitation and soil pH, second group is reflecting concentration of feri-magnetic particles and age of parent rock, and the third group reflects degree of weathering and the thermomagnetic indices expressing changes in magneto

  20. Determination of the dew point and the frost point below 0 degrees C making use of the beta-ray backscattering and the electric conductivity on the narrow surface of insulated layer.

    Science.gov (United States)

    Matsumoto, S; Kobayashi, H

    1979-10-15

    It is necessary to distinguish between the dew point and the frost point below 0 degrees C. The freezing of the dew and the melting of the frost are respectively detected by the rapid decrease and the increase of the conduction current on the narrow surface of insulated layer made of epoxy, 0.5 mm in width and 10 mm in length, on which the dew deposits. The dew point -9 degrees C and the frost point -8 degrees C in the humidity 21% at the temperature 13 degrees C are clearly distinguished in this method.

  1. GIS Supported Landslide Susceptibility Modeling at Regional Scale: An Expert-Based Fuzzy Weighting Method

    Directory of Open Access Journals (Sweden)

    Christos Chalkias

    2014-04-01

    Full Text Available The main aim of this paper is landslide susceptibility assessment using fuzzy expert-based modeling. Factors that influence landslide occurrence, such as elevation, slope, aspect, lithology, land cover, precipitation and seismicity were considered. Expert-based fuzzy weighting (EFW approach was used to combine these factors for landslide susceptibility mapping (Peloponnese, Greece. This method produced a landslide susceptibility map of the investigated area. The landslides under investigation have more or less same characteristics: lateral based and downslope shallow movement of soils or rocks. The validation of the model reveals, that predicted susceptibility levels are found to be in good agreement with the past landslide occurrences. Hence, the obtained landslide susceptibility map could be acceptable, for landslide hazard prevention and mitigation at regional scale.

  2. Did the late spring frost in 2007 and 2011 affect tree-ring width and earlywood vessel size in Pedunculate oak (Quercus robur) in northern Poland?

    Science.gov (United States)

    Puchałka, Radosław; Koprowski, Marcin; Przybylak, Julia; Przybylak, Rajmund; Dąbrowski, Henryk P

    2016-08-01

    Trees are sensitive to extreme weather and environmental conditions. This sensitivity is visible in tree-ring widths and cell structure. In our study, we hypothesized that the sudden frost noted at the beginning of May in both 2007 and 2011 affected cambial activity and, consequently, the number and size of vessels in the tree rings. It was decided to test this hypothesis after damage to leaves was observed. The applied response function model did not show any significant relationships between spring temperature and growth. However, this method uses average values for long periods and sometimes misses the short-term effects. This is why we decided to study each ring separately, comparing them with rings unaffected by the late frost. Our study showed that the short-term effect of sudden frost in late spring did not affect tree rings and selected cell parameters. The most likely reasons for this are (i) cambial activity producing the earlywood vessels before the occurrence of the observed leaf damage, (ii) the forest micro-climate protecting the trees from the harsh frost and (iii) the temperature decline being too short-lived an event to affect the oaks. On the other hand, the visible damage may be occasional and not affect cambium activity and tree vitality at all. We conclude that oak is well-adapted to this phenomenon.

  3. Chemical evaluation of soil organic matter structure in diverse cropping systems

    Science.gov (United States)

    Soil organic matter (SOM) improves soil structure, nutrient and water retention, and biodiversity while reducing susceptibility to soil erosion. SOM also represents an important pool of C that can be increased to help mitigate global climate change. Our understanding of how agricultural management ...

  4. Program and performance characteristics of the environmental chambers during a long-term experiment with Norway spruce trees exposed to ozone, acid mist, and frost

    Energy Technology Data Exchange (ETDEWEB)

    Payer, H D; Blank, L W; Eisenmann, T; Runkel, K H; Bosch, C

    1986-09-01

    This paper describes the climatic and pollutant conditions simulated in the new environmental chambers of the GSF (Payer et al. 1986) during the course of the first (five-month) experiment. This so-called 'pilot-project' was also used to assess the technical performance of this new research facility during realistic experimental conditions. The factorial design with 16 groups analyzed the effects of i) normal winter temperatures vs. an episode of severe frost, ii) low vs. raised ozone concentrations, iii) misting with water of pH 5.6 vs. water of pH 3.0, and iiii) fertilized vs. unfertilized soil. The climatic conditions and ozone levels applied were based on longterm field measurements from the higher regions of the Bavarian forest in order to simulate realistic diurnal and seasonal variations as observed at a site affected by severe forest decline. The main characteristics of this exposure program are outlined, and an assessment of the technical performance of the environmental chambers is given in this paper.

  5. Far-ultraviolet Bidirectional Photometry of Apollo Soil 10084: New Results from The Southwest Ultraviolet Reflectance Chamber (SwURC).

    Science.gov (United States)

    Raut, U.

    2017-12-01

    We report new measurements of the far-ultraviolet (115-180 nm) bidirectional reflectance of Apollo soil 10084 in the Southwest Ultraviolet Reflectance Chamber (SwURC). We find the bidirectional reflectance distribution function (BRDF) to be featureless in this wavelength region, though with a small blue slope. The angular distribution of the BRDF at Ly-α and 160 nm shows that this mature mare soil, containing nanophase Fe and enriched in Ti, anisotropically scatters light in the forward direction. The phase angle dependence of the BRDF is fitted with Hapke's photometric model with an additional diffuse-directional term. Future plans include measurements of mare and highland soils of differing maturity index (Is/FeO), water ice frost and lunar soil-ice aggregates. Such measurements will help constrain the abundance and distribution of the water ice on the illuminated lunar surface and dark permanently shadowed regions of the moon, as reported by LRO-LAMP.

  6. Use of engineered soils beneath low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, T.C.; Humphrey, D.N.; DeMascio, F.A. [Univ. of Maine, Orono, ME (United States). Dept. of Civil Engineering

    1993-03-01

    Current regulations are oriented toward locating low-level radioactive waste disposal facilities on sites that have a substantial natural soil barrier and are above the groundwater table. In some of the northern states, like Maine, the overburden soils are glacially derived and in most places provide a thin cover over bedrock with a high groundwater table. Thus, the orientation of current regulations can severely limit the availability of suitable sites. A common characteristic of many locations in glaciated regions is the rapid change of soil types that may occur and the heterogeneity within a given soil type. In addition, the bedrock may be fractured, providing avenues for water movement. A reliable characterization of these sites can be difficult, even with a detailed subsurface exploration program. Moreover, fluctuating groundwater and frost as well as the natural deposition processes have introduced macro features such as cracks, fissures, sand and silt seams, and root holes. The significant effect that these macro features have on the permeability and adsorptive capacity of a large mass is often ignored or poorly accounted for in the analyses. This paper will examine an alternate approach, which is to use engineered soils as a substitute for some or all of the natural soil and to treat the fractures in the underlying bedrock. The site selection would no longer be primarily determined by the natural soil and rock and could even be placed in locations with no existing soils. Engineered soils can be used for below- or aboveground facilities.

  7. Overview of different aspects of climate change effects on soils

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  8. Use of Satellite Remote Sensing Data in the Mapping of Global Landslide Susceptibility

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Satellite remote sensing data has significant potential use in analysis of natural hazards such as landslides. Relying on the recent advances in satellite remote sensing and geographic information system (GIS) techniques, this paper aims to map landslide susceptibility over most of the globe using a GIs-based weighted linear combination method. First , six relevant landslide-controlling factors are derived from geospatial remote sensing data and coded into a GIS system. Next, continuous susceptibility values from low to high are assigned to each of the six factors. Second, a continuous scale of a global landslide susceptibility index is derived using GIS weighted linear combination based on each factor's relative significance to the process of landslide occurrence (e.g., slope is the most important factor, soil types and soil texture are also primary-level parameters, while elevation, land cover types, and drainage density are secondary in importance). Finally, the continuous index map is further classified into six susceptibility categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are shown to have landslide-prone areas. This first-cut global landslide susceptibility map forms a starting point to provide a global view of landslide risks and may be used in conjunction with satellite-based precipitation information to potentially detect areas with significant landslide potential due to heavy rainfall. 1

  9. Geochemical association of Pu and Am in selected host-phases of contaminated soils from the UK and their susceptibility to chemical and microbiological leaching

    International Nuclear Information System (INIS)

    Kimber, Richard L.; Corkhill, Claire L.; Amos, Sean; Livens, Francis R.; Lloyd, Jonathan R.

    2015-01-01

    Understanding the biogeochemical behaviour and potential mobility of actinides in soils and groundwater is vital for developing remediation and management strategies for radionuclide-contaminated land. Pu is known to have a high Kd in soils and sediments, however remobilization of low concentrations of Pu remains a concern. Here, some of the physicochemical properties of Pu and the co-contaminant, Am, are investigated in contaminated soils from Aldermaston, Berkshire, UK, and the Esk Estuary, Cumbria, UK, to determine their potential mobility. Sequential extraction techniques were used to examine the host-phases of the actinides in these soils and their susceptibility to microbiological leaching was investigated using acidophilic sulphur-oxidising bacteria. Sequential extractions found the majority of 239,240 Pu associated with the highly refractory residual phase in both the Aldermaston (63.8–85.5 %) and Esk Estuary (91.9–94.5%) soils. The 241 Am was distributed across multiple phases including the reducible oxide (26.1–40.0%), organic (45.6–63.6%) and residual fractions (1.9–11.1%). Plutonium proved largely resistant to leaching from microbially-produced sulphuric acid, with a maximum 0.18% leached into solution, although up to 12.5% of the 241 Am was leached under the same conditions. If Pu was present as distinct oxide particles in the soil, then 241 Am, a decay product of Pu, would be expected to be physically retained in the particle. The differences in geochemical association and bioleachability of the two actinides suggest that this is not the case and hence, that significant Pu is not present as distinct particles. These data suggest the majority of Pu in the contaminated soils studied is highly recalcitrant to geochemical changes and is likely to remain immobile over significant time periods, even when challenged with aggressive “bioleaching” bacteria. - Highlights: • Pu in the contaminated soils is associated with the recalcitrant

  10. Algebraic modeling and thermodynamic design of fan-supplied tube-fin evaporators running under frosting conditions

    International Nuclear Information System (INIS)

    Ribeiro, Rafael S.; Hermes, Christian J.L.

    2014-01-01

    In this study, the method of entropy generation minimization (i.e., design aimed at facilitating both heat, mass and fluid flows) is used to assess the evaporator design (aspect ratio and fin density) considering the thermodynamic losses due to heat and mass transfer, and viscous flow processes. A fully algebraic model was put forward to simulate the thermal-hydraulic behavior of tube-fin evaporator coils running under frosting conditions. The model predictions were validated against experimental data, showing a good agreement between calculated and measured counterparts. The optimization exercise has pointed out that high aspect ratio heat exchanger designs lead to lower entropy generation in cases of fixed cooling capacity and air flow rate constrained by the characteristic curve of the fan. - Highlights: • An algebraic model for frost accumulation on tube-fin heat exchangers was advanced. • Model predictions for cooling capacity and air flow rate were compared with experimental data, with errors within ±5% band. • Minimum entropy generation criterion was used to optimize the evaporator geometry. • Thermodynamic analysis led to slender designs for fixed cooling capacity and fan characteristics

  11. Frost decreases content of sugars, ascorbic acid and some quercetin glycosides but stimulates selected carotenes in Rosa canina hips.

    Science.gov (United States)

    Cunja, Vlasta; Mikulic-Petkovsek, Maja; Zupan, Anka; Stampar, Franci; Schmitzer, Valentina

    2015-04-15

    Primary and secondary metabolites of Rosa canina hips were determined by HPLC/MS during ripening and after frost damage. Rose hips were harvested six times from the beginning of September until the beginning of December. Color parameters a*, b* and L* decreased during maturation. Glucose and fructose were the predominant sugars representing up to 92% total sugars, and citric acid was the major organic acid detected in rose hips (constituting up to 58% total organic acids). Total sugar and ascorbic acid content significantly decreased after frost damage; from 42.2 to 25.9 g 100 g(-1) DW for sugars and from 716.8 to 176.0 mg 100 g(-1) DW for ascorbic acid. Conversely, β-carotene and lycopene levels increased in frostbitten rose hips to 22.1 and 113.2 mg 100 g(-1) DW, respectively. In addition to cyanidin-3-glucoside (highest level in hips was 125.7 μg 100 g (-1) DW), 45 different phenolic compounds have been identified. The most abundant were proanthocyanidins (their levels amounted up to 90% of total flavanol content) and their content showed no significant differences during maturation. The levels of catechin, phloridzin, flavanones and several quercetin glycosides were highest on the first three sampling dates and decreased after frost. Antioxidant capacity similarly decreased in frostbitten rose hips. Total phenolic content increased until the third sampling and decreased on later samplings. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. New record of Scedosporium dehoogii from Chile: Phylogeny and susceptibility profiles to classic and novel putative antifungal agents.

    Science.gov (United States)

    Alvarez, Eduardo; Sanhueza, Camila

    Scedosporium species are considered emerging agents causing illness in immunocompromised patients. In Chile, only Scedosporium apiospermum, Scedosporium boydii and Lomentospora prolificans haven been reported previously. The study aimed to characterize genetically Scedosporium dehoogii strains from Chilean soil samples, and assessed the antifungal susceptibility profile to classic and novel putative antifungal molecules. In 2014, several samples were obtained during a survey of soil fungi in urban areas from Chile. Morphological and phylogenetic analyses of the internal transcribed spacer region (ITS), tubulin (TUB), and calmodulin (CAL) sequences were performed. In addition, the susceptibility profiles to classic antifungal and new putative antifungal molecules were determined. Four strains of Scedosporium dehoogii were isolated from soil samples. The methodology confirmed the species (reported here as a new record for Chile). Antifungal susceptibility testing demonstrates the low activity of terpenes (α-pinene and geraniol) against this species. Voriconazole (VRC), posaconazole (PSC), and the hydroxyquinolines (clioquinol, and 5,7-dibromo-8-hydroxyquinoline) showed the best antifungal activity. Our results demonstrate that Scedosporium dehoogii is present in soil samples from Chile. This study shows also that hydroxyquinolines have potential as putative antifungal molecules. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Soil geohazard mapping for improved asset management of UK local roads

    Science.gov (United States)

    Pritchard, O. G.; Hallett, S. H.; Farewell, T. S.

    2015-09-01

    Unclassified roads comprise 60 % of the road network in the United Kingdom (UK). The resilience of this locally important network is declining. It is considered by the Institution of Civil Engineers to be "at risk" and is ranked 26th in the world. Many factors contribute to the degradation and ultimate failure of particular road sections. However, several UK local authorities have identified that in drought conditions, road sections founded upon shrink-swell susceptible clay soils undergo significant deterioration compared with sections on non-susceptible soils. This arises from the local road network having little, if any, structural foundations. Consequently, droughts in East Anglia have resulted in millions of pounds of damage, leading authorities to seek emergency governmental funding. This paper assesses the use of soil-related geohazard assessments in providing soil-informed maintenance strategies for the asset management of the locally important road network of the UK. A case study draws upon the UK administrative county of Lincolnshire, where road assessment data have been analysed against mapped clay-subsidence risk. This reveals a statistically significant relationship between road condition and susceptible clay soils. Furthermore, incorporation of UKCP09 future climate projections within the geohazard models has highlighted roads likely to be at future risk of clay-related subsidence.

  14. Soil erosion assessment using the Universal Soil Loss Equation (USLE) in a GIS framework: A case study of Zacatecas, México

    Science.gov (United States)

    Betanzos Arroyo, L. I.; Prol Ledesma, R. M.; da Silva Pinto da Rocha, F. J. P.

    2014-12-01

    The Universal Soil Loss Equation (USLE), which is considered to be a contemporary approach in soil loss assessment, was used to assess soil erosion hazard in the Zacatecas mining district. The purpose of this study is to produce erosion susceptibility maps for an area that is polluted with mining tailings which are susceptible to erosion and can disperse the particles that contain heavy metals and other toxic elements. USLE method is based in the estimation of soil loss per unit area and takes into account specific parameters such as precipitation data, topography, soil erodibility, erosivity and runoff. The R-factor (rainfall erosivity) was calculated from monthly and annual precipitation data. The K-factor (soil erodibility) was estimated using soil maps available from the CONABIO at a scale of 1:250000. The LS-factor (slope length and steepness) was determined from a 30-m digital elevation model. A raster-based Geographic Information System (GIS) was used to interactively calculate soil loss and map erosion hazard. The results show that estimated erosion rates ranged from 0 to 4770.48 t/ha year. Maximum proportion of the total area of the Zacatecas mining district have nil to very extremely slight erosion severity. Small areas in the central and south part of the study area shows the critical condition requiring sustainable land management.

  15. Landslide susceptibility mapping using a neuro-fuzzy

    Science.gov (United States)

    Lee, S.; Choi, J.; Oh, H.

    2009-12-01

    This paper develops and applied an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment using landslide-related factors and location for landslide susceptibility mapping. A neuro-fuzzy system is based on a fuzzy system that is trained by a learning algorithm derived from the neural network theory. The learning procedure operates on local information, and causes only local modifications in the underlying fuzzy system. The study area, Boun, suffered much damage following heavy rain in 1998 and was selected as a suitable site for the evaluation of the frequency and distribution of landslides. Boun is located in the central part of Korea. Landslide-related factors such as slope, soil texture, wood type, lithology, and density of lineament were extracted from topographic, soil, forest, and lineament maps. Landslide locations were identified from interpretation of aerial photographs and field surveys. Landslide-susceptible areas were analyzed by the ANFIS method and mapped using occurrence factors. In particular, we applied various membership functions (MFs) and analysis results were verified using the landslide location data. The predictive maps using triangular, trapezoidal, and polynomial MFs were the best individual MFs for modeling landslide susceptibility maps (84.96% accuracy), proving that ANFIS could be very effective in modeling landslide susceptibility mapping. Various MFs were used in this study, and after verification, the difference in accuracy according to the MFs was small, between 84.81% and 84.96%. The difference was just 0.15% and therefore the choice of MFs was not important in the study. Also, compared with the likelihood ratio model, which showed 84.94%, the accuracy was similar. Thus, the ANFIS could be applied to other study areas with different data and other study methods such as cross-validation. The developed ANFIS learns the if-then rules between landslide-related factors and landslide

  16. Landslide Susceptibility Assessment Using Frequency Ratio Technique with Iterative Random Sampling

    Directory of Open Access Journals (Sweden)

    Hyun-Joo Oh

    2017-01-01

    Full Text Available This paper assesses the performance of the landslide susceptibility analysis using frequency ratio (FR with an iterative random sampling. A pair of before-and-after digital aerial photographs with 50 cm spatial resolution was used to detect landslide occurrences in Yongin area, Korea. Iterative random sampling was run ten times in total and each time it was applied to the training and validation datasets. Thirteen landslide causative factors were derived from the topographic, soil, forest, and geological maps. The FR scores were calculated from the causative factors and training occurrences repeatedly ten times. The ten landslide susceptibility maps were obtained from the integration of causative factors that assigned FR scores. The landslide susceptibility maps were validated by using each validation dataset. The FR method achieved susceptibility accuracies from 89.48% to 93.21%. And the landslide susceptibility accuracy of the FR method is higher than 89%. Moreover, the ten times iterative FR modeling may contribute to a better understanding of a regularized relationship between the causative factors and landslide susceptibility. This makes it possible to incorporate knowledge-driven considerations of the causative factors into the landslide susceptibility analysis and also be extensively used to other areas.

  17. Soils of slopes in the taiga zone of the Middle Ob reaches

    Science.gov (United States)

    Karavaeva, N. A.; Sokolova, T. A.

    2015-06-01

    The morphology, chemical properties, composition of phyllosilicates, as well as their transformation in loamy soils developing on slopes of ridges of the Vakh Upland in Western Siberia, are discussed. Data on two soil profiles-gleyic svetlozem of the middle slope and podzolized gleyzem of the footslope—are presented. Both soils have an acid reaction. The textural differentiation is weakly pronounced in the gleyic svetlozem and more pronounced in the podzolized gleyzem. The soils differ in their cryological conditions. The thawing depth in the svetlozem is about 60-70 cm, and the lower part of the profile to a depth of 3.2 m largely remains in the frozen state. Its complete thawing is only possible during the warm climatic cycles. This is a seasonally frozen soil with the long-lasting frozen state. It is characterized by the thick cryometamorphic (CRM) horizon. The gleyzem is a "normal" seasonally frozen soil with complete thawing of seasonal frost in summer. The CRM horizon is absent in its profile. The alteration of clay minerals in the soil profiles includes their partial dissolution, the formation of soil chlorites, and the transformation of illite into more labile structures. In the upper horizons of both soils, this transformation proceeds through the stage of mixed-layered illite-smectites. In the gleyzem, it reaches a more advanced stage of the formation of beidellite. The cryometamorphic horizons are specified by some amorphization of phyllosilicates and, probably, by the partial dissolution of their crystal lattices under the impact of frequent zero-temperature transitions and cryogenesis in the frozen state.

  18. Accumulation of Flavonoid Glycosides and UFGT Gene Expression in Mulberry Leaves (Morus alba L.) before and after Frost.

    Science.gov (United States)

    Yu, Xiaofeng; Zhu, Yiling; Fan, Jingyi; Wang, Dujun; Gong, Xiaohui; Ouyang, Zhen

    2017-08-01

    In order to determine the molecular mechanism underlying the influence of frost on chemical changes in mulberry leaves, the UFGT activity, expression level, and accumulation of flavonoid glycosides in mulberry leaves (Morus alba L.) were studied. The expression of UFGT gene was investigated by quantitative real-time PCR (qRT-PCR) and the UFGT activity, accumulation of flavonoid glycosides was studied by high performance liquid chromatography. Then, the correlation between the expression level of UFGT, the UFGT activity, and the flavonoid glycosides accumulation with temperature was explored. The accumulation of isoquercitrin and astragalin is significantly positively correlated with UFGT gene expression and UFGT activity. On the contrary, the average temperature was significantly negatively correlated with the level of UFGT gene expression and UFGT activity. The results show that after frost, low temperature can induce the expression of UFGT gene in mulberry leaves, resulting in the accumulation of flavonoid glycosides. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  19. Contribution to the edaphic components definition in the desertification susceptibility index

    International Nuclear Information System (INIS)

    Sampaio, E. P.; Corte-Real, J. A.

    2009-01-01

    Many of the biophysical processes involved in the scope of desertification depend on the hydric characteristics of the soils the impact on vegetation cover. To protect soils against desertification, it is necessary to understand how some of these characteristics (such as water storage) interact in a complex and integrated chain of degradation processes. Several works have been developed to contribute to the definition of a Index of Desertification Susceptibility (DSI) expressed as a function of several components, climatic, edaphic, vegetative and slope. However, the various built-in edaphic components already defined, leave aside the water retention in soil. Furthermore, these components only focus on the characteristics of the uppermost surface soil layer (A-layer). In fact, desertification is simultaneously cause and consequence of the depleted soil water retention with a positive feedback of the plant life and on the hydrological cycle. (Author) 10 refs.

  20. Contribution to the edaphic components definition in the desertification susceptibility index

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, E. P.; Corte-Real, J. A.

    2009-07-01

    Many of the biophysical processes involved in the scope of desertification depend on the hydric characteristics of the soils the impact on vegetation cover. To protect soils against desertification, it is necessary to understand how some of these characteristics (such as water storage) interact in a complex and integrated chain of degradation processes. Several works have been developed to contribute to the definition of a Index of Desertification Susceptibility (DSI) expressed as a function of several components, climatic, edaphic, vegetative and slope. However, the various built-in edaphic components already defined, leave aside the water retention in soil. Furthermore, these components only focus on the characteristics of the uppermost surface soil layer (A-layer). In fact, desertification is simultaneously cause and consequence of the depleted soil water retention with a positive feedback of the plant life and on the hydrological cycle. (Author) 10 refs.

  1. Susceptibility and triggering scenarios at a regional scale for shallow landslides

    Science.gov (United States)

    Gullà, G.; Antronico, L.; Iaquinta, P.; Terranova, O.

    2008-07-01

    The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an ˜ 15,075 km 2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing. Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors. The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps. On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility. Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been

  2. Magnetic Properties of Different-Aged Chernozemic Soils

    Science.gov (United States)

    Fattakhova, Leysan; Shinkarev, Alexandr; Kosareva, Lina; Nourgaliev, Danis; Shinkarev, Aleksey; Kondrashina, Yuliya

    2016-04-01

    We investigated the magnetic properties and degree of mineral weathering in profiles of different-aged chernozemic soils derived from a uniform parent material. In this work, layer samples of virgin leached chernozem and chernozemic soils formed on the mound of archaeological earthy monument were used. The characterization of the magnetic properties was carried out on the data of the magnetometry and differential thermomagnetic analysis. The evaluation of the weathering degree was carried out on a loss on ignition, cation exchange capacity and X-ray phase analysis on the data of the original soil samples and samples of the heavy fraction of minerals. It was found that the magnetic susceptibility enhancement in humus profiles of newly formed chernozemic soils lagged significantly behind the organic matter content enhancement. This phenomenon is associated with differences in kinetic parameters of humus formation and structural and compositional transformation of the parent material. It is not enough time of 800-900 years to form a relatively "mature" magnetic profile. These findings are well consistent with the chemical kinetic model (Boyle et al., 2010) linking the formation of the soils magnetic susceptibility with the weathering of primary Fe silicate minerals. Different-aged chernozemic soils are at the first stage of formation of a magnetic profile when it is occur an active production of secondary ferrimagnetic minerals from Fe2+ released by primary minerals.

  3. Evaluating the Effects of Magnetic Susceptibility in UXO Discrimination Problems (SERDP SEED Project UX-1285)

    National Research Council Canada - National Science Library

    Pasion, Leonard R; Billings, Stephen D; Oldenburg, Douglas W; Sinex, David; Li, Yaoguo

    2003-01-01

    Using numerical simulations based on magnetic susceptibility properties observed at Kaho'olawe, Hawaii, we have examined the effect of magnetic soil on static magnetic method and time-domain electromagnetic (TEM...

  4. Characterization of sound emitted by wind machines used for frost control

    Energy Technology Data Exchange (ETDEWEB)

    Gambino, V.; Gambino, T. [Aercoustics Engineering Ltd., Toronto, ON (Canada); Fraser, H.W. [Ontario Ministry of Agriculture, Food and Rural Affairs, Vineland, ON (Canada)

    2007-07-01

    Wind machines are used in Niagara-on-the-Lake to protect cold-sensitive crops against cold injury during winter's extreme cold temperatures,spring's late frosts and autumn's early frosts. The number of wind machines in Ontario has about doubled annually from only a few in the late 1990's, to more than 425 in 2006. They are not used for generating power. Noise complaints have multiplied as the number of wind machines has increased. The objective of this study was to characterize the sound produced by wind machines; learn why residents are annoyed by wind machine noise; and suggest ways to possibly reduce sound emissions. One part of the study explored acoustic emission characteristics, the sonic differences of units made by different manufacturers, sound propagation properties under typical use atmospheric conditions and low frequency noise impact potential. Tests were conducted with a calibrated Larson Davis 2900B portable spectrum analyzer. Sound was measured with a microphone whose frequency response covered the range 4 Hz to 20 kHz. The study examined and found several unique acoustic properties that are characteristic of wind machines. It was determined that noise from wind machines is due to both aerodynamic and mechanical effects, but aerodynamic sounds were found to be the most significant. It was concluded that full range or broadband sounds manifest themselves as noise components that extend throughout the audible frequency range from the bladepass frequency to upwards of 1000 Hz. The sound spectrum of a wind machine is full natural tones and impulses that give it a readily identifiable acoustic character. Atmospheric conditions including temperature, lapse rate, relative humidity, mild winds, gradients and atmospheric turbulence all play a significant role in the long range outdoor propagation of sound from wind machines. 6 refs., 6 figs.

  5. Estimation of the susceptibility at erosion and desertification in wet areas with VNIR radiometry

    International Nuclear Information System (INIS)

    Cordoba-Sola, P.; Navarro-Pedreno, J.; Gomez-Lucas, I.; Mataix-Beneyto, J.

    2009-01-01

    A multispectral technology as tool for assessing the susceptibility to erosion and desertification in humid zones from the European Mediterranean was applied by means of the use of spectral reflectance data to determine the contents of different attributes of the soils. A collection of field electromagnetic spectrums were obtained from 25 covers of soil, a derivative analysis was applied to electromagnetic spectrums and finally a PCS was made. The results showed good correlations (R 2 >0,5) between properties of soil and electromagnetic spectrum, therefore it is possible to determine the content of these soil attributes with spectral analysis, which minimizes cost and time. (Author) 8 refs.

  6. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.

    Science.gov (United States)

    Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram

    2009-03-01

    We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.

  7. Monitor Soil Degradation or Triage for Soil Security? An Australian Challenge

    Directory of Open Access Journals (Sweden)

    Andrea Koch

    2015-04-01

    Full Text Available The Australian National Soil Research, Development and Extension Strategy identifies soil security as a foundation for the current and future productivity and profitability of Australian agriculture. Current agricultural production is attenuated by soil degradation. Future production is highly dependent on the condition of Australian soils. Soil degradation in Australia is dominated in its areal extent by soil erosion. We reiterate the use of soil erosion as a reliable indicator of soil condition/quality and a practical measure of soil degradation. We describe three key phases of soil degradation since European settlement, and show a clear link between inappropriate agricultural practices and the resultant soil degradation. We demonstrate that modern agricultural practices have had a marked effect on reducing erosion. Current advances in agricultural soil management could lead to further stabilization and slowing of soil degradation in addition to improving productivity. However, policy complacency towards soil degradation, combined with future climate projections of increased rainfall intensity but decreased volumes, warmer temperatures and increased time in drought may once again accelerate soil degradation and susceptibility to erosion and thus limit the ability of agriculture to advance without further improving soil management practices. Monitoring soil degradation may indicate land degradation, but we contend that monitoring will not lead to soil security. We propose the adoption of a triaging approach to soil degradation using the soil security framework, to prioritise treatment plans that engage science and agriculture to develop practices that simultaneously increase productivity and improve soil condition. This will provide a public policy platform for efficient allocation of public and private resources to secure Australia’s soil resource.

  8. The Tebuconazole-based Protectant of Seeds “Bunker” Induces the Synthesis of Dehydrins During Cold Hardening and Increases the Frost Resistance of Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    A.V. Korsukova

    2015-12-01

    Full Text Available Triazole derivatives are widely used in agriculture for seed protectant of cereals against seed and soil infection. Triazole derivatives can have an effect on the biochemical and physiological functions of plants. The tebuconazole-based protectant of seeds «Bunker» (content of tebuconazole 60 grams per liter, g/L is a systemic fungicide of preventive and therapeutic action. The effect of the seed treatment by «Bunker» preparation on the shoot growth and cell viability coleoptile, synthesis of dehydrins in shoots and frost resistance etiolated winter and spring wheat seedlings has been studied. It has been shown that treatment of winter and spring wheat seed by «Bunker» preparation induces similar concentration-dependent inhibition of the coleoptiles length. At the recommended dose (0,5 liter per tonne of seeds, L/t growth inhibition was 28 - 30%, at a concentration of 1 L/t – 33 - 36%, at a concentration of 1,5 L/t – 40 - 42%, at a concentration of 3 L/t – 43 - 47%, at a concentration of 4 L/t – 48 - 51% and at 5 L/t – 53 - 56%. The treatment of wheat seed by «Bunker» preparation had no phytotoxic effect on coleoptile cells in any of the studied concentrations, on the contrary, with increasing concentration of preparation observed the increase in cell viability, as measured by recovery of 2,3,5-triphenyltetrazolium chloride. We can assume that having retardant properties, tebuconazole not only inhibits the growth of plants, but also delays their aging. The treatment of seed protectant at a concentration of 1.5 L/t induced synthesis of the dehydrins with molecular masses about 19, 21, 22, 25 and 27 kD in winter wheat shoots and 18,6, 27 and 28,5 kD in spring wheat shoots during cold hardening. Among identified dehydrins the dehydrin of 27 kD is most significantly induced both in winter and spring wheat. The treatment of seed protectant «Bunker» in the same concentration increased the frost resistance of winter and spring wheat

  9. U.S.V.I. Soil Erodibility (Kffact)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S.V.I. soil erodibility (Kffactor) - low values indicate low vulnerability to erosion, higher values mean higher susceptibility to runoff.

  10. The influence of KJ, CuSO4, and Mg(ClO3)2 on defoliation and subsequent frost resistance and growth of apple trees in nurseries

    OpenAIRE

    Alina Basak; A. Czynczyk; L. S. Jankiewicz

    2015-01-01

    In most cases 2-year-old trees of 3 cultivars responded better to defoliants than 1-year-old ones. Spraying with defoliants on September 25 - 28 was more effective than spraying 10 days earlier. There was also more bark injury in the autumn, and more frost injury on trees defoliated on the ealier date. Mg(ClO3)2 seemed to be the best defoliant but markedly decreased the frost resistance of McIntosh trees. Defoliants investigated may be applied to limited extent to 2-year-old trees but not to ...

  11. The influence of KJ, CuSO4, and Mg(ClO32 on defoliation and subsequent frost resistance and growth of apple trees in nurseries

    Directory of Open Access Journals (Sweden)

    Alina Basak

    2015-06-01

    Full Text Available In most cases 2-year-old trees of 3 cultivars responded better to defoliants than 1-year-old ones. Spraying with defoliants on September 25 - 28 was more effective than spraying 10 days earlier. There was also more bark injury in the autumn, and more frost injury on trees defoliated on the ealier date. Mg(ClO32 seemed to be the best defoliant but markedly decreased the frost resistance of McIntosh trees. Defoliants investigated may be applied to limited extent to 2-year-old trees but not to 1-year-old ones.

  12. Bioremediation of crude oil contaminated tea plantation soil using ...

    African Journals Online (AJOL)

    Crude oil contamination of soil is a major concern for tea industry in Assam, India. Crude oil is a persistent organic contaminant which alters soil physical and biochemical characteristics and makes tea plants more susceptible against crude oil contamination. Therefore, two native bacterial strains designated as AS 03 and ...

  13. Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China.

    Directory of Open Access Journals (Sweden)

    Xinyue Zhang

    Full Text Available More than half of the earth's terrestrial surface currently experiences seasonal snow cover and soil frost. Winter compositional and functional investigations in soil microbial community are frequently conducted in alpine tundra and boreal forest ecosystems. However, little information on winter microbial biogeochemistry is known from seasonally snow-covered temperate ecosystems. As decomposer microbes may differ in their ability/strategy to efficiently use soil organic carbon (SOC within different phases of the year, understanding seasonal microbial process will increase our knowledge of biogeochemical cycling from the aspect of decomposition rates and corresponding nutrient dynamics. In this study, we measured soil microbial biomass, community composition and potential SOC mineralization rates in winter and summer, from six temperate ecosystems in northern China. Our results showed a clear pattern of increased microbial biomass C to nitrogen (N ratio in most winter soils. Concurrently, a shift in soil microbial community composition occurred with higher fungal to bacterial biomass ratio and gram negative (G- to gram positive (G+ bacterial biomass ratio in winter than in summer. Furthermore, potential SOC mineralization rate was higher in winter than in summer. Our study demonstrated a distinct transition of microbial community structure and function from winter to summer in temperate snow-covered ecosystems. Microbial N immobilization in winter may not be the major contributor for plant growth in the following spring.

  14. Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma.

    Science.gov (United States)

    Udaka, Hiroko; Ueda, Chiaki; Goto, Shin G

    2010-12-01

    In this study, we investigated the physiological mechanisms underlying temperature tolerance using Drosophila melanogaster lines with rapid, intermediate, or slow recovery from heat or chill coma that were established by artificial selection or by free recombination without selection. Specifically, we focused on the relationships among their recovery from heat or chill coma, survival after severe heat or cold, and survival enhanced by rapid cold hardening (RCH) or heat hardening. The recovery time from heat coma was not related to the survival rate after severe heat. The line with rapid recovery from chill coma showed a higher survival rate after severe cold exposure, and therefore the same mechanisms are likely to underlie these phenotypes. The recovery time from chill coma and survival rate after severe cold were unrelated to RCH-enhanced survival. We also examined the expression of two genes, Heat-shock protein 70 (Hsp70) and Frost, in these lines to understand the contribution of these stress-inducible genes to intraspecific variation in recovery from temperature coma. The line showing rapid recovery from heat coma did not exhibit higher expression of Hsp70 and Frost. In addition, Hsp70 and Frost transcription levels were not correlated with the recovery time from chill coma. Thus, Hsp70 and Frost transcriptional regulation was not involved in the intraspecific variation in recovery from temperature coma. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Impact of climate change, seedling type and provenance on the risk of damage to Norway spruce (Picea abies (L.) Karst.) seedlings in Sweden due to early summer frosts

    Energy Technology Data Exchange (ETDEWEB)

    Langvall, Ola (Swedish Univ. of Agricultural Sciences, Unit for Field-based Forest Research, Asa Forest Research Station, Lammhult (Sweden))

    2011-04-15

    A model including site-specific microclimate-affecting properties of a forest regeneration area together with seedling characteristics was used to evaluate the accumulated risk of frost damage to Norway spruce (Picea abies (L.) Karst.) seedlings. Climate change in Sweden was simulated on the basis of the regional climate model RCA3. The daily average temperature, the driving factor for bud burst in the model, was adjusted using the difference between the mean of the climate model data for the years 1961-1990 and 2036-2065. The model was run for a highly frost prone, clear-cut site in which bare-rooted Norway spruce seedlings of mid-Swedish provenance were planted. Alternate runs were conducted with data for containerized seedlings and seedlings of Belarusian origin. The study showed that bud burst will occur at earlier dates throughout Sweden in the period 2036-2065 if the climate changes according to either of the climate scenarios examined, compared to the reference period 1961-1990. Furthermore, the risk of damage to Norway spruce seedlings as a result of frost events during summer will increase in southern Sweden and be unaffected or decrease in northern Sweden. The risk of frost damage was exacerbated in containerized seedlings, while the risk was lower for the seedlings of Belarusian provenance when compared with bare-rooted seedlings or seedlings of mid-Swedish origin

  16. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    Abalos, E.B.

    2005-01-01

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  17. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Baloda, S.; Boye, Mette

    2001-01-01

    From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural so...... spp., and for bacitracin, erythromycin, penicillin and streptomycin for the B. cereus group. Variations in resistance levels were observed when soil before and after spread of animal waste was compared, indicating an effect from spread of animal waste.......From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural soil......, when possible, were collected. Soil from a well-characterized Danish farm soil (Hojbakkegaard) was collected for comparison. The Psudomonas spp. and B. cereus were chosen as representative for Gram-negative and Gram-positive indigenous soil bacteria to test the effect of spread of animal waste...

  18. Role of Changes in Cell Fatty Acids Composition in the Increasing of Frost Resistance of Winter Wheat Suspension Culture

    Directory of Open Access Journals (Sweden)

    I.V. Lyubushkina

    2013-11-01

    Full Text Available Influences of low temperatures (4 and 8 ° С on the frost tolerance and fatty acid compositions of cells in a winter wheat suspension culture have been studied. It has been found that treatment of the culture with 4 °C (7 days did not protect cells from subsequent freezing temperature action (-8 °С, 6 h and was not accompanied significant changes in the fatty acid composition. On the contrary, the treatment of the culture with the temperature 8 °C (7 days prevented the death caused by freezing temperature and the content of saturated fatty acids decreased: pentadecanoic acid (by 35,0%, palmitic acid (by 19,9% and stearic acid (by 65,4%, and the content of α-linolenic acid increased by 94%. That was the cause of the double bond index (DBI increase by 16%. The role of fatty acids composition changes in the process of increasing frost tolerance in plants are discussed.

  19. Reclamation status of a degraded pasture based on soil health indicators.

    OpenAIRE

    SANTOS, C. A. dos; KRAWULSKI, C. C.; BINI, D.; GOULART FILHO, T.; KNOB, A.; MEDINA, C. C.; ANDRADE FILHO, G.; NOGUEIRA, M. A.

    2015-01-01

    Pasture degradation is a concern, especially in susceptible sandy soils for which strategies to recover them must be developed. Microbiological and biochemical soil health indicators are useful in the guindace of soil management practices and sustainable soil use. We assessed the success of threePanicum maximum Jacq. cultivars in the reclamation of a pasture in a sandy Typic Acrudox in the northwest of the state of Paraná, Brazil, based on soil health indicators. On a formerly degraded p...

  20. A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: 1. N2O emissions

    Science.gov (United States)

    Papen, Hans; Butterbach-Bahl, Klaus

    1999-08-01

    For 3 years we followed the complete annual cycles of N2O emission rates with 2-hour resolution in spruce and beech plantations of the Höglwald Forest, Bavaria, Germany, in order to gain detailed information about seasonal and interannual variations of N2O emissions. In addition, microbiological process studies were performed for identification of differences in N turnover rates in the soil of a spruce and a beech site and for estimation of the contribution of nitrification and denitrification to the actual N2O emission. Both pronounced seasonal and extreme interannual variations of N2O emissions were identified. During long-term frost periods, while the soil was frozen, and during soil thawing, extremely high N2O emissions occurred, contributing up to 73% to the total annual N2O loss. The enormous N2O releases during the long-term frost period were due to high microbial N turnover rates (tight coupling of ammonification, nitrification, denitrification) in small unfrozen water films of the frozen soil at high concentrations of easily degradable substrates derived from the enormous pool of dead microbial biomass produced during the long-term frost period. Liming of a spruce site resulted in a significant increase in ammonification, nitrification, and N2O emissions as compared with an untreated spruce control site. The beech control site exhibited 4-5 times higher N2O emissions than the spruce control site, indicating that forest type itself is an important modulator of N2O release from soil. At all sites, nitrification contributed ˜70% to the N2O flux, whereas denitrification contributed markedly less (˜30%). There was a significant positive correlation between amount of in situ N input by wet deposition and magnitude of in situ N2O emissions. At the beech site, 10% of the actual N input was released from the soil in form of N2O, whereas at the spruce site the fraction was 0.5%. N2O emission rates were positively correlated with net nitrification rates. The

  1. Influence of frost damage and sample preconditioning on the porosity characterization of cement based materials using low temperature calorimetry

    DEFF Research Database (Denmark)

    Wu, Min; Fridh, Katja; Johannesson, Björn

    2015-01-01

    Low temperature calorimetry (LTC) can be used to study the meso-porosity of cement based materials. The influence of frost damage on the meso-porosity determination by LTC was explored on a model material MCM-41 and two cement pastes by conducting repeated cycles of freezing and melting measureme...

  2. Relationship Between Physical Properties and Magnetism of Soils From Various Pedoenvironments

    Science.gov (United States)

    Jordanova, N.; Jordanova, D.; Todorova, D.; Hirt, A.; Petrov, P.

    2009-05-01

    Characterization of soils with respect to their fertility, sustainable use and conservation require extensive, time- consuming and costly analyses. Establishment of well defined relationships between certain physical, geochemical and magnetic parameters would be useful tool in pedometrics, giving opportunity to carry out large scale studies on soil properties in more economically effective and fast way. Interdisciplinary analysis of 15 type soils from different pedoenvironments (oxidative, water-logged, salty, etc.) includes extensive magnetic measurements (magnetic susceptibility, anhysteretic (ARM) and isothermal (IRM) remanences, hysteresis parameters); determination of a set of physical characteristics (grain size fractions, pH) and geochemical analyses (total Fe content, oxalate- and dithionite-soluble Fe). Empirical linear relationship is found between soil reaction (pH) and magnetic susceptibility for aerobic soils, and negative relationship between pH and ARM for water-logged soils. Different type soils, showing magnetic enhancement along the solum, show higher ARM intensity with increasing percent of the clay fraction. This feature most probably is related to the fact that pedogenic ferrimagnetic minerals are strongly linked to clay fraction. The absence of such correlation for soils, affected by water-logging conditions suggests prevailing role of amorphous phases and antiferromagnetic Fe oxides in magnetic mineralogy. The role of pedogenic factors for particular behavior of other magnetic parameters will be discussed.

  3. A GIS analysis of the relationship between sinkholes, dry-well complaints and groundwater pumping for frost-freeze protection of winter strawberry production in Florida.

    Directory of Open Access Journals (Sweden)

    Mark D Aurit

    Full Text Available Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry-wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events and a warm year (no frost-freeze events. We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10. At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur.

  4. A GIS analysis of the relationship between sinkholes, dry-well complaints and groundwater pumping for frost-freeze protection of winter strawberry production in Florida.

    Science.gov (United States)

    Aurit, Mark D; Peterson, Robert O; Blanford, Justine I

    2013-01-01

    Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry-wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events) and a warm year (no frost-freeze events). We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10). At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur.

  5. IDENTIFYING ANTHROPOGENIC METALLIC POLLUTANTS USING FREQUENCY DEPENDENT MAGNETIC SUSCEPTIBILITY MEASUREMENTS IN ABUJA METROPOLIS

    Directory of Open Access Journals (Sweden)

    Jatto S. Solomon

    2017-07-01

    Full Text Available Soil formed from lithological and weathering processes of parent rocks generally exhibit paramagnetic properties due to some minerals contained in the rocks and thus have significant value of magnetic susceptibility. This susceptibility arising from the influence of the parent rocks tend to mask anthropogenic grains pollutants released into the environment by human activities. Hence, it becomes difficult to identify the effect of the lithological and anthropogenic magnetic susceptibility in complex soil found in urban areas. The superparamagnetic effect of lithological soil, a single state domain and multi-domain state of anthropogenic grains can easily be investigated by frequency dependent measurements where readings between 0-2.0% indicates the absence of lithological influence, 2.0-8.0% indicates multi-domain grains or mixture of both single stage and multi-domian grains and 8.0-12% indicates the superparamagntic (SP grain from lithological origin. In this work frequency dependent measurements were carried out along 5 selected road networks within the 5 districts of Abuja phase 1. Measurements were also carried out in 379 random points at the surface and depth of 40.0cm to investigate the distribution of anthropogenic grains in Abuja metropolis using the Bartington susceptibility meter. Frequency dependent measurements along the selected road networks indicate0-3.0% immediately after the roads pavement to a distance of about 3.0m from the road, indicating that the magnetic susceptibility arise mostly form anthropogenic influence rather than lithological processes. At the distance of 3.0-8.0m, frequency dependent values of about 3.0-8.0% were recorded, indicating mixture of both superparamagnetic and multi-domain grains. Beyond the distance of 8.0m, the frequency dependent values are mostly above 8.0.0%, indicating virtually all SP grains. The spatial distribution frequency dependent surface map shows the presence of anthropogenic grains in

  6. Soil and geomorphological parameters to characterize natural environmental and human induced changes within the Guadarrama Range (Central Spain)

    Science.gov (United States)

    Schmid, Thomas; Inclán-Cuartas, Rosa M.; Santolaria-Canales, Edmundo; Saa, Antonio; Rodríguez-Rastrero, Manuel; Tanarro-Garcia, Luis M.; Luque, Esperanza; Pelayo, Marta; Ubeda, Jose; Tarquis, Ana; Diaz-Puente, Javier; De Marcos, Javier; Rodriguez-Alonso, Javier; Hernandez, Carlos; Palacios, David; Gallardo-Díaz, Juan; Fidel González-Rouco, J.

    2016-04-01

    Mediterranean mountain ecosystems are often complex and remarkably diverse and are seen as important sources of biological diversity. They play a key role in the water and sediment cycle for lowland regions as well as preventing and mitigating natural hazards especially those related to drought such as fire risk. However, these ecosystems are fragile and vulnerable to changes due to their particular and extreme climatic and biogeographic conditions. Some of the main pressures on mountain biodiversity are caused by changes in land use practices, infrastructure and urban development, unsustainable tourism, overexploitation of natural resources, fragmentation of habitats, particularly when located close to large population centers, as well as by pressures related toclimate change. The objective of this work is to select soil and geomorphological parameters in order to characterize natural environmental and human induced changes within the newly created National Park of the Sierra de Guadarrama in Central Spain, where the presence of the Madrid metropolitan area is the main factor of impact. This is carried out within the framework of the Guadarrama Monitoring Network (GuMNet) of the Campus de ExcelenciaInternacionalMoncloa, where long-term monitoring of the atmosphere, soil and bedrock are priority. This network has a total of ten stations located to the NW of Madrid and in this case, three stations have been selected to represent different ecosystems that include: 1) an alluvial plain in a lowland pasture area (La Herreria at 920 m a.s.l.), 2) mid mountain pine-forested and pasture area (Raso del Pino at 1801 m a.s.l.) and 3) high mountain grassland and rock area (Dos Hermanas at 2225 m a.s.l.). At each station a site geomorphological description, soil profile description and sampling was carried out. In the high mountain area information was obtained for monitoring frost heave activity and downslope soil movement. Basic soil laboratory analyses have been carried out

  7. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption

    OpenAIRE

    Priester, John H.; Ge, Yuan; Mielke, Randall E.; Horst, Allison M.; Moritz, Shelly Cole; Espinosa, Katherine; Gelb, Jeff; Walker, Sharon L.; Nisbet, Roger M.; An, Youn-Joo; Schimel, Joshua P.; Palmer, Reid G.; Hernandez-Viezcas, Jose A.; Zhao, Lijuan; Gardea-Torresdey, Jorge L.

    2012-01-01

    Based on previously published hydroponic plant, planktonic bacterial, and soil microbial community research, manufactured nanomaterial (MNM) environmental buildup could profoundly alter soil-based food crop quality and yield. However, thus far, no single study has at once examined the full implications, as no studies have involved growing plants to full maturity in MNM-contaminated field soil. We have done so for soybean, a major global commodity crop, using farm soil amended with two high-pr...

  8. Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds.

    Science.gov (United States)

    Pramsohler, Manuel; Neuner, Gilbert

    2013-08-01

    In deciduous trees, measurement of stem water potential can be difficult during the leafless period in winter. By using thermocouple psychrometry, osmotic water potentials (Ψo; actual Ψo: Ψo(act); Ψo at full saturation: Ψo(sat)) of expressed sap of bark and bud tissue were measured in order to test if the severity of winter desiccation in apple stems could be sufficiently assessed with Ψo. Water potentials were related to frost resistance and freezing behaviour of buds. The determination of Ψo reliably allowed winter desiccation and osmotic adjustments in apple stem tissue to be assessed. In winter in bark tissue, a pronounced decrease in Ψo(act) and Ψo(sat) was found. Decreased Ψo(sat) indicates active osmotic adjustment in the bark as observed earlier in the leaves of evergreen woody plants. In terminal bud meristems, no significant osmotic adjustments occurred and dehydration during winter was much less. Osmotic water potentials, Ψo(act) and Ψo(sat), of bud tissue were always less negative than in the bark. To prevent water movement and dehydration of the bud tissue via this osmotic gradient, it must be compensated for either by a sufficiently high turgor pressure (Ψp) in bark tissue or by the isolation of the bud tissue from the bark during midwinter. During freezing of apple buds, freeze dehydration and extra-organ freezing could be demonstrated by significantly reduced Ψo(act) values of bud meristems that had been excised in the frozen state. Infrared video thermography was used to monitor freezing patterns in apple twigs. During extracellular freezing of intact and longitudinally dissected stems, infrared differential thermal analysis (IDTA) images showed that the bud meristem remains ice free. Even if cooled to temperatures below the frost-killing temperature, no freezing event could be detected in bud meristems during winter. In contrast, after bud break, terminal buds showed a second freezing at the frost-killing temperature that indicates

  9. Bacterial blight (Pseudomonas pisi Sackett) of peas in South Africa, with special reference to frost as a predisposing factor

    NARCIS (Netherlands)

    Boelema, B.H.

    1972-01-01

    In the beginning of the nineteen fifties bacterial blight caused much damage to pea crops in South Africa, particularly to those grown for seed production. A study has been made of the causal organism and the conditioning factors of the disease, special attention being paid to frost as a

  10. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area

    Science.gov (United States)

    Oh, Hyun-Joo; Pradhan, Biswajeet

    2011-09-01

    This paper presents landslide-susceptibility mapping using an adaptive neuro-fuzzy inference system (ANFIS) using a geographic information system (GIS) environment. In the first stage, landslide locations from the study area were identified by interpreting aerial photographs and supported by an extensive field survey. In the second stage, landslide-related conditioning factors such as altitude, slope angle, plan curvature, distance to drainage, distance to road, soil texture and stream power index (SPI) were extracted from the topographic and soil maps. Then, landslide-susceptible areas were analyzed by the ANFIS approach and mapped using landslide-conditioning factors. In particular, various membership functions (MFs) were applied for the landslide-susceptibility mapping and their results were compared with the field-verified landslide locations. Additionally, the receiver operating characteristics (ROC) curve for all landslide susceptibility maps were drawn and the areas under curve values were calculated. The ROC curve technique is based on the plotting of model sensitivity — true positive fraction values calculated for different threshold values, versus model specificity — true negative fraction values, on a graph. Landslide test locations that were not used during the ANFIS modeling purpose were used to validate the landslide susceptibility maps. The validation results revealed that the susceptibility maps constructed by the ANFIS predictive models using triangular, trapezoidal, generalized bell and polynomial MFs produced reasonable results (84.39%), which can be used for preliminary land-use planning. Finally, the authors concluded that ANFIS is a very useful and an effective tool in regional landslide susceptibility assessment.

  11. Use of H2Ri wicking fabric to prevent frost boils in the Dalton Highway Beaver Slide area, Alaska final report.

    Science.gov (United States)

    2012-08-01

    Many roads in Alaska, such as the Dalton Highway, experience degradation during spring thaw due to the downslope running of shallow groundwater. The water flow : down the slope and pools up in the road embankments, where it freezes, causing frost boi...

  12. The analysis of soil characteristics near the animal feed and fertiliser mill using the Bartington

    Science.gov (United States)

    Azhari, Adinda Syifa; Agustine, Eleonora; Fitriani, Dini

    2017-07-01

    Industrial activities have the potential to make pollution in agricultural land, the waste contains poisonous material and it is dangerous for the environment. In general, waste from factory is dumped directly into the river, but in the current study an object that is going to be conscientious is soil on around mill. There are three sampling sites are around fertilizer plants, feed mills and original uncontaminated soil. This research has been conducted to assess the impact of pollution resulting from the two mills for the environment. Physical parameter that used is magnetic susceptibility. Sampling was conducted using the method of magnetic susceptibility of rock to see the value of low frequency (lf) and shows Frequency Dependent (fd%) using the MS2B Bartington. The results from this study is at a location close to the fertilizer plant at a depth of 0-5 cm has a value susceptibility low frequency ( lf)=187.1 - 494.8, fd (%)=1.37 - 2:46, at a depth of 6-10 cm susceptibility value of low frequency (lf)=211 - 832.7,fd (%)=1.04 - 5.37. Results in the area of animal feed mill at a depth of 0-5 cm value susceptibility low frequency (lf)=111.9 - 325.7, fd (%)=0.8 - 3.57, at a depth of 6-10 cm value susceptibility low frequency (lf)=189.2 to 386.8,fd (%)=0.33 - 3.7. Results in the original soil at a depth of 0-5 cm susceptibility value of low frequency (lf)=1188.7 - 2237.8,fd (%)=2.75 - 4.65, at a depth of 6-10 cm value susceptibility low frequency (lf)=977.7 - 2134.7,fd (%)=3.06 - 6.21. The highest value was in the arealf original, shows the area has a high mineral content andlf lows were in the area near the factory fodder it is caused by high pollution, resulting in lower mineral content in the soil.

  13. Dimensionality and Typology of Perfectionism: The Use of the Frost Multidimensional Perfectionism Scale with Chinese Gifted Students in Hong Kong

    Science.gov (United States)

    Chan, David W.

    2009-01-01

    This study investigated the dimensionality and typology of perfectionism based on the Frost Multidimensional Perfectionism Scale with a sample of 380 Chinese gifted students in Hong Kong. Confirmatory factor analyses supported a five-dimensional model that includes constructs of personal standards, parental expectations, parental criticism,…

  14. Suscetibilidade de dois tipos de solo à compactação Compaction susceptibility of two classes of soil

    Directory of Open Access Journals (Sweden)

    Pedro H. Weirich Neto

    2002-01-01

    Full Text Available Com vistas ao aumento da produção agrícola, optou-se no Brasil, pelo acréscimo de área cultivada; para tal o uso indiscriminado da motomecanização mostrou-se eficiente em um primeiro momento, porém acarretando problemas à física do solo no decorrer dos anos. Paralelamente, práticas conservacionistas se fazem presentes, vide semeadura sob a palha (Plantio Direto, uma realidade no sul do Brasil. Sendo assim, avaliou-se a suscetibilidade de compactação de dois tipos de solo, ambos com sistema de semeadura sob a palha. Para dimensionar a suscetibilidade a compactação, utilizou-se ensaio de Proctor. Os solos foram ensaiados com e sem a presença de matéria orgânica livre. Os resultados demonstraram que para o Cambissolo, textura média, não houve diferença nos valores que representam a suscetibilidade, enquanto no Latossolo Vermelho, textura argilosa, não houve diferença entre a máxima densidade aparente, porém houve diferença significativa no conteúdo de água para a máxima densidade, o mesmo alterou-se de 0,249 g g-1 no ponto de máxima compactação no ensaio sem a presença de matéria orgânica livre, para 0,283 g g-1 no ponto de máxima compactação, quando da presença da matéria orgânica livre.For increasing agricultural production, Brazil opted to enlarge the cultivated area, and indiscriminate mechanization was efficient at the first moment, although it altered adversely the soil properties with the passage of time. At the same time, conservation practices, like the direct sowing under the straw (No Tillage were adopted which is a reality in Southern Brazil. Considering this, the susceptibility for compaction of two classes of soil was evaluated under no tillage system, with and without free organic matter. The Proctor test was used to measure the degree of compaction. The results of a medium texture Cambissol showed there was no difference in susceptibility for compaction. The clay textured Red Latossol, showed

  15. Snippets from the past: the evolution of Wade Hampton Frost's epidemiology as viewed from the American Journal of Hygiene/Epidemiology.

    Science.gov (United States)

    Morabia, Alfredo

    2013-10-01

    Wade Hampton Frost, who was a Professor of Epidemiology at Johns Hopkins University from 1919 to 1938, spurred the development of epidemiologic methods. His 6 publications in the American Journal of Hygiene, which later became the American Journal of Epidemiology, comprise a 1928 Cutter lecture on a theory of epidemics, a survey-based study of tonsillectomy and immunity to Corynebacterium diphtheriae (1931), 2 papers from a longitudinal study of the incidence of minor respiratory diseases (1933 and 1935), an attack rate ratio analysis of the decline of diphtheria in Baltimore (1936), and a 1936 lecture on the age, time, and cohort analysis of tuberculosis mortality. These 6 American Journal of Hygiene /American Journal of Epidemiology papers attest that Frost's personal evolution mirrored that of the emerging "early" epidemiology: The scope of epidemiology extended beyond the study of epidemics of acute infectious diseases, and rigorous comparative study designs and their associated quantitative methods came to light.

  16. Fatores relacionados à suscetibilidade da erosão em entressulcos sob condições de uso e manejo do solo Factors influencing susceptibility to interrill soil erosion under different land use and management conditions

    Directory of Open Access Journals (Sweden)

    Flávio P. de Oliveira

    2012-04-01

    Full Text Available Neste trabalho foram avaliados fatores relacionados com a suscetibilidade a erosão em entressulcos de um Neossolo Litólico submetido a diferentes intensidades de uso e manejo do solo. O experimento foi realizado em condições de laboratório, utilizando-se amostras deformadas de solo colocadas em parcelas experimentais (0,23 m2 e declividade de 0,09 m m-1. O delineamento experimental utilizado foi em blocos casualizados, em que foram aplicadas chuvas simuladas com intensidade de 100 mm h-1 para os seguintes tratamentos: (I solo cultivado com fumo sob preparo convencional (PC; (II solo cultivado com fumo sob plantio direto (PD e (III solo sob mata nativa (MN. Para avaliar a suscetibilidade a erosão em entressulcos utilizaram-se índices referentes à relação energia cinética total (chuva e escoamento sobre perda de solo, taxa média de desagregação e índice de estabilidade de agregados, cujos resultados mostraram que os fatores relacionados com a suscetibilidade a erosão em entressulcos estão associados não apenas com características e propriedades que conferem coesividade ao solo, mas, também, com condicionantes que afetam a hidráulica do escoamento e, consequentemente, a fase de transporte dos sedimentos.This study evaluated factors related to the suscetibility to the interrill soil erosion in an Entisol subjected to different degrees of soil use and management. The experiment was carried out under laboratory conditions using samples collected from tobacco fields and disturbed soil placed in erosion pans measuring (0.23 m2 with a slope of 0.09 m m-1. The experimental design was in randomized blocks. Simulated rainfall intensity of 100 mm h-1 was applied to the following treatments: (I conventionally tilled soil; (II no-till soil; and (III native forest soil. Total kinetic energy (rainfall and runoff to soil loss, average rate of detachment, and aggregate stability indexes were used to assess susceptibility to interrill erosion

  17. Susceptibility of Aeromonas Hydophila Isolates to Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Igor Stojanov

    2010-05-01

    Full Text Available Aeromonas hydrophila is a microorganism widely distributed in nature: in water, soil, food. It is also part of the normal bacterial flora of many animals. As an opportune microorganism it is a secondary biological agent that contributes to the occurrence of a fish disease and its deterioration. Frequently, its presence is an indication of bad zoohygiene and zootechnical conditions in fish ponds. Reduced quality and quantity of feed, mechanical injuries, parasitosis, seasonal oscillation in temperature present some of the factors that produce favorable conditions for bacterial proliferation of aeromonas in fish ponds, so clinical symptoms of the disease occur. Aeromonas is almost always present in clinical isolates and may be unjustly accused for bad health of fish. Antibiotic therapy is applied even when the clinical findings are clear, what certainly effects the susceptibility to chemotherapeutics. The subject of our work was bacteriological examination of the material obtained from the carps with the observed skin changes and the carps without these changes. Also, antimicrobial susceptibility of Aeromonas hydrophila was tested. The aim of this research was to determined the presence of Aeromonas hydrophilia in the carp ponds and to test antibiotic susceptibility. The material consisted of the samples from the fish ponds where the carps were with and without changed skin. The method the isolation of Aeromonas hydrophila was used. The diffusion disk technique was used for testing antibiotic susceptibility. The isolates were tested for their susceptibility to Florephenikol, Flumequine, Olaqindox and Oxitetracycline. The obtained results point that antimicrobial susceptibility was the same regardless of the origin of the samples, i.e. the resistance was the same for both groups of samples (the strains isolated from the fish with skin changes and the strains from fish without changes on skin. The strains were highly resistant: 35% were resistant to

  18. Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran

    Science.gov (United States)

    Karimi, Rezvan; Ayoubi, Shamsollah; Jalalian, Ahmad; Sheikh-Hosseini, Ahmad Reza; Afyuni, Majid

    2011-05-01

    Recently methods dealing with magnetometry have been proposed as a proper proxy for assessing the heavy metal pollution of soils. A total of 113 topsoil samples were collected from public parks and green strips along the rim of roads with high-density traffic within the city of Isfahan, central Iran. The magnetic susceptibility (χ) of the collected soil samples was measured at both low and high frequency (χlf and χhf) using the Bartington MS2 dual frequency sensor. As, Cd, Cr, Ba, Cu, Mn, Pb, Zn, Sr and V concentrations were measured in the all collected soil samples. Significant correlations were found between Zn and Cu (0.85) and between Zn and Pb (0.84). The χfd value of urban topsoil varied from 0.45% to 7.7%. Low mean value of χfd indicated that the magnetic properties of the samples are predominately contributed by multi-domain grains, rather than by super-paramagnetic particles. Lead, Cu, Zn, and Ba showed positive significant correlations with magnetic susceptibility, but As, Sr, Cd, Mn, Cr and V, had no significant correlation with the magnetic susceptibility. There was a significant correlation between pollution load index (PLI) and χlf. PLI was computed to evaluate the soil environmental quality of selected heavy metals. Moreover, the results of multiple regression analysis between χlf and heavy metal concentrations indicated the LnPb, V and LnCu could explain approximately 54% of the total variability of χlf in the study area. These results indicate the potential of the magnetometric methods to evaluate the heavy metal pollution of soils.

  19. BILATERAL KEY COMPARISON SIM.T-K6.1 ON HUMIDITY STANDARDS IN THE DEW/FROST-POINT TEMPERATURE RANGE FROM −25 °C TO +20 °C

    Science.gov (United States)

    Meyer, C.W.; Hill, K.D.

    2015-01-01

    A Regional Metrology Organization (RMO) Key Comparison of dew/frost point temperatures was carried out by the National Institute of Standards and Technology (NIST, USA) and the National Research Council (NRC, Canada) between December 2014 and April, 2015. The results of this comparison are reported here, along with descriptions of the humidity laboratory standards for NIST and NRC and the uncertainty budget for these standards. This report also describes the protocol for the comparison and presents the data acquired. The results are analyzed, determining degree of equivalence between the dew/frost-point standards of NIST and NRC. PMID:26663952

  20. Identificación de suelos susceptibles a riesgos de erosión y con mayor capacidad de almacenamiento de agua Identification of soils susceptible to risk erosion and with hight capacity of water storage

    Directory of Open Access Journals (Sweden)

    Velásquez Valencia Henry

    Full Text Available La investigación se basó en el desarrollo de siete etapas metodológicas con criterios de integralidad, análisis holístico, secuencia lógica, participación y sencillez, destacándose los siguientes aspectos: Conceptualización y contextualización, muestreo de suelos, procesamiento de la información, espacialización de la información, identificación de zonas susceptibles a riesgos de erosión y con mayor capacidad de almacenamiento de agua, recomendaciones de manejo y socialización de la investigación. La propuesta metodológica se validó y ajustó mediante un caso de estudio en la vereda Chicoral, subcuenca del río Bitaco, municipio de La Cumbre, Valle del Cauca, Colombia. Mediante procesos de participación y concertación con los actores socioeconómicos del área de estudio se lograron diagnosticar las causas y consecuencias que intervienen en procesos de degradación física del suelo y a la vez se localizaron los sitios con mayor potencialidad de almacenamiento de agua, factores importantes para la planificación y uso racional de los recursos naturales en una cuenca hidrográfica.The investigation was carried out in seven methodological steps under integral approaches, holistic analysis, logical sequence, participation and simplicity. The following aspects were highlighted: Conceptualization and contextualizacion, soil sampling , data processing, data spacializatión of the information, identification of susceptible areas to risk erosion with higher capacity of water storage, management norms and socialization of the investigation. The methodological proposal was validated and adjusted by a case of study in the rural areas of Chicoral, watershed of the Bitaco river, Municipality of La Cumbre, Cauca Valley, Colombia. Using participation processes and agreement with the communities of the study area, the diagnostic of the causes and consequences that intervene in processes of physical soil degradation were reached. At the same