Forced Convection Heat Transfer in Circular Pipes
Tosun, Ismail
2007-01-01
One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…
Forced heat convection in annular spaces
This report deals with the experimental study of forced heat convection in annular spaces through which flow of air is passing when a uniform heat flux is dissipated across the inner wall. These observations took place chiefly in the region where thermal equilibrium are not yet established. Amongst other things it became apparent that, both in the region where thermal equilibrium conditions are on the way to establishment and where they are already established, the following relationship held good: the longitudinal temperature gradient, either on the wall or in the fluid stream, is proportional to the heat flux dissipated q, and inversely proportional to the average flow rate V: dT/dx = B (q/V). From this result the next step is to express the variations of the local convection coefficient α (or of the Margoulis number M) in a relationship of the form: 1/M = ψ(V) + F(x). If this relationship is compared with the classical empirical relationship α = KVn (where n is close to 0.8), the relationship: 1/M = ξV1-n + F(x) is obtained (ξ is a constant for a given annular space); from this it was possible to coordinate the whole set of experimental results. (author)
Theory of heat transfer with forced convection film flows
Shang, Deyi
2010-01-01
Developing a new treatment of ""Free Convection Film Flows and Heat Transfer"" began in Shang's first monograph and is continued in this monograph. The current book displays the recent developments of laminar forced convection and forced film condensation. It is aimed at revealing the true features of heat and mass transfer with forced convection film flows to model the deposition of thin layers. The novel mathematical similarity theory model is developed to simulate temperature - and concentration - dependent physical processes. The following topics are covered in this book: Mathematical meth
NANOFLUID PROPERTIES FOR FORCED CONVECTION HEAT TRANSFER: AN OVERVIEW
W.H.Azmi
2013-06-01
Full Text Available Nanoﬂuids offer a significant advantage over conventional heat transfer ﬂuids and consequently, they have attracted much attention in recent years. The engineered suspension of nano-sized particles in a base liquid alters the properties of these nanofluids. Many researchers have measured and modeled the thermal conductivity and viscosity of nanofluids. The estimation of forced convective heat transfer coefficients is done through experiments with either metal or nonmetal solid particles dispersed in water. Regression equations are developed for the determination of the thermal conductivity and viscosity of nanofluids. The parameters influencing the decrease in convection heat transfer, observed by certain investigators, is explained.
Forced convection heat transfer to air/water vapor mixtures
Richards, D. R.; Florschuetz, L. W.
1984-01-01
Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.
Forced convective post CHF heat transfer and quenching
This paper discusses mechanisms in the post-CHF region which provide understanding and qualitative prediction capability for several current forced convective heat transfer problems. In the area of nuclear reactor safety, the mechanisms are important in the prediction of fuel rod quenches for the reflood phase, blowdown phase, and possibly some operational transients with dryout. Results using the mechanisms to investigate forced convective quenching are presented. Data reduction of quenching experiments is discussed, and the way in which the quenching transient may affect the results of different types of quenching experiments is investigated. This investigation provides an explanation of how minimum wall superheats greater than the homogeneous nucleation temperature result, as well as how these may appear to be either hydrodynamically or thermodynamically controlled. Finally, the results of a parametric study of the effects of the mechanisms upon the LOFT L2-3 hotpin calculation are presented
Forced convection heat transfer to air/water vapor mixtures
Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components. 20 references
Mechanistic Multidimensional Modeling of Forced Convection Boiling Heat Transfer
Raf M. Podowski
2008-12-01
Full Text Available Due to the importance of boiling heat transfer in general, and boiling crisis in particular, for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems, extensive efforts have been made in the past to develop a variety of methods and tools to evaluate the boiling heat transfer coefficient and to assess the onset of temperature excursion and critical heat flux (CHF at various operating conditions of boiling channels. The objective of this paper is to present mathematical modeling concepts behind the development of mechanistic multidimensional models of low-quality forced convection boiling, including the mechanisms leading to temperature excursion and the onset of CHF.
Numerical study of forced convective heat transfer around airships
Dai, Qiumin; Fang, Xiande
2016-02-01
Forced convective heat transfer is an important factor that affects the thermal characteristics of airships. In this paper, the steady state forced convective heat transfer around an ellipsoid is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic (CFD) software over the extended Re range from 20 to 108 and the aspect ratio from 2 to 4. Based on the regression and optimization with software, a new piecewise correlation of the Nusselt number at constant wall temperature for ellipsoid is proposed, which is suitable for applications to airships and other ellipse shaped bodies such as elliptical balloons. The thermal characteristics of a stratospheric airship in midsummer located in the north hemisphere are numerical studied. The helium temperature predicated using the new correlation is compared to those predicted by correlations applicable for spheres and flat plates. The results show that the helium temperature obtained using the new correlation at noon is about 5.4 K lower than that using the correlation of spheres and about 2.1 K higher than that of flat plates.
Comparative analysis of heat transfer correlations for forced convection boiling
A critical survey was conducted of the most relevant correlations of boiling heat transfer in forced convection flow. Most of the investigations carried out on partial nucleate boiling and fully developed nucleate boiling have led to the formulation of correlations that are not able to cover a wide range of operating conditions, due to the empirical approach of the problem. A comparative analysis is therefore required in order to delineate the relative accuracy of the proposed correlations, on the basis of the experimental data presently available. The survey performed allows the evaluation of the accuracy of the different calculating procedure; the results obtained, moreover, indicate the most reliable heat transfer correlations for the different operating conditions investigated. This survey was developed for five pressure range (up to 180bar) and for both saturation and subcooled boiling condition
S. I. ANWAR
2012-10-01
Full Text Available In this paper, convective heat transfer coefficient of Indian gooseberry (Emblica officinalis, in three different forms (shreds, slices and pieces, under forced convection mode has been determined. These forms were dried in laboratory drier. Values of constants C and n have been determined using experimental data and regression analysis for calculating values of convective heat transfer coefficient. It was found that the convective heat transfer coefficient varies with form of commodity being dried and decreases as the drying progresses. The value of convective heat transfer coefficient was highest for shredded form (30.39 W/m2oC followed by slices (25.88 W/m2oC and pieces (18.67 W/m2oC when compared at certain final moisture content. The data were also analyzed for per cent uncertainty.
Effect of Buoyancy on Forced Convection Heat Transfer in Vertical Channels - a Literature Survey
This report contains a short resume of the available information from various sources on the effect of free convection flow on forced convection heat transfer in vertical channels. Both theoretical and experimental investigations are included. Nearly all of the theoretical investigations are concerned with laminar flow with or without internal heat generation. More consistent data are available for upward flow than for downward flow. Curves are presented to determine whether free convection or forced convection mode of heat transfer is predominant for a particular Reynolds number and Rayleigh number. At Reb > 105 free convection effects are negligible. Downward flow through a heated channel at low Reynolds number is unstable. Under similar conditions the overall heat transfer coefficient for downward flow tends to be higher than that for upward flow
An experimental study on critical heat flux of forced convection boiling in uniformly heated vertical tube was carried out, using Freon-12 as the working fluid with critical heat flux qc measured in a 16 mm diameter circular tube. The effect of steam quality and mass velocity on CHF has been investigated. The results obtained were found to be essentially consistent with the CHF data measured by other authors. However, the influence of pressure on CHF was complex and coupled with mass velocity and steam quality. In the lower steam quality region, CHF decreased with increasing pressure, while in the higher steam quality region, CHF increased with increasing pressure
Evaluating a tobacco-curing oven using a forced-convection heat exchanger USCO — MADR
Néstor Enrique Cerquera Peña; Yaneth Liliana Ruiz Osorio; Eduardo Pastrana Bonilla
2010-01-01
A traditional oven for curing tobacco leaves was redesigned (based on existing infrastructure); a forced-convection heat exchan- ger system was implemented in it which worked with coffee hulls as fuel. This oven (called a forced-convection tobacco leaf curing oven) was evaluated during the harvesting season. It was found that temperature and relative humidity inside the furnace could be controlled with this assembly during the three stages involved in curing tobacco leaves. The equipment ...
Analysis of Rectangular Microchannel under Forced convection heat transfer condition
Dr. B.S.Gawali,
2011-03-01
Full Text Available Micro-convection is a strategic area in transport phenomena, since it is the basis for a wide range of miniaturized high-performance pplications. Surface area is one of the important concepts for high flux heat transfer in Microchannel performance. Microchannel with hydraulic diameters 440?m, 476?m, 500?m and 550?m are analyzed for optimize microchannel hydraulic diameter. The microchannel having height of 400?m, 450?m, 500?m, 600?m with width of 500?m is analyzed numerically. Spacing between microchannel is also varied in range of 250?m, 300?m, 350?mand 400?m are considered for the analysis. Cu material microchannel having length of 30mm which carries 20 microchannels on top surface of the cu piece is to be considered. Flow rate also varied from 5lpm to 30 lpm for optimization with water as a medium. From numerical study it is observed that as hydraulic diameter increases from 444?m to 545 ?m the flow rate pressure drop also increases with decreases in diameter. Also heat in put to icrochannel as increases from 5 watt to 80 watt temperature drop is high at flow rate of 17lpm to 20 lpm. From analysis it is observed that as hydraulic diameter of microchannel is major concept of microchannel heat transfer which is dependent on flow rate of waterin microchannel. The microchannels with hydraulic diameter of 440?m to 600?m will follow temperature drop up-to 6 degree Kelvin with heat input of 5 watt to 80watt with flow rate of 5lpm to 25lpm.
NUMERICAL ANALYSIS OF FORCED CONVECTIVE HEAT TRANSFER THROUGH HELICAL CHANNELS
Dr. K. E. Reby Roy
2012-07-01
Full Text Available Helical ducts are used in a variety of applications including food processing, thermal processing plants and refrigeration. They are advantageous due to their high heat transfer coefficient and compactness compared to straight tubes. The curvature of the coil governs the centrifugal force resulting in development of secondaryflow i.e. the fluid stream in the outer side of the pipe moves faster than the fluid streams in the inner side of the pipe. In the present study, Computational Fluid Dynamics (CFD simulations using Fluent 6.3.26 are carried out for helical rectangular ducts wound over a cylindrical passage. The cylindrical passage is oriented horizontallyand acts as a counterflow heat exchanger. The analysis is done by changing the flow rates of four different fluids like Ethylene Glycol, Kerosene, Nano Fluid and Water. The fluid flow and heat transfer characteristics of the fluids are studied and Nusselt Number correlations with Dean Number are developed.
Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling
Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor
2014-01-01
The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin temp...
Boiling heat transfer with forced convection of LiBr-water solution in horizontal tube
This paper examines the phenomena of boiling heat transfer and calculates the local heat transfer coefficient of a one-through boiler types regenerator for an absorption refrigerating machine. Boiling heat transfer with forced convection of Br-water solution in a horizontal tube is experimentally investigated. The results are summarized as follows. The flow patterns in the tube change from single phase flow to bubble flow, to stratified flow, to slug flow and finally, to annular flow. Local heat flux paries in proportion to the temperature difference between the tube wall and the solution. In the section where solution and vapor are supposed to flow as annular flow, the boiling heat transfer coefficient can be explained by the Dengler-Addoms expression. An the forced convection boiling heat transfer coefficients are higher than the pool boiling heat transfer coefficient
Forced convection heat transfer correlation for finned plates in a duct
Forced convection heat transfer experiments were conducted for plate-fin in a duct using various fin spacing, fin height, duct width, Reynolds number for Prandtl numbers 2,014. Based upon analogy concept, mass transfer rate were measured instead of heat transfer rates. The heat transfer rates were enhanced with the increase of fin height and decrease of fin spacing as they increase the heat transfer area. Meanwhile, heat transfer rates were impaired with the increase of the duct width as the bypass flows increased to tip clearance region. Forced convection heat transfer correlations were developed for laminar and turbulent flow conditions and for narrow and wide ducts. The work draws attention to the tip clearance on the heat transfer of the finned plate in a duct. (author)
Prediction of forced convection heat transfer to Lead-Bismuth-Eutectic
Thiele, Roman
2013-01-01
The goal of this work is to investigate the capabilities of two different commercial codes, OpenFOAM and ANSYS CFX, to predict forced convection heat transfer in low Prandtl number fluids and investigate the sensitivity of these predictions to the type of code and to several input parameters.The goal of the work is accomplished by predicting forced convection heat transfer in two different experimental setups with the codes OpenFOAM and ANSYS CFX using three different turbulence models and va...
In order to make clear the forced convection heat transfer phenomena around spherical particles packed in fluid flow, we numerically analyzed the heat transfer and flow pattern of the air using a single sphere and then the closest packed structure arrangement of spherical particles. We used 3-dimensional thermo fluid computation code 'STAR-CCM+'. We calculated the forced convection heat transfer coefficient for spheres of 10 mm diameter with Reynolds number 63 6340. Our calculation results of the average heat transfer coefficient for a single sphere agree with the correlation equation proposed by Ranz and Marshall. Local heat transfer coefficient is high at portions where local flow impinges to the surface of spheres for packed spherical particles. Our calculation results of the average heat transfer coefficient for packed spherical particles are close to the correlation equation proposed by Wakao et al.
Heat transfer and CHF (Critical heat flux) characteristics of flow boiling of R-113 in helically coiled tubes were experimentally investigated. Two coiled tubes with coil diameters of 0.165 and 0.32 m, and 10 mm I.D. were tested at a pressure of 0.39 MPa. In the nucleate boiling region, circumferential difference in heat transfer was not clarified qualitatively as well as quantitatively. The ratio of circumferential average boiling heat transfer coefficient to that of the single-phase flow in a curved tube, hTP/hLo, was found to be rather close to the correlations of Pujol-Stenning and Ueda-Kim for a straight tube flow. In the high quality region, the heat transfer coefficient was highest at the coil outside and lowest at the inside, and the average heat transfer coefficient ratio hTP/hLo was expressed in terms of Martinelli parameter, Xtt, only. A correlation applicable to both the nucleate boiling and forced convective evaporation regions was proposed. The CHF of the coiled tube was higher than that of the straight tube when the coil diameter was small, but it became considerably low at low mass velocity when the coil diameter was large. (author)
Experiment of forced convection heat transfer using microencapsulated phase-change-material slurries
The present study describes an experiment on forced convective heat transfer using a water slurry of Microencapsulated Phase-change-material. A normal paraffin hydrocarbon is microencapsulated by melamine resin, melting point of 28.1degC. The heat transfer coefficient and pressure drop in a circular tube were evaluated. The heat transfer coefficient using the slurry in case with and without phase change were compared to in case of using pure water. (author)
Mixed convection heat transfer
This book presents the papers given at a conference on heat transfer and fluid flow. Topics considered at the conference included flow visualization experiments of secondary flow patterns in an isothermally heated curved pipe, flow models, evaporation, thermodynamics, heat transfer fluids, and the analysis of combined buoyancy effects of thermal and mass diffusion on laminar forced convection heat transfer in a vertical tube
In a high-level waste (HLW) repository, heat is generated by the radioactive decay of the waste. This can affect the safety of the repository because the surrounding environment can be changed by the heat transfer through the rock. Thus, it is important to determine the heat transfer coefficient of the atmosphere in the underground repository. In this study, the heat transfer coefficient was estimated by measuring the indoor environmental factors in the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) under forced convection. For the experiment, a heater of 5 kw capacity, 2 meters long, was inserted through the tunnel wall in the heating section of KURT in order to heat up the inside of the rock to 90 .deg. C, and fresh air was provided by an air supply fan connected to the outside of the tunnel. The results showed that the average air velocity in the heating section after the provision of the air from outside of the tunnel was 0.81 m/s with the Reynolds number of 310,000 ∼ 340,000. The seasonal heat transfer coefficient in the heating section under forced convection was 7.68 W/m2 K in the summer and 7.24 W/mm2 K in the winter
Yoon, Chan Hoon; Hwang, In Phil; Kim, Jin [Inha University, Incheon (Korea, Republic of); Kwon, Sang Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-09-15
In a high-level waste (HLW) repository, heat is generated by the radioactive decay of the waste. This can affect the safety of the repository because the surrounding environment can be changed by the heat transfer through the rock. Thus, it is important to determine the heat transfer coefficient of the atmosphere in the underground repository. In this study, the heat transfer coefficient was estimated by measuring the indoor environmental factors in the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) under forced convection. For the experiment, a heater of 5 kw capacity, 2 meters long, was inserted through the tunnel wall in the heating section of KURT in order to heat up the inside of the rock to 90 .deg. C, and fresh air was provided by an air supply fan connected to the outside of the tunnel. The results showed that the average air velocity in the heating section after the provision of the air from outside of the tunnel was 0.81 m/s with the Reynolds number of 310,000 {approx} 340,000. The seasonal heat transfer coefficient in the heating section under forced convection was 7.68 W/m{sup 2} K in the summer and 7.24 W/mm{sup 2} K in the winter.
The effect of internal ribbing on forced convective heat transfer in circular-sectioned tubes
This paper presents the results of an experimental examination of the effect of internal circumferential ribs on forced convection in circular-sectioned tubes. The work is relevant to the internal cooling of gas turbine rotor blades. The influence of rib geometry is investigated for three different rib configurations and simple design-type, empirical equations are developed for estimating heat transfer at rib and mid-rib locations. It is demonstrated that heat transfer may be improved by up to three fold in relation to fully developed forced convection in smooth-walled tubes. The geometric parameters which have been used for the experiments are typical of those currently applied to gas turbine blade cooling designs
Moraga, Nelson O.; Medina, Enzo E. [Universidad de Santiago de Chile, Dept. de Ingenieria Mecanica, Santiago (Chile)
2000-01-01
The finite volume method is used to describe unsteady forced convection and heat conduction in a meat plate during freezing. External fluid mechanics and internal solidification of water content in the meat are predicted from a mathematical model that includes continuity, Navier-Stokes and energy equations for air around the food and the heat diffusion equation inside the meat. Unsteady results are presented for both velocity vectors and temperature distributions in air, temperature variations in the food and for heat transfer coefficients. Experimental data for the temperature variation in time are used to assess the accuracy of the predicted values. (Author)
Burnout in boiling heat transfer. Part III. High-quality forced-convection systems
This is the final part of a review of burnout during boiling heat transfer. The status of burnout in high-quality forced-convection systems is reviewed, and recent developments are summarized in detail. A general guide to the considerable literature is given. Parametric effects and correlations for water in circular and noncircular ducts are presented. Other topics discussed include transients, steam-generator applications, correlations for other fluids, fouling, and augmentation
For development of new reactor, supercritical water is expected to be used as coolant to improve thermal efficiency. However, the thermal characteristics of supercritical fluid is not revealed completely because its difficulty for experiment. Specific phenomena tend to occur near the pseudo-boiling point which is characterised by temperature corresponding to the saturation point in ordinary fluid. Around this point, the physic properties such as density, specific heat and thermal conductivity are drastically varying. Although there is no difference between gas and liquid phases in supercritical fluids, phenomena similar to boiling (with heat transfer deterioration) can be observed round the pseudo-boiling point. Experiments of heat transfer have been done for supercritical fluid in forced convective condition. However, these experiments were mainly realised inside stainless steel cylinder pipes, for which flow visualisation is difficult. Consequently, this work has been devoted to the development of method allowing the visualisation of supercritical flows. The experiment setup is composed of main loop and test section for the visualisation. Carbon dioxide is used as test fluid. Supercritical carbon dioxide flows upward in rectangular channel and heated by one-side wall to generate forced convection heat transfer. Through window at mid-height of the test section, shadowgraphy was applied to visualize density gradient distribution. The behavior of the density wave in the channel is visualized and examined through the variation of the heat transfer coefficient. (author)
Forced Convection Heat Transfer Experiments of the Finned Plate in a Duct
The studies have been focused on the optimization of fin geometries to maximize the heat transfer rate. The forced convection heat transfer rates were affected largely by the fin spacing, fin height, and tip clearance. As the fin spacing decreases and fin height increases, heat transfers from the fins to the ambient are enhanced as they are directly proportional to the surface area. For a large tip clearance, the fluid tends to escape from the inner fin region to the outer wall region resulting in the decrease of the overall heat removal capability. Thus, the parametric influences of these variables are to be investigated to develop a generalized heat transfer correlation for the geometry. This study is a preliminary experimental study for plate-fin geometries such as fin spacing, fin height and duct width. Mass transfer experiments were carried out based on the analogy concept, using a copper sulfate electroplating system. The work has the relevance with the Reactor Cavity Cooling System performance enhancement study in the VHTR. Forced convection heat transfer experiments were performed for the vertical plate-fins in a duct. Based on the analogy between heat and mass transfer systems, mass transfer rates were measured using the cupric acid copper sulfate electroplating system. The fin spacings were varied from 0.002m to 0.007m, fin heights 0.01m and 0.015m, ReDh from 10 to 6,500, and duct widths from 0.010m to 0.02m. The test results showed that the heat transfer rates enhanced with the increase of fin height and the decrease of fin spacing as they enlarge the heat transfer area. And the heat transfer rates were impaired with the increase of the duct width as the bypass flows increased to tip clearance region
Forced Convection Heat Transfer Experiments of the Finned Plate in a Duct
Chae, Myeongseon; Moon, Jeyoung; Chung, Bumjin [Kyung Hee Univ., Yongin (Korea, Republic of)
2014-05-15
The studies have been focused on the optimization of fin geometries to maximize the heat transfer rate. The forced convection heat transfer rates were affected largely by the fin spacing, fin height, and tip clearance. As the fin spacing decreases and fin height increases, heat transfers from the fins to the ambient are enhanced as they are directly proportional to the surface area. For a large tip clearance, the fluid tends to escape from the inner fin region to the outer wall region resulting in the decrease of the overall heat removal capability. Thus, the parametric influences of these variables are to be investigated to develop a generalized heat transfer correlation for the geometry. This study is a preliminary experimental study for plate-fin geometries such as fin spacing, fin height and duct width. Mass transfer experiments were carried out based on the analogy concept, using a copper sulfate electroplating system. The work has the relevance with the Reactor Cavity Cooling System performance enhancement study in the VHTR. Forced convection heat transfer experiments were performed for the vertical plate-fins in a duct. Based on the analogy between heat and mass transfer systems, mass transfer rates were measured using the cupric acid copper sulfate electroplating system. The fin spacings were varied from 0.002m to 0.007m, fin heights 0.01m and 0.015m, Re{sub Dh} from 10 to 6,500, and duct widths from 0.010m to 0.02m. The test results showed that the heat transfer rates enhanced with the increase of fin height and the decrease of fin spacing as they enlarge the heat transfer area. And the heat transfer rates were impaired with the increase of the duct width as the bypass flows increased to tip clearance region.
Convective heat transfer on Mars
An examination was made into the feasibility of using convective heat transfer on Mars to reject the waste heat from a Closed Brayton Cycle. Forced and natural convection were compared to thermal radiation. For the three radiator configurations studied, it was concluded that thermal radiation will yield the minimum mass and forced convection will result in the minimum area radiator. Other issues such as reliability of a fan motor were not addressed. Convective heat transfer on Mars warrants further investigation. However, the low density of the Martian atmosphere makes it difficult to utilize convective heat transfer without incurring a weight penalty
Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid
Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally
Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid
Mohseni, Mehdi Moayed; Rashidi, Fariborz; Movagar, Mohammad Reza Khorsand [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-02-15
Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.
In the first part, free-convection and nucleate pool boiling heat transfer (up to burn-out heat flux) between a platinum wire of 0.15 mm in diameter in neon, deuterium and hydrogen has been studied at atmospheric pressure. These measurements were continued in liquid neon up to 23 bars (Pc ≅ 26.8 b). Film boiling heat transfer coefficients have been measured in pool boiling liquid neon at atmospheric pressure with three heating wires (diameters 0.2, 0.5, 2 mm). All the results have been compared with existing correlations. The second part is devoted to measurements of the critical heat flux limiting heat transfer with small temperature differences between the wall and the liquid neon flowing inside a tube (diameters 3 x 3.5 mm) heated by joule effect on 30 cm of length. Influences of flow stability, nature of electrical current, pressure, mass flow rate and subcooling are shown. In conclusion, the similarity of the heat transfer characteristics in pool boiling as well as in forced convection of liquid neon and hydrogen is emphasized. (author)
Performance of a forced convection solar drier integrated with gravel as heat storage material
Mohanraj, M. [Dr Mahalingam College of Engineering and Technology, Pollachi (India). Dept. of Mechanical Engineering; Chandrasekar, P. [Swinburne Univ. of Technology, Sarawak (Malaysia). School of Engineering Sciences
2009-07-01
Sun drying is the most common method used in India to dry agricultural products such as grains, fruits and vegetables. The rate of drying depends on solar radiation, ambient temperature, wind velocity, relative humidity, initial moisture content, type of crops, crop absorptivity and mass product per unit exposed area. However, this method of spreading the crop in a thin layer on the ground has several disadvantages. This paper reported on a study that focused on developing a forced convection solar drier integrated with heat storage materials for drying various agricultural crops. The indirect forced convection solar drier, integrated with gravel as a sensible heat material, was used to dry pineapple slices under conditions similar to those found in Pollachi, India. The performance of the system was discussed along with the drying characteristics, drying rate, and specific moisture extraction rate. The results showed that the moisture content (wet basis) of pineapple was reduced from about 87.5 to 14.5 per cent (equilibrium moisture content) in about 29 hours in the bottom tray and 32 hours in the top tray. The thermal efficiency of the solar air heater was also reviewed. 9 refs., 5 figs.
Yarin, Alexander; Freystein, Martin; Kolberg, Felix; Sinha-Ray, Sumit; Sahu, Rakesh; Spiegel, Lucas; Gambaryan-Roisman, Tatiana; Stephan, Peter
2015-03-01
To enhance heat transfer in forced convective boiling the microchannel bottom was amended by a nano-texture - periodic rectangular mats of electrospun polymer nanofibers. The fibers were ~ 300-500 nm in diameter and the mat thicknesses were about 6-15 ?m. The test fluid was FC-72 and the flow in microchannels contained trains of Taylor bubbles. The role of the nanofibers was to retain the warm microchannel bottom wet, to prevent dry-out and thus to enhance the heat removal rate. In the present experiments the time-average heat flux and heat transfer coefficient at the nanofiber-coated domains were found to be 1.5-2 times higher than those at the uncoated ones. Accordingly, a significant decrease (by 5-8 K) in the superheat was observed at the same Re of 387 and power supply of 36.1 kW/m2. At a higher Re of 432 and lower power supply of 28.1 kW/m2 similar trends in the heat removal rate and surface superheat were found. The significant enhancement of the heat transfer results from the fact that nanofiber mats facilitate wetting of surface under passing Taylor bubbles, thus delaying formation of vapor flow at the channel bottom. The interstices of the nanofiber mat act as the nucleation sites facilitating formation of tiny bubbles, which eventually results in a higher heat removal rate from the surface at a reduced superheat.
Highlights: ► The cooling performance of water and n-heptane is compared during subcooled flow boiling. ► Although n-heptane leaves the heat exchanger warmer it has a lower heat transfer coefficient. ► Flow rate, heat flux and degree of subcooling have direct effect on heat transfer coefficient. ► The predictions of some correlations are evaluated against experimental data. - Abstract: In this research, subcooled flow boiling heat transfer coefficients of pure n-heptane and distilled water at different operating conditions have been experimentally measured and compared. The heat exchanger consisted of vertical annulus which is heated from the inner cylindrical heater with variable heat flux (less than 140 kW/m2). Heat flux is varied so that two different flow regimes from single phase forced convection to nucleate boiling condition are created. Meanwhile, liquid flow rate is changed in the range of 2.5 × 10−5–5.8 × 10−5 m3/s to create laminar up to transition flow regimes. Three subcooling levels including 10, 20 and 30 °C are also considered. Experimental results demonstrated that subcooled flow boiling heat transfer coefficient increases when higher heat flux, higher liquid flow rate and greater subcooling level are applied. Furthermore, influence of the operating conditions on the bubbles generation on the heat transfer surface is also discussed. It is also shown that water is better cooling fluid in comparison with n-heptane
Reliability comparison of forced and natural convection residual heat removal in the GCFR
Loss of cooling consequences for all breeder cores require an increased reliability of the engineered Residual Heat Removal (RHR) systems provided to assure abundant cooling of the core at decay heat levels. An upflow GCFR core design offers the capability for pressurized decay heat removal by natural convection, thus enhancing core cooling reliability and diversity. A quantitative assessment is presented for the Residual Heat Removal reliability achievable with and without natural convection. The reliability gains due to natural convection are limited by the demand frequency for PCRV depressurization and by the equipment which has to change state in order to establish natural convection. The coolant circulation diversity accomplished with natural convection is a major advantage
An assessment of correlations of forced convection heat transfer to water at supercritical pressure
Highlights: • Evaluates 26 correlations of heat transfer to supercritical water. • Compiles 3220 experimental data points for the evaluation. • Evaluates based on both entire database and three heat transfer regimes. • Provides a guide to choosing the best correlation for engineering design. - Abstract: The heat transfer of supercritical water is essential for supercritical water-cooled nuclear reactors. Many empirical correlations for heat transfer to supercritical water were proposed over the past few decades. Some evaluations of the correlations were conducted, and inconsistent conclusions appeared owing to limited correlations or experimental data. This work presents an extensive survey of the literature of correlations and experiments of forced convection heat transfer to water flowing upward in vertical tubes at supercritical pressure. There are 26 correlations found, and an experimental database containing 3220 data points from vertical tubes are compiled from nine independent laboratories. All available correlations are assessed against the experimental database. The results show that the best correlation has a mean absolute deviation of 12.8%, predicting 82.3% of the database within ±20%. The entire database is divided into three categories, and the correlations which can give the most accurate predictions of the experimental data from different categories are also identified. The results provide a guide to choosing a proper correlation for engineering practice. Some topics worthy of attention for future studies are indicated
Analysis of forced convection heat transfer from a circular cylinder embedded in a porous medium
Time-dependent forced convection heat transfer from a single circular cylinder embedded in a horizontal packed bed of spherical particles under local thermal non-equilibrium condition is investigated numerically using the spectral-element method. The non-Darcian effects, i.e. inclusion of the effect of solid boundaries and inertia forces, and the effect of thermal dispersion, are taken into account. The influences of the presence of the porous material and its thermal properties: solid-to-fluid thermal conductivity ratio kr included in [0:01; 1000] and Biot number Bi included in [0:01; 100], on the rates of heat transfer and the hydrodynamic and thermal responses, are examined for the Reynolds number range ReD included in [1; 250]. These effects are quantified. Perhaps not surprisingly, the results show that the presence of the porous particles suppresses significantly the wakes behind the cylinder and enhances considerably the heat transfer. A comparison that is made between the one- and two-equation energy model predictions shows that the former model predicts a continuous increase in Nuf against kr; however, the trend of Nuf with kr, for kr > 10, is governed entirely by Bi when the latter model is used. Also, the increase in Bi decreases Nuf and increases Nus, and high values of kr or Bi lead to establishing a thermal equilibrium status in the porous bed. (authors)
Conjugate forced convection heat transfer in a plane channel: Longitudinally periodic regime
The present paper studies the conjugate heat transfer problem in a parallel-plane channel. Laminar and stationary forced convection is studied, with a boundary condition given by a temperature distribution on the external side of the channel wall, which undergoes a sinusoidal longitudinal change. The local energy balance equation is written with reference to the fully developed region, where the temperature distribution can be expressed as a periodic function of the longitudinal coordinate. The temperature field in the solid wall and in the fluid, as well as the local and average Nusselt number, are determined analytically and numerically. A comparison between the values obtained analytically, by employing a complex temperature method, and those evaluated numerically, by employing a Bubnov-Galerkin finite element method, reveals an excellent agreement. (authors)
Improved modelling of turbulent forced convective heat transfer in straight ducts
Ducts with non-circular cross sections are frequently encountered in industrial heat transfer equipment, e.g., compact heat exchangers, cooling channels in gas turbine blades, nuclear reactors, etc. This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in their fully developed state at low Reynolds number. The authors have developed a low Reynolds number version of the non-linear ?-? model combined with the heat flux models of SED, low Reynolds number version of GGDH and WET in general three dimensional geometries. The wall function approach is abandoned and the friction factor is predicted in agreement with experiments. The Nusselt numbers are also predicted very well. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non-staggered grid arrangement and the SIMPLEC algorithm. Results have been obtained with the linear and the nonlinear ?-? model, combined with the Lam-Bremhorst damping functions for low Reynolds numbers. The secondary flow patterns are also of major concern
Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop
Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover
2010-09-01
This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will be performed to develop probability of confidence in what is measured in the test loop. Overall, the testing loop will allow development of needed heat transfer related thermophysical parameters for all the salts, validate existing correlations, validate measuring instruments under harsh environment, and have extensive corrosion testing of materials of construction.
A study has been performed to predict CHF in pool boiling and subcooled forced convection boiling using the dry-spot model presented by the authors and existing correlations for heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling. Comparisons of the model predictions with experimental data for pool boiling of water and subcooled upward forced convection boiling of water in vertical, uniformly-heated round tubes have been performed and the parametric trends of CHF have been investigated. The results of the present study strongly support the validity of physical feature of the present model on the CHF mechanism in pool boiling and subcooled forced convection boiling. To improve the prediction capability of the present model, further works on active site density, bubble departure diameter and suppression factor in subcooled boiling are needed
Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot
2015-08-01
Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.
Lee, Chi M.; Schock, Harold J.
1988-01-01
Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.
Forced convection heat transfer with phase-change-material slurries: Turbulent flow in circular tube
Choi, Eunsoo; Cho, Young I.; Lorsch, Harold G.
1994-01-01
The present study investigates the increase in the convective heat transfer coefficient as well as the increase in the thermal capacity of a working fluid by using the latent heat from a solid-liquid phase change of particles. A long heating test section (627 diameters) with a uniform heat flux boundary condition is constructed in order to study the effects of the phase-change phenomenon produced by a phase-change-material (PCM) -- water slurry on the convective heat transfer coefficient in a turbulent flow. The study introduces a method to generate very fine PCM particles inside a flow loop using an emulsifier. With such fine PCM particles, the flow loop did not clog. Local pressure drops and local heat transfer coefficients are measured along the test section. The pressure drop significantly decreased at the point where the PCM particles in the slurry melted. The local convective heat transfer coefficient was found to vary significantly when the particles melted. This made it difficult to apply the log-mean-temperature-difference (LMTD) method to the analysis of the PCM slurry flow heat transfer. The study proposes a new three-region melting model, and provides an explanation of the physical mechanism of the convective heat transfer enhancement due to the PCM particles.
On the prediction of single-phase forced convection heat transfer in narrow rectangular channels
In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 103 - 2.4 x 105 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer coefficient in narrow channels have not been developed for high Reynolds number and high heat fluxes. Therefore, a new modified version of the Dittus-Boelter correlation was derived from a best-fitting of the SULTAN-JHR data with a multiple linear regression approach. The current study highlights that the channel geometry can impact the heat transfer. In particular, a reduction in gap size leads to an enhancement in the heat transfer coefficient. (author)
Highlights: • Variation of total entropy generation is investigated parametrically. • Pareto solution sets for heat transfer and flow friction components are obtained. • Dominant irreversibility component and impact of key variables are discussed. - Abstract: Based on the second law of thermodynamics, an entropy generation investigation is carried out under given dimensionless parameters, i.e. heat exchanger duty, heat flux, with respect to heat transfer and frictional pressure drop in a rotating helical tube heat exchanger with laminar convective flow. The entropy generation from heat transfer across a finite temperature difference – Ψh decreases with increasing Dean number which represents the impact of centrifugal force induced secondary flow in enhancing heat transfer. Another aspect of increasing Dean number is that intensified momentum transfer in the radial direction also raises the entropy generation from frictional pressure drop – Ψf, the superposed effect of which yields a decreasing–increasing trend of the total entropy generation-Ψ, a local minimum located in between. The rotation of the helical tube in streamwise (co-rotation) or counter streamwise (counter-rotation) direction leads to a decrease in Ψh and a increase in Ψf which complicates the situation that whether or where the minimum of total entropy generation exists is dependent on whether Ψ is dominated by Ψh or Ψf or somewhere in between. No difference is discerned between pairs of cases with constant wall temperature and uniform wall heat flux but the same set of variables and parameters. A multi-objective optimization targeting Ψh and Ψf simultaneously is implemented using the non-dominated sorting genetic algorithm II (NSGA II). Five solution sets are selected and compared with the conventional optimization in regard of Ψ distinguishing the Ψh-dominated region from the Ψf-dominated region, the dimensionless variable η1 is found to be the most suitable representative in describing the trade-off between Ψh and Ψf. The Pareto solution sets is dominated by Ψh within the variable and parameter space under discussion. On the Pareto frontier, the counter rotational cases are distributed where the impact of Ψf is relatively higher while co-rotational cases dominate almost all the rest part. The proposed investigation procedure is a synthetic analysis concerning optimization of both Ψ and its components Ψh and Ψf, via which the dominating compartment and the key impact factors for irreversibility minimization can be obtained as a guidance for practical design of rotating helical tube heat exchangers
Laminar forced convection heat transfer to a single layer of ordered and disordered spheres
We study laminar forced convection heat transfer to single layer arrays of equidistantly and non-equidistantly spaced spheres. We report average Nusselt numbers as a function of geometry and flow conditions, for open frontal area fractions between 0.04 and 0.95, Prandtl numbers between 0.7 and 10, and Reynolds numbers (based on sphere diameter and the free stream velocity) between 0.1 and 100. For equidistantly spaced arrays of spheres we propose a general analytical expression for the average Nusselt number as a function of the Reynolds number, Prandtl number and the open frontal area fraction, as well as asymptotic scaling rules for small and large Reynolds. For all studied Prandtl numbers, equidistant arrays exhibit decreasing average Nusselt numbers for decreasing open frontal area fractions at low Reynolds numbers. For high Reynolds numbers, the Nusselt number approaches that of a single spheres in cross-flow, independent of the open frontal area fraction. For equal open frontal area fractions, the Nusselt number in non-equidistant arrays is lower than in equidistant arrays for intermediate Reynolds numbers. For very low and high Reynolds numbers, non-uniformity does not influence heat transfer.
Albernaz, Daniel; Do-Quang, Minh; Amberg, Gustav
2015-04-01
We investigate the evaporation of a droplet surrounded by superheated vapor with relative motion between phases. The evaporating droplet is a challenging process, as one must take into account the transport of mass, momentum, and heat. Here a lattice Boltzmann method is employed where phase change is controlled by a nonideal equation of state. First, numerical simulations are compared to the D(2) law for a vaporizing static droplet and good agreement is observed. Results are then presented for a droplet in a Lagrangian frame under a superheated vapor flow. Evaporation is described in terms of the temperature difference between liquid-vapor and the inertial forces. The internal liquid circulation driven by surface-shear stresses due to convection enhances the evaporation rate. Numerical simulations demonstrate that for higher Reynolds numbers, the dynamics of vaporization flux can be significantly affected, which may cause an oscillatory behavior on the droplet evaporation. The droplet-wake interaction and local mass flux are discussed in detail. PMID:25974585
Laminar forced convective/conductive heat transfer by finite element method
The present study is directed at developing a finite element computer program for solution of decoupled convective/conductive heat transfer problems. Penalty function formulation has been used to solve momentum equations and subsequently transient energy equation is solved using modified Crank-Nicolson method. The optimal upwinding scheme has been employed in energy equation to remove oscillations at high Peclet number. (author)
In this study, numerical investigations are conducted for forced convective heat transfer in an annular helicoidal tube under uniform wall temperature condition for laminar flow including developing region. The numerical computations reveal the developments and distributions of heat transfer and flow fields in the annular helicoidal tube when the outer tube wall is heated and the inner tube wall is insulated. The effects of Reynolds number, curvature ratio, and coil pitch on the circumferential average friction factor and Nusselt number at different axial locations, and the non-dimensional entropy generation number of laminar convection in an annular helicoidal tube are investigated. In addition, the differences of flow and heat transfer characteristics between the annular helicoidal tube and circular helicoidal tube are also described
Wu, Shuang Ying; Chen, Su Jun; Xiao, Lan; Li, You Rong [Chongqing University, Chongqing (China)
2011-06-15
In this study, numerical investigations are conducted for forced convective heat transfer in an annular helicoidal tube under uniform wall temperature condition for laminar flow including developing region. The numerical computations reveal the developments and distributions of heat transfer and flow fields in the annular helicoidal tube when the outer tube wall is heated and the inner tube wall is insulated. The effects of Reynolds number, curvature ratio, and coil pitch on the circumferential average friction factor and Nusselt number at different axial locations, and the non-dimensional entropy generation number of laminar convection in an annular helicoidal tube are investigated. In addition, the differences of flow and heat transfer characteristics between the annular helicoidal tube and circular helicoidal tube are also described.
Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests
Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.
1998-01-01
Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.
M. MOHANRAJ
2009-09-01
Full Text Available An indirect forced convection solar drier integrated with different sensible heat storage maternal has been developed and tested its performance for drying chili under the metrological conditions of Pollachi, India. The system consists of a flat plate solar air heater with heat storage unit, a drying chamber and a centrifugal blower. Drying experiments have been performed at an air flow rate of 0.25 kg/s. Drying of chili in a forced convection solar drier reduces the moisture content from around 72.8% (wet basis to the final moisture content about 9.1% in 24 h. Average drier efficiency was estimated to be about 21%. The specific moisture extraction rate was estimated to be about 0.87 kg/kWh.
Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State
Balouch, Masih N.
Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the test sections provides the Joule heating required to heat up the fluid to supercritical conditions. A high-temperature dielectric gasket isolates the current carrying parts of the test section from the rest of the assembly. Temperature and pressure drop data are collected at the inlet and outlet, and along the heated length of the test section. The test loops and test sections are designed according to American Society of Mechanical Engineers (ASME) Pressure Piping B31.1, and Boiler and Pressure Vessel Code, Section VIII-Division 1 rules. The final test loops and test sections assemblies are certified by Technical Standards and Safety Authority (TSSA). Every attempt is made to use off-the-shelf components where possible in order to streamline the design process and reduce costs. Following a rigorous selection process, stainless steel Types 316 and 316H are selected as the construction materials for the test loops, and Inconel 625 is selected as the construction material for the test sections. This thesis describes the design of the SCW and R-134a loops along with the three test-section geometries (i.e., tubular, annular and bundle designs).
Burnout in boiling heat transfer. Part II: subcooled and low quality forced-convection systems
Recent experimental and analytical developments regrading burnout in subcooled and low quality forced-convection systems are reviewed. Much data have been accumulated which clarify the parametric trends and lead to new design correlations for water and a variety of other coolants in both simple and complex geometries. A number of critical experiments and models have been developed to attempt to clarify the burnout mechanism(s) in simpler geometries and power transients
Forced convection heat transfer of Giesekus viscoelastic fluid in pipes and channels
Mahdavi Khatibi, Ali; Mirzazadeh, Mahmoud; Rashidi, Fariborz
2010-04-01
A theoretical solution is presented for the convective heat transfer of Giesekus viscoelastic fluid in pipes and channels, under fully developed thermal and hydrodynamic flow conditions, for an imposed constant heat flux at the wall. The fluid properties are taken as constant and axial conduction is negligible. The effect of Weissenberg number ( We), mobility parameter ( α) and Brinkman number ( Br) on the temperature profile and Nusselt number are investigated. The results emphasize the significant effect of viscous dissipation and fluid elasticity on the Nusselt number in all circumstances. For wall cooling and the Brinkman number exceeds a critical value ( Br 1), the heat generated by viscous dissipation overcomes the heat removed at the wall and fluid heats up longitudinally. Fluid elasticity shifts this critical Brinkman number to higher values.
Forced convection heat transfer of Giesekus viscoelastic fluid in pipes and channels
Mahdavi Khatibi, Ali; Mirzazadeh, Mahmoud; Rashidi, Fariborz [Amirkabir University of Technology, Chemical Engineering Department, Tehran (Iran)
2010-04-15
A theoretical solution is presented for the convective heat transfer of Giesekus viscoelastic fluid in pipes and channels, under fully developed thermal and hydrodynamic flow conditions, for an imposed constant heat flux at the wall. The fluid properties are taken as constant and axial conduction is negligible. The effect of Weissenberg number (We), mobility parameter ({alpha}) and Brinkman number (Br) on the temperature profile and Nusselt number are investigated. The results emphasize the significant effect of viscous dissipation and fluid elasticity on the Nusselt number in all circumstances. For wall cooling and the Brinkman number exceeds a critical value (Br{sub 1}), the heat generated by viscous dissipation overcomes the heat removed at the wall and fluid heats up longitudinally. Fluid elasticity shifts this critical Brinkman number to higher values. (orig.)
Kakac, Sadik; Pramuanjaroenkij, Anchasa
2014-01-01
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....
This paper reports on heat transfer coefficients measured for pool and forced-convection boiling on uniformly heated porous surfaces (PCs). Tests were performed for five different porous coatings. Data was obtained for a range of heat fluxes and flow rates. The results showed the strong dependence of heat transfer characteristics on the porous coating properties. It was established that thick coatings with large pores and high porosity are effective in low heat flux area but thin coatings with small pores and low porosity are effective in high heat flux area. Tests of gas injection through the porous wall into the moving liquid were made. The hydraulic resistance through the porous matrix was observed
A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a wafer–bond-and-etch-back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. (paper)
Lee, Man
2012-02-22
A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.
Burnout in boiling heat transfer. II. Subcooled and low-quality forced-convection systems
Recent experimental and analytical developments regarding burnout in subcooled and low-quality forced-convection systems are reviewed. Many data have been accumulated which clarify the parametric trends and lead to new design correlations for water and a variety of other coolants in both simple and complex geometries. A number of critical experiments and models have been developed to attempt to clarify the burnout mechanism(s) in simpler geometries. Other topics discussed include burnout with power transients and techniques to augment burnout. 86 references
The influence of molten pool geometry on forced convective heat transfer
Wei, Cheng-hua; Fang, Bo-lang; Liu, Wei-ping; Wang, Li-jun; Ma, Zhi-liang
2015-05-01
An investigation was conducted to determine the relationship between heat transfer coefficient and molten pool's geometry. It was accomplished by performing an experimental and numerical investigation using a cylinder dimple with two different serials of geometry: (1) cylinder dimples with fixed print diameter D=50mm and different depth, and (2) cylinder dimples with fixed depth d=10mm and different print diameter. The airflow speed varies from 50m/s to 250m/s in the turbulent regime. The results consist of flow characteristics, mainly velocity profile and heat transfer characteristics, including heat transfer coefficient and Nusselt number along flow direction, were obtained. The comparison was held against the smooth surface. Results showed that a centrally-located vortex was formed due to the flow separation. For heat transfer coefficient, such augmentations are present near the downstream edges and diminutions are present near the upstream edges of dimple rims, both slightly within each depression. It was found that the convection heat transfer coefficients with different geometry parameters have similar distribution along flow direction. A uniform piecewise linear function was built to describe the heat transfer characterizes for different molten pool print diameter.
Ahmed, Mahmoud; Eslamian, Morteza
2015-01-01
Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and th...
Forced convective boiling heat transfer of water in vertical rectangular narrow channel
Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m2, a mass flux range of 200–2400 kg/m2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively
Forced convective boiling heat transfer of water in vertical rectangular narrow channel
Chen, Chong, E-mail: chenchong_2012@163.com; Gao, Pu-zhen, E-mail: gaopuzhen@hrbeu.edu.cn; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing
2015-09-15
Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m{sup 2}, a mass flux range of 200–2400 kg/m{sup 2} s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively.
The heat transfer resistance of a porous deposit can be expressed as the sum of two components: one associated with conduction through the fluid-filled deposit and a second associated with surface roughness. This simple relationship appears to hold under both single-phase forced-convection and boiling heat-transfer conditions. The conductive component of the total deposit resistance is always positive, whereas the roughness component is negative. Values for κ and Rroughness measured in this investigation are as follows. Under single-phase forced-convection heat-transfer conditions, κ = 1.3 ± 0.2 W/mK and Rroughness = -4 x 10-6 m2K/W for magnetite deposits. Under flow-boiling heat-transfer conditions, κ = 0.2 to 0.9 W/mK and Rroughness = -36 x 10-6 m2K/W for magnetite deposits, whereas κ = 2.0 W/mK and Rroughness = -43 x 10-6 m2K/W for deposits composed of approximately equal proportions of copper and magnetite. (author)
An experimental determination was made of heat transfer critical conditions in a circular channel, uniformly heated, and internally cooled by water in ascending forced convection, under a pressure slightly above atmospheric pressure. Measurements were made of water flow, pressure, electric power temperature and heating, and a systematic analysis was made of the system's parameters. The values obtained for the heat critical flux are circa 50% lower than those predicted by Becker and Biasi and this is accounted to flowing instabilities of thermo-hydrodynamic nature. It is suggested that the flowing channels of circuits aiming at the study of the boiling crisis phenomenon be expanded in its upper extremity, and that the coolant circulation be kept through a pump with a pressure X flow characteristic as vertical as possible
Luna, N. [Direccion de Operacion Petrolera, Direccion General de Exploracion y Explotacion de Hidrocarburos, Secretaria de Energia, 03100 Mexico DF (Mexico); Mendez, F. [Facultad de Ingenieria, UNAM, 04510 Mexico DF (Mexico)
2005-07-01
The steady-state analysis of conjugated heat transfer process for the hydrodynamically developed forced convection flow on a heated flat plate embedded in a porous medium is studied. The governing equations for the fluid-saturated porous medium are solved analytically using the integral boundary layer approximation. This integral solution is coupled to the energy equation for the flat plate, where the longitudinal heat conduction effects are taken into account. The resulting equations are then reduced to an integro-differential equation which is solved by regular perturbation techniques and numerical methods. The analytical and numerical predictions for the temperature profile of the plate and appropriate local and average Nusselt numbers are plotted for finite values of the conduction parameter, {alpha}, which represents the presence of the longitudinal heat conduction effects. (authors)
Forced convection heat transfer from a PtCo wire with a length of 120 mm and a diameter of 1.2 mm that was inserted into a vertically-mounted pipe with a diameter of 8.0 mm to liquid hydrogen flowing upward was measured with a quasi-steady increase of a heat generation rate for wide ranges of flow rate under saturated conditions. The pressures were varied from 0.4 MPa to 1.1 MPa. The non-boiling heat transfer characteristic agrees with that predicted by Dittus-Boelter correlation. The critical heat fluxes are higher for higher flow rates and lower pressures. Effect of Weber number on the CHF was clarified and a CHF correlation that can describe the experimental data is derived based on our correlation for a pipe
Heat transfer characteristics of mainly combined forced and free convective flow in a vertical rectangular flow channel with a gap of 25 mm, which was quite narrow compared with those investigated in previous experiments, were studied experimentally for water. As a result, the following heat transfer characteristics were made clear, using a non-dimensional parameter Grx/Rex21/8Pr1/2 similarly to the case for the 18 mm gap which was already reported by the authors. (1) When the Grx/Rex21/8Pr1/2 is less than 10-4, both upward flow and downward flow show the nature of forced convective heat transfer. (2) When the Grx/Rex21/8Pr1/2 is between 10-4 and 10-2, heat transfer coefficients for both upward flow and downward flow are higher than any of those predicted by the previous correlations for turbulent forced convection along a flat plate and turbulent free convection along a vertical flat plate. This is, differently from the case of 18 mm gap, due to the effect of the acceleration of main flow induced by the development of the boundary layer along the channel. (3) When the Grx/Rex21/8Pr1/2 is larger than 10-2, the upward flow shows the nature of free convective flow even with the gap as narrow as 2.5 mm in the vertical rectangular flow channel. Heat transfer correlations which have been developed for the 18 mm gap channel, are also available for the described-above regions of 2.5 mm gap channel. (author)
Forced convection heat transfer to power-law non-Newtonian fluids inside triangular ducts
Chaves, Cleber; Quaresma, Joao; Macedo, Emanuel [Universidade Federal do Para, Campus Universitario do Guama, Chemical and Food Engineering Dept., Belem, PA (Brazil); Pereira, Luiz [Universidade do Vale do Paraiba, Research and Development Inst., S.J. Campos, SP (Brazil); Lima, Joao [Universidade Federal do Rio Grande do Norte, Mechanical Engineering Dept., Natal, RN (Brazil)
2004-07-01
A hybrid analytical-numerical approach based on the Generalized Integral Transform Technique is employed to simulate the laminar forced convection (hydrodynamically fully developed and thermally developing laminar flow) of power-law non-Newtonian fluids inside ducts with arbitrary shaped cross-sections. The analysis is illustrated through consideration of both right angularly and isosceles triangular ducts subjected to constant wall temperature as thermal boundary condition. Reference results for quantities of practical interest such as dimensionless average temperature and Nusselt numbers within the thermal entry region were produced for different values of power-law index and apex angles. Finally, critical comparisons are performed with results available in the literature for direct numerical and approximate approaches. (Author)
M.M. Rahman
2012-12-01
Full Text Available This paper presents the numerical study on two-dimensional forced convection heat transfer across three in-line flat tubes confined in a channel under incompressible, steady-state conditions. This system is solved in body-fitted coordinates (BFC using the finite volume method (FVM. The constant heat flux is imposed on the surface of the tubes as the thermal boundary conditions. The range of the longitudinal pitch-to-diameter ratio (SL/Ds of 2.04.0 is considered, the Reynolds number varies within the range 25300, and the Prandtl number is taken as 0.7. The temperature contours, local Nusselt number distributions at the tube surface and mean Nusselt number were analyzed. The strength of the heat transfer between the surface of the tubes and the air flow increases with an increase in Reynolds number and pitch-to-diameter ratio.
Park, Hae-Kyun; Chung, Bum-Jin
2016-02-01
The turbulent forced convection heat transfer of rectangular fins in a duct was investigated by varying the tip clearance and Pr. Mass transfer experiments using a H2SO4-CuSO4 electroplating system were performed based on the analogy between heat and mass transfers. FLUENT 6.3 was used for calculations. Turbulent models were tested and the Reynolds Stress Model was chosen, which showed a 1.15 % discrepancy with the existing correlation for a simple tube flow when Pr = 2, but 13 % when Pr = 2014. For a more complex fin channel, the discrepancy increased up to 30 %. The optimal tip clearances, corresponding to maximum heat transfer rates, did not vary with Pr, which is explained using the temperature contours. The results were also compared with the laminar case where Pr influenced the optimal tip clearance.
Kozlova, Sofya V; Ryzhkov, Ilya I
2014-09-01
In this paper, laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux at the tube wall is investigated. The investigation is performed numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. Two thermal regimes at the tube wall, heating and cooling, are considered and the influence of nanoparticle migration on the heat transfer is analyzed comparatively. The intensity of thermophoresis is characterized by a new empirical model for thermophoretic mobility. It is shown that the nanoparticle volume fraction decreases (increases) in the boundary layer near the wall under heating (cooling) due to thermophoresis. The corresponding variations of nanofluid properties and flow characteristics are presented and discussed. The intensity of heat transfer for the model with thermophoresis in comparison to the model without thermophoresis is studied by plotting the dependence of the heat transfer coefficient on the Peclet number. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. The analysis of the results reveals that the water-alumina nanofluid shows better performance in the heating regime than in the cooling regime due to thermophoretic effect. PMID:25260328
Umer, Asim; Naveed, Shahid; Ramzan, Naveed
2015-11-01
Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).
A new dry-spot model for critical heat flux (CHF) is proposed. The new concept for dry area formation based on Poisson distribution of active nucleation sites and the critical active site number is introduced. The model is based on the boiling phenomena observed in nucleate boiling such as Poisson distribution of active nucleation sites and formation of dry spots on the heating surface. It is hypothesized that when the number of bubbles surrounding one bubble exceeds a critical number, the surrounding bubbles restrict the feed of liquid to the microlayer under the bubble. Then a dry spot of vapor will form on the heated surface. As the surface temperature is raised, more and more bubbles will have a population of surrounding active sites over the critical number. Consequently, the number of the spots will increase and the size of dry areas will increase due to merger of several dry spots. If this trend continues, the number of effective sites for heat transport through the wall will diminish, and CHF and transition boiling occur. The model is applicable to pool and subcooled forced convection boiling conditions, based on the common mechanism that CHF and transition boiling are caused by the accumulation and coalescences of dry spots. It is shown that CHF and heat flux in transition boiling can be determined without any empirical parameter based on information on the boiling parameters such as active site density and bubble diameter, etc., in nucleate boiling. It is also shown that the present model well represents actual phenomena on CHF and transition boiling and explains the mechanism on how parameters such as flow modes (pool or flow) and surface wettability influence CHF and transition boiling. Validation of the present model for CHF and transition boiling is achieved without any tuning parameter always present in earlier models. It is achieved by comparing the predictions of CHF and heat flux in transition boiling using measured boiling parameters in nucleate boiling from given boiling conditions with the pool CHF data measured by Dhir and Liaw and Paul and Abdel-Khalik and the subcooled flow CHF data measured by Del Valle M. and Kenning and with the heat flux data in transition boiling measured by Dhir and Liaw. The predictions show good agreement with the existing data. To use the present phenomenological model as a prediction tool, a study has been performed to predict CHF in pool and subcooled forced convection boiling using existing correlations for active site density, maximum bubble diameter, and heat transfer coefficients in nucleate boiling. Comparison of the model predictions with experimental data for pool boiling of water and upward flow boiling of water in vertical, uniformly-heated round tubes is performed. The data set (2438 data points) for CHF in subcooled forced convection boiling covers wide ranges of operating conditions (0.1≤P≤14.0 MPa, 0.00033≤D≤0.0375 m: 0.002≤L≤2 m: 660 ≤G≤90000 kg/m2s: 70≤Δh,≤1456 kJ/kg). Without any tuning factor, 1492 data points out of 2438 (61.2%) are calculated with a r.m.s. error of 41.3% and about 80% of the calculated data points are predicted within ±50%. It is also shown that by a modification of suppression factor in subcooled boiling, the predictive capability of the present model can be improved, i.e., 2421 data points (99.3%) are calculated with a r.m.s. error of 20.5% and 82.3% of the calculated data points are predicted within ±25%. In addition, the parametric trends of CHF in subcooled forced convection boiling have been investigated under local conditions hypothesis
Estimating the diffusive heat flux across a stable interface forced ewpage by convective motions
C. Chemel
2010-04-01
Full Text Available Entrainment at the top of the convectively-driven boundary layer (CBL is revisited using data from a high-resolution large-eddy simulation (LES. In the range of values of the bulk Richardson number Ri_{B} studied here (about 15–25, the entrainment process is mainly driven by the scouring of the interfacial layer (IL by convective cells. We estimate the length and time scales associated with these convective cells by computing one-dimensional wavenumber and frequency kinetic energy spectra. Using a Taylor assumption, based upon transport by the convective cells, we show that the frequency and wavenumber spectra follow the Kolmogorov law in the inertial range, with the multiplicative constant being in good agreement with previous measurements in the atmosphere. We next focus on the heat flux at the top of the CBL, , which is parameterized in classical closure models for the entrainment rate w_{e} at the interface. We show that can be computed exactly using the method proposed by Winters et al. (1995, from which the values of a turbulent diffusivity across the IL can be inferred. These values are recovered by tracking particles within the IL using a Lagrangian stochastic model coupled with the LES. The relative difference between the Eulerian and Lagrangian values of is found to be lower than 10%. A simple expression of w_{e} as a function of is also proposed. Our results are finally used to assess the validity of the classical "first-order'' model for w_{e}. We find that, when Ri_{B} is varied, the values for w_{e} derived from the "first-order'' model with the exact computation of agree to better than 10% with those computed directly from the LES (using its definition. The simple expression we propose appears to provide a reliable estimate of w_{e} for the largest values of Ri_{B} only.
Highlights: ? Three different eddy viscosity turbulence models are validated. ? Two data sets and an extensive sensitivity study are employed for validation. ? Prediction errors for the velocity and temperature fields are analyzed. ? Turbulence Prandtl number has to be chosen in dependence of the turbulence model. - Abstract: This paper provides temperature and velocity distribution computations in heated annuli using RANS approach and employing three different turbulent viscosity models. In addition to comparison calculations an extensive sensitivity study was performed. The results show that the RANS approach and the turbulent viscosity models can be used for prediction of forced convection heat transfer to leadbismuth-eutectic. However, the turbulent Prandtl number has to be carefully selected depending on the respective turbulence model.
Bejan, Adrian
2013-01-01
Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.
Favre-Marinet, Michel
2009-01-01
Convection heat transfer is an important topic both for industrial applications and fundamental aspects. It combines the complexity of the flow dynamics and of the active or passive scalar transport process. It is part of many university courses such as Mechanical, Aeronautical, Chemical and Biomechanical Engineering. The literature on convective heat transfer is large, but the present manuscript differs in many aspects from the existing ones, particularly from the pedagogical point of view. Each chapter begins with a brief yet complete presentation of the related topic. This is followed by a
Influence of Tip Clearance on Forced Convection Heat Transfer of a Finned Plate in a Duct
Optimizations are required for a proper enhancement of cooling capability. An important phenomenological consideration is to be reveals for a finned plate in a duct. Due to the high friction near the fin region and low friction near the wall region, the forced flow tends to bypass from fin region to wall region. The bypass flow increases the net flow and enhances the heat transfer for a moderate tip clearance which is defined by the distance from the tip of the fin and the wall. Meanwhile for a large tip clearance, most of the flow bypasses and does not contribute the heat transfer and impairs the heat transfer. This study is a preliminary numerical study on the influence of the tip clearance on the heat transfer of the finned plate in a duct. The study aimed at supporting an experimental research exploring the phenomena for a very small tip clearance. Thus material properties and test conditions were chosen to meet the experimental conditions. It investigated the phenomena at Pr of 2,014 and ReS of 58.3. In order to investigate the small tip clearance phenomena, a simple numerical scheme was developed using a commercial CFD code. A case with the same experimental condition was tested using the numerical scheme and the error was about 12%. The results show the clear evidence of the flow bypass from the fin region to wall region, which impair the heat removal capacity of the finned plate in a duct. The study has the relevance with the reactor cavity cooling system performance enhancement activities in the VHTR. The numerical scheme will be tested for narrower and wider tip clearances and find an optimal tip clearance
Thamir K. Jassem
2013-05-01
Full Text Available An experimental forced laminar study was presented in this research for an air flowing through a circular channel for different angles ( ,30o,45o,60o, the channel was heated at constant heat flux , the channel also was packed with steel and glass spheres respectively . The tests were done for three values of Peclets number (2111.71,3945.42,4575.47 with changing the heat flux for each case and five times for each number.The results showed that the dimensionless temperature distribution will decrease with increasing the dimensionless channel length for all cases with changing Peclet number, heat flux and inclination angles, and its lowest value will be for glass spheres at highest flux, while at lower flux for , and the decreasing in dimensionless temperature was closed for both types of packed at other inclination angles.The study declared that the local Nusselt number decreases with increasing the dimensionless length of the channel for both packeds and for different applied heat flux, also through this study it was declared that the average Nusselt increases as Peclet number increases for both packed. Its value for the glass spheres is greater than the steel spheres with percentage (98.3% at small Peclet, and percentage (97.2% at large Peclet number for the horizontal tube, and (98.3% at small Peclet number and (97.8% at large Peclet number at .Through this study its was found that average Nusselt number increases along the channel as the heat flux increases, because the bulk temperature will increase as the flow proceeds toward the end of the channel , so the heat transfer coefficient will increase. It was declared from this study that in the case of the steel packed the heat transfer will occur mainly by conduction, while in the case of glass packed the heat transfer will occur mainly by laminar forced convection, where the lowest Nusselt number (Nu=3.8 was found when the pipe is horizontal and lowest heat flux and lowest Peclet number.
Cai, Wei; Zhu, Lexian; Dong, Shilin; Xie, Guozhen; Li, Junming
2014-01-01
The convective drying kinetics of porous medium was investigated numerically. A mathematical model for forced convective drying was established to estimate the evolution of moisture content and temperature inside multilayered porous medium. The set of coupled partial differential equations with the specified boundary and initial conditions were solved numerically using a MATLAB code. An experimental setup of convective drying had been constructed and validated the theoretical model. The tempe...
Variation of forced convective heat transfer in a rectangular duct flow of a magnetic fluid under a magnetic field was investigated experimentally. Experiments were performed changing the magnetic field intensity, and this magnetic field could be varied from 0 mT to 600 mT. The Reynolds number based on the hydraulic diameter was set to 960, 1900 (laminar flow), and 2830 (turbulent flow). The results of the experiments show that in the case of laminar flow of the magnetic fluid, when a magnetic field is applied to a magnetic fluid flow, heat transfer locally increases in the region where the magnetic field exists. In contrast, in the turbulent flow of the magnetic fluid, heat transfer is not enhanced but reduced. In order to better understand this heat transfer phenomenon, we measured the velocity distribution of magnetic fluid flow by the Ultrasonic Velocity Profile (UVP) method. In the case of laminar flow, the result shows that the flow velocity at the center of the rectangular duct decreases and the velocity gradient in the near-wall region increases. Moreover, we calculated the flow resistance under a magnetic field by measurement of the pressure gradient, and the relationship between heat transfer and flow resistance was discussed.
Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.
2015-11-01
A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.
Theoretical and Computational Study of Forced-Convection Heat Transfer at Supercritical Pressures
Zhong, Jianguo
In the simulation of turbulent fluid flow and heat transfer at supercritical pressures, substantial difficulties have been encountered in the modeling of turbulence and bounda-ry layer. This is due to significant fluid property variations with respect to the local temperature and pressure, especially in the near-wall region of a heated wall, where large temperature differences occur. The classical turbulence models available in literature were typically developed for constant-property fluids, where an empirical wall function in the high-Re k-epsilon model, and a damping function in the low-Re k-epsilon model were derived based on the constant-property data to solve the boundary layer. As it can be found in the existing literature, large differences have been observed between the experimental and numerical simulation results of the heat transfer coefficient predictions in the en-hanced and deteriorated heat transfer situations for supercritical fluids. In this thesis, a novel near-wall treatment method is proposed to treat large property variations in the thermal and velocity sub-layers. In the near-wall region, the supercritical fluids can be considered thermal-conductive and viscous forces dominated. The thick-ness of the viscous sub-layer (VSL) and the conduction sub-layer (CSL) can be related to the wall shear stress and local Prandtl number information by using computational CFD models, such as that implemented in the NPHASE-CMFD code. The fluids' bulk and wall temperature information has been obtained from the literature review of experi-mental measurements. The wall temperature and heat transfer coefficient calculated from the k-epsilon model with the proposed wall treatment method have been found to be in good agreement with experimental data for both heat transfer enhancement and deterioration cases for two most widely used fluids: CO2 and water. The proposed model has been applied in the reactor-scale thermal-hydraulic analysis of different flow path designs in Gen-IV supercritical water nuclear reactors (SCWR). The main objective of this study has been to validate the performance of the current approach as a tool for the analysis of large-scale systems.
This paper presents a survey based on the scattered literature dealing with the heat transfer and pressure drop performance of low-finned tube banks. Only the turbulent forced-convection mode of heat transfer is considered for pure cross flow. Heat transfer and pressure drop correlations are recommended for a wide Reynolds number range of 1000 to 200,000. The necessary corrections for nonequilateral tube arrangements, temperature-dependent fluid properties, row number effects, and bundle side leakage are also identified
Highlights: • Thermal conductivity is assumed a linear function of temperature. • It occurs due to diffusion-like radiation or a high temperature gradient. • Nusselt number and temperature profiles are obtained based on perturbation method. • Variable conductivity reveals enhancement obtained by porous media more clearly. • Nusselt number changes linearly with a linear change in conductivity. - Abstract: Effects of variation of the thermal conductivity on forced convection in a parallel-plates channel heat exchanger occupied by a fluid saturated porous medium are investigated analytically based on the perturbation methods. Walls of the channel are kept at a constant heat flux. Thermal conductivity of the medium is assumed to be a linear function of temperature (due to moderate radiation heat transfer in cellular foams or temperature dependent conductivity of the material). The Brinkman–Forchheimer–extended Darcy model for the flow field is used. Relations representing the temperature profile and Nusselt number as functions of porous medium shape parameter and thermal conductivity variation parameter are derived. Obtained Nusselt number and temperature profile are studied parametrically. No analytical investigation based on a variable conductivity approach for Brinkman–Forchheimer–extended Darcy model has been previously performed. Results show that a linear increase in the thermal conductivity of the medium results in a semi-linear increase in the Nusselt number
Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.
2015-08-01
The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.
Study of the equivalent diameter concept for heat transfer by forced convection in annular channels
This work describes a comparative analysis between experimental values of heat transfer coefficients in fully developed turbulent flow for a concentric annular channel, and those calculated with the empirical correlations obtained for tubes by Dittus-Boelter, Sieder and Tate, a modified Colburn equation, and that proposed by Gnielinski which applies the analogy between friction and heat transfer. The coefficients were calculated by means of two different equivalent diameters: 1) The hydraulic equivalent diameter; and 2) The heated equivalent diameter. It was concluded that the hydraulic equivalent diameter gives much better results than the heated equivalent diameter. (Author)
Ahmed, Mahmoud; Eslamian, Morteza
2015-12-01
Laminar natural convection in differentially heated (? = 0, where ? is the inclination angle), inclined (? = 30 and 60), and bottom-heated (? = 90) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with ? = 90 (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number. PMID:26183389
Simulation of MHD CuOwater nanofluid flow and convective heat transfer considering Lorentz forces
Magnetic field effect on CuOwater nanofluid flow and heat transfer in an enclosure which is heated from below is investigated. Lattice Boltzmann method is applied to solve the governing equations. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (KooKleinstreuerLi) correlation. In this model effect of Brownian motion on the effective thermal conductivity is considered. Effect of active parameter such as: Hartmann number, heat source length, nanoparticle volume fraction and Rayleigh numbers on the flow and heat transfer characteristics have been examined. The results reveal that the enhancement in heat transfer increases as Hartmann number and heat source length increase but it decreases with increase of Rayleigh number. Also it can be found that effect of Hartmann number and heat source length is more pronounced at high Rayleigh number. - Highlights: This paper analyses the magnetic effect on CuOwater nanofluid. KooKleinstreuerLi correlation and Lattice Boltzmann method are used. Effects of pertinent parameters are presented through tables and graphs
Experiments on a forced convection heat transfer at supercritical pressures - 6.32 mm ID tube
The size of a sub-channel of the conceptual SCWR core design studied at KAERI is 6.5 mm. In order to provide heat transfer information in such a narrow sub-channel at supercritical pressure, an experiment was performed with a test section made of Inconel 625 tube of 6.32 mm ID. The test pressures were 7.75 and 8.12 MPa corresponding to 1.05 and 1.1 times the critical pressure of CO2, respectively. The mass flux and heat flux, which were in the range of 285 ? 1200 kg/m2s and 30 ? 170 kW/m2, were changed at a given system pressure. The corresponding Reynolds numbers are 1.8 x 104 ? 7.5 x 104. The effect of mass flux and heat flux was dominant factor in the supercritical pressure heat transfer while the effect of pressure was negligible. The Bishop's correlation predicted the test result most closely and Bae and Kim's recent correlation was the next. The heat transfer deterioration occurred when GR)b/Reb2.7 > 2.0 x 10-5. As soon as the heat transfer was deteriorated, it entered a new regime and did not recover the normal heat transfer nevertheless Grb/Reb2.7 reduced below 2.0 x 10-5. It may mean that the correlation must be developed for the normal and deterioration regime separately
Simulation of MHD CuOwater nanofluid flow and convective heat transfer considering Lorentz forces
Sheikholeslami, Mohsen; Bandpy, Mofid Gorji [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Ellahi, R., E-mail: rellahi@engr.ucr.edu [Department of Mechanical Engineering, University of California Riverside (United States); Department of Mathematics and Statistics, FBAS, IIUI, H-10 Sector, Islamabad (Pakistan); Zeeshan, A. [Department of Mathematics and Statistics, FBAS, IIUI, H-10 Sector, Islamabad (Pakistan)
2014-11-15
Magnetic field effect on CuOwater nanofluid flow and heat transfer in an enclosure which is heated from below is investigated. Lattice Boltzmann method is applied to solve the governing equations. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (KooKleinstreuerLi) correlation. In this model effect of Brownian motion on the effective thermal conductivity is considered. Effect of active parameter such as: Hartmann number, heat source length, nanoparticle volume fraction and Rayleigh numbers on the flow and heat transfer characteristics have been examined. The results reveal that the enhancement in heat transfer increases as Hartmann number and heat source length increase but it decreases with increase of Rayleigh number. Also it can be found that effect of Hartmann number and heat source length is more pronounced at high Rayleigh number. - Highlights: This paper analyses the magnetic effect on CuOwater nanofluid. KooKleinstreuerLi correlation and Lattice Boltzmann method are used. Effects of pertinent parameters are presented through tables and graphs.
An analytical approach for optimal design of heat sinks under forced convection
Miguel, Antonio
2013-06-01
Saving energy is just as important as generating energy. In this paper, we seek an optimized structure that achieves a certain level of heat transfer rate under a minimum pumping power to drive the fluid stream. Constraints are specified by the flow regime (laminar and turbulent), admissible boundary conditions on the walls (prescribed temperature and constant heat flux), and design standards. The study will help designers with more effective basic tools for the conceptual design of system and in establishing proper operating procedures.
Karabacak, Rasim [Department of Mechanical Engineering, Pamukkale University, 20070 Kinikli, Denizli (Turkey); Yakar, Guelay, E-mail: gyakar@pau.edu.tr [Department of Mechanical Engineering, Pamukkale University, 20070 Kinikli, Denizli (Turkey)
2011-08-15
Highlights: {yields} The effect of holes placed on perforated finned heat exchangers on convective heat transfer experimentally investigated. {yields} Six millimeter-diameter holes were opened on each circular fin on a heating tube in order to increase convective heat transfer. {yields} These holes were placed on the circular fins in such a way as to follow each other at the same chosen angle. {yields} The holes created turbulence in a region near the heating tube surface on the bottom of the fin. - Abstract: In this study, the effect of holes placed on perforated finned heat exchangers on convective heat transfer experimentally investigated. Six millimeter-diameter holes were opened on each circular fin on a heating tube in order to increase convective heat transfer. These holes were placed on the circular fins in such a way as to follow each other at the same chosen angle. The holes created turbulence in a region near the heating tube surface on the bottom of the fin. Some experiments were then performed to analyze the effect of this turbulence on heat transfer and pressure drop. These experiments were carried out at six different angular locations in order to determine the best angular location. In addition, a perforated finned heater was compared with an imperforate finned heater to observe the differences. In the cases of the Re above the critical value, Nusselt numbers for the perforated finned positions are 12% higher than the Nusselt numbers for the imperforate state. Moreover, a correlation has been obtained between the Re and Nu in the Re number above the critical value and the Re below the critical value. Meanwhile, correlations regarding pressure drops in the flow areas have been obtained.
Experimental investigation of forced convective heat transfer in rectangular micro-channels
R. Kalaivanan
2010-05-01
Full Text Available This paper investigates the experimental program on the study of heat transfer characteristics in micro-channels. The two test sections used are of 47 and 50 micro-channels in rectangular cross-section of equivalent diameters 387 and 327 m respectively. Each channel of length 192 mm is fabricated on a 304 stainless steel substrate (230 mm x 160 mm x 1.6 mm by photo chemical etching process. Covering the top with another plate of 0.5 mm thickness forms the channels by vacuum brazing. Experiments cover laminar region using the fluids ethanol, methanol and an ethanol-methanol mixture. The heat transfer coefficient is evaluated based on the heat carried away by the coolant and an average wall to mean fluid temperature difference. The Nusselt number is correlated through empirical correlations involving Reynolds number and Prandtl number with length parameter, the hydraulic diameter.
Sensitivity studies of heat transfer: forced convection across a cylindrical pipe and duct flow
Ferrantelli, Andrea; Viljanen, Martti
2013-01-01
We consider two common heat transfer processes and perform a through sensitivity study of the variables involved. We derive and discuss analytical formulas for the heat transfer coefficient in function of film velocity, air temperature and pipe diameter. The according plots relate to a qualitative analysis of the multi-variable function $h$, according to functional optimization. For each process, we provide with graphs and tables of the parameters of interest, such as the Reynolds number. This method of study and the specific values can constitute a useful reference for didactic purposes.
Highlights: A systematical study on contact modifications is performed for structured packed beds. The bridges modification is found to give the most reasonable macroscopic results. The overlaps and bridges methods are suitable for predicting local heat transfer. Reasonable bridge diameter is found in a range from 16% dp to 20% dp. - Abstract: The present paper systematically investigated the appropriateness of different contact point modification approaches for forced convective heat transfer analysis in structured packed beds of spheres. The three-dimensional NavierStokes equations and RNG k? turbulence model with scalable wall function are adopted to model the turbulent flow inside the pores. Both macroscopic and local flow and heat transfer characteristics for different packing forms (simple cubic, body center cubic and face center cubic packing forms) and contact treatments (gaps, overlaps, bridges and caps modifications) are carefully examined. In particular, the effects caused by the bridge size for the bridges treatment are discussed, and the numerical results are compared with available experiments in literature. It is found that the effects of contact treatments on the pressure drops are remarkable for different structured packing forms, especially when the porosity is relatively low, while such effects on the Nusselt numbers are relatively small. Among the four different contact modifications, the bridges method would give the most reasonable pressure drops for all the structured packing forms studied and this method is also proved to be suitable for predicting the Nusselt numbers. The local flow and heat transfer characteristics in the structured packed bed are sensitive to the methodology of contact modifications. The gaps and caps treatments would distort the local flow and temperature distributions in the packed bed, especially near the contact zones. While the local flow and temperature distributions from the overlaps and bridges treatments would be more reasonable and close to those in the original packing with points contact. Based on both the macroscopic and local flow and heat transfer analyses, the bridges treatment is recommended. The effects caused by the bridge size in the bridges treatment are also remarkable. It is noted that too small or too large bridge size would lead to unreasonable results for both the macroscopic and local flow and heat transfer analyses. A reasonable range of bridge diameter is found to be from 16% dp to 20% dp
Sundus Hussein Abd
2012-01-01
Full Text Available In this research, an experimental study was conducted to high light the impact of the exterior shape of a cylindrical body on the forced and free convection heat transfer coefficients when the body is hold in the entrance of an air duct. The impact of changing the body location within the air duct and the air speed are also demonstrated. The cylinders were manufactured with circular, triangular and square sections of copper for its high thermal conductivity with appropriate dimensions, while maintaining the surface area of all shapes to be the same. Each cylinder was heated to a certain temperature and put inside the duct at certain locations. The temperature of the cylinder was then monitored. The heat transfer coefficient were then calculated for forced convection for several Reynolds number (4555-18222.The study covered free convection impact for values of Rayleigh number ranging between (1069-3321. Imperical relationships were obtained for all cases of forced and free convection and compared with equations of circular cylindrical shapes found in literature. These imperical equations were found to be in good comparison with that of other sources.
A new mechanistic model of critical heat flux in forced-convection subcooled boiling
Because of its practical importance and various industrial applications, the process of subcooled flow boiling has attracted a lot of attention in the research community in the past. However, the existing models are primarily phenomenological and are based on correlating experimental data rather than on a first-principle analysis of the governing physical phenomena. Even though the mechanisms leading to critical heat flux (CHF) are very complex, the recent progress in the understanding of local phenomena of multiphase flow and heat transfer, combined with the development of mathematical models and advanced Computational Fluid Dynamics (CFD) methods, makes analytical predictions of CHF quite feasible. Various mechanisms leading to CHF in subcooled boiling have been investigated. A new model for the predictions of the onset of CHF has been developed. This new model has been coupled with the overall boiling channel model, numerically implemented in the CFX 4 computer code, tested and validated against the experimental data of Hino and Ueda. The predicted critical heat flux for various channel operating conditions shows good agreement with the measurements using the aforementioned closure laws for the various local phenomena governing nucleation and bubble departure from the wall. The observed differences are consistent with typical uncertainties associated with CHF data
Experimental study of micro-particle fouling under forced convective heat transfer
S. M., Peyghambarzadeh; A., Vatani; M., Jamialahmadi.
2012-12-01
Full Text Available Particulate fouling studies of a hydrocarbon based suspension containing 2 m alumina particles were performed in an annular heat exchanger having a hydraulic diameter of 14.7 mm. During fouling experiments, the classical asymptotical behavior was observed. It is shown that particle concentration, f [...] luid velocity, and wall temperature have strong influences on the fouling curve and the asymptotic fouling resistance. Furthermore, a mathematical model is developed to formulate the asymptotic fouling resistance in terms of the mass transfer coefficient, thermophoresis velocity, and fluid shear rate. The results demonstrate that the prediction of the new model is in good agreement with the experimental observations.
Experimental study of micro-particle fouling under forced convective heat transfer
S. M. Peyghambarzadeh
2012-12-01
Full Text Available Particulate fouling studies of a hydrocarbon based suspension containing 2 µm alumina particles were performed in an annular heat exchanger having a hydraulic diameter of 14.7 mm. During fouling experiments, the classical asymptotical behavior was observed. It is shown that particle concentration, fluid velocity, and wall temperature have strong influences on the fouling curve and the asymptotic fouling resistance. Furthermore, a mathematical model is developed to formulate the asymptotic fouling resistance in terms of the mass transfer coefficient, thermophoresis velocity, and fluid shear rate. The results demonstrate that the prediction of the new model is in good agreement with the experimental observations.
Mixed convection heat transfer in a ventilated cavity is numerically studied by solving the mixed convection equations with the Boussinesq approximation. Results are presented in terms of streamlines, isotherms and heat transfer for different combinations of the governing parameters namely, the Reynolds number (10 ? Re ? 5000), the Rayleigh number (104 ? Ra ? 106) and the relative height of the openings (B = h'/H' = 1/4). The numerical results show the presence of a maximum interaction between the effects of the forced and natural convection and the existence of different flow regimes. The latter are delineated in the Ra-Re plane and the values of Re separating the different regions are determined and correlated versus Ra
A model describing the thermal behaviour of a slurry of phase change material flow in a circular duct is presented. Reactors connected in series are considered for the representation of the circular duct with constant wall temperature. A phenomenological equation is formulated to take account of the heat generation due to phase change in the particles. Results of the simulation present a plateau of temperature along the longitudinal direction, characteristic of the phase change. The effect of different parameters such as the Reynolds number, the weight fraction and the temperature of the cold spring on the length of the plateau is analysed. A correlation resulting from numerical results is proposed for use in the determination of the characteristics of the exchanger for a phase change material slurry
Degradation of the thermal performance of steam generators(SGs) is a serious problem in nuclear power stations throughout the world (Lovett and Dow, 1991). In pressurized-heavy-water reactors (PWHRs), the reduced thermal performance of the SGs is manifested by an increase of the primary coolant reactor inlet header temperature (RIHT). In pressurized-light-water reactors(PWRs), which operate with fixed primary coolant temperature, the loss of thermal performance is manifested by a reduction of the steam pressure. Degradation mechanisms that may contribute to the loss of SG thermal performance include: fouling of the boiler tube inner surfaces (primary-side fouling); fouling of the boiler tube outer surfaces (secondary-side fouling); divider and thermal plate leakage that causes the coolant to bypass either the SG or the integral preheater and fouling of the steam separators. The relative contribution of these various degradation mechanisms to the overall loss of thermal performance is still under investigation. Soulard et al. (1990) examined the relative contributions of tube bundle fouling, divider plate leakage, and thermal plate leakage to the increase in RIHT at the Point Lepreau Generating Station, and concluded that tube fouling contributes to a significant fraction of the loss of thermal performance. Corrosion products deposit on both the inner and outer surfaces of the boiler tubes. Thus a complete understanding of the reasons fro the loss of thermal performance and the development of strategies to mitigate this loss requires a knowledge of the thermal resistance of tube deposits under primary and secondary side heat transfer conditions. We present here the results of measurements of the thermal resistance of primary-side and secondary-side boiler tube deposits performed under single-phase forced convection and flow-boiling conditions, respectively. The results are discussed in terms of the physical properties of the deposit and the mode of heat transfer
This paper explores the bearing that a non-uniform distribution of heat flux used as a wall boundary condition exerts on the heat transfer improvement in a round pipe. Because the overall heat load is considered fixed, the heat transfer improvement is viewed through a reduction in the maximum temperature (hot spot) by imposing optimal distribution of heat flux. Two cases are studied in detail 1) fully developed and 2) developing flow. Peak temperatures in the heated pipe wall are calculated via an analytical approach for the fully developed case, while a numerical simulation based on CFD is employed for the developing case. By relaxing the heat flux distribution on the pipe wall, the numerical results imply that the optimum distribution of heat flux, which minimizes the peak temperatures corresponds with the descending distribution. Given that the foregoing approach is quite different from the ascending heat flux distribution recommended in the literature by means of the entropy generation minimization (EGM) method, it is inferred that the optimization of heat transfer and fluid flow, in comparison with the thermodynamic optimization, may bring forth quite different guidelines for the designs of thermal systems under the same constraints and circumstances. -- Highlights: Considered the bearing of non-uniform distribution of heat flux on the hot spots. Determined the optimal distribution of heat flux that minimizes the hot spots. Results are compared with those obtained by EGM method
Highlights: • We model MHD mixed convection in an inclined lid-driven cavity. • Increasing the Hartmann number leads to increase the heat transfer rate. • Increasing the inclination angle leads to the increase of the heat transfer rate. • Nusselt number at the left wall, for forced convection case, increases as the amplitude ratio increases. - Abstract: A numerical study of laminar magnetohydrodynamic mixed convection in an inclined lid-driven square cavity with opposing temperature gradients is presented. The vertical sidewalls are assumed to have non-uniform temperature variation while the top and bottom walls are kept insulated with the top surface moving at a constant speed. The transport equations are given in terms of the stream functions-vorticity formulation and are non-dimensionalized and then solved numerically by an accurate finite-volume method. The computation is carried out for wide ranges of the inclination angle (0 ≤ γ ≤ π/2), the Richardson number (0.01 ≤ Ri ≤ 100), the Hartmann number (0 ≤ Ha ≤ 100), the amplitude ratio (0 ≤ ε ≤ 1) and the phase deviation (0 ≤ ϕ ≤ π). The results indicate that the rate of heat transfer along the heated walls is enhanced on increasing either Hartmann number or inclination angle. Average Nusselt number is also, increased with increasing of the amplitude ratio for all values of the phase deviation. The non-uniform heating on both walls provides higher heat transfer rate than non-uniform heating of one wall
Some correlations of forced convection burn-out data are based on the approximate linearity of the relationship between burn-out heat flux and the channel-averaged quality at the burn-out point. These correlations perform satisfactorily on data obtained from uniformly heated configurations. Therefore the further inference is sometimes made that the burn-out heat flux is uniquely related to the quality, and that the burn-out in non-uniformly heated configurations can be calculated from measurements made with uniform heating. This report presents burn-out data for Freon 12 flowing vertically upwards through both uniformly and non-uniformly heated round tubes. This data shows that the quality at burn-out does depend on the heat flux profile, and that the inference mentioned above is not justified. (author)
International symposium on transient convective heat transfer: book of abstracts
The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting
In the heat transfer studies by forced convection, we have few data about behavior of the fluids in an annular channel heated by a concentric pipe, such date is necessary to know the heat transfer coefficient that establish the interchange of energy and the thermic properties of the fluid with the geometry of the flow. In this work the objective, was to compare some empirical correlations that we needed for determinate the heat transfer coefficient for annular channels, where we obtained similar at the theoretical results of an experiment made by Miller and Benforado. It is important to know such coefficients because we can determinate the heat quantity transmitted to a probe zone, in which we simulate a nuclear fuel element that developed huge heat quantity that must be dispersed in short time. We give theoretical data of the heat forced transfer convection and we analyzed the phenomena in annular channels given some empirical correlations employed by some investigators and we analyzed each one. (Author)
Khurana, Deepak; Choudhary, Rajesh; Subudhi, Sudhakar
2016-04-01
Nanofluid is the colloidal suspension of nanosized solid particles like metals or metal oxides in some conventional fluids like water and ethylene glycol. Due to its unique characteristics of enhanced heat transfer compared to conventional fluid, it has attracted the attention of research community. The forced convection heat transfer of nanofluid is investigated by numerous researchers. This paper critically reviews the papers published on experimental studies of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO based nanofluids dispersed in water, ethylene glycol and water-ethylene glycol mixture. Most of the researchers have shown a little rise in pressure drop with the use of nanofluids in plain tube. Literature has reported that the pumping power is appreciably high, only at very high particle concentration i.e. more than 5 %. As nanofluids are able to enhance the heat transfer at low particle concentrations so most of the researchers have used less than 3 % volume concentration in their studies. Almost no disagreement is observed on pressure drop results of different researchers. But there is not a common agreement in magnitude and mechanism of heat transfer enhancement. Few studies have shown an anomalous enhancement in heat transfer even at low particle concentration. On the contrary, some researchers have shown little heat transfer enhancement at the same particle concentration. A large variation (2-3 times) in Nusselt number was observed for few studies under similar conditions.
Asirvatham, Lazarus Godson; Vishal, Nandigana; Gangatharan, Senthil Kumar; Lal, Dhasan Mohan
2009-01-01
The present work is an experimental study of steady state convective heat transfer of de-ionized water with a low volume fraction (0.003% by volume) of copper oxide (CuO) nanoparticles dispersed to form a nanofluid that flows through a copper tube. The effect of mass flow rate ranging from (0.0113 kg/s to 0.0139 kg/s) and the effect of inlet temperatures at 100C and 17 0C on the heat transfer coefficient are studied on the entry region under laminar flow condition. The results have shown 8% e...
This study investigates the role of latent heat transfer, in connection with vaporization of a thin liquid film on the tube wall, in the laminar mixed convection flows under the simultaneous influences of combined buoyancy effects of thermal and mass diffusion. Major non-dimensional groups identified are Gr/sub T/, Gr/sub M/, Re, Pr, Sc and phi. Results are specifically presented for an air-water system under various conditions. The effects of the liquid film temperature, the Reynolds number and the relative humidity of the moist air in the ambient on the momentum, heat and mass transfer in the flow are examined in great detail. Tremendous enhancement in heat transfer due to the transport of the latent heat of vaporization is clearly demonstrated
Steady, three-dimensional, internally heated convection
Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x104 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection
Internally heated convection and Rayleigh-B\\'enard convection
Goluskin, David
2015-01-01
This work reviews basic features of both internally heated (IH) convection and Rayleigh-B\\'enard (RB) convection, along with findings on IH convection from laboratory experiments and numerical simulations. In the first chapter, six canonical models of convection are described: three configurations of IH convection driven by constant and uniform volumetric heating, and three configurations of RB convection driven by the boundary conditions. The IH models are distinguished by differing pairs of thermal boundary conditions: top and bottom boundaries of equal temperature, an insulating bottom with heat flux fixed at the top, and an insulating bottom with temperature fixed at the top. The RB models also are distinguished by whether temperatures or heat fluxes are fixed at the top and bottom boundaries. Integral quantities important to heat transport are discussed, including the mean fluid temperature, the mean temperature difference between the boundaries, and the mean convective heat transport. Integral relations...
Natural convection with combined driving forces
Ostrach, S.
1980-01-01
The problem of free and natural convection with combined driving forces is considered in general and all possible configurations are identified. Dimensionless parameters are discussed in order to help categorize the various problems, and existing work is critically evaluated. Four distinct cases are considered for conventional convection and for the situation when the body force and the density gradient are parallel but opposed. Considerable emphasis is given to unstable convection in horizontal layers.
Laminar Mixed Convection Heat Transfer Correlation for Horizontal Pipes
This study aimed at producing experimental results and developing a new heat transfer correlation based upon a semi-empirical buoyancy coefficient. Mixed convection mass transfers inside horizontal pipe were investigated for the pipe of various length-to-diameters with varying Re. Forced convection correlation was developed using a very short cathode. With the length of cathode increase and Re decrease, the heat transfer rates were enhanced and becomes higher than that of forced convection. An empirical buoyancy coefficient was derived from correlation of natural convection and forced convection with the addition of L/D. And the heat transfer correlation for laminar mixed convection was developed using the buoyancy coefficient, it describes not only current results, but also results of other studies. Mixed convection occurs when the driving forces of both forced and natural convections are of comparable magnitude (Gr/Re2∼1). It is classical problem but is still an active area of research for various thermal applications such as flat plate solar collectors, nuclear reactors and heat exchangers. The effect of buoyancy on heat transfer in a forced flow is varied by the direction of the buoyancy force. In a horizontal pipe the direction of the forced and buoyancy forces are perpendicular. The studies on the mixed convections of the horizontal pipes were not investigated very much due to the lack of practical uses compared to those of vertical pipes. Even the definitions on the buoyancy coefficient that presents the relative influence of the forced and the natural convections, are different by scholars. And the proposed heat transfer correlations do not agree
Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re5). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.
Future fusion reactor devices such as ITER or JT-60SA will produce thermonuclear fusion reaction in plasmas at several millions of degrees. The confinement in the center of the chamber is achieved by very intense magnetic fields generated by superconducting magnets. These coils have to be cooled down to 4.4 K through a forced flow of supercritical helium. The cyclic behavior of the machines leads to pulsed thermal heat loads which will have to be handled by the refrigerator. The HELIOS experiment built in CEA Grenoble is a scaled down model of the helium distribution system of the tokamak JT-60SA composed of a saturated helium bath and a supercritical helium loop. The thesis work explores HELIOS capabilities for experimental and numerical investigations on three heat load smoothing strategies: the use of the saturated helium bath as an open thermal buffer, the rotation speed variation of the cold circulator and the bypassing of the heated section. The developed model describes well the physical evolutions of the helium loop (pressure, temperature, mass flow) submitted to heat loads observed during experiments. Advanced controls have been tested and validated to improve the stability of the refrigerator and to optimize the refrigeration power. (author)
Heat transfer in turbulent mixed convection
The contents of this book are: Basic Equations of Convective Heat Transfer; Basic Information on the Theory of Turbulent Heat Transfer in Flow Near Walls; Heat Transfer in Laminar Mixed Convection; Turbulent Mixed Convection in Boundary Layers; Turbulent Flow and Heat Transfer in Horizontal Channels; Turbulent Flow and Heat Transfer in Vertical Channels; and Gravitational Effects on Heat Transfer in a Single-Phase Fluid Near the Critical Point
Terminal project heat convection in thin cylinders
Heat convection in thin cylinders and analysis about natural convection for straight vertical plates, and straight vertical cylinders submersed in a fluid are presented some works carry out by different authors in the field of heat transfer. In the part of conduction, deduction of the equation of heat conduction in cylindrical coordinates by means of energy balance in a control volume is presented. Enthalpy and internal energy are used for the outlining of the equation and finally the equation in its vectorial form is obtained. In the convection part development to calculate the Nusselt number for a straight vertical plate by a forces analysis, an energy balance and mass conservation over a control volume is outlined. Several empiric correlations to calculate the Nusselt number and its relations with other dimensionless numbers are presented. In the experimental part the way in which a prototype rode is assembled is presented measurements of temperatures attained in steady state and in free convection for working fluids as air and water are showed in tables. Also graphs of Nusselt numbers obtained in the experimental way through some empiric correlations are showed (Author)
Highlights: → ANN was trained to predict the CHF with a better accuracy than GA. → CHF increases with jet velocity. → CHF decreases with an increase in L/d and the number of jets. → CHF increases at first and then decreases with an increase of pressure. - Abstract: In this paper, a three-layer Back Propagation (BP) algorithm artificial neural network (ANN) for predicting critical heat flux (CHF) in saturated forced convective boiling on a heated surface with impinging jets was trained successfully with a root mean square (RMS) error of 17.39%. The input parameters of the ANN are liquid-to-vapor density ratio, ρl/ρv, the ratio of characteristic dimension of the heated surface to the diameter of the impinging jet, L/d, reciprocal of the Weber number, 2σ/ρlu2(L - d), and the number of impinging jets, Nj. The output is dimensionless heat flux, qco/ρvHfgu. Based on the trained ANN, the influence of principal parameters on CHF has been analyzed as follows. CHF increases with an increase in jet velocity and decreases with an increase in L/d and Nj. CHF increases with an increase in pressure at first and then decreases. Besides, a new correlation was generalized using genetic algorithm (GA) as a comparison with ANN to confirm the advantage of ANN.
Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael
2012-01-30
The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850ÃÂÃÂÃÂÃÂC for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloysÃÂÃÂ¢ÃÂÃÂÃÂÃÂ weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in two different diameter channels (0.083ÃÂÃÂ¢ÃÂÃÂÃÂÃÂ and 0.370ÃÂÃÂ¢ÃÂÃÂÃÂÃÂ). In the 0.083ÃÂÃÂ¢ÃÂÃÂÃÂÃÂ channel, the experimental heat transfer coefficient was shown to agree with values obtained from heat transfer correlations used for water. In the 0.370ÃÂÃÂ¢ÃÂÃÂÃÂÃÂ D channel, the experimental heat transfer coefficient data was predictable by either a correlation for mixed convection, or forced convection depending on the value of Gr*/Re. These experiments provided new insights into the construction and operation of molten salt flow systems. The selection of multi-component salts for molten salt flow systems requires knowledge of properties such as melting point, heat capacity, density, and viscosity of these salts. Theoretical models have been developed for the prediction of these properties of multi-component salts.
Experimental study of turbulent forced convection in vertical eccentric annulus
Hosseini, R.; Ramezani, M.; Mazaheri, M.R. [Mechanical Engineering Dept., Amirkabir Univ. of Technology, 424 Hafez Ave., P.O. Box 15875-4413, Tehran (Iran)
2009-09-15
Forced convection in an open-ended vertical eccentric annulus with different eccentricities has been experimentally studied with several heat fluxes and inlet air velocities. Constant heat flux outer tube and insulated inner tube boundary conditions were used. The wall temperature of the outer tube was measured along the length for different eccentricities. Results indicate that with the increase of eccentricity, the convection heat transfer coefficient increases. Also, as the Reynolds number is increased a crest is formed in the temperature variation along the length. An empirical relation is derived for the Nusselt number as a function of the Reynolds number and eccentricity. (author)
Experimental study of turbulent forced convection in vertical eccentric annulus
Forced convection in an open-ended vertical eccentric annulus with different eccentricities has been experimentally studied with several heat fluxes and inlet air velocities. Constant heat flux outer tube and insulated inner tube boundary conditions were used. The wall temperature of the outer tube was measured along the length for different eccentricities. Results indicate that with the increase of eccentricity, the convection heat transfer coefficient increases. Also, as the Reynolds number is increased a crest is formed in the temperature variation along the length. An empirical relation is derived for the Nusselt number as a function of the Reynolds number and eccentricity.
Forced and natural convection in aggregate-laden nanofluids
A number of experimental and theoretical studies of convective heat transfer in nanofluids (liquid suspensions of nanoparticles, typically with features below 100 nm in size) reveal contrasting results; nanoparticles can either enhance or reduce the convective heat transfer coefficient. These disparate conclusions regarding the influence of nanoparticles on convective heat transfer may arise due to the aggregation of nanoparticles, which is often not considered in studies of nanofluids. Here, we examine theoretically forced and natural convective heat transfer of aggregate-laden nanofluids using Monte Carlo-based models to determine how the aggregate morphology influences the convective heat transfer coefficient. Specifically, in this study, it is first shown that standard heat transfer correlations should apply to nanofluids, and the main influence of the nanoparticles is to alter suspension thermal conductivity, dynamic viscosity, density, specific heat, and thermal expansion coefficient. Aggregated particles in suspension are modeled as quasi-fractal aggregates composed of individual primary particles described by the primary particle radius, number of primary particles, fractal (Hausdorff) dimension, pre-exponential factor, and degree of coalescence between primary particles. A sequential algorithm is used to computationally generate aggregates with prescribed morphological descriptors. Four types of aggregates are considered; spanning the range of aggregate morphologies observed in nanofluids. For each morphological type, the influences of aggregates on nanofluid dynamic viscosity and thermal conductivity are determined via first passage-based Brownian dynamics calculations. It is found that depending on both the material properties of the nanoparticles as well as the nanoparticle morphology, the addition of nanoparticles to a suspension can either increase or decrease both the forced and natural convective heat transfer coefficients, with both a 51% increase and a 32% decrease in the heat transfer coefficient achievable at particle volume fractions of 0.05. This study shows clearly that the influence of particle morphology needs to be accounted for in all studies of heat transfer in nanofluids.
Approximate physical burnout model for forced convection of saturated fluid
Approximate physical burnout model for forced convection of saturated fluid is considered. Relationships for determining critical heat flux are presented. They correspond satisfactorily with experimental data. Experimental data on burnout in two-phase flow for various fluids including water and helium are presented
This paper provides information on heat transfer enhancement due to jet mixing inside a cylindrical enclosure. The work addresses conservative heat transfer assumptions regarding mixing and condensation that have typically been incorporated into passive containment design analyses. The current research presents an interesting possibility for increasing decay heat removal of passive containment systems under combined natural and forced convection. Eliminating these conservative assumptions could provide the basis for a change of containment design and reduce the construction cost. It is found that the ratio of forced- and free convection Nusselt numbers can be predicted as a function of the Archimedes number and a correlated factor accounting for jet orientation and enclosure geometry. To use the small-scale tests for large containment design, scale-up methods and criteria are important for matching the key governing parameters and fluid properties. In the present experiment, a cylindrical enclosure was constructed with a vertical wall of 2.29-m diameter and 0.8-m height and a vertically adjustable ceiling. A horizontal copper plate was installed at the bottom to provide an isothermal heating surface. Cold air was injected at several positions with varying pipe diameters and injecting orientations and was removed from the top of the enclosure. The experiment was performed with an extensive set of tests to study the combined natural- and forced convection heat transfer in a cylindrical enclosure mixed by an injected jet. The goals are to evaluate the key parameters governing the heat transfer augmentation by a forced jet and to investigate the effect of geometric factors, including jet diameter, jet injection orientation, and enclosure geometry (aspect ratio). Flow velocity measurement further provides a better understanding of the flow patterns developed inside the enclosure, which will determine the effectiveness of the whole volume mixing process. An additional experiment with a vertically cooled wall, similar to the condition of a passive containment cooling surface, is under construction. It will be used for further investigation of similar phenomena for steam condensation in the presence of non-condensable gases. From the current study with the cylindrical enclosure, it was found that the augmentation of natural-convection heat transfer by a forced jet is primarily determined by the jet Reynolds number, while the injecting nozzle diameter has a relatively weak effect. The jet orientation also plays an important role in determining the augmentation ratio, and of the four different jet orientations studied here, vertical downward injection at the center of the enclosure gives the highest augmentation, while azimuthal injection gives the lowest. The enclosure geometry and aspect ratio are also important factors, depending on the jet orientation. A combining rule is employed with a weighted relation to balance the contributions from separate heat-transfer correlations representing natural and forced dominated convections. It was found that under natural convection without the jet, the mean Nusselt number inside the large enclosure can be correlated by the enclosure Rayleigh number, RaD1/3, and under forced convection with a strong jet, the data are well represented as a function of the jet Reynolds number, Rej2/3. According to these relationships, a correlation form predicting mixed convection inside the enclosure was developed by a function that uses the ratio of forced- and free-convection heat transfer coefficients. This form can then be further reduced to predict the augmentation ratio as a function of the Archimedes number and a correcting factor accounting for jet orientation and enclosure geometry. Figure 1 presents the heat transfer augmentation as the Nusselt number ratio of mixed convection to natural convection (NuD/Nunc) versus the Archimedes number. The data, including four injecting orientations and three different jet diameters, are well correlated for each injection mode. It is found that the injection or
Rajesh Khatri; Pankaj Agarwal
2012-01-01
In this paper heat transfer and fluid flow characteristics in a channel has been theoretically investigated. In this study, FEM is employed to analyze a fluid flow inside a channel and then solve for the heat flow transfer through the same channel. The fluid flow is expressed by partial differential equation (Poissons equation).While, heat transfer is analyzed using the energy equation. The Navier Stokes equations along with the energy equation have been solved by using simple technique. The...
Rajesh Khatri
2012-03-01
Full Text Available In this paper heat transfer and fluid flow characteristics in a channel has been theoretically investigated. In this study, FEM is employed to analyze a fluid flow inside a channel and then solve for the heat flow transfer through the same channel. The fluid flow is expressed by partial differential equation (Poisson’s equation.While, heat transfer is analyzed using the energy equation. The Navier Stokes equations along with the energy equation have been solved by using simple technique. The domain is discretized using 2626 elements and that corresponds to a total number of nodes 2842. The channel has a constant heat flux at the two walls and the threedimensional numerical simulations. Numerical solutions were obtained using commercial software Ansys Fluent. The working fluid was air (Pr=0.7. The local Nusselt numbers are obtained, which can be used inestimation of flow and heat transfer performance in a channel In addition, local Nusselt numbers, velocity magnitude and temperature profiles, and pressure profiles are analyzed. Results showed that both fluid flow and temperature flow are influenced significantly with changing entrance velocity. The overall objective of thispaper is to study the flow characteristics and heat transfer analysis inside a channel while increasing entrance velocity.
The driving force for magnetospheric convection
Johnson, F. S.
1978-01-01
Viscously driven magnetospheric models, as well as a model involving interconnection between the geomagnetic field and the magnetic field in the solar wind, have been proposed to describe the driving force for magnetospheric convection. Lack of a satisfactory theory for the interconnection in the latter model and, in the case of the viscous interaction models, inadequacies in predicting the quantity of the driving force, make these two classes of models less than successful. Accordingly, a mechanically driven magnetospheric model is proposed: solar wind plasma enters the magnetosphere around the neutral points, covers the inner surface of the magnetopause and subsequently expands, driving convection as it escapes from the open tail.
Ankur Kumar; Jyeshtharaj B Joshi; Arun K Nayak; Pallippattu K Vijayan
2015-05-01
In this paper, a review is presented on the experimental investigations and the numerical simulations performed to analyze the thermal-hydraulic performance of the air-cooled heat exchangers. The air-cooled heat exchangers mostly consist of the finned-tube bundles. The primary role of the extended surfaces (fins) is to provide more heat transfer area to enhance the rate of heat transfer on the air side. The secondary role of the fins is to generate vortices, which help in enhancing the mixing and the heat transfer coefficient. In this study, the annular and plate fins are considered, the annular fins are further divided into four categories: (1) plane annular fins, (2) serrated fins, (3) crimped spiral fins, (4) perforated fins, and similarly for the plate fins, the fin types are: (1) plain plate fins, (2) wavy plate fins, (3) plate fins with DWP, and (4) slit and strip fins. In Section 4, the performance of the various types of fins is presented with respect to the parameters: (1) Reynolds number, (2) fin pitch, (3) fin height, (4) fin thickness, (5) tube diameter, (6) tube pitch, (7) tube type, (8) number of tube rows, and (9) effect of dehumidifying conditions. In Section 5, the conclusions and the recommendations for the future work have been given.
Liquid nitrogen was used as working fluid in a tube heated in cosine distribution to study burn-out phenomena in the present experiment. Two types of burn-out were observed. One occurred when flow pattern changed from churn flow or slug flow to annular flow. Another one is DNB phenomena when the flow was unstable. (author)
V Vasu; K Rama Krishna; A C S Kumar
2007-09-01
Nanoﬂuids are a new class of heat transfer ﬂuids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base ﬂuid such as water, ethylene glycol, engine oil etc. signiﬁcantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanoﬂuids. This paper presents a systematic literature survey to exploit the characteristics of nanoﬂuids, viz., thermal conductivity, speciﬁc heat and other thermal properties. An empirical correlation for the thermal conductivity of Al2O3 + water and Cu + water nanoﬂuids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make ﬂuids embedded with nanomaterials as excellent candidates for future applications.
Effects of rib size and arrangement on forced convective heat transfer in a solar air heater channel
Skullong, Sompol; Thianpong, Chinaruk; Promvonge, Pongjet
2015-10-01
The article presents an experimental investigation on turbulent heat transfer and friction loss behaviors of airflow through a constant heat-fluxed solar air heater channel fitted with rib turbulators. The experiment was conducted for the airflow rate in terms of Reynolds numbers based on the hydraulic diameter of the channel in a range of 5000-24,000. In the present work, a comparative study between square and thin ribs (90°-rib) with three rib arrangements, namely, one ribbed wall (or single rib), in-line and staggered ribs on two opposite walls was first introduced. The study shows a significant effect of the presence of the ribs on the heat transfer rate and friction loss over the smooth wall channel. The comparison made at a single rib pitch and height also revealed that the thin rib performs better than the corresponding square one. Among the three arrangements, the in-line rib array provides higher heat transfer and friction loss than the staggered and the single one. However, the staggered thin rib provides the highest thermal performance. With this reason, only the staggered thin ribs at four different relative heights (BR = 0.1, 0.2, 0.3 and 0.4) and three relative pitches (PR = 0.5, 0.75 and 1.33) are investigated further. It is found that the staggered rib at BR = 0.4 and PR = 0.5 yields the highest heat transfer and friction factor but the maximum thermal performance is at BR = 0.2 and PR = 0.75.
Internally heated convection and Rayleigh-Bnard convection
Goluskin, David
2016-01-01
This Brief describes six basic models of buoyancy-driven convection in a fluid layer: three configurations of internally heated convection and three configurations of Rayleigh-Bnard convection. The author discusses the main quantities that characterize heat transport in each model, along with the constraints on these quantities. This presentation is the first to place the various models in a unified framework, and similarities and differences between the cases are highlighted. Necessary and sufficient conditions for convective motion are given. For the internally heated cases only, parameter-dependent lower bounds on the mean fluid temperature are proven, and results of past simulations and laboratory experiments are summarized and reanalyzed. The author poses several open questions for future study.
Amnart Boonloi
2014-01-01
Full Text Available The influences of modified V-shaped baffle in a square channel for heat transfer and thermal performance enhancement are presented numerically in three Dimensional (3D. The V-shaped baffles are modified in order to comfortable to installation in the square channel. The plates are used for clamping on both the upper and lower V-shaped baffles resulting the modified V-shaped baffle like orifice plate called V-shaped orifice tubulators, VOT. The effects of Blockage Ratios (BR = 0.05-0.20, flow attack angles (? = 20, 30 and 45 and flow directions (V-Downstream and V-Upstream with a single Pitch Ratio (PR = 1 are investigated for Reynolds number based on the hydraulic diameter of the square channel (Dh, Re = 100-2000. The fully developed periodic flow and heat transfer are applied for the computational domain. The SIMPLE algorithm and the finite volume method are used in the current study. The numerical results show that the use of VOT not only increasing heat transfer rate, but also rise up very enlarge pressure loss due to reducing the flow area of the cross sectional area. In addition, the maximum thermal enhancement factors are found around 2.4 and 2.5 for BR = 0.10, ? = 30 at the highest Reynolds number of V-Downstream and V-Upstream, respectively.
Nucleate boiling for forced convection
Flow regimes during the boiling in channels are reviewed. During the subcooled boiling and during the boiling with small steam content the nucleation and heat transfer processes are similar to the pool boiling processes. At the steam amount increase the flow structure changes, that is accompanied by great increase of rates both of liquid and steam phases and by the change of heat transfer mechanism that differs greatly from that during the pool boiling. Local void fracture can be well predicted by semiempirical methods based on physical models. Empirical ratios for pressure drop are based on experiments with water and usually are of +-30% accuracy
Nstor Enrique, Cerquera Pea; Yaneth Liliana, Ruiz Osorio; Eduardo, Pastrana Bonilla.
2010-04-01
Full Text Available Teniendo como base la infraestructura existente de un horno tradicional de curado de tabaco, se rediseo e implement en l un sistema de intercambio de calor por conveccin forzada que funciona con cisco de caf como combustible. Este horno de curado de tabaco por conveccin forzada USCO-MADR fue e [...] valuado durante el periodo de cosecha, logrndose un manejo controlado de las variables de temperatura y humedad relativa dentro de l durante las tres etapas del curado de la hoja de tabaco; el equipo utilizado tuvo un excelente desempeo al emplear cisco de caf como combustible con los siguientes consumos durante el proceso de curado: en la fase de amarillamiento, 8,92 kilogramos por hora; en la de secado de pao y fijacin de color, 17,75 kilogramos por hora; y en la de secado de vena, 19,29 kilogramos por hora; el anlisis comparativo de los costos operativos del horno evaluado, con los ajustes propuestos a ste, permiten presentarlo a la cadena de tabaco como una alternativa promisoria. Abstract in english A traditional oven for curing tobacco leaves was redesigned (based on existing infrastructure); a forced-convection heat exchanger system was implemented in it which worked with coffee hulls as fuel. This oven (called a forced-convection tobacco leaf curing oven) was evaluated during the harvesting [...] season. It was found that temperature and relative humidity inside the furnace could be controlled with this assembly during the three stages involved in curing tobacco leaves. The equipment used performed excellently when using coffee hulls as fuel, having the following approximate consumption during curing: 8.92 kilograms per hour during the yellowing stage, 17.75 kilograms per hour during the leaf drying and color fixation phase and 19.29 kilograms per hour during the stem drying stage. Comparative analysis of the ovens operating costs along with the proposed adjustments to be made to it would allow its implementation as a promising alternative in the existing tobacco chain.
Tests for removal of decay heat by natural convection
Interim storage technology for spent fuel by dry storage casks have been investigated. The casks are vertically placed in a storage building. The decay heat is removed from the outer cask surface by natural convection of air entering from the building wall to the roof. The air flow pattern in the storage building was governed by the natural driving pressure difference and circulating flow. The purpose of this study is to understand the mechanism of the removal of decay heat from casks by natural convection. The simulated flow conditions in the building were assumed as a natural and forced combined convection and were investigated by the turbulent quantities near wall. (author)
Full text of publication follows: The prediction of the Critical Heat Flux (CHF) in a heat flux controlled boiling heat exchanger is important to assess the maximal thermal capability of the system. In the case of a nuclear reactor, CHF margin gain (using improved mixing vane grid design, for instance) can allow power up-rate and enhanced operating flexibility. In general, current nuclear core design procedures use quasi-1D approach to model the coolant thermal-hydraulic conditions within the fuel bundles coupled with fully empirical CHF prediction methods. In addition, several CHF mechanistic models have been developed in the past and coupled with 1D and quasi-1D thermal-hydraulic codes. These mechanistic models have demonstrated reasonable CHF prediction characteristics and, more remarkably, correct parametric trends over wide range of fluid conditions. However, since the phenomena leading to CHF are localized near the heater, models are needed to relate local quantities of interest to area-averaged quantities. As a consequence, large CHF prediction uncertainties may be introduced and 3D fluid characteristics (such as swirling flow) cannot be accounted properly. Therefore, a fully mechanistic approach to CHF prediction is, in general, not possible using the current approach. The development of CHF-enhanced fuel assembly designs requires the use of more advanced 3D coolant properties computations coupled with a CHF mechanistic modeling. In the present work, the commercial CFD code CFX-5 is used to compute 3D coolant conditions in a vertical heated tube with upward flow. Several CHF mechanistic models at low quality available in the literature are coupled with the CFD code by developing adequate models between local coolant properties and local parameters of interest to predict CHF. The prediction performances of these models are assessed using CHF databases available in the open literature and the 1995 CHF look-up table. Since CFD can reasonably capture 3D fluid flow characteristics in fuel rod bundles, this will eventually allow for numerical assessment of CHF performance of newly developed fuel assembly designs for scoping purposes before actual CHF testing. (authors)
Free convection heat transfer to supercritical helium
The study of cryogenic free convective heat transfer from a sphere to supercritical helium is reported. The free convective heat transfer coefficient has been measured within the region of 4.2 to 25 K and 3 to 35 atmospheres. Measurements were made for sphere to helium temperature difference of 0.1 to 7 K. (author)
Mechanistic modeling of CHF in forced-convection subcooled boiling
Because of the complexity of phenomena governing boiling heat transfer, the approach to solve practical problems has traditionally been based on experimental correlations rather than mechanistic models. The recent progress in computational fluid dynamics (CFD), combined with improved experimental techniques in two-phase flow and heat transfer, makes the use of rigorous physically-based models a realistic alternative to the current simplistic phenomenological approach. The objective of this paper is to present a new CFD model for critical heat flux (CHF) in low quality (in particular, in subcooled boiling) forced-convection flows in heated channels
Driving forces: Slab subduction and mantle convection
Hager, Bradford H.
1988-01-01
Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.
Fustinoni, D.; Gramazio, P.; Colombo, L.; Niro, A.
2015-11-01
In this paper we present experimental results for a rectangular channel with the lower and upper walls configured with V-shaped broken ribs pointing both upward and downward the flow stream, as well as in a mixed configuration. Results for V-shaped ribs upward pointing are also reported for comparison. The duct cross-section is 120-mm wide and 12-mm height; the rib- roughened walls are operated at fixed temperature whereas the channel side walls are adiabatic. The ribs have square cross section of 2 mm in side, a V-apex angle of 60°, and a pitch-to-side ratios of 10 and 40. Reynolds number has been varied between 700 and 7500. The results show that the flow regime seems to be turbulent even at the lowest tested value of Re, and the friction factor is quite independent of Re, i.e., the typical trend for k-roughened surfaces. Broken and continued ribs seems to perform with no evident differences between them, except at the lowest values of Re while prevailing the former or the latter according to p/e. Anyway, adopting ribbed surface is always advantageous and allows a maximum heat transfer enhancement factor of 4.9.
EXPERIMENTAL AND NUMERICAL STUDY OF FORCED CONVECTION IN ENGINE BLOCK
BELSARE S.N.
2014-04-01
Full Text Available Experiments were conducted to study forced convection in three different engine blocks. Current study uses three engine blocks machined from plain Aluminium. Plain Cylinder Block, Cylinder Block with fins & Square Block with fins is used. Inside the cylinder block fine heaters were fitted to mimic heating at different locations. Temperatures at various locations were measured. Few experimental data is compared with CFD results by Fluent.
Thermal interaction between free convection and forced convection along a vertical conducting wall
Shu, Jian-Jun
2015-01-01
A theoretical study is presented in this paper to investigate the conjugate heat transfer across a vertical finite wall separating two forced and free convection flows at different temperatures. The heat conduction in the wall is in the transversal direction and countercurrent boundary layers are formed on the both sides of the wall. The governing equations of this problem and their corresponding boundary conditions are all cast into a dimensionless form by using a non-similarity transformation. These resultant equations with multiple singular points are solved numerically using a very efficient singular perturbation method. The effects of the resistance parameters and Prandtl numbers on heat transfer characteristics are investigated.
Pattern formation in spatially forced thermal convection
In this paper, we present experimental results on the interplay between two different symmetry breaking mechanisms in a pattern forming system, namely inclined layer convection (ILC) with a spatially modulated heated plate. By varying the relative strength and relative orientation, we explored in detail the interplay of these symmetry breaking mechanisms. We found a stabilization of spatio-temporal chaos and resonant interactions that led to superlattice patterns. The fundamental mechanisms observed should be equally applicable to other pattern forming systems. (paper)
This paper reports an experimental study on flow boiling of pure refrigerants R134a and R123 and their mixtures in a uniformly heated horizontal tube. The flow pattern was observed through tubular sight glasses with an internal diameter of 10 mm located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6MPa in the heat flux ranges of 5-50kW/m2, vapor quality 0-100 percent and mass velocity of 150-600 kg/m2s. Both in the nucleate boiling-dominant region at low quality and in the two-phase convective evaporation region at higher quality where nucleation is supposed to be fully suppressed, the heat transfer coefficient for the mixture was lower than that for an equivalent pure component with the same physical properties as the mixture. The reduction of the heat transfer coefficient in mixture is explained by such mechanisms as mass transfer resistance and non-linear variation in physical properties etc. In this study, the contribution of convective evaporation, which is obtained for pure refrigerants under the suppression of nucleate boiling, is multiplied by the composition factor by Singal et al. (1984). On the basis of Chen's superposition model, a new correlation is presented for heat transfer coefficients of mixture
The shell side heat transfer and pressure drop to water flowing counter were experimentally investigated on the basis of the overall heat transfer coefficient. The investigation was intended to identify ways to get higher performance for the cooler in a BWR nuclear power plant. The following three conclusions were reached in the study. (1) From estimated performance of the heat exchanger using the overall heat transfer coefficient based on the outside area of the tube K0, performance of this heat exchanger was enhanced 92% as compared with the measured performance of the conventional segmental heat exchanger. Assuming that the fouling factor is Rf = 8.6 x 10-2 m2K/kW, the former was enhanced about 23%. (2) The tube side pressure drop ΔPt = 20 kPa and the shell side pressure drop ΔPs = 70 kPa were obtained, and they were within the allowable value ΔPa = 80 kPa. The shell side pressure drop of the standard spacer could be decreased 20% as compared with that of the low pressure drop spacer. (3) The enhancement constant of heat transfer of the low pressure drop spacer with thin plate-type supports was about 1.2 times as large as that of the standard spacer. The heat exchanger with the low pressure drop spacer was about 1.6 times more compact than that using the standard spacer. (author)
Latent Heating Processes within Tropical Deep Convection
van den Heever, S. C.; Mcgee, C. J.
2013-12-01
It has been suggested that latent heating above the freezing level plays an important role in reconciling Riehl and Malkus' Hot Tower Hypothesis (HTH) with observational evidence of diluted tropical deep convective cores. In this study, recent modifications to the HTH have been evaluated through the use of Lagrangian trajectory analysis of deep convective cores simulated using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated microphysical, surface and radiation parameterization schemes. Idealized, high-resolution simulations of a line of tropical convective cells have been conducted. A two-moment microphysical scheme was utilized, and the initial and lateral boundary grid conditions were obtained from a large-domain CRM simulation approaching radiative convective equilibrium. As the tropics are never too far from radiative convective equilibrium, such a framework is useful for investigating the relationships between radiation, thermodynamics and microphysics in tropical convection. Microphysical impacts on latent heating and equivalent potential temperature (θe) have been analyzed along trajectories ascending within convective regions. Changes in θe along backward trajectories are partitioned into contributions from latent heating due to ice processes and a residual term that is shown to be an approximate representation of mixing. It is apparent from the CRM simulations that mixing with dry environmental air decreases θe along ascending trajectories below the freezing level, while latent heating due to freezing and vapor deposition increase θe above the freezing level. The along-trajectory contributions to latent heating from cloud nucleation, condensation, evaporation, freezing, deposition, and sublimation have also been quantified. Finally, the source regions of trajectories reaching the upper troposphere have been identified. The analysis indicates that while much of the air ascending within convective updrafts originates from above the lowest 2 km AGL, the strongest updrafts are composed of air from closer to the surface. Thus, both the boundary layer and mid-level inflow appears to play an important role in deep convection developing within moist environments.
Kodama, Shigeo, E-mail: skodama@neltd.co.jp [Nuclear Engineering Ltd., 1-3-7, Tosabori, Nishi Ward, Osaka 550-0001 (Japan); Yoshida, Kenji; Kataoka, Isao [Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)
2014-03-15
Thermal stratification and mixing under single- and two-phase flow natural convection are studied experimentally in relation to the safety of nuclear reactors. Flow structure and temperature distribution were measured for a rod bundle with axially distributed heat flux wherein the upper parts of the heaters are heated and the lower parts are unheated. In this scenario, under conditions of single-phase flow, thermal stratification is quite appreciable. A drastic temperature change was observed at the interface of thermal stratification. In the heated region, upward flow occurred in the rod bundle and downward flow occurred at the peripheral region of the rod bundle. As the heat flux increased, radial mixing was observed between subchannels in the rod bundle. At the interface of thermal stratification, however, almost no mixing was observed. Under conditions of boiling two-phase flow, on the other hand, thermal stratification also occurred but mixing at the interface of thermal stratification was promoted due to agitation of flow induced by bubbles. As the heat flux increased and the void fraction in the heated section increased, the interface of thermal stratification gradually advanced toward the unheated section.
Forced convective drying of willow chips
Gigler, J.K. [Institute of Agricultural and Environmental Engineering, Wageningen (Netherlands); Loon, W.K.P. van; Vissers, M.M. [Wageningen University (Netherlands). Dept. of Agricultural, Environmental and Systems Technology; Bot, G.P.A. [Institute of Agricultural and Environmental Engineering, Wageningen (Netherlands); Wageningen University (Netherlands). Dept. of Agricultural, Environmental and Systems Technology
2000-07-01
The forced convective drying process of willow chips was described with a deep bed drying model. The model was validated experimentally for bed moisture content, air temperature and relative humidity, and adequately described ambient air drying of a 1 m deep willow chip bed. At the top layers of the chip bed, the model overestimated the drying rate due to vapour condensation which was not incorporated into the model. However, the drying model was an appropriate tool to gain insight into the forced convective drying process of willow chips. The drying costs of willow chips using farm facilities for storage and drying of potatoes were assessed, based on average monthly weather data. March to September was the most suitable period for drying due to favourable ambient weather conditions. In this period, energy costs for drying from a moisture content of 1-0.18kg (water) kg{sup -1} (DM), which corresponds to 50% (wet base) to 15%, ranged from 12 to 25 EURO t{sup -1} (DM), or from 28 to 59 EURO t{sup -1} (DM) when investment costs were partly accommodated. (author)
An assessment on forced convection in metal foams
Metal foams are a class of cellular structured materials with open cells randomly oriented and mostly homogeneous in size and shape. In the last decade, several authors have discussed the interesting heat transfer capabilities of these materials as enhanced surfaces for air conditioning, refrigeration, and electronic cooling applications. This paper reports an assessment on the forced convection through metal foams presenting experimental and analytical results carried out during air heat transfer through twelve aluminum foam samples and nine copper foam samples. The metal foam samples present different numbers of pores per linear inch (PPI), which vary between 5 and 40 with a porosity ranging between 0.896–0.956; samples of different heights have been studied. From the experimental measurements two correlations for the heat transfer coefficient and pressure drop calculations have been developed. These models can be successfully used to optimize different foam heat exchangers for any given application.
Double tube heat exchanger with novel enhancement: Part II - single phase convective heat transfer
Tiruselvam, R.; Chin, W.M.; Raghavan, Vijay R. [OYL Sdn. Bhd., Research and Application Department, Kuala Lumpur (Malaysia)
2012-08-15
The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction. (orig.)
Kovalenko A. V.
2015-01-01
Full Text Available In the article, we have suggested a general mathematical model of non-stationary and non-isothermal process of a binary electrolyte transfer in dilute solutions in an electro-membrane system (EMS, taking into account the joint action of gravitational convection, forced convection and electro convection in potential dynamic mode. This model is a boundary problem for a system of two-dimensional quasi-linear Navier-Stokes equation and Nernst-Planck-Poisson in partial derivatives equation. We have developed a theory of similarity of the process of heat and mass transfer in electro-membrane systems, specifically, in a desalting channel of electro dialysis apparatus, taking into account joint actions of concentration polarization, space charge, gravity convection, forced convection and electro convection. It is shown that the criterion of electro convection does not directly depend on the initial concentration, and, therefore, electro convection occurs at any initial concentration. At the same time, the criterion of concentration convection linearly dependents on the initial concentration, and, therefore, at high concentrations, concentration convection prevails, while at lower concentrations, the role of gravitational convection begins to fall whereas the role of electro convection increases. The theory of similarity of the process of heat and mass transfer in the desalting channel of electro dialysis apparatus built in this work taking into account the joint action of concentration polarization, space charge, gravity convection, forced convection and electro convection is important for engineering calculations, for scaling the results of experiments in an electro-membrane cell for industrial electro dialysis water desalting apparatus
Flow pattern at critical condition in forced convection boiling
An experimental investigation on flow pattern at critical condition (burnout) in forced convection boiling was carried out using R-113 as a working fluid. The test section was an internally heated vertical annular channel with a stainless-steel heater tube of 10 mm O. D. and a glass shroud of 22 mm I. D.. The flow pattern was identified by means of photographic observation and statistical nature of void fraction. Measurements were performed at the pressure 0.3 MPa, mass flux of 500 to 2000 kg/m2s, inlet subcooling of 0 to 58 K. (author)
A meshless method for modeling convective heat transfer
Carrington, David B [Los Alamos National Laboratory
2010-01-01
A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.
The steady laminar flow and thermal characteristics of a continuously moving vertical sheet of extruded material are studied close to and far downstream from the extrusion slot. The velocity and temperature variations, obtained by a finite volume method, are used to map out the entire forced, mixed and natural convection regimes. The effects of the Prandtl number (Pr) and the buoyancy force parameter (B) on the friction and heat transfer coefficients are investigated. Comparisons with experimental measurements and solutions by others in the pure forced and pure natural convection regions are made. In the mixed convection region, the results are compared with available finite-difference solutions of the boundary layer equations showing excellent agreement. The region close to the extrusion slot is characterized as a non-similar forced-convection dominated region in which NuxRex-1/2 drops sharply with increasing Richardson number (Rix). This is followed by a self-similar forced-convection dominated region in which NuxRex-1/2 levels off with increasing Rix until the buoyancy effect sets in. The existence and extent of the latter region depend upon the value of B. A non-similar mixed convection region where increasing buoyancy effect enhances the heat transfer rate follows. Finally, this region is followed downstream by a self-similar natural-convection dominated region in which NuxRex-1/2 approaches the pure natural convection asymptote at large Rix. Critical values of Rix to distinguish the various convection regimes are determined for different Pr and B
Prandtl Number Dependent Natural Convection with Internal Heat Sources
Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. Recently, attention is being paid to the feasibility of external vessel flooding as a severe accident management strategy and to the phenomena affecting the success path for retaining the molten core material inside the vessel. The heat transfer inside the molten core material can be characterized by the strong buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of such flow depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, the natural convection heat transfer phenomena involving the internal heat generation are represented by the modified Rayleigh number (Ra'), which quantifies the internal heat source and hence the strength of the buoyancy force. In this study, tests were conducted in a rectangular section 250 mm high, 500 mm long and 160 mm wide. Twenty-four T-type thermocouples were installed in the test section to measure temperatures. Four T-type thermocouples were used to measure the boundary temperatures. The thermocouples were placed in designated locations after calibration. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Ra' between 1.5x106 and 7.42x1015 and the Prandtl number (Pr) between 0.7 and 6.5. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained uniform. The results demonstrated feasibility of the direct heating method to simulate uniform volumetric heat generation. Particular attentions were paid to the effect of Pr on natural convection heat transfer within the rectangular pool
Natural convection in a horizontal fluid layer periodically heated from above and below.
Hossain, M Z; Floryan, J M
2015-08-01
Natural convection in a horizontal slot heated from above and from below has been considered. Each heating has a certain spatial distribution. It has been demonstrated that a wide variety of convection patterns can be generated by changing the relative position of both heating patterns. A significant intensification of convection, compared to convection resulting from heating applied at one wall only, results if there is no phase shift between both patterns, while a significant reduction of convection results from the phase shift corresponding to half of the heating wavelength. The system generates a nonzero mean shear stress at each wall for all phase shifts except shifts corresponding to half of and one full heating wavelength. This effect, which is generated within one convection cell, gives rise to a global force which may lead to a thermally induced drift of the walls if such a drift was allowed. PMID:26382511
Natural convection heat transfer in partitioned enclosures
Natural convection heat transfer within rectangular enclosure provided with a partition extended from the vertical heated wall was investigated experimentally. The experiments were carried out with water, for Rayleigh numbers in the range, 2.0 x 10/sup 7/ < Raw < 3.0 x 10/sup 8/, and an aspect ratio H/W = 2. The effect of partition on the fluid flow and temperature fields was investigated by dye-injection flow visualization and by thermocouple probes, respectively. The effect of the partition on the heat transfer across the enclosure was also studied. The slant partition, especially, the downward oriented partition reduces the convective heat transfer in comparison with that of horizontal partition. And only the horizontally projected length of partition, independently of the angle of inclination and the vertically projected length of the slant partition, effects on the Nusselt number Nuw distinctly
Solar Hot Water Heating by Natural Convection.
Noble, Richard D.
1983-01-01
Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)
Free convection film flows and heat transfer
Shang, Deyi
2010-01-01
Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.
Natural and mixed convection heat transfer from a horizontal heated pipe buried in a porous medium
The natural and mixed convection heat transfer from horizontal heated pipe (diam. 0.646'') embedded in a water saturated a porous medium (MIT Coarse Sand, porosity 30%) for three different depth of burial to pipe diameter ratios from 11.11, 9.69 and 4.55, have been studied experimentally. A galvanized steel box, 2.5 ft long x 1.25 ft wide x 0.5 ft deep, containing the coarse sand bed measuring 1.875 ft x 1.25 ft, was used for the experimental model. The pipe was heated by an electric heating element. In the mixed convection studies, water was allowed to flow in the sand bed and past the heated cylinder in a crosswise direction. The experimental results were correlated by using the normalized parameters - Nusselt number, Rayleigh number and Reynolds number, and the aspect ratios. In the case of crossflow past the pipe, the average Reynolds number at which forced convection becomes dominant over the natural convection mode of heat transfer has been experimentally determined. In order to check the accuracy of the experimental set up and instrumentations, natural convection heat transfer from the heated cylinder to water without the porous medium was conducted and the experimental results compared favorably with those of the previous investigators
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Giovanni Maria Carlomagno
2014-11-01
Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.
Heat flux sensors for infrared thermography in convective heat transfer.
Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso
2014-01-01
This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758
Boiling inception in trichlorotrifluoroethane during forced convection at high pressures
Dougall, R. S.; Lippert, T. E.
1972-01-01
The inception of bubbles during forced convection was studied experimentally by using trichlorotrifluoroethane (R-113 or Freon-113). The experiments were performed in a rectangular channel, 12.7 x 9.5 mm in cross section. Heating was from a 3.2 mm wide strip embedded in the longer side of the channel. The pressures studied ranged from 3.6 to 20.7 bar, mass velocities from 700 to 600 kg/sq m/sec, and inlet subcoolings from 26 to 97 C. Photographs of the flow were used to determine when bubbles first appeared on the heated surface. These data were compared with wall temperature measurements and inception theories. A reasonable method for calculating the complete boiling curve was found to agree with these results.
Convectively driven shear and decreased heat flux
Goluskin, David; Flierl, Glenn R; Spiegel, Edward A
2014-01-01
We report on direct numerical simulations of two-dimensional, horizontally periodic Rayleigh-B\\'enard convection, focusing on its ability to drive large-scale horizontal flow that is vertically sheared. For the Prandtl numbers ($Pr$) between 1 and 10 simulated here, this large-scale shear can be induced by raising the Rayleigh number ($Ra$) sufficiently, and we explore the resulting convection for $Ra$ up to $10^{10}$. When present in our simulations, the sheared mean flow accounts for a large fraction of the total kinetic energy, and this fraction tends towards unity as $Ra\\to\\infty$. The shear helps disperse convective structures, and it reduces vertical heat flux; in parameter regimes where one state with large-scale shear and one without are both stable, the Nusselt number of the state with shear is smaller and grows more slowly with $Ra$. When the large-scale shear is present with $Pr\\lesssim2$, the convection undergoes strong global oscillations on long timescales, and heat transport occurs in bursts. N...
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Giovanni Maria Carlomagno; Luigi de Luca; Gennaro Cardone; Tommaso Astarita
2014-01-01
This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dy...
Combined convective heat transfer of liquid sodium flowing across tube banks
In order to clarify the heat transfer characteristics of combined convection of liquid sodium, a numerical analysis is performed for liquid sodium which flows through a single horizontal row of tubes in the direction of gravity. The correlation of heat transfer characteristics between liquid sodium and ordinary fluids is also discussed. The heat transfer characteristics at large Reynolds numbers are improved when the Richardson number is increased, and the improvement rate is enlarged with increase in p/d value, since convection effect is relatively large. However heat transfer coefficients do not differ from those of forced convection at small Reynolds numbers even when the Richardson number reaches a high value because of conduction effect. A good consistence of heat transfer characteristics of combined convection between liquid sodium and air is obtained at the same Peclet number and Richardson number. This means that the fundamental heat transfer characteristics of combined convection of liquid sodium can be investigated with ordinary fluids. (author)
Determination of the convective heat transfer coefficient
Spierings, D.; Bosman, F.; Peters, T.; Plasschaert, F.
1987-01-01
The value of the convective heat transfer coefficient (htc) is determined under different loading conditions by using a computer aided method. The thermal load has been applied mathematically as well as experimentally to the coronal surface of an axisymmetric tooth model. To verify the assumptions made for the mathematical tooth model, the results predicted with this model were compared with those of an experiment using mercury as the tooth surrounding medium. For all the other thermal loadin...
Development of a mechanistic model for forced convection subcooled boiling
Shaver, Dillon R.
The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the operating conditions of the AP1000 pressurized water reactor. The effects of both axial and lateral nonuniform power distributions inside reactor fuel elements are accounted for. Boiling flows are simulated for three different computational domains of increasing complexity: a quarter-subchannel bordering a single fuel pin, two subchannels surround by an array of 2 by 3 fuel pins, and in four subchannels surrounded by an array of 3 by 3 fuel pins. The predicted behavior is consistent with expectations. In the 3 by 3 array, the two-phase coolant is predicted to flow from the hot channels to the cold channels, enhancing heat exchange between subchannels. This, in turn, demonstrates that the new model is capable of capturing the turbulence- and buoyancy-induced coolant mixing across the neighboring channels.
Behavior of bubble in subcooled boiling with forced convection, 2
The objective of this research is to observe the bubble behavior in subcooled boiling with forced convection and to investigate the conditions of heaving test with a heater which initiates isolated bubbles and with high speed motion photography. The observation was made at three inlet subcooling of 15, 30 and 45 K with pressure of 0.3 MPa, mass flux of 1000 kg/m2·s, heat flux of 35 kW/m2. At inlet subcooling of 15 K, bubble velocity is nearly constant in the field of visions for upstream and downstream area. But at the higher subcooling, bubble velocity varies greatly and bubble collapse in the camera field. (author)
Penetrative internally heated convection in two and three dimensions
Goluskin, David
2015-01-01
Convection of an internally heated fluid, confined between top and bottom plates of equal temperature, is studied by direct numerical simulation in two and three dimensions. The unstably stratified upper region drives convection that penetrates into the stably stratified lower region. The fraction of produced heat escaping across the bottom plate, which is one half without convection, initially decreases as convection strengthens. Entering the turbulent regime, this decrease reverses in two dimensions but continues monotonically in three dimensions. The mean fluid temperature, which grows proportionally to the heating rate ($H$) without convection, grows like $H^{4/5}$ when convection is strong in both two and three dimensions. The ratio of the heating rate to the fluid temperature is likened to the Nusselt number of Rayleigh-B\\'enard convection. Simulations are reported for Prandtl numbers between 0.1 and 10 and for Rayleigh numbers (defined in terms of the heating rate) up to $5\\times10^{10}$.
V.S.Daund*; D D Palande
2014-01-01
Experimental and CFD analysis is conducted in order to establish effect of geometrical fin parameters for natural convection heat transfer from vertical rectangular fin arrays.Natural convective heat transfer from rectangular vertical plates has been reviewed. Study revealed that most of the work was carried out considering various configurations. Experimental work carried on steady state natural convection heat transfer from vertical rectangular fins made of aluminum. Experim...
Experimental study of mixed convective heat transfer in narrow vertical rectangular channel, (2)
During some anticipated operational occurrences and accident conditions, which were posturated in the JRR-3 safety assessment, there is a case that core flow decreases from steady-state downward forced convective flow to zero flow and at last becomes upward flow due to the natural circulation induced between the core and the reactor pool, that is, core flow reversal occurs. During the core flow reversal, the mixed convective heat transfer becomes significant. In this case it is important to understand the heat transfer characteristics of the mixed convection to evaluate the heat transfer of the fuel plates. To investigate the heat transfer characteristics of the mixed convection, heat transfer experiments were carried out using a vertical rectangular channel with water gap of 2.5 mm, which was nearly equal to that of the subchannels of the standard fuel elements of the upgraded JRR-3. In conclusion the heat transfer correlations which can be applied for a narrow vertical channel in free, mixed and forced convections were obtained. The range of the mixed convection region was identified by the non dimensional parameter Grx/Rex21/8Pr1/2. It was confirmed that in the mixed convection in a narrow channel, the influence of the acceleration of the main flow owing to the development of the boundary layer played a important part in the promotion of the heat transfer, compared with the case along a flat plate or in a wide channel. (author)
Free surface deformation and heat transfer by thermocapillary convection
Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard
2016-04-01
Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.
Coupled heat and mass transfer in porous media has many important applications in engineering. These include the migration of moisture in fibrous insulation, the spreading of chemical pollutants in saturated soil, underground disposal of nuclear wastes and the extraction of geothermal energy. Here, similarity solutions are reported for coupled heat and mass transfer by free, forced, and mixed convection from a horizontal surface in a saturated porous medium. The present analysis shows that similarity solutions are possible for a surface maintained at a constant heat flux and mass flux condition. The governing parameters for the problem under consideration are the Lewis number Le, the buoyancy ratio N and mixed convection parameter Ra/Pe3/2. Depending on the values of N and Le, the heat and mass transfer results may range from the asymptotic free convection limit to that of the forced convection limit. The results are presented in terms of the relation between the transfer coefficients and the governing parameters
Forced convective cooling of a fin in a channel
A numerical study of forced convection in a horizontal parallel-plate channel with a transverse fin located at lower channel wall is investigated. Through the use of a stream function vorticity transformation, solution of the transformed governing equations for the system is obtained using the control-volume method with non-uniform grid. The effects of the Reynolds number, thermal conductivity ratio of fin to fluid and fin profile area on heat transfer rate of the fin are presented. The results indicate that the optimum aspect ratio of a fin corresponding to the fin with maximum heat transfer rate increases with increasing Re but decreases with K for a fixed fin profile area. In addition, the optimum aspect ratio of a fin obtained from this study for smaller fin profile area and Re tends to approach that of analytical solution assuming constant heat-transfer coefficient. Finally, good agreements are found between the numerical predictions of this study and other experimental data.
Evaluation of heat removal from vertical cylinder by natural convection
We have studied a cooling system in a maintenance facility to store low level radioactive wastes by using natural draft without forced air ventilation. A fundamental study of natural convection around the vertical cylindrical heaters was carried out experimentally and numerically, and the ambient air was used as a cooling fluid. It was found that the velocity and temperature of air at the center of the flow channel surrounded by 4 heaters was high. And also it was shown that natural heat transfer formula for system design was conservative in the interior temperature of heater due to the increase of flow rate by chimney effect. (author)
Natural convection heat transfer from helicoidal pipes
Xin, R.C.; Ebadlan, M.A. [Florida International Univ., Miami, FL (United States). Dept. of Mechanical Engineering
1995-12-31
An experimental investigation is reported on natural convection heat transfer in air from outer surface of uniformly heated helicoidal pipes with vertical and horizontal orientations. The temperatures along the flow direction and peripheral direction of the tube wall were measured. The test Rayleigh numbers range from 4,000 to 100,000. The local and average Nusselt numbers are evaluated and correlated. For the vertical case, the results are compared with those of single horizontal cylinder and column of horizontal cylinders. It is found that the heat transfer from the first turn is almost the same as that of single horizontal cylinder. The heat transfer coefficient on the outer coil wall ({psi} = 3{pi}/2) is higher than that on the inner coil wall ({psi} = 3{pi}/2) in the middle turns of the coil, due to the tube curvature. For the horizontal orientation, the results are well correlated with the tube diameter as characteristic length. The local heat transfer characteristics is discussed as well. The overall average Nusselt number of the horizontal coil is higher than that of the vertical coil in the laminar region.
Merkin, J. H.; Pop, I.
2011-09-01
The forced convection heat transfer resulting from the flow of a uniform stream over a flat surface on which there is a convective boundary condition is considered. In previous papers [5-8] it was assumed that the convective heat transfer parameter hf associated with the hot surface depended on x, where x measures distance along the surface, so that problem could be reduced to similarity form. Here it is assumed that this heat transfer parameter hf is a constant, with the result that the temperature profiles and overall heat transfer characteristics evolve as the solution develops from the leading edge. The heat transfer near the leading edge (small x), which we find to be dominated by the surface heat flux, the solution at large distances along the surface (large x), which dominated by the surface temperature, are discussed. A numerical solution to the full problem is then obtained for a range of values of the Prandtl number to join these two solution regimes.
Measurement of the convective heat-transfer coefficient
Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2014-01-01
We propose an experiment for investigating how objects cool down toward the thermal equilibrium with its surrounding through convection. We describe the time dependence of the temperature difference of the cooling object and the environment with an exponential decay function. By measuring the thermal constant tau, we determine the convective heat-transfer coefficient, which is a characteristic constant of the convection system.
The vaporisation of an appreciable quantity of a liquid in a turbulent gas stream explains the increase in the heat capacity of the fluid and the improvement in the heat-transfer coefficient. The present study makes it clear that even with a very slight vaporisation, the transfer coefficient can be much increased, the pressure drop remaining nearly constant. (authors)
Investigation of the transition from forced to natural convection in the research reactor Munich II
The new research reactor Munich II (FRM-II), which is under construction at the Technical University Munich, Germany, makes use of a newly developed compact reactor core consisting of a single fuel element, which is assembled of two concentric pipes. Between the fuel element's inner and outer pipe 113 involutely bent fuel plates are placed rotationally symmetric, forming 113 cooling channels of a constant width of 2.2 mm. After a shut down of the reactor, battery supported cooling pumps are started by the reactor safety system in order to remove the decay heat by a downwards directed forced flow. Three hours after they have been started, the cooling pumps are shut down and so-called 'natural convection flaps' are opened by their own weight. Through a flow path, which is provided by the opening of the natural convection flaps, the decay heat is given off to the water in the reactor pool after the direction of the flow has changed and an upwards directed natural convection flow has developed. At the Department for Nuclear and New Energy Systems of the Ruhr-University Bochum, Germany, a test facility has been built in order to confirm the concept of the decay heat removal in the FRM-II, to acquire data of single and two phase natural convection flows and to detect the dry out in a narrow channel. The thermohydraulics of the FRM-II are simulated by an electrically heated test section, which represents one cooling channel of the fuel element. At first experiments have been performed, which simulated the transition from forced to natural convection in the core of the FRM-II, both at normal operation and at a complete loss of the decay heat removal pumps. In case of normal operation, the transition from forced to natural convection takes place single phased. If a complete loss of the active decay heat removal system occurs, the decay heat removal is ensured by a quasi-steady two phase flow. In a second test series minimum heat flux densities leading to pressure pulsations up to limiting amplitudes of 0.1 bar, 0.2 bar and 0.3 bar at the transition from forced to natural convection have been determined. Further tests have been performed to determine minimum heat flux densities leading to boiling processes in the cooling channel and critical heat flux densities causing dry outs of the cooling channel at downwards directed forced flow. During the tests, flow reversals have been observed because of the buoyancy forces in the coolant causing a mixed convection flow. The last test series, which has been finished in March 1999, has been performed in order to determine critical heat flux densities during the transition from forced to natural convection and to measure the occurring pressure amplitudes. All results prove the possibility to remove the decay heat of the FRM-II by natural convection, even in case of a complete loss of the active decay heat removal system. Above this, large safety margins in the FRM-II concerning pressure pulsations, beginning of boiling and dry out could be verified. (author)
A study of forced convective subcooled flow boiling
Based on a simple nucleation model, parameter survey technique is used to derive a predictive correlation for boiling initiation under forced convection. Results are expressed by a semi-empirical equation which considers effects of the flow turbulence on interfacial heat transfer coefficient for evaporation and condensation of vapour bubbles during their growth. This correlation agrees within +-25% with a variety of experimental water data presently available. The bubble departure diameter and the subcooling-dependence of active nucleation sites were examined, using experimental data available. Results are expressed by empirical equations. Finally, an analytical model is presented to predict conditions for the point of net vapour generation. The model is based on the formation and growth of a bubble boundary layer adjacent to the heated wall. It is shown that the point of net vapour generation is determined by the liquid subcooling at the boiling initiation and the subcooling-dependences of bubble departure diameter and bubble flux. The result implies that the bubble ejection from bubble layer is a possible mechanism for the significant void increase even at high velocities. (author)
Modelling of convective heat and mass transfer in rotating flows
Shevchuk, Igor V
2016-01-01
This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...
Endwall convective heat transfer for bluff bodies
Wang, Lei; Salewski, Mirko; Sundén, Bengt; Borg, Andreas; Abrahamsson, Hans
2012-01-01
The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study......, a single bluff body and two bluff bodies arranged in tandem are considered. Due to the formation of horseshoe vortices, the heat transfer is enhanced appreciably for both cases. However, for the case of two bluff bodies in tandem, it is found that the presence of the second bluff body decreases the...... heat transfer as compared to the case of a single bluff body. In addition, the results show that the heat transfer exhibits Reynolds number similarity. For a single bluff body, the Nusselt number profiles collapse well when the data are scaled by Re0.55; for two bluff bodies arranged in tandem, the...
Among the topics discussed are: prediction of turbulent heat transfer in flows past a cylindrical cavity; turbulent heat transfer in rotating rectangular ducts; and visualization of secondary flow patterns in an isothermally heated curved pipe. Consideration is also given to: laminar mixed convection in the entrance region of a horizontal annulus; two-dimensional mixed convection along a flat plate; mixed convection flow about slender bodies of revolution; and measurement of laminar mixed convection from an inclined surface. Additional topics discussed include: the effects of opposing buoyancy on the flow of free and wall jets; mixed convection heat transfer around a rotating heated cylinder; and combined buoyancy effects of thermal and mass diffusion on laminar forced convection heat transfer in a vertical tube
Heat transfer by natural convection in an internally heated reactor materials melt. Rev. 0
The report is structured as follows: Heat flux calculations and estimates for In-Vessel Retention (IVR); Rayleigh-Benard convection and the Rayleigh number (criterion); Free convection in the horizontal layer of a liquid which is heated by internal heating sources, and a modified Rayleigh criterion; and Turbulent convection at the reactor vessel bottom during IVR. (P.A.)
To continue with the equipment of the thermal hydraulics laboratory, it was designed thermal and mechanically an heat exchanger, to satisfy the requirements to have circuit that allows to carry out heat transfer experiments. The heat exchanger was manufactured and proven in the workshops of the Prototypes and Models Management, and it is expected that to obtain the foreseen results once completely installed the circuit, in the laboratory of thermal hydraulics of the Management of Nuclear Systems. (Author)
A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length
Natural convection in a heat-generating fluid
Experimental and theoretical studies on convective heat transfer from a heat-generating fluid confined in a closed volume are reviewed. Theoretical results are obtained by means of analytical estimates based on the relevant conservation laws and the current understanding of convective heat transfer processes. Four basic and one asymptotic regime of heat transfer are identified depending on the heat generation rate. Heat transfer in a quasi-two-dimensional geometry is analyzed. Transient heat transfer from a cooling fluid without internal heat sources is studied separately. Experimental results and theoretical predictions are compared
Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer.
El-Mesery, Hany S; Mwithiga, Gikuru
2015-05-01
A conveyor-belt dryer was developed using a combined infrared and hot air heating system that can be used in the drying of fruits and vegetables. The drying system having two chambers was fitted with infrared radiation heaters and through-flow hot air was provided from a convective heating system. The system was designed to operate under either infrared radiation and cold air (IR-CA) settings of 2000 W/m(2) with forced ambient air at 30 °C and air flow of 0.6 m/s or combined infrared and hot air convection (IR-HA) dryer setting with infrared intensity set at 2000 W/m(2) and hot at 60 °C being blown through the dryer at a velocity of 0.6 m/s or hot air convection (HA) at an air temperature of 60 °C and air flow velocity 0.6 m/s but without infrared heating. Apple slices dried under the different dryer settings were evaluated for quality and energy requirements. It was found that drying of apple (Golden Delicious) slices took place in the falling rate drying period and no constant rate period of drying was observed under any of the test conditions. The IR-HA setting was 57.5 and 39.1 % faster than IR-CA and HA setting, respectively. Specific energy consumption was lower and thermal efficiency was higher for the IR-HA setting when compared to both IR-CA and HA settings. The rehydration ratio, shrinkage and colour properties of apples dried under IR-HA conditions were better than for either IR-CA or HA. PMID:25892769
Boiling of subcooled water in forced convection
As a part of a research about water cooled high magnetic field coils, an experimental study of heat transfer and pressure drop is made with the following conditions: local boiling in tubes of small diameters (2 and 4 mm), high heat fluxes (about 1000 W/cm2), high coolant velocities (up to 25 meters/s), low outlet absolute pressures (below a few atmospheres). Wall temperatures are determined with a good accuracy, because very thin tubes are used and heat losses are prevented. Two regimes of boiling are observed: the establishment regime and the established boiling regime and the inception of each regime is correlated. Important delays on boiling inception are also observed. The pressure drop is measured; provided the axial temperature distribution of the fluid and the axial distributions of the wall temperatures, in other words the axial distribution of the heat transfer coefficients under boiling and non boiling conditions, at the same heat flux or the same wall temperatures, are taken in account, then total pressure drop can be correlated, but probably under certain limits of void fraction only. Using the same parameters, it seems possible to correlate the experimental values on critical heat flux obtained previously, which show very important effect of length and hydraulic diameter of the test sections. (authors)
Theoretical Convective Heat Transfer Model Developement of Cold Storage Using Taguchi Analysis.
Dr.N.Mukhopadhyay; Suman Debnath
2015-01-01
Energy crisis is one of the most important problems the world is facing now-a-days. With the increase of cost of electrical energy operating cost of cold storage storing is increasing which forces the increased cost price of the commodities that are kept. In this situation if the maximum heat energy(Q) is absorbed by the evaporator inside the cold room through convective heat transfer process in terms of –heat transfer due to convection and heat transfer due to condensation, more ...
Dr.N.Mukhopadhyay; Priyankar Mondal
2015-01-01
Energy crisis is one of the most important problems the world is facing now-a-days. With the increase of cost of electrical energy operating cost of cold storage storing is increasing which forces the increased cost price of the commodities that are kept. In this situation if the maximum heat energy (Q) is absorbed by the evaporator inside the cold room through conductive and convective heat transfer process in terms of –heat transfer due to conduction, convection and heat transfe...
Taherian, Hessam; Yazdanshenas, Eshagh
Due to scarcity of literature on forced-convection heat transfer in a solar collector with rhombic cross-section absorbing tubes, a series of experiments was arranged and conducted to determine heat transfer coefficient. In this study, a typical rhombic cross-section finned tube of flat-plate col......Due to scarcity of literature on forced-convection heat transfer in a solar collector with rhombic cross-section absorbing tubes, a series of experiments was arranged and conducted to determine heat transfer coefficient. In this study, a typical rhombic cross-section finned tube of flat...
An experimental investigation has been conducted to determine the local condensation heat transfer coefficient (HTC) of steam in the presence of air or helium flowing downward inside a 46-mm-i.d. vertical tube. The gas-steam mixture flow rate was measured with a calibrated vortex flowmeter before it entered the 2.54-m-long test condenser. Cooling water flow rate in an annulus around the tube was measure with a calibrated rotameter. Temperatures of the cooling water, the gas-steam mixture, and the tube inside and outside surfaces were measured at 0.3-m intervals in the test condenser. Inlet and exit pressures and temperatures of the gas-steam mixture and of the cooling water were also measured. The local heat flux was obtained from the slope of the coolant axial temperature profile and the coolant mass flow rate. It was found that for the same mass fraction of the noncondensable gas, compared with air, helium has a more inhibiting effect on the heat transfer, but for the same molar ratio, air was found to be more inhibiting. An application where there is important is the proposed advanced passive boiling water reactor design (Simplified Boiling Water Reactor), which utilizes the isolation condenser as a main component of the passive containment cooling system (PCCS)
Dielectrophoretic force-driven thermal convection in annular geometry
Yoshikawa, Harunori; Crumeyrolle, Olivier; Mutabazi, Innocent
2013-01-01
The thermal convection driven by the dielectrophoretic force is investigated in an- nular geometry under microgravity conditions. A radial temperature gradient and a radial alternating electric field are imposed on a dielectric fluid that fills the gap of two concentric infinite-length cylinders. The resulting dielectric force is regarded as thermal buoyancy with a radial effective gravity. This electric gravity varies in space and may change its sign depending on the temperature gradient and...
The practical objective of research on 'burn-out' is a reliable method giving the maximum safe rating for any water cooled reactor. Experimental work, which began at numerous centres about 10 years ago, has been concerned principally with endeavouring to understand the phenomenon as it applies to simple geometries such as round and rectangular channels. Many millions of pounds have been spent on this work and several thousand separate experimental results obtained. This considerable effort has achieved little real success in providing an explanation of 'burn-out' however. Many conflicting views have arisen and correlations so far developed have been shown to give calculated 'burn-out' heat fluxes varying by a factor of the order of 5> when applied to a typical reactor situation. While some uncertainty may be due to experimental variations, inadequate analytical effort is considered to be the primary cause of the present confused situation. To overcome this various analytical studies are being initiated by the Reactor Development Division at Winfrith and a detailed plan is being evolved for bringing effort to bear on certain fundamental aspects of boiling which have been neglected and which in some oases will require the development of special experimental techniques. This report describes the result of some work already carried out. It concerns an initial examination made on a large group of 'burn-out' data and describes the development of a correlation which predicts 'burn-out' heat fluxes to within an R.M.S. error of less than 10% over a very wide range of operating conditions including pressure. (author)
Al-Amiri, Abdalla M. [United Arab Emirates University, Mechanical Engineering Department, Al-Ain (United Arab Emirates); Khanafer, Khalil [University of Michigan, Biomedical Engineering Department, Ann Arbor, MI (United States); Lightstone, Marilyn F. [McMaster University, Mechanical Engineering Department, Hamilton, ON (Canada)
2006-09-15
A numerical study is conducted on time-dependent double-diffusive natural convection heat transfer in a horizontal annulus. The inner cylinder is heated with sinusoidally-varying temperature while the outer cylinder is maintained at a cold constant temperature. The numerical procedure used in the present work is based on the Galerkin weighted residual method of finite-element formulation by incorporating a non-uniform mesh size. Comparisons with previous studies are performed and the results show excellent agreement. In addition, the effects of pertinent dimensionless parameters such as the thermal Rayleigh number, Buoyancy ratio, Lewis number, and the amplitude of the thermal forcing on the flow and heat transfer characteristics are considered in the present study. Furthermore, the amplitude and frequency of the heated inner cylinder is found to cause significant augmentation in heat transfer rate. The predictions of the temporal variation of Nusselt and Sherwood numbers are obtained and discussed. (orig.)
Analysis of natural convection in volumetrically-heated melt pools
Sehgal, B.R.; Dinh, T.N.; Nourgaliev, R.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety
1996-12-01
Results of series of studies on natural convection heat transfer in decay-heated core melt pools which form in a reactor lower plenum during the progression of a core meltdown accident are described. The emphasis is on modelling and prediction of turbulent heat transfer characteristics of natural convection in a liquid pool with an internal energy source. Methods of computational fluid dynamics, including direct numerical simulation, were applied for investigation. Refs, figs, tabs.
Solution of heat removal from nuclear reactors by natural convection
Zitek Pavel; Valenta Vaclav
2014-01-01
This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR).The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor) for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection...
Analysis of natural convection in volumetrically-heated melt pools
Results of series of studies on natural convection heat transfer in decay-heated core melt pools which form in a reactor lower plenum during the progression of a core meltdown accident are described. The emphasis is on modelling and prediction of turbulent heat transfer characteristics of natural convection in a liquid pool with an internal energy source. Methods of computational fluid dynamics, including direct numerical simulation, were applied for investigation
A numerical study of Li-SF6 wick combustion - Forced and mixed convective burning
Damaso, R. C.; Chen, L.-D.
1992-01-01
A numerical study is conducted to study Li-SF6 wick diffusion flames under mixed convective burning conditions at a pressure of 0.01 MPa. Both planar and cylindrical wicks are considered. The model is based on a conserved scalar approach. The objective of this study is to assess the effects of particular parameters on the burning rate and heat transfer. The flat-plate solution yields a fuel mass burning rate per unit surface area following the x exp -1/2 dependence of the classical similarity solution, where x is the streamwise distance. Cylindrical wick geometries yield enhanced burning rates over planar wicks. For the case of mixed convective burning, the burning rate results approach either the forced or natural convective burning limits as ambient streamwise velocity is changed. Critical Richardson numbers specifying these burning limits are determined for a given condition. Reducing gravity results in a lower burning rate because the influence of natural convection is diminished. Under reduced gravity of 1/1000 of the sea-level value, mixed convective burning nearly resembles forced convection.
An experimental investigation on combined convective heat transfer of non-Newtonian fluids
Kim, Y.J. [Kongju National University, Kongju (Korea, Republic of)
1995-07-01
A combined convective heat transfer study for non-Newtonian fluids was experimentally performed in uniformly heated horizontal tubes with laminar flow in the thermal entry region. Velocity profiles were fully developed at the entrance of the heated sections in the tubes. Aqueous solutions of sodium carboxymethylcellulose(CMC) were used; their behavior showed a reasonably good fit into the power-law model, {tau}=K{gamma}{sup n}. The test sections were made of copper with inside diameters of 3.823 cm and 5.042 cm and lengths of approximately 300 cm. Most experimental runs displayed noticeable secondary flows caused by buoyancy; when present, secondary flows caused significant increase in the rate of heat transfer over the purely forced-convection case. A correlation, which relates the rate of heat transfer for flows with temperature-dependent properties, free convection effects, and non-Newtonian effects, was suggested. (author). 16 refs., 9 figs.
Heat flow control in thermo-magnetic convective systems using engineered magnetic fields
Lee, Jaewook; Nomura, Tsuyoshi; Dede, Ercan M.
2012-09-01
We present the design of a magnetically controlled convective heat transfer system. The underlying thermo-magnetic instability phenomenon is described, and enhanced convective fluid flow patterns are determined using non-linear programming techniques plus a design sensitivity analysis. Specifically, the magnetic fluid body force is computed by finding the optimal distribution and magnetization direction of a magnetic field source, where the objective is to minimize the maximum temperature of a closed loop heat transfer system. Sizeable fluid recirculation zones are induced by arranging magnetic field generation elements in configurations similar to Halbach arrays. Applications include improved heat flow control for electromechanical systems.
Heat removal by natural convection in a RPR reactor
In this paper natural convection in RPR reactor is analysed. The effect of natural convection valves size on cladding temperature is studied. The reactor channel heat transfer problem is solved using finite elements in a two-dimensional analysis. Results show that two valves with Φ = 0.16 m are suited to keep coolant and cladding temperatures below 730C. (author)
A Study of Nucleate Boiling with Forced Convection in Microgravity
Merte, Herman, Jr.
1999-01-01
The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research purposes. In addition, it is desirable to reduce the number of variables as much as p
Heat convection on cylinder at high Prandtl numbers
Natural convection flow on a vertical cylinder is considered here when the Prandtl numbers is large. Little work has been done in this field apart form some experimental studies which are for lower Prandtl numbers. Here, the singular perturbation technique is used to solve this problem. The method adopted is to split the flow into a thin layer close to the surface of the cylinder, surrounded by a much thicker layer where the velocity is reduced to zero. It is shown that at high Prandtl numbers, the velocity boundary layer tends to be somewhat larger due to large kinematic viscosity relative to thermal diffusivity. The motion of the outer layer, however, seems to be caused by the drag force exerted by the inner layer, not due to the buoyancy itself. The basic properties of the flow are evaluated. The heat transfer coefficient is shown to give good prediction for all ranges of Prandtl numbers
Convection heat transfer from discrete heat sources in a liquid cooled rectangular channel
Steady-state experiments are performed to study general convective heat transfer from an in-line four simulated electronic chips in a vertical rectangular channel using water as the working fluid. The experimental data covers a wide range for laminar flow under natural, mixed and forced convection conditions with Reynolds number based on channel hydraulic diameter ranging from 40 to 2220 and Reynolds number based on heat source length ranging from 50 to 2775, respectively. The heat flux ranges from 0.1 W/cm2 to 0.6 W/cm2. The inlet water temperature is at 24 deg. C. The effect of heat fluxes, flow rates and geometrical parameters such as chip number are investigated. The experimental results indicate that the heat transfer coefficient is strongly affected by Reynolds number and fully-developed values of heat transfer coefficient are reached before the first chip. Empirical correlations are developed for relations using Nusselt number, Reynolds number and Grashof number, based on channel hydraulic diameter
Convection heat transfer from discrete heat sources in a liquid cooled rectangular channel
Bhowmik, H. [Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur 1700 (Bangladesh); Tso, C.P. [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka (Malaysia); Tou, K.W.; Tan, F.L. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)
2005-11-01
Steady-state experiments are performed to study general convective heat transfer from an in-line four simulated electronic chips in a vertical rectangular channel using water as the working fluid. The experimental data covers a wide range for laminar flow under natural, mixed and forced convection conditions with Reynolds number based on channel hydraulic diameter ranging from 40 to 2220 and Reynolds number based on heat source length ranging from 50 to 2775, respectively. The heat flux ranges from 0.1W/cm{sup 2} to 0.6W/cm{sup 2}. The inlet water temperature is at 24{sup o}C. The effect of heat fluxes, flow rates and geometrical parameters such as chip number are investigated. The experimental results indicate that the heat transfer coefficient is strongly affected by Reynolds number and fully-developed values of heat transfer coefficient are reached before the first chip. Empirical correlations are developed for relations using Nusselt number, Reynolds number and Grashof number, based on channel hydraulic diameter. (author)
Time evolution simulation of heat removal in a small water tank by natural convection
One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled. (author)
Time evolution simulation of heat removal in a small water tank by natural convection
Freitas, Carlos Alberto de, E-mail: carlos.freitas1950@hotmail.com [Instituto Federal do Rio de Janeiro (IFRJ), Nilopolis, RJ (Brazil); Jachic, Joao; Moreira, Maria de Lourdes, E-mail: jjachic@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2013-07-01
One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled. (author)
Natural convective heat transfer from short inclined cylinders
Oosthuizen, Patrick H
2014-01-01
Natural Convective Heat Transfer from Short Inclined Cylinders examines a heat transfer situation of significant, practical importance not adequately dealt with in existing textbooks or in any widely available review papers. Specifically, the book introduces the reader to recent studies of natural convection from short cylinders mounted on a flat insulated base where there is an “exposed” upper surface. The authors considers the effects of the cylinder cross-sectional shape, the cylinder inclination angle, and the length-to-cross sectional size of the cylinder. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed. This book is ideal for professionals involved with thermal management and related systems, researchers, and graduate students in the field of natural convective heat transfer, instructors in graduate level courses in convective heat transfer.
An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with top subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature of the liquid metal pool, the input power to the bottom surface of the section, and the coolant temperature. (authors)
Predictions of laminar natural convection in heated cavities
Several examples of laminar, natural convection in heated cavities are discussed with illustrative calculations. These include convection in a square cavity at high Rayleigh number; in a narrow cavity at moderate aspect ratio; in a rectangular cavity heated from below; in a trapezoidal cavity, and in a rectangular cavity containing a conducting obstruction. The steady equations for the velocity, pressure and temperature are solved in the Boussinesq approximation, using a standard Galerkin formulation of the finite-element method. (author)
Cao, Y.; Faghri, A.
1991-01-01
The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.
Heat transfer of laminar mixed convection of liquid
Shang, De-Yi
2016-01-01
This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...
Pakdee, W.; Rattanadecho, P. [Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Rangsit Campus, Klong Luang, Pathumtani 12120 (Thailand)
2006-12-15
Numerical investigations of transient natural convection flow through a fluid-saturated porous medium in a rectangular cavity with a convection surface condition were conducted. Physical problem consists of a rectangular cavity filled with porous medium. The cavity is insulated except the top wall that is partially exposed to an outside ambient. The exposed surface allows convective transport through the porous medium, generating a thermal stratification and flow circulations. The formulation of differential equations is non-dimensionalized and then solved numerically under appropriate initial and boundary conditions using the finite difference method. The finite different equation handling the boundary condition of the open top surface is derived. The two-dimensional flow is characterized mainly by two symmetrical vortices driven by the effect of buoyancy. A lateral temperature gradient in the region close to the top wall induces the buoyancy force under an unstable condition. Unsteady effects of associated parameters were examined. It was found that the heat transfer coefficient, Rayleigh number and Darcy number considerably influenced characteristics of flow and heat transfer mechanisms. Furthermore, the flow pattern is found to have a local effect on the heat convection rate. (author)
Nadia Potoceanu
2007-01-01
The paper presented the most aspects of convective circulate mode of heat transfer : heat transfer through the boundary layer formed at the surface of the heat generator; heat transfer in the heat carrier and heat transfer through the boundary layer formed at the heated surface
Nie, Ji; Sobel, Adam H
2016-01-01
Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent and large latent heat release. The causal relationships between these factors are often not obvious, however, and the roles of different physical processes in producing the extreme precipitation event can be difficult to disentangle. Here, we examine the large-scale forcings and convective heating feedback in the precipitation events which caused the 2010 Pakistan flood within the Column Quasi-Geostrophic framework. A cloud-revolving model (CRM) is forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. Numerical results show that the positive feedback of convective heating to large-scale dynamics is essential in amplifying the precipitation intensity to the observed values. Orographic li...
Details of Exact Low Prandtl Number Boundary-Layer Solutions for Forced and For Free Convection
Sparrow, E. M.; Gregg, J. L.
1959-01-01
A detailed report is given of exact (numerical) solutions of the laminar-boundary-layer equations for the Prandtl number range appropriate to liquid metals (0.003 to 0.03). Consideration is given to the following situations: (1) forced convection over a flat plate for the conditions of uniform wall temperature and uniform wall heat flux, and (2) free convection over an isothermal vertical plate. Tabulations of the new solutions are given in detail. Results are presented for the heat-transfer and shear-stress characteristics; temperature and velocity distributions are also shown. The heat-transfer results are correlated in terms of dimensionless parameters that vary only slightly over the entire liquid-metal range. Previous analytical and experimental work on low Prandtl number boundary layers is surveyed and compared with the new exact solutions.
Solution of heat removal from nuclear reactors by natural convection
Zitek, Pavel; Valenta, Vaclav
2014-03-01
This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR).The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor) for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.
Solution of heat removal from nuclear reactors by natural convection
Zitek Pavel
2014-03-01
Full Text Available This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR.The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.
A Study on the Mixed Convection Heat Transfer in a Vertical Cylinder Using Electroplating System
Hydrogen economy has drawn public attentions as a promising future energy source. Hydrogen is a non-petroleum-based, non-toxic, renewable and clean burning energy source. Hydrogen is the secondary energy, which means that it is produced by consuming the first energy such as coal, gas, petroleum etc. This again means that it is clean so long as it is produced by clean methods. One of the promising production methods of hydrogen is to use the heat from an HTGR(High Temperature Gas-cooled Reactor), a next generation nuclear reactor for a safe and reliable operation as well as for efficient and economic generation of energy. The knowledge of detailed heat transfer phenomena in gaseous phase emerges as an important factor for HTGR, where buoyancy effect plays a significant role. Large and expensive test facilities are to be constructed to assess the detailed mixed convection phenomena. However, using analogy concept, heat transfer system can be transformed to mass transfer system and vice versa. If a simple mass transfer system could be devised, and the experimental solution from that system could be obtained, then this could theoretically lead to a solution for a similar heat transfer system. In this study, a copper electroplating system was selected as the mass transfer system. A copper electroplating system with limiting current technique has a good advantage to simulate heat transfer system as mass transfer coefficient, analogous with heat transfer coefficient, can be directly obtained from the information of the bulk concentration and electric current between electrodes. This study simulated the mixed convective heat transfer phenomena in a vertical cylinder using copper electroplating system. The mixed convection phenomenon is observed when the forced and natural convections are of comparable magnitudes in one system. The mixed convection is classified as laminar and turbulent flows depending on the exchange mechanism and also as buoyancy aided and buoyancy opposed flows depending on the directions of forced flows with respect to the buoyancy forces. For a laminar flow, the heat transfer rate of buoyancy aided flow is larger than the corresponding forced convection heat transfer due to the increased flow velocity while the heat transfer rate of buoyancy opposed flow is smaller. However for a turbulent flow, the buoyancy opposed flow shows higher heat transfer rates than corresponding forced convective flow due to the increased turbulent production and the buoyancy aided flow shower lower heat transfer rates due to laminarization. Mixed convection heat transfer in a vertical cylinder with aiding flow and opposing flow studied experimentally for Reynolds numbers ranging from 4,000 to 10,000 with a constant Grashof number 6.2x109 and Prandtl number about 2000. The experimental results reproduced the trend of mixed convection heat transfer phenomena in a turbulent situation and agree well with the study performed by Y. Parlatan(1996). The analogy experimental method successfully simulates the mixed convection heat transfer system and seems to be a useful tool for heat transfer studies for HTGR as well as the systems with high buoyancy condition and high Prandtl number fluid, as the electroplating method not only provides useful information regarding heat transfer but also has a cost-effective advantage over any other comparable experimental method
Flow patterns and heat transfer in electro-thermo-convection
In this article we study the electro-thermo-convective phenomena in a dielectric liquid layer placed between two electrodes and subjected to the simultaneous action of an electric field and a thermal gradient. The full set of coupled equations: Navier-Stokes, Electro-Hydro-Dynamic (EHD) and Heat Transfer equations are directly solved in a 2D cavity using a finite volume method. In order to characterize the influence of the electric field on heat transfer we first heat the liquid till the thermal steady state is obtained and then apply the electric potential and charge are injected from the lower electrode. Two cases of heating are considered: from the lower electrode and from a lateral wall (left or right). We show that both flow pattern and Nusselt number strongly depend on the following non-dimensional characteristic parameters: electrical parameter, Rayleigh number, Prandtl number and mobility parameter. The development of the convective motion passing from a purely thermal convection to a purely electrical convection is investigated as well as the number of electro-thermo-convective rolls. As a consequence of the analysis of the combined effect of electric and thermal fields on the flow structure and on Nusselt number, we have also evaluated the heat transfer enhancement due to electro-convection.
Turbulent forced convection in a helicoidal pipe with substantial pitch
Yang, G.; Ebadian, M.A. [Florida International Univ., Miami, FL (United States). Dept. of Mechanical Engineering
1995-12-31
Fully developed turbulent convective heat transfer in a circular cross section helicoidal pipe with finite pitch is numerically studied. The {kappa}-{epsilon} model is used to model the turbulent behavior. The time averaged momentum and energy equations are derived in the helicoidal coordinate system. The results indicate that the temperature distribution in the cross section will be asymmetric as the pitch of the coil increases. Unlike that in laminar flow, an increase in the Prandtl number will reduce the torsion effect on the heat transfer in a helicoidal pipe. The results also indicate that the pitch effect will be enhanced as the flow rate increases.
Most of the previous convection experiments for nanofluids have been performed for internal tube flow with constant heat flux boundary condition. In contrast, a simple experimental apparatus measuring convective heat transfer coefficient from a heated wire to external nanofluids is proposed and its working principles are explained in detail. The convective heat transfer coefficient provided by the present system might be used as a useful indication justifying the adoption of prepared nanofluids as new efficient heat transfer fluids. Validation experiments by comparing convective heat transfer coefficients between the conventional correlation and measured values are carried out for base fluids. Also the effect of increased thermal conductivity of nano lubrication oil on the enhancement of convective heat transfer coefficient is investigated
In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)
Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)
2014-04-15
In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)
Convective heat transfer around vertical jet fires: An experimental study
Kozanoglu, Bulent, E-mail: bulentu.kozanoglu@udlap.mx [Universidad de las Americas, Puebla (Mexico); Zarate, Luis [Universidad Popular Autonoma del Estado de Puebla (Mexico); Gomez-Mares, Mercedes [Universita di Bologna (Italy); Casal, Joaquim [Universitat Politecnica de Catalunya (Spain)
2011-12-15
Highlights: Black-Right-Pointing-Pointer Experiments were carried out to analyze convection around a vertical jet fire. Black-Right-Pointing-Pointer Convection heat transfer is enhanced increasing the flame length. Black-Right-Pointing-Pointer Nusselt number grows with higher values of Rayleigh and Reynolds numbers. Black-Right-Pointing-Pointer In subsonic flames, Nusselt number increases with Froude number. Black-Right-Pointing-Pointer Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.
The optimization of longitudinal convective fins with internal heat generation
The solution of the optimization problem for longitudinal convective fins of constant thickness, triangular or parabolic profile, and uniform internal heat generation, is presented. The cases considered are those of a given heat generation density, total heat generation and heat generation per unit width of the fin, when either the heat dissipation or the width of the fin is prescribed. The results are set forth in a nondimensional form, which are presented graphically. The effect of the fin's thermal conductivity upon the optimum dimensions is discussed, and limiting values for the heat generation and the heat dissipation, which may be imposed on the fin for a feasible optimization, are also obtained. (Auth.)
Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing
Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.
2007-01-01
The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and atmospheric heating.
Convective Behavior Of Low Prandtl Number Fluid Heated On Centrifuge
Inatomi, Yuko
2008-02-01
It has been shown by numerical simulations and by analysis of crystals that buoyancy convection in liquid might be suppressed at a particular rotation rate on a centrifuge. In the present study a damping effect that the Coriolis force has on buoyancy convection in low Prandtl number on a centrifuge was numerically analyzed under the condition of a free-swinging configuration. It is shown that the nondimensional angular velocity characterizes the minimum value of the flow velocity.
10,000 - A reason to study granular heat convection
Einav, I.; Rognon, P.; Gan, Y.; Miller, T.; Griffani, D. [Particles and Grains Laboratory, School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia)
2013-06-18
In sheared granular media, particle motion is characterized by vortex-like structures; here this is demonstrated experimentally for disks system undergoing indefinite deformation during simple shear, as often imposed by the rock masses hosting earthquake fault gouges. In traditional fluids it has been known for years that vortices represent a major factor of heat transfer enhancement via convective internal mixing, but in analyses of heat transfer through earthquake faults and base planes of landslides this has been continuously neglected. Can research proceed by neglecting heat convection by internal mixing? Our answer is astonishingly far from being yes.
Formulation of nano fluids for natural convective heat transfer applications
Wen Dongsheng [Institute of Particle Science and Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)]. E-mail: d.wen@leeds.ac.uk; Ding Yulong [Institute of Particle Science and Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)
2005-12-15
The paper is concerned about formulation of aqueous based nanofluids and its application under natural convective heat transfer conditions. Titanium dioxide nanoparticles are dispersed in distilled water through electrostatic stabilization mechanisms and with the aid of a high shear mixing homogenizer. Nanofluids formulated in such a way are found very stable and are used to investigate their heat transfer behaviour under the natural convection conditions. The preliminary results are presented in this paper. Both transient and steady heat transfer coefficients are measured and the results show a systematic decrease in the natural convective heat transfer coefficient with increasing particle concentration. This is in contradiction to the initial expectation. Possible reasons for the observations are discussed.
Thermal Performance of Convective-Radiative Heat Transfer in Porous Fins
Majid SHAHBABAEI
2014-01-01
Full Text Available Forced and natural convection in porous fins with convective coefficient at the tips under radiation and convection effects are investigated in this paper. Aluminum and copper as fin materials are investigated. In forced and natural convection, air and water are applied as working fluids, respectively. In order to solve this nonlinear equation, Homotopy Perturbation Method (HPM and Variational Iteration Method (VIM are used. To verify the accuracy of the methods, a comparison is made to the exact solution (BVP. In this work, the effects of porosity parameter (, Radiation parameter (α and Temperature-Ratio parameter (µ on non-dimensional temperature distribution for both of the flows are shown. The results show that the effects of (α and (µ on temperature distribution in natural convection are based on porosity and in forced convection are uniform, approximately. Also, it is shown that both VIM and HPM are capable of being used to solve this nonlinear heat transfer equation.doi:10.14456/WJST.2014.64
Reynolds stress and heat flux in spherical shell convection
Kpyl, P J; Guerrero, G; Brandenburg, A; Chatterjee, P
2010-01-01
Context. Turbulent fluxes of angular momentum and heat due to rotationally affected convection play a key role in determining differential rotation of stars. Aims. We compute turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow ...
Laminar mixed convective heat transfer in two-dimensional rectangular inclined driven cavity is studied numerically by means of a double population thermal Lattice Boltzmann method. Through the top moving lid the heat flux enters the cavity whereas it leaves the system through the bottom wall; side walls are adiabatic. The counter-slip internal energy density boundary condition, able to simulate an imposed non zero heat flux at the wall, is applied, in order to demonstrate that it can be effectively used to simulate heat transfer phenomena also in case of moving walls. Results are analyzed over a range of the Richardson numbers and tilting angles of the enclosure, encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. As expected, heat transfer rate increases as increases the inclination angle, but this effect is significant for higher Richardson numbers, when buoyancy forces dominate the problem; for horizontal cavity, average Nusselt number decreases with the increase of Richardson number because of the stratified field configuration
In construction, the use of Phase Change Materials (PCM) allows the storage/release of energy from solar radiation and internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. The heat transfer process between the wall and the indoor air is convection. In this paper, we have developed a numerical model to evaluate several convective heat transfer correlations from the literature for natural, mixed and forced convection flows. The results show that the convective heat transfer highly influences the storage/release process in case of PCM walls. For the natural convection, the numerical results are highly dependent on the correlation used and the results may vary up to 200%. In the case of mixed and forced convection flows, the higher is the velocity, the more important is the storage capacity. - Highlights: → We study effect of inside convection correlation on energy stored in PCM wall. → We developed a 1D conduction model for multilayer walls, with phase change material. → Correlations have been constructed for mixed convection in all flow regimes. → Up to 200% variation of energy stored in PCM layer, depending on convection correlation. → Ventilation can increase the energy stored in the PCM layer.
Extinction transition in bacterial colonies under forced convection
Neicu, T.; Pradhan, A.; Larochelle, D. A.; Kudrolli, A.
2000-01-01
We report the spatio-temporal response of {\\it Bacillus subtilis} growing on a nutrient-rich layer of agar to ultra-violet (UV) radiation. Below a crossover temperature, the bacteria are confined to regions that are shielded from UV radiation. A forced convection of the population is effected by rotating a UV radiation shield relative to the petri dish. The extinction speed at which the bacterial colony lags behind the shield is found to be qualitatively similar to the front velocity of the c...
Convective Heat Transport in Compressible Fluids
Furukawa, Akira; Onuki, Akira
2002-01-01
We present hydrodynamic equations of compressible fluids in gravity as a generalization of those in the Boussinesq approximation used for nearly incompressible fluids. They account for adiabatic processes taking place throughout the cell (the piston effect) and those taking place within plumes (the adiabatic temperature gradient effect). Performing two-dimensional numerical analysis, we reveal some unique features of plume generation and convection in transient and steady states of compressib...
S. Venkatachalapathy; Udayakumar, M.
2010-01-01
Natural convection cooling using air as a fluid is commonly used in the cooling of electronic equipment and many other devices. In this work, a three-dimensional numerical study of natural convection heat transfer from multiple protruding heat sources simulating electronic components is conducted. Computational fluid dynamics (CFD) software, FLUENT is used in this analysis. A 4 by 5 array of heat sources are embedded in the bottom wall of an adiabatic square enclosure. The heat sources with a...
Convective Heat Transfer In Porous Ceramic Materials
BYKALACA, Orhan
1999-01-01
In this study heat transfer in porous ceramic materials, which offer a potential as an alternative heat transfer medium in a number of systems in which heat transfer takes place, is investigated experimentally. Experiments were performed for five different specimens at various air flow rates and specimen temperatures. The volumetric heat transfer coefficient was determined using the results of the experiments. A characteristic length obtained from the pressure drop data was used in ...
Experimental studies on mixed convection heat transfer in laminar flow through a plain square duct
Patil, S. V.; Vijay Babu, P. V.
2012-12-01
This paper reports the findings of experimental studies on combined free and forced convection through a plain square duct in laminar region. The test fluid flows through an inner square duct, hot water at high flow rate circulated through a annular channel formed between square duct and circular tube, in counter current fashion to attain a nearly uniform wall temperature conditions. The importance of mixed convection is judged by the value of the Richardson number ( Ri). It was observed that at low Reynolds number, heat transfer was mainly governed by mixed convection. However at higher values of Reynolds number, heat transfer was significantly dominated by forced convection. It was found that Reynolds number higher than 1050 for water and 480 for ethylene glycol resulted in laminar forced convention heat transfer. The empirical correlation developed for Nusselt number in terms of Grashoff number and Graez number, was found to fit with experimental Nusselt number within ±11 and ±12 % for water and ethylene glycol respectively.
Convective heat transfer around vertical jet fires: an experimental study.
Kozanoglu, Bulent; Zrate, Luis; Gmez-Mares, Mercedes; Casal, Joaquim
2011-12-15
The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice. PMID:21962859
Computation of combined turbulent convective and impingement heat transfer
Full text: Among various cooling methods of gas turbine components, impingement and forced convection cooling is preferable due to improved cycle efficiency and reduced emission levels. However, influences of various design parameters like crossflow and surface enlargements (like ribs) are not well understood. Reliable engineering design methods for complex geometries and flow systems are not available and only a very limited amount of experimental data exist. In addition, experiments on real applications are cumbersome, very costly and not attractable. Thus there is a request for reliable and cost-effective computational prediction. Such methods could be based on the numerical solution of the Reynolds-averaged Navier-Stokes equations (RANS), the energy equation and models for the turbulence field. Turbulence modeling is a critical issue and it is known that the widely used linear two-equation models suffer from a too high generation of turbulence and thus heat transfer in stagnating flow fields. This problem may be eliminated or reduced by using more advanced formulations like full Reynolds stress equations or by application of a realizability constraint on the linear two-equation models. In recent years nonlinear formulations of the constitutive relations have emerged and the performance of the two-equation models has been improved. The main reasons for this improvement are the incorporation of variable coefficients in the stress-strain relationship (constitutive relation) and the ability to capture anistropy in the turbulent normal stresses. The geometries selected for the investigation are idealized to reveal the fundamental issues and enable validation of the considered models with available experimental data. Thus single unconfined round air jets, confined jets with crossflow are considered. The numerical approach is based on the finite volume method and uses a co-located computational grid. Various number of grid points have been used and the grid influence is discussed. The wall adjacent grid points are always placed at a dimensionless distance (y+) less than 0.5 from the heated wall. The considered turbulence models are all so-called low Reynolds number models (both linear and nonlinear ones). A realizability constraint is applied on the linear models to prevent severe over-prediction of the heat transfer at stagnation points. The constraint puts a limit on the time scale for the tubulence field. Anisotropic formulations of the turbulent heat fluxes are discussed some comparative results are considered. Our recent investigations show that linear and non-linear two-equations turbulence models can be used for impinging jet heat transfer predictions with reasonable success. However, the computational results also suggest that an application of a realizability constraint is necessary to avoid overprediction of the stagnation point heat transfer coefficients. For situations with combined forced convection and impingement cooling it was revealed that as the crossflow is squeezed under the jet, the heat transfer coefficient is reduced. (author)
A new experimental technique is presented that allows simultaneous measurement of convective and radiative heat flux in the underhood. The goal is to devise an easily implemented and accurate experimental method for application in the vehicle underhood compartment. The new method is based on a technique for heat-flux measurement developed by the authors (Heat flow (flux) sensors for measurement of convection, conduction and radiation heat flow 27036-2, Rhopoint Components Ltd, Hurst Green, Oxted, RH8 9AX, UK) that uses several thermocouples in the thickness of a thermal resistive layer (foil heat-flux sensor). The method proposed here uses a pair of these thermocouples with different radiative properties. Measurements validating this novel technique are carried out on a flat plate with a prescribed constant temperature in both natural- and forced-convection flow regimes. The test flat plate is instrumented by this new technique, and also with a different technique that is intrusive but very accurate, used as reference here (Bardon J P and Jarny Y 1994 Procd et dispositif de mesure transitoire de temprature et flux surfacique Brevet n94.011996, 22 February). Discrepancies between the measurements by the two techniques are less than 10% for both convective and radiative heat flux. Error identification and sensitivity analysis of the new method are also presented
Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System
Ahmad, Rashid A.; Cash, Stephen F. (Technical Monitor)
2002-01-01
This simulation involved a two-dimensional axisymmetric model of a full motor initial grain of the Reusable Solid Rocket Motor (RSRM) of the Space Transportation System (STS). It was conducted with CFD (computational fluid dynamics) commercial code FLUENT. This analysis was performed to: a) maintain continuity with most related previous analyses, b) serve as a non-vectored baseline for any three-dimensional vectored nozzles, c) provide a relatively simple application and checkout for various CFD solution schemes, grid sensitivity studies, turbulence modeling and heat transfer, and d) calculate nozzle convective heat transfer coefficients. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, vacuum thrust and specific impulse, and measured chamber pressure drop. Matching these ballistic predictions was found to be good. This study was limited to convective heat transfer and the results compared favorably with existing theory. On the other hand, qualitative comparison with backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at constant pressure was made in a relative manner. This backed-out data was devised to match nozzle erosion that was a result of heat transfer (convective, radiative and conductive), chemical (transpirating), and mechanical (shear and particle impingement forces) effects combined.
Khaled, M.; Garnier, B.; Harambat, F.; Peerhossaini, H.
2010-02-01
A new experimental technique is presented that allows simultaneous measurement of convective and radiative heat flux in the underhood. The goal is to devise an easily implemented and accurate experimental method for application in the vehicle underhood compartment. The new method is based on a technique for heat-flux measurement developed by the authors (Heat flow (flux) sensors for measurement of convection, conduction and radiation heat flow 27036-2, Rhopoint Components Ltd, Hurst Green, Oxted, RH8 9AX, UK) that uses several thermocouples in the thickness of a thermal resistive layer (foil heat-flux sensor). The method proposed here uses a pair of these thermocouples with different radiative properties. Measurements validating this novel technique are carried out on a flat plate with a prescribed constant temperature in both natural- and forced-convection flow regimes. The test flat plate is instrumented by this new technique, and also with a different technique that is intrusive but very accurate, used as reference here (Bardon J P and Jarny Y 1994 Procd et dispositif de mesure transitoire de temprature et flux surfacique Brevet n94.011996, 22 February). Discrepancies between the measurements by the two techniques are less than 10% for both convective and radiative heat flux. Error identification and sensitivity analysis of the new method are also presented.
Natural convection heat transfer within horizontal spent nuclear fuel assemblies
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array
Scaled model studies of decay heat removal by natural convection for sodium cooled reactors
Thermohydraulic experiments were performed with water in order to simulate decay heat removal by natural convection in a pool-type sodium cooled reactor. Two water test rigs of different scales were used, namely, RAMONA (1:20) and NEPTUN (1:5). RAMONA was taken to study the transition from nominal operation by forced convection to decay heat removal operation by natural convection. Steady-state similarity tests were carried out in both facilities. All tests provide a basis for verification of computer programs. Calculations performed with the three-dimensional code FLUTAN proved that the thermohydraulic processes are quantitatively mastered, even for the very complex geometry of the NEPTUN test rig. (orig.)
Leung, C. W.; Wong, T. T.; Kang, H. J.
The experimental investigations were consisting of two parts. The first part was carried out to study the effect of corner geometry on the steady-state forced convection inside horizontal isosceles triangular ducts with sharp corners. The electrically-heated triangular duct was used to simulate the triangular passage of a plate-fin compact heat exchanger. The isosceles triangular ducts were manufactured with duralumin, and fabricated with the same length of 2.4m and hydraulic diameter of 0.44m, but five different apex angles (i.e. ?a=15?,30?, 40?,60?, and 90?) respectively. The investigation was performed under turbulent flow condition covering a wide range of Reynolds number (i.e. 7000part was performed to investigate the effect of surface roughness on the forced convection of the same system. Horizontal equilateral triangular ducts with an apex angle of 60? were fabricated with the same length and hydraulic diameter, but different average surface roughnesses of 1.2 m,3.0 m and 11.5 m respectively. It was concluded that the duct with a higher surface roughness will have a better heat transfer performance. Non-dimensional expressions for the determination of the heat transfer coefficient of the triangular ducts with different apex angles and surface roughnesses were also developed.
Heat transfer by natural convection into an horizontal cavity
At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling's part that is described the regimes and correlations differences for boiling's curve. It is designed a horizontal cavity for realize the experimental part and it's mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it's present process from natural convection involving part boiling's subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it's proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling's subcooled. It is realize analysis graphics too where it's show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)
The objective of this paper is to numerically investigate the cooling performance of electronic devices with an emphasis on the effects of the arrangement and number of electronic components. The analysis uses a two dimensional rectangular enclosure under combined natural and forced convection flow conditions and considers a range of Raleigh numbers. Heat sources in the enclosure generate the natural convection flow and an externally sourced air stream through the enclosure generates the forced convection flow. The results show that increasing the Raleigh number significantly improves the enclosure heat transfer process. At low Raleigh numbers, placing more heat sources within the enclosure reduces the heat transfer rate from the sources and consequently increases their overall maximum temperature. The arrangement and the number of heat sources have a considerable contribution to the cooling performance. However, increasing the Raleigh number reduces this contribution. (author)
A contribution to incipient boiling in the case of subcooled boiling with forced convection
The literature gives contradictory statements about incipient subcooled boiling. To clear up these contradictions it seems important to study the effect of different thermo- and hydrodynamic parameters, like heating surface load, system pressure, local supercooling, and flowrate. Further influencing quantities investigated here are the concentration dissolved gases and the surface condition of the heat surface. To carry out the experimental investigations a measuring method which has already been used by Mayinger applied. With this method, incipient boiling can be determined as the first measurable heat transfer improvement in comparison with single-phase forced convection. Besides, photographs sould make it possible to give statements on the quantity and size of the bubbles on the heating surface. (orig./GL)
Nagano, K.; Mochida, T.; Ochifuji, K. [Hokkaido University (Japan). Graduate School of Engineering
2002-08-01
Estimation of the heat recovery rate in high-temperature underground storage (> 50{sup o}C) is required before such a system can be built. However, if high-temperature water is injected into and stored in the aquifer, large-scale natural convection could occur that might reduce the heat recovery rate. This study aims to clarify the universal quantitative condition under which natural convection appears and exerts an observable influence for a system with forced horizontal flow in the saturated porous medium. The authors investigated this using both experiments and computer simulations. A test section simulating an aquifer was made. Warm water was injected into the test section, which was filled with glass beads. The temperature distribution and the flow rate profile at the outlet were measured. The authors found that the limit condition at which natural convection influences the forced horizontal flow can be determined from the velocity profile and modified Rayleigh number Ra*. In addition, the heat transfer coefficients of the upper and the lower side of walls were estimated. A computer simulation was made for calculation of the temperature field and the velocity vector in the porous medium under natural convection and under forced convection. As calculated temperature fields and flow rate distributions at the outlet were similar to the experimental results, it is thought that this program can be applied to evaluation of the temperature and the velocity of aquifer thermal energy storage. In addition, an index expressing the degree of influence of natural convection on forced convection was proposed. (author)
Investigating Convective Heat Transfer with an Iron and a Hairdryer
Gonzalez, Manuel I.; Lucio, Jesus H.
2008-01-01
A simple experimental set-up to study free and forced convection in undergraduate physics laboratories is presented. The flat plate of a domestic iron has been chosen as the hot surface, and a hairdryer is used to generate an air stream around the plate. Several experiments are proposed and typical numerical results are reported. An analysis and…
Determination of drying kinetics and convective heat transfer coefficients of ginger slices
Akpinar, Ebru Kavak; Toraman, Seda
2015-12-01
In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient (R 2), reduced Chi-square (χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.
Convective Heat Transport in Compressible Fluids
Furukawa, A; Furukawa, Akira; Onuki, Akira
2002-01-01
We present hydrodynamic equations of compressible fluids in gravity as a generalization of those in the Boussinesq approximation used for nearly incompressible fluids. They account for adiabatic processes taking place throughout the cell (the piston effect) and those taking place within plumes (the adiabatic temperature gradient effect). Performing two-dimensional numerical analysis, we reveal some unique features of plume generation and convection in transient and steady states of compressible fluids. As the critical point is approached, overall temperature changes induced by plume arrivals at the boundary walls are amplified, giving rise to overshoot behavior in transient states and significant noises of the temperature in steady states. The velocity field is suggested to assume a logarithmic profile within boundary layers. Random reversal of macroscopic shear flow is examined in a cell with unit aspect ratio. We also present a simple scaling theory for moderate Rayleigh numbers.
Electro-magneto convective heat transfer in magnetic liquids
Magneto convective and electro-magneto convective heat transfer coefficients have been measured in a magnetic liquid (kerosene) and a super-paramagnetic colloid (hematite in distilled water) from a single platinum wire (diameter 0.025 mm) mounted along the axis of a copper cylinder. For this study, we used two copper cylinders (diameters = 20.5 mm and 53 mm). An inhibition in heat transfer coefficient was observed in the presence of magnetic field. A similar effect was also noticed when electric and magnetic fields were applied simultaneously. The heat transfer coefficient was found to be independent of the size of the cylinder over the range of the space ratio 820 to 2120 but an enhancement of heat transfer coefficient was observed when the inclination of the cylinder was increased from the horizontal to vertical positions
Calculational method for combined natural circulation and forced-convection flow in a channel
This paper presents a finite element solution for combined natural circulation and forced convection flow in a channel. Because the buoyancy force plays an important role in a mixed convection flow, an iteration scheme was used in solving the coupled energy-momentum equations. The momentum equations and the pressure equation are solved to calculate velocity profiles instead of solving the momentum equations with the continuity equation. Though the pressure equation is obtained by using the continuity equation, the continuity principle is reinforced into the momentum equations and the pressure equation at each iteration. Calculations are performed for the combined natural circulation and forced convection case and the forced convection only case
Measurement of the Convective Heat-Transfer Coefficient
Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2014-01-01
We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer…
Measurement of the Convective Heat-Transfer Coefficient
Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2014-01-01
We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer
Heat convection in a set of three vertical cylinders
Experimental results on temperature and heat flow in a set of three vertical cylinders with internal generation of heat, water submerged and in free convection are presented in this work . Temperature distribution, Nusselt number and convective coefficient (h) for each rod, developed for the distance between the axis of cylinders in vertical position, as a consequence of the application of power in its outside, are analyzed. Experimental information about heat transfer by free convection in vertical cylinders and surfaces is analyzed. Information of the several author who have carried out studies about the heat transfer on vertical cylinders was compiled, and the proposed equations with the experimental data obtained in the thermo fluids laboratory of National Institute of Nuclear Research (ININ) were tested. The way in which separation distance, s, distribution temperature array, Nusselt number, and convective coefficient calculated for the proposed channel with the Keyhani, Dutton and experimental equations are tabulated and they are plotted for each power value and for each separation between rods. The scheme of the used equipment and the experimentation description as well as the observations of tests and graphical results are included. (Author)
Natural convection in porous media with heat generation
The heat transfer characteristics of fluid-saturated porous media are investigated for the case of uniform internal heat generation with cooling from above. Analytical models of conduction and single-phase cellular convection show good agreement with previous Rayleigh number correlations and with experimental data obtained by Joule heating of saltwater in a sand bed. An approximate dryout criterion is also derived for two-phase boiling heat transfer in a fixed bed which is neither channeled nor fluidized. Correlation of dryout data using this criterion is encouraging, especially considering the analytical rather than correlational basis of the criterion
Natural convection in porous media with heat generation. [LMFBR
Hardee, H.C.; Nilson, R.H.
1977-06-01
The heat transfer characteristics of fluid-saturated porous media are investigated for the case of uniform internal heat generation with cooling from above. Analytical models of conduction and single-phase cellular convection show good agreement with previous Rayleigh number correlations and with experimental data obtained by Joule heating of saltwater in a sand bed. An approximate dryout criterion is also derived for two-phase boiling heat transfer in a fixed bed which is neither channeled nor fluidized. Correlation of dryout data using this criterion is encouraging, especially considering the analytical rather than correlational basis of the criterion.
Natural convection in porous media with heat generation
Hardee, H.C. Jr.; Nilson, R.H.
1976-12-01
Heat transfer characteristics of a fluid saturated porous media are investigated for the case of uniform internal heat generation with cooling from above. Analytical models of conduction and single phase cellular convection show good agreement with previous Rayleigh number correlations and with experimental data obtained by Joule heating of salt water in a sand bed. An approximate dryout criterion is also derived for two phase boiling heat transfer in a fixed bed which is neither channeled nor fluidized. Correlation of dryout data using this criterion is encouraging, especially considering the analytical rather than correlational basis of the criterion.
Relating Convective and Stratiform Rain to Latent Heating
Tao, Wei-Kuo; Lang, Stephen; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari
2010-01-01
The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate-high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.58 horizontal resolution, the occurrence of conditional rain rates over 100 mm/day is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective-stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in the new CSH algorithm.
Dendrite growth under forced convection: analysis methods and experimental tests
An analysis is given of the nonisothermal growth of a dendrite crystal under forced fluid flow in a binary system. The theoretical model utilized employs a free moving crystal–liquid interface and makes use of the Oseen approximation for the equations of motion of the liquid. A criterion for the stable growth of two-dimensional and three-dimensional parabolic dendrites is derived under the assumption of an anisotropic surface tension at the crystal–liquid interface, which generalizes the previous known results for the stable growth of a dendrite with convection in a one-component fluid and for the growth of a dendrite in a two-component system at rest. The criterion obtained within the Oseen hydrodynamic approximation is extended to arbitrary Peclet numbers and dendrite growth with convection in a nonisothermal multicomponent system. Model predictions are compared with experimental data on crystal growth kinetics in droplets processed in electromagnetic and electrostatic levitation facilities. Theoretical and simulation methods currently being developed are applied to crystallization processes under earthly and reduced gravity conditions. (reviews of topical problems)
N. Nesenchuk
2014-09-01
Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following evaluation results of heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.
Hall effects on combined free and forced convective hydromagnetic flow through porous media
The effects of Hall current and permeability of the porous medium on combined free and forced convective hydromagnetic flow in parallel plate channel have been studied, when there is a uniform axial temperature variation along the channel walls. The induced magnetic field and heat transfer characteristics in the flow are determined. Expressions for the shearing stress components have also been sought. The effects of porous medium and Hall parameter on the velocity, the induced magnetic field and shearing stress is interpreted with the aid of graphs and a table. (author)
Extinction transition in bacterial colonies under forced convection
Neicu, T; Larochelle, D A; Kudrolli, A
2000-01-01
We report the spatio-temporal response of {\\it Bacillus subtilis} growing on a nutrient-rich layer of agar to ultra-violet (UV) radiation. Below a crossover temperature, the bacteria are confined to regions that are shielded from UV radiation. A forced convection of the population is effected by rotating a UV radiation shield relative to the petri dish. The extinction speed at which the bacterial colony lags behind the shield is found to be qualitatively similar to the front velocity of the colony growing in the absence of the hostile environment as predicted by the model of Dahmen, Nelson and Shnerb. A quantitative comparison is not possible without considering the slow dynamics and the time-dependent interaction of the population with the hostile environment.
Optimization of fin geometry in heat convection with entransy theory
The entransy theory developed in recent years is used to optimize the aspect ratio of a plate fin in heat convection. Based on a two-dimensional model, the theoretical analysis shows that the minimum thermal resistance defined with the concept of entransy dissipation corresponds to the maximum heat transfer rate when the temperature of the heating surface is fixed. On the other hand, when the heat flux of the heating surface is fixed, the minimum thermal resistance corresponds to the minimum average temperature of the heating surface. The entropy optimization is also given for the heat transfer processes. It is observed that the minimum entropy generation, the minimum entropy generation number, and the minimum revised entropy generation number do not always correspond to the best heat transfer performance. In addition, the influence factors on the optimized aspect ratio of the plate fin are also discussed. The optimized ratio decreases with the enhancement of heat convection, while it increases with fin thermal conductivity increasing. (general)
Experimental-theoretical analysis of laminar internal forced convection with nanofluids
Cerqueira, Ivana G.; Cotta, Renato M. [Lab. of Transmission and Technology of Heat-LTTC. Mechanical Eng. Dept. - POLI and COPPE/UFRJ, Rio de Janeiro, RJ (Brazil)], E-mail: cotta@mecanica.coppe.ufrj.br; Mota, Carlos Alberto A. [Conselho Nacional de Pesquisas - CNPq, Brasilia, DF (Brazil)], e-mail: carlosal@cnpq.br; Nunes, Jeziel S. [INPI, Rio de Janeiro, RJ (Brazil)], e-mail: jeziel@inpi.gov.br
2010-07-01
This work reports fundamental experimental-theoretical research related to heat transfer enhancement in laminar channel flow with nanofluids, which are essentially modifications of the base fluid with the dispersion of metal oxide nanoparticles. The theoretical work was performed by making use of mixed symbolic-numerical computation (Mathematica 7.0 platform) and a hybrid numerical-analytical methodology (Generalized Integral Transform Technique - GITT) in accurately handling the governing partial differential equations for the heat and fluid flow problem formulation with temperature dependency in all the thermophysical properties. Experimental work was also undertaken based on a thermohydraulic circuit built for this purpose, and sample results are presented to verify the proposed model. The aim is to illustrate detailed modeling and robust simulation attempting to reach an explanation of the controversial heat transfer enhancement observed in laminar forced convection with nanofluids. (author)
Effect of radiation on the laminar convective heat transfer through a layer of highly porous medium
A numerical investigation is reported of the coupled forced convective and radiative transfer through a highly porous medium. The porosity range investigated is high enough that the fluid inertia terms in the momentum equation cannot be neglected; i.e., the simple form of Darcy's law is invalid. The geometry studied is a plane layer of highly porous medium resting on one impermeable boundary and exposed to a two-dimensional laminar external flow field. The objective is to determine the effective overall heat transfer coefficients for such a geometry. The results are applicable to diverse situations, including insulation batts exposed to external flow, the heat loss and drying rates of grain fields and forest areas, and the drying of beds of porous material exposed to convective and radiative heating
Theoretical Convective Heat Transfer Model Developement of Cold Storage Using Taguchi Analysis.
Dr.N.Mukhopadhyay
2015-01-01
Full Text Available Energy crisis is one of the most important problems the world is facing now-a-days. With the increase of cost of electrical energy operating cost of cold storage storing is increasing which forces the increased cost price of the commodities that are kept. In this situation if the maximum heat energy(Q is absorbed by the evaporator inside the cold room through convective heat transfer process in terms of –heat transfer due to convection and heat transfer due to condensation, more energy has to be wasted to maintain the evaporator space at the desired temperature range of 2- 8 degree centigrade. In this paper we have proposed a theoretical heat transfermodel of convective heat transfer incold storage using Taguchi L9 orthogonal array. Velocity of air(V, Temperature difference(dT, RelativeHumidity(RHare the basic variable and three ranges are taken each of them in the model development. Graphical interpretations from the model justifies the reality
Second Law Analysis in Convective Heat and Mass Transfer
A. Ben Brahim
2006-02-01
Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.
Silk cocoon drying in forced convection type solar dryer
The thin layer silk cocoon drying was studied in a forced convection type solar dryer. The drying chamber was provided with several trays on which the cocoons loaded in thin layer. The hot air generated in the solar air heater was forced into drying chamber to avoid the direct exposure of sunlight and UV radiation on cocoons. The drying air temperature varied from 50 to 75 oC. The cocoon was dried from the initial moisture content of about 60-12% (wb). The drying data was fitted to thin layer drying models. Drying behaviour of the silk cocoon was best fitted with the Wang and Singh drying model. Good agreement was obtained between predicted and experimental values. Quality of the cocoons dried in the solar dryer was at par with the cocoons dried in the conventional electrical oven dryer in term of the silk yield and strength of the silk. Saving of electrical energy was about 0.75 kWh/kg cocoons dried. Economic analysis indicated that the NPV of the solar dryer was higher and more stable (against escalation rate of electricity) as compare to the same for electrical oven dryer. Due to simplicity in design and construction and significant saving of operational electrical energy, solar cocoon dryer seems to be a viable option.
Heat transfer coefficients and pressure drop of gaseous ammonia in forced convection are experimentally determined. The fluid flows (mass flow rate 0.6 to 2.4 g/s) in a long tungsten tube (di = 2.8 mm, de = 5.1 mm, L = 700 mm) electrically heated. The temperature of the wall reaches 3000 deg. K and the fluid 2500 deg. K; maximum heat flux 530 w/cm2. Ammonia is completely dissociated and the power necessary for dissociation reaches 30 per cent of the total power exchanged. Inlet pressure varies between 6 and 16 bars and the maximum pressure drop in the tube reaches 15 bars. Two regimes of dissociation have been shown: catalytic and homogeneous and the variation of dissociation along the length of the tube is studied. The measured heat transfer coefficients may be about 10 times these calculated by the means of classical formulae. A correlation of experimental results using enthalpy as a driving force for heat transmission is presented. Pressure drops may be calculated by the means of a classical friction factor. (authors)
Numerical simulations on natural convective heat transfer and active cooling of IFMIF Test Cell
Highlights: •Thermo-hydraulic simulations of the IFMIF Test-Cell were carried out with Ansys-CFX V.14 on a reference case. •The current simulation model includes the natural convection inside the TC, several forced convective water flows in the pipelines attached on the steel liners and the helium-cooled HFTM (High Flux Test Module). •A kind of CFX Beta feature was used; in which multiple fluid domains associated with individual turbulence (laminar) models were defined and solved in a single simulation. •The simulations provide the key information on the flow and heat transfer of the Test-Cell components. -- Abstract: The International Fusion Materials Irradiation Facility (IFMIF) is designated to generate a materials irradiation database for the future fusion reactors. The Test Cell (TC) accommodates the Test Modules and the lithium target assembly. Due to the nuclear heat generation, all the Test Modules inside the TC will be actively cooled. Other components like supporting structures, pipelines, cables etc., will be passively cooled by natural convection. The heat will be removed from the steel liners surrounding the TC by active water cooling. This paper concerns the thermo-hydraulic simulations of the Test Cell using Ansys-CFX. The current simulation model includes the natural convection inside the TC, several forced convective water flows in the pipelines attached on the steel liners and the helium-cooled HFTM (High Flux Test Module). The simulations provide the only means for validating the design before the construction and operation
Environmental Forcing of Super Typhoon Paka's (1997) Latent Heat Structure
Rodgers, Edward B.; Olson, William; Halverson, Jeff; Simpson, Joanne; Pierce, Harold
1999-01-01
The distribution and intensity of total (i.e., combined stratified and convective processes) rainrate/latent heat release (LHR) were derived for tropical cyclone Paka during the period 9-21 December, 1997 from the F-10, F-11, F-13, and F-14 Defense Meteorological Satellite Special Sensor Microwave/Imager and the Tropical Rain Measurement Mission Microwave Imager observations. These observations were frequent enough to capture three episodes of inner core convective bursts that preceded periods of rapid intensification and a convective rainband (CRB) cycle. During these periods of convective bursts, satellite sensors revealed that the rainrates/LHR: 1) increased within the inner eye wall region; 2) were mainly convectively generated (nearly a 65% contribution), 3) propagated inwards; 4) extended upwards within the middle and upper-troposphere, and 5) became electrically charged. These factors may have caused the eye wall region to become more buoyant within the middle and upper-troposphere, creating greater cyclonic angular momentum, and, thereby, warming the center and intensifying the system. Radiosonde measurements from Kwajalein Atoll and Guam, sea surface temperature observations, and the European Center for Medium Range Forecast analyses were used to examine the necessary and sufficient condition for initiating and maintaining these inner core convective bursts. For example, the necessary conditions such as the atmospheric thermodynamics (i.e., cold tropopause temperatures, moist troposphere, and warm SSTs [greater than 26 deg]) suggested that the atmosphere was ideal for Paka's maximum potential intensity (MPI) to approach super-typhoon strength. Further, Paka encountered weak vertical wind shear (less than 15 m/s ) before interacting with the westerlies on 21 December. The sufficient conditions, on the other hand, appeared to have some influence on Paka's convective burst, but the horizontal moisture flux convergence values in the outer core were weaker than some of the previously examined tropical cyclones. Also, the upper tropospheric outflow generation of eddy relative angular momentum flux convergence was 4D much less than that found during moderate tropical cyclone/trough interaction. These results indicated how important the external necessary condition and the internal forcing (i.e., CRB cycle) were in generating Paka's convective bursts as compared to the external sufficient forcing mechanisms found in higher latitude tropical cyclones. Later, as Paka began to interact with the westerlies, both the necessary (i.e., strong vertical shear and colder SSTs) and sufficient (i.e., dry air intrusion) external forcing mechanisms helped to decrease Paka's rainrate.
Absolute and convective instabilities of heated coaxial jet flow
Balestra, Gioele; Gloor, Michael; Kleiser, Leonhard
2015-01-01
This study investigates the inviscid, linear spatio-temporal stability of heated, compressible, and incompressible coaxial jet flows. The influence of the temperature ratio and the velocity ratio between the core jet and the bypass stream on the transition from convectively to absolutely unstable flows is studied numerically. The investigation shows that for coaxial jets, absolute instability can occur for considerably lower core-stream temperatures than for single jets. The reason for this m...
Natural convection in vertical heat-generating porous annuli
In recent years, natural convection in porous media induced by internal heat generation has received considerable attention for its important applications in many geophysical and energy related engineering problems. These include, but are not limited to, heat removal from fuel debris in nuclear reactors, underground disposal of radioactive materials, and exothermic chemical reactions in packed-bed reactors. Recently, Beukema et al. (1984) studied natural convection in porous media with internal heat generation from the metabolism of the agricultural products confined in an isothermally cooled parallelepiped. Other existing reports on this topic focused mostly on a rectangular enclosure with two types of boundary conditions, i.e., cooled at the horizontal boundaries or at the side walls. However, a heat generating porous annulus frequently encountered in many engineering practices has not received much attention. Furthermore, there appears to be no studies on the non-Darcy effects for the case of a heat generating porous medium. The purpose of the paper is to numerically investigate the heat transfer process occurring in porous annuli by taking both inertial and viscous into account
Davidson, J.H.
1998-06-01
This progress report describes the thermodynamic testing and modeling of a thermosyphon heat exchanger used in solar water heating systems. Testing of a four tube-in-shell thermosyphon heat exchanger was performed in two parts. The first portion of the test increased the collector fluid while the storage tank remained isothermal. After the collector fluid temperature was raised to 95 C, the second part of the test allowed the storage tank to gain heat. The test was performed for two collector flow rates. Measured values included collector side forced flow rate, temperature differences across the heat exchanger, vertical temperature distribution in the storage tank, vertical water temperature profile in the heat exchanger, and pressure drop on the thermosyphon side of the heat exchanger. The overall heat transfer coefficient-area product (UA) values obtained confirmed that models which assume UA depends solely on thermosyphon flow rate do not adequately characterize thermosyphon heat exchangers. This is because heat transfer in thermosyphon exchangers occurs in the mixed convection, rather than forced flow, regime. A linear regression equation was developed to better predict UA using the Prandtl, Reynolds, and Grashof numbers and dimensionless parameters based on fluid properties calculated for the average hot and cold leg temperatures. 9 figs.
AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES
Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L
2007-12-19
Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.
Olson, Sandra
2011-01-01
To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.
Magnetohydrodynamic (MHD) fully developed flow of a viscous incompressible electrically conducting fluid in a vertical channel during combined convection, with asymmetric heating of the wall, under the influence of a constant pressure gradient and in the presence of an uniform transverse magnetic field, is studied. Exact solution of the governing equation is obtained in a closed form. The solution in a dimensionless form contains two pertinent flow parameters, viz. M (the Hartmann number) and Gr (the Grashof number). The limiting cases of a MHD forced and free convection are analysed, what has not been done earlier in the literature. The occurrence of flow reversal indicates that there arises a flow reversal at the cold wall when rT=1 while, for rT<1, no flow reversal is possible in the absence of magnetic forces. (author)
Convective Heat and Mass Transfer in Rotating Disk Systems
Shevchuk, Igor V
2009-01-01
The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems, namely, over free rotating disks, under conditions of transient heat transfer, solid- body rotation of fluid, orthogonal flow impingement onto a disk, swirl radial flow between parallel co-rotating disks, in cone-disk systems and for Prandtl and Schmidt numbers larger than unity. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD. The book is aimed at the professional audience of academic researchers, industr
The electro-thermo-convective motion in a plane horizontal dielectric liquid layer subjected to simultaneous action of electric field and thermal gradient is numerically investigated. We consider the case of a strong unipolar charge injection C = 10 from above or below. Therefore in this context, we only take into account the Coulomb force, disregarding the dielectric one. The effect of the electric field on the heat transfer is analyzed through the characterization of the time history of the Nusselt number as well as its evolution according to the characteristic dimensionless electric parameter T. It is demonstrated that the electric effects dominate the buoyancy ones resulting in an electrically induced convection which significantly enhance the heat transfer.
Heat transport measurements in turbulent rotating Rayleigh-Benard convection
Ecke, Robert E [Los Alamos National Laboratory; Liu, Yuanming [Los Alamos National Laboratory
2008-01-01
We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.
Convective heat transfer analysis in aggregates rotary drum reactor
Heat transport characterisation inside rotary drum dryer has a considerable importance linked to many industrial applications. The present paper deals with the heat transfer analysis from experimental apparatus installed in a large-scale rotary drum reactor applied to the asphalt materials production. The equipment including in-situ thermal probes and external visualization by mean of infrared thermography gives rise to the longitudinal evaluation of inner and external temperatures. The assessment of the heat transfer coefficients by an inverse methodology is resolved in order to accomplish a fin analysis of the convective mechanism inside baffled (or flights) rotary drum. The results are discussed and compared with major results of the literature. -- Highlights: ► A thermal and flow experimentation is performed on a large-scale rotary drum. ► Four working points is chosen in the frame of asphalt materials production. ► Evaluation of the convective transfer mechanisms is calculated by inverse method. ► The drying stage is performed in the combustion area. ► Wall/aggregates heat exchanges have a major contribution in the heating stage
In this paper, a study of convective mass transfer coefficient and rate of moisture removal from cabbage and peas for open sun drying and inside greenhouse drying has been performed as a function of climatic parameters. The hourly data for the rate of moisture removal, crop temperature, relative humidity inside and outside the greenhouse and ambient air temperature for complete drying have been recorded. The experiments were conducted after the crop harvesting season from September to December 2001. These data were used for determination of the coefficient of convective mass transfer and then for development of the empirical relation of convective mass transfer coefficient with drying time under natural and forced modes. The empirical relations with convective mass transfer for open and greenhouse drying have been compared. The convective mass transfer coefficient was lower for drying inside the greenhouse with natural mode as compared to open sun drying. Its value was doubled under the forced mode inside the greenhouse drying compared to natural convection in the initial stage of drying
Liquid oil painting: Free and forced convection in an enclosure with mechanical and thermal forcing
Sheard, Gregory J; King, Martin P
2012-01-01
A fluid dynamics video is linked to this article, which have been submitted to the Gallery of Fluid Motion as part of the 65th American Physical Society meeting of the Division of Fluid Dynamics, held in San Diego, California, USA, over 17-20 November 2012. The video serves to visualize flows generated in a rectangular enclosure that are subjected to both mechanical and thermal forcing through a common horizontal boundary. This system exhibits features consistent with either horizontal convection or lid-driven cavity flows depending on the ratio between thermal and mechanical stirring, and three different cases are visualized in the linked videos.
Core flows and heat transfer induced by inhomogeneous cooling with sub- and supercritical convection
Dietrich, W.; Hori, K.; Wicht, J.
2016-02-01
The amount and spatial pattern of heat extracted from cores of terrestrial planets is ultimately controlled by the thermal structure of the lower rocky mantle. Using the most common model to tackle this problem, a rapidly rotating and differentially cooled spherical shell containing an incompressible and viscous liquid is numerically investigated. To gain the physical basics, we consider a simple, equatorial symmetric perturbation of the CMB heat flux shaped as a spherical harmonic Y11 . The thermodynamic properties of the induced flows mainly depend on the degree of nonlinearity parametrised by a horizontal Rayleigh number Rah =q∗ Ra , where q∗ is the relative CMB heat flux anomaly amplitude and Ra is the Rayleigh number which controls radial buoyancy-driven convection. Depending on Rah we identify and characterise three distinctive flow regimes through their spatial patterns, heat transport and flow speed scalings: in the linear conductive regime the radial inward flow is found to be phase shifted 90° eastwards from the maximal heat flux as predicted by a linear quasi-geostrophic model for rapidly rotating spherical systems. The advective regime is characterised by an increased Rah where nonlinearities become significant, but is still subcritical to radial convection. There the upwelling is dispersed and the downwelling is compressed by the thermal advection into a spiralling jet-like structure. As Rah becomes large enough for the radial convection to set in, the jet remains identifiable on time-average and significantly alters the global heat budget in the convective regime. Our results suggest, that the boundary forcing not only introduces a net horizontal heat transport but also suppresses the convection locally to such an extent, that the net Nusselt number is reduced by up to 50%, even though the mean CMB heat flux is conserved. This also implies that a planetary core will remain hotter under a non-homogeneous CMB heat flux and is less well mixed. A broad numerical parameter investigation regarding Rayleigh number and the relative heat flux anomaly further fosters these results.
Origin of Knudsen forces on heated microbeams
Zhu, Taishan
2010-09-09
The presented work probes the fundamentals of Knudsen forces. Using the direct simulation Monte Carlo (DSMC) method, the flows induced by temperature inhomogeneity within a representative configuration and the Knudsen force acting on a heated microbeam are captured as functions of Knudsen number in the entire flow regime. Both flow strength and Knudsen force peak in the transition regime and negative Knudsen force absent in experimental data is observed. The mechanisms of the thermally induced flows and Knudsen forces are studied. It has been found that thermal edge flow is the main driven source for the formation of the Knudsen force on microbeams and domain configuration plays an important role in the process.
Neshat, E.; Hossainpour, S.; Bahiraee, F.
2014-06-01
Both of experimental and numerical investigations were performed to understand unsteady natural convection from outer surface of helical coils. Four helical coils with two different curvature ratios were used. Each coil was mounted in the shell both vertically and horizontally. The cold water was entered the coil and the hot water in the shell was cooling by unsteady natural convection. A CFD code was developed to simulate natural convection heat transfer. Equations of tube and shell are solved simultaneously. Statistical analyses have been done on data points of temperature and natural convection Nusselt number. It was revealed that shell-side fluid temperature and the Nusselt number of the outer surface of coils are functions of in-tube fluid mass flow rate, specific heat of fluids and geometrical parameters including length, inner diameter of the tube and the volume of the shell, and time.
Periodic mixed convection in horizontal porous layer heated from below by isoflux heater
Numerical study for transient mixed convection in a two-dimensional horizontal porous layer heated from below by a constant heat flux source is carried out in the present paper. The transient thermal field, flow field and average Nusselt number are presented for a wide range of the Peclet number, Pe, for the particular case of Rayleigh number Ra=10x2 and the ratio of heater length to the porous layer thickness A=1, 3 and 5. It is found that for A=3 and A=5 with small values of the Peclet number, the free convection mode is dominated, while for large values, of the Peclet number, the forced convection mode is dominated. However, for moderate values the oscillatory mixed convection is observed and a periodic variation of the average Nusselt number is obtained. When the heater length is equal to the porous layer thickness (A=1) the steady-state results are obtained for the range of Pe=0.01-10. (author)
Why convective heat transport in the solar nebula was inefficient
Cassen, P.
1993-01-01
The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.
Schumacher, Courtney
2012-12-13
Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.
J. N. N. QUARESMA
1998-03-01
Full Text Available The thermal entry region in laminar forced convection of Herschel-Bulkley fluids is solved analytically through the integral transform technique, for both circular and parallel-plates ducts, which are maintained at a prescribed wall temperature or at a prescribed wall heat flux. The local Nusselt numbers are obtained with high accuracy in both developing and fully-developed thermal regions, and critical comparisons with previously reported numerical results are performed.
Dimensionless analysis of bubble departure frequency in forced convective subcooled boiling flow
Forced convective subcooled boiling flow experiments were conducted in a vertical upward annular channel. Water was used as the testing fluid, and the tests were performed at atmospheric pressure. A high-speed digital video camera was applied to capture the dynamics of the bubble nucleation process. Bubble departure frequencies were obtained from the video for a total of 58 test conditions. The non-dimensional analysis was performed on the current data as well as available data from literature. Existing models and correlations were compared with the experimental data of bubble waiting time, growth time, and departure frequency. The correlations developed for pool boiling flow do not work well for forced convective subcooled boiling flow, while the models proposed for subcooled boiling flow can not predict the bubble departure frequency in wide experimental ranges. Dimensionless bubble departure frequency is correlated with non-dimensional nucleate boiling heat flux. The new correlation agrees reasonably well with existing experimental data at lower wall superheat. (author)
Natural convection of ferrofluids in partially heated square enclosures
Selimefendigil, Fatih, E-mail: fatih.selimefendigil@cbu.edu.tr [Department of Mechanical Engineering, Celal Bayar University, 45140 Manisa (Turkey); Öztop, Hakan F., E-mail: hfoztop1@gmail.com [Department of Mechanical Engineering, Technology Faculty, Fırat University, 23119 Elazığ (Turkey); Al-Salem, Khaled, E-mail: kalsalem@ksu.edu.sa [Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh (Saudi Arabia)
2014-12-15
In this study, natural convection of ferrofluid in a partially heated square cavity is numerically investigated. The heater is located to the left vertical wall and the right vertical wall is kept at constant temperature lower than that of the heater. Other walls of the square enclosure are assumed to be adiabatic. Finite element method is utilized to solve the governing equations. The influence of the Rayleigh number (10{sup 4}≤Ra≤5×10{sup 5}), heater location (0.25H≤y{sub h}≤0.75H), strength of the magnetic dipole (0≤γ≤2), horizontal and vertical location of the magnetic dipole (−2H≤a≤−0.5H, 0.2H≤b≤0.8H) on the fluid flow and heat transfer characteristics are investigated. It is observed that different velocity components within the square cavity are sensitive to the magnetic dipole source strength and its position. The length and size of the recirculation zones adjacent to the heater can be controlled with magnetic dipole strength. Averaged heat transfer increases with decreasing values of horizontal position of the magnetic dipole source. Averaged heat transfer value increases from middle towards both ends of the vertical wall when the vertical location of the dipole source is varied. When the heater location is changed, a symmetrical behavior in the averaged heat transfer plot is observed and the minimum value of the averaged heat transfer is attained when the heater is located at the mid of vertical wall. - Highlights: • Free convection of ferrofluids in a partially heated cavity is numerically studied. • Velocities are sensitive to the magnetic dipole source strength and its position. • Averaged Nu increases with decreasing x-location values of the magnetic dipole. • Averaged Nu increases from middle towards ends when y-location of dipole changes.
RELAP5/MOD3 simulation for steam condensation under forced convection conditions
Experimental and theoretical investigations were conducted by a team in the Department of Nuclear Engineering at the Massachusetts Institute of Technology (MIT) to determine the effects of noncondensable gases on steam condensation under forced convection conditions. The main objective of this study was to determine the condensation heat transfer coefficient of the steam in the presence of noncondensable gases, such as air and helium. In particular, the work was aimed at predicting the in-tube steam condensation rate as applied to the analysis of the isolation condensers of the proposed simplified boiling water reactor. The RELAP5 code uses laminar (Nusselt correlation) and turbulent film condensation (Carpenter ampersand Colburn correlation) heat transfer correlations in the absence of noncondensable gases, whichever is maximum. A reduction factor that is a function of the noncondensable gas concentration is being used to take into account the effect of the noncondensable gas on the condensation heat transfer coefficient. The properties for the gaseous phase are calculated assuming a Gibbs-Dalton mixture of steam and an ideal noncondensable gas. Since the experimental data are limited in the open literature, the MIT experimental program gives us an opportunity to assess the RELAP5 code against the separate-effects test data. The MIT test facility was simulated using the RELAP5 code for steam condensation in the presence of air under forced convection conditions. This paper presents RELAP5 simulation results of the MIT test facility for various inlet air mass fractions with fixed mixture inlet temperature by comparing with the MIT experimental data
Development of convective heat transfer correlations for common designs of solar dryer
Highlights: ? Separate experimental methods of hcpf evaluation are proposed for different dryers. ? Correlation for hcpf in terms of dimensionless numbers for each dryer is proposed. ? Single correlation for hcpf representing different dryer designs is also developed. ? LevenbergMarquardt algorithm is used to develop temperature dependent correlation. ? Close agreement of experimental and predicted hcpf validates proposed correlations. - Abstract: The knowledge of convective heat transfer coefficient hcpf (absorber plate to flowing air) is necessary to predict or evaluate thermal performance of any solar dryer. In order to determine hcpf, laboratory models of direct (cabinet), indirect and mixed mode solar dryer are designed and constructed to perform no-load steady state experiments for natural and forced air circulation. The dryers are operated under indoor simulation conditions for absorbed thermal energy and air flow rate for the range of 300800 W/m2 and 13 m/s, respectively. Separate methods depending on mode of heat utilisation are proposed for determination of hcpf for different dryers. Correlations of hcpf in terms of dimensionless numbers are developed for each dryer operating under natural and forced convection. LevenbergMarquardt algorithm is used to develop temperature dependent correlations. A close agreement between experimental and predicted hcpf values obtained from proposed correlations for natural convection dryers demonstrates their reliability. However, for forced convection dryers, there is a need to use temperature dependent NuRe correlation for more accurate results. The low uncertainty ranging from 0.3% to 0.8% in the determination of hcpf confirms the accuracy of experimental data obtained for various dryer designs operated under different conditions.
Development and performance evaluation of forced convection potato solar dryer
This research paper deals with the design development and testing of a forced convection solar dryer, for drying and converting to flour of high moisture content vegetables like potatoes. The angle of solar collector was made adjustable for the absorption of maximum solar radiation by the absorber plate. The air flow rate was controlled by adjustable gate valve to find the optimum flow rate for dehydration of the product. The penetration of solar radiation raised the temperature of the absorber plate of the dryer to 110 deg. C during the operation under stagnation or no load conditions. The maximum air temperature attained in the solar air heater, under this condition was 80 deg. C. The dryer was loaded with 12 Kg of blanched potato chips having an initial moisture content of 89.75%, and the final desired moisture content of 6.95% was achieved within five hours without losing the color of potato chips, while the moisture contents reduction was from 89.75% to 33.75% for five hours in open sun drying under shade. The drying cost for 1 Kg of potatoes was calculated as Rs. 245 and it was Rs. 329 in the case of an electric dryer. The life span of the solar dryer was assumed to be 20 years. The cumulative present worth of annual savings over the life of the solar dryer was calculated for blanched potato chips drying, and it turned out be Rs.163177.67/- which was much higher than the capital cost of the dryer (Rs. 25000). The payback period was calculated as 0.89 years, which was also very small considering the life of the system (20 years). (author)
Convective transfers; Transferts convectifs
Accary, G.; Raspo, I.; Bontoux, P. [Aix-Marseille-3 Univ. Paul Cezanne, CNRS, Lab. MSNM-GP UMR 6181, 13 - Marseille (France); Zappoli, B. [Centre National d' Etudes Spatiales (CNES), 31 - Toulouse (France); Polidori, G.; Fohanno, S. [Laboratoire de Thermomecanique, 51 - Reims (France); Hirata, S.C.; Goyeau, B.; Gobin, D. [Paris-6 et Paris-11 Univ., FAST-UMR CNRS 7608, 91 - Orsay (France); Cotta, R.M. [UFRJ/LTTC/PEM/EE/COPPE, Rio de Janeiro (Brazil); Perrin, L.; Reulet, P.; Micheli, F.; Millan, P. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 31 - Toulouse (France); Menard, V. [France Telecom R and D, 22 - Lannion (France); Benkhelifa, A.; Penot, F. [Ecole Nationale Superieure de Mecanique et d' Aerotechnique (ENSMA), Lab. d' Etudes Thermiques, UMR CNRS 6608, 86 - Poitiers (France); Ng Wing Tin, M.; Haquet, J.F.; Journeau, C. [CEA Cadarache (DEN/DTN/STRI/LMA), Lab. d' Essais pour la Maitrise des Accidents Graves, 13 - Saint-Paul-lez-Durance (France); Naffouti, T.; Hammani, M.; Ben Maad, R. [Faculte des Sciences de Tunis, Lab. d' Energetique et des Transferts Thermique et Massique, Dept. de Physique, Tunis (Tunisia); Zinoubi, J. [Institut Preparatoire aux Etudes d' Ingenieurs de Nabeul (Tunisia); Menard, V.; Le Masson, S.; Nortershauser, D. [France Telecom R and D, 22 - Lannion (France); Stitou, A.; Perrin, L.; Millan, P. [ONERA, 31 - Toulouse (France)
2005-07-01
This session about convective transfers gathers 31 articles dealing with: numerical study of the hydrodynamic stability of a bottom heated supercritical fluid layer; establishment of laminar-turbulent transition criteria of free convection dynamic and thermal boundary layers; heat transfer changes in free convection by mechanical and thermal disturbances; natural convection stability in partially porous horizontal layers; experimental characterization of the dynamic and thermal aspects of a natural convection flow inside a confined space; determination of transitions towards non-stationary natural convection inside a differentially heated inclined cavity; interface temperatures for the convection of fluids with variable viscosity; influence of the height of a vertical cylinder on the flow resulting from a plume-thermosyphon interaction; simultaneous measurement of dynamic and thermal fields by thermo-chromic liquid crystals in natural convection; numerical simulation of turbulent natural convection flows inside a heated room; numerical and experimental study of mixed convection heat transfer inside an axisymmetrical network; analysis of laminar flow instabilities in assisted mixed convection; entropy generation in mixed convection; thermal and mass convection in non-stationary regime inside a ventilated cavity; study of a low Reynolds number mixed convection flow; numerical study of a convective flow inside a rotating annular cavity; study of the dynamical behaviour of a transient mixed convection flow inside a thick vertical duct; internal laminar convection: selection criteria for the identification of natural, mixed or forced regimes; turbulent flow and convection heat transfer inside a channel with corrugated walls; study of the impact of an axisymmetrical jet on a concave wall; modeling of volume irreversibilities of turbulent forced convection; numerical study of forced convection irreversibilities around a network of cylindrical tubes; estimation of the exchange coefficient of a mobile cylinder impacted by a water jet - study of single-phase forced convection; second order modeling of the thermal field of an homogenous turbulence; numerical study of the effect of a periodical disturbance on the dynamical structure of the flow downstream of a descending step; numerical study of flows and heat transfers inside the air gap of a rotating machine; dynamical and thermal characteristics of boundary layers inside a turbulent Poiseuille flow with low flow rate ratio downstream of a T-junction; study of convective transfers at the inlet of a cylindrical tube with a low shape ratio (L/D = 8); experimental study of convective transfers in a rotor/stator system subjected to a air flux; correction of the strength and heat flux transferred by a moving cylinder between two parallel planes in Stokes-type regime; algebraic model for the forecasting of turbulent heat fluxes. (J.S.)
Experimental study of an upward sub-cooled forced convection in a rectangular channel
Kouidri, A.; Madani, B.; Roubi, B.; Hamadouche, A.
2015-08-01
The upward sub-cooled forced convection in a rectangular channel is investigated experimentally. The aim of the present work is the studying of the local heat transfer phenomena. Concerning the experimentation: the n-pentane is used as a working fluid, the independent variables are: the velocity in the range from 0.04 to 0.086 m/s and heat flux density with values between 1.8 and 7.36 W/cm2. The results show that the local Nusselt number distribution is not uniform along the channel; however, uniformity is observed in the mean Nusselt number for Reynolds under 1600. On the other hand, a new correlation to predict the local fluid temperature is established as a function of local wall temperature. The wall's heat is dissipated under the common effect of the sub-cooled regime; therefore, the local heat transfer coefficient is increased. The study of the thermal equilibrium showed that for Reynolds less than 1500; almost all of the heat flux generated by the heater cartridges is absorbed by the fluid.
Natural convection in asymmetric triangular enclosures heated from below
Kamiyo, O. M.; Angeli, D.; Barozzi, G. S.; Collins, M. W.
2014-11-01
Triangular enclosures are typical configurations of attic spaces found in residential as well as industrial pitched-roof buildings. Natural convection in triangular rooftops has received considerable attention over the years, mainly on right-angled and isosceles enclosures. In this paper, a finite volume CFD package is employed to study the laminar air flow and temperature distribution in asymmetric rooftop-shaped triangular enclosures when heated isothermally from the base wall, for aspect ratios (AR) 0.2 heat transfer between the cold inclined and the hot base walls is very high, resulting in a multi-cellular flow structure. As the pitch angle increases, however, the number of cells reduces, and the total heat transfer rate progressively reduces, even if the Rayleigh number, being based on the enclosure height, rapidly increases. Physical reasons for the above effect are inspected.
S. Venkatachalapathy
2010-01-01
Full Text Available Natural convection cooling using air as a fluid is commonly used in the cooling of electronic equipment and many other devices. In this work, a three-dimensional numerical study of natural convection heat transfer from multiple protruding heat sources simulating electronic components is conducted. Computational fluid dynamics (CFD software, FLUENT is used in this analysis. A 4 by 5 array of heat sources are embedded in the bottom wall of an adiabatic square enclosure. The heat sources with a constant heat flux source at the bottom are of square cross-section and arranged in an in-line manner. Each heat source is attached with one thermocouple, which is connected to a data acquisition system and a computer. The steady state temperatures of heat sources, air inlet, outlet and enclosure walls are measured. The analysis is carried out by varying the heat fluxes and outlet areas. The heat transfer coefficient, Nusselt number and Grashof number are obtained. Results indicate that the heat sources inside the array are hotter and the heat transfer coefficient increases almost linearly with heat source surface temperatures. Grashof number and outlet opening areas strongly influence the Nusselt number. The heat transfer coefficient for the inner heat sources in a row is lower than those near the enclosure walls. The results of numerical analysis are compared with the experiments and there is a good agreement between the two.
M. A. Mansour
2013-09-01
Full Text Available The effects of magnetic force, acting vertically downward on natural convection within a nanofluid filled tilted trapezoidal enclosure saturated with an electrically conducting fluid have been investigated numerically. The bottom wall of the enclosure is subjected to a constant cold temperature and the top wall experiences a heat source whereas the remaining sidewalls are kept adiabatic. The physical problems are represented mathematically by different sets of governing equations along with the corresponding boundary conditions. By using approximations of finite difference method, the non-dimensional governing equations are discritized. For natural convection the influential parameters are Rayleigh number Ra, the rotational angle of the enclosure and the Hartmann number Ha, through which different thermo-fluid characteristics inside the enclosure are obtained. In the present study, the obtained results are presented in terms of streamlines, isotherms and average Nusselt number along the heat source. The result shows that with increasing Ha, the diffusive heat transfer become prominent even though Rayleigh number increases. Optimum heat transfer rate is obtained at higher values of Ra in the absence of magnetic force.
Heat transfer reduction at the separation point on a spinning sphere in mixed convection
Ozturk, Aysegul; Ece, Mehmet Cem [Trakya Univ., Dept. of Mechanical Engineering, Edirne (Turkey)
2002-07-01
The unsteady laminar thermal boundary-layer flow over an impulsively started translating and spinning isothermal body of revolution in the case of mixed convection is investigated. Velocity components and temperature are obtained as series of functions in powers of time. The general results are applied to a spinning sphere and the development of the surface heat flux evaluated at the separation point as it advances upstream is determined. The surface heat flux evaluated at the separation point as it moves forward decreases due to the increasing magnitude and influence of the centrifugal force and it is augmented by the opposing flow and reduced by the aiding flow. Reduction of the surface heat flux at the separation point is as low as 50 per cent as compared to the heat flux at the front stagnation point. (Author)
Control of forced downward flow on the natural convection in a cylindrical annulus
Mixed convective heat transfer characteristics in narrow cylindrical annulus gap were investigated both experimentally and analytically. Experimentally, using atmospheric air, heat removal characteristics of downward flow for preventing natural convection were examined. Varying temperature boundary conditions, natural circulation was artificially produced in some local flow path such as central pipe as well as annulus gap. By injecting cold air from upper plenum, its effect on natural convection avoidance and resultant favorable heat transfer were confirmed even under small flow rate condition. In parallel, a computer code based on flow-network model was qualified. After comparisons of the code predictions with atmospheric air test results, natural circulation control could be analyzed successfully. (author)
DORE, VALENTINA
2010-01-01
The motion of buoyancy driven plumes is, on all scales, the most common heat and momentum transfer mechanism in geophysical flows, well known as Free Convection. Similarly, density stratification due to heating inequalities is also an ordinary scenario in nature. Free Convection phenomenon coupled with a density stratified fluid setting leads to the so-called Penetrative Free Convection (PFC). When a fluid, in static equilibrium, is stably stratified a thermal forcing can produce an unstable ...
Favre, E.
1997-09-26
coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas which drastically changes the heat and mass transfer across the liquid layer. Two experiments were considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow appears as petals or rays when the aspect ratio. The lateral confinement selects the azimuthal wavelength. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be `weak`, even for the largest values of the Marangoni number (Ma = 1.3 10{sup 5}). In the case of mercury, the thermo-capillary effect is reduced to zero to impurities at the surface which have special trajectories we describe and compare to a simpler experiment. Only the buoyancy forces induce a unstationary, weakly turbulent flow as soon as the heating power exceeds 4W (Ra = 4.5 10{sup 3}, calculated with h = 1 mm). The past part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number and the buoyancy force with the help of the literature. Results concerning heat transfer, in particular the exponent of the law Nusselt number vs. heating power, were compared with available data. (author) 115 refs.
Natural convective heat transfer of lithium under magnetic field
Uda, N.; Hayase, M.; Chikaoka, T.; Inoue, S.; Horiike, H. E-mail: horiike@nucl.eng.osaka-u.ac.jp; Miyazaki, K
2000-11-01
The magnetohydrodynamic (MHD) effect on a natural convection heat transfer of liquid metal lithium was experimentally studied. The test section consisted of a lithium pool and, a heater pin, which was settled in the center of the pool. The results are summarized as follows, (1) with increasing B (Ly{>=}50), the Nusselt number decreased to 70 of the highest value at 0.05 T of the magnetic field; (2) large scale circulation flow profile and temperature profile were found to change drastically with the application of the weak field of 0.01 T.
A penalty finite element analysis with bi-quadratic elements is performed to investigate the influence of uniform and non-uniform heating of bottom wall on mixed convection lid driven flows in a square cavity. In the present investigation, bottom wall is uniformly and non-uniformly heated while the two vertical walls are maintained at constant cold temperature and the top wall is well insulated and moving with uniform velocity. A complete study on the effect of Gr shows that the strength of circulation increases with the increase in the value of Gr irrespective of Re and Pr. As the value of Gr increases, there occurs a transition from conduction to convection dominated flow at Gr=5.103 and Re=1 for Pr=0.7. A detailed analysis of flow pattern shows that the natural or forced convection is based on both the parameters Ri (Gr/Re2) and Pr. As the value of Re increases from 1 to 102, there occurs a transition from natural convection to forced convection depending on the value of Gr irrespective of Pr. Particularly for higher value of Grashof number (Gr=105), the effect of natural convection is dominant up to Re=10 and thereafter the forced convection is dominant with further increase in Re. As Pr increases from 0.015 to 10 for a fixed Re and Gr (Gr=103), the inertial force gradually becomes stronger and the intensity of secondary circulation gradually weakens. The local Nusselt number (Nub) plot shows that the heat transfer rate is very high at the edges of the bottom wall and then decreases at the center of the bottom wall for the uniform heating and that contrasts lower heat transfer rate at the edges for the non-uniform heating of the bottom wall. It is also observed that Nul shows non-monotonic behavior with both uniform and non-uniform heating cases for Re=10 at higher value of Pr. The average Nusselt number plot for the left or right wall shows a kink or inflexion at Gr=104 for highest value of Pr. Thus the overall power law correlation for average Nusselt number may not be obtained for mixed convection effects at higher Pr. (authors)
Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia
2009-01-01
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…
Pronobis, M.; Kalisz, S.; Wejkowski, R.
The paper presents the results of an investigation concerning heat transfer and pressure loss in air crossflow of diagonally shaped membrane heating surfaces. The heat and mass transfer analogy by means of naphthalene sublimation technique is used in order to evaluate mean Nusselt number values in such tube banks. The effect of tube bank arrangement on heat transfer coefficients and flow resistance is discussed. Convective heat transfer and pressure loss characteristics of diagonally shaped membrane tube banks, plain tube banks and ordinary membrane tube banks are compared.
The natural convection heat transfer from a heated vertical plate with wall temperature decreasing linearly from the lower end and embedded in a water saturated porous medium (coarse sand of 23% porosity) has been investigated experimentally. The steady state isothermal lines in the porous medium were developed with the aid of a computer program from the measured temperature data for several rates of heat input. The computed values of the local Nusselt number and modified Rayleigh number were used to obtain the empirical correlations. In order to check the accuracy of the measuring instruments and experimental procedures in simulating the thermal field, experimental investigations of heat transfer by natural convection from a vertical heated plate with constant wall temperature and embedded in the water saturated sand were conducted and the experimental results were compared with those previous investigations. The agreement was very good indicating that the instrumentation and experimental set-up used in the present study were reasonably satisfactory
Cherba?ski, Robert
2015-05-01
This paper presents a comparative study on heat transfer in a packed column. Two methods of heating are considered: microwave and convective. Transient one-dimensional mathematical models were proposed to describe the both alternatives. To account for significant differences in the temperatures between the gas and solid phase a heterogeneous model was applied in the modelling. The numerical simulations were carried out for different operating conditions. The effects of the gas inlet temperature and the microwave power, the bed porosity, the penetration depth of microwaves and the gas velocity were examined. The simulation results were compared on the basis of the time profiles of the average bed temperature and the outlet gas temperature. The same electric power utilized in the microwave heated packed column and the convective heated packed column was established as the key criterion for the comparisons. The compared profiles intersect indicating the time ranges in which the one or the other solution provides higher temperature of the bed. It was displayed that the microwave heated packed column should be preferred when longer heating times are required. In turn, the convective heated packed column is the better choice when shorter heating times are needed.
A theoretical study of the spheroidal droplet evaporation in forced convection
Li, Jie, E-mail: leejay1986@163.com; Zhang, Jian
2014-11-07
In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time. - Highlights: • Fully algebraic solutions for the spheroidal droplet evaporation rate is obtained. • We examine the effect of aspect ratio on the droplet evaporation. • We propose a calculation method of Nusselt number for spheroidal droplet.
Study of turbulent natural-circulation flow and low-Prandtl-number forced-convection flow
Calculational methods and results are discussed for the coupled energy and momentum equations of turbulent natural circulation flow and low Prandtl number forced convection flow. The objective of this paper is to develop a calculational method for the study of the thermal-hydraulic behavior of coolant flowing in a liquid metal fast breeder reactor channel under natural circulation conditions. The two-equation turbulence model is used to evaluate the turbulent momentum transport property. Because the analogy between momentum transfer and heat transfer does not generally hold for low Prandtl number fluid and natural circulation flow conditions, the turbulent thermal conductivity is calculated independently using equations similar to the two-equation turbulence model. The numerical technique used in the calculation is the finite element method
The current study presents a numerical computation of combined gas radiation and forced convection through two parallel plates. A laminar flow of a temperature-dependent and non-grey gas in the entrance region of the channel was investigated. Over-heated water vapor was chosen as a gas because of its large absorption bands. Some special attention was given to entropy generation and its dependence on geometrical and thermodynamic parameters. The radiative part of the study was solved using the 'Ray Tracing' method through S4 directions, associated with the 'statistical narrow band correlated-k' (SNBCK) model. The temperature fields were used to calculate the distributions of local and global entropy generation
A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media
Liu, Q; Li, Q
2013-01-01
In this paper, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is developed for simulating convection heat transfer in porous media at the representative elementary volume scale. In the model, a MRT-LB equation is used to simulate the flow field, while another MRT-LB equation is employed to simulate the temperature field. The effect of the porous media is considered by introducing the porosity into the equilibrium moments, and adding a forcing term to the MRT-LB equation of the flow field in the moment space. The proposed MRT-LB model is validated by numerical simulations of several two-dimensional convection problems in porous media. The numerical results predicted by the present MRT-LB model agree well with those reported in the literature.
Role of stratiform heating on the organization of convection over the monsoon trough
Ajayamohan, R. S.; Khouider, Boualem; Majda, Andrew J.; Deng, Qiang
2016-02-01
It has been recently demonstrated that stratiform heating plays a critical role in the scale-selection of organized tropical convection, in an aquaplanet version of a coarse-resolution atmospheric general circulation model coupled to a stochastic multicloud cumulus parameterization scheme. It is shown that Madden-Julian oscillation-like organization dominates when the model is tuned to produce strong and long lived stratiform heating while it gives rise to mostly convectively coupled waves in the case of weak and short lived stratiform clouds. The study is extended here to the case of an asymmetric forcing mimicking the migration of the intertropical convergence zone (ITCZ) during summer to understand the impact of changes in stratiform heating on the monsoon dynamics. Consistent with the equatorial ITCZ case, strong and long lived stratiform heating promotes northward and eastward moving intraseasonal disturbances while weak and short lived stratiform heating yields mostly westward propgating synoptic scale low pressure systems. Moreover, the underlying intraseasonal versus low pressure system activity seems to impact the strength and extend of the monsoon trough (MT). In the regime with intraseasonal activity the MT is much stronger and extends northward while in the low pressure system case MT is some what weaker in strength but extends further westward. In the low pressure dominated regime, the background vorticity and zonal wind profiles over the monsoon trough are consistent with the observations.
Crumeyrolle, Olivier; Egbers, Christoph; Mutabazi, Innocent; Dahley, M. Norman; Smieszek, Marlene
2012-07-01
We investigate numerically the thermal convection of an annular dielectric liquid sheet under the effect of the dielectrophoretic force, as observed when a dielectric liquid is permeated by an inhomogeneous electric field. This is of particular interest for space applications as natural convection cannot appear and forced convection from moving parts such as pumps is undesirable due to the expected wearing and lower reliability. Hence heat exchanger relying on the dielectrophoretic force to create convection could provide light, compact and reliable heat exchanger for aerospace cooling systems \\cite{crumeyrolleP}. We investigate the case of a radius ratio equal to 0.5 and Prandtl number of 65. This setup is under experimental investigation at LAS, BTU Cottbus, both on ground and during parabolic flight. The 3D linear stability analysis, that takes the finite size of the system into account, shows that the critical mode is non-axisymmetric and under the form of two counteroriented helices, rather than under the form of rolls as predicted in past investigations\\cite{crumeyrolleT}. Due to the short duration of microgravity during parabolic flight (22 seconds), 3D time-dependent DNS are required with realistic initial conditions. The simulations show that the helices are difficult to observe, as the flow pattern is dominated by convection plumes. We report that transient thermal transfer at the inner cylinder is strongly enhanced by those structures, while the thermal transfer close to the outer cylinder is weaker. J.S. Paschkewitz and {D.M.} Pratt, Exp. Therm. Fluid Sci., 21,, 187 (2000). M. Takashima, Q. J. Mech. appl. Math. 33,, 93 (1980).
A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media
Liu, Qing; He, Ya-Ling; Li, Qing; Tao, Wen-Quan
2013-01-01
In this paper, a two-dimensional (2D) multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is developed for simulating convection heat transfer in porous media at the representative elementary volume scale. In the model, a MRT-LB equation is used to simulate the flow field, while another MRT-LB equation is employed to simulate the temperature field. The effect of the porous media is considered by introducing the porosity into the equilibrium moments, and adding a forcing term to the MR...
Marangoni mixed convection flow with Joule heating and nonlinear radiation
Marangoni mixed convective flow of Casson fluid in a thermally stratified medium is addressed. Flow analysis has been carried out in presence of inclined magnetic field. Heat transfer analysis is discussed in the presence of viscous dissipation, Joule heating and nonlinear thermal radiation. The governing nonlinear partial differential equations are first converted into ordinary differential systems and then developed the convergent series solutions. Flow pattern with the influence of pertinent parameters namely the magnetic parameter, Casson fluid parameter, temperature ratio parameter, stratification parameter, Prandtl number, Eckert number and radiation parameter is investigated. Expression of local Nusselt number is computed and analyzed. It is found that the Nusselt number decreases by increasing magnetic parameter, temperature ratio parameter, angle of inclination and stratification parameter. Moreover the effect of buoyancy parameter on the velocity distribution is opposite in both the opposing and assisting flow phenomena. Thermal field and associated layer thickness are enhanced for larger radiation parameter
Convective heat and mass transfer in rotating disk systems
Shevchuk, Igor V. [MBtech Powertrain GmbH, Fellbach-Schmiden (Germany)
2009-07-01
The book describes results of investigations of a series of convective heat-and-mass transfer problems in rotating-disk systems, namely, over free rotating disks, under conditions of transient heat transfer, solid-body rotation of fluid, orthogonal flow impingement onto a disk, swirl radial flow between parallel co-rotating disks, in cone-disk systems and for Prandtl and Schmidt numbers larger than one. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD. The book is aimed at the professional audience of academic researchers, industrial R and D engineers, university lecturers and graduate/postgraduate students working in the area of rotating-disk systems. (orig.)
Convective heat transfer enhancement inside tubes using inserted helical coils
Ali, R. K.; Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.
2016-01-01
Convective heat transfer was experimentally investigated in tubes with helical coils inserts in turbulent flow regime within Reynolds number range of 14400 ≤ Re ≤ 42900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio from 0.044 to 0.133 and coil pitch ratio from 1 to 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6%) and (100.1-128%) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re.
Mixed Convection Heat Transfer on the Outside of a Vertical Cylinder
An experimental study was made of turbulent heat transfer from a vertical cylinder placed in a square channel. The flow medium was water flowing upwards. Basic differential equations governing the mixed flow heat transfer phenomena in a vertical annulus are presented. A dimensional analysis is done to find the dimensionless variables affecting the relative magnitude of the effect of buoyancy on forced convection heat transfer. Dimensionless equations correlating the experimental data ana incorporating a buoyancy parameter of the form Gr/Re2 are presented. Reynolds number range covered is 690 to 129,500 and the Rayleigh num- ber range covered is 109 to 4.2 x 1013 . Effect of different length parameters, like hydraulic diameter and distance of the measuring point from the inlet of the test section, on dimensionless equations are studied
Natural convection heat transfer of fluid with temperature-dependent specific heat
The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy conservation equation of convective heat transfer is used to explain convective heat transfer there are two points that are difficult for teachers to explain and for undergraduates to understand: thermal diffusivity is placed before the Laplacian operator of temperature; on the wall surface (the fluid side) the velocity is zero, a diffusion equation of temperature is gained from energy conservation equation, however, temperature cannot be transported. Consequently, the real physical meaning of thermal diffusivity is not clearly reflected in the energy conservation equation, and whether heat transfer occurs through a diffusion process or a convection process on the wall surface is not clear. Through a simple convective heat transfer case: laminar convective heat transfer in a tube with a uniform wall heat flux on the tube wall, this paper explains these points more clearly. The results declare that it is easier for teachers to explain and for undergraduates to understand these points when a description of heat transfer in terms of the heat flux is used. In this description, thermal diffusivity is placed before the Laplacian operator of the heat flux; the role of the velocity gradient in convective heat transfer appears, on the wall surface, the fact whether heat transfer occurs through a diffusion process or a convection process can be explained and understood easily. The results are not only essential for teachers to improve the efficiency of university-level physics education regarding heat transfer, but they also enrich the theories for understanding heat transfer
Shang, De-Yi
2012-01-01
This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...
Chato, J.C.; Crowley, J.M.
1981-05-01
A multi-faceted research program has been performed to investigate in detail several aspects of free and forced convective cooling of underground electric cable systems. There were two main areas of investigation. The first one reported in this volume dealt with the fluid dynamic and thermal aspects of various components of the cable system. In particular, friction factors for laminar flow in the cable pipes with various configurations were determined using a finite element technique; the temperature distributions and heat transfer in splices were examined using a combined analytical numerical technique; the pressure drop and heat transfer characteristics of cable pipes in the transitional and turbulent flow regime were determined experimentally in a model study; and full-scale model experimental work was carried out to determine the fluid dynamic and thermal characteristics of entrance and exit chambers for the cooling oil. The second major area of activity, reported in volume 2, involved a feasibility study of an electrohydrodynamic pump concept utilizing a traveling electric field generated by a pumping cable. Experimental studies in two different configurations as well as theoretical calculations showed that an electrohydrodynamic pump for the moving of dielectric oil in a cable system is feasible.
Diabatically Forced Frontogenesis Near Surface As Trigger For The Release of Strong Convection
Kurz, Manfred
One prerequisite for the formation of mesoscale convective systems is the existance of moist potentially unstable air masses in the lower troposphere. For the release of the instability, however, often an ascending motion is necessary in order to destroy stable layers on top of the moist air which would prevent convection, and to bring the air to saturation. In this respect the macroscale ascent ahead of an approaching upper trough may function as trigger for the release of convection. Another favourable process is the ascending motion of the warm air within circulations across a frontal zone which undergoes a frontogenesis either in the horizontal wind field or by diabatic effects. During summer time real fronts between different air masses are often ill defined over the continent, and circulatory motions in their neighbourhood remain rather weak. There is, however, a mechanism which may lead to the formation of a very strong temperature contrast near surface within short time. That happens at the edge of larger cloud and precipitation areas during day time due to the different diabatic heat fluxes across the cloud edge: Whereas the temperature below the cloud masses remains more or less constant or is even reduced by evaporation of falling rain, it rapidly increases due to heating from the ground in the area with no or only few clouds. As consequence of this diabatically forced frontogenesis a solenoidally direct circulation across the newly established frontal zone is released with ascent of the heated air, descent of the cooler air and an ageostrophic motion from the cold towards the warm air near surface. At the same time the pressure rises - at least relatively - in the cold air and falls in the warm air so that a pressure gradient is built up between both air masses. If the warm air is potentially unstable, the ascent within the circulation may lead to the release of the instability and the formation of convective clouds ahead of the cloud edge and parallel to it. Due to the production of cold air in the downdraft of these clouds the temperature and pressure contrast near surface to the warm air is further increased which in turn leads to an intensification of the circulation. Altogether the newly established front may be transformed into a sqall-line. As example for such a proces s the weather situation from 06/07 July 2001 over western and central Europe is presented. On both days marked surface fronts originated during the forenoon within a few hours at the edge of cloud and precipitation areas - north of the Pyrenees on 06 July and at both sides of the Alps during the 07 July. The temperature contrast amounted up to 16 K/50 km, the pressure gradient up to 10 hPa over the same distance, and the motion from the cold to the warm air reached mean speeds around 30 kn. On both days the diabatically originated surface fronts were transformed into vigorous squall-lines which became accelerated when moving through the potentially unstable air east and northeast of the place of origin. They caused a lot of damage in eastern France and southwestern Germany on 06 July and in southern Germany, Austria, and also northern Italy on 07 July. Near Straßbourg 12 visitors of an open-air concert died as a tent broke down due to the gale force gusts. It is important to note that the operationally used high-resolution model of Deutscher Wetterdienst provided clear signals for the described development of the surface fronts, although the real strength of the temperature and pressure contrasts was not simulated. Also the transformation into a mesoscale convective system was forecasted, especially as regards the event over southern Germany on 07 July.
Convective Heating of the LIFE Engine Target During Injection
Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.
Convective Heating of the LIFE Engine Target During Injection
Holdener, D S; Tillack, M S; Wang, X R
2011-10-24
Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.
Zeinali Heris, Saeed; Noie, Seyyed Hossein; Talaii, Elham; Sargolzaei, Javad
2011-12-01
In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.
Zeinali Heris Saeed
2011-01-01
Full Text Available Abstract In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.
Forced Convection Flow of Nanofluids Past Power Law Stretching Horizontal Plates
Ahmed Mostafa Abdelhady
2012-02-01
Full Text Available In the present work, we studied a nonsimilar solution of steady forced convection boundary layer flow and heat transfer of a nanofluid past a stretching horizontal plate. One-phase model has been used for this study. The nonsimilarity equations are solved numerically. We considered a nanofluid consists of AL_{2}O_{3} as a nanoparticles and water as a base fluid. The volume fraction of nanoparticles is considered in the range 0 ≤ ø ≤ 0.2. with prandtl number pr = 6.2 for the water working as a regular fluid. The parameters which governing the solution are volume fraction of nanoparticles , stretching plate parameter ξ and power law index N. We investigated the effect of these parameters on the skin friction coefficient, Nusselt number, velocity and temperature profiles. We found that heat transfer rate and skin fraction increased when ø increased. On the other hand, we concluded that the increase in ξ and N made heat transfer rate increases and skin fraction decreases.
Direct numerical simulation of liquid sodium droplet combustion in forced convection air flow
In case of sodium leakage in liquid metal fast breeder reactor, the liquid sodium comes out in droplet form from a pipe accompanied with ignition and combustion Combustion heat and reaction products might affect integrity of steel liners in piping rooms. A direct numerical simulation code, COMET, is developed to simulate the combustion of a liquid sodium droplet. The extended MAC method coupled with a higher-order upwind scheme is used to calculate reacting compressible flow. Multicomponent counter diffusion of chemical species, mass and energy transfer by sodium evaporation, and heat transfer by radiation and thermal conductivity are calculated coupling with the flow. Chemical reaction of sodium, oxygen and water vapor is calculated by using the equation-solving methods of equilibrium constants. Thermodynamic properties of the mixed gas are evaluated based on the molecular transport theories. By using COMET, the single droplet combustion of liquid sodium in forced convection air flow is numerically simulated. Spatial distributions such as combustion heat, temperature, pressure, and chemical species behaviors such as formation, decomposition and transport are analyzed and discussed. The change of the droplet diameter agrees closely with the d-square law that has been experimentally observed and theoretically derived. (author)
Thermal-hydraulic experiments were performed with water in order to simulate the decay heat removal by natural convection in a pool-type sodium-cooled reactor. Two test rigs of different scales were used, namely RAMONA (1:20) and NEPTUN (1:5). RAMONA served to study the transition from nominal operation by forced convection to decay heat removal operation by natural convection. Steady-state similarity tests were carried out in both facilities. The investigations cover nominal and non-nominal operation conditions. These data provide a broad basis for the verification of computer programs. Numerical analyses performed with the three-dimensional FLUTAN code indicated that the thermal-hydraulic processes can be quantitatively simulated even for the very complex geometry of the NEPTUN test rig. (author)
Grooms, Ian
2014-01-01
The non-hydrostatic, quasigeostrophic approximation for rapidly rotating Rayleigh-B\\'enard convection admits a class of exact `single mode' solutions. These solutions correspond to steady laminar convection with a separable structure consisting of a horizontal planform characterized by a single wavenumber multiplied by a vertical amplitude profile, with the latter given as the solution of a nonlinear boundary value problem. The heat transport associated with these solutions is studied in the regime of strong thermal forcing (large reduced Rayleigh number $\\widetilde{Ra}$). It is shown that the Nusselt number $Nu$, a nondimensional measure of the efficiency of heat transport by convection, for this class of solutions is bounded below by $Nu\\gtrsim \\widetilde{Ra}^{3/2}$, independent of the Prandtl number, in the limit of large reduced Rayleigh number. Matching upper bounds include only logarithmic corrections, showing the accuracy of the estimate. Numerical solutions of the nonlinear boundary value problem for ...
Convection patterns in end-heated inclined enclosures.
Delgado-Buscalioni, R
2001-07-01
The natural convection in inclined side-heated rectangular boxes with adiabatic walls is theoretically and numerically investigated. The study is focused on the characterization of the convection patterns arising at the core of the basic steady unicellular flow and covers the whole range of Prandtl numbers (0number R identical with K Ra, defined in terms of the local streamwise temperature gradient, K Delta T/L. The critical value of R for transversal and longitudinal modes is determined by the linear stability analysis of the basic plane-parallel flow, which also provides the stability diagram in the (Pr-alpha) chart. Anyhow, the effect of confinement can decisively change the stability properties of the core: if the steady unicell reaches the boundary layer regime (BLR) the local temperature gradient vanishes at the core leaving a completely stable core region. A theoretical determination of the frontier of the BLR in the space of parameters (alpha, R, and cavity size) yields an extra criterion of stability that has been displayed in the stability diagram. As confirmed by numerical calculations, the core-flow instabilities can only develop for Prlow Pr (liquid metals). An analytical relationship for its frequency in terms of alpha, Ra, and Pr is derived. Throughout the paper, numerical calculations in two- and three-dimensional enclosures illustrate each type of multicellular flow and examples of instability interactions near the codimension-2 lines predicted by the theory. PMID:11461387
Experimental study of natural convective heat transfer in a vertical hexagonal sub channel
Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur [Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132 (Indonesia); Nuclear Technology Center for Materials and Radiometry, National Nuclear Energy Agency, Bandung (Indonesia); Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132 (Indonesia); Nuclear Energy Regulation Agency, Jakarta (Indonesia)
2012-06-06
The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.
Experimental study of natural convective heat transfer in a vertical hexagonal sub channel
Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur
2012-06-01
The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan's investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra)n, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan's aligned array results and to other studies of natural convection in horizontal tube arrays
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
Maksimov Vyacheslav I.; Nagornova Tatiana A.; Shestakov Igor A.
2015-01-01
Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchang...
Experimental investigation of turbulent mixed convection in the wake of a heated sphere
The axisymmetric wake of a heated sphere under conditions of turbulent mixed convection is investigated in the water test section FLUTMIK. The sphere is located in a vertical channel with forced convective upward flow. The influence of buoyancy forces to the flow field is studied by comparison with the unheated wake. The theoretical fundamentals describing turbulent flows and different versions of the k-ε turbulence model extended by buoyancy terms are described in detail. The quantities to be determined experimentally are derived. The temperature and the components of the velocity vector in axial and radial directions are measured simultaneously by means of a thermocouple probe and a two component, two color laser Doppler anemometer. The flow quantities are determined at axial distances between 5 and 106 sphere diameters. The functional principle and the basis of the laser Doppler anemometer are explained. The mean velocity, the mean temperature, the intensities of their fluctuations and the turbulent exchange quantities of momentum and heat transport are calculated. The decay laws of the quantities along the axis of the channel and the radial profiles are indicated and discussed. The applicability of the experimental results of the axisymmetric buoyancy influenced turbulent wake with respect to the turbulence models presented are shown. (orig.)
Highlights: → Transport processes in isothermal hexagonal sheath with 19 heat generating rods is studied. → Correlation is given to predict the maximum temperature considering all transport processes. → Effective thermal conductivity of rod bundle can be obtained using max temperature. → Data on the critical Rayleigh numbers for p/d ratios of 1.1-2.0 is presented. → Radiative heat transfer contributes to heat dissipation of 38-65% of total heat. - Abstract: A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented.
Fast Prediction Method for Steady-State Heat Convection
Wáng, Yì
2012-03-14
A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fritts, David C.
2004-01-01
The specific objectives of this research effort included the following: 1) Quantification of gravity wave propagation throughout the lower and middle atmosphere in order to define the roles of topographic and convective sources and filtering by mean and low-frequency winds in defining the wave field and wave fluxes at greater altitudes; 2) The influences of wave instability processes in constraining wave amplitudes and fluxes and generating turbulence and transport; 3) Gravity wave forcing of the mean circulation and thermal structure in the presence of variable motion fields and wave-wave interactions, since the mean forcing may be a small residual when wave interactions, anisotropy, and momentum and heat fluxes are large; 4) The statistical forcing and variability imposed on the thermosphere at greater altitudes by the strong wave forcing and interactions occurring in the MLTI.
Multiregional coupled conduction--convection model for heat transfer in an HTGR core
HEXEREI is a three-dimensional, coupled conduction-convection heat transfer and multichannel fluid dynamic analysis computer code with both steady-state and transient capabilities. The program was developed to provide thermal-fluid dynamic analysis of a core following the general design for high-temperature gas-cooled reactors (HTGRs); its purpose was to provide licensing evaluations for the U.S. Nuclear Regulatory Commission. In order to efficiently model the HTGR core, the nodal geometry of HEXEREI was chosen as a regular hexagonal array perpendicular to the axis of and bounded by a right circular cylinder. The cylindrical nodal geometry surrounds the hexagonal center portion of the mesh; these two different types of nodal geometries must be connected by interface nodes to complete the accurate modeling of the HTGR core. HEXEREI will automatically generate a nodal geometry that will accurately model a complex assembly of hexagonal and irregular prisms. The accuracy of the model was proven by a comparison of computed values with analytical results for steady-state and transient heat transfer problems. HEXEREI incorporates convective heat transfer to the coolant in many parallel axial flow channels. Forced and natural convection (which permits different flow directions in parallel channels) is included in the heat transfer and fluid dynamic models. HEXEREI incorporates a variety of steady-state and transient solution techniques that can be matched with a particular problem to minimize the computational time. HEXEREI was compared with a code of similar capabilities that was based on a Cartesian mesh. This code modeled only one specific core design, and the mesh spacing was closer than that generated by HEXEREI. Good agreement was obtained with the detail provided by the representations
Natural convection in asymmetric triangular enclosures heated from below
Triangular enclosures are typical configurations of attic spaces found in residential as well as industrial pitched-roof buildings. Natural convection in triangular rooftops has received considerable attention over the years, mainly on right-angled and isosceles enclosures. In this paper, a finite volume CFD package is employed to study the laminar air flow and temperature distribution in asymmetric rooftop-shaped triangular enclosures when heated isothermally from the base wall, for aspect ratios (AR) 0.2 ≤ AR ≤ 1.0, and Rayleigh number (Ra) values 8 × 105 ≤ Ra ≤ 5 × 107. The effects of Rayleigh number and pitch angle on the flow structure and temperature distributions within the enclosure are analysed. Results indicate that, at low pitch angle, the heat transfer between the cold inclined and the hot base walls is very high, resulting in a multi-cellular flow structure. As the pitch angle increases, however, the number of cells reduces, and the total heat transfer rate progressively reduces, even if the Rayleigh number, being based on the enclosure height, rapidly increases. Physical reasons for the above effect are inspected
Heat Transfer Characteristics on Toroidal Convection Loop with Nanofluids
Experimental studies on single-phase toroidal circulation loop(thermosyphon) have been performed in the present study with Ag-nanofluids as a working fluids. The present paper deals with an experimental study on the heat transfer behavior of single-phase toroidal loop. Toroidal loop charged with nanofluid has been constructed and a number of tests have been carried out. Different geometric parameter, e.g., orientation has been investigated. The tests were conducted employing two fluids: distilled water and Ag-nanofluid of various volume concentrations. The experiments at Rayleigh number from 105 to 106 showed a systematic and slight deterioration in natural convective heat transfer. It was observed that the deterioration due to the particle concentration was in the range of 5-10%. At a given particle concentration of 0.05%, abrupt decrease in the Nusselt number and the Raleigh number was observed. The present study with toroidal loop shows that the application of nanofluids for heat transfer intensification should not be decided only by the effective thermal conductivity with increasing particle concentration
Optimal Heat Transport in Rayleigh-B\\'enard Convection
Sondak, David; Waleffe, Fabian
2015-01-01
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-B\\'enard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Ra\\sim 10^9$. Power law scalings of $Nu\\sim Ra^{\\gamma}$ are observed with $\\gamma\\approx 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr \\lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a...
Simulation by convenient software, the same as FLUENT, was used to predict the friction factor and Nusselt number for forced convection heat transfer of TiO2-water nanofluid. The range of Reynolds number is from 10000 to 100000 to be turbulent flow in a horizontal straight tube with heat flux 5000 w/m2 around it. The volume fraction of nanoparticle was (0.25%, 0.5%, 0.75% and 1%) and diameter of particle is 27 nm. The results show that the friction factor and Nusselt number are increasing with increasing of volume fraction. Results compared with the experimental data available in literature and there are good agreements
Surducan, E.; Surducan, V.; Neamtu, C., E-mail: camelia.neamtu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat St., 400293, Cluj‑Napoca (Romania); Limare, A.; Di Giuseppe, E. [Institut de Physique du Globe de Paris (IPGP), Univ. Paris Diderot, UMR CNRS 7154, 1 rue Jussieu, 75005, Paris (France)
2014-12-15
We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 × 30 × 5 cm{sup 3} convection tank is filled with a water‑based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.
Heat transfer enhancement in a convective field by applying ionic wind
This paper reports that this study has been conducted to pursue the heat transfer enhancement in a convective field by applying electric field. Firstly, aimed at thinning boundary layer, swirl motions were caused by utilizing the ionic wind in a channel flow with parallel wire-electrode arrangement. Secondly, ionic wind was induced at right angle to the primary flow at regular intervals by using cross wire-electrode arrangement. Thirdly, to utilize the dynamical effect of adding particles under the Coulomb force, electric field was applied to gas-solid suspensions flow field. On the basis of these results, fundamental characteristics of the combined flow structure and the heat transfer in the EHD field were clarified, and the possibility of the practical application will be insighted
Graphical abstract: Photograph of the experimental set-up. - Highlights: • Thermal performance of an indirect-mode solar dryer is investigated. • Mathematical models are obtained for thin layer drying of thymus and mint. • Both thymus and mint show the constant and falling rate drying periods. - Abstract: An indirect-mode forced convection solar dryer was designed and fabricated. The thermal performance of the solar dryer under Tanta (latitude, 30° 47′ N and longitude, 31° E) prevailing weather conditions was experimentally investigated. The system consists of a double pass v-corrugated plate solar air heater connected to a drying chamber. A blower was used to force the heated air to the drying chamber. Drying experiments were performed for thymus (initial moisture content 95% on wet basis) and mint (initial moisture content 85% on wet basis) at an initial temperature of 29 °C. The final moisture contents for thymus and mint were reached after 34 and 5 h, respectively. Fourteen mathematical models of thin layer drying were tested to specify the suitable model for describing the drying behavior of the studied products. It was found that, Midilli and Kucuk model is convenient to describe the thin layer solar drying of mint. However, the Page and modified Page models were found to be the best among others for describing the drying curves of thymus
Describing the Heat Transport of Turbulent Rayleigh--B\\'enard Convection by POD methods
Lülff, Johannes
2015-01-01
Rayleigh--B\\'enard convection, which is the buoyancy-induced motion of a fluid enclosed between two horizontal plates, is an idealised setup to study thermal convection. We analyse the modes that transport the most heat between the plates by computing the proper orthogonal decomposition (POD) of numerical data. Instead of the usual POD ansatz of finding modes that describe the energy best, we propose a method that is optimal in describing the heat transport. Thereby, we can determine the modes with the major influence on the heat transport and the coherent structures in the convection cell. We also show that in lower-dimensional projections of numerical convection data, the newly developed modes perform consistently better than the standard modes. We then use this method to analyse the main modes of three-dimensional convection in a cylindrical vessel as well as two-dimensional convection with varying Rayleigh number and varying aspect ratio.
Subcooled forced-convection film boiling in the forward stagnation region of a sphere or cylinder
An analysis is made of forced-convection film boiling in stagnation flow of subcooled liquids. The role of liquid viscosity in film boiling is determined by postulating the existence of a hydrodynamic boundary layer superposed on potential flow and using a perturbation technique. The viscous boundary layer due to shear stress at the vapor-liquid interface is shown to perturb the velocity field only slightly at large liquid subcooling. While the inviscid solution cannot be used to describe liquid motion when the liquid temperature is near its saturation temperature, the vapor is found to move only under the influence of the potential flow pressure distribution, thereby eliminating the coupling between the liquid boundary layer and vapor film without any significant errors in the heat-transfer problem. A rational interpolation formula between these two limiting cases leads to a simple expression for the film boiling heat transfer incorporating the major effects of wall superheat and liquid subcooling. The applicability of this formula to subcooled film boiling from a sphere or a cylinder is demonstrated. (author)
Effects of turbulence models on forced convection subcooled boiling in vertical pipe
Highlights: Subcooled boiling phenomena are simulated by FLUENT code. Capacities of turbulence model, wall function and two-phase treatment are studied. k? models perform better than kw models for predicting subcooled boiling. Grid with Y+ near to 1 could not give good results though kw models are used. - Abstract: In this study, a two-fluid model coupled with wall boiling model was adopted to investigate two-phase forced convection subcooled boiling process in a vertical heated pipe based on FLUENT 14.5. The influences of turbulence models (k? models and kw models) on flow and heat transfer in pipe were studied. The performances of different turbulent models, wall functions and two-phase turbulence treatments were analyzed based on four sets of grids by comparing the calculated results with Bartolemei experimental data. The results of k? models showed better agreement with experimental data than these of kw models. The Dispersed and Per Phase treatments for two-phase turbulence parameters performed no better than the Mixture treatment. The enhanced wall function could not cope the situation for grid with near-wall Y-plus near to 1. k? models with appropriate mesh size performed excellent in predicting subcooled boiling in vertical channel. This work can be referred for choosing turbulence model when analyzing subcooled boiling by CFD methodology
M.A. Ahmed
2015-09-01
Full Text Available In this paper, turbulent forced convection of nanofluids flow in triangular-corrugated channels is numerically investigated over Reynolds number ranges of 1000–5000. Four different types of nanofluids which are Al2O3, CuO, SiO2 and ZnO–water with nanoparticles diameters in the range of 30–70 nm and the range of nanoparticles volume fraction from 0% to 4% have been considered. The governing equations of mass, momentum and energy are solved using finite volume method (FVM. The low Reynolds number k–ε model of Launder and Sharma is adopted as well. It is found that the average Nusselt number, pressure drop, heat transfer enhancement, thermal–hydraulic performance increase with increasing in the volume fraction of nanoparticles and with decreasing in the diameter of nanoparticles. Furthermore, the SiO2–water nanofluid provides the highest thermal–hydraulic performance among other types of nanofluids followed by Al2O3, ZnO and CuO–water nanofluids. Moreover, the pure water has the lowest heat transfer enhancement as well as thermal–hydraulic performance.
Second law analysis of forced convection in a circular duct for non-Newtonian fluids
Mahmud, Shohel; Fraser, Roydon Andrew [Department of Mechanical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ont. (Canada)
2006-09-15
The second law characteristics of fluid flow and heat transfer inside a circular duct under fully developed forced convection for non-Newtonian fluids are presented. Heat flux is kept constant at the duct wall. Analytical expressions for dimensionless entropy generation number (N{sub S}), irreversibility distribution ratio (F), and Bejan number (Be) are obtained as functions of dimensionless radius (R), Peclet number (Pe), modified Eckert number (Ec), Prandtl number (Pr), dimensionless temperature difference ({omega}), and fluid index (m or n). Spatial distributions of local and average entropy generation number, irreversibility ratio, and Bejan number are presented graphically. For a particular value of fluid index, n=1 (or m=2), the general entropy generation number expression for a non-Newtonian power-law fluid reduces to the expression for Newtonian fluid as expected. Furthermore, entropy generation minimization is applied to calculate an optimum fluid index (n{sub EGM}). A correlation is proposed that calculates n{sub EGM}as a function of group parameter (EcxPr/{omega}) and Peclet number (Pe) within +/-5% accuracy. Finally, for some selected fluid indices, the governing equations are solved numerically in order to obtain Nusselt number. It is observed that the numerically obtained asymptotic Nusselt number shows excellent agreement with the analytically obtained Nusselt number. (author)
An experimental investigation of forced convection flat plate solar air heater with storage material
Aissa Walid
2012-01-01
Full Text Available Solar air heater (SAH is a heating device that uses the heated air in the drying of agriculture products and many engineering applications. The purpose of the present work is to study a forced convection flat plate solar air heater with granite stone storage material bed under the climatic conditions of Egypt-Aswan. Experiments are performed at different air mass flow rates ; varying from 0.016 kg/s to 0.08 kg/s, for five hot summer days of July 2008. Hourly values of global solar radiation and some meteorological data (temperature, pressure, relative humidities, etc. for measuring days are obtained from the Egyptian Meteorological Authority, Aswan station. Inlet and outlet temperatures of air from a SAH have been recorded. In this work, attempt has been made to present the temperature distribution in non dimensional form that makes it useable for any region and not restricted to local conditions. The variation of solar radiation, air heater efficiency, Nusselt number and temperature distribution along the air heater are discussed. Comparisons between the calculated values of outlet air temperatures, average air temperatures and storage material temperatures and the corresponding measured values showed good agreement. Comparison between current work and those in previous investigations showed fair agreement.
Yano, Ryosuke
2015-01-01
We discuss the thermal conduction and convection of thermally relativistic fluids between two parallel walls under the gravitational force, both theoretically and numerically. In the theoretical discussion, we assume that the Lorentz contraction is ignored and spacetime is flat. For understanding of the thermal conduction and convection of thermally relativistic fluids between two parallel walls under the gravitational force, we solve the relativistic Boltzmann equation using the direct simulation Monte Carlo method. Numerical results indicate that strongly nonequilibrium states are formed in vicinities of two walls, which do not allow us to discuss the transition of the thermal conduction to the thermal convection of thermally relativistic fluids under the gravitational force in the framework of the relativistic Navier-Stokes-Fourier equation, when the flow-field is under the transition regime between the rarefied and continuum regimes, whereas such strongly nonequilibrium states are not formed in vicinities...
Free convection heat transfer across rectangular-celled diathermanous honeycombs
Experimental obtained Nusselt number-Rayleigh number plots are presented for free convective heat transfer across inclined honeycomb panels filled with air. The honeycomb cells were rectangular in shape with very long cell dimensions across the slope and comparatively short dimensions up the slope. Elevation aspect ratios, A/sub E/, investigated were 3, 5 and 10; angles of inclination, theta, measured from the horizontal, were 0, 30, 60, 75 and 90 deg. The effect on the Nusselt number, of the emissivities of the plates bounding the honeycomb, and of the emissivity of honeycomb material, was also investigated. The measurements confirmed that the critical Rayleigh number and the post-critical heat transfer depend on the radiant properties of the honeycomb cells. The critical Rayleigh numbers at theta=0 were well predicted by the methods of Sun and Edwards. For 030 deg. The theta=90 deg data were found to be closely correlated by an equation of the form recently proposed by Bejan and Tien
Coupled heat and mass transfer in a convective tunnel dryer
The mechanism of drying in a convective tunnel dryer with air heated in solar collectors was approached first experimentally with a pilot laboratory unit, then numerically taking into account the coupled heat and mass transfers. In the present study, several experimental essays were conducted followed by the adoption of a simulation tool describing the opening conditions of the tunnel dryer and a behavioural model that can be of great interest in the design and the automation of such industrial units. Indeed, behavioural models of thermodynamic system are characterised by the interactions of a large number of complex phenomenon, which call for various types of energy. This dynamic feature requires a modeling approach, using physical phenomenon such as energy storage. energy transformation and energy dissipation as data. The pseudo-bond graph methodology was used in modelling the drying system. This methodology was very suitable for thermo fluid process. It accepts the use of elements that do not exist in the traditional bond graph methods. An explicit pseudo-bond graph model who describes the process of water evaporation under the tray is studies in this paper and the governing equations are determined using bond graph properties.(Author)
Analysis of the heat transfer from horizontal pipes at natural convection
Kapjor, Andrej; Huzvar, Jozef; Ftorek, Branislav; Smatanova, Helena
2014-08-01
These article deals with heat transfer from "n" horizontal pipes one above another at natural convection. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyze of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified.
Negative Knudsen force on heated microbeams
Zhu, Taishan
2011-11-18
Knudsen force acting on a heated microbeam adjacent to a cold substrate in a rarefied gas is a mechanical force created by unbalanced thermal gradients. The measured force has its direction pointing towards the side with a lower thermal gradient and its magnitude vanishes in both continuum and free-molecule limits. In our previous study, negative Knudsen forces were discovered at the high Knudsen regime before diminishing in the free-molecule limit. Such a phenomenon was, however, neither observed in experiment [A. Passian et al., Phys. Rev. Lett. 90, 124503 (2003)], nor captured in the latest numerical study [J. Nabeth et al., Phys. Rev. E 83, 066306 (2011)]. In this paper, the existence of such a negative Knudsen force is further confirmed using both numerical simulation and theoretical analysis. The asymptotic order of the Knudsen force near the collisionless limit is analyzed and the analytical expression of its leading term is provided, from which approaches for the enhancement of negative Knudsen forces are proposed. The discovered phenomenon could find its applications in novel mechanisms for pressure sensing and actuation.
Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type
In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined
Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type
Terres, H.; Chávez, S.; Lizardi, A.; López, R.; Vaca, M.; Flores, J.; Salazar, A.
2015-01-01
In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined.
The air-side forced convective heat transfer of a plate fin-tube heat exchanger is investigated by experimental measurement and numerical computation. The heat exchanger consists of a staggered arrangement of refrigerant pipes with a diameter of 10.2 mm and a fin pitch of 3.5 mm. In the experimental study, the forced convective heat transfer was measured at Reynolds numbers of 1082, 1397, 1486, 1591 and 1649 based on the diameter of the refrigerant piping and on the maximum velocity. The average Nusselt number for the convective heat transfer coefficient was also computed for the same Reynolds number by using the commercial software STAR-CD with the standard k .ε turbulent model. It was found that the relative errors of the average Nusselt numbers between the experimental and numerical data were less than 6 percent in a Reynolds number range of 1082∼1649. The errors between the experiment and other correlations from literature ranged from 7% to 32.4%. However, the literature correlation of Kim et al. is closest to the experimental data within a relative error of 7%
A new version of the ENERGY series code, ENERGY-IV, was written for predicting coolant temperature distributions in wire-wrapped rod assemblies used in the Liquid Metal Fast Breeder Reactor. The ENERGY-IV Code is applicable to both steady-state forced and mixed convection operation for a single isolated assembly. (The SUPERENERGY Code, [Basehore (1980)] is applicable to core wide forced convection analysis.) ENERGY-IV is an empirical code designed to be fast running. Hence the core designer can use it as an inexpensive thermal hydraulic design or diagnosis tool
Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering
1993-09-01
Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.
Yang, T.; Wang, L.
A numerical study is made on the fully developed bifurcation structure and stability of forced convection in a rotating curved duct of square cross-section. Solution structure is determined as variation of a parameter that indicates the effect of rotation (Coriolis-force-driven multiplicity). Three solutions for the flows in a stationary curved duct obtained in the work of Yang and Wang [1] are used as initial solutions of continuation calculations to unfold the solution branches. Twenty-one solution branches are found comparing with five obtained by Selmi and Nandakumar [2]. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. Results show that characteristics of physically realizable fully developed flows changes significantly with variation of effect of rotation. Fourteen sub-ranges are identified according to characteristics of physically realizable solutions. As rotation effect changes, possible physically realizable fully-developed flows can be stable steady 2-cell state, stable multi-cell state, temporal periodic oscillation between symmetric/asymmetric 2-cell/4-cell flows, temporal oscillation with intermittency, temporal chaotic oscillation and temporal oscillation with pseudo intermittency. Among these possible physically realizable fully developed flows, stable multi-cell state and stable steady 2-cell state exist as dual stable. And oscillation with pseudo intermittency is a new phenomenon. In addition to the temporal oscillation with intermittency, sudden shift from stationary stable solution to temporal chaotic oscillation is identified to be another way of onset of chaos.
Studies on forced convection nanofluid flow in circular conduits
Harikrishna Vishwanadula; Emmanuel C. Nsofor
2012-01-01
An experimental system was developed and used to study the nanofluid flow and heat transfer in circular conduits. Experiments were performed for a variety of nanofluid flow features in the system. Results obtained from the study show that the heat transfer rate for flow of the base fluid is less than that of the nanofluid used in the study. It was also found that the observed relationship between molecular diffusivity of momentum and the molecular diffusivity of thermal energy at the macrosca...
Forced convection along a wall. Liquid metals application
From the experimental results in pipes, heated with constant wall heat flux, the dynamical and thermal structure of the wall region of a turbulent flow is studied. We can show that, for high values of Reynolds and Peclet numbers, logarithmic profiles of velocity and temperature exist. A continuous description of the wall is obtained with the use of simple modelisation. The study of the thermal wall region structure is then made in the case of a liquid metal flow
Ziyaddin RECEBLİ
2008-01-01
Full Text Available In some studies, the effect of magnetic field on heat convection has been investigated given that physical properties are constant regardless of temperature. The effect of magnetic field on heat convection and fluids whose physical properties change by temperature has been investigated in this study as physical properties of fluids change by the effect of temperature. Momentum, continuity and energy equations including electromagnetic force affecting the fluid were used in the solution. Temperatures at axial and radial directions and Nusselt numbers were calculated depending on magnetic field intensity and other physical properties of fluid by solving the equation system written in cylindrical coordinates system by means of one of the numerical methods which is finite difference method. According to results, velocity and temperature of the cooled fluid decreased following an increase in the intensity of magnetic field placed vertically to flow direction. As determined in the previous one, this study also indicated that the increase in Reynolds number increases Nusselt number, and increasing the effect of magnetic field decreases Nusselt number. The theoretical results of the present study are in conformity with the results of our previous one.
Large-scale tomographic PIV in forced and mixed convection using a parallel SMART version
Kuehn, Matthias; Ehrenfried, Klaus; Bosbach, Johannes; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)
2012-07-15
Large-scale tomographic particle image velocimetry (tomographic PIV) was used to study large-scale flow structures of turbulent convective air flow in an elongated rectangular convection cell. Three flow cases have been investigated, that is, pure forced convection and mixed convection at two different Archimedes numbers. The Reynolds number was constant at Re=1.04 x 10{sup 4} for all cases, while the Archimedes numbers were Ar=2.1 and 3.6 for the mixed convection cases, corresponding to Rayleigh numbers of Ra=1.6 x 10{sup 8} and 2.8 x 10{sup 8}, respectively. In these investigations, the size of the measurement volume was as large as 840 mm x 500 mm x 240 mm. To allow for statistical analysis of the measured instantaneous flow fields, a large number of samples needed to be evaluated. Therefore, an efficient parallel implementation of the tomographic PIV algorithm was developed, which is based on a version of the simultaneous multiplicative reconstruction technique (SMART). Our algorithm distinguishes itself amongst other features by the fact that it does not store any weighting coefficients. The measurement of forced convection reveals an almost two-dimensional roll structure, which is orientated in the longitudinal cell direction. Its mean velocity field exhibits a core line with a wavy shape and a wavelength, which corresponds to the height and depth of the cell. In the instantaneous fields, the core line oscillates around its mean position. Under the influence of thermal buoyancy forces, the global structure of the flow field changes significantly. At lower Archimedes numbers, the resulting roll-like structure is shifted and deformed as compared to pure forced convection. Additionally, the core line oscillates much more strongly around its mean position due to the interaction of the roll structure with the rising hot air. If the Archimedes number is further increased, the roll-like structure breaks up into four counter-rotating convection rolls as a result of the increased influence of buoyancy forces. Moreover, large-scale tomographic PIV reveals that the orientation of these rolls reflects a 'W'-like shape in the horizontal X-Z-plane of the convection cell. (orig.)
This paper is concerned with an unsteady, laminar, free convective flow over a heated sphere with the effect of internal heat generation/absorption. The dimensionless governing equations have been solved employing the finite difference method as well as a perturbation method for short time and an asymptotic method for long time. We examine the effects of the physical parameters, such as, the Prandtl number, Pr, and the heat generation/absorption parameter, γ, on the friction factor and heat transfer rate as well as the velocity and temperature profiles. It is observed that when the Prandtl number, Pr, is increased, the friction factor decreases while the heat transfer rate increases. In the presence of internal heat generation, the friction factor increases while the heat transfer rate reduces. The reverse pattern is found with the heat absorption parameter. The momentum and thermal boundary layers become thicker with an increase of the heat generation parameter. A comparison among the numerical solutions, the perturbation solutions for short time and the asymptotic solutions for long time has been presented which provides a good agreement among the solutions. (authors)
Unsteady laminar mixed convection flow (combined free and forced convection flow) along a vertical slender cylinder embedded in a porous medium under the combined buoyancy effect of thermal and species diffusion has been studied. The effect of the permeability of the medium as well as the magnetic field has been included in the analysis. The partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite difference scheme in combination with the quasilinearization technique. Computations have been carried out for accelerating, decelerating and oscillatory free stream velocity distributions. The effects of the permeability of the medium, buoyancy forces, transverse curvature and magnetic field on skin friction, heat transfer and mass transfer have been studied. It is found that the effect of free stream velocity distribution is more pronounced on the skin friction than on the heat and mass transfer. The permeability and magnetic parameters increase the skin friction, but reduce the heat and mass transfer. The skin friction, heat transfer and mass transfer are enhanced due to the buoyancy forces and curvature parameter. The heat transfer is strongly dependent on the viscous dissipation parameter and the Prandtl number, and the mass transfer on the Schmidt number. (orig.)
Explicit finite element analysis of convective-conductive heat transfer
The present paper discusses an explicit finite element approach to problems in transient convective-conductive heat transfer in a fluid region. The governing equations are the incompressible Navier-Stokes equations coupled with the thermal energy equation. Plane and axisymmetric problems are considered in terms of the primitive variables: velocity, pressure and temperature. The space discretization is based on 4-node or 9-node quadrilateral finite elements, while a finite difference method is used for time integration. Due to the complexity of the governing equations, an explicit time discretization method is choosen in connection with a diagonal mass representation. To deal with the necessarily implicit incompressibility constraint and the associated pressure terms, a fractional-step method is developed for marching in time. In this way, the pressure field is fully decoupled from and solved alternatively with the momentum equations. A weak treatment of the prescribed tangential components of velocity is introduced in order to avoid the spurious phenomenon of chequerboard splitting of the discrete pressure field encountered in other studies. To illustrate the proposed fractional-step method, numerical examples are presented in plane and axisymmetric configurations using both bilinear and biquadratic local approximations. The solutions obtained are found in good agreement with previously published results. (orig.)
Cebeci, Tuncer
1989-01-01
This book is designed to accompany Physical and Computational Aspects of Convective Heat Transfer by T Cebeci and P Bradshaw and contains solutions to the exercises and computer programs for the numerical methods contained in that book Physical and Computational Aspects of Convective Heat Transfer begins with a thorough discussion of the physical aspects of convective heat transfer and presents in some detail the partial differential equations governing the transport of thermal energy in various types of flows The book is intended for senior undergraduate and graduate students of aeronautical, chemical, civil and mechanical engineering It can also serve as a reference for the practitioner
Lorentz force actuation of a heated atomic force microscope cantilever
We report Lorentz force-induced actuation of a silicon microcantilever having an integrated resistive heater. Oscillating current through the cantilever interacts with the magnetic field around a NdFeB permanent magnet and induces a Lorentz force that deflects the cantilever. The same current induces cantilever heating. With AC currents as low as 0.2 mA, the cantilever can be oscillated as much as 80 nm at resonance with a DC temperature rise of less than 5 °C. By comparison, the AC temperature variation leads to a thermomechanical oscillation that is about 1000 times smaller than the Lorentz deflection at the cantilever resonance. The cantilever position in the nonuniform magnetic field affects the Lorentz force-induced deflection, with the magnetic field parallel to the cantilever having the largest effect on cantilever actuation. We demonstrate how the cantilever actuation can be used for imaging, and for measuring the local material softening temperature by sensing the contact resonance shift. (paper)
The model laws for the initial film boiling at forced convection are realized in vertical tubes. The local conditions in the investigated area were regarded to be most effective and sufficient for the description. The theory was confirmed by experimental data. (orig.)
Effect of the Centrifugal Force on Domain Chaos in Rayleigh-B\\'enard convection
Becker, Nathan; Scheel, J. D.; Cross, M. C.; Ahlers, Guenter
2005-01-01
Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects rotating Rayleigh-B\\'enard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly-stationary nearly-radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment a...
Maksimov Vyacheslav I.
2015-01-01
Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.
This report is the user's manual for the computer code CONDIF that has been developed for solving natural and forced convection problems. It describes the preparation of input data and the solution of a test problem
Efficiency of Heat Transfer in Turbulent Rayleigh-Benard Convection
Urban, Pavel; Musilová, Věra; Skrbek, L.
2011-01-01
Roč. 107, č. 1 (2011), 014302:1-4. ISSN 0031-9007 R&D Projects: GA AV ČR KJB200650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : natural convection * thermal convection Subject RIV: BK - Fluid Dynamics Impact factor: 7.370, year: 2011
Study on analytical prediction of forced convective CHF based on multi-fluid model
In relation to the design and safety analysis of various industrial equipments using boiling two-phase flow, an analytical study was carried out on the prediction of critical heat flux (CHF) forced convective boiling in straight pipe. Using multi-fluid model (two-fluid model and three fluid model) of two-phase flow and appropriate CHF model. CHF for wide range of flow conditions was successfully predicted. For annular dispersed flow regime where CHF mechanism is film dryout, the constitutive equation of droplet entrainment and deposition were found to be quite important. Then the sensitivity of these correlations on the prediction of CHF was evaluated and recommendation of appropriate constitutive correlations was made. For bubbly, churn and slug flow regime, where CHF mechanism is DNB (transition from nucleate boiling to film boiling) two types of DNB models were evaluated coupled with accurate calculation of two-phase flow parameters based on two-fluid models. A wide range of DNB data were predicted successfully with modified DNB models. In predicting CHF, particularly for subcooled boiling, accurate prediction of net vapor generation point was found to be quite important. A modified correlation for net vapor generation point was proposed which predicts a wide range of CHF data both for dryout and DNB. (orig.)
Forced convection of ferro-fluids in a vented cavity with a rotating cylinder
In this study, numerical investigation of the forced convection of ferro-fluid in a square cavity with ventilation ports in the presence of an adiabatic rotating cylinder is carried out. The governing equations are solved with a finite element based solver. The effects of Reynolds number (20 ≤ Re ≤ 400), angular rotational speed of the cylinder (-500 ≤ Ω ≤ 500), strength and location of the magnetic dipole (0 ≤ γ ≤ 250), (0.2 ≤ a ≤ 0.8, -0.8 ≤ b ≤ -0.2) on the flow and thermal fields are numerically studied. It is observed that the length and size of the recirculation zones can be controlled with magnetic dipole strength and angular rotational speed of the cylinder. When the magnetic dipole is closer to the bottom wall of the cavity, flow is accelerated towards the bottom wall with larger influence area. The increasing values of the angular rotational speed of the cylinder in the clockwise direction enhance the heat transfer
Onset of nuclear boiling in forced convection (Method of detection)
Local onset of boiling in any pressure water cooling systems, as a PWR for instance, can mean a possible dangerous mismatch between the produced heat and the cooling capabilities. Its consequences can lead to serious accidental conditions and a reliable technique to detect such a phenomenon is therefore of particular need. Most techniques used up to now rely basically on local measurements and assume therefore usually the previous knowledge of the actual hot or boiling spot. The method proposed here based on externally located accelerometers appears to be sensitive to the global behaviour of the mechanical structure and is therefore not particularly bound to any exact localization of the sensors. The vibrations produced in the mechanical structure of the heated assembly are measured by accelerometers placed on the external surfaces that are easily accessible. The onset of the boiling, the growth and condensation of the bubbles on the heated wall, induces a resonance in the structure and an excitation at its particular eigen frequencies. Distinctive peaks are clearly observed in the spectral density function calculated from the accelerometer signal as soon as bubbles are produced. The technique is shown to be very sensitive even at the earliest phase of boiling and quite independent on sensor position. A complete hydrodynamic analysis of the experimental channels have been performed in order to assess the validity of the method both in steady conditions and during rapid power transients
The effect of Coriolis force on nonlinear convection in a porous medium
D. H. Riahi
1994-09-01
Full Text Available Nonlinear convection in a porous medium and rotating about vertical axis is studied in this paper. An upper bound to the heat flux is calculated by the method initiated first by Howard [6] for the case of infinite Prandtl number.
Natural versus forced convection in laminar starting plumes
Rogers, Michael C.; Morris, Stephen W.
2009-01-01
A starting plume or jet has a well-defined, evolving head that is driven through the surrounding quiescent fluid by a localized flux of either buoyancy or momentum, or both. We studied the scaling and morphology of starting plumes produced by a constant flux of buoyant fluid from a small, submerged outlet. The plumes were laminar and spanned a wide range of plume Richardson numbers Ri. Ri is the dimensionless ratio of the buoyancy forces to inertial effects, and is thus our measurements cross...
The computer code CONDIF-01 (release 2) for transient convective-conductive heat transfer
CONDIF-01 is a finite element computer code developed at J.R.C. Ispra to solve natural and forced convection problems, for use in Post Accident Heat Removal studies following a hypothetical fast-reactor core meltdown. The new version of the code is capable of analysing problems in which there exists initially a liquid (solid) region which may change phase to solid (liquid), as time proceeds. A variant of the enthalpy method is employed to model the phase change process. The presence of structures enclosing the liquid (solid) region is accounted for, but such structures are assumed to remain in the solid phase. Plane and axisymmetric situations may be analysed. The essential characteristics of the code are outlined here. This report gives instructions for preparing input data to CONDIF-01, release 2, and describes two test problems in order to illustrate both the input and the output of the code
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837
Conjugate mixed convection with buoyancy assisted laminar flow in the entrance region of a vertical channel is considered numerically. The problem is solved by a finite volume method for a thick walled, two-regional channel which has constant and uniform outside wall temperatures. The effects of wall thermal conduction as well as assisted buoyancy force on the flow and heat transfer are discussed in detail. Results are presented for a Prandtl number of 0.7, solid-to-fluid thermal conductivity ratios of 1≤ k* < ∞, wall thickness-to-channel length ratios of 0≤ l* ≤5, Reynolds numbers of 200≤ Re ≤1000, and for various Grashof numbers. The critical buoyancy parameter (Gr/Re), above which the flow reversal occurs, increases linearly with the increasing l*/k*, while it is independent on the Reynolds number. (authors)
Numerical analysis of natural convection inside a heat generated fluid was performed for four different spherical geometries that match the experimental vessels used by Asfia et al. [5-7]. The transient calculations were performed with the CFX 5.7 fluid dynamic software. The simulations show that the highest heat flux is just below the rim of the cavity and it can be 50 times higher than at the bottom. Based on the numerical results, the local values of heat transfer coefficient and the distributions of global Nusselt number were calculated. The present, three-dimensional simulation results were compared with the numerical results of Mayinger et al. [3] and Reineke et al. [4], and with the experimental data of Asfia et al. [5-7]. The agreement between the results that is well inside the experimental scatter verifies the selected modeling approach. (author)
Two-phase flow heat transfer has been exhaustively studied over recent years. However, in this field several questions remain unanswered. Heat transfer coefficient prediction related to nucleate and convective boiling have been studied using different approaches, numerical, analytical and experimental. In this work, an experimental analysis, data representation and heat transfer coefficient prediction on two-phase heat transfer on nucleate and convective boiling are presented. An empirical correlation is obtained based on genetic algorithms search engine over a dimensional analysis of the two-phase flow heat transfer problem. (author)
Forced turbulent convection in tube bundles with longitudinal attack
A numerical pattern is presented for forecasting the pressure loss and heat transfer coefficients in a tubular bundle exchanger with longitudinal attack, which is based on a differential turbulence pattern. The work already achieved is reviewed, then the principle of the pattern is presented: use of transport equations for the components of the Reynolds tensor, choice of the discretisation grid, boundary conditions. The results of computer calculations lead to expressions for the loss of pressure coefficient and the Nusselt number for different bundle configurations. The use of a simplifying method, hydraulic diameter, equivalent-annular space, is shown to be no longer satisfactory for liquid metals
Sourtiji Ehsan
2012-01-01
Full Text Available A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parameters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Rayleigh numbers. The influence of the magnetic field has been also studied and deduced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.
Scaling criteria for modeling natural- and forced-convection loops
Nuclear reactor safety regulations have required extensive thermal-hydraulic testing of simulated reactor systems and components. In view of the inherent difficulties associated with full-scale testing, scale models for prototype systems have been extensively used to predict the behavior of nuclear reactor systems during normal and abnormal operations as well as under accident conditions. Several studies have been performed to establish similarity relations between a prototype and scale model. It is the purpose of the present study to develop scaling criteria for a forced and natural circulation loop under single- and/or two-phase flow conditions, and to apply the criteria to obtain the preliminary conceptual design parameters for the B and W 2 x 4 loop system. The 2 x 4 loop scaled system contains representative components of all thermal-hydraulic systems considered important in performing tests to obtain data representative of the response of the prototype plant
CFD Analysis of Convective Heat Transfer Coefficient on External Surfaces of Buildings
Andrea de Lieto Vollaro; Giorgio Galli; Andrea Vallati
2015-01-01
Convective heat transfer coefficients for external building surfaces are essential in building energy simulation (BES) to calculate convective heat gains and losses from building facades and roofs to the environment. These coefficients are complex functions of: building geometry, building surroundings, local air flow patterns and temperature differences. A microclimatic analysis in a typical urban configuration, has been carried out using Ansys Fluent Version 14.0, an urban street canyon, wit...
GEOFLOW: simulation of convection in a spherical shell under central force field
P. Beltrame
2006-01-01
Full Text Available Time-dependent dynamical simulations related to convective motion in a spherical gap under a central force field due to the dielectrophoretic effect are discussed. This work is part of the preparation of the GEOFLOW-experiment which is planned to run in a microgravity environment. The goal of this experiment is the simulation of large-scale convective motion in a geophysical or astrophysical framework. This problem is new because of, on the one hand, the nature of the force field (dielectrophoretic effect and, on another hand, the high degree of symmetries of the system, e.g. the top-bottom reflection. Thus, the validation of this simulation with well-known results is not possible. The questions concerning the influence of the dielectrophoretic force and the possibility to reproduce the theoretically expected motions in the astrophysical framework, are open. In the first part, we study the system in terrestrial conditions: the unidirectional Earth's force is superimposed on the central dielectrophoretic force field to compare with the laboratory experiments during the development of the equipment. In the second part, the GEOFLOW-experiment simulations in weightless conditions are compared with theoretical studies in the astrophysical framework's, in the first instance a fluid under a self-gravitating force field. We present complex time-dependent dynamics, where the dielectrophoretic force field causes significant differences in the flow compared to the case that does not involve this force field.
Natural versus forced convection in laminar starting plumes
Rogers, Michael C
2009-01-01
A starting plume or jet has a well-defined, evolving head that is driven through the surrounding quiescent fluid by a localized flux of either buoyancy or momentum, or both. We studied the scaling and morphology of starting plumes produced by a constant flux of buoyant fluid from a small, submerged outlet. The plumes were laminar and spanned a wide range of plume Richardson numbers Ri. Ri is the dimensionless ratio of the buoyancy forces to inertial effects, and is thus our measurements crossed over the transition between buoyancy-driven plumes and momentum-driven jets. We found that the ascent velocity of the plume, nondimensionalized by Ri, exhibits a power law relationship with Re, the Reynolds number of the injected fluid in the outlet pipe. We also found that as the threshold between buoyancy-driven and momentum-driven flow was crossed, two distinct types of plume head mophologies existed: confined heads, produced in the Ri > 1 regime, and dispersed heads, which are found in the Ri < 1 regime. Head di...
Prasad Kerehalli
2015-01-01
Full Text Available An analysis is carried out to study the effects of temperature-dependent transport properties on the fully developed free and forced MHD convection flow in a vertical channel. In this model, viscous and Ohmic dissipation terms are also included. The governing nonlinear equations (in non-dimensional form are solved numerically by a second order finite difference scheme. A parametric study is performed in order to illustrate the interactive influences of the model parameters; namely, the magnetic parameter, the variable viscosity parameter, the mixed convection parameter, the variable thermal conductivity parameter, the Brinkmann number and the Eckert number. The velocity field, the temperature field, the skin friction and the Nusselt number are evaluated for several sets of values of these parameters. For some special cases, the obtained numerical results are compared with the available results in the literature: Good agreement is found. Of all the parameters, the variable thermo-physical transport property has the strongest effect on the drag, heat transfer characteristics, the stream-wise velocity, and the temperature field.
Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code
Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of)
2014-05-15
The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will be provided with expected results for the single-phase and forced convective phenomena. For the future study, different materials for the heating part are considered, such as other metals or silicon carbide (SiC) tube, which is a candidate material of fuel claddings for current and next-generation reactors.
Numerical simulation of turbulent forced convection in liquid metals
Vodret, S.; Vitale Di Maio, D.; Caruso, G.
2014-11-01
In the frame of the future generation of nuclear reactors, liquid metals are foreseen to be used as a primary coolant. Liquid metals are characterized by a very low Prandtl number due to their very high heat diffusivity. As such, they do not meet the so-called Reynolds analogy which assumes a complete similarity between the momentum and the thermal boundary layers via the use of the turbulent Prandtl number. Particularly, in the case of industrial fluid-dynamic calculations where a resolved computation near walls could be extremely time consuming and could need very large computational resources, the use of the classical wall function approach could lead to an inaccurate description of the temperature profile close to the wall. The first aim of the present study is to investigate the ability of a well- established commercial code (ANSYS FLUENT v.14) to deal with this issue, validating a suitable expression for the turbulent Prandtl number. Moreover, a thermal wall-function developed at Universite Catholique de Louvain has been implemented in FLUENT and validated, overcoming the limits of the solver to define it directly. Both the resolved and unresolved approaches have been carried out for a channel flow case and assessed against available direct numerical and large eddy simulations. A comparison between the numerically evaluated Nusselt number and the main correlations available in the literature has been also carried out. Finally, an application of the proposed methodology to a typical sub-channel case has been performed, comparing the results with literature correlations for tube banks.
Numerical simulation of turbulent forced convection in liquid metals
In the frame of the future generation of nuclear reactors, liquid metals are foreseen to be used as a primary coolant. Liquid metals are characterized by a very low Prandtl number due to their very high heat diffusivity. As such, they do not meet the so-called Reynolds analogy which assumes a complete similarity between the momentum and the thermal boundary layers via the use of the turbulent Prandtl number. Particularly, in the case of industrial fluid-dynamic calculations where a resolved computation near walls could be extremely time consuming and could need very large computational resources, the use of the classical wall function approach could lead to an inaccurate description of the temperature profile close to the wall. The first aim of the present study is to investigate the ability of a well- established commercial code (ANSYS FLUENT v.14) to deal with this issue, validating a suitable expression for the turbulent Prandtl number. Moreover, a thermal wall-function developed at Universite Catholique de Louvain has been implemented in FLUENT and validated, overcoming the limits of the solver to define it directly. Both the resolved and unresolved approaches have been carried out for a channel flow case and assessed against available direct numerical and large eddy simulations. A comparison between the numerically evaluated Nusselt number and the main correlations available in the literature has been also carried out. Finally, an application of the proposed methodology to a typical sub-channel case has been performed, comparing the results with literature correlations for tube banks
Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation
Ali S. Siahpush; John Crepeau; Piyush Sabharwall
2013-07-01
Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.
A reassessment of the heat transport by variable viscosity convection with plates and lids
The heat transport by a viscous fluid with temperature dependent viscosity has been studied numerically. As opposed to previous models, the top surface of the fluid clearly defines a tectonic plate with horizontally uniform velocity and subduction. Past studies failed to incorporate plates, the heat transport is as efficient as Rayleigh-Benard convection with constant viscosity; there is a strong buffering between internal temperature and heat loss. Past studies of parameterized convection which incorporated parameters indicative of strong buffering between internal temperature and total heat output still provide the most physically plausible representation of the Earth's thermal evolution
Highlights: → We investigate laminar convective heat transfer in channels with periodic cavities. → Heat transfer rates are lower than for the flat channel. → This is ascribed to the steady circulating motion within the cavities. → Diffusion in a low Prandtl number fluid can locally overcome the heat transfer decrease due to advection only for isothermal boundary conditions. - Abstract: Convective heat transfer in laminar conditions is studied numerically for a Prandtl number Pr = 0.025, representative of liquid lead-bismuth eutectic (LBE). The geometry investigated is a channel with a periodic series of shallow cavities. Finite-volume simulations are carried out on structured orthogonal curvilinear grids, for ten values of the Reynolds number based on the hydraulic diameter between Rem = 24.9 and Rem = 2260. Flow separation and reattachment are observed also at very low Reynolds numbers and wall friction is found to be remarkably unequal at the two walls. In almost all cases investigated, heat transfer rates are smaller than the corresponding flat channel values. Low-Prandtl number heat transfer rates, investigated by comparison with Pr = 0.71 results, are large only for uniform wall temperature and very low Re. Influence of flow separation on local heat transfer rates is discussed, together with the effect of different thermal boundary conditions. Dependency of heat transfer performance on the cavity geometry is also considered.
Stalio, E., E-mail: enrico.stalio@unimore.it [Dipartimento di Ingegneria Meccanica e Civile, Universita degli Studi di Modena e Reggio Emilia, Via Vignolese 905/B, 41125 Modena (Italy); Angeli, D., E-mail: diego.angeli@unimore.it [Dipartimento di Ingegneria Meccanica e Civile, Universita degli Studi di Modena e Reggio Emilia, Via Vignolese 905/B, 41125 Modena (Italy); Barozzi, G.S., E-mail: giovanni.barozzi@unimore.it [Dipartimento di Ingegneria Meccanica e Civile, Universita degli Studi di Modena e Reggio Emilia, Via Vignolese 905/B, 41125 Modena (Italy)
2011-10-15
Highlights: > We investigate laminar convective heat transfer in channels with periodic cavities. > Heat transfer rates are lower than for the flat channel. > This is ascribed to the steady circulating motion within the cavities. > Diffusion in a low Prandtl number fluid can locally overcome the heat transfer decrease due to advection only for isothermal boundary conditions. - Abstract: Convective heat transfer in laminar conditions is studied numerically for a Prandtl number Pr = 0.025, representative of liquid lead-bismuth eutectic (LBE). The geometry investigated is a channel with a periodic series of shallow cavities. Finite-volume simulations are carried out on structured orthogonal curvilinear grids, for ten values of the Reynolds number based on the hydraulic diameter between Re{sub m} = 24.9 and Re{sub m} = 2260. Flow separation and reattachment are observed also at very low Reynolds numbers and wall friction is found to be remarkably unequal at the two walls. In almost all cases investigated, heat transfer rates are smaller than the corresponding flat channel values. Low-Prandtl number heat transfer rates, investigated by comparison with Pr = 0.71 results, are large only for uniform wall temperature and very low Re. Influence of flow separation on local heat transfer rates is discussed, together with the effect of different thermal boundary conditions. Dependency of heat transfer performance on the cavity geometry is also considered.
Convective heat transfer from a heated elliptic cylinder at uniform wall temperature
Kaprawi, S.; Santoso, Dyos [Mechanical Department of Sriwijaya University, Jl. Raya Palembang-Prabumulih Km. 32 Inderalaya 50062 Ogan Ilir (Indonesia)
2013-07-01
This study is carried out to analyse the convective heat transfer from a circular and an elliptic cylinders to air. Both circular and elliptic cylinders have the same cross section. The aspect ratio of cylinders range 0-1 are studied. The implicit scheme of the finite difference is applied to obtain the discretized equations of hydrodynamic and thermal problem. The Choleski method is used to solve the discretized hydrodynamic equation and the iteration method is applied to solve the discretized thermal equation. The circular cylinder has the aspect ratio equal to unity while the elliptical cylinder has the aspect ratio less than unity by reducing the minor axis and increasing the major axis to obtain the same cross section as circular cylinder. The results of the calculations show that the skin friction change significantly, but in contrast with the elliptical cylinders have greater convection heat transfer than that of circular cylinder. Some results of calculations are compared to the analytical solutions given by the previous authors.
Convection heat transfer in a Maxwell fluid at a non-isothermal surface
Vajravelu, Kuppalapalle; Prasad, Kerehalli; Sujatha, Ashwatha
2011-06-01
Analysis is carried out to study the convection heat transfer in an upper convected Maxwell fluid at a non-isothermal stretching surface. This is a generalization of the paper by Sadeghy et al. [21] to study the effects of free convection currents, variable thermal conductivity and the variable temperature at the stretching surface. Unlike in Sadeghy et al., here the governing nonlinear partial differential equations are coupled. These coupled equations are transformed in to a system of nonlinear ordinary differential equations and are solved numerically by a finite difference scheme (known as the Keller-Box method) and the numerical results are presented through graphs and tables for a wide range of governing parameters. The results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study of nonlinear convection heat transfer.
Natural convection in low aspect ratio rectangular enclosures is considered along with three-dimensional convection within rectangular boxes, natural convection flow visualization in irradiated water cooled by air flow over the surface, free convection in vertical slots, the stratification in natural convection in vertical enclosures, the flow structure with natural convection in inclined air-filled enclosures, and natural convection across tilted, rectangular enclosures of small aspect ratio. Attention is given to the effect of wall conduction and radiation on natural convection in a vertical slot with uniform heat generation of the heated wall, a numerical study of thermal insulation enclosure, free convection in a piston-cylinder enclosure with sinusoidal piston motion, natural convection heat transfer between bodies and their spherical enclosure, an experimental study of the steady natural convection in a horizontal annulus with irregular boundaries, three-dimensional natural convection in a porous medium between concentric inclined cylinders, a numerical solution for natural convection in concentric spherical annuli, and heat transfer by natural convection in porous media between two concentric spheres
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent-fuel assembly during transport and some dry storage scenarios. The objective of this experimental study is to obtain convection correlations that can be used to easily incorporate convective effects into analytical models of horizontal spent-fuel systems and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of correlations of convective Nusselt number, which are defined in terms of the maximum and average assembly temperatures. The correlations have been corrected for radiation heat transfer using a numerical technique. The data suggest the presence of conduction and convection regimes, distinguished by a critical Rayleigh number. The correlation of the convection regime suggests turbulent flow conditions. Predictions of maximum assembly temperature using the presented correlations are compared with additional experimental data obtained in a horizontal enclosed rod bundle. Further comparisons are made with predictions from the widely used Wooten-Epstein equation and a recently developed theoretical approach based on an effective thermal conductivity model. Favorable results are obtained, especially for thermal conditions that favor natural convection, such as relatively low enclosure temperatures and above-standard atmospheric pressure
Convection in layered porous media: A comparison of boundary heating methods
Convection in a horizontal, doubly layered porous medium has been investigated numerically. A two-dimensional, time dependent model has been developed to compute heat transfer in a saturated porous medium that is locally heated from either above or below. The primary objective is to ascertain how these modes of heating can be differentiated via an examination of the heat transfer results. Both natural and mixed convection are considered. For mixed convection in which a uniform horizontal flow is assumed to enter the domain, the qualitative relation between the Rayleigh and Peclet numbers is obtained over a large range for each. The effect of the length of the heating zone on the flow structure is also examined. The permeability ratio and the ratio of the thermal conductivity of the two layers is also allowed to vary, thus giving the computing Nusselt numbers a broad range of applicability in geophysical and engineered systems
Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection
Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.
2003-01-01
The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.
Natural convection heat transfer in vertical triangular subchannel in Zirconia-water nanofluid
Tandian, N. P.; Alkharboushi, A. A. K.; Kamajaya, K.
2015-09-01
Natural convection heat transfer in vertical triangular sub-channel has important role in cooling mechanism of the APWR and the PHWR nuclear reactors. Unfortunately, natural convection correlation equations for such geometry are scarcely available. Recent studies showed that ZrO2-water nanofluid has a good prospect to be used in the nuclear reactor technology due to its low neutron absorption cross section. Although several papers have reported transport properties of ZrO2-water nanofluids, practically there is no correlation equation for predicting natural convection heat transfer in a vertical triangular sub-channel in ZrO2-water nanofluid. Therefore, a study for finding such heat transfer correlation equation has been done by utilizing Computational Fluid Dynamics software and reported in this paper. In the study, natural convection heat transfer in a vertical triangular sub-channel has been simulated at several values of heat transfer flux within 9.1 to 30.9 kW/m2 range and ZrO2 concentrations of 0 (pure water), 0.27, and 3 volume-% of ZrO2. The study shows that the ZrO2 concentration has no significant influence to the natural convection heat transfer at those concentration levels. The obtained theoretical heat transfer correlation equations were verified through experiment, and they showed very similar results. The correlation equations are reported in this paper.
The role of a convective surface in models of the radiative heat transfer in nanofluids
Rahman, M.M., E-mail: mansurdu@yahoo.com; Al-Mazroui, W.A.; Al-Hatmi, F.S.; Al-Lawatia, M.A.; Eltayeb, I.A.
2014-08-15
Highlights: The role of a convective surface in modelling with nanofluids is investigated over a wedge. Surface convection significantly controls the rate of heat transfer in nanofluid. Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al{sub 2}O{sub 3} and titanium dioxide TiO{sub 2} are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of the wedge to the nanofluid. This finding is new and has not been reported in any open literature.
The role of a convective surface in models of the radiative heat transfer in nanofluids
Highlights: • The role of a convective surface in modelling with nanofluids is investigated over a wedge. • Surface convection significantly controls the rate of heat transfer in nanofluid. • Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. • Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. • Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al2O3 and titanium dioxide TiO2 are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of the wedge to the nanofluid. This finding is new and has not been reported in any open literature
The analytical solution of the nonstationary problem on the convective heat exchange by the laminar liquid flow with an account of the axial heat conductivity upwards by the flow from the heated zone is obtained. The mathematical difficulties are related to the fact, that in contrast to the existing solutions the conditions of conjugation by temperature and heat flow at the boundary of the pre-entry and heated sections depend on the coordinates and time. The temperature fields in the pre-entry and heated sections as well as the local and averaged characteristics of the stationary and nonstationary heat exchange are plotted with application of the obtained solution
Influence of the Coriolis force on flux tubes rising through the solar convection zone
In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones. 40 references
Kumar, Varun; Kumar, Manoj; Shakher, Chandra
2014-09-20
In this paper, the local convective heat transfer coefficient (h) is measured along the surface of an electrically heated vertical wire using digital holographic interferometry (DHI). Experiments are conducted on wires of different diameters. The experimentally measured values are within the range as given in the literature. DHI is expected to provide a more accurate local convective heat transfer coefficient (h) as the value of the temperature gradient required for the calculation of "h" can be obtained more accurately than by other existing optical interferometric techniques without the use of a phase shifting technique. This is because in digital holography phase measurement accuracy is expected to be higher. PMID:25322139
Effect of Selected Factors on Drying Process of Tomato in Forced Convection Solar Energy Dryer
U.S. Muhammed; A.M.I. El-Okene; M. Isiaka
2012-01-01
The effect of air velocity, slice thickness and grazing materials in drying process of tomato in forced convection solar energy dryer was evaluated. The result is to serve as an input for solar energy development for drying of vegetable and fruit products in North West Ecological zone of Nigeria. In order to evaluate the effects of the above factors in drying operation, a split-split-plot experimental design was used. Differences among the treatments and their interactions were tested with or...
NUMERICAL SIMULATION OF LAMINAR FORCED CONVECTION AIR FLOW IN A RECTANGULAR VENTURI CHANNEL
IGO SERGE WENDSIDA
2014-01-01
Full Text Available In this work, a laminar forced convection air flow in a rectangular vertical venturi has been numerically simulated. Mathematical transformation has been used to transform the irregular profile of the venturi wall into straight line. Transfers equations are solved using finite volume method, Gauss and Thomas algorithms. A computing algorithm has been generated for the problem simulation. Hydrodynamics and thermals effects are investigated in detail. Results are presented as velocity and streamlines patterns, and temperature profiles.
Hosseini, R.; Kolaei, Alireza Rezania; Alipour, M.; Rosendahl, Lasse
2012-01-01
In this work, the natural convection heat transfer from a long vertical electrically heated cylinder to an adjacent air gap is experimentally studied. The aspect and diameter ratios of the cylinder are 55.56 and 6.33, respectively. The experimental measurements were obtained for a concentric...
Impact of tidal heating on the onset of convection in Enceladus' ice shell
Behounkova, Marie; Tobie, Gabriel; Choblet, Gael; Cadek, Ondrej
2013-04-01
Observations of Enceladus by the Cassini spacecraft indicated that its south pole is very active, with jets of water vapor and ice emanating from warm tectonic ridges. Convective processes in the ice shell are commonly advocated to explain the enhanced activity at the south pole. The conditions under which convection may occur on Enceladus are, however, still puzzling. According to the estimation of Barr and McKinnon (2007) based on scaling laws, convection may initiate in Enceladus' ice shell only for grain size smaller than 0.3 mm, which is very small compared to the grain size observed on Earth in polar ice sheets for similar temperature and stress conditions (2-4mm). Moreover, Bahounková et al. (2012) showed that such enhanced activity periods associated with thermal convection and internal melting should be brief (~ 1 - 10Myrs) and should be followed by relatively long periods of inactivity (~ 100Myrs), with a probable cessation of thermal convection. In order to constrain the likelihood and periodicity of enhanced activity periods, the conditions under which thermal convection may restart are needed to be investigated. In particular, the goal is to understand how tidal heating, especially during periods of elevated eccentricity, may influence the onset of convection. To answer this question, 3D simulations of thermal convection including a self-consistent computation of tidal dissipation using the code Antigone (Bahounková et al., 2010, 2012) were performed, a composite non-Newtonian rheology (Goldsby and Kohlstedt, 2001) and Maxwell-like rheology mimicking Andrade model were considered. Our simulations show that the onset of convection may occur in Enceladus' ice shell only for ice grain size smaller or equal than 0.5 mm in absence of tidal heating. Tidal dissipation shifts the critical grain size for convection up to values of 1-1.5 mm. The convection is initiated in the polar region due to enhanced tidal dissipation in this area and remains in the southern hemisphere as long as the ocean width is smaller than Δ < 240°. Furthermore, we show that the onset of convection is associated with internal melting for tidal heating rate larger than ~ 0.5 - 1 ? 10-6Wm-3 and that increasing the heating rate above 10-6Wm-3 does not influence anymore the critical grain size for the initiation of convection.
Convective heat transfer at exterior building surfaces has an impact on the design and performance of building components such as double-skin facades, solar collectors, solar chimneys and ventilated photovoltaic arrays, and also affects the thermal climate and cooling load in urban areas. In this study, an overview is given of existing correlations of the exterior convective heat transfer coefficient (CHTC) with the wind speed, indicating significant differences between these correlations. As an alternative to using existing correlations, the applicability of CFD to obtain forced CHTC correlations is evaluated, by considering a cubic building in an atmospheric boundary layer. Steady Reynolds-averaged Navier-Stokes simulations are performed and, instead of the commonly used wall functions, low-Reynolds number modelling (LRNM) is used to model the boundary-layer region for reasons of improved accuracy. The flow field is found to become quasi independent of the Reynolds number at Reynolds numbers of about 105. This allows limiting the wind speed at which the CHTC is evaluated and thus the grid resolution in the near-wall region, which significantly reduces the computational expense. The distribution of the power-law CHTC-U10 correlation over the windward and leeward surfaces is presented (U10 = reference wind speed at 10 m height). It is shown that these correlations can be accurately determined by simulations with relatively low wind speed values, which avoids the use of excessively fine grids for LRNM, and by using only two or three discrete wind speed values, which limits the required number of CFD simulations.
Nanjundappa, C.E., E-mail: cenanju@hotmail.com [Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore-560 056 (India); Shivakumara, I.S., E-mail: shivakumarais@gmail.com [Department of Mathematics, Bangalore University, Bangalore-560 001 (India); Prakash, H.N., E-mail: prakashahn83@gmail.com [Government Pre-University College, B H Road, Tumkur-572 102 (India)
2014-12-15
We investigate the influence of Coriolis force on the onset of thermomagnetic convection in ferrofluid saturating a porous layer in the presence of a uniform vertical magnetic field using both linear and weakly non-linear analyses. The modified Brinkman–Forchheimer-extended Darcy equation with Coriolis term has been used to describe the fluid flow. The linear theory based on normal mode method is considered to find the criteria for the onset of stationary thermomagnetic Convection and weakly non-linear analysis based on minimal representation of truncated Fourier series analysis containing only two terms has been used to find the Nusselt number Nu as functions of time. The range of thermal Rayleigh number R beyond which the bifurcation becomes subcritical increases with increasing Λ, Da{sup −1} and Ta. The global quantity of the heat transfer rate decreases by increasing the Taylor number Ta. The results obtained, during the above analyses, have been presented graphically and the effects of various parameters on heat and mass transfer have been discussed. Finally, we have drawn the steady streamlines for various parameters.
We investigate the influence of Coriolis force on the onset of thermomagnetic convection in ferrofluid saturating a porous layer in the presence of a uniform vertical magnetic field using both linear and weakly non-linear analyses. The modified Brinkman–Forchheimer-extended Darcy equation with Coriolis term has been used to describe the fluid flow. The linear theory based on normal mode method is considered to find the criteria for the onset of stationary thermomagnetic Convection and weakly non-linear analysis based on minimal representation of truncated Fourier series analysis containing only two terms has been used to find the Nusselt number Nu as functions of time. The range of thermal Rayleigh number R beyond which the bifurcation becomes subcritical increases with increasing Λ, Da−1 and Ta. The global quantity of the heat transfer rate decreases by increasing the Taylor number Ta. The results obtained, during the above analyses, have been presented graphically and the effects of various parameters on heat and mass transfer have been discussed. Finally, we have drawn the steady streamlines for various parameters
Material transport in a convective surface mixed layer under weak wind forcing
Mensa, Jean A.; zgkmen, Tamay M.; Poje, Andrew C.; Imberger, Jrg
2015-12-01
Flows in the upper ocean mixed layer are responsible for the transport and dispersion of biogeochemical tracers, phytoplankton and buoyant pollutants, such as hydrocarbons from an oil spill. Material dispersion in mixed layer flows subject to diurnal buoyancy forcing and weak winds (| u10 | = 5m s-1) are investigated using a non-hydrostatic model. Both purely buoyancy-forced and combined wind- and buoyancy-forced flows are sampled using passive tracers, as well as 2D and 3D particles to explore characteristics of horizontal and vertical dispersion. It is found that the surface tracer patterns are determined by the convergence zones created by convection cells within a time scale of just a few hours. For pure convection, the results displayed the classic signature of Rayleigh-Benard cells. When combined with a wind stress, the convective cells become anisotropic in that the along-wind length scale gets much larger than the cross-wind scale. Horizontal relative dispersion computed by sampling the flow fields using both 2D and 3D passive particles is found to be consistent with the Richardson regime. Relative dispersion is an order of magnitude higher and 2D surface releases transition to Richardson regime faster in the wind-forced case. We also show that the buoyancy-forced case results in significantly lower amplitudes of scale-dependent horizontal relative diffusivity, kD(?), than those reported by Okubo (1970), while the wind- and buoyancy-forced case shows a good agreement with Okubo's diffusivity amplitude, and the scaling is consistent with Richardson's 4/3rd law, kD ? ?4/3. These modeling results provide a framework for measuring material dispersion by mixed layer flows in future observational programs.
Lopez, Jose M; Avila, Marc
2015-01-01
The flow of fluid confined between a heated rotating cylinder and a cooled stationary cylinder is a canonical experiment for the study of heat transfer in engineering. The theoretical treatment of this system is greatly simplified if the cylinders are assumed to be of infinite length or periodic in the axial direction, in which cases heat transfer occurs only through conduction as in a solid. We here investigate numerically heat transfer and the onset of turbulence in such flows by using both periodic and no-slip boundary conditions in the axial direction. We obtain a simple linear criterion that determines whether the infinite-cylinder assumption can be employed. The curvature of the cylinders enters this linear relationship through the slope and additive constant. For a given length-to-gap aspect ratio there is a critical Rayleigh number beyond which the laminar flow in the finite system is convective and so the behaviour is entirely different from the periodic case. The criterion does not depend on the Pra...
Wood, Toby S; Stellmach, Stephan
2012-01-01
Regions of stellar and planetary interiors that are unstable according to the Schwarzschild criterion, but stable according to the Ledoux criterion, are subject to a form of oscillatory double-diffusive (ODD) convection often called "semi-convection". In this series of papers, we use an extensive suite of three-dimensional (3D) numerical simulations to quantify the transport of heat and composition by ODD convection, and ultimately propose a new 1D prescription that can be used in stellar and planetary structure and evolution models. The first paper in this series demonstrated that under certain conditions ODD convection spontaneously transitions from an initially homogeneously turbulent state into a staircase of convective layers, which results in a substantial increase in the transport of heat and composition. Here, we present simulations of ODD convection in this layered regime, we describe the dynamical behavior of the layers, and we derive empirical scaling laws for the transport through layered convecti...
Laboratory grey cast iron continuous casting line with electromagnetic forced convection support
J. Szajnar
2010-07-01
Full Text Available The article describes the construction of a 20 mm diameter grey cast iron ingots continuous casting laboratory line. This line is made ofthree main units: melting unit (induction furnace, casting unit and the pulling unit. In order to improve the homogeneity of themicrostructure of ingots (by applying forced convection of liquid metal during the crystallization process in this case a crystallizer system generating the forced movement of liquid metal based on a system of electrical power windings of the AC specific frequency. Thissolution allowed to obtain a homogeneous microstructure of the continuous casting of cast iron EN-GJL-200 species.
Anomalous heat transport and condensation in convection of cryogenic helium
Urban, Pavel; Schmoranzer, D.; Hanzelka, Pavel; Sreenivasan, K. R.; Skrbek, L.
2013-01-01
Roč. 110, č. 20 (2013), s. 8036-8039. ISSN 0027-8424 R&D Projects: GA ČR GPP203/12/P897 Institutional support: RVO:68081731 Keywords : two-phase convection * temperature inversion * condensation * rain formation Subject RIV: BK - Fluid Dynamics Impact factor: 9.809, year: 2013
Convective Heat Transfer Augmentation by Flexible fins in Laminar Channel Pulsating flow
Joshi, Rakshitha U; Bhardwaj, Rajneesh
2015-01-01
Fluid-structure interaction (FSI) of thin flexible fins coupled with convective heat transfer has applications in energy harvesting and in understanding functioning of several biological systems. We numerically investigate FSI of the thin flexible fins involving large-scale flow-induced deformation as a potential heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. We consider twin flexible fins in a heated channel with laminar pulsating cross flow. The vortex ring past the fin sweep higher sources of vorticity generated on the channel walls out into the downstream - promoting the mixing of the fluid. The moving fin assists in convective mixing, augmenting convection in bulk and at the walls; and thereby reducing thermal boundary layer thickness and improving heat transfer at the channel walls. The thermal augmentation is...
Effects of Hall current on convective heat generating fluid in slip flow regime
Singh, S.S.; Ram, P.C. (Kenyatta Univ., Nairobi (KE). Dept. of Mathematics); Stower, G.X. (Jomo Kenyatta Univ. College of Agriculture and Technology, Nairobi (KE). Dept. of Mathematics and Computer Science)
1992-08-01
The problem of free convection flow of a viscous heat generating rarefied gas is considered for the case when a strong magnetic field is imposed perpendicularly to the plane of flow. Analytical expressions for the velocity field and temperature are obtained, and the influence of the Hall currents m and the heat source parameter {delta} on the velocity field and temperature are discussed. (Author).
Natural convection heat transfer estimation from a longitudinally finned vertical pipe using CFD
In this study, CFD analysis of air-heating vaporizers was conducted. A longitudinally finned vertical pipe was used to represent the air-heating vaporizer in the CFD model. Nitrogen gas was used as the working fluid inside the vertical pipe, and it was made to flow upward. Ambient air, which was the heat source, was assumed to contain no water vapor. To validate the CFD results, the convective heat transfer coefficients inside the pipe, hi-c, derived from the CFD results were first compared with the heat transfer coefficients inside the pipe, hi-p, which were derived from the Perkins correlation. Second, the convection heat transfer coefficients outside the pipe, ho-c, derived from the CFD results were compared with the convection heat transfer coefficients, ho-a, which were derived from an analytical solution of the energy equation. Third, the CFD results of both the ambient-air flow pattern and temperature were observed to determine whether they were their reasonability. It was found that all validations showed good results. Subsequently, the heat transfer coefficients for natural convection outside the pipe, ho-c, were used to determine the Nusselt number outside the pipe, Nuo.. This was then correlated with the Rayleigh number, Ra. The results show that Ra and Nuo have a proportional relationship in the range of 2.7414x1012 ≤ Ra ≤ 2.8263x1013. Based on this result, a relation for the Nusselt number outside the pipe, Nuo, was proposed
Flow and Convective Heat Transfer of Cylinder Misaligned from Aerodynamic Axis of Cyclone Flow
I. L. Leukhin
2014-06-01
Full Text Available The paper provides and analyzes results of experimental investigations on physical specific features of hydrodynamics and convective heat transfer of a cyclone flow with a group of round cylinders located symmetrically relative to its aerodynamic axis, calculative equations for average and local heat transfer factors at characteristic sections of cylinder surface.
COUPLEFLO is a two-dimensional finite element code for plane strain or axisymmetric analyses of thermomechanically coupled systems. It is capable of analyzing the creeping flow of non-Newtonian fluids or the secondary creep of solids. COUPLEFLO solves equations for conductive-convective heat transfer to determine the thermal response of a system. Thermomechanical coupling between the flow field and temperature distribution can exist in terms of temperature dependent material properties, temperature dependent body forces, viscous dissipation, material convection, and changing system geometry. Either transient or steady-state problems can be analyzed in Eulerian or quasi-Lagrangian reference frames. Part I - Theoretical Background contains the governing equation, finite element formulation, and verification of the code capabilities. Part II - User's Manual contains instructions for code use. Currently, COUPLEFLO is available at Sandia Laboratories in Albuquerque on the 7600, 6600, and NOS systems
Jiang, Jing; Huang, Xinjian; Wang, Lishi
2016-04-01
Detection of nanoparticle (NP) collision events at ultramicroelectrode (UME) has emerged as a new methodology for the investigation of single NP in recent years. Although the method was widely employed, some fundamental knowledge such as how the NP moves to and interacts with the UME remain less understood. It was generally recognized that the recorded rate of collision was determined by diffusion that should follow Fick's first law. However, significant lower collision frequency compared with that of predicted by theory were frequently reported. Experiments carried out by us suggest that the collision frequency will increase dramatically if forced convection (stir or flow injection) is applied during detection. Furthermore, the collision frequency gradually increases to a maximum and then decreases, along with the increase of the convection intensity. This phenomenon is interpreted as follows: (a) there are two steps for a freely moving NP to generate a detectable collision signal. The first step is the move of NP from bulk solution to the surface of the UME which is mass transfer limited; the second step is the landing of NP on the surface of UME which is affected by many factors and is the critical step; (b) there is a barrier that must be overcame before the contact between freely moving NP and UME. Forced convection with moderate intensity can not only increase the mass transfer rate but also help to overcome this barrier and thus enhance the collision frequency; (c) the landing of NP on the surface of UME can be suppressed by stronger convections, because NP will be swept away by hydrodynamic force. PMID:26802274
Convective transport due to poloidal electric fields during electron cyclotron heating in IMS
Steady state hollow density profiles, observed during electron cyclotron resonant heating in the Interchangeable Module Stellarator (IMS), are shown to be consistent with a transport model that includes convection in the particle balance equation. The factor of two difference in the confinement time between a hollow profile and a fairly flat profile is due to particle convection and is in good agreement with that calculated from the equilibrium profiles. It is observed that the poloidal electric fields are greater for the hollow profile than for the less hollow case, indicating that they are most likely the cause of the convection. (author). Letter-to-the-editor. 13 refs, 3 figs
Lauret, Philippe; Miranville, Frdric; Boyer, Harry; Garde, Francois; Adelard, Laetitia
2006-01-01
This paper deals with the application of Bayesian methods to the estimation of two convective heat transfer coefficients of a roof-mounted radiant barrier system (RBS). As part of an empirical validation of the thermal model of the roofing complex, a parametric sensitivity analysis highlighted the importance of convective coefficients in the thermal behavior of a roofing complex. A parameter estimation method is then used in order to find the values of the coefficients that lead to an improve...
J. M. Jawdat; Hashim, I.; Momani, S.
2012-01-01
The effect of nanofluids on chaotic convection in a fluid layer heated from below was studied in this paper for low Prandtl number based on the theory of dynamical systems. A low-dimensional, Lorenz-like model was obtained using Galerkin-truncated approximations. The fourth-order Runge-Kutta method was employed to solve the nonlinear system. The results show that inhibition of chaotic convection can be observed when using nanofluids.
Bounds on heat transport in Rayleigh's and related models of Bénard convection
Doering, Charles R.; Souza, Andre N.; Wen, Baole; Chini, Gregory P.; Kerswell, Richard R.
2015-11-01
We present new upper limits on convective heat transport in both the full and several low-dimensional Galerkin truncations of Rayleigh's 1916 model of buoyancy-driven Bénard convection using both the so-called background method as well as optimal control variational techniques. Research supported in part by by NSF Awards PHY-1205219, PHY-1338407, PHY-1443836, PHY-1533555 and DMS-1515161.
Experimental study of cooling BIPV modules by forced convection in the air channel
Highlights: • An experimental setup for studying the effects of forced convection on cell temperature. • The induced velocity within the forced convection channel significantly affects the PV cooling. • Correlations for the Ross coefficient, module temperature, efficiency, and power output. • Prediction of the thermal behavior of the PV module in BIPV configurations. - Abstract: The efficiency of photovoltaic systems depends mainly on the cell temperature. Frequently, the PV collectors are installed on the top of the building. One cost effective method to regulate the temperature of rooftop integrated photovoltaic panels is to provide an open air channel beneath the panel. The cell temperature of these PV modules is very much influenced by the capability of ventilating this channel. The ventilation may be modified by different factors such as the wind velocity, the air gap size, and the forced convection induced by a fan or by a conventional air conditioning system. This paper describes an experimental setup to study the influence of the air gap size and the forced ventilation on the cell temperature (and consequently on the electrical efficiency of the PV module) of a BIPV configuration, for different values of the incident solar radiation, ambient temperatures, and aspect ratios, as well as for several forced ventilation conditions. Semi empirical correlations for the Ross coefficient, module temperature, electrical efficiency, and power output are proposed, showing a good agreement with respect to experimental measurements. A critical channel aspect ratio close to 0.11 can be considered to minimize overheating of PV devices. For a duct velocity Vv = 6 m/s, a power output increase of 19% is observed over the natural ventilation case (Vv = 0.5 m/s)
Properties of forced convection experimental with silicon carbide based nano-fluids
Soanker, Abhinay
With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano-fluids. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.
Magnetic flux tubes and transport of heat in the convection zone of the sun
This thesis consists of five papers dealing with transport of heat in the solar convection zone on the one hand, and with the structure of magnetic flux tubes in the top of the convection zone on the other hand. These subjects are interrelated. For example, the heat flow in the convection zone is disturbed by the presence of magnetic flux tubes, while exchange of heat between a flux tube and the convection zone is important for the energy balance of such a tube. A major part of this thesis deals with the structure of small magnetic flux tubes. Such small tubes (diameters less than about 2'') carry most of the flux appearing at the solar surface. An attempt is made to construct models of the surface layers of such small tubes in sufficient detail to make a comparison with observations possible. Underlying these model calculations is the assumption that the magnetic elements at the solar surface are flux tubes in a roughly static equilibrium. The structure of such tubes is governed by their pressure equilibrium, exchange of heat with the surroundings, and transport of heat by some modified form of convection along the tube. The tube models calculated are compared with observations
Specialists' meeting on evaluation of decay heat removal by natural convection
Decay heat removal by natural convection (DHRNC) is essential to enhancing the safety of liquid metal fast reactors (LMFRs). Various design concepts related to DHRNC have been proposed and experimental and analytical studies have been carried out in a number of countries. The purpose of this Specialists' Meeting on 'Decay Heat Removal by Natural Convection' organized by the International Working Group on Fast Reactors IAEA, is to exchange information about the state of the art related to methodologies on evaluation of DHRNC features (experimental studies and code developments) and to discuss problems which need to be solved in order to evaluate DHRNC properly and reasonably. The following main topical areas were discussed by delegates: Overview; Experimental studies and code validation; Design study. Two main DHR systems for LMFR are under consideration: (i) direct reactor auxiliary cooling system (DRACS) with immersed DFIX in main vessel, intermediate sodium loop and sodium-air heat exchanger; and (ii) auxiliary cooling system which removes heat from the outside surface of the reactor vessel by natural convection of air (RVACS). The practicality and economic viability of the use of RVACS is possible up to a modular type reactor or a middle size reactor based on current technology. For the large monolithic plant concepts DRACS is preferable. The existing experimental results and the codes show encouraging results so that the decay heat removal by pure natural convection is feasible. Concerning the objective, 'passive safety', the DHR by pure natural convection is essential feature to enhance the reliability of DHR
Coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas, which changes drastically the heat and mass transfer across the liquid layer. Two experiments are considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow looking like petals or rays appears when the aspect ratio length/depth is small, and like concentric rings in the case of large values of the aspect ratio. The lateral confinement selects the azimuthal length wave. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be 'weak', even for the largest values of the Marangoni number (Ma ≅ 1.3 * 105). In the case of mercury, the thermo-capillary effect is reduced to zero, due to impurities at the surface, which have special trajectories we describe and compare to a simpler experiment. The only buoyancy forces induces an un-stationary, weakly turbulent flow as soon as the heating power exceeds 4 W (≅ 4.5 * 103, calculated with h = 1 mm). The last part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number, the buoyancy force, with the help of the literature. Results concerning heat transfer, especially the exponent of the law Nusselt number vs. heating power, are compared with available data. (author)
Bounds on Heat Transport in Rapidly Rotating Rayleigh-B\\'{e}nard Convection
Grooms, Ian
2014-01-01
The heat transport in rotating Rayleigh-B\\'enard convection is considered in the limit of rapid rotation (small Ekman number $E$) and strong thermal forcing (large Rayleigh number $Ra$). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is $Ra \\lesssim E^{-8/5}$. A rigorous bound on heat transport of $Nu \\le 20.56Ra^3E^4$ is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. $Nu \\lesssim Ra^3$ is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer.
Bounds on heat transport in rapidly rotating Rayleigh–Bénard convection
The heat transport in rotating Rayleigh–Bénard convection is considered in the limit of rapid rotation (small Ekman number E) and strong thermal forcing (large Rayleigh number Ra). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is Ra ≲ E−8/5. A rigorous bound on heat transport of Nu ⩽ 20.56Ra3E4 is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. Nu ≲ Ra3 is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer. The derived upper bound is consistent with, although significantly higher than the observed behaviour in simulations of the reduced equations, which find at most Nu ∼ Ra2E8/3. (paper)
While shape memory alloys (SMAs) have many actuation benefits, their frequencies are commonly restricted by slow cooling times caused by limitations in convective heat transfer. To increase the cooling speed and at the same time reduce excess power consumption from overheating, it is critical to understand the heat transfer from SMA wires. This requires accurate surface temperature measurement under a fixed input power, which is difficult to obtain using traditional methods because of the nature of SMAs (thin wires, large strains, heat activation, ambient environment, etc). This paper introduces a non-invasive technique for calculating the convective coefficient for SMAs by employing the temperature-induced transformation strain of SMAs to estimate the surface temperature. This method was experimentally validated for measurement of the convective coefficient in air where infrared cameras can operate, and then used to indirectly measure the convective coefficient across a range of commonly utilized SMA wire diameters and ambient media where traditional methods are limited. Formulated empirical correlations to the collected data provide a mathematical relationship to calculate the convective coefficient in material models which serve as better estimates of convection, and may be used for optimization of SMA actuators for increased frequency performance while ensuring that power draw is minimized
Thermal histories have been calculated for simple models of the earth which assume that heat is transported by convection throughout the interior. The application of independent constraints to these solutions limits the acceptable range of the ratio of present radiogenic heat production in the earth to the present surface heat flux. The models use an empirical relation between the rate of convective heat transport and the temperature difference across a convecting fluid. This is combined with an approximate proportionality between effective mantle viscosity and T/sup -n/, where T is temperature and it is argued that n is about 30 throughout the mantle. The large value of n causes T to be strongly buffered against changes in the earth's energy budget and shortens by an order of magnitude the response time of surface heat flux to changes in energy budget as compared to less temperature-dependent heat transport mechanisms. Nevertheless, response times with n=30 are still as long as 1 or 2 b.y. Assuming that the present heat flux is entirely primordial (i.e., nonradiogenic) in a convective model leads back to unrealistically high temperatures about 1.7 b.y. ago. Inclusion of exponentially decaying (i.e., radiogenic) heat sources moves the high temperatures further into the past and leads to a transition from 'hot' to 'cool' calculated thermal histories for the case when the present rate of heat production is near 50% of the present rate of heat loss. Requiring the calculated histories to satisfy minimal geological constraints limits the present heat production/heat loss ratio to between about 0.3 and 0.85. Plausible stronger constraints narrow this range to between 0.45 and 0.65. These results are compatible with estimated radiogentic heat production rates in some meteorites and terrestrial rocks, with a whole-earth K/U ratio of 1--2 x 104 giving optimal agreement
Solar drying of whole mint plant under natural and forced convection.
Sallam, Y I; Aly, M H; Nassar, A F; Mohamed, E A
2015-03-01
Two identical prototype solar dryers (direct and indirect) having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2ms(-1). The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day). The values of the effective diffusivity coefficient for the mint drying ranged between 1.2נ10(-11) and 1.33נ10(-11)m(2)s(-1). PMID:25750751
Solar drying of whole mint plant under natural and forced convection
Y.I. Sallam
2015-03-01
Full Text Available Two identical prototype solar dryers (direct and indirect having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2ms?1. The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day. The values of the effective diffusivity coefficient for the mint drying ranged between 1.2נ10?11 and 1.33נ10?11m2s?1.
Evaluation of T-111 forced-convection loop tested with lithium at 13700C
A T-111 alloy (Ta--8 percent W--2 percent Hf) forced-convection loop containing molten lithium was operated 3000 h at a maximum temperature of 13700C. Flow velocities up to 6.3 m/s were used. The results obtained in this forced-convection loop are very similar to those observed in lower velocity thermal-convection loops of T-111 containing lithium. Weight changes were determined at 93 positions around the loop. The maximum dissolution rate occurred at the maximum wall temperature of the loop and was less than 1.3 ? m/year. Mass transfer of hafnium, nitrogen, and, to a lesser extent, carbon occurred from the hotter to cooler regions. Exposed surfaces in the highest temperature region were found to be depleted in hafnium to a depth of 60 ? m with no detectable change in tungsten content. There was some loss in room-temperature tensile strength for specimens exposed to lithium at 13700C, attributable to depletion of hafnium and nitrogen and to attendant grain growth. (U.S.)
Ke Wu; Le Wang; Yi-Bo Yu; Zhi-Yi Huang; Pei Liang
2013-12-01
Heat dissipation enhancement of LED luminaries is of great significance to the large-scale application of LED. Luminaries-level structure improvement by the method of boring through-hole is adopted to intensify heat dissipation. Furthermore, the natural convection heat transfer process of LED luminaries is simulated by computational fluid dynamics (CFD) model before and after the structural modification. As shown by computational results, boring through-hole is beneficial to develop bottomto-top natural convection, eliminate local circumfluence, and finally form better flow pattern. Analysis based on field synergy principle shows that boring through-hole across LED luminaries improves the synergy between flow field and temperature field, and effectively decreases the thermal resistance of luminaries-level heat dissipation structure. Under the same computational conditions, by luminaries-level structure improvement the highest temperature of heat sink is decreased by about 8° C and the average heat transfer coefficient is increased by 45.8%.
Enhancement of Natural Convection Heat Transfer from Perforated Fin
Mr. Saurabh ,D. Bahadure , Mr. G. D. Gosavi
2014-01-01
A comprehensive theoretical and experimental study was carried out on the thermal performance of a pin fin heat sink. An experimental model was shows that have the capability of predicting influence of effective surface area of pin fin on thermal heat transfer coefficient. Pin fin array are used in many applications to enhance heat transfer and also shows enhancement of heat transfer coefficient for different material of fin. Several different type of experiment te...
El-Amin, Mohamed
2013-01-01
In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension is employed in the flow equation to express the non-Darcy model. The fluid viscosity varies as an inverse linear function of temperature. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. Similarity solutions of the governing equations, for an isothermally heated plate, are obtained. Effects of the physical parameters, which govern the problem, on the rate of heat transfer in terms of Nusselt number, the slip velocity, and the boundary layer thickness, for the two cases Darcy and non-Darcy, are shown on graphs or entered in tables. © 2013 by Begell House, Inc.
Local Convective Boiling Heat Transfer And Pressure Drop Of Nanofluid In Narrow Rectangular Channels
Boudouh, Mounir; Gualous, Hasna Louahlia; De Labachelerie, Michel
2010-01-01
Abstract This paper reports an experimental study on convective boiling heat transfer of nanofluids and de-ionized water flowing in a multichannels. The test copper plate contains 50 parallel rectangular minichannels of hydraulic diameter 800 ?m. Experiments were performed to characterize the local heat transfer coefficients and surface temperature using copper-water nanofluids with very small nanoparticles concentration. Axial distribution of local heat transfer is estimated using...
Analysis of natural convective heat transfer of nano coated aluminium fins using Taguchi method
Senthilkumar, R.; Nandhakumar, A. J. D.; Prabhu, S.
2013-01-01
Rectangular aluminium fins were preferred for analysis and coated by carbon nano tubes using PVD to enhance the heat transfer rate of fins. Convective heat transfer rates for coated and non-coated surfaces were calculated and compared. The temperature and heat transfer characteristics were investigated using Nusselt, Grashof, Prandtl and Rayleigh numbers and also optimized by Taguchi method and ANOVA analysis. The average percentage of increase in fin efficiency is 5 %.
A new glass interim storage with heat removal by natural convection
In order to meet COGEMA's strong operating and safety requirements, SGN proposed simple innovative solutions for the design of a new high level vitrified waste interim storage facility. The design is based on the use of steel jackets placed around vertical storage wells in vaults where the heat is removed by natural convection. Heat transfer in the annular space created by the steel jackets is enhanced. Efficient heat removal allows for a compact and cost-effective design. (author)
Shestakov Igor A.
2015-01-01
Full Text Available The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characterize the basic regularities of the processes are obtained. Circulating flows are determined and carried out the analysis of vortices formation mechanism and the temperature distribution in solution at conditions of natural convection when the Grashof number (Gr = 106. A significant influence of heat transfer rate on solutions boundary on flow structure and temperature field in LNG storage tanks.
Revisiting the Bulk Relation for Heat Flux in the Free Convection Limit
Kitamura, Yuji; Ito, Junshi
2015-08-01
We modify the velocity applied to the bulk relation for surface heat flux using turbulent kinetic energy, such that the effect of horizontal flow induced by unresolved free convection is incorporated. Numerical experiments with a large-eddy simulation (LES) and a single-column model (SCM) are examined for an ideal convective boundary layer. The surface fluxes obtained from both models are compared to investigate the effect of the velocity correction. It is confirmed that the surface heat flux calculated with the velocity correction is relatively consistent between the LES and SCM, even for a free convection case. Furthermore, the proposed method provides an evaluation of the surface heat flux that is insensitive to the model resolution, unlike the conventional method.
Revisiting the Bulk Relation for Heat Flux in the Free Convection Limit
Kitamura, Yuji; Ito, Junshi
2016-01-01
We modify the velocity applied to the bulk relation for surface heat flux using turbulent kinetic energy, such that the effect of horizontal flow induced by unresolved free convection is incorporated. Numerical experiments with a large-eddy simulation (LES) and a single-column model (SCM) are examined for an ideal convective boundary layer. The surface fluxes obtained from both models are compared to investigate the effect of the velocity correction. It is confirmed that the surface heat flux calculated with the velocity correction is relatively consistent between the LES and SCM, even for a free convection case. Furthermore, the proposed method provides an evaluation of the surface heat flux that is insensitive to the model resolution, unlike the conventional method.
On the Interaction of Internal Gravity Waves with Magnetic Field II. Convective Forcing
Rogers, T M
2010-01-01
We present results from numerical simulations of the interaction of internal gravity waves (IGW) with magnetic fields in the radiative interior of the Sun. In this second paper, the waves are forced self-consistently by an overlying convection zone and a toroidal magnetic field is imposed in the stably stratified layer just underneath convection zone. Consistent with the results of previous analytic and simple numerical calculations, we find a strong wave-field interaction, in which waves are reflected in the field region. The wave-field interaction and wave reflection depend on the field strength as well as adopted values of the diffusivities. In some cases wave reflection leads to an increased mean flow in the field region. In addition to reproducing some of the features of our simpler models, we find additional complex behaviour in these more complete and realistic calculations.
Evaluation of convective heat transfer coefficient of various crops in cyclone type dryer
Akpinar, E. Kavak [Mechanical Engineering Department, Firat University, 23279 Elazig (Turkey)]. E-mail: eakpinar@firat.edu.tr
2005-09-15
In this paper, an attempt was made to evaluate the convective heat transfer coefficient during drying of various crops and to investigate the influences of drying air velocity and temperature on the convective heat transfer coefficient. Drying was conducted in a convective cyclone type dryer at drying air temperatures of 60, 70 and 80 deg. C and velocities of 1 and 1.5 m/s using rectangle shaped potato and apple slices (12.5 x 12.5 x 25 mm) and cylindrical shaped pumpkin slices (35 x 5 mm). The temperature changes of the dried crops and the temperature of the drying air were measured during the drying process. It was found that the values of convective heat transfer coefficient varied from crop to crop with a range 30.21406 and 20.65470 W/m{sup 2} C for the crops studied, and it was observed that the convective heat transfer coefficient increased in large amounts with the increase of the drying air velocity but increased in small amounts with the rise of the drying air temperature.
Evaluation of convective heat transfer coefficient of various crops in cyclone type dryer
In this paper, an attempt was made to evaluate the convective heat transfer coefficient during drying of various crops and to investigate the influences of drying air velocity and temperature on the convective heat transfer coefficient. Drying was conducted in a convective cyclone type dryer at drying air temperatures of 60, 70 and 80 deg. C and velocities of 1 and 1.5 m/s using rectangle shaped potato and apple slices (12.5 x 12.5 x 25 mm) and cylindrical shaped pumpkin slices (35 x 5 mm). The temperature changes of the dried crops and the temperature of the drying air were measured during the drying process. It was found that the values of convective heat transfer coefficient varied from crop to crop with a range 30.21406 and 20.65470 W/m2 C for the crops studied, and it was observed that the convective heat transfer coefficient increased in large amounts with the increase of the drying air velocity but increased in small amounts with the rise of the drying air temperature
Calculations of heat fluxes through cooled/heated walls from CFD results have become of great importance in many industrial applications. The objective of this work is to present a consistent numerical technique to compute heat fluxes through isothermal boundaries. In the present paper, we consider a stabilized PSPG/SUPG finite element scheme for the steady Navier-Stokes equations for variable density flows. Three variants are considered which differ by the treatment of the convective terms in the momentum and energy equations, i.e. a convective formulation, a corrected convective formulation and a conservative formulation. A pseudo Newton method is employed as non linear solver. A numerical technique to compute the boundary heat fluxes consistent with the finite element formulation is then presented, as well as the expression obtained using the gradient of the finite element approximation Th To illustrate the effect of the formulation, numerical simulations of natural convection of air in 2D and 3D cubic cavities with large temperature differences between opposite walls are carried out. The effects of the finite element formulation, of the expression for the calculation of the heat flux and of mesh refinement are presented. The results demonstrate the superior accuracy and convergence of the proposed numerical technique for the heat flux computation.
Latent heating and mixing due to entrainment in tropical deep convection
McGee, Clayton J.
Recent studies have noted the role of latent heating above the freezing level in reconciling Riehl and Malkus' Hot Tower Hypothesis (HTH) with evidence of diluted tropical deep convective cores. This study evaluates recent modifications to the HTH through Lagrangian trajectory analysis of deep convective cores in an idealized, high-resolution cloud-resolving model (CRM) simulation. A line of tropical convective cells develops within a high-resolution nested grid whose boundary conditions are obtained from a large-domain CRM simulation approaching radiative-convective equilibrium (RCE). Microphysical impacts on latent heating and equivalent potential temperature are analyzed along trajectories ascending within convective regions of the high-resolution nested grid. Changes in equivalent potential temperature along backward trajectories are partitioned into contributions from latent heating due to ice processes and a residual term. This residual term is composed of radiation and mixing. Due to the small magnitude of radiative heating rates in the convective inflow regions and updrafts examined here, the residual term is treated as an approximate representation of mixing within these regions. The simulations demonstrate that mixing with dry air decreases equivalent potential temperature along ascending trajectories below the freezing level, while latent heating due to freezing and vapor deposition increase equivalent potential temperature above the freezing level. The latent heating contributions along trajectories from cloud nucleation, condensation, evaporation, freezing, deposition, and sublimation are also quantified. Finally, the source regions of trajectories reaching the upper troposphere are identified; it is found that two-thirds of backward trajectories with starting points within strong updrafts or downdrafts above 10 km have their origin at levels higher than 2 km AGL. The importance of both boundary layer and mid-level inflow in moist environments is underscored in this study.
For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger
Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.
A. Nesenchuk
2014-09-01
Full Text Available In this article, on the base of heat exchange analysis in heat supply systems with rotational heat generator, a calculated formula for estimation of heat transfer from the surface of heating device is obtained, taking into account its probability (random orientation in space. It is shown the most probable position of heating devices in heating system of mobile object.
A. Nesenchuk; I. Iokova; T. Rizova; P. Lasij; D. Shklovchik; Z. Aidarova
2014-01-01
In this article, on the base of heat exchange analysis in heat supply systems with rotational heat generator, a calculated formula for estimation of heat transfer from the surface of heating device is obtained, taking into account its probability (random) orientation in space. It is shown the most probable position of heating devices in heating system of mobile object.
Numerical study of natural convection of a heat-generating fluid in nuclear reactor safety problems
Unsteady natural convection of a heat-generating fluid in axisymmetric enclosures (cylindrical and downward-facing hemispherical) with isothermal walls is investigated numerically in the present work. This problem is considered from the stand point of solving the problem of molten corium retention at the vessel bottom of a Pressurized Water Reactor (PWR). The peculiarities of convective heat transfer are studied in a wide range of Prandtl and Rayleigh numbers for laminar and transitional to turbulence regimes of fluid motion. The turbulent regime is not considered in this study. The predictions are compared with the numerical and experimental results of other scientists. (author)
Combined convection heat transfer of liquid sodium in cross flow through horizontal tube banks
The objective of the present study is to clarify the heat transfer characteristics of combined convection of liquid sodium flowing through horizontal tube banks in the direction of gravity. The inviscid flow model is applied to analysis, since liquid sodium has a low Prandtl number. A boundary-fitted coordinate transformation technique is adopted to the numerical analysis. It is found that the heat transfer characteristics of combined convection largely depend upon the change of the wall temperature of tubes in the flow direction. (author)
Numerical Simulation of Convective Heat and Mass Transfer in a Two-Layer System
Myznikova, B. I.; Kazaryan, V. A.; Tarunin, E. L.; Wertgeim, I. I.
The results are presented of mathematical and computer modeling of natural convection in the liquid-gas two-layer system, filling a vertical cylinder surrounded by solid heat conductive tract. The model describes approximately the conjugate heat and mass transfer in the underground oil product storage, filled partially by a hydrocarbon liquid, with natural gas layer above the liquid surface. The geothermal gradient in a rock mass gives rise to the intensive convection in the liquid-gas system. The consideration is worked out for laminar flows, laminar-turbulent transitional regimes, and developed turbulent flows.
Bounds on heat transport in Bnard-Marangoni convection
Hagstrom, George; Doering, Charles R.
2010-04-01
For Pearsons model of Bnard-Marangoni convection, the Nusselt number Nu is proven to be bounded as a function Marangoni number Ma according to Nu?0.838Ma2/7 for infinite Prandtl number and according to Nu?Ma1/2 uniformly for finite Prandtl number. The analysis is also used to raise the lower bound for the critical Marangoni number for energy stability of the conduction solution from 56.77 to 58.36 when the Prandtl number is infinite.
Numerical analysis of natural convection heat transfer in the shielded canister for the spent fuel
PHOENICS-3.2, a three-dimension CFD code is used to research the natural convection heat transfer characters in the horizontal dry shielded canister for the spent fuel assemblies. The computational results are compared with the published experimental and computational results. The results are satisfactory. The parameters of 200 MW Nuclear Heating Reactor are used in the calculations to study the feasibility of the dry shielded canister's application in Nuclear Heating Reactor. Nitrogen and water are chosen as working fluid. In comparison of the heat transfer results of these two kinds of working fluids, nitrogen and water it is found that water is the better choice for Nuclear Heating Reactor
Natural convection heat transfer phenomena on a horizontal cylinder have been studied experimentally in order to investigate the applicability of analogy experimental methodology using a copper electroplating system and to visualize the local heat transfer rates depending on the angular position and the diameter of the horizontal cylinder. In the copper electroplating system, the copper ion produced at the anode moves by convection and diffusion to the cathode and reduces at the cathode, representing the heat transfer. By using aluminum cathode with a distinguishable color, the amount of copper plated could visualize the amount of heat transferred depending on the angular position of the cylinder. The diameter of the cylinder is varied from 0.01m to 0.15m, which correspond to Rayleigh numbers in the range of 1.73x107 to 5.69x1011. The test results are in good agreement with existing heat transfer correlations
Determining convective heat transfer coefficient using phoenics software package
Kostikov, A.; Matsevity, Y. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkov (Ukraine)
1997-12-31
The two methods of determination of such important quantity of heat exchange on a body surface using PHOENICS are suggested in the presentation. The first method consists in a post-processing of results of conjugate heat transfer problem solved by PHOENICS. The second one is solving an inverse heat conduction problem for solid body using PHOENICS. Comparative characteristic of these two methods is represented. (author) 4 refs.
The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*105 and 5.4*105. A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends