WorldWideScience

Sample records for exhaust gas temperature

  1. Effect of EGR on the exhaust gas temperature and exhaust opacity in compression ignition engines

    Indian Academy of Sciences (India)

    Avinash Kumar Agrawal; Shrawan Kumar Singh; Shailendra Sinha; Mritunjay Kumar Shukla

    2004-06-01

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of reducing the NOx emission of a diesel engine is by late injection of fuel into the combustion chamber. This technique is effective but increases fuel consumption by 10–15%, which necessitates the use of more effective NOx reduction techniques like exhaust gas recirculation (EGR). Re-circulating part of the exhaust gas helps in reducing NOx, but appreciable particulate emissions are observed at high loads, hence there is a trade-off between NOx and smoke emission. To get maximum benefit from this trade-off, a particulate trap may be used to reduce the amount of unburnt particulates in EGR, which in turn reduce the particulate emission also. An experimental investigation was conducted to observe the effect of exhaust gas re-circulation on the exhaust gas temperatures and exhaust opacity. The experimental setup for the proposed experiments was developed on a two-cylinder, direct injection, air-cooled, compression ignition engine. A matrix of experiments was conducted for observing the effect of different quantities of EGR on exhaust gas temperatures and opacity.

  2. Concept study - lower exhaust gas temperature in Scania buses

    OpenAIRE

    Jansson, Birk; Jarster, Mikael

    2013-01-01

    The thesis aims to lower the exhaust gas temperature on the coming EU6 Scania buses D7 and Otto gas and is carried out as a final part of the studies in the mechanical engineering program, KTH Stockholm. Euro 6, a new emission standard requirements for heavy duty trucks and buses, puts new demands on the amount of particulate matter and nitrogen oxides that can be emitted. This led to that Scania has developed and improved their after treatment systems. The new after treatment systems generat...

  3. Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant

    OpenAIRE

    Khan, M N; K. P. Tyagi

    2010-01-01

    The gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbi...

  4. Increasing exhaust gas temperature in the diesel engine using a variable valvetrain; Anhebung der Abgastemperatur am Dieselmotor durch variablen Ventiltrieb

    Energy Technology Data Exchange (ETDEWEB)

    Diezemann, Matthias; Pohlke, Rene; Brauer, Maximilian [IAV GmbH, Berlin (Germany); Severin, Christopher [IAV GmbH, Gifhorn (Germany). Abt. Systementwicklung und Konzepte Brennverfahren

    2013-04-15

    Efficient use of exhaust gas aftertreatment components in a diesel engine requires active control of the exhaust temperature. IAV has examined the possibilities offered by variable valve timing for managing the exhaust temperature. (orig.)

  5. Dynamic Response of Turbine-blade Temperature to Exhaust-gas Temperature for Gas-turbine Engines

    Science.gov (United States)

    Hood, Richard; Phillips, William E , Jr

    1952-01-01

    The frequency of blade temperature to exhaust gas temperature is presented for two locations in the blade and at several operating conditions. The frequency response was determined by Fourier analysis of transient data. Two analytical methods are presented, and results are compared with experimental data. Dynamic response of turbine-blade temperature to exhaust-gas temperature exhibited the form of an approximate first-order lag. The results are used to predict blade temperature for a typical controlled and uncontrolled gas-turbine engine.

  6. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part I Standard Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2015-01-01

    Full Text Available The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple.

  7. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Highlights: First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. The model can be used for integrated control of HCCI combustion and exhaust temperature. The model is experimentally validated at over 300 steady state and transient conditions. Results show a good agreement between predicted and measured exhaust temperatures. Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physicalempirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  8. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    Science.gov (United States)

    Brito, C. H. G.; Maia, C. B.; Sodr, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  9. Exhaust gas treat equipment

    International Nuclear Information System (INIS)

    Object: To permit efficient removal of radioactive gas from exhaust gas, which is produced in a great quantity in a short period of time, under a low liquifaction factor. Structure: In a equipment comprising a device for pre-cooling exhaust gas containing radioactive exhaust gases such as xenon and krypton, a liquifying chamber connected to the pre-cooling chamber and having a plurality of liquifying tubes, a purified gas duct line and a liquified exhaust gas recovery gas duct line, these lines being connected to the liquifying chamber, the liquifying tubes are filled with an adsorption substance (for instance, active carbon and molecular sieve) and (or) a thermally conductive substance (for instance, copper, iron and aluminum). (Nakamura, S.)

  10. High temperature-resistant materials for car exhaust gas catalysts; Hochtemperaturfeste Werkstoffe fuer Autoabgaskatalysatoren

    Energy Technology Data Exchange (ETDEWEB)

    Einenkel, A.

    1996-06-30

    The aim of the work consisted of the development of a material for car exhaust gas catalysts which can be used in catalysts situated near the engine. Because of the occurrence of temperatures up to 1000 C in use, there are considerably higher requirements for this material than for previous materials. Titanium in the form of foil and metal mesh and nickel in the form of metal mesh was tested as substrate materials. Ti-hybrid, Ni and Cu were tested as diffusion blockers, and Pt noble metal coating as galvanic layer and as product of the thermal decomposition of a Pt complex salt free of chloride. It was found that Ti is not stable at a temperature of 1000 C and neither are the diffusion blockers. Ni with platinum plating does not change at 1000 C. The examination of the application technique of the Ni metal mesh gave no satisfactory conversion rates for Co, HC and NO{sub x}. Information was obtained in what conditions and in which geometrical shape metal mesh is suitable as the substrate geometry for exhaust gas catalysts. (orig.) [Deutsch] Das Ziel der Arbeiten bestand in der Entwicklung eines Werkstoffes fuer Autoabgaskatalysatoren, der in motornah angeordneten Katalysatoren eingesetzt werden kann. An diesen Werkstoff werden wegen der im Einsatz auftretenden Temperaturen bis 1000 C wesentlich hoehere Anforderugen als an die bisherigen Werkstoffe gestellt. Es wurden Ti in Form von Folie und Streckmetall sowie Ni in Form von Streckmetal als Substratwerkstoffe getestet. Als Diffusionssperren wurden Ti-Hybrid, Ni und Cu und als Edelmetallbeschichtung Pt als galvanische Schicht und als Produkt der thermischen Zersetzung eines chloridfreien Pt-Komplexsalzes getestet. Es zeigte sich, dass Ti bei der Temperaturbelastung von 1000 C nicht stabil ist, auch nicht die Diffusionssperren. Ni, platiniert, erfaehrt bei 1000 C keine Veraenderungen. Die anwendungstechnische Untersuchung des platinierten Ni-Streckmetalles ergab keine zufriedenstellenden Konvertierungsraten fuer CO, HC und NO{sub x}. Es wurden Erkenntnisse gewonnen, unter welchen Bedingungen und in welcher geometrischer Form sich Streckmetall als Substratgeometrie in Abgaskatalysatoren eignet. (orig.)

  11. A Fault Diagnosis Approach for Gas Turbine Exhaust Gas Temperature Based on Fuzzy C-Means Clustering and Support Vector Machine

    OpenAIRE

    Zhi-tao Wang; Ning-bo Zhao; Wei-ying Wang; Rui Tang; Shu-ying Li

    2015-01-01

    As an important gas path performance parameter of gas turbine, exhaust gas temperature (EGT) can represent the thermal health condition of gas turbine. In order to monitor and diagnose the EGT effectively, a fusion approach based on fuzzy C-means (FCM) clustering algorithm and support vector machine (SVM) classification model is proposed in this paper. Considering the distribution characteristics of gas turbine EGT, FCM clustering algorithm is used to realize clustering analysis and obtain th...

  12. Processing of exhaust gas

    International Nuclear Information System (INIS)

    Silicon carbide is an important component in exhaust gas filters for diesel engines. Norway produces and refines SiC, which is used in fireproof and ceramic industry and as an abrasive. It is also increasingly used in electronic industry. The emission from diesel engines consists of small spherical soot particles with an appendage of fuel, lubricating oil, water and sulphur compounds. These particles are intercepted by silicon carbide filters. There is a world-wide demand for environmentally friendly diesel engines and a growing demand for silicon carbide. From 2002, the EU permits a maximum emission of 0.025 grams per km of driving

  13. Comparison of sound, exhaust gas temperature and smoke opacity characteristics of methyl esters of vegetable oils blends

    Directory of Open Access Journals (Sweden)

    S. Prabhakar

    2011-10-01

    Full Text Available Experimental studies were conducted to evaluate the sound, exhaust gas temperature and smoke opacity characteristics of a single cylinder, four stroke engine fuelled with Vegetable oil methyl ester and its blends with standard diesel. Among different vegetable oils which can be used as alternate fuels, five vegetable oils, i.e., Nerium (Nerium oleander, Jatropha (Jatropha curcas, Pongamia (Pongamia pinnata, Mahua (Madhuca indica and Neem (Azadirachta indica oils were selected for analysis. Tests has been conducted using the fuel blends of 20%, 40%, 60% and 80% biodiesel with standard diesel, with an engine speed of 1800 rpm. It has found that the sound, exhaust gas temperature and smoke opacity characteristics of vegetable oil methyl ester and its diesel blends closely followed those of standard diesel.

  14. Comparison of sound, exhaust gas temperature and smoke opacity characteristics of methyl esters of vegetable oils blends

    OpenAIRE

    S. Prabhakar; Annamalai, K.

    2011-01-01

    Experimental studies were conducted to evaluate the sound, exhaust gas temperature and smoke opacity characteristics of a single cylinder, four stroke engine fuelled with Vegetable oil methyl ester and its blends with standard diesel. Among different vegetable oils which can be used as alternate fuels, five vegetable oils, i.e., Nerium (Nerium oleander), Jatropha (Jatropha curcas), Pongamia (Pongamia pinnata), Mahua (Madhuca indica) and Neem (Azadirachta indica) oils were selected for analysi...

  15. Gas turbine exhaust system silencing design

    International Nuclear Information System (INIS)

    Gas turbines are the preferred prime mover in many applications because of their high efficiency, fuel flexibility, and low environmental impact. A typical mid-size machine might have a power rating of 80 MW, a flow of about 1000 kg/hr, and an exhaust temperature of over 500C. The most powerful single source of noise is generally the exhaust, which may generate over a kilowatt of acoustic energy. This paper reports that there are two important ways in which exhaust systems can radiate noise. The first is through the discharge of the exhaust duct, with the exhaust gas. Because of the large quantity of hot gas, the duct exit is always oriented vertically; it may be fairly high in the air in order to promote dispersion of the exhaust plume. This source is almost always attenuated by means of a silencer located somewhere in the ductwork. The second source of noise is often called breakout; it is the radiation of exhaust noise through the walls of the ducting. Breakout is most important for those sections of the exhaust duct which lie upstream of the silencer, where sound levels inside the ducting are highest. Both exhaust duct exit noise and breakout noise can be calculated from the sound power level of the gas turbine exhaust and the sound transmission loss (TL) of the silencer and ducting

  16. Device for purifying exhaust gas

    International Nuclear Information System (INIS)

    Purpose: To ensure the reliability in collection of krypton even on accident in liquidizing distillation tower. Constitution: Exhaust gas flows through active carbon adsorption tower where short half-life rare gas in exhaust gas is separated by adsorption, then through heat exchanger, then continuous distillation tower where krypton 85 is separated, then through batch distillation tower where krypton 85 is condensed, and then flows into storing cylinder. On accident in liquidizing distillation tower, at the first period exhaust gas flows through series connected active carbon adsorption tower, krypton 85 adsorbed in adsorption tower being transferred to cooling type adsorption tower, at the next period exhaust gas flows through tower, krypton 85 adsorbed in adsorption tower being transferred to tower. (M. K.)

  17. The effects of inlet temperature and turbulence characteristics on the flow development inside a gas turbine exhaust diffuser

    Science.gov (United States)

    Bomela, Christian Loangola

    The overall industrial gas turbine efficiency is known to be influenced by the pressure recovery in the exhaust system. The design and, subsequently, the performance of an industrial gas turbine exhaust diffuser largely depend on its inflow conditions dictated by the turbine last stage exit flow state and the restraints of the diffuser internal geometry. Recent advances in Computational Fluid Dynamics (CFD) tools and the availability of computer hardware at an affordable cost made the virtual tool a very attractive one for the analysis of fluid flow through devices like a diffuser. In this backdrop, CFD analyses of a typical industrial gas turbine hybrid exhaust diffuser, consisting of an annular diffuser followed by a conical portion, have been carried out with the purpose of improving the performance of these thermal devices using an open-source CFD code "OpenFOAM". The first phase in the research involved the validation of the CFD approach using OpenFOAM by comparing CFD results against published benchmark experimental data. The numerical results closely captured the flow reversal and the separated boundary layer at the shroud wall where a steep velocity gradient has been observed. The standard k --epsilon turbulence model slightly over-predicted the mean velocity profile in the casing boundary layer while slightly under-predicted it in the reversed flow region. A reliable prediction of flow characteristics in this region is very important as the presence of the annular diffuser inclined wall has the most dominant effect on the downstream flow development. The core flow region and the presence of the hub wall have only a minor influence as reported by earlier experimental studies. Additional simulations were carried out in the second phase to test the veracity of other turbulence models; these include RNG k--epsilon, the SST k--o, and the Spalart-Allmaras turbulence models. It was found that a high resolution case with 47.5 million cells using the SST k--o turbulence model produced a mean flow velocity profile at the middle of the annular diffuser portion that had the best overall match with the experiment. The RNG k --epsilon, however, better predicted the diffuser performance along the exhaust diffuser length by means of the pressure recovery coefficient. These results were obtained using uniform inflow conditions and steady-state simulations. As such, the last phase of our investigations involved varying the inflow parameters like the turbulence intensity, the inlet flow temperature, and the flow angularity, which constitute important characteristics of the turbine blade wake, to investigate their impact on the diffuser design and performance. These isothermal CFD simulations revealed that by changing the flow temperature from 15 to 427C, the pressure recovery coefficient significantly increased. However, it has been shown that the increase of temperature had no effects on the size of the reversed flow region and the thickness of the separated casing boundary layer, although the flow appears to be more turbulent. Furthermore, it has been established that an optimum turbulence intensity of about 4% produced comparable diffuser performance as the experiment. We also found that a velocity angle of about 2.5 at the last turbine stage will ensure a better exhaust diffuser performance.

  18. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  19. Development of efficiency-enhanced cogeneration system utilizing high-temperature exhaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases

    Energy Technology Data Exchange (ETDEWEB)

    Bannai, Masaaki [Distributed Energy Systems Department, Energy Solution Service Division, Hitachi, Ltd., Akihabara Daibiru Building, 18-13, Sotokanda 1-chome, Chiyoda-ku, Tokyo 101-8608 (Japan); Houkabe, Akira; Furukawa, Masahiko [Industrial Technology Division, R and D Control Headquarters, Fuji Photo Film Co., Ltd., 12-1, Ohgi-cho 2-chome, Odawara-shi, Kanagawa Pref. 250-0001 (Japan); Kashiwagi, Takao; Akisawa, Atsushi [Department of Biosystem Applied Science Education, Graduate School in Tokyo University of Agriculture and Technology, 24-16, Nakamachi 1-chome, Koganei-shi, Tokyo 184-8588 (Japan); Yoshida, Takuya [Plant Analysis Group, Coal Science Project, Power and Industrial Systems R and D Laboratory, Power Systems, Hitachi, Ltd., 832-2, Horiguchi, Hitachinaka-shi, Ibaraki Pref. 312-8507 (Japan); Yamada, Hiroyuki [Gasturbine Group, Power Source Engineering Department, Energy Solution Division, Hitachi Engineering and Service Co., Ltd., 15-1, Higashiohnuma-cho 1-chome, Hitachi-shi, Ibaraki Pref. 316-0023 (Japan)

    2006-09-15

    We have developed a gas-turbine cogeneration system that makes effective use of the calorific value of the volatile organic compound (VOC) gases exhausted during production processes at a manufacturing plant. The system utilizes the high-temperature exhaust-gas from the regenerative thermal oxidizer (RTO) which is used for incinerating VOC gases. The high-temperature exhaust gas is employed to resuperheat the steam injected into the gas turbine. The steam-injection temperature raised in this way increases the heat input, resulting in the improved efficiency of the gas-turbine. Based on the actual operation of the system, we obtained the following results: Operation with the steam-injection temperature at 300{sup o}C (45{sup o}C resuperheated from 255{sup o}C) increased the efficiency of the gas turbine by 0.7%. The system can enhance the efficiency by 1.3% when the steam-injection temperature is elevated to 340{sup o}C (85{sup o}C resuperheated). In this case, up to 6.6 million yen of the total energy cost and 400 tons of carbon dioxide (CO{sub 2}) emissions can be reduced annually. A gas-turbine cogeneration and RTO system can reduce energy consumption by 23% and CO{sub 2} emission by 30.1% at the plant. (author)

  20. Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures

    International Nuclear Information System (INIS)

    Design optimization of a (heat recovery steam generator) HRSGis essential due to its direct impact on large power generation combined cycles. This study is aimed at giving a thermodynamic comparison between the optimums of three configurations of HRSG operating at exhaust gas temperature (TOT) from 350C to 650C. The optimization results, using PSO (Particle Swarm Optimization) method, show that adding another pressure level allows achieving a higher pressure at the inlet of high pressure turbine, producing more steam quantities, destroying less exergy and finally producing more specific work independently of TOT. For a given value of 600C representative of TOT of recent gas turbines, an addition of a pressure level is shown to increase the specific work of about 17kJ/kg, representing a benefit of about 10% for the steam cycle, whereas a third pressure level results in 8kJ/kg increase in the specific work, corresponding to 4% in the steam cycle. - Highlights: Three types of HRSG are optimized and compared between them for several TOT values. Adding a pressure level leads to thermodynamic performance enhancement whatever TOT. Adding a pressure level permits reaching higher optimal pressures whatever TOT value. Adding a pressure level permits producing more steam quantities. Superheater effectiveness tends to its highest possible value except for high TOTs

  1. Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Weikl, Markus C.; Beyrau, Frank; Leipertz, Alfred

    2006-05-01

    Pure rotational coherent anti-Stokes Raman spectroscopy was used for the simultaneous determination of temperature and exhaust-gas recirculation in a homogeneous charge-compression ignition engine. Measurements were performed in a production-line four-cylinder gasoline engine operated with standard gasoline fuel through small optical line-of-sight accesses. The homogenization process of fresh intake air with recirculated exhaust gas was observed during the compression stroke, and the effect of charge temperature on combustion timing is shown. Single-pulse coherent anti-Stokes Raman spectroscopy spectra could not only be taken in the compression stroke but also during the gas-exchange cycle and after combustion. Consequently, the used method has been shown to be suitable for the investigation of two of the key parameters for self-ignition, namely temperature and charge composition.

  2. Development of high temperature SiC based field effect sensors for internal combustion engine exhaust gas monitoring

    OpenAIRE

    Wingbrant, Helena

    2003-01-01

    While the car fleet becomes increasingly larger it is important to lower the amounts of pollutants from each individual diesel or gasoline engine to almost zero levels. The pollutants from these engines predominantly originate from high NOx emissions and particulates, in the case when diesel is utilized, and emissions at cold start from gasoline engines. One way of treating the high NOx levels is to introduce ammonia in the diesel exhausts and let it react with the NOx to form nitrogen gas an...

  3. Effects of exhaust temperature on helicopter infrared signature

    International Nuclear Information System (INIS)

    The effects of exhaust temperature on infrared signature (in 35 ?m band) for a helicopter equipped with integrative infrared suppressor were numerically investigated. The internal flow of exhaust gas and the external downwash flow, as well as the mixing between exhaust gas and downwash were simulated by CFD software to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forwardbackward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that for a helicopter with its integrative infrared suppressor embedded inside its rear airframe, the exhaust temperature has significant influence on the plume radiation characteristics, while the helicopter skin radiation intensity has little impact. When the exhaust temperature is raised from 900 K to 1200 K, the plume radiation intensity in 35 ?m band is increased by about 100%, while the skin radiation intensity is increased by only about 5%. In general, the effects of exhaust temperature on helicopter infrared radiation intensity are mainly concentrated on plume, especially obvious for a lower skin emissivity case. -- Highlights: ? The effect of exhaust temperature on infrared signature for a helicopter is numerically investigated. ? The impact of exhaust temperature on helicopter skin temperature is revealed. ? The impact of exhaust temperature on plume radiation characteristics is revealed. ? The impact of exhaust temperature on helicopter skin radiation is revealed. ? The impact of exhaust temperature on helicopter's total infrared radiation intensity is revealed

  4. Emission Characteristics for Single Cylinder DI Diesel Engine with EGR (Exhaust Gas Recirculation) System

    OpenAIRE

    Pratik G. Sapre

    2014-01-01

    This paper includes experimental investigations of various exhaust gas recirculation rates on engine emission characteristics like NOx, HC, CO, CO2, exhaust gas temperature by AVL gas meter. By passing exhaust gas from venturi meter and regulating it with EGR valve so as to find out its effect on critical NOx emission and other harmful HC,CO & NOx emission parameter. So to reduce such harmful gases exhaust gas recirculation is economical and effective method to control emissio...

  5. 40 CFR 1065.127 - Exhaust gas recirculation.

    Science.gov (United States)

    2010-07-01

    ...2010-07-01 false Exhaust gas recirculation. 1065.127 Section...AGENCY (CONTINUED) AIR POLLUTION CONTROLS...Specifications 1065.127 Exhaust gas recirculation. Use the exhaust gas recirculation (EGR) system...

  6. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  7. Exhaust gas sensor based on tin dioxide for automotive application

    OpenAIRE

    Valleron, Arthur; Pijolat, Christophe; Viricelle, Jean-Paul; Breuil, Philippe; Marchand, Jean-Claude; Ott, Sbastien

    2009-01-01

    The aim of this paper is to investigate the potentialities of gas sensor based on semi-conductor for exhaust gas automotive application. The sensing element is a tin dioxide layer with gold electrodes. This gas sensor is able to detect both reducing and oxidizing gases in an exhaust pipe with varying selectivity depending on the temperature in the range 250 C-600 C. At low temperature 350-400 C, the sensor detects nitrogen dioxide while it is more sensitive to carbon monoxide at temperatur...

  8. Method of controlling temperature of a thermoelectric generator in an exhaust system

    Science.gov (United States)

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  9. Low exhaust temperature electrically heated particulate matter filter system

    Science.gov (United States)

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI); Bhatia, Garima (Bangalore, IN)

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  10. Investigation of exhaust gas temperature distribution within a furnace of a stoker fired boiler as a function of its operating parameters

    Science.gov (United States)

    Krawczyk, Piotr; Badyda, Krzysztof; Szczygie?, Jacek; M?ynarz, Szczepan

    2015-09-01

    Distribution of the exhaust gas temperature within the furnace of a grate boiler greatly depends on its operating parameters such as output. It has a considerably different character than temperature distributions in other types of boilers (with pulverised or fluidised bed), as it varies considerably across the chamber. Results presented in this paper have been obtained through research of a grate-fired hot water boiler with a nominal rating of some 30 MW. Measurements have been taken by introducing temperature sensors into prearranged openings placed in the boiler side walls. Investigation has been carried out for different output levels. Tests involved thermocouples in ceramic coating and aspirated thermocouples. The latter were used to eliminate influence of radiative heat transfer on measured results. Values obtained with both methods have been cross-checked.

  11. Investigation of exhaust gas temperature distribution within a furnace of a stoker fired boiler as a function of its operating parameters

    Directory of Open Access Journals (Sweden)

    Krawczyk Piotr

    2015-09-01

    Full Text Available Distribution of the exhaust gas temperature within the furnace of a grate boiler greatly depends on its operating parameters such as output. It has a considerably different character than temperature distributions in other types of boilers (with pulverised or fluidised bed, as it varies considerably across the chamber. Results presented in this paper have been obtained through research of a grate-fired hot water boiler with a nominal rating of some 30 MW. Measurements have been taken by introducing temperature sensors into prearranged openings placed in the boiler side walls. Investigation has been carried out for different output levels. Tests involved thermocouples in ceramic coating and aspirated thermocouples. The latter were used to eliminate influence of radiative heat transfer on measured results. Values obtained with both methods have been cross-checked.

  12. Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using an exhaust gas recirculation (EGR) system

    Science.gov (United States)

    Sekine, Yasushi; Furukawa, Naotsugu; Matsukata, Masahiko; Kikuchi, Eiichi

    2011-07-01

    Dry reforming of diesel fuel, an endothermic reaction, is an attractive process for on-board hydrogen/syngas production to increase energy efficiency. For operating this dry reforming process in a vehicle, we can use the exhaust gas from an exhaust gas recirculation (EGR) system as a source of carbon dioxide. Catalytic dry reforming of heavy hydrocarbon is a very difficult reaction due to the high accumulation of carbon on the catalyst. Therefore, we attempted to use a non-equilibrium pulsed plasma for the dry reforming of model diesel fuel without a catalyst. We investigated dry reforming of model diesel fuel (n-dodecane) with a low-energy pulsed spark plasma, which is a kind of non-equilibrium plasma at a low temperature of 523 K. Through the reaction, we were able to obtain syngas (hydrogen and carbon monoxide) and a small amount of C2 hydrocarbon without coke formation at a ratio of CO2/Cfuel = 1.5 or higher. The reaction can be conducted at very low temperatures such as 523 K. Therefore, it is anticipated as a novel and effective process for on-board syngas production from diesel fuel using an EGR system.

  13. Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using an exhaust gas recirculation (EGR) system

    International Nuclear Information System (INIS)

    Dry reforming of diesel fuel, an endothermic reaction, is an attractive process for on-board hydrogen/syngas production to increase energy efficiency. For operating this dry reforming process in a vehicle, we can use the exhaust gas from an exhaust gas recirculation (EGR) system as a source of carbon dioxide. Catalytic dry reforming of heavy hydrocarbon is a very difficult reaction due to the high accumulation of carbon on the catalyst. Therefore, we attempted to use a non-equilibrium pulsed plasma for the dry reforming of model diesel fuel without a catalyst. We investigated dry reforming of model diesel fuel (n-dodecane) with a low-energy pulsed spark plasma, which is a kind of non-equilibrium plasma at a low temperature of 523 K. Through the reaction, we were able to obtain syngas (hydrogen and carbon monoxide) and a small amount of C2 hydrocarbon without coke formation at a ratio of CO2/Cfuel = 1.5 or higher. The reaction can be conducted at very low temperatures such as 523 K. Therefore, it is anticipated as a novel and effective process for on-board syngas production from diesel fuel using an EGR system.

  14. High Temperature Resistant Exhaust Valve Spindle

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev

    2014-01-01

    Transport by ship remains the most economical and environmentally friendly mode of transport with a very low weight specific CO2 footprint. Further increase of the fuel efficiency of large ships will results in a higher internal engine temperature. To allow this without compromising the reliability of the engine, new high temperature alloys are required for a specific engine component, the exhaust valve spindle. Two alloys are used for an exhaust valve spindle; one for the bottom of the spindle, and one for the spindle seat. Being placed in the exhaust gas stream, combustion products such as V2O5 and Na2SO4 condense on the spindle, causing hot corrosion. Current industry standards can withstand service temperatures of up to 500C for the spindle seat and 700C for the spindle bottom. This project was tasked with increasing these temperatures 50C each. Literature review as well as an in-situ corrosion test revealed that the most resistant alloy in such an environment is Alloy 657 (Ni-based, 49 wt% Cr, 1.5 wt% Nb). This alloy is suitable for the spindle bottom, but not for the spindle seat, as it is too weak. Thermodynamic calculations suggested that it was possible to modify the chemistry of the current valve seat alloy, Alloy 718 (Ni-based, 19 wt% Cr, 18 wt% Fe, 5.1 wt% Nb, 3 wt% Mo, 1 wt% Ti and 0.6 wt% Al), and thereby to obtain a more hot corrosion resistant alloy. To validate these calculations, 16 Ni-based alloys, containing 40 wt% Cr and Nb, Ta and Ti in varying levels, were produced by experimental laser cladding. Heat treatments proved that these alloys were precipitation hardenable, and that some of them reached high levels of hardness. Based on these results, five Ni-based alloys containing 35-45 wt% Cr and 4-6 wt% Nb were ordered, to narrow down the feasible alloy compositions. During the alloy development work, extensive microstructure quantification was performed, the results of which validated the predictive thermodynamical calculations. The heat treatment results showed that a relation exists between the solution treated microstructure and the mechanical properties. This lead to the design of the alloy Ni40Cr3.5Nb (Ni-based, 3.5 wt% Nb and 0.5 wt% Ti). This alloy is precipitation hardenable to the same level of hardness as Alloy 718, and laboratory testing suggests that it is suitable for application at service temperatures of 550C.

  15. Development of Exhaust Gas Driven Absorption Chiller-Heater

    Science.gov (United States)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Micro gas turbines are expected as engines for the distributed co-generation systems, performing power generation and heat recovery. Waste heat from micro gas turbines are discharged in the form of exhaust gas, and it is simple that exhaust gas is directly supplied to an absorption refrigerator. In this paper, we evaluated various single-double effect absorption cycles for exhaust gas driven absorption refrigerators, and clarified that the difference of performance among these cycles are little. We adopted one of these cycles for the prototype machine, and experimented with it to get the partial load characteristics and the effect of cooling water temperature on the performance. Based on the experimental data, we developed as imulation model of the static characteristics, and studied the direction of improvement.

  16. High speed exhaust gas recirculation valve

    Science.gov (United States)

    Fensom, Rod (Peterborough, GB); Kidder, David J. (Peterborough, GB)

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  17. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jrgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. PMID:26013958

  18. Ion Temperature Anisotropy across Reconnection Exhaust Jets

    Science.gov (United States)

    Hietala, H.; Drake, J. F.; Phan, T. D.; Eastwood, J. P.; McFadden, J. P.

    2014-12-01

    Magnetic reconnection redistributes energy by releasing magnetic energy into plasma kinetic energy - high speed bulk flows, heating, and particle acceleration. In the magnetotail, most of the released energy appears to go into ion heating. However, previous observations and simulations show that this heating is anisotropic with the plasma temperature parallel to the magnetic field generally increasing more than the perpendicular temperature. Simulations and theory indicate that this temperature anisotropy can balance part of the magnetic tension force that accelerates the jet, and may even exceed it leading to firehose instability.Here we report the results of a new study of ion temperature anisotropy in reconnection exhausts generated by anti-parallel reconnection. We have examined ARTEMIS dual-spacecraft observations of long-duration magnetotail exhausts at lunar distances in conjunction with Particle-In-Cell simulations. In particular, we have studied spatial variations in the ion temperature anisotropy across the outflows far away (>100 ion inertial lengths) from the X-line. A consistent pattern is found in both the spacecraft data and the simulations: whilst the total temperature profile across the exhaust is flat, near the exhaust boundaries the parallel temperature dominates. A consequence of this is that firehose threshold is greatly exceeded in a significant fraction of the exhaust. In contrast, the perpendicular temperature dominates at the neutral plane (|BX| < 0.1 B0), indicating that, despite the turbulence and the large distance to the X-line, particles undergo Speiser-like motion (rather than isotropization by scattering). We also analyse the characteristics of the particle distributions leading to these anisotropies at different distances from the mid-plane.

  19. SST-1 Gas feed and Gas Exhaust system

    Science.gov (United States)

    Raval, Dilip C.; Khan, Ziauddin; Thankey, Prashant L.; Dhanani, Kalpesh R.; Pathan, Firozkhan S.; Semwal, Pratibha; George, Siju; Yuvakiran, Paravastu; Manthena, Himabindu; Pradhan, Subrata

    2012-11-01

    SST-1 tokamak is a long pulse tokamak designed for the plasma operation up to 1000 sec duration. Gas feed system and gas exhaust management will play a very crucial role during plasma discharge. During the different type of operations of tokamak like wall conditioning, diverter operation and neutral beam injection, a large amount of gas will be fed into the vacuum chamber at different locations. Also during plasma operations, the gas will be fed both in continues and pulse mode. Gas feed will be carried out mainly using piezo-electric valves controlled by PXI based data acquisition and control system. Such operations will lead to a huge amount gas exhaust by the main system which requires good exhaust facility to searches, great care should be taken in constructing both. Also initial pumping of cryostat and vacuum vessel of SST-1 will release a large amount of gas. Exhausted gases from SST -1 will be Hydrogen, Nitrogen, Mixture gases or some toxic gases. Dedicated exhaust system controlling the different gases are installed. Special treatment of hazardous/explosive gases is done before releasing to the atmosphere. This paper describes design and implementations of the complete gas feed and exhaust system of SST-1.

  20. 40 CFR 89.416 - Raw exhaust gas flow.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw exhaust gas flow. 89.416 Section... Procedures 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...) Measurement of the air flow and the fuel flow by suitable metering systems (for details see SAE J244....

  1. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping... Requirements for Specific Types of Automatic Auxiliary Boilers 63.25-7 Exhaust gas boilers. (a) Construction. An auxiliary exhaust gas boiler must meet the applicable construction requirements of part 52 or...

  2. Integrated exhaust gas recirculation and charge cooling system

    Science.gov (United States)

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  3. Gas sensors based on tin dioxide for exhaust gas application, modeling of response for pure gases and for mixtures

    OpenAIRE

    Viricelle, Jean-Paul; Valleron, Arthur; Pijolat, Christophe; Breuil, Philippe; Ott, Sbastien

    2012-01-01

    This paper concerns tin dioxide gas sensors for automotive exhaust gas application. It consists in elaborating robust sensors on alumina substrate by screen-printing technology. Sensors have been tested on a synthetic gas bench which is able to generate high gas velocity and gases at high temperatures close to real exhaust gas conditions. The responses of the sensors to three gases were modeled, and the classical model of electrical conductivity with one reducing or oxidizing pollutant gas wa...

  4. Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation

    International Nuclear Information System (INIS)

    For diesel engines, low temperature combustion (LTC) with a high level of EGR and late injection becomes attractive because of its potential of simultaneous reduction of nitrogen oxides (NOx) and particulate matter (PM) emissions. However, detailed thermodynamic evaluations including second law analysis of the LTC are few. The current work employed an engine cycle simulation incorporating the second law of thermodynamics to evaluate the energy and exergy distribution of various processes in a low temperature combustion diesel engine. After validation with experimental data at eight operating conditions including four different EGR levels and two different injection timings, the model was used to evaluate the effect of EGR level and injection timing on the first and second law parameters. As EGR was increased, intake temperature and equivalence ratio increased. Results showed that for the case at 0% EGR level with conventional injection timing, about 30% of the fuel exergy was destructed during combustion processes, and as EGR level increased to 45% (intake temperature and equivalence ratio also increased), the combustion destructed exergy decreased to 20% of the fuel exergy. This was largely due to the related combustion temperature increase. For both conventional (?6.5 aTDC) and late (1.5 aTDC) injection timings, the percentage of exergy transfer through flows increases as EGR increases, which is attributed to the retarded ignition by increasing EGR. Other parameters such as energy and exergy transfer due to heat transfer, blow-by, and unburned fuel also were determined as a function of EGR level and injection timing. -- Highlights: ? Exergy destruction during combustion decreased as intake temperature increased. ? Both conventional and late injection timings (LTC cases) were examined. ? For conventional injection timings, the combustion efficiency remains constant as EGR increases. ? For late injections and high EGR, combustion was incomplete. ? Late injection cases had lower percentage of heat transfer exergy.

  5. Technique for radiation treatment of exhaust gas due to combustion

    International Nuclear Information System (INIS)

    As the Japanese unique research in the field of preservation of environment, the technique to remove simultaneously sulphur dioxide and nitrogen oxides in exhaust gas using electron beam irradiation is noteworthy. This research was started by the experiment in the central research laboratory of Ebara Manufacturing Co., Ltd., in which it was found that the sulphur dioxide of initial concentration of 1,000 ppm was almost completely vanished when the exhaust gas of heavy oil combustion in a batch type vessel was irradiated for 9 minutes by electron beam. Based on this experiment, JAERI installed a continuous irradiation equipment with a large accelerator, and has investigated the effect of various parameters such as dose rate, irradiation temperature, total dose and agitation. This resulted in the remarkable finding that nitrogen oxides were also completely removed as well as sulphur dioxide when the exhaust gas containing both sulphur dioxide and nitrogen oxides was irradiated for a few seconds. In this case, if water of about 0.3% is added, removal rate of sulphur dioxide is greatly increased. The research group of University of Tokyo obtained other findings concerning removal rates. Then, after the pilot plant stage in Ebara Manufacturing Co., Ltd. from 1974, the test plant of exhaust gas treatment for a sintering machine, having the capacity of 3,000 Nm3/hr, has been constructed in Yawata Works of Nippon Steel Corp. This is now operating properly. (Wakatsuki, Y.)

  6. Design of a high temperature chemical vapor deposition reactor in which the effect of the condensation of exhaust gas in the outlet is minimized using computational modeling

    Science.gov (United States)

    Yoon, Ji-Young; Geun Kim, Byeong; Nam, Deok-Hui; Yoo, Chang-Hyoung; Lee, Myung-Hyun; Seo, Won-Seon; Shul, Yong-Gun; Lee, Won-Jae; Jeong, Seong-Min

    2016-02-01

    Tetramethylsilane (TMS) was recently proposed as a safe precursor for SiC single crystal growth through high temperature chemical vapor deposition (HTCVD). Because the C content of TMS is much higher than Si, the exhaust gas from the TMS-based HTCVD contains large amounts of C which is condensed in the outlet. Because the condensed C close to the crystal growth front will influence on the thermodynamic equilibrium in the crystal growth, an optimal reactor design was highly required to exclude the effect of the condensed carbon. In this study, we report on a mass/heat transfer analysis using the finite element method (FEM) in an attempt to design an effective reactor that will minimize the effect of carbon condensation in the outlet. By applying the proposed reactor design to actual growth experiments, single 6H-SiC crystals with diameters of 50 mm were successfully grown from a 6H-SiC seed. This result confirms that the proposed reactor design can be used to effectively grow 6H-SiC crystals using TMS-based HTCVD.

  7. Boosting devices with integral features for recirculating exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ko-Jen

    2015-12-22

    According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.

  8. Exhaust gas treatment by electrical discharge techniques

    International Nuclear Information System (INIS)

    Exhaust gases have been treated by two kinds of electrical discharge, surface discharge and DC positive streamer corona, in order to remove NOx. For the former case, the exhaust gas containing 20 ppm and 45 ppm NO, respectively was used. Treatment efficiency depended on a power supply frequency and applied voltage. The highest NO removal rate of 100 % was achieved, however, in a dry mode almost all NO was oxidized into NO2. Using the DC and DC with series gap, the treatment efficiency strongly depended on a corona discharge mode; a desired streamer was ignited in a wire-plate reactor, using wire pre-treatment or series gap, respectively. For DC power supply, the high voltage electrode material was investigated in order to obtain the highest treatment efficiency. Among the studied materials, tungsten turned out be the best for igniting the most stable streamer mode according to tungsten trioxide identified on the wire surface. (Authors)

  9. PIXE analysis of exhaust gas from diesel engine

    International Nuclear Information System (INIS)

    The variation of elemental concentrations in exhaust gas of a Diesel engine with the outputs was studied. Particulates in high temperature gas were collected on silica fiber filters and analyzed by PIXE method. Concentrations of S and V were nearly proportional to particulate masses and fuel consumption rates per discharging rates of exhaust gas respectively. While, concentrations of Fe and Mn were markedly increased together with engine outputs, and Mn/Fe ratios were nearly equal to those of the material of piston rings and the cylinder liner. Concentrations of the elements contained in lubricant, such as Ca and Mo, were also conspicuously increased with the outputs. It was shown that PIXE analysis is a useful tool for engine diagonostics owing to its high sensitive multi-elemental availability without chemical treatments. (author)

  10. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  11. Temperature controlled exhaust heat thermoelectric generation

    OpenAIRE

    Brito, F. P.; Martins, Jorge; Gon??alves, L. M.; Sousa, R.

    2012-01-01

    The amount of energy wasted through the exhaust of an Internal Combustion Engine (ICE) vehicle is roughly the same as the mechanical power output of the engine. The high temperature of these gases (up to 1000??C) makes them intrinsically apt for energy recovery. The gains in efficiency for the vehicle could be relevant, even if a small percentage of this waste energy could be regenerated into electric power and used to charge the battery pack of a Hybrid or Extended Range Electric Vehic...

  12. Characterization of Jt-60u exhaust gas during experimental operation

    International Nuclear Information System (INIS)

    Characterization of Tokamak exhaust gas, gas species and their concentrations, is important for the design of the tritium fuel processing system. The exhaust gas from Jt-60u during the experimental campaign has been investigated with micro gas chromatography (M GC). Gas species, such as hydrogen isotopes, CH4, C2H2+C2H4, C2H6 and CO2, in the exhaust gas from a plasma discharge could be identified successfully. In this campaign, the total ratio of hydrogen isotopes and impurity species in exhaust gas was estimated to be 39 to 1. From the comparison between both amount of gas species and some plasma parameters, there was a tendency observed indicating that the amount of hydrogen isotopes and carbon compounds increased with maximum electron density. This relation suggests that the amount of hydrogen isotopes and carbon compounds in the exhaust gas is increases with the extension of plasma performance

  13. Exhaust gas emissions of a vortex breakdown stabilized combustor

    Science.gov (United States)

    Yetter, R. A.; Gouldin, F. C.

    1976-01-01

    Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.

  14. Gas exhaustion system of reactor container

    International Nuclear Information System (INIS)

    In a BWR type reactor, a connection pipe is disposed from a dry well and a wet well to a main steam pipeline, and a reactor container isolation valve is disposed to the pipeline. Excess pressure in the reactor container is released to a turbine condensator, to condensate steams in the condensator and remove water soluble radioactive materials. In addition, radioactive materials are reduced due to decay by temporarily storage in the turbine condensator. Radioactive materials in an incondensible gas are sufficiently removed by a gaseous waste processing system and the gas is released to the atmosphere through a main exhaustion tower. Pressure in the container is reduced by releasing the excess pressure to the turbine condensator, which prevents failure due to excessive pressure. (N.H.)

  15. Study on exhaust gas treatment by electron beam irradiation, 2

    International Nuclear Information System (INIS)

    It was already shown in principle and by experiment that exhaust gas from the combustion of heavy oil can be desulfurized by electron beam irradiation with a batch type apparatus. The study on a continuous irradiation system was performed this time. The reaction chamber is a stainless steel box type of 500 x 50 x 500(h) mm. The electron accelerator used is Cockcroft-Walton type. In the present study, wide variety of experiments have been carried out on the effects of various conditions on reaction, such as dose-rate (1 x 105 to 6 x 106 rad/s), electron energy (1 to 3 MeV), reaction temperature (75 to 2450C), staying time of exhaust gas in the chamber (0.1 to 9 sec) and the composition of the gas (SO2:180 to 930 ppm, NOx:80 to 1300 ppm), and others. The results indicate that exhaust gas can be treated continuously. Nitrogen oxides were removed by almost 100% at 2 Mrad, and sulfur dioxide was removed by 80% at 4 Mrad. Remaining future problems are scaling up to practical plants, disposal or application of a large amount of solids produced by this process, development of a low cost, high output accelerator, and advanced examination on the economy. (Wakatsuki, Y.)

  16. Investigation of Diesel Exhaust Gas Toxicity on Transient Modes

    Directory of Open Access Journals (Sweden)

    Ivashchenko Nikolay Antonovich

    2014-12-01

    Full Text Available Currently, the generation of heat engines and their control systems are based on ecological indices such as the toxicity of the fulfilled gases. When designing motors, software packages are widely used. These software packages provide the ability to calculate the workflow of engine at steady-state conditions. The definition of indicators emissions is a difficult task. The distribution statistics of the modes shows that the engines of the transport units work on unsteady modes most of the time. The calculation of toxicity indicators is even less developed. In this article experimental and numeric study of the diesel engine with turbocharger exhaust toxicity was considered. As a result of the experimental study, which was conducted with single-cylinder diesel engine compartment simulated work on the transient state, working process characteristics of a diesel engine were obtained, including carbon and nitrogen oxides concentrations. Functional dependencies of concentrations of toxic exhaust components, such as carbon and nitrogen oxides, on excess air ratio and exhaust temperature were obtained. Diesel engine transient processes were simulated using developed mathematical dynamic model of combined engine in locomotive power plant with a change in control signal (position of locomotive drivers controller and external influence signal (resistance moment. The analysis of exhaust gas toxicity was conducted.

  17. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; gasoline-fueled vehicles. 86.209-94 Section 86.209-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures 86.209-94 Exhaust...

  18. 40 CFR 1065.127 - Exhaust gas recirculation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications 1065.127 Exhaust gas recirculation. Use...

  19. 30 CFR 36.26 - Composition of exhaust gas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Composition of exhaust gas. 36.26 Section 36.26... EQUIPMENT Construction and Design Requirements 36.26 Composition of exhaust gas. (a) Preliminary engine... immediately at full load and speed. The preliminary liquid-fuel-injection rate shall be such that the...

  20. 30 CFR 7.102 - Exhaust gas cooling efficiency test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exhaust gas cooling efficiency test. 7.102 Section 7.102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING....102 Exhaust gas cooling efficiency test. (a) Test procedures. (1) Follow the procedures specified...

  1. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    Science.gov (United States)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ?IC = 1-(1/r)(? - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio ? = cP/cV. Typically r = 8, ? = 1.4, and ?IC = 56%. Unlike the Carnot Cycle where ?Carnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ?IC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, ?, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-?IC) ?Carnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ?TEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ?WH = (1-?IC) ?Carnot ?TEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ?TEG values approaching 15% giving a potential total waste heat conversion efficiency of ?WH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  2. Boosting devices with integral features for recirculating exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ko -Jen

    2015-09-15

    According to one embodiment of the invention, a compressor housing includes a compressor inlet in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet configured to provide a first air flow to the compressor wheel and a compressor outlet in fluid communication with the compressor volute, the compressor outlet configured to direct a compressed gas to an intake manifold. The compressor housing further includes an exhaust gas recirculation inlet port in fluid communication with the compressor volute, the exhaust gas recirculation inlet port being configured to combine an exhaust gas flow with the air flow to the compressor wheel.

  3. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  4. Exhaust gas recirculation for advanced diesel combustion cycles

    International Nuclear Information System (INIS)

    Highlights: Analysis of the incremental (cycle-by-cycle) build-up of EGR. Proposed one-step equations for transient/steady-state gas concentration estimation. Defined an in-cylinder excess-air ratio to account for the recycled oxygen with EGR. Demonstrated the use of intake oxygen as a reliable measure of EGR effectiveness. Demonstrated the impact of engine load and intake pressure on EGR effectiveness. - Abstract: Modern diesel engines tend to utilize significantly large quantities of exhaust gas recirculation (EGR) and high intake pressures across the engine load range to meet NOx targets. At such high EGR rates, the combustion process and exhaust emissions tend to exhibit a marked sensitivity to small changes in the EGR quantity, resulting in unintended deviations from the desired engine performance characteristics (energy efficiency, emissions, stability). An accurate estimation of EGR and its effect on the intake dilution are, therefore, necessary to enable its application during transient engine operation or unstable combustion regimes. In this research, a detailed analysis that includes estimation of the transient (cycle-by-cycle) build-up of EGR and the time (engine cycles) required to reach the steady-state EGR operation has been carried out. One-step global equations to calculate the transient and steady-state gas concentrations in the intake and exhaust are proposed. The effects of engine load and intake pressure on EGR have been examined and explained in terms of intake charge dilution and in-cylinder excess-air ratio. The EGR analysis is validated against a wide range of empirical data that include low temperature combustion cycles, intake pressure and load sweeps. This research intends to not only formulate a clear understanding of EGR application for advanced diesel combustion but also to set forth guidelines for transient analysis of EGR

  5. An approach for exhaust gas energy recovery of internal combustion engine: Steam-assisted turbocharging

    International Nuclear Information System (INIS)

    Highlights: The calculation method for SAT engine was developed and introduced. SAT can effectively promote the low-speed performances of IC engine. At 1500 r/min, intake pressure reaches target value and torque is increased by 25%. The thermal efficiency of SAT engine only has a slight increase. - Abstract: An approach for IC engine exhaust gas energy recovery, named as steam-assisted turbocharging (SAT), is developed to assist the exhaust turbocharger. A steam generating plant is coupled to the exhaust turbocharged engines exhaust pipe, which uses the high-temperature exhaust gas to generate steam. The steam is injected into turbine inlet and used as the supplementary working medium for turbine. By this means, turbine output power and then boosting pressure can be promoted due to the increase of turbine working medium. To reveal the advantages and energy saving potentials of SAT, this concept was applied to an exhaust turbocharging engine, and a parameter analysis was carried out. Research results show that, SAT can effectively promote the low-speed performances of IC engine, and make the peak torque shift to low-speed area. At 1500 r/min, the intake gas pressure can reach the desired value and the torque can be increased by 25.0% over the exhaust turbocharging engine, while the pumping mean effective pressure (PMEP) and thermal efficiency only have a slight increase. At 1000 r/min, the improvement of IC engine performances is very limited due to the low exhaust gas energy

  6. Automotive exhaust gas flow control for an ammoniawater absorption refrigeration system

    International Nuclear Information System (INIS)

    A considerable part of the energy generated by an automotive internal combustion engine is wasted as heat in the exhaust system. This wasted heat could be recovered and applied to power auxiliary systems in a vehicle, contributing to its overall energy efficiency. In the present work, the experimental analysis of an absorption refrigeration system was performed. The exhaust system of an automotive internal combustion engine was connected to the generator element of an absorption refrigeration system. The performance of the absorption refrigerator was evaluated as a function of the supplied heat. The use of a control strategy for the engine exhaust gas mass flow rate was implemented to optimize the system. Exhaust gas flow was controlled by step-motor actuated valves commanded by a microcontroller in which a proportional-integral control scheme was implemented. Information such as engine torque, speed, key temperatures in the absorption cycle, as well as internal temperatures of the refrigerator was measured in a transient regime. The results indicated that the refrigeration system exhibited better performance when the amount of input heat is controlled based on the temperature of the absorption cycle generator. It was possible to conclude that, by dynamically controlling the amount of input heat, the utilisation range of the absorption refrigeration system powered by exhaust gas heat could be expanded in order to incorporate high engine speed operating conditions. - Highlights: An absorption refrigerator was driven by automotive exhaust gas heat. A system for controlling the refrigeration system heat input was developed. Excessive exhaust gas heat leads to ineffective operation of the refrigerator. Control of refrigerator's generator temperature led to better performance. The use of exhaust gas was possible for high engine speeds

  7. IC ENGINE SUPERCHARGING AND EXHAUST GAS RECIRCULATION USING JET COMPRESSOR

    OpenAIRE

    Adhimoulame Kalaisselvane; Natarajan Alagumurthy; Krishnaraj Palaniradja; G Selvaraj Gunasegarane

    2010-01-01

    Supercharging is a process which is used to improve the performance of an engine by increasing the specific power output whereas exhaust gas recirculation reduces the NOx produced by engine because of supercharging. In a conventional engine, supercharger functions as a compressor for the forced induction of the charge taking mechanical power from the engine crankshaft. In this study, supercharging is achieved using a jet compressor. In the jet compressor, the exhaust gas is used as the motive...

  8. Characterization of Jt-60u exhaust gas during experimental operation

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)]. E-mail: isobe.kanetsugu@jaea.go.jp; Nakamura, H. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Kaminaga, A. [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 319-0193 (Japan); Tsuzuki, K. [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 319-0193 (Japan); Higashijima, S. [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 319-0193 (Japan); Nishi, M. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Kobayashi, Y. [Kyoto University, Uji-si, Kyoto-fu 611-0011 (Japan); Konishi, S. [Kyoto University, Uji-si, Kyoto-fu 611-0011 (Japan)

    2006-02-15

    Characterization of Tokamak exhaust gas, gas species and their concentrations, is important for the design of the tritium fuel processing system. The exhaust gas from Jt-60u during the experimental campaign has been investigated with micro gas chromatography (M GC). Gas species, such as hydrogen isotopes, CH{sub 4}, C{sub 2}H{sub 2}+C{sub 2}H{sub 4}, C{sub 2}H{sub 6} and CO{sub 2}, in the exhaust gas from a plasma discharge could be identified successfully. In this campaign, the total ratio of hydrogen isotopes and impurity species in exhaust gas was estimated to be 39 to 1. From the comparison between both amount of gas species and some plasma parameters, there was a tendency observed indicating that the amount of hydrogen isotopes and carbon compounds increased with maximum electron density. This relation suggests that the amount of hydrogen isotopes and carbon compounds in the exhaust gas is increases with the extension of plasma performance.

  9. Remote sensing of temperature and concentration profiles of a gas jet by coupling infrared emission spectroscopy and LIDAR for characterization of aircraft engine exhaust

    Science.gov (United States)

    Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Herv, P.

    2015-05-01

    Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.

  10. Method for controlling exhaust gas heat recovery systems in vehicles

    Science.gov (United States)

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  11. Simulation of exhaust gas heat recovery from a spray dryer

    International Nuclear Information System (INIS)

    This study explored various alternatives in improving the energy utilization of spray drying process through the exhaust gas heat recovery. Extensible and user-friendly simulation code was written in Visual Basic for Applications within Microsoft Excel for this purpose. The effects of process parameters were analyzed on the energy efficiency and energy saving in the industrial-scale spray drying system with exhaust gas heat recovery in an air-to-air heat exchanger and in the system with partial recirculation of exhaust air. The spray dryer is equipped with an indirect heater for heating the drying air. The maximum gains of 16% in energy efficiency and 50% in energy saving were obtained for spray drying system equipped with heat exchanger for exhaust air heat recovery. In addition, 34% in energy efficiency and 61% in energy saving for system with recirculation of exhaust air in the present range of process parameters. The high energy efficiency was obtained during drying of large amount of dilute slurry. The energy saving was increased using the large amount of hot drying air. - Highlights: We model industrial-scale spray drying process with the exhaust gas heat recovery. We develop an Excel VBA computer program to simulate spray dryer with heat recovery. We examine effects of process parameters on energy efficiency and energy saving. High energy efficiency is obtained during drying of large amount of dilute slurry. Energy saving is increased using the large amount of hot drying air

  12. 500 CFM portable exhauster temperature and humidity analysis; TOPICAL

    International Nuclear Information System (INIS)

    500 cfm portable exhausters will be utilized on single shell tanks involved in saltwell pumping. This will be done, in part, to remove flammable gases from the tank vapor space. The exhaust filter train, fan, stack, and associated instrumentation and equipment are mounted on a portable skid. The design analysis and basis for the skid system design are documented in reference 1. A pumped drainage collection system is being added to the existing portable exhausters. Additional equipment and instrumentation are also being added to the exhausters, including a vacuum pump cabinet and a generic effluent monitoring system (GEMS). The GEMS will provide sampling and monitoring capabilities. The purpose of this analysis is three fold. First, to determine the maximum saltwell tank vapor space temperature. Second, to determine an allowable exhauster inlet air temperature increase to ensure the humidity is less than 70%. Third, to assess potential adverse temperature effects to the continuous air monitor (CAM) sample head. The results of this analysis will be used to ensure that air stream temperatures in the portable exhausters are increased sufficiently to prevent condensation from forming on either the pre or HEPA filters without adversely effecting the CAM

  13. 40 CFR 86.1311-94 - Exhaust gas analytical system; CVS bag sample.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Exhaust gas analytical system; CVS bag... Exhaust Test Procedures 86.1311-94 Exhaust gas analytical system; CVS bag sample. (a) Schematic drawings. Figure N94-1 is a schematic drawing of the exhaust gas analytical system used for analyzing CVS...

  14. Removing method for iodine in exhaust-gas

    International Nuclear Information System (INIS)

    In a method of processing an exhaust gas containing iodine and/or iodine compounds through a layer of an adsorbent carrying noble metals, the exhaust gas is passed through a pretreatment tower filled with metal oxides at from 60 to 250degC. This can remove most of poisonous materials for the absorbent carrying noble metals such as halogen materials other than iodine or a sulfur compounds, then it is passed through the adsorbent carrying noble metals to remove iodine and/or iodine compounds. With such procedures, a relatively small amount of iodine or iodine compounds coexistent with poisonous materials such as other halogen materials in the exhaust gas can be removed at high removing rate, to extend the service life of the catalyst. Further, cost for iodine removing processing is greatly saved. (T.M.)

  15. Organic Rankine cycle for power recovery of exhaust flue gas

    International Nuclear Information System (INIS)

    To study the effects of different working fluids on the performance of organic Rankine cycle (ORC), three working fluids, a mixture that matches with heat source, a mixture that matches with heat sink and a pure working fluid, are selected in this paper. Thermodynamic models were built in Matlab together with REFPROP, with which, the physical properties of the selected working fluids can be acquired. Heat source of the ORC system is the exhaust flue gas of boiler in a 240MW pulverized coal-fired power plant. Some indicators such as thermal efficiency, inlet temperature of expander, superheat degree, mass flow, volumetric flow, and exergy destruction distribution, as well as the influence of recuperator are studied. The analytical results show that the mixture that matches with heat sink has the greatest efficiency and the mixture that matches with heat source has the lowest superheat degree. The rate of heat exchanged in recuperator to that in evaporator has a maximum value with evaporating pressure. There exists no optimal working fluid for all indicators (thermal efficiency, heat exchanger area, mass flow and volumetric flow etc.). An appropriate working fluid should be chosen by taking both investment cost and power generating benefits into account. The cost-benefit ratio of the proposed ORC plant was evaluated either. - Highlights: Three types of working fluids are selected for ORC using exhaust flue gas. The mixture that matches with heat sink has the greatest efficiency. The mixture that matches with heat source has the lowest superheat degree. There does not exist a working fluid that satisfies all the indicators

  16. Evaluation of the necessity of exhaust gas recirculation employment for a methanol/diesel reactivity controlled compression ignition engine operated at medium loads

    International Nuclear Information System (INIS)

    Highlights: Methanol fraction considerably affected the engine performance. Exhaust gases had little effect on fuel efficiency at a fixed ignition timing. Good performance was obtained without exhaust gases at low initial temperature. The introduction of exhaust gases was essential when initial temperature is high. - Abstract: Three-dimensional computational fluid dynamics simulation was conducted to investigate the improvement of engine performance by managing exhaust gas recirculation rate and methanol fraction in a methanol/diesel reactivity controlled compression ignition engine. By defining fuel efficiency and ringing intensity as the restricted boundaries, the operating ranges of exhaust gas recirculation rate and methanol fraction under various initial temperatures were determined to simultaneously achieve high fuel economy and avoid engine knock. The results indicated that the fuel efficiency and ringing intensity were dominantly affected by the combustion phasing, and they was nearly insensitive to the variations of exhaust gas recirculation rate and initial temperature at a constant combustion phasing. The necessity of exhaust gas recirculation employment at medium loads was dependent on the level of initial temperature. When initial temperature was less than the critical value (380 K in this study), optimal engine performance could be achieved by only adopting high methanol fraction without introducing exhaust gas recirculation. Once initial temperature was beyond the critical value, exhaust gas recirculation was imperative to avoid excessive ringing intensity. Through simultaneously optimizing methanol fraction and exhaust gas recirculation rate, the combined strategy exhibited more advantages in fuel efficiency, nitrogen oxides, and ringing intensity under a wide range of initial temperature

  17. Characteristics of radial inward turbines for exhaust gas turbochargers under unsteady flow conditions. Unsteady turbine performance by high temperature working gas; Kakyuki kudoyo radial haiki turbine no hiteijoryu tokusei ni kansuru kenkyu. Koon sado gas ni yoru turbine hiteijoryu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, K.; Okamoto, Y.; Tashiro, S. [Tokyo Metropolitan Institute of Technology, Tokyo (Japan); Yoshiki, H. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1999-07-25

    This paper describes some important results obtained through experiments on a small inward radial gas turbine driven by high temperature pulsating flows. The temperature ranges from atmospheric temperature to 800 K. The waveforms of pulsation were nearly sinusoidal and had various pressure amplitude but fixed frequency (50 Hz). A newly designed reduction device, which consists of planetary gears, helped the turbine to work as nearly as in realistic circumstances. Main results are as follows. Even under the high temperature conditions, the turbine characteristics, such as the mass flow rate and the power output, are the same as those under the low temperature pulsating flow conditions as far as the estimations are performed by Using ordinary corrected values taking the temperature into consideration. As to the effect of pulsation, the more the amplitude of pressure increase, the less the mass flow rate through the turbine became at the same expansion ratio. Adding these results, the windage states characteristics of the turbine were made clear through experiments. (author)

  18. Emission Characteristics for Single Cylinder DI Diesel Engine with EGR (Exhaust Gas Recirculation System

    Directory of Open Access Journals (Sweden)

    Pratik G. Sapre

    2014-09-01

    Full Text Available This paper includes experimental investigations of various exhaust gas recirculation rates on engine emission characteristics like NOx, HC, CO, CO2, exhaust gas temperature by AVL gas meter. By passing exhaust gas from venturi meter and regulating it with EGR valve so as to find out its effect on critical NOx emission and other harmful HC,CO & NOx emission parameter. So to reduce such harmful gases exhaust gas recirculation is economical and effective method to control emission. We cant reduced it 100% but up to little bit extent we can reduce it from CI as well as in SI type of CI engine. Some external coupling technology like EGR of cold type installed with turbo intercooler, hydrogen, oxygen enriched air to displace fresh intake air volume and so reduced amount of oxygen in combustion chamber to control peak temperature of cylinder. in this paper we have also look toward some coal trapping method installed with dampener cause to break bond between NO at high temperature.

  19. A method for removal of CO from exhaust gas using pulsed corona discharge.

    Science.gov (United States)

    Li, X; Yang, L; Lei, Y; Wang, J; Lu, Y

    2000-10-01

    An experimental study of the oxidation of CO in exhaust gas from a motorcycle has been carried out using plasma chemical reactions in a pulsed corona discharge. In the process, some main parameters, such as the initial CO concentration, amplitude and frequency of pulses, residence time, reactor volume, and relative humidity (RH), as well as their effects on CO removal characteristics, were investigated. O3, which is beneficial to reducing CO, was produced during CO removal. When the exhaust gas was at ambient temperature, more than 80% CO removal efficiency was realized at an initial concentration of 288 ppm in a suitable range of the parameters. PMID:11288300

  20. 40 CFR 86.1511 - Exhaust gas analysis system.

    Science.gov (United States)

    2010-07-01

    ... following specifications: (1) The analyzer used shall conform to the accuracy provisions of 40 CFR part 1065... flow. (b) The inclusion of a raw CO2 analyzer as specified in 40 CFR part 1065 is required in order to... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Exhaust gas analysis system....

  1. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Exhaust gas analytical system; CVS... KILOWATTS Gaseous Exhaust Test Procedures 90.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4 in Appendix B of this subpart is a schematic drawing of the exhaust...

  2. Estimating IC engine exhaust gas lambda and oxygen from the response of a universal exhaust gas oxygen sensor

    International Nuclear Information System (INIS)

    Universal exhaust gas oxygen sensors (UEGOs) are in widespread use in internal combustion engines where they are used to measure lambda (the non-dimensional airfuel ratio) and oxygen concentration (XO2). The sensors are used on production engines and for research and development. In a previous paper, a model of the UEGO sensor was presented, based on a solution of the StefanMaxwell equations for an axisymmetric geometry, and it was shown that for a known gas composition, predictions of the sensor response agreed well with experiment. In the present paper, the more practical problem is addressed: how well can such a model predict ? and XO2 based on the sensor response? For IC engine applications, a chemistry model is required in order to predict ?, and such a model is also desirable for an accurate prediction of XO2. A fast (matrix exponential) method of solving the StefanMaxwell equations is also introduced, which offers the possibility of a near real-time computation of ? and XO2, with application, for example, to bench instruments. Extensive results are presented showing how the interpretation of the UEGO response may be compromised by uncertainties. These uncertainties may relate not only to the sensor itself, such as temperature, pressure and mean pore diameter, but also the chemistry model. (paper)

  3. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of strutlets to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  4. Exhaust gas treatment in testing nuclear rocket engines

    International Nuclear Information System (INIS)

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment

  5. Study of recycling exhaust gas energy of hybrid pneumatic power system with CFD

    International Nuclear Information System (INIS)

    A hybrid pneumatic power system (HPPS) is integrated by an internal combustion engine (ICE), a high efficiency turbine, an air compressor and an energy merger pipe, which can not only recycle and store exhaust gas energy but also convert it into useful mechanical energy. Moreover, it can make the ICE operate in its optimal state of maximum efficiency; and thus, it can be considered an effective solution to improve greatly the exhaust emissions and increase the overall energy efficiency of the HPPS. However, in this system, the flow energy merger of both high pressure compressed air flow and high temperature exhaust gas flow of the ICE greatly depends on the merging capability of the energy merger pipe. If the compressed air pressure (Pair) at the air inlet is too high, smooth transmission and mixture of the exhaust gas flow are prevented, which will interfere with the operation condition of the ICE. This shortcoming is mostly omitted in the previous studies. The purpose of this paper is to study the effect of the level of Pair and the contraction of cross-section area (CSA) at the merging position on the flow energy merger and determine their optimum adjustments for a better merging process by using computation fluid dynamics (CFD). In addition, the CFD model was validated on the basis of the experimental data, including the temperature and static pressure of the merger flow at the outlet of the energy merger pipe. It was found that the simulation results were in good agreement with the experimental data. The simulation results show that exhaust gas recycling efficiency and merger flow energy are significantly dependent on the optimum adjustment of the CSA for changes in Pair. Under these optimum adjustments, the exhaust gas recycling efficiency can reach about 83%. These results will be valuable bases to research and design the energy merger pipe of the HPPS.

  6. High Temperature Resistant Exhaust Valve Spindle

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev

    O5 and Na2SO4 condense on the spindle, causing hot corrosion. Current industry standards can withstand service temperatures of up to 500C for the spindle seat and 700C for the spindle bottom. This project was tasked with increasing these temperatures 50C each. Literature review as well as an in......-situ corrosion test revealed that the most resistant alloy in such an environment is Alloy 657 (Ni-based, 49 wt% Cr, 1.5 wt% Nb). This alloy is suitable for the spindle bottom, but not for the spindle seat, as it is too weak. Thermodynamic calculations suggested that it was possible to modify the chemistry of...... the current valve seat alloy, Alloy 718 (Ni-based, 19 wt% Cr, 18 wt% Fe, 5.1 wt% Nb, 3 wt% Mo, 1 wt% Ti and 0.6 wt% Al), and thereby to obtain a more hot corrosion resistant alloy. To validate these calculations, 16 Ni-based alloys, containing 40 wt% Cr and Nb, Ta and Ti in varying levels, were...

  7. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  8. High exhaust temperature, zoned, electrically-heated particulate matter filter

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  9. 75 FR 82040 - Notice of Public Meeting on the International Maritime Organization Guidelines for Exhaust Gas...

    Science.gov (United States)

    2010-12-29

    ... Exhaust Gas Cleaning Systems for Marine Engines To Comply with Annex VI to MARPOL 73/78 AGENCY: Coast... meeting on the International Maritime Organization guidelines for exhaust gas cleaning systems for marine...-543 policy letter 09-01 that provide guidance for exhaust gas cleaning systems under MARPOL Annex...

  10. 76 FR 58288 - International Maritime Organization Guidelines for Exhaust Gas Cleaning Systems for Marine...

    Science.gov (United States)

    2011-09-20

    ...guidelines for exhaust gas cleaning systems for...how to evaluate exhaust gas cleaning systems to determine...Southwest-SEU Metro Station. You may submit comments...Organization (IMO) for exhaust gas cleaning systems for...A copy of IMO Marine Environment Protection...

  11. Emission &Performance characteristics of single cylinder CI engine using cold EGR (Exhaust Gas Recirculation.

    Directory of Open Access Journals (Sweden)

    Avinash M.Wankhade

    2014-12-01

    Full Text Available In this paper we studied the effect of exhaust gas recirculation for reduction of harmful gases like NOx,CO2 etc. at a same time effects of cold EGR on performance of engine such as brake thermal efficiency, cylinder pressure, cylinder temperature exhaust temperature.etc Above parameter studied for stationary water cooled DI Diesel single cylinder engine by looking towards running(2014 and upcoming emission Norms. Also to incorporate technology to study effects of EGR on combustion temperature and so to reduce NOx by surveying emissions papers to have outlook of EGR Route system and important equipment that need to be furnished in further study in same project to have smooth and positive effects from performance side under study. Professor Avinash M.Wankhade et al found that while re-circulating exhaust gas it reduced about 65.26% of NOx which is improved results of Avinash Wankhade et al and Pratik Sapre et al under guidance of Dr.S.B.Thakare et al[ ].Use of EGR significantly reduced NO emissions at normal condition when passing 20% of EGR. The Particulate emissions increased as EGR rate is increased but we dont deserve it so to vanish this effets further experiments can be done with blending diesel with fish methyl oil ester, sun flower oil methyl ester[14]. This reduces NOx as well HC.So Exhaust gas was recalculated in intake stroke and cooled by intercooler of partially cooled type via venturi meter.

  12. Turbine engine exhaust gas measurements using in-situ FT-IR emission/transmission spectroscopy

    Science.gov (United States)

    Marran, David F.; Cosgrove, Joseph E.; Neira, Jorge; Markham, James R.; Rutka, Ronald; Strange, Richard R.

    2001-02-01

    12 An advanced multiple gas analyzer based on in-situ Fourier transform infrared spectroscopy has been used to successfully measure the exhaust plume composition and temperature of an operating gas turbine engine at a jet engine test stand. The sensor, which was optically coupled to the test cell using novel broadband hollow glass waveguides, performed well in this harsh environment (high acoustical noise and vibration, considerable temperature swings in the ambient with engine operation), providing quantitative gas phase information. Measurements were made through the diameter of the engine's one meter exhaust plume, about 0.7 meters downstream of the engine exit plane. The sensor performed near simultaneous infrared transmission and infrared emission measurements through the centerline of the plume. Automated analysis of the emission and transmission spectra provided the temperature and concentration information needed for engine tuning and control that will ensure optimal engine operation and reduced emissions. As a demonstration of the utility and accuracy of the technique, carbon monoxide, nitric oxide, water, and carbon dioxide were quantified in spite of significant variations in the exhaust gas temperature. At some conditions, unburned fuel, particulates (soot/fuel droplets), methane, ethylene and aldehydes were identified, but not yet quantified.

  13. High temperature sealings for exhaust systems to achieve global environmental initiatives; Hochtemperaturdichtungen fuer Abgasanlagen zur Erfuellung weltweiter Umweltnormen

    Energy Technology Data Exchange (ETDEWEB)

    Zwick, Jim; Groh, Trevor [Federal-Mogul Corporation, Southfield, MI (United States); Tripathy, Bhawani [Federal-Mogul Corporation, Ann Arbhor, MI (United States). Vorentwicklung und Werkstoffentwicklung fuer Dichtungssysteme

    2009-02-15

    Federal-Mogul has developed a special portfolio of High Temperature Alloy (HTA) gaskets, and a corresponding High Temperature Coating (HTC). In the most basic sense, the HTA and HTC innovations work by providing material stability at extreme operating temperatures. They enable manufacturers of exhaust gas systems to meet the challenges for sealing performance up to 1000 C with a highly durable product. (orig.)

  14. Process and device for cleaning furnace exhaust gas in a vitrification plant

    International Nuclear Information System (INIS)

    The furnace exhaust gas produced during vitrification is cleaned of carried over dust particles in an exhaust gas cleaning stage using a washing liquid. In order to achieve a simplified process for dosing and exhaust gas cleaning, radioactive fission product solution is taken from the feed container as the washing liquid and is transported to the head of the exhaust gas cleaning stage. The fission product solution noting as washing liquid is returned to the feed container after passing through the exhaust gas cleaning stage. The furnace exhaust gas of the vitrification plant is taken through the exhaust gas cleaning stage in counterflow. The invention also concerns a device to carry out this process. (orig./HP)

  15. Studies on fuel savings and NO{sub x} reduction in oxygen enriched air combustion (2). Effect of initial temperature and exhaust gas entrainment on NO{sub x} emission; Sanso fuka kuki ni yoru shoenerugi to tei NO{sub x} nensho ni kansuru kenkyu (2). Shoki ondo to nensho haigasu makikomi ni yoru NO{sub x} eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M.; Suyari, M.; Suzuki, T. [Kobe Steel, Ltd., Hyogo (Japan). Mechanical Engineering research Laboratory; Takagi, T. [Osaka University, Osaka (Japan). Dept. of Mechanical Engineering

    2000-04-20

    The combustion with oxygen enriched air has a potential of the fuel savings and the consequent reduction of carbon dioxide emission. The fuel savings were examined by the enthalpy of equilibrium state in case of oxygen enriched combustion. The fuel consumption in case of 30-40 % oxygen enriched air is reduced by 5.9-9.1 % as compared with the case of 21 % oxygen air at exhaust temperature 773 k after which sensible heat of exhaust gas exchange the sensible heat of combustion air. However, NO emission increases with the enrichment of oxygen in the air and the increase of initial temperature. The effect of oxygen enriched air and initial temperature on NO emissions in the methane premix flame was numerically analyzed with detailed chemistry for the equivalent ratio of 0.5-2.0. The results revealed that the low NO{sub x} combustion with 30 % oxygen enriched air can be achieved in case of the fuel rich ({phi} > 2.0) condition. Furthermore, the effect of oxygen enriched air and entrainment of exhaust ga was analyzed numerically. The low NO{sub x} combustion with 30 % oxygen enriched air and initial temperature 798 K can be achieved in case of the fuel lean ({phi} < 0.5) or fuel rich ({phi} > 1.5) condition and mixing ratio 0.5 which is expressed that the ratio mole of exhaust gas against the mole of fuel and oxygen enriched air. (author)

  16. Removal of exhaust gas from spaces heated with gas IR radiators

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.

    The correlations between the emission of pollutants from the exhaust gas of fan-type or self-ventilated overhead gas heaters and the concentration of pollutants in the atmosphere surrounding the work areas of persons can be determined by computation and measurement. It is proposed to verify the experience gained by further measurements in existing installations. This will include systematic studies into the appropriate distribution of gas overhead radiant heaters over the floor area to ensure uniform heating and optimum removal of the exhaust gas. The question as to the proper arrangement of vent openings to ensure an effective air change and efficient supply of air and removal of exhaust gas also requires study to confirm the gratifying experience gained with gas overhead radiant heaters by appropriate measurements.

  17. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Exhaust gas analytical system; CVS...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures 91.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4...

  18. Exhaust gas bypass valve control for thermoelectric generator

    Science.gov (United States)

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter (Peter) Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  19. Analysis of the reusability of the energy of the exhaust gas from the calciner for the production of carbon

    International Nuclear Information System (INIS)

    A calciner is used to produce carbon from anthracite coal. In its working process, a significant amount of energy is lost through its exhaust gas. How much energy can be recovered from the exhaust gas becomes important. To answer this question a method to determine the mass flow rate and the composition of the exhaust gas from a calciner is developed, and a combustion model based on well-stirred reactor is used to obtain the suitable combustor parameters and the amount of the chemical energy which can be released in combustion. As an example to verify the method and the model, the energy utilization ratio of a calciner with power of 1250kW is investigated. The results show that the method can determine the mass flow rate and the composition of the exhaust gas, and the combustion model is suitable for obtaining reasonable results in determining the volume and the heat duty of the combustor, the airfuel ratio, and the amount of the chemical energy released. For a calciner with power of 1250kW, when the temperature of the tail gas after combustion reaches to 135C, the energy utilization ratio of the calciner is calculated to be around 77%. - Highlights: A method obtaining the mass balance of exhaust gas from calciner is reported. A combustion model obtaining combustion behavior of the exhaust gas is reported. Determining the energy utilization ratio of a typical calciner is demonstrated. The energy utilization ratio of a typical calciner is about 77%

  20. Exhaust gas boiler fouling and soot removal investigation in HFO diesel engine plants

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, J.; Haekkinen, P.; Kallioniemi, V.; Kaeaeriaeinen, J.

    2002-07-01

    Exhaust gas boilers are generally installed to recover waste heat of large diesel engines. These engines are used sources of propulsion and electric power in ships as well as in land based power plants. Feed water is circulated inside tubes which have often welded-on fins to increase the heat transfer surface. Organic and inorganic particulate in the exhaust gas flow deposits on the heat transfer surfaces. Rate of this fouling depends on many parameters: the engine, fuel oil, boiler design and exhaust gas outlet temperature. Excessive fouling decreases the heat recovery and may lead into soot fires that damage the water tubes and involve the risk of major engine room fires. The results of a systematic boiler fouling and soot removal research are given the report. Practical investigation was made in a test plant including a 1500 kW heavy fuel operated diesel engine and a exhaust gas boiler. The fouling rate was measured in various conditions and several cleaning methods tested. They included injection of steam, air and water, sound cleaning, soot removal powder feeding, increased flow velocity and dry operation. Boiler fouling and cleaning results are given in graphical presentation. The results were compared with theoretical models of particulate in exhaust gas flow and attachment to heat transfer surfaces. Respective tests were also executed in several ships with different engine types, fuel oils and boiler designs. The results show a wide variation and ion and closing of cleaning equipment. Samples of the soot deposits in selected ships and the test plant were analyzed for their chemical composition. Ignition models of soot fires are presented. The initial ignition does not always lead into major soot fire inside the boiler. Even fierce soot fires can be extinguished without fire escaping outside the boiler. The results include instructions for boiler design and the plant operation. Both normal boiler plant operation and fire fighting are included here. (orig.)

  1. An Experimental Study of Different Effects of EGR Rates on The Performance And Exhaust Emissions of The Stratified Charge Piston Direct Injection Compressed Natural Gas Engine

    OpenAIRE

    Saheed O. Wasiu; A Rashid A Aziz; Shaharin A. Sulaiman

    2011-01-01

    Exhaust Gas Recirculation (EGR) is one of the principal techniques used to control spark ignition NOX. A fraction of the exhaust gas is recycled through a control valve from the exhaust to the engine intake system. However, EGR has different effect on performance, combustion and emissions production that are difficult to distinguish such as increase of intake temperature, delay of Rate Of Heat Rrelease (ROHR), decrease of peak heat release, decrease in oxygen concentration etc. Therefor...

  2. Study on direct measurement of diesel exhaust gas flow rate. Development of ultrasonic exhaust gas flowmeter; Diesel hai gas ryuryo no chokusetsu sokuteiho ni kansuru kenkyu. Choonpa hai gas ryuryokeino kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, A.; Takamoto, M.; Yamzaki, H. [National Research Laboratory of Meteology, Tsukuba (Japan); Hosoi, K. [Japan Automobile Research Institute Inc., Tsukuba (Japan); Arai, S.; Shimizu, K. [Kaijo Corp., Tokyo (Japan)

    2000-02-25

    The partial flow dilution method is one of the typical measurement methods for particulate matter emission from diesel engines. In this method, exhaust gas at a transient flow rate should be transferred to a dilution tunnel at a constant ratio of exhaust gas. The present partial flow dilution method is used under steady-state engine operating conditions in lieu of direct flow rate measurement of exhaust gas. A more practical control of exhaust emission is, however, required world widely; therefore development of an exhaust gas flowmeter is indispensable in the partial flow dilution method for transient engine operating conditions. An ultrasonic exhaust gas flowmeter has been developed and been demonstrated to be capable of measuring the exhaust gas flow rate with sufficient accuracy. (author)

  3. Measuring High Gas Temperatures

    Science.gov (United States)

    Will, H. A.

    1984-01-01

    Program provides extrapolation calculations of high gas temperature based on theoretical heating curve of pulsed thermocouples. Program requires as input mach number, wall temperature, and total pressure in addition to thermocouple data. Tests indicate program extrapolates reasonably-accurate gas temperatures from pulsed-thermocouple data.

  4. Laboratory Scale of Liquid Coal Fuel Combustion Process and Exhaust Gas Formation

    Directory of Open Access Journals (Sweden)

    Kartika K. Hendratna

    2010-01-01

    Full Text Available Problem statement: Much research of coal has been already undertaken to ascertain the possibilities of coal being used as substitute for heavy fuel oil in the transportation sector. The effects of using coal as transportation fuel to the environment must also be considered. This study will review several aspects of the coal oil combustion process including combustion behavior, flame stability, some emissions from exhaust gas; CO, NOx and the particulate matter in a well insulated laboratory scale furnace for more stable of combustion. Approach: New way for preparation for liquid coal oil steady combustion on a 2.75 m horizontal boiler with four annular segment tubes, a water jacket system and a system for measurement of water temperature inside was archived. Data was gained by applying liquid coal in the experiment. Detailed preparation and setting for steady combustion of coal oil and formation of the exhaust gas were discussed based on data sampling from four sample points in each centre of the angular tube segments. Results: Preparation for coal oil combustion is an important point in the successful of combustion. Heating coal fuel to than 100C, heating the fuel line to the same temperature and providing enough air pressure for atomization of coal oil until 0.1 MPa allows coal fuel smoothly atomized in the semi gas phase. There was enough of air combustion via a blower with 4500 L min-1 of flow rate and a 24 L min-1 of water flow rate in the water jacket transforms the energy of the fuel to the heat. Uncolored of the exhaust gas and the physical inspection describes the completion of combustion. This result close-relates with the pollutants formation in the exhaust gas. Conclusion: By conducting a deep research process, there is a chance for the substitute of heavy fuel oil with liquid coal fuel with no special treatment needed in combustion process without ignoring the contribution of the combustion results as an environmental problem.

  5. Intensity of corrosion processes in exhaust gas boilers at burning water-fuel emulsion

    Directory of Open Access Journals (Sweden)

    Goryachkin Vladimir Yurievich

    2013-10-01

    Full Text Available Approximation dependences of specific rates of low-temperature sulfur corrosion and pollution intensity under the influence of the main parameters characterizing these processes are presented. Statistical processing of the research results that displayed the primary influence on decrease in metal sulfur and water content of water fuel emulsion is conducted. The dependences of low-temperature sulfur corrosion rate on the wall temperature for 100 and 1000 hours at burning standard fuel and water-fuel emulsion are received. Reliability of data transfer obtained at experimental facility on consideration of these processes in real exhaust gas boilers installed after internal-combustion engine is confirmed.

  6. An experimental study on the effects of the thermal barrier plating over engine fuel consumption exhaust temperature and emissions

    Directory of Open Access Journals (Sweden)

    Hseyin Grbz

    2014-01-01

    Full Text Available The aim of this study, the combustion chamber elements of a one-cylinder diesel engine which is air-cooled, single-cylinder, direct injection, 4-stroke and starter motor were plated with thermal barrier plating and tested with diesel fuel between the speeds of 1600 1/min to 3200 1/min and determined the effects of the thermal barrier plating on the engine exhaust gas temperature, emissions and fuel consumption. Increase in the temperature of the exhaust gas, decrease in HC and CO emissions that are harmful to the environment and living things and improvement in fuel consumption were observed.

  7. Measurement of Gas-phase Acids in Diesel Exhaust

    Science.gov (United States)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  8. Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions; Combustion Testing with Focus on Stability and Emissions

    OpenAIRE

    Rkke, Petter E.; Hustad, Johan E.

    2005-01-01

    Exhaust gas recirculation can be applied with the intention of reducing CO2 emissions. When a fraction of the exhaust gas is injected in the entry of a gas turbine, the amount of CO2 in the exhaust gas not being recirculated will be higher and less complicated to capture. However, with this change in combustion air composition, especially the reduced concentration of oxygen, the combustion process will be affected. The lower oxygen concentration decreases the stability and the increased amoun...

  9. Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions; Combustion Testing with Focus on Stability and Emissions

    Directory of Open Access Journals (Sweden)

    Johan E. Hustad

    2005-12-01

    Full Text Available Exhaust gas recirculation can be applied with the intention of reducing CO2 emissions. When a fraction of the exhaust gas is injected in the entry of a gas turbine, the amount of CO2 in the exhaust gas not being recirculated will be higher and less complicated to capture. However, with this change in combustion air composition, especially the reduced concentration of oxygen, the combustion process will be affected. The lower oxygen concentration decreases the stability and the increased amount of CO2, H2O and N2 will decrease the combustion temperature and thus, the NOx emissions. Testing has been performed on a 65 kW gas turbine combustor, to investigate the effect of adding N2, CO2 and O2 in the combustion process, with focus on stability and emissions of NOx. Results show that adding N2 and CO2 decreases the NOx emissions, whereas O2 addition increases the NOx emissions. The tests have been performed both in a diffusion flame (pilot burner and a premixed flame (main burner, and for additives being injected with the fuel or with the air stream. Addition into the fuel stream is proven to affect the NOx emissions the most. The stability limits of the flames are indicated with respect to mass-based additive-to-fuel ratios.

  10. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2013-10-23

    ...Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate...EPA also proposed adopting the gas turbine engine test procedures of the...Exhaust Emissions (New Aircraft Gas Turbine Engines) 0 3. Amend Sec....

  11. An experimental study on the effects of exhaust gas on spruce (Picea abies L. Karst.)

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, E.L.; Holopainen, J.; Kaerenlampi, L. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Surakka, J.; Ruuskanen, J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences

    1995-12-31

    Motor vehicle exhausts are significant contributors to air pollution. Besides fine particles and inorganic gases, like CO, SO{sub 2} and NO{sub x}, exhaust gas contains a large group of aromatic hydrocarbon compounds, many of which are phytotoxic. In field studies, exhausts are found to have both direct and indirect harmful effects on roadside plants. However, only few experimental studies have been made about the effects of exhaust gas emissions on coniferous trees. The aim of this study was to survey the effects of exhausts on spruce (Picea abies L. Karst.) in standardized conditions. The concentrations of major exhaust gas components in the chamber atmosphere were detected simultaneously. The effects of exhaust on epistomatal waxes of first-year spruce needles are described. (author)

  12. Steady-state modelling of the universal exhaust gas oxygen (UEGO) sensor

    International Nuclear Information System (INIS)

    The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the StefanMaxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. (paper)

  13. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    Science.gov (United States)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  14. Engine exhaust particulate and gas phase contributions to vascular toxicity.

    Science.gov (United States)

    Campen, Matthew; Robertson, Sarah; Lund, Amie; Lucero, Joann; McDonald, Jacob

    2014-05-01

    Cardiovascular health effects of near-roadway pollution appear more substantial than other sources of air pollution. The underlying cause of this phenomenon may simply be concentration-related, but the possibility remains that gases and particulate matter (PM) may physically interact and further enhance systemic vascular toxicity. To test this, we utilized a common hypercholesterolemic mouse model (Apolipoprotein E-null) exposed to mixed vehicle emission (MVE; combined gasoline and diesel exhausts) for 6?h/d??50?d, with additional permutations of removing PM by filtration and also removing gaseous species from PM by denudation. Several vascular bioassays, including matrix metalloproteinase-9 protein, 3-nitrotyrosine and plasma-induced vasodilatory impairments, highlighted that the whole emissions, containing both particulate and gaseous components, was collectively more potent than MVE-derived PM or gas mixtures, alone. Thus, we conclude that inhalation of fresh whole emissions induce greater systemic vascular toxicity than either the particulate or gas phase alone. These findings lend credence to the hypothesis that the near-roadway environment may have a more focused public health impact due to gas-particle interactions. PMID:24730681

  15. Performance of humid air turbine with exhaust gas expanded to below ambient pressure based on microturbine

    International Nuclear Information System (INIS)

    A new type of HAT cycle comprising HAT and Inverted Brayton cycles, named BAHAT in this paper, is proposed to enhance the microturbine's performance. By adding an exhaust compressor after flue gas condenser, the gas expander expands to a pressure lower than ambient. Simulation and parameter optimization results show that the electricity efficiency and specific work of BAHAT are about 2 percentage points and 20% higher than that of HAT cycle respectively when turbine inlet temperature is 950 deg. C. The working pressure of aftercooler, humidifier and turbine hot section is only about 0.4 MPa though the optimal total pressure ratio is about 9-10. The drops of compression work and outlet water temperature of humidifier are considered the main factors to enhance BAHAT's efficiency. In addition, the exhaust compressor inlet gas temperature affects BAHAT's efficiency and water recovery ratio apparently. It is also shown that it is easy to achieve water self-support for BAHAT, mixing makeup water to the water loop before entering economizer shows the best thermodynamic performance, and air leakage to the bottom cycle influences both efficiency and water recovery ratio of BAHAT.

  16. 76 FR 58288 - International Maritime Organization Guidelines for Exhaust Gas Cleaning Systems for Marine...

    Science.gov (United States)

    2011-09-20

    ... Federal Register (73 FR 3316). Information on Services for Individuals with Disabilities For information... SECURITY Coast Guard International Maritime Organization Guidelines for Exhaust Gas Cleaning Systems for... exhaust gas cleaning systems for marine engines. The purpose of this meeting in Washington, DC, is...

  17. Exhaust bypass flow control for exhaust heat recovery

    Science.gov (United States)

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  18. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    Science.gov (United States)

    Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  19. Effects of Exhaust Gas Recirculation on SI Engines at Wide Open Throttle

    Science.gov (United States)

    Bronson, Sydney; Puzinauskas, Paulius

    2011-11-01

    Exhaust gas recirculation, a charge dilution technique, has proven to be an effective method of reducing NOx emissions and fuel consumption of spark ignition engines. Wide open throttle operation also increases overall engine efficiency by reducing the pumping losses caused by throttling. In this study, the emissions and fuel economy benefits of exhaust gas recirculation (EGR) at wide open throttle conditions were quantified using a 2.4L port-injected engine. Engine performance and emissions data were recorded as the percentage of EGR in the intake charge was increased from zero to just above thirty percent (the EGR limit). This EGR percentage, in-cylinder pressure measurements, and the temperatures and pressures of the intake and exhaust were all recorded to ensure stable operating conditions. These tests were performed with a stoichiometric air-fuel ratio at a constant speed of 2000 rpm at wide open throttle. The variation of brake specific fuel consumption and emissions (in particular NOx) with increasing EGR percentages was analyzed.

  20. Removal of methane from compressed natural gas fueled vehicle exhaust

    International Nuclear Information System (INIS)

    The objective of this paper is to investigate the modes of methane (CH4) removal from simulated compressed natural gas (CNG) fueled vehicle exhaust under net oxidizing, net reducing, and stoichiometric conditions. Model reaction studies were conducted. The results suggest that the oxidation of methane with oxygen contributes to the removal of methane under net oxidizing conditions. In contrast, the oxidation of methane with oxygen as well as nitric oxide contributes to its removal under net reducing conditions. The steam reforming reaction does not significantly contribute to the removal of methane. The methane conversions under net reducing conditions are higher than those observed under net oxidizing conditions. The study shows that the presence of carbon monoxide in the feed gas leads to a gradual decrease in the methane conversion with increasing redox ratio, under net oxidizing conditions. a minimum in methane conversion is observed at a redox ratio of 0. 8. The higher activity for the methane-oxygen reaction resulting from a lowering in the overall oxidation state of palladium and the contribution of the methane-nitric oxide reaction toward the removal of CH4 appear to account for the higher CH4 conversions observed under net reducing conditions

  1. Neuralfussy multivariable control applied to the control of velocity, power, and exhaust gas temperature of a turbo gas unit; Control neurodifuso multivariable aplicado al control de velocidad, potencia y temperatura de gases de escape de una unidad turbogas

    Energy Technology Data Exchange (ETDEWEB)

    Segura Ozuna, Victor Octavio

    2004-11-15

    The electric power demand in Mexico has forced to the electric sector to be in a constant search of methods and systems that, among other objectives, improve the operation of the generating power stations of electric power continually. As part of their mission, the Electrical Research Institute (IIE) has promoted and leaning the applied research and the technological development to improve the indexes of security, readiness, dependability, efficiency and durability of central generating by means of the development and the installation of big digital systems of information and control. At the present time, inside the scheme of electric power generation, the gas turbine (UTG) represent 7% of the generation of the national electric sector [1]. These units have become the dominant way of the new electric generation in the U.S, either in simple cycle or combined. The above-mentioned, is attributable at less installation cost for generated kilowatt, to the shortest construction programs, at first floor levels of emission of pollutants and competitive operation costs. The control system of the gas turbine is based on conventional control algorithms of the type PI [2]. This control scheme is dedicated for regulation tasks and rejection to interferences, and it doesn't stop pursuit of reference points. The controllers act all on a control valve, that which represents a strong interaction among the same ones, for example an adjustment in the parameters of the algorithm of the digital PI of temperature, it can improve their acting but it can also affect the acting of the speed control or that of power. The gas turbine presents a non lineal behavior and variant in the time, mainly in the starting stage where several important disturbances are presented. At the moment, the controllers used in the scheme of control of the turbines are lineal, which are syntonized for a specific operation point and they are conserved this way by indefinite time. In this thesis the formulation of a controller feedback multivariable is presented, designed with the combination of the technologies of fuzzy logic and neural networks with the purpose of improving the control of speed, power and temperature of the UTG. This proposed control is used in conjunction with the scheme of conventional control of the existent UTG, to integrate a strategy of control hybrid feedback. The control feedback is compound for a fuzzy inference system of multiple entrances and a left exit designed with entrance data and exit of the plant. The controller feed forward is compound for conventional controllers type PI in this type of units. With this strategy, the controller feedback provides a bigger contribution in the control sign the effort of the conventional controllers' PI control and the strong interaction that it exists among them diminishing. The controllers PI feed forward contribute a smaller control sign used for fine adjustments in the control sign. [Spanish] La demanda de energia electrica en Mexico ha obligado al sector electrico a estar en una busqueda constante de metodos y sistemas que, entre otros objetivos, mejoren continuamente la operacion de las centrales generadoras de energia electrica. Como parte de su mision, el Instituto de Investigaciones Electricas (IIE) ha promovido y apoyado la investigacion aplicada y el desarrollo tecnologico para mejorar los indices de seguridad, disponibilidad, confiabilidad, eficiencia y durabilidad de centrales generadoras mediante el desarrollo y la implantacion de grandes sistemas digitales de informacion y control. En la actualidad, dentro del esquema de generacion de energia electrica, las unidades turbogas (UTG) representan 7% de la generacion del sector electrico nacional [1]. Estas unidades se han convertido en el modo dominante de la nueva generacion electrica en los EE.UU, ya sea en ciclo simple o combinado. Lo anterior, es atribuible al menor costo de instalacion por kilowatt generado, a los programas de construccion mas cortos, a bajos niveles de emision de contaminantes y costos de operacion competitivos. El sistema de control de las unidades turbogas esta basado en algoritmos de control convencionales del tipo PI [2]. Este esquema de control es destinado para tareas de regulacion y rechazo a perturbaciones, y no para seguimiento de puntos de referencia. Los controladores actuan todos sobre una sola valvula de control, lo cual representa una fuerte interaccion entre los mismos, por ejemplo un ajuste en los parametros del algoritmo del PI digital de temperatura, puede mejorar su desempeno pero tambien puede afectar el desempeno del control de velocidad o el de potencia. La turbina de gas presenta un comportamiento no lineal y variante en el tiempo, principalmente en la etapa de arranque donde se presentan varios disturbios importantes. Actualmente, los controladores utilizados en los esquemas de control de las turbinas son lineales, los cuales son sintonizados para un punto de operacion especifico y son conservados asi por tiempo indefinido. En esta tesis se presenta la formulacion de un controlador prealimentado multivariable, disenado con la combinacion de las tecnologias de logica difusa y redes neuronales con el proposito de mejorar el control de velocidad, potencia y temperatura de la UTG. Este control propuesto es usado en conjuncion con el esquema de control convencional de la UTG existente, para integrar una estrategia de control hibrida prealimentada. El control prealimentado esta compuesto por un sistema de inferencia difuso de multiples entradas y una sola salida disenado con datos de entrada y salida de la planta. El controlador retroalimentado esta compuesto por controladores tipo PI convencionales en este tipo de unidades. Con esta estrategia, el controlador prealimentado provee una mayor contribucion en la senal de control disminuyendo el esfuerzo de control de los controladores PI convencionales y la fuerte interaccion que existe entre ellos. Los controladores PI retroalimentados aportan una menor senal de control utilizada para ajustes finos en la senal de control.

  2. Platform for a Hydrocarbon Exhaust Gas Sensor Utilizing a Pumping Cell and a Conductometric Sensor

    OpenAIRE

    Ralf Moos; Kerstin Wiesner; Diana Biskupski; Andrea Geupel; Maximilian Fleischer

    2009-01-01

    Very often, high-temperature operated gas sensors are cross-sensitive to oxygen and/or they cannot be operated in oxygen-deficient (rich) atmospheres. For instance, some metal oxides like Ga2O3 or doped SrTiO3 are excellent materials for conductometric hydrocarbon detection in the rough atmosphere of automotive exhausts, but have to be operated preferably at a constant oxygen concentration. We propose a modular sensor platform that combines a conductometric two-sensor-setup with an electroche...

  3. Dual-purpose power plants, experiences with exhaust gas purification plants

    International Nuclear Information System (INIS)

    From 1984 to 1988, the research and development project ''pollutant reduction for exhaust gases from heat production systems'' sponsored by the Federal Ministry of Research and Technology (BMFT) has been carried out by TUeV in Bavaria. This project was to show the state of exhaust gas technology for small and medium-sized plants (boilers and motoric heat generators). When publishing the final report, no positive balance could be given. Based on the results, the succession project ''Exhaust gas purification plants in field test'' (ARIF) has been started. This project has the following objectives: -Measuring technical investigation of the exhaust gas purification of motoric driven heat generator systems in field test. - Suitability of hand measuring devices for emissions for a discontinuous control of the exhaust gas purification plat by the operator. - Control of new methods regarding pollutant reduction for motoric and conventional heat generators. (orig.)

  4. Test procedures for measuring exhaust emissions from natural gas transmission engines

    International Nuclear Information System (INIS)

    This paper reports on the measurement of exhaust components from large natural gas transmission engines involves collection of the exhaust sample, transfer of the sample to the analytical instrumentation, measurement of individual component concentrations, and calculations of emission results in terms of mass, fuel specific, and brake specific rates. The major exhaust components measured include nitrogen oxides (NOx), total hydrocarbons (THC), carbon dioxide (CO2), carbon monoxide (CO), and oxygen (O2). Collection of the exhaust sample requires proper probe design and placement in the exhaust system. Transfer of the sample to the analytical instruments must maintain sample integrity from the point where the sample is removed from the exhaust stream to the point at which the sample enters the instrument for analysis. Various analytical techniques are used to measure the exhaust emission concentrations

  5. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up to reach the highest possible combination of pressure and temperature, and adapted to Tier III by introducing two alternative superheaters. The system design is optimized and found capable of producing from 400 to 1900 kW, with a weighted average power of 958 kW. The consumption profile is found to significantly impact the weighted average power, while the operation distribution between Tier III and Tier II (outside ECAs) has a much smaller influence. Furthermore, it is found that the low pressure should be kept near minimum, while the optimum high pressure increases from 7 to 12 bar with the load. By increasing the efficiency of the overall system, the CO2 emissions can be reduced. The addition of a third cycle, used only in Tier III, is investigated. While increasing the total heat exchanger areas by approximately 40%, the cycle is found to increase the power production in Tier III operation by an average of 15%, and up to 50% at full load.

  6. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    Science.gov (United States)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  7. NOVEL GAS SENSORS FOR HIGH-TEMPERATURE FOSSIL FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera

    2004-05-01

    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from October 2003 to April 2004.

  8. Development of exhaust gas treatment technologies for environment protection

    International Nuclear Information System (INIS)

    Full text: The emission of carbon dioxide (CO2) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the immediate term over the next 10 - 20 years at least, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil fuel industry is to find cost-effective solutions that will reduce the release of CO2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO2 and remove other pollutants such as SOx and NOx which are released in the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this types of plants. Hence, efficient, cost-effective capture/separation technologies will need to be developed in order to allow their large-scale use. (authors)

  9. Carbon Dioxide Emission Analysis of Chilled Water Production by Using Gas Turbine Exhaust Heat

    OpenAIRE

    Adzuieen Nordin; Mohd Amin Abd Majid

    2013-01-01

    Carbon dioxide from exhaust heat emission is one of the major contributorsto the environmental pollutant in power generation plants. This problem could be addressed if the emitted exhaust heat is recovered. In cogeneration plant, the exhaust heat from the gas turbine is used to generate steam usingHeat Recovery Steam Generator. The steam from Heat Recovery Steam Generator is then used for chilled water generation in Steam Absorption Chillers by absorption process. This study analyzed the tota...

  10. Design of a DBD System for On-Board Treatment of the Exhaust Gas

    International Nuclear Information System (INIS)

    This study is a part of the investigation of the diesel engine exhaust cleaning processes concerning a design of a compact, low power dielectric barrier discharge (DBD) system for on-board treatment of the exhaust gas in combination with a catalyst. The activated gas molecules and reduction agents which are produced by the discharge make the operation of the catalyst more efficient. The effect of the discharge frequency, power and geometry on the gas composition is described in our previous publication

  11. Sensor for measuring the oxygen content in the exhaust gas of combustion engines and method thereof

    Energy Technology Data Exchange (ETDEWEB)

    Bozon, A.; Koberstein, E.; Pletka, H.; Voelker, H.

    1982-12-07

    An improved lambda sensor is disclosed for the measurement of the oxygen content in the exhaust gas of internal combustion engines in which the sensor element is provided with a gas permeable wrapping coated with a catalyst. The sensor delivers a clear well defined signal in the so-called rich exhaust gas, which makes possible a more precise adjustment of the fuel-air mixture fed to the internal combustion engine.

  12. Field-effect gas sensors and their application in exhaust treatment systems; Feldeffekt-Gassensoren und ihre Anwendung in Abgasnachbehandlungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schalwig, Jan

    2002-07-01

    Tightening environmental constraints on exhaust gas emissions of gasoline and Diesel engines led to a growing interest in new and highly sophisticated gas sensors. Such sensors will be required in future exhaust gas aftertreatment systems for the selective real time detection of pollutants such as nitric oxides, hydrocarbons and carbon monoxide. Restrictions on cost and device dimensions imposed by the automobile industry make semiconductor gas sensors promising candidates for the realization of cheap and small-size sensor devices. This work deals with semiconductor field effect devices with catalytically active platinum (Pt) electrodes and potential applications of such devices in automotive exhaust gas aftertreatment systems. To allow for continuous operation at high temperatures, silicon carbide (SiC) and group III-nitrides such as GaN and AlGaN were used as semiconductor materials. Different devices have been realized with such materials: SiC based MOS capacitors (MOSiC), GaN Schottky diodes and GaN/AlGaN high electron mobility transistors (HEMT). The principle feasibility of SiC and GaN based field effect gas sensors for automotive applications was tested under laboratory conditions using synthetic gas mixtures. Exhaust gas components such as carbon monoxide (CO), nitric oxides (NO and NO{sub 2}), various saturated and unsaturated hydro-carbons as well as water vapor, oxygen (O{sub 2}) and hydrogen (H{sub 2}) were used as test gases in appropriate concentrations with the sensor devices being operated in a range of temperatures extending from room temperature up to 600{sup o}C. (orig.)

  13. Suicide by carbon monoxide from car exhaust-gas in Denmark 1995-1999

    DEFF Research Database (Denmark)

    Thomsen, Asser H; Gregersen, Markil; Thomsen, Asser Hedegrd

    2006-01-01

    In the period 1995-1999 there were 388 car exhaust-gas suicides in Denmark. Of these 343 (88.4%) were men and 45 (11.6%) were women, the average age being 47 years. The car exhaust-gas suicides made up 9.3% of all suicides in Denmark in the period. The corresponding rate was 11.7% for men and 3.7% for women. In rural areas a larger part of all suicides were committed with car exhaust-gas compared to the more densely populated areas. Mental disease was diagnosed in 124 (32.0%) cases. A suicide no...

  14. Exhaust Gas Heat Recovery for C.I Engine-A Review

    OpenAIRE

    Baleshwar Kumar Singh,; Dr. Nitin Shrivastava

    2014-01-01

    The focus of the study is to review the modern changes and technologies on waste heat recovery of exhaust gas from internal combustion engine. These include the thermoelectric generator, turbocharger, exhaust gas through I.C engine. Due to the total heat supplied to the engine in the form of fuel around 30-40%, heat is converting in to the use full mechanical work and residual parts of the wastage heat 60-70% as friction, exhaust gas and engine cooling system. Waste heat relea...

  15. Evaluating tractor performance and exhaust gas emissions using biodiesel from cotton seed oil

    Science.gov (United States)

    Al-lwayzy, Saddam H.; Yusaf, Talal; Jensen, Troy

    2012-09-01

    Alternative fuels for diesel engines, such as biodiesel, have attracted much attention recently due to increasing fuel prices and the imperative to reduce emissions. The exhaust gas emissions from tractors and other agricultural machinery make a significant contribution to these emissions. The use of biodiesel in internal combustion engines (ICE) has been reported to give comparable performance to conventional diesel (CD), but with generally lower emissions. There is however, contradictory evidence of NO emissions being both higher and lower from the use of biodiesel. In this work, agriculture tractor engine performance and its emission using both CD and biodiesel from cotton seed oil (CSO-B20) mixed at a 20% blend ration has been evaluated and compared. The PTO test results showed comparable exhaust emissions between CD and CSO-B20. However, the use of CSO-B20 led to reductions in the thermal efficiency and exhaust temperature and an increase in the brake specific fuel consumption (BSFC), when compared to CD.

  16. High temperature gas reactor

    International Nuclear Information System (INIS)

    This paper reviews the status of the high temperature helium gas-cooled reactor here in the United States as well as in Europe. The post-operational research program for the prototype Peach Bottom No. 1 reactor is described and results obtained to date are reviewed

  17. Mutagenicity of diesel exhaust particle extracts: influence of driving cycle and environmental temperature.

    Science.gov (United States)

    Clark, C R; Dutcher, J S; Brooks, A L; McClellan, R O; Marshall, W F; Naman, T M

    1982-01-01

    General Motors and Volkswagen diesel passenger cars (1980 and 1981 model year) were operated on a climate controlled chassis dynomometer and the particulate portion of the exhaust was collected on high volume filters. Dichloromethane extracts of the exhaust particles (soot) collected while the cars were operated under simulated highway, urban and congested urban driving cycles were assayed for mutagenicity in Salmonella strains TA-98 and TA-100. Driving pattern did not significantly influence the mutagenic potency of the exhaust particle extracts or estimates of the amount of mutagenicity emitted from the exhaust despite large differences in particle emission rates and extractable fraction of the particles. Mutagenicity of extracts of exhaust particles collected while the vehicles were operated at test chamber temperatures of 25, 50, 75 and 100 degrees F were also very similar. The results suggest that driving pattern and environmental temperature do not significantly alter the emission of genotoxic combustion products from the exhaust. PMID:6193022

  18. Simulation and evaluation of a CCHP system with exhaust gas deep-recovery and thermoelectric generator

    International Nuclear Information System (INIS)

    Highlights: Exhaust gas deep-recovery and thermoelectric generator are applied in CCHP system. Electric output of TEG changes from 0.231 kW to 1.18 kW. Total recoverable waste heat increases by 1316%. ESR, CSR and PEE are improved to 0.304, 0.417, and 0.944, respectively. The total investment increment of system is about 11%. - Abstract: Combined cooling, heating and power (CCHP) systems are thought to be highly efficient in energy utilization. But there are still potentials to further improve system performance. This work proposed a CCHP system based on internal combustion engine (ICE) for power generation, refrigeration and domestic hot water production. Thermoelectric generator (TEG) and condensing heat exchanger are applied to efficiently recover the exhaust gas waste heat of ICE. All the energy flows are designed based on energy cascading utilization principle. Basing on the test results of a 16 kW ICE, CCHP system characteristics are investigated by simulation from idling condition to full load condition. Especially, the part load performance of TEG and absorption chiller are simulated and discussed. The feasible operating zone of ICE and feed water flow rate are figured out to keep the domestic hot water temperature within a certain range. Results show that the primary energy efficiency of system can reach 0.944, thanks to the condensing heat recovery from exhaust gas. The primary energy saving ratio and cost saving ratio can reach 0.304 and 0.417, respectively. Considering some more equipment is incorporated, the total investment increment is about 11.1%

  19. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J. (Peoria, IL); Driscoll, James Joshua (Dunlap, IL); Coleman, Gerald N. (Helpston, GB)

    2010-10-12

    A method of ammonia production for a selective catalytic reduction system is provided. The method includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream my be converted into ammonia.

  20. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    OpenAIRE

    Andreasen, Morten; Marissal, Matthieu; Srensen, Kim; Condra, Thomas Joseph

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculat...

  1. Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Krn Vodder; Blanke, Mogens; Vejlgaard-Laursen, Morten

    2015-01-01

    A nonlinear adaptive controller is proposed for the exhaust gas recirculation systemon large two-stroke diesel engines. The control design is based on a control oriented model ofthe nonlinear dynamics at hand that incorporates load and engine speed changes as knowndisturbances to the exhaust gas recirculation. The paper provides proof of exponential stabilityfor closed loop control of the model given. Difficulties in the system include that certaindisturbance levels will make a desired setpoint ...

  2. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Srensen, Kim; Condra, Thomas Joseph

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating...

  3. In optics humidity compensation in NDIR exhaust gas measurements of NO2

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine; Buchner, Rainer; Clausen, Snnik; Mller Jensen, Jens; Skouboe, Allan; Hawkins, Gary J.; Skov Hansen, Rene

    2015-01-01

    NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. 2014 OSA.......NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. 2014 OSA....

  4. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik; Vejlgaard-Laursen, Morten

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear analysis of the highly non-linear dynamics. Control architectures are investigated and performance in terms of disturbance rejection and reference tracking are investigated under model uncertainty. Class...

  5. Modelling for Control of Exhaust Gas Recirculation on Large Diesel Engines

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Zander, Claes-Gran; Pedersen, Nicolai; Blanke, Mogens; Vejlgaard-Laursen, Morten

    2013-01-01

    Exhaust Gas Recirculation (EGR) reduces NOx emissions by reducing O2 concentration for the combustion and is a preferred way to obtain emission regulations that will take effect from 2016. If not properly controlled, reduction of O2 has adverse side eects and proper control requires proper dynamic models. While literature is rich on four-stroke automotive engines, this paper considers two-stroke engines and develops a non-linear dynamic model of the exhaust gas system. Parameters are determined ...

  6. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    Science.gov (United States)

    Wijmans Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  7. Measurement of exhaust gas recirculation rate by laser-induced fluorescence in engine

    Science.gov (United States)

    Morin, C.; Modica, V.; Guibert, P.

    2008-10-01

    The objective of this study is to measure by planar laser-induced fluorescence the exhaust gas recirculation (EGR) rate in the combustion chamber of an optical engine to quantify the stratification phenomena used in the new combustion strategy. From the results obtained in a high pressure-high temperature (HP-HT) facility, the tracer chosen for this aim is 3-pentanone. This paper presents a quantitative measurement of the EGR rate in the engine and a post-processing model with a correction and calibration procedure by considering the influence of temperature and pressure on the absorption cross-section and the 3-pentanone fluorescence quantum yield from the results established in the HP-HT facility. The stratification phenomena are quantified by using 3-pentanone fluorescence for two different configurations of EGR introduction in the engine. The local fluorescence measurements in the HP-HT facility are also compared with planar fluorescence measurements in the optical engine.

  8. Measurement of exhaust gas recirculation rate by laser-induced fluorescence in engine

    International Nuclear Information System (INIS)

    The objective of this study is to measure by planar laser-induced fluorescence the exhaust gas recirculation (EGR) rate in the combustion chamber of an optical engine to quantify the stratification phenomena used in the new combustion strategy. From the results obtained in a high pressurehigh temperature (HPHT) facility, the tracer chosen for this aim is 3-pentanone. This paper presents a quantitative measurement of the EGR rate in the engine and a post-processing model with a correction and calibration procedure by considering the influence of temperature and pressure on the absorption cross-section and the 3-pentanone fluorescence quantum yield from the results established in the HPHT facility. The stratification phenomena are quantified by using 3-pentanone fluorescence for two different configurations of EGR introduction in the engine. The local fluorescence measurements in the HPHT facility are also compared with planar fluorescence measurements in the optical engine

  9. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    Science.gov (United States)

    Dutart, Charles H. (Washington, IL); Choi, Cathy Y. (Morton, IL)

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  10. Exhaust gas recirculation Zero dimensional modelling and characterization for transient diesel combustion control

    International Nuclear Information System (INIS)

    Highlights: Zero-dimensional EGR model for transient diesel combustion control. Detailed analysis of EGR effects on intake, cylinder charge and exhaust properties. Intake oxygen validated as an operating condition-independent measure of EGR. Quantified EGR effectiveness in terms of NOx emission reduction. Twin lambda sensor technique for estimation of EGR/in-cylinder parameters. - Abstract: The application of exhaust gas recirculation (EGR) during transient engine operation is a challenging task since small fluctuations in EGR may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency. Moreover, the intake charge dilution at any EGR ratio is a function of engine load and intake pressure, and typically changes during transient events. Therefore, the management of EGR during transient engine operation or advanced combustion cycles (that are inherently less stable) requires a fundamental understanding of the transient EGR behaviour and its impact on the intake charge development. In this work, a zero-dimensional EGR model is described to estimate the transient (cycle-by-cycle) progression of EGR and the time (engine cycles) required for its stabilization. The model response is tuned to a multi-cylinder engine by using an overall engine system time-constant and shown to effectively track the transient EGR changes. The impact of EGR on the actual airfuel ratio of the cylinder charge is quantified by defining an in-cylinder excess-air ratio that accounts for the oxygen in the recycled exhaust gas. Furthermore, a twin lambda sensor (TLS) technique is implemented for tracking the intake dilution and in-cylinder excess-air ratio in real-time. The modelling and analysis results are validated against a wide range of engine operations, including transient and steady-state low temperature combustion tests

  11. Control method for turbocharged diesel engines having exhaust gas recirculation

    Science.gov (United States)

    Kolmanovsky, Ilya V. (Ypsilanti, MI); Jankovic, Mrdjan J (Birmingham, MI); Jankovic, Miroslava (Birmingham, MI)

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  12. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    Science.gov (United States)

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  13. Exhaust gas concentration of CNG fuelled direct injection engine at MBT timing

    International Nuclear Information System (INIS)

    Full text: This paper presents an experimental result of exhaust gas concentration of high compression engine fuelled with compressed natural gas (CNG) at maximum brake torque (MBT). The engine uses central direct injection (DI) technique to inject the CNG into the cylinder. The engine geometry bases on gasoline engine with 14:1 compression ratio and called CNGDI engine. The injectors are positioned within a certain degrees of spark plug location. The objective of the experiment is to study the influence and significant of MBT timing in CNGDI engine towards exhaust gases. The experimental tests were carried out using computer-controlled eddy-current dynamometer, which measures the CNGDI engine performance. At MBT region, exhaust gas concentration as such CO, HC, NOx, O2 and CO2, were recorded and analyzed during the test using the Horiba analyzer. A closed loop wide band lambda sensor has been mounted at the exhaust manifold to indicate the oxygen level during the exercise. (author)

  14. Exhaust gas purification with sodium bicarbonate. Analysis and evaluation; Abgasreinigung mit Natriumhydrogencarbonat. Analyse und Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Quicker, Peter; Rotheut, Martin; Schulten, Marc [RWTH Aachen Univ. (Germany). Lehr- und Forschungsgebiet Technologie der Energierohstoffe (TEER); Athmann, Uwe [dezentec ingenieurgesellschaft mbH, Essen (Germany)

    2013-03-01

    The dry exhaust gas cleaning uses sodium bicarbonate in order to absorb acid components of exhaust gases such as sulphur dioxide or hydrochloric acid. Recently, sodium and calcium based adsorbents are compared with respect to their economic and ecologic options. None of the investigations performed considered decidedly practical experiences from the system operation such as differences in the management, availability, personnel expenditure and maintenance expenditure. Under this aspect, the authors of the contribution under consideration report on exhaust gas cleaning systems using sodium carbonate as well as lime adsorbents. The operators of these exhaust gas cleaning systems were questioned on their experiences, and all relevant operational data (consumption of additives, consumption of energy, emissions, standstill, maintenance effort) were recorded and evaluated at a very detailed level.

  15. Development of filters for exhaust air or off-gas cleaning

    International Nuclear Information System (INIS)

    The activities of the 'Laboratorium fuer Aerosolphysik und Filtertechnik II' of the 'Kernforschungszentrum Karlsruhe' concentrate on the development of filters to be used for cleaning nuclear and conventional exhaust air and off-gas. Originally, these techniques were intended to be applied in nuclear facilities only. Their application for conventional gas purification, however, has led to a reorientation of research and development projects. By way of example, it is reported about the use of the multi-way sorption filter for radioiodine removal in nuclear power plants and following flue-gas purification in heating power plants as well as for off-gas cleaning in chemical industry. The improvement of HEPA filters and the development of metal fibre filters has led to components which can be used in the range of high humidity and moisture as well as at high temperatures and an increased differential pressure. The experience obtained in the field of high-efficiency filtering of nuclear airborne particles is made use of during the investigations concerning the removal of particles of conventional pollutants in the submicron range. A technique of radioiodine removal and an improved removal of airborne particles has been developed for use in the future reprocessing plant. Thus, a maximum removal efficiency can be achieved and an optimum waste management is made possible. It is reported about the components obtained as a result of these activities and their use for off-gas cleaning in the Wackersdorf reprocessing plant (WAW). (orig.)

  16. An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB)

    International Nuclear Information System (INIS)

    This study presents fundamental research on the development of a new boiler that is expected to have a higher efficiency and lower emissions than existing boilers. The thermodynamic efficiency of exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB) was calculated using thermodynamic analysis and was compared with other boilers. The results show the possibility of obtaining a high efficiency when the temperature of the exhaust gas is controlled within 50–60 °C because water in the exhaust gas is condensed within this temperature range. In addition, the enthalpy emitted by the exhaust gas for the new boiler is smaller because the amount of condensed water is increased by the high dew-point temperature and the low exhaust gas temperature. Thus, the new boiler can obtain a higher efficiency than can older boilers. The efficiency of the EGR-CWR-WHR CB proposed in this study is 93.91%, which is 7.04% higher than that of existing CB that is currently used frequently. - Highlights: • The study presents the development of a new boiler expected to have a high efficiency. • Thermodynamic efficiency of EGR-CWR-WHR condensing boiler was calculated. • Efficiency of EGR-CWR-WHR CB is 93.91%, which is 7.04% higher than existing CB

  17. Temperature dependence of source specific volatility basis sets for motor vehicle exhaust

    Science.gov (United States)

    Roy, Anirban; Choi, Yunsoo

    2015-10-01

    Recent work on emissions testing has focused on developing source specific volatility distributions which could be used to improve emissions inventories. One problem about these volatility profiles is that they are evaluated only at one temperature which is usually 298K. This study uses a simple statistical model to evaluate the temperature dependence of the source-resolved volatility basis set, considering gasoline and diesel vehicle exhaust. The steps involved (a) fitting a distribution to the emissions data (b) evaluating the goodness of fit using a statistical test (c) updating the volatility bins using the Clausius-Clayperon equation; calculating the heats of vaporization of each volatility class using a regression model (d) assessing how the volatility of different VOC classes-Extremely Low Volatile, Low Volatile, Semi-Volatile, Intermediate Volatile and Volatile Organic Compounds - are affected by temperature. The results indicated that there could be significant changes in gas-particle partitioning of these emissions. For diesel exhaust at 298K, the fractions are 5.4נ10-4 (ELVOC), 0.074 (LVOC), 0.76 (SVOC), 0.17 (IVOC) and 10-5 (VOC) respectively. Looking at a window of ?20K, the partitioning for 278K is 3נ10-3 (ELVOC), 0.26 (LVOC), 0.67 (SVOC), 0.07 (IVOC) with no VOC fraction; while at 318K it is 1.5נ10-7 (ELVOC), 9נ10-3 (LVOC), 0.64 (SVOC), 0.35 (IVOC) and 2נ10-5 (VOC); demonstrating a significant change with temperature. The parameterizations developed in this work could be used to improve motor vehicle emissions inventory models such as MOVES.

  18. Analysis of benefits of using internal exhaust gas recirculation in biogas-fueled HCCI engines

    International Nuclear Information System (INIS)

    Highlights: The influence of EGR on combustion of biogas fueled HCCI was investigated. The aim was to reduce intake temperature requirement by internal EGR. Combustion products caused the delay of combustion in similar conditions. Internal EGR enabled by negative valve overlap increased cylinder temperature. This increase was not enough to significantly reduce the intake temperature. - Abstract: This paper describes a numerical study that analyzed the influence of combustion products (CP) concentration on the combustion characteristics (combustion timing and combustion duration) of a biogas fueled homogeneous charge compression ignition (HCCI) engine and the possibility of reducing the high intake temperature requirement necessary for igniting biogas in a HCCI engine by using internal exhaust gas recirculation (EGR) enabled by negative valve overlap (NVO). An engine model created in AVL Boost, and validated against experimental engine data, was used in this study. The results show, somewhat counter-intuitively, that when CP concentrations are increased the required intake temperature for maintaining the same combustion timing must be increased. When greater NVO is used to increase the in-cylinder CP concentration, the in-cylinder temperature does increase, but the chemical dilution influence of CP almost entirely counteracts this thermal effect. Additionally, it has been observed that with larger fractions of CP some instability of combustion in the calculation was obtained which indicates that the increase of internal EGR might produce some combustion instability

  19. The Purification and Thermal Recovery of Exhaust Gas with the Wet-type Electrostatic Precipitator

    Science.gov (United States)

    Umemiya, Hiromichi; Koike, Hiroshi

    The exhaust gas ejected from engine heat pump contain the injurious materials, SOx, NOx and dust. And it also has a good deal of thermal energy, so thermal recovery from the exhaust gas increases the total C.O.P. of the heat pump system. The experimental study for the purpose of the purification of the exhaust gas and the thermal recovery from exhaust gas has been conducted with the wet-type electrostatic precipitator, which has the advantage of high collection efficiency and the gas-liquid direct heat-exchanism. The experimental results showed that: 1. For the dust, the collection efficiency of 96 % was achieved, when applied voltage was 19,000V. 2. The effect of the alkali absorption of Nox and SOx gases was made sure by the experiment. 3. The fundamental equation which is useful for design method was resolved by kinetic model of charged particle. 4. In the phenomenon of coagulation the velocity constant was decided with "Chemical Kinetics" and so that the density of coagulant, Ca(OH)2 was decided. 5. It is shown that mixing coagulant, Ca(OH)2, was a very effective way to remove the dust particles from the waste water. 6. Thermal energy of 5.3 kW was recovered from exhaust gas, so that total C.O.P. of heat pump system increases from 1.83 to 1.97.

  20. Platform for a hydrocarbon exhaust gas sensor utilizing a pumping cell and a conductometric sensor.

    Science.gov (United States)

    Biskupski, Diana; Geupel, Andrea; Wiesner, Kerstin; Fleischer, Maximilian; Moos, Ralf

    2009-01-01

    Very often, high-temperature operated gas sensors are cross-sensitive to oxygen and/or they cannot be operated in oxygen-deficient (rich) atmospheres. For instance, some metal oxides like Ga(2)O(3) or doped SrTiO(3) are excellent materials for conductometric hydrocarbon detection in the rough atmosphere of automotive exhausts, but have to be operated preferably at a constant oxygen concentration. We propose a modular sensor platform that combines a conductometric two-sensor-setup with an electrochemical pumping cell made of YSZ to establish a constant oxygen concentration in the ambient of the conductometric sensor film. In this paper, the platform is introduced, the two-sensor-setup is integrated into this new design, and sensing performance is characterized. Such a platform can be used for other sensor principles as well. PMID:22423212

  1. Platform for a Hydrocarbon Exhaust Gas Sensor Utilizing a Pumping Cell and a Conductometric Sensor

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2009-09-01

    Full Text Available Very often, high-temperature operated gas sensors are cross-sensitive to oxygen and/or they cannot be operated in oxygen-deficient (rich atmospheres. For instance, some metal oxides like Ga2O3 or doped SrTiO3 are excellent materials for conductometric hydrocarbon detection in the rough atmosphere of automotive exhausts, but have to be operated preferably at a constant oxygen concentration. We propose a modular sensor platform that combines a conductometric two-sensor-setup with an electrochemical pumping cell made of YSZ to establish a constant oxygen concentration in the ambient of the conductometric sensor film. In this paper, the platform is introduced, the two-sensor-setup is integrated into this new design, and sensing performance is characterized. Such a platform can be used for other sensor principles as well.

  2. Carbon Dioxide Emission Analysis of Chilled Water Production by Using Gas Turbine Exhaust Heat

    Directory of Open Access Journals (Sweden)

    Adzuieen Nordin

    2013-12-01

    Full Text Available Carbon dioxide from exhaust heat emission is one of the major contributorsto the environmental pollutant in power generation plants. This problem could be addressed if the emitted exhaust heat is recovered. In cogeneration plant, the exhaust heat from the gas turbine is used to generate steam usingHeat Recovery Steam Generator. The steam from Heat Recovery Steam Generator is then used for chilled water generation in Steam Absorption Chillers by absorption process. This study analyzed the total estimated amount of CO2 released to the environment due to chilled water production by using gas turbine exhaust heat. University Teknologi PetronasMalaysia cogeneration system is used as a case study. The energy balance principlewas adopted for the analysis. Results indicate that approximately 44% of CO2is avoided from being released to the environment by this process.

  3. Chemical gas sensors for car exhaust and cabin air monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, E.-L.; Winquist, F. [Department of Physics and Measurement Technology, Laboratory of Applied Physics, Linkoeping University, Gothenburg (Sweden); Rudell, B. [Department of Occupational and Environmental Medicine, Centre of Public Health Sciences, Linkoeping, Gothenburg (Sweden); Loefvendahl, A. [Volvo Car Corporation, Gothenburg (Sweden); Wass, U. [Volvo Technological Development Corporation, Gothenburg (Sweden)

    2002-07-01

    A combination of charcoal and particle filters has previously been shown to reduce effectively the smell of diesel exhaust. In this paper it is shown that the smell of diesel exhaust can successfully be predicted by the concentration of total volatile organic compounds and the concentration of certain carbonyl compounds. Projection to latent structures was utilised for model building. An electronic nose consisting of MOFSET and MOS sensors could less successfully predict the smell, but identified the same filter combination as being most efficient. The car cabin during urban driving was also monitored, both by the means of MOFSET sensors and by chemiluminescence. The pollution level inside the car is shown to be elevated by about 30% compared to outside the car. A combination filter together with an air inlet sensor switch is shown to reduce the NO{sub x} levels inside te car by 30% compared to outside, with the ability to significantly decrease the peak levels. (author)

  4. Heat-pipe assisted thermoelectric generators for exhaust gas applications

    OpenAIRE

    Gonalves, L. M.; Martins, Jorge; Antunes, Joaquim; Rocha, Romeu; Brito, F. P.

    2010-01-01

    Millions of hybrid cars are already running on our roads with the purpose of reducing fossil fuel dependence. One of their main advantages is the recovery of wasted energy, namely by brake recovery. However, there are other sources of wasted energy in a car powered by an internal combustion engine, such as the heat lost through the cooling system, lubrication system (oil coolers) and in the exhaust system. These energies can be recuperated by the use of thermoelectric generators (TEG) based o...

  5. Diesel emission reduction using internal exhaust gas recirculation

    Science.gov (United States)

    He, Xin (Denver, CO); Durrett, Russell P. (Bloomfield Hills, MI)

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  6. Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation

    International Nuclear Information System (INIS)

    The boiler of a premixed combustion system with EGR (exhaust gas recirculation) is investigated to explore the potential for increasing thermal efficiency and lowering pollutant emissions. To achieve this purpose, a thermodynamic analysis is performed to predict the effect of EGR on the thermodynamic efficiency for various equivalence ratios. Experiments of a preheated air condensing boiler with EGR were conducted to measure the changes in the thermal efficiency and the characteristics of the pollutant emission. Finally, a 1-D premixed code was calculated to understand the effect of the EGR method on the NO reduction mechanism. The results of the thermodynamic analysis show that the thermodynamic efficiency is not changed because the temperature and the amount of the exhaust gas are unchanged, even though the EGR method is implemented in the system. However, when the EGR method is used with an equivalence ratio near 1.00, it is experimentally verified that the thermal efficiency increases and the NOx concentration decreases. Based on the results from numerical calculations, it is shown that the NO production rates of N + O2 ? NO + O and N + OH ? NO + H are remarkably changed due to the decrease in the flame temperature and the NO mole fraction is decreased. - Highlights: Premixed combustion system with EGR is studied for a high efficiency and low NOx. All research is performed with various EGR and equivalence ratios. It verified that efficiency increases and the NOx emission decreases with EGR method. NO production rates are remarkably changed by N + O2 ? NO + O and N + OH ? NO + H with EGR

  7. Turbocharger efficiencies in pulsating exhaust gas flow; Turboladerwirkungsgrade in pulsierender Abgasstroemung

    Energy Technology Data Exchange (ETDEWEB)

    Aymanns, Richard; Scharf, Johannes; Uhlmann, Tolga [FEV GmbH, Aachen (Germany). Business Unit Gasoline Engines; Pischinger, Stefan [RWTH Aachen (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen

    2012-07-15

    The exhaust pressure pulse amplitudes in downsizing engines challenge the quasi steady modelling of turbocharger turbines in engine process simulation. An early selection of a well matching turbocharger is the key to time efficiency in the concept development phase of engines with ambitious performance and fuel economy targets. This article from FEV and RWTH Aachen assesses the turbocharger efficiencies in pulsating exhaust gas flow and gives a handling recommendation to minimise matching errors. (orig.)

  8. Catalytic study of SOFC electrode materials in engine exhaust gas atmosphere

    OpenAIRE

    Briault, Pauline; Rieu, Mathilde; Laucournet, Richard; Morel, Bertrand; Viricelle, Jean-Paul

    2013-01-01

    A single chamber solid oxide fuel cell (SC-SOFC) is a device able to produce electricity from a mixture of hydrocarbons and oxidant. An innovative application of this system would be to recover energy from exhaust gas of a thermal engine. This paper presents a study of stability and catalytic behaviour of electrode materials composing the cell in a mixture of hydrocarbons (propane, propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water corresponding to a composition of exhaust ...

  9. Reaction kinetics and reactor modelling in the design of catalytic reactors for automotive exhaust gas abatement

    OpenAIRE

    Ahola, J. (Juha)

    2009-01-01

    Abstract The tightening environmental legislation and technological development in automotive engineering form a challenge in reactor design of catalytic reactors for automotive exhaust gas abatement. The catalytic reactor is the heart of the exhaust aftertreatment processes, but it can be seen also just as one subsidiary part of vehicles. The aim of this work is to reveal applicable kinetic models to predict behaviour of the particular catalysts and to establish guidelines for modelli...

  10. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    Science.gov (United States)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  11. APPLICATION GUIDE FOR THE SOURCE PM10 EXHAUST GAS RECYCLE SAMPLING SYSTEM

    Science.gov (United States)

    The document describes assembly, operation, and maintenance of the Exhaust Gas Recycle (EGR) sampling system. The design of the sampling train allows the operator to maintain a constant flow rate through an inertial sampler while the gas flow rate into the sampling nozzle is adju...

  12. MgO--Y2O3-stabilized ZrO2 ceramics in exhaust gas sensor

    International Nuclear Information System (INIS)

    The ZrO2 electrolyte exhaust gas sensor was developed as the feedback signal device for control of engine air : fuel ratio at the stoichiometric ratio. The exhaust gas sensor electrolyte is ZrO2, typically stabilized with CaO or Y2O3. Because of various operating advantages, the Y2O3-ZrO2 ceramic is preferred; however, its cost is significantly greater than the CaO body. Data are presented on a series of MgO-Y2O3-stabilized zirconias that can be used in place of the Y2O3 fully stabilized material. The sintered MgO-Y2O3-ZrO2 ceramic was fully stabilized and remained so after extended exposure in an engine durability test. The ceramic displayed some segregation of MgO throughout the matrix and a resistivity at typical exhaust temperatures (approximately equal to 6000C) four to nine times higher than that of the MgO-Y2O3-ZrO2 compositions. However, the ternary compositions appeared to be less expensive, reliable substitutes for the standard 8 mol percent Y2O3-ZrO2 ceramic in the exhaust sensor application

  13. Thermoelectric exhaust energy recovery with temperature control through heat pipes

    OpenAIRE

    Martins, Jorge; Brito, F. P.; Gonalves, L. M.; Antunes, Joaquim

    2011-01-01

    Currently, a great deal of the automotive industrys R&D effort is focused on improving overall vehicle environmental and energy efficiency. For instance, one of the things that Electric Vehicles (EVs) and Hybrid cars (HEV) have in common is the recovery of waste energy, namely during braking. But, when an I.C. engine is operating (e. g. as a range extender in an EV), a large amount of energy is also wasted within the exhaust gases and with engine cooling, energy that could otherwise be recov...

  14. Evaluation of Energy Saving Characteristics of a High-Efficient Cogeneration System Utilizing Gas Engine Exhaust Heat

    Science.gov (United States)

    Pak, Pyong Sik

    A high efficiency cogeneration system (CGS) utilizing high temperature exhaust gas from a gas engine is proposed. In the proposed CGS, saturated steam produced in the gas engine is superheated with a super heater utilizing regenerative burner and used to drive a steam turbine generator. The heat energy is supplied by extracting steam from the steam turbine and turbine outlet low-temperature steam. Both of the energy saving characteristics of the proposed CGS and a CGS constructed by using the original gas engine (GE-CGS) were investigated and compared, by taking a case where energy for office buildings was supplied by the conventional energy systems. It was shown that the proposed CGS has energy saving rate of 24.5%, higher than 1.83 times, compared with that of the original GE-CGS.

  15. HEAT TRANSFER IN EXHAUST SYSTEM OF A COLD START ENGINE AT LOW ENVIRONMENTAL TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Sneana D Petkovi?

    2010-01-01

    Full Text Available During the engine cold start, there is a significantly increased emission of harmful engine exhaust gases, particularly at very low environmental temperatures. Therefore, reducing of emission during that period is of great importance for the reduction of entire engine emission. This study was conducted to test the activating speed of the catalyst at low environmental temperatures. The research was conducted by use of mathematical model and developed computer programme for calculation of non-stationary heat transfer in engine exhaust system. During the research, some of constructional parameters of exhaust system were adopted and optimized at environmental temperature of 22 ?C. The combination of design parameters giving best results at low environmental temperatures was observed. The results showed that the temperature in the environment did not have any significant influence on pre-catalyst light-off time.

  16. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  17. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear analysis of the highly non-linear dynamics. Control architectures are investigated and performance in terms of disturbance rejection and reference tracking are investigated under model uncertainty. Classical feed-forward and feedback controller designs are investigated using classical and Quantitative Feedback Theory (QFT) designs. Validation of the controller is made on the model with focus on disturbance reduction ability.

  18. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper; Nielsen, Anders Krebs; Damborg, Rune; Widd, Anders; Abildskov, Jens; Jensen, Anker Degn; Huusom, Jakob Kjøbsted

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulati...... modular model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  19. Reformulation of engine gasoline to reduce exhaust emissions in Finnish conditions. Effect of gasoline aromatics, olefins and T90 temperature on exhaust emissions

    International Nuclear Information System (INIS)

    The research work focused on the effects of gasoline composition, i.e. aromatics and olefin contents and 90 % point of distillation, on exhaust emissions. The experimental part comprised exhaust gas measurements for 13 catalyst cars at +22 deg C and for one non-catalyst car at +22 deg C according to FTP75 driving cycle. Regulated emissions (THC, CO and NOx), non-regulated emissions (hydrocarbons and aldehydes), carbon dioxide and fuel consumption were measured. The high aromatics contents of eight test fuels were about 40 vol% and the low ones about 15 vol%, the high olefin contents were about 15 vol% and the low ones about 2 vol%, and the high T90 temperatures about +170 deg C and the low ones +145 deg C. The results were treated in two ways: effects of each single change in characteristics, and those of simultaneous changes in all fuel characteristics studied. The lowest CO and THC emissions for the catalyst cars at +22 deg C were obtained by reducing the aromatics content and the T90 temperature of the fuel, while the reduction of the olefin content increased respective emissions. The NOx emission increased when the aromatics content and T90 temperature were reduced, and decreased slightly when the olefin content was reduced. The CO2 emission and the fuel consumption (kg/100 km) were affected, i.e. reduced, only by a reduction in the aromatics content. However, the fuel consumption in volume units (1/100 kg) increased. The results at -7 deg C for THC and NOx emissions were along the same lines as at +22 deg C, except for the CO emission, which decreased when the olefin content was reduced and increased when the T90 temperature was lowered

  20. Relationship between the variations of hydrogen in HCNG fuel and the oxygen in exhausted gas

    Directory of Open Access Journals (Sweden)

    Preecha Yaom

    2015-09-01

    Full Text Available The variation of the mixing ratio between hydrogen and compressed natural gas (CNG in hydrogen enriched compressed natural gas fuel (HCNG gives different results in terms of engine performances, fuel consumption, and emission characteristics. Therefore, the engine performance using HCNG as fuel can be optimized if the mixing ratio between the two fuels in HCNG can be adjusted in real time while the engine is being operated. In this research, the relationship between the amount of oxygen in the exhausted gas and the mixing composition between the hydrogen and CNG in HCNG is investigated based on the equilibrium equation of combustion. It is found that the main factors affecting the amount of oxygen in exhausted gas when using HCNG as fuel include the error from the air-fuel-ratio (AFR control, the error from the HCNG composition control, and the intended change of the HCNG composition. Theoretically, the amount of the oxygen in the exhaust should increase by 0.78% for every 5% addition of H2 at stoichiometric condition. This value can be higher or lower for lean and rich engine operation, respectively. The experimental results found that at the equivalent ratio around 0.8 the amount of O2 in the exhaust gas increases about 1.23% for every 5% H2 addition, which inclines with the proposed calculations.

  1. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    berg, Andreas; Hansen, Thomas Klint

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating the whole catalytic exhaust system would be beneficial towards this goal. A methodology for developing a modular model capable of simulating a system consisting of several sub systems is presented. The methodology describes the steps the user should take to go from problem formulation to the final modular model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system.

  2. Amounts, cleaning, measurement and limits of exhaust gas emissions from petrol cars

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.-O.; Kytoe, M.; Koponen, P.; Leppaemaeki, E.

    1985-06-15

    The present level of exhaust gas emissions, available means for their reduction, current measuring techniques, the comparability of measuring results and trends of development in the field of regulations and technology in Europe are reviewed. Catalytic cleaning is today the most effective method of purification. A so-called three-way catalyst, where both oxidation and reduction reaction take place represents the latest technology. This catalyst with auxiliary equipment is relatively expensive and increases fuel consumption by 10-15%. The use of leadfree petrol makes the use of catalytic exhaust gas purification possible and reduces the amount of nitric compounds in the exhaust gases. According to these present knowledge the leadfree petrol will be brought into use in the EEC countries in 1989.

  3. Completion of 50kW-class pulsed corona discharge type exhaust gas treatment system; Pulse korona hoden hai gas shori system no kansei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A pulsed corona discharge type exhaust gas treatment system is completed, capable of decomposing and removing toxic substances such as dioxins and nitrogen oxides contained in exhaust gas emitted by urban refuse incinerators and the like. The system comprises a semiconductor high-voltage pulsed power source for generating short-pulse corona discharges and a reactor for purifying exhaust gas using the said discharges. Active radicals generated during discharges act directly on dioxins, etc., in exhaust gas, and accomplish toxic substance decomposition and exhaust gas purification through oxidation. No secondary waste is produced by the treatment. Fluctuations in exhaust gas volume are dealt with, and incinerator startup and stoppage executed, by merely controlling electric power. (translated by NEDO)

  4. 40 CFR 86.111-94 - Exhaust gas analytical system.

    Science.gov (United States)

    2010-07-01

    ...formaldehyde is performed using high pressure liquid chromatography (HPLC) of 2,4-dinitrophenylhydrazine...Measurement Using Gas Chromatography, December 1991, 1994...formaldehyde is performed using high-pressure liquid chromatography (HPLC) of...

  5. CHEMICAL COMPOSITION OF EXHAUST PARTICLES FROM GAS TURBINE ENGINES

    Science.gov (United States)

    A program was conducted to chemically characterize particulate emissions from a current technology, high population, gas turbine engine. Attention was focused on polynuclear aromatic compounds, phenols, nitrosamines and total organics. Polynuclear aromatic hydrocarbons (PAH) were...

  6. HPLC analysis of aldehydes in automobile exhaust gas: Comparison of exhaust odor and irritation in different types of gasoline and diesel engines

    International Nuclear Information System (INIS)

    This study investigated high performance liquid chromatography (HPLC) to identify and measure aldehydes from automobile exhaust gas. Four aldehydes: formaldehyde (HCHO), acetaldehyde (CH3CHO), acrolein (H2C=CHCHO) and propionaldehyde (CH3CH2CHO) and one ketone, acetone (CH3)2CO are separated. The other higher aldehydes in exhaust gas are very small and cannot be separated. A new method of gas sampling, hereafter called bag sampling in HPLC is introduced instead of the trapping gas sampling method. The superiority of the bag sampling method is its transient gas checking capability. In the second part of this study, HPLC results are applied to compare exhaust odor and irritation of exhaust gases in different types of gasoline and diesel engines. Exhaust odor, irritation and aldehydes are found worst in direct injection (DI) diesel engines and best in some good multi-point injection (MPI) gasoline and direct injection gasoline (DIG) engines. Indirect injection (IDI) diesel engines showed odor, irritation and aldehydes in between the levels of MPI gasoline, DIG and DI diesel engines

  7. Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture

    OpenAIRE

    Li, Hailong; Ditaranto, M; Berstad, D

    2011-01-01

    Enhanced CO2 concentration in exhaust gas is regarded as a potentially effective method to reduce thehigh electrical efficiency penalty caused by CO2 chemical absorption in post-combustion capturesystems. The present work evaluates the effect of increasing CO2 concentration in the exhaust gas of gasturbine based power plant by four different methods: exhaust gas recirculation (EGR), humidification(EvGT), supplementary firing (SFC) and external firing (EFC). Efforts have been focused on the im...

  8. An overview of exhaust emissions regulatory requirements and control technology for stationary natural gas engines

    International Nuclear Information System (INIS)

    In this paper a practical overview of stationary natural gas engine exhaust emissions control technology and trends in emissions regulatory requirements is presented. Selective and non-selective catalytic reduction and lean burn technologies are compared. Particular emphasis is focussed on implications of the Clean Air Act of 1990. Recent emissions reduction conversion kit developments and a practical approach to continuous monitoring are discussed

  9. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of exhaust-gas dilution system. 36.49 Section 36.49 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements...

  10. DESIGN AND CHARACTERIZATION OF AN ISOKINETIC SAMPLING TRAIN FOR PARTICLE SIZE MEASUREMENTS USING EXHAUST GAS RECIRCULATION

    Science.gov (United States)

    A particulate sampling train has been constructed which satisfies the conflicting requirements of isokinetic sample extraction and constant flowrate through an inertial sizing device. Its design allows a variable fraction of the filtered exhaust gas to be added to the sample upst...

  11. System acceptance and operability test report for the RMCS exhauster C on flammable gas tanks

    Energy Technology Data Exchange (ETDEWEB)

    Waldo, E.J.

    1998-03-11

    This test report documents the completion of acceptance and operability testing of the rotary mode core sampling (RMCS) exhauster C, as modified for use as a major stack (as defined by the Washington State Department of Health) on flammable gas tanks.

  12. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... shall conform to the specifications of 40 CFR part 86, subpart D, with the following exceptions and.... (a) General. The exhaust gas sampling system described in this paragraph is designed to measure the... good engineering judgement. The wire should be inserted up to the HFID inlet. Stabilize the...

  13. Application of a power recovery system to gas turbine exhaust gases

    International Nuclear Information System (INIS)

    This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower

  14. Catalytic treatment of exhaust gas of small-volume, two-stroke internal combustion engines. Katalytische Abgasnachbehandlung an kleinvolumigen Zweitaktottomotoren

    Energy Technology Data Exchange (ETDEWEB)

    Mikulic, L.

    1982-01-01

    Environmental pollution due to exhaust emissions of small-volume, two-stroke internal combustion engines (e.g. in small cars and motorbikes) is a problem that cannot be neglected, especially in view of the high emissions of uncombusted hydrocarbons. Apart from improvements in engine design, oxidation catalysts of noble metal are a means of reducing emissions in these groups of vehicles. After optimisation of a two-bed catalyst system, CO and HC emissions were much lower than the limiting values states in ECE specification No. 47 and lower than the values measured in comparable four-stroke engines. The service life of catalysts in European climate was studied and found to be satisfactory in view of the annual mileage of the vehicle categories investigated. Ae the same time, exhaust gas opacity was found to be improved. The author further attempted to determine the reaction mechanisms of CO and HC oxidation at the given exhaust gas composition and to find out about the temperature conditions inside the catalyst.

  15. FTIR spectroscopy for the analysis of selected exhaust gas flows in silicon technology

    Science.gov (United States)

    Guber, A. E.; Khler, U.

    1995-03-01

    Fabrication of highly integrated circuits or microstructures is presently accomplished above all by means of dry chemical etching processes with mostly halogen containing etching gases being used. As a result of the decomposition of these gases in a plasma reactive radicals are formed. They react with solid silicon compounds to gaseous SiF 4. Furthermore, partly highly toxic substances are generated in the exhaust gas flow by the recombination of other molecule fragments. For this reason, selected exhaust gases of RIE and PECVD facilities have been investigated by FTIR spectroscopy and evaluated with regard to their hazard potential and possible HF emission rate.

  16. Report on result in fiscal 1998 of 'Studies to aid practical application of recycling technologies (4)'. Research and development of enhancement of automobile fuel consumption and exhaust gas technologies; 1998 nendo recycle gijutsu nado jitsuyoka shien kenkyu. 4. Jidosha nenpi hai gas gijutsu kodoka kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In research and development intended of enhancing automobile fuel consumption and reducing exhaust gas, fiscal 1998 has performed investigations on effect of environmental temperatures on exhaust gas and evaporation gas, studies on methods for analyzing harmful substances, and research aiding investigations. In the investigations on effect of environmental temperatures on exhaust gas, actual status of exhaust gas was identified and exhaust gas was measured by varying the environmental temperature. As a result, it was discovered that CO and THC decrease as the environmental temperature rises in the mode 11, while NOx increases as the environmental temperature rises. It was made clear that exhaust gas is affected similarly by the environmental temperature also in the modes 10 and 15. The result of measuring the evaporation gas revealed that the evaporation gas increases as the average atmospheric temperature rises. It was made clear that the analytical method using a 1,3 butadiene measuring device developed from the present research is a highly reliable method with the analysis cycle as short as four minutes, and with less effect of aging in collecting bags. (NEDO)

  17. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    Science.gov (United States)

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  18. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    International Nuclear Information System (INIS)

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N2 dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  19. Measurement of gas-phase polycyclic aromatic hydrocarbons (PAH) in gasoline vehicle exhaust

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAH) are emitted at low levels from most combustion sources including motor vehicles. Extensive studies have been carried out in the past on the identification and quantitation of PAH in particular matter, primarily from diesel vehicles; however, only limited data are available on gas phase emissions from motor vehicles. Gas phase emissions are important from both a health perspective and because of their higher chemical reactivity during atmospheric transport. A method was sought to allow the authors to measure gas phase PAH in diluted vehicle exhaust over the relatively short collection times permitted during the U. S. Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) or Federal Test Procedure (FTP). In this paper, the authors describe their results on the development of a method using adsorption/thermal desorption with Tenax solid absorbent for the analysis of PAH and PAH derivatives in dilute vehicle exhaust

  20. Interaction between struts and swirl flow in gas turbine exhaust diffusers

    Science.gov (United States)

    Pietrasch, Roman Z.; Seume, Joerg R.

    2005-12-01

    The increasing use of gas turbines in combined cycle power plants together with the high amount of kinetic energy in modern gas turbine exhaust flows focuses attention on the design of gas turbine diffusers as the connecting part between the Brayton/Joule and the Rankine parts of the combined cycle. A scale model of a typical gas turbine exhaust diffuser is investigated experimentally. The test rig consists of a radial type, variable swirl generator which provides the exhaust flow corresponding to different gas turbine operating conditions. Static pressure measurements are carried out along the outer diffuser walls and along the hub of the annular part and along the centerline of the conical diffuser. Velocity distributions at several axial positions in the annular and conical diffuser have been measured using a Laser Doppler Velocimeter (LDV). Pressure recovery coefficients and velocity profiles are depicted as a function of diffuser length for several combinations of swirl strength, tip flow and strut geometries. The diffuser without struts achieved a higher pressure recovery than the diffuser with struts at all swirl angle settings. The diffuser with cylindrical struts achieved a higher pressure recovery than the diffuser with profiled struts at all swirl angle settings. Inlet flows with swirl angles over 18 affected the pressure recovery negatively for all strut configurations.

  1. Guideline for management of radioisotope concentrations in exhaust gas and waste water

    International Nuclear Information System (INIS)

    This guideline is written for members of the association to understand the Iyakuhatu No. 188 Report (March 16, 2001) for safety use and management of radioisotopes (RI) at the actual medical working places and consists of three parts. The first part describes the new method of calculation of RI concentrations in air, exhaust gas and waste water. Secondly, the essential observance matters in accordance to the assessment by the new calculation method are described. Here, methods of management with documents are explained concerning grasping of the quantity at use, the time engaged in the works in the radiation therapeutic room, actual measurement of RI concentrations in the exhaust gas and waste water and enforcement of facility examinations. The last part describes the essential items for securing the safety and presented the actual respective document forms. In addition, appendix describes examples for calculation of RI concentration ratios in the gas and water, the manual for measurement of concentrations in the water, detection efficiency of gas and water monitors like NaI(Tl) auto-well-counter and liquid scintillation counter, and examinations of equipments for exhausting gas and wasting water. This guideline is available on http://www.jsnm.org/ and http://www.jrias.or.jp. (K.H.)

  2. 40 CFR 1039.101 - What exhaust emission standards must my engines meet after the 2014 model year?

    Science.gov (United States)

    2010-07-01

    ...Not-to-exceed standards. Exhaust emissions from your...Where: T = ambient air temperature in degrees...engines equipped with exhaust-gas recirculation, the NTE standards...Fuel types. The exhaust emission...

  3. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Sren Juhl; Kr, Sren Knudsen; Rosendahl, Lasse

    2014-01-01

    In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat...

  4. Analysis of Exhaust Gas Waste Heat Recovery and Pollution Processing for Z12V190 Diesel Engine

    Directory of Open Access Journals (Sweden)

    Hou Xuejun

    2012-06-01

    Full Text Available With the increasingly prominent problem regarding rapid economy development and the gradually serious environmental pollution, the waste heat recovery and waste gas pollution processing have received significant attention. Z12V190 diesel engine has high fuel consumption and low thermal efficiency and releases large amounts of exhaust gas and waste heat into the atmosphere, causing serious problems of energy waste and environmental pollution. In this work, the diesel engine exhaust gas components are analysed and the diesel engine exhaust emission rates and exhaust gas waste heat rates are calculated. The calculating results proved the economic feasibility of waste heat recovery from Z12V190 diesel engine exhaust gas. Then, the mainly harmful components are analysed and the corresponding methods of purification and processing about Z12V190 diesel engine exhaust gas pollution discussed. In order to achieve full recovery of waste heat, save energy, purify treatment pollution and ultimate to lay the foundation for waste gas recovery and pollution treatment, the comprehensive process flows of Z12V190 diesel engine exhaust gas pollution processing and waste heat recovery are preliminary designed.

  5. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    Science.gov (United States)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  6. Electron beam degradation of simulated toluene-containing exhaust gas

    International Nuclear Information System (INIS)

    With toluene as an example, experimental investigation on VOCs treatment by electron beam irradiation was carried out. The system uses 0.8 MeV electron beams to irradiate simulated toluene-containing gases to 5kGy-40kGy for investigatiing effects of initial concentration, absorbed dose, humidity on toluene removal rate. The toluene removal rate increased with absorbed dose. With 0.5-l.2Nm3/h of the gas flow at an initial toluene concentration of 1600mg/Nm3, the toluene removal rate was 46.5% at 10kGy and 72.2% at 40kGy. And increasing humidity increased the toluene removal rate, too. Qualitative analysis on by-products of the toluene degradation was made by means of Gas Chromatogram-Mass Spectrometer (GC/MS) and Chromatography of Ions (IC). It was found that the by-products consist of mainly benzaldehyde and formic acid, plus a little benzoic acid, benzyl alcohol, methyl pyridine, nitrotoluene, o-cresol, phenol and benzoin ethyl etherl. Mechanisms of the E-beam toluene removal, i.e. the contributions of OH free radicals and O2 to the oxidation of toluene, were discussed. (authors)

  7. The Development of a Hollow Blade for Exhaust Gas Turbines

    Science.gov (United States)

    Kohlmann, H

    1950-01-01

    The subject of the development of German hollow turbine blades for use with internal cooling is discussed in detail. The development of a suitable blade profile from cascade theory is described. Also a discussion of the temperature distribution and stresses in a turbine blade is presented. Various methods of manufacturing hollow blades and the methods by which they are mounted in the turbine rotor are presented in detail.

  8. Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization

    International Nuclear Information System (INIS)

    Highlights: ? Efficiency enhancement of Natural Gas (NG) processing plants in hot/humid climates. ? Gas turbine waste heat powered trigeneration scheme using absorption refrigeration. ? Annual NG savings of 1879 MSCM and operating cost savings of US$ 20.9 million realized. ? Trigeneration scheme payback period estimated at approximately 1 year. ? Significant economical and environmental benefits for NG processing plants. - Abstract: The performance of Natural Gas Processing Plants (NGPPs) can be enhanced with the integration of Combined Cooling, Heating and Power (CCHP) generation schemes. This paper analyzes the integration of a trigeneration scheme within a NGPP, that utilizes waste heat from gas turbine exhaust gases to generate process steam in a Waste Heat Recovery Steam Generator (WHRSG). Part of the steam generated is used to power double-effect waterlithium bromide (H2OLiBr) absorption chillers that provide gas turbine compressor inlet air-cooling. Another portion of the steam is utilized to meet part furnace heating load, and supplement plant electrical power in a combined regenerative Rankine cycle. A detailed techno-economic analysis of scheme performance is presented based on thermodynamic predictions obtained using Engineering Equation Solver (EES). The results indicate that the trigeneration system could recover 79.7 MW of gas turbine waste heat, 37.1 MW of which could be utilized by three steam-fired H2OLiBr absorption chillers to provide 45 MW of cooling at 5 C. This could save approximately 9 MW of electric energy required by a typical compression chiller, while providing the same amount of cooling. In addition, the combined cycle generates 22.6 MW of additional electrical energy for the plant, while process heating reduces furnace oil consumption by 0.23 MSCM per annum. Overall, the trigeneration scheme would result in annual natural gas fuel savings of approximately 1879 MSCM, and annual operating cost savings of approximately US$ 20.9 million, with a payback period of 1 year. This study highlights the significant economical and environmental benefits that could be achieved through implementation of the proposed integrated cogeneration scheme in NGPPs, particularly in elevated ambient temperature and humidity conditions such as encountered in Middle East facilities.

  9. Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber.

    DEFF Research Database (Denmark)

    Lieke, Kirsten Inga; Rosenrn, Thomas

    2013-01-01

    This work provides insight into the morphology and mixing state of submicron particles in diesel exhaust from a ship engine with an exhaust gas recirculation scrubber. Particles from this low-speed ship engine on test bed were collected using a microiner-tial impactor with transmission electron microscopy (TEM) grids on two stages. Micro- and nanostructural characteristics of sin-gle particles were studied by TEM. Image analysis was carried out on overview and high-resolution images, revealing influence of the exhaust gas treatment (scrubber) on the particle morphology and mixing state. Soot agglomerates were found to be collapsed after scrubber, reflected by their change in fractal dimension (fly) from 1.88 to 2.13. Soot was predominantly found internally mixed with other components, with a higher degree of internal mix-ing observed after scrubber. Soot nanostructural characteristics on the near atomic scale such as layer distance, lamella length, and tortuosity were not observed to be influenced by the scrub-ber. We also found that particles in the size range between 30 and 50 nm, which were abundant in the exhaust before and after scrubber, were not graphitic soot. Furthermore, we found indications that these particles are composed of other crystalline material (salts).

  10. Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber

    DEFF Research Database (Denmark)

    Lieke, Kirsten Inga; Rosenorn, Thomas

    2013-01-01

    This work provides insight into the morphology and mixing state of submicron particles in diesel exhaust from a ship engine with an exhaust gas recirculation scrubber. Particles from this low-speed ship engine on test bed were collected using a microinertial impactor with transmission electron microscopy (TEM) grids on two stages. Micro- and nanostructural characteristics of single particles were studied by TEM. Image analysis was carried out on overview and high-resolution images, revealing influence of the exhaust gas treatment (scrubber) on the particle morphology and mixing state. Soot agglomerates were found to be collapsed after scrubber, reflected by their change in fractal dimension (D-f ) from 1.88 to 2.13. Soot was predominantly found internally mixed with other components, with a higher degree of internal mixing observed after scrubber. Soot nanostructural characteristics on the near atomic scale such as layer distance, lamella length, and tortuosity were not observed to be influenced by the scrubber. We also found that particles in the size range between 30 and 50nm, which were abundant in the exhaust before and after scrubber, were not graphitic soot. Furthermore, we found indications that these particles are composed of other crystalline material (salts). Copyright 2013 American Association for Aerosol Research

  11. Analysis of Exhaust Gas Waste Heat Recovery and Pollution Processing for Z12V190 Diesel Engine

    OpenAIRE

    Hou Xuejun; Gao Deli

    2012-01-01

    With the increasingly prominent problem regarding rapid economy development and the gradually serious environmental pollution, the waste heat recovery and waste gas pollution processing have received significant attention. Z12V190 diesel engine has high fuel consumption and low thermal efficiency and releases large amounts of exhaust gas and waste heat into the atmosphere, causing serious problems of energy waste and environmental pollution. In this work, the diesel engine exhaust gas compone...

  12. Experimental research on exhaust gas purifying facilities in incinerating treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Among the research on the incinerating treatment of combustible low level wastes, three items, that is, combustible low level radioactive wastes and incinerating treatment method, wet type exhaust gas purifying facilities and ceramic filter type dry exhaust gas purifying facilities, were selected, and experimental research was carried out on the main theme of exhaust gas purification in the incineration of low level radioactive wastes. The definition of combustible low level radioactive wastes was decided, and the wastes conforming to this criteria were investigated and classified. The combustible low level wastes generated in the Tokai Research Establishment were classified and weighed, and the results reflected well the state of activities. The change of radioactive wastes to radioactive aerosol, radioactive gas and residue by incineration was investigated. The effect of volume reduction by incineration was studied. The decontamination performance of wet purifying system, the release of tritium steam, the cooling capacity of scrubbers and their corrosion, the construction of the test incinerator using ceramic filters, and the various tests on ceramic filters are reported. (K.I.)

  13. Efficiency of thermoelectric recuperators of the exhaust gas energy of internal combustion engines

    Science.gov (United States)

    Anatychuk, L. I.; Kuz, R. V.; Rozver, Yu. Yu.

    2012-06-01

    Results of computer simulation of thermoelectric generators (TEG) using the exhaust heat of internal combustion engines are presented. Sectionalized generator schematics whereby maximum efficiency is achieved for cases of real temperature dependences of the most suitable thermoelectric materials are considered. A model optimized for minimum cost is considered as well. Results of experimental research on generator that employs exhaust heat from heat and electricity cogeneration plant with a diesel engine are presented. Computer simulation is verified by the test results. The outlook for application of such heat recuperators in stationary plants is considered.

  14. Exhaust gas treatment by electron beam irradiation, (3)

    International Nuclear Information System (INIS)

    Based on the results of the small size system test which were detailed in the previous issue, a pilot plant was installed to treat the heavy oil combustion gas of the flow rate of 1000m3/h(NTP). With this plant the feasibility of dry simultaneous treatment of NOx and SO2 by electron beam irradiation was studied. The main results are as follows. 1) Also at the pilot plant scale, containuous and simultaneous removal of NOx, and SO2 by electron beam irradiation is possible. 2) The relationship between the NOx and SO2 removal efficiency and the amount of irradiation required agrees fairly well with the results of the small system test. 3) Reaction products are unstable in the flue, and it is impossible to collect them as solids using an electro-static precipitator. Accordingly, for industrialization of the process a method to stabilize the reaction products is necessary. 4) The phenomena observed during the operation can be fairly well explained by assuming nitrosyl sulfuric acid as a reaction product. (author)

  15. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    Science.gov (United States)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method in which all gaseous compounds are absorbed before particles are collected, and in which the volatile compounds are derivatized, would improve the precision and the accuracy of the data.

  16. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Sren Juhl; Chen, Min; Kr, Sren Knudsen

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based on a...... plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance of the...... model accuracy and the optimization on system configuration. Future studies will concentrate on heat exchanger structures....

  17. Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Krn Vodder; Blanke, Mogens

    2015-01-01

    A nonlinear adaptive controller is proposed for the exhaust gas recirculation systemon large two-stroke diesel engines. The control design is based on a control oriented model ofthe nonlinear dynamics at hand that incorporates load and engine speed changes as knowndisturbances to the exhaust gas recirculation. The paper provides proof of exponential stabilityfor closed loop control of the model given. Difficulties in the system include that certaindisturbance levels will make a desired setpoint in O2 unreachable, for reasons of the physics of thesystem, and it is proven that the proposed control will make the system converge exponentiallyto the best achievable state. Simulation examples confirm convergence and good disturbancerejection over relevant operational ranges of the engine.

  18. Modelling for Control of Exhaust Gas Recirculation on Large Diesel Engines

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Zander, Claes-Gran

    2013-01-01

    Exhaust Gas Recirculation (EGR) reduces NOx emissions by reducing O2 concentration for the combustion and is a preferred way to obtain emission regulations that will take effect from 2016. If not properly controlled, reduction of O2 has adverse side eects and proper control requires proper dynamic models. While literature is rich on four-stroke automotive engines, this paper considers two-stroke engines and develops a non-linear dynamic model of the exhaust gas system. Parameters are determined by system identication. The paper uses black-box nonlinear model identication and modelling from rst principles followed by parameter identication and compares the results of these approaches. The paper performs a validation against experimental data from a test engine and presents a linearised model for EGR control design.

  19. Study on using acetylene in dual fuel mode with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Interest in employing gaseous fuels to internal combustion (IC) engines whether for stationary or mobile automotive applications has gained importance because of the economical, sustainable and environmental technical features associated with their usage. However, the incidence of preignition and knock remains a significant barrier in achieving their optimum performance potential. With the advent of latest technologies, the above barriers are eliminated. One such technique is timed manifold injection (TMI) of the gaseous fuel, which is controlled electronically to precisely monitor the induction of fuel to overcome the preignition problem in the intake. In the present investigation, acetylene was injected in the intake manifold in a single cylinder diesel engine, with a gas flow rate of 240 g/h, start of injection time is 10o aTDC and 90o CA (9.9 ms) duration, operated in dual fuel mode. In order to decrease the NOx emissions from acetylene-diesel engine, cooled EGR was employed. The cylinder pressure, brake thermal efficiency and emissions such as NOx, smoke, CO, HC, CO2 and exhaust gas temperature were studied. Dual fuel operation with acetylene induction coupled with cooled EGR results in lowered NOx emissions and improved part load performance. -- Highlights: ? Acetylene was tried in SI engines, but due to backfire further research was hindered as an alternative fuel. ? But it is not tried in CI engine. Timed manifold injection was tried in diesel engine in the present work to combat backfire. ? Author was successful in running the diesel engine in dual fuel mode. ? 21% maximum diesel replacement was achieved. Author is confident that acetylene will be commercialised as a fuel for diesel engine in future.

  20. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22) Diesel engine soot and NOx emission modelling. (orig)

  1. Diesel engine management at a glance inclusive exhaust gas technique; Dieselmotor-Management im Ueberblick einschliesslich Abgastechnik

    Energy Technology Data Exchange (ETDEWEB)

    Reif, Konrad (ed.)

    2010-07-01

    The book under consideration reports on operational areas and fundamentals of diesel engines, fuels, filling control, injection systems including the associated pumps and nozzles, regulation, starting systems, internal engine emission reduction, after-treatment of exhaust gases, emissions legislation, exhaust gas measurement and diagnosis.

  2. Experimental Analysis of the Effect of Exhaust Gas Recirculation (EGR) on Engine Performance and Exhaust Emissions on Diesel Engines

    OpenAIRE

    HA??MO?LU, Can

    2002-01-01

    When the temperature of the combustion chamber rises beyond 1800 K in internal combustion engines, the nitrogen and oxygen in the air combine chemically and become a gas called nitrogen oxide, which is harmful to human health and the environment. Nitrogen oxides combine with humidity in the lungs and become nitric acid, which causes breathing illnesses. Diesel engines use excess air for combustion, and this increases nitrogen oxide production potential. In this research, the reduction of ...

  3. Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine

    OpenAIRE

    Grbz Habib; Akay Hsameddin

    2015-01-01

    In this study, we have investigated the recovery of energy lost as waste heat from exhaust gas and engine coolant, using an improved thermoelectric generator (TEG) in a LPG fueled SI engine. For this purpose, we have designed and manufactured a 5-layer heat exchanger from aluminum sheet. Electrical energy generated by the TEG was then used to produce hydrogen in a PEM water electrolyzer. The experiment was conducted at a stoichiometric mixture ratio, 1/2 th...

  4. Investigation of Materials for Use in Exhaust Gas Condensate Environment with Focus on EGR systems

    OpenAIRE

    Olofsson, Andreas

    2012-01-01

    EGR (Exhaust Gas Recirculation) ar en teknik som anvands for dieselmotorer, for att mota de hart satta utslappskraven for kvaveoxider. EGR fungerar genom att en del av avgaserna aterfors till cylindrarna. Avgaserna gor sa att den maximala forbranningstemperaturen sanks, vilket kraftigt reducerar bildandet av kvaveoxider. Dieselavgaser inneh aller framst CO2, NOx, SO2 och H2O och innan avgasernaaterfors till cylindrarna kyls de ner. Detta leder till att det bildas ett korrosivt kondensat, eft...

  5. PERFORMANCE AND EXHAUST GAS EMISSIONS ANALYSIS OF DIRECT INJECTION CNG-DIESEL DUAL FUEL ENGINE

    OpenAIRE

    RANBIR SINGH; SAGAR MAJI

    2012-01-01

    Existing diesel engines are under stringent emission regulation particularly of smoke and particulate matter in their exhaust. Compressed Natural Gas and Diesel dual fuel operation is regarded as one of the best ways to control emissions from diesel engines and simultaneously saving petroleum based diesel fuel. Dual fuel engineis a conventional diesel engine which burn either gaseous fuel or diesel or both at the same time. In the present paper an experimental research was carried out on a la...

  6. Laboratory Scale of Liquid Coal Fuel Combustion Process and Exhaust Gas Formation

    OpenAIRE

    Kartika K. Hendratna; Osami Nishida; Hirotsugu Fujita; Wataru Harano

    2010-01-01

    Problem statement: Much research of coal has been already undertaken to ascertain the possibilities of coal being used as substitute for heavy fuel oil in the transportation sector. The effects of using coal as transportation fuel to the environment must also be considered. This study will review several aspects of the coal oil combustion process including combustion behavior, flame stability, some emissions from exhaust gas; CO, NOx and the particulate matter in a well insulated laboratory s...

  7. Three-dimensional reconstruction method on the PDE exhaust plume flow flame temperature field

    Science.gov (United States)

    Zhang, Zhimin; Wan, Xiong; Luo, Ningning; Li, Shujing

    2010-10-01

    Pulse detonation engine (referred to as PDE) has many advantage about simple structure, high efficiency thermal [1] cycling etc. In the future, it can be widely used in unmanned aircraft, target drone, luring the plane, the imaginary target, target missiles, long-range missiles and other military targets. However, because the exhaust flame of PDE is complicated [2], non-uniform temperature distribution and mutation in real time, its 3-D temperature distribution is difficult to be measured by normal way. As a result, PDE is used in the military project need to face many difficulties and challenges. In order to analyze and improve the working performance of PDE, deep research on the detonation combustion process is necessary. However, its performance characteristic which is in non-steady-state, as well as high temperature, high pressure, transient combustion characteristics put forward high demands about the flow field parameters measurement. In this paper, the PDE exhaust flames temperature field is reconstructed based on the theory of radiation thermometry [3] and Emission Spectral Tomography (referred to as EST) [4~6] which is one branch of Optical CT. It can monitor the detonation wave temperature distribution out of the exhaust flames at different moments, it also provides authentication for the numerical simulation which directs towards PDE work performance, and then it provides the basis for improving the structure of PDE.

  8. Analyzing the effects on the atmosphere of exergy changes due to exhaust-gas emissions

    International Nuclear Information System (INIS)

    Exergy is a type of useful or available energy and can be used to describe the capabilities of doing work of heat and matter, contained in a system at a specified state. In thermodynamic studies, a system refers to everything to be investigated within a boundary, while the environment adjacent to the system is called the surroundings. During reversible processes, whether matter is contained in a closed system or flows through an open system, the exergy is a function of the system or flow and a reference environment. This paper presented an investigation of the exergy change of the surroundings adjacent to exhaust-gas emitting ports, and the probable effects on the atmosphere. The current stable state changing point of atmosphere was determined. The paper also described the potential of doing work. The effects of the amount of exhaust gas on the atmosphere were studied through an exergy change function, which was a nonlinear dynamic function. This function accounts for the flow direction of the exhaust gas without local wind. The study showed that exergy could be used as a state function to describe the change, the stability and the order of a system. 1 tab., 8 figs

  9. Electron beam treatment technology for exhaust gas for preventing acid rain

    International Nuclear Information System (INIS)

    Recently, accompanying the increase of the use of fossil fuel, the damage due to acid rain such as withering of trees and extinction of fishes and shells has occurred worldwide, and it has become a serious problem. The sulfur oxides and nitrogen oxides contained in exhaust gas are oxidized by the action of sunbeam to become sulfuric acid and nitric acid mists, which fall in the form of rain. Acid rain is closely related to the use of the coal containing high sulfur, and it hinders the use of coal which is rich energy source. In order to simplify the processing system for boiler exhaust gas and to reduce waste water and wastes, Ebara Corp. developed the dry simultaneous desulfurizing and denitrating technology utilizing electron beam in cooperation with Japan Atomic Energy Research Institute. The flow chart of the system applied to the exhaust gas treatment in a coal-fired thermal power station is shown. The mechanism of desulfurization and denitration, and the features of this system are described. The demonstration plant was constructed in a coal-fired thermal power station in Indianapolis, Indiana, USA, and the trial operation was completed in July, 1987. The test results are reported. (K.I.)

  10. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    Science.gov (United States)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  11. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    Science.gov (United States)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  12. Investigation of the Performance of HEMT-Based NO, NO? and NH? Exhaust Gas Sensors for Automotive Antipollution Systems.

    Science.gov (United States)

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-01-01

    We report improved sensitivity to NO, NO? and NH? gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO? and 15 ppm-NH? is 24%, 38.5% and 33%, respectively, at 600 C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time. PMID:26907298

  13. Catalytic filter for cleaning exhaust gas of diesel engine. Katalytisches Filter fuer die Dieselabgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Bozon, A.; Koberstein, E.; Pletka, H.D.; Voelker, H.

    1981-07-02

    The invention is concerned with a metallic sieve web, applied as a very effective exhaust gas filter or as catalyst carrier. The sieve metal consists of heat and corrosion resistant material. The corrugated or folded sieve layer is alternatively arranged with a perforated cover. The sheets are arranged as a gas permeable package formed to a helical wound cylinder. The invention is characterized by the sealing of this packet or wounded cylinder. Sealed and opened parts of the filter body front surfaces are arranged piece by piece. The cover layer can consist of flat sheet or metallic sieve web.

  14. Process and device for matching the exhaust gas feedback rate (EFR). Verfahren und Vorrichtung zur Anpassung der Abgasrueckfuehrrate (ARF)

    Energy Technology Data Exchange (ETDEWEB)

    Kniss, H.; Locher, J.

    1984-04-26

    This is a process and device for matching the exhaust gas feedback rate (EFR) on internal combustion engines, particularly Diesel engines. In order to avoid smoke being generated on new engines or if the injection nozzles are replaced, in addition to the usual change of exhaust gas feedback rate, there is an additional adjustment of the exhaust gas feedback rate, preferably in steps and related to the function of length of operation from the changing working conditions having occurred. The number of injection operations are counted and successive memory positions are initiated at time intervals, which match the exhaust gas feedback rate to the final state, where each step of matching is permanently stored. (orig.).

  15. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Sren Juhl; Kr, Sren Knudsen; Rosendahl, Lasse

    2014-01-01

    In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat exchangers with superior performance for further analysis. In this work, the on-design performances of the 4 heat exchangers are more thoroughly assessed on their corresponding optimized subsystem confi...

  16. Catalysts as SensorsA Promising Novel Approach in Automotive Exhaust Gas Aftertreatment

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2010-07-01

    Full Text Available Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NOx traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NOx-loading of lean NOx traps, and the soot loading of Diesel particulate filters

  17. Catalysts as sensors--a promising novel approach in automotive exhaust gas aftertreatment.

    Science.gov (United States)

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NO(x) traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NO(x)-loading of lean NO(x) traps, and the soot loading of Diesel particulate filters. PMID:22163575

  18. Burner for burning exhaust gases

    International Nuclear Information System (INIS)

    A burner is described for burning exhaust gases, particularly those from nuclear plants, using means of oxidation, which is space-saving, easy to handle and safe to operate, and which supplies little secondary exhaust gas. Mixing chambers are situated in a high temperature part, with tangentially fixed incoming pipes for the means of oxidation. The high temperature part is also heated by two or more separately controlled heating windings. (orig.)

  19. Emission factor of exhaust gas constituents during the pyrolysis of zinc chloride immersed biosolid.

    Science.gov (United States)

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Chiu, Hua-Hsien

    2013-08-01

    Pyrolysis enables ZnCl2 immersed biosolid to be reused, but some hazardous air pollutants are emitted during this process. Physical characteristics of biosolid adsorbents were investigated in this work. In addition, the constituents of pyrolytic exhaust were determined to evaluate the exhaust characteristics. Results indicated that the pyrolytic temperature was higher than 500 C, the specific surface area was >900 m(2)/g, and the total pore volume was as much as 0.8 cm(3)/g at 600 C. For non-ZnCl2 immersed biosolid pyrolytic exhaust, VOC emission factors increased from 0.677 to 3.170 mg-VOCs/g-biosolid with the pyrolytic temperature increase from 400 to 700 C, and chlorinated VOCs and oxygenated VOCs were the dominant fraction of VOC groups. VOC emission factors increased about three to seven times, ranging from 1.813 to 21.448 mg/g for pyrolytic temperatures at 400-700 C, corresponding to the mass ratio of ZnCl2 and biosolid ranging from 0.25-2.5. PMID:23471775

  20. Improved sensor for measuring the oxygen content in the exhaust gas of internal combustion engines. Verbesserte Sonde zur Messung des Sauerstoffgehalts im Abgas von Verbrennungskraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Bozon, A.; Koberstein, E.; Pletka, H.D.; Voelker, H.

    1987-02-19

    The invention concerns an improved oxygen sensor for measuring the oxygen content in the exhaust gas of internal combustion engines. If the measuring sensor of the oxygen sensor is provided with a catalytically active sheath permeable to gas, a suitable sensor signal is received from a rich flow of exhaust gas. The protective jacket consists of a sieve covered with catalyst material, made of high temperature steel. The sheath can carry a metal-oxide intermediate layer, on which the catalyst can be deposited. This intermediate layer contains aluminium oxide with the addition of the oxides of the elements cerium, zirconium, iron, nickel tin, zinc, molybdenum, calcium, strontium and barium. The catalyst material can be platinum, ruthenium, palladium, iridium and rhodium together with aluminium and nickel. The metal can be applied to the sieve by impregnation or other well-known methods.

  1. Improved sensor for measuring the oxygen content in the exhaust gas of internal combustion engine. Verbesserte Sonde zur Messung des Sauerstoffgehaltes im Abgas von Verbrennungskraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Bozon, A.; Koberstein, E.; Pletka, H.D.; Voelker, H.

    1981-04-09

    The invention concerns an improved oxygen sensor for measuring the oxygen content in the exhaust gas of internal combustion engines. If the measuring sensor of the oxygen sensor is provided with a catalytically active sheath permeable to gas, a suitable sensor signal is received from a rich flow of exhaust gas. The protective jacket consists of a sieve covered with catalyst material, made of high temperature steel. The catalyst material can be aluminium oxide with the addition of the oxides of the elements cerium, zirconium, iron, nickel tin, zinc, molybdenum, calcium, strontium and barium. Platinum, ruthenium, palladium, iridium and rhodium can also be used together with aluminium and nickel. The metal can be applied to the sieve by impregnation or other well-known methods. (EF).

  2. Correlation of Exhaust-Valve Temperatures with Engine Operating Conditions and Valve Design in an Air-Cooled Cylinder

    Science.gov (United States)

    Zipkin, M A; Sanders, J C

    1945-01-01

    A semiempirical equation correlating exhaust-valve temperatures with engine operating conditions and exhaust-valve design has been developed. The correlation is based on the theory correlating engine and cooling variables developed in a previous NACA report. In addition to the parameters ordinarily used in the correlating equation, a term is included in the equation that is a measure of the resistance of the complex heat-flow paths between the crown of the exhaust valve and a point on the outside surface of the cylinder head. A means for comparing exhaust valves of different designs with respect to cooling is consequently provided. The necessary empirical constants included in the equation were determined from engine investigations of a large air-cooled cylinder. Tests of several valve designs showed that the calculated and experimentally determined exhaust-valve temperatures were in good agreement.

  3. Responses of spruce seedlings (Picea abies) to exhaust gas under laboratory conditions. 1. plant-insect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Viskari, E.-L.; Koessi, S. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Surakka, J.; Pasanen, P.; Ruuskanen, J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences; Mirme, A. [Tartu Univ. (Estonia). Int. of Environmental Physics; Holopainen, J.K. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Agricultural Research Centre, Plant Production research, Jokioinen (Finland)

    2000-07-01

    The effects of motor vehicle exhaust gas on Norway spruce seedlings (Picea abies (L) Karst) and plant-insect interaction of spruce shoot aphid (Cinara pilicornis Hartig) was studied. The exhaust gas concentrations in the fumigation chambers were monitored and controlled by measuring the concentration of nitrogen oxides (NO{sub x}) with a computer aided feedback system. The concentrations of major exhaust gas components (black carbon (BC), fine particles, VOCs and carbonyl compounds) in the chamber air were also measured. Responses of Norway spruce seedlings to a 2 and 3 week exhaust gas exposure and subsequent performance of spruce shoot aphid were studied using realistic exposure regimes; 50, 100 and 200 ppb NO{sub x}. The feedback control system based on NO{sub x} concentrations proved an adequate and practical means for controlling the concentration of exhaust gases and studying plant responses in controlled environment chambers. The exhaust exposure resulted in increased concentrations of proline, glutamine, threonine, aspartic acid, glycine and phenylalanine and decreased concentration of arginine, serine, alanine and glycine in young needles. No changes in soluble N concentrations were observed. The results are interpreted as a stress response rather than use of NO{sub x} as a nitrogen source. No changes in total phenolics and only transient changes in some individual terpene concentrations were detected. The exhaust gas exposure stressed the exposed seedlings, but had no significant effect on N metabolism or the production of defence chemicals. Aphid performance was not significantly affected. Soluble N, secondary metabolism and aphid performance were not sensitive to exhaust gas exposure during shoot elongation in Norway spruce. (author)

  4. Variable-geometry turbocharger with asymmetric divided volute for engine exhaust gas pulse optimization

    Science.gov (United States)

    Serres, Nicolas (Epinal, FR)

    2010-11-09

    A turbine assembly for a variable-geometry turbocharger includes a turbine housing defining a divided volute having first and second scrolls, wherein the first scroll has a substantially smaller volume than the second scroll. The first scroll feeds exhaust gas to a first portion of a turbine wheel upstream of the throat of the wheel, while the second scroll feeds gas to a second portion of the wheel at least part of which is downstream of the throat. Flow from the second scroll is regulated by a sliding piston. The first scroll can be optimized for low-flow conditions such that the turbocharger can operate effectively like a small fixed-geometry turbocharger when the piston is closed. The turbine housing defines an inlet that is divided by a dividing wall into two portions respectively feeding gas to the two scrolls, a leading edge of the dividing wall being downstream of the inlet mouth.

  5. Multiple Exhaust Nozzle Effects on J-2X Gas Generator Outlet Impedance

    Science.gov (United States)

    Kenny, R. Jeremy; Muss, Jeffrey; Hulka, James R.; Casiano, Matthew

    2010-01-01

    The current test setup of the J-2X gas generator system uses a multiple nozzle configuration to exhaust hot gases to drive the propellant supply turbines. Combustion stability assessment of this gas generator design requires knowledge of the impedance effects the multiple nozzle configuration creates on the combustion chamber acoustic modes. Parallel work between NASA and Sierra Engineering is presented, showing two methods used to calculate the effective end impedance resulting from multiple nozzle configurations. The NASA method is a simple estimate of the effective impedance using the long wavelength approximation. Sierra Engineering has developed a more robust numerical integration method implemented in ROCCID to accommodate for multiple nozzles. Analysis using both methods are compared to J-2X gas generator test data collected over the past year.

  6. Ion beam analyses of particulate matter in exhaust gas of a ship diesel engine

    Science.gov (United States)

    Furuyama, Yuichi; Fujita, Hirotsugu; Taniike, Akira; Kitamura, Akira

    2011-12-01

    There is an urgent need to reduce emission of the particulate matter (PM) in the exhaust gas from ship diesel engines causing various health hazards and serious environmental pollution. Usually the heavy fuel oil (HFO) for ships is of low quality, and contains various kinds of impurities. Therefore, the emission of PM along with exhaust gas from ship diesel engines is one of the most serious environmental issues. However, the PM fundamental properties are not well known. Therefore, it is important to perform elemental analysis of the PM. The HFO contains sulfur with a relatively high concentration of a few percent. It is important to make quantitative measurements of sulfur in the PM, because this element is poisonous for the human body. In the present work, PM samples were collected from exhaust gas of a test engine, and RBS and PIXE analyses were applied successfully to quantitative analysis of the PM samples. The RBS analysis enabled quantitative analysis of sulfur and carbon in the collected PM, while heavier elements such as vanadium and iron were analyzed quantitatively with the PIXE analysis. It has been found that the concentration ratio of sulfur to carbon was between 0.007 and 0.012, and did not strongly depend on the output power of the engine. The S/ C ratio is approximately equal to the original composition of the HFO used in the present work, 0.01. From the known conversion ratio 0.015 of sulfur in the HFO to sulfates, the conversion ratio of carbon in the HFO to the PM is found to be 0.01-0.02 by the RBS measurements. On the other hand, the PIXE analysis revealed a vanadium enrichment of one order of magnitude in the PM.

  7. Ion beam analyses of particulate matter in exhaust gas of a ship diesel engine

    International Nuclear Information System (INIS)

    There is an urgent need to reduce emission of the particulate matter (PM) in the exhaust gas from ship diesel engines causing various health hazards and serious environmental pollution. Usually the heavy fuel oil (HFO) for ships is of low quality, and contains various kinds of impurities. Therefore, the emission of PM along with exhaust gas from ship diesel engines is one of the most serious environmental issues. However, the PM fundamental properties are not well known. Therefore, it is important to perform elemental analysis of the PM. The HFO contains sulfur with a relatively high concentration of a few percent. It is important to make quantitative measurements of sulfur in the PM, because this element is poisonous for the human body. In the present work, PM samples were collected from exhaust gas of a test engine, and RBS and PIXE analyses were applied successfully to quantitative analysis of the PM samples. The RBS analysis enabled quantitative analysis of sulfur and carbon in the collected PM, while heavier elements such as vanadium and iron were analyzed quantitatively with the PIXE analysis. It has been found that the concentration ratio of sulfur to carbon was between 0.007 and 0.012, and did not strongly depend on the output power of the engine. The S/C ratio is approximately equal to the original composition of the HFO used in the present work, 0.01. From the known conversion ratio 0.015 of sulfur in the HFO to sulfates, the conversion ratio of carbon in the HFO to the PM is found to be 0.010.02 by the RBS measurements. On the other hand, the PIXE analysis revealed a vanadium enrichment of one order of magnitude in the PM.

  8. Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine

    Directory of Open Access Journals (Sweden)

    Grbz Habib

    2015-01-01

    Full Text Available In this study, we have investigated the recovery of energy lost as waste heat from exhaust gas and engine coolant, using an improved thermoelectric generator (TEG in a LPG fueled SI engine. For this purpose, we have designed and manufactured a 5-layer heat exchanger from aluminum sheet. Electrical energy generated by the TEG was then used to produce hydrogen in a PEM water electrolyzer. The experiment was conducted at a stoichiometric mixture ratio, 1/2 throttle position and six different engine speeds at 1800-4000 rpm. The results of this study show that the configuration of 5-layer counterflow produce a higher TEG output power than 5-layer parallel flow and 3-layer counterflow. The TEG produced a maximum power of 63.18 W when used in a 5-layer counter flow configuration. This resulted in an improved engine performance, reduced exhaust emission as well as an increased engine speed when LPG fueled SI engine is enriched with hydrogen produced by the PEM electrolyser supported by TEG. Also, the need to use an extra evaporator for the LPG fueled SI engine is eliminated as LPG heat exchangers are added to the fuel line. It can be concluded that an improved exhaust recovery system for automobiles can be developed by incorporating a PEM electrolyser, however at the expense of increasing costs.

  9. Evaluation of an exhaust gas evacuation system during propane-fueled lift truck maintenance

    International Nuclear Information System (INIS)

    Exposure to carbon monoxide (CO) gas in the workplace can cause health problem. CO gas is colourless and odourless, and exposure to it can cause intoxication, particularly for mechanics working on internal combustion engines fed by propane-fueled lift trucks. Regular procedures for evacuating the gases emitted during routine mechanical repairs involve the use of rigid evacuating pipes attached to the building and hooked to a flexible pipe at the end of the exhaust pipe. With lift trucks, this procedure is limited because of the configuration of these vehicles, and also because this type of work is often done in places without access to permanent mechanical ventilation. The object of this study was to propose a new evacuation method for CO gas fumes that would lower the exposures of fumes for mechanics and for workstations. It identified the criteria that should be considered, such as the configuration of the existing exhaust system of lift trucks, and feasibility of using this system at a variety of on-site locations. The design of the device was described and evaluated. 7 refs., 6 tabs., 8 figs., 3 appendices

  10. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1997-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  11. Catalysts as SensorsA Promising Novel Approach in Automotive Exhaust Gas Aftertreatment

    OpenAIRE

    Ralf Moos

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NOx traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more s...

  12. {open_quotes}Experimental investigation of brown coal combustion with siumlated gas Turbine Exhaust Gas in a combined cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Kakaras, E.; Vourliotis, P.

    1995-12-31

    The main objective of this study is the experimental investigation of the brown coal combustion (brown coal with high sulphur content, e.g. {open_quotes}Megalopolis{close_quotes} lignite) in a lab-scale Atmospheric Fluidized Bed (AFB). The fluidizing gas and the oxidant medium is the Simulated gas Turbine Exhaust flue Gas - {open_quotes}Vitiated Air{close_quotes} (STEG - V.A.). The STEG simulates the exhaust flue gas from the turbine MS 9/1 (FA) produced by EGT - GEC Alsthom (/1/). According to the IFRF experiments, the lowest O{sub 2} level allowed for stable combustion is 10%, concentration which corresponds to 88.4 % burnout in the IFRF experimental furnace. For the improvement of the coal burnout the presence of an oxidation catalyst is considered necessary in order, first, to avoid the incomplete combustion of the coal and second, to decrease the CO and C{sub x}H{sub y} emissions. The catalysts, supplied by KAT-TEC (/4/), are perovskit-type with TiO{sub 2} and Pt as stabilisers. The purposes of the trials are: (1) To examine the possibility to achieve the combustion of low grade brown coal under these conditions. (2) The investigation of the burnout behaviour as well as the resulting O{sub 2} CO{sub 2}, CO, SO{sub 2}, N{sub 2}O, C{sub x}H{sub y} and NO{sub x} emissions.

  13. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Sren Juhl

    2014-01-01

    In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat exchangers with superior performance for further analysis. In this work, the on-design performances of the 4 heat exchangers are more thoroughly assessed on their corresponding optimized subsystem configurations. Afterward, their off-design performances are compared on the whole working range of the fuel cell stack. All through this study, different electrical connection styles of all the thermoelectric generator (TEG) modules in the subsystem and their influences are also discussed. In the end, the subsystem configuration is further optimized and a higher subsystem power output is achieved. All TEG modules are now connected into branches. The procedures of designing and optimizing this TE exhaust heat recovery subsystem are drawn out. The contribution of TE exhaust heat recovery to the HT-PEM fuel cell power system is preliminarily concluded. Its feasibility is also discussed.

  14. An Experimental Study of Different Effects of EGR Rates on The Performance And Exhaust Emissions of The Stratified Charge Piston Direct Injection Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Saheed O. Wasiu

    2011-01-01

    Full Text Available Exhaust Gas Recirculation (EGR is one of the principal techniques used to control spark ignition NOX. A fraction of the exhaust gas is recycled through a control valve from the exhaust to the engine intake system. However, EGR has different effect on performance, combustion and emissions production that are difficult to distinguish such as increase of intake temperature, delay of Rate Of Heat Rrelease (ROHR, decrease of peak heat release, decrease in oxygen concentration etc. Therefore the impact of EGR on the aforementioned engine parameters (i.e., performance, combustion and exhaust emission is not perfectly understood, especially under high EGR rates. An experimental study has been conducted to analyze various effects of EGR rates on the performance and emissions of the stratified charge piston direct injection compressed natural gas engine and to determine the stable operating limit of the engine at different excess air ratios ( = 0.9, 1.0, 1.1 and 1.2 which represents rich, stoichiometric, slightly lean and moderately lean mixture respectively. The results showed that as the EGR is increased, the brake torque, brake specific fuel consumption decreased, while nitric oxide emissions (NO reduced drastically at various fraction of EGR, just as Unburnt Hydro Carbon (UHC increased. EGR has no significant effect on carbon monoxide (CO emission. The addition of EGR also reduces cylinders gas temperature and pressure. It can be concluded that in introducing EGR in DI-CNG engines, there is a tradeoff between the engines performance and NOX emission, while it is difficult to realize stable combustion at high temperature.

  15. Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle

    Science.gov (United States)

    Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.

    2016-03-01

    Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.

  16. Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle

    Science.gov (United States)

    Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.

    2015-12-01

    Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.

  17. New waste processing technologies. Pyrolysis gasification system and corona discharge exhaust gas treatment system; Senshinteki haikibutsu shori gijutsu. Netsubunkai gas ka system to pulse corona hoden hai gas shori sochi

    Energy Technology Data Exchange (ETDEWEB)

    Karato, S.; Fukushima, K. [Toshiba Corp., Tokyo (Japan)

    1999-04-01

    Problems caused by conventional incineration, such as the presence of small quantities of harmful gases in the exhaust gas, are attracting public attention. Moreover, exhaust gas regulations are expected to be further strengthened in the future. We have developed two new waste processing technologies in response to this situation. These are a pyrolysis gasification system, which is a next-generation waste treatment system to replace the incineration method and a corona discharge exhaust gas treatment system, which breaks down and removes harmful substances directly from exhaust gas using pulse corona discharge. (author)

  18. Plasma and neutral gas jet interactions in the exhaust of a magnetic confinement system

    International Nuclear Information System (INIS)

    A general purpose 2-1/2 dimensional, multifluid, time dependent computer code has been developed. This flexible tool models the dynamic behavior of plasma/neutral gas interactions in the presence of a magnetic field. The simulation has been used to examine the formation of smoke ring structure in the plasma rocket exhaust by injection of an axial jet of neutral gas. Specifically, the code was applied to the special case of attempting to couple the neutral gas momentum to the plasma in such a manner that plasma smoke rings would form, disconnecting the plasma from the magnetic field. For this scenario several cases where run scanning a wide range of neutral gas input parameters. In all the cases it was found that after an initial transient phase, the plasma eroded the neutral gas and after that followed the original magnetic field. From these findings it is concluded that smoke rings do not form with axial injection of neutral gas. Several suggestions for alternative injection schemes are presented

  19. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    Science.gov (United States)

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels. PMID:22732009

  20. Study of SI engine fueled with methanol vapor and dissociation gas based on exhaust heat dissociating methanol

    International Nuclear Information System (INIS)

    Highlights: The full load power decreases successively from gasoline engine, methanol vapor engine to dissociated methanol engine. Both power and thermal efficiency of dissociated methanol engine can be improved by boosting pressure. The conversion efficiency of recovered exhaust gas energy is largely influenced by the BMEP. At the same BMEP, dissociated methanol engine has higher thermal efficiency than methanol vapor engine and gasoline engine. - Abstract: To improve the fuel efficiency of internal combustion (IC) engine and also achieve the goal of direct usage of methanol fuel on IC engine, an approach of exhaust heat dissociating methanol was investigated, which is a kind of method for IC engine exhaust heat recovery (EHR). A bottom cycle system is coupled with the IC engine exhaust system, which uses the exhaust heat to evaporate and dissociate methanol in its catalytic cracker. The methanol dissociation gas (including methanol vapor) is used as the fuel for IC engine. This approach was applied to both naturally aspirated (NA) engine and turbocharged engine, and the engine performance parameters were predicted by the software GT-power under various kinds of operating conditions. The improvement to IC engine performance and the conversion efficiency of recovered exhaust gas energy can be evaluated by comparing the performances of IC engine fueled with various kinds of fuels (or their compositions). Results show that, from gasoline engine, methanol vapor engine to dissociated methanol engine, the full load power decreases successively in the entire speed area due to the declining of volumetric efficiency, while it is contrary in the thermal efficiency at the same brake mean effective pressure (BMEP) level because of the improving of fuel heating value. With the increase of BMEP, the conversion efficiency of recovered exhaust gas energy is promoted. All those results indicate that the approach of exhaust heat dissociating methanol has large energy saving potential with great application prospect to IC engines

  1. DOE 6430.1a compliance checklist for the rotary mode core sampling exhauster flammable gas interlock

    International Nuclear Information System (INIS)

    This document examines the Safety Class I criteria in DOE 6430.1a and determines applicability to the rotary mode core sampling exhauster flammable gas interlock. Purpose of the interlock is to prevent the design basis accident of deflagration in single shell flammable gas watchlist tank

  2. DOE 6430.1a compliance checklist for the rotary mode core sampling exhauster flammable gas interlock

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.D.

    1995-09-01

    This document examines the Safety Class I criteria in DOE 6430.1a and determines applicability to the rotary mode core sampling exhauster flammable gas interlock. Purpose of the interlock is to prevent the design basis accident of deflagration in single shell flammable gas watchlist tank.

  3. Effects of exhaust gas recirculation on the thermal efficiency and combustion characteristics for premixed combustion system

    International Nuclear Information System (INIS)

    In this research, a boiler in a premixed combustion system used to achieve exhaust gas recirculation was investigated as a way to achieve high thermal efficiencies and low pollutant emissions. The effects of various exhaust gas recirculation (EGR) ratios, equivalence ratios and boiler capacities on thermal efficiency, NOx and CO emissions and the flame behavior on the burner surface were examined both experimentally and numerically. The results of the experiments showed that when EGR was used, the NOx and CO concentrations decreased and the thermal efficiency increased. In the case of a 15% EGR ratio at an equivalence ratio of 0.90, NOx concentrations were found to be smaller than for the current operating condition of the boiler, and the thermal efficiency was approximately 4.7% higher. However, unlike NOx concentrations, although the EGR ratio was increased to 20% at an equivalence ratio of 0.90, the CO concentration was higher than in the current operating condition of the boiler. From the viewpoint of burner safety, the red glow on the burner surface was noticeably reduced when EGR was used. These results confirmed that the EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety. -- Highlights: ? The premixed boiler system applied EGR was investigated to achieve high thermal efficiencies and low pollutant emissions. ? Thermal efficiency and emission characteristics were examined with EGR ratios, equivalence ratios and boiler capacities. ? EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety.

  4. Purification of exhaust air and off-gas in nuclear power stations

    International Nuclear Information System (INIS)

    The sources of radioactivity present in nuclear power stations, the significance of the fission products for the environmental impact of nuclear power stations, and the pathway of the airborne radioactivity will be treated briefly. The devices for the removal of radioactivity from the exhaust air and from off-gas are discussed and their function is explained. The HEPA-filters for the removal of aerosols, the sorption filters for the removal of gaseous radioiodine, and the fission gas holdup beds with activated charcoal for decreasing the discharge of radioactive isotopes of the noble gases xenon and krypton will be treated in detail. The degree of penetration of these devices will be given. The factors reducing the removal efficiency will be mentioned. (orig.)

  5. Determination of analytical dependences in order to calculate the exhaust gas boiler with helical belt inserts

    Directory of Open Access Journals (Sweden)

    Kolyadin Evgeniy Alekseevich

    2010-10-01

    Full Text Available The objective of the research is the identification of regularities of heat and aerodynamic processes and determination of analytical dependences in order to calculate heat exchange Nu = (Re, S/d and aerodynamic resistance ? = f(Re, S/d of the exhaust gas boiler with helical belt inserts. The experimental research of heat exchange and aerodynamics of all used helical belt inserts was performed in the same conditions, based on one methodology and the same ex-perimental installation. The received dependences help to evaluate the increasein heat exchange and aerodynamic resistance of a gas flow while using helical belt inserts with different geometrical specifications, and to select the best option of the geometry of the insert for a specific construction of a recuperative heat exchanger with multi-phase heat exchange environments.

  6. Oxidation and exhaust gas corrosion resistance of the cobalt base clad layers

    Directory of Open Access Journals (Sweden)

    H. Smolenska

    2008-12-01

    Full Text Available Purpose: Purpose of this work is describing the behaviour of the cobalt base cladding layers after treatment in hot air (750C, 200 hours and exhaust gases (700C, two month.Design/methodology/approach: The layers were produced by two cladding, laser and PTA, cladding technique. Cladding was conducted with a high power diode laser HDPL ROFIN SINAR DL 020 and Plasma Transformed Arc method. The layers consisted of three multitracking sublayers. The cobalt base layers were evaluated by microstructure investigations (optical and scanning electron microscope SEM, chemical analysis and micro hardness measurements.Findings: The microstructure of the investigated layers did not change much, neither on the top part nor in the clad/steel interface after treatment in both environments. On the outer surfaces the oxide layers were observed which consisted generally of chromium and iron oxides. The compositions of this scales were reviled by the EDS analyze. The changes in chemical compositions before and after oxidation and after corrosion in exhaust gases in the dendritic regions and micro regions were confirmed by the semi-quantitative chemical analysis (EDS. Neither the oxidation nor exposition for two month in exhaust gases did not influence on the morphology of the clad layers in any region however changes in chemical composition were observed. For both sort of clads the oxide layers were observed on the surface. The proposed layers are resistant for the hot exhausted gases.Research limitations/implications: The future researches should be done on microstructural and kinetic analyze of high temperature corrosion for higher temperature and times of the process.Practical implications: The clad layers, of this composition, were designed as a method to prolong service time for the ship engine exhausted valve and after this investigation the first valve heads with laser clad layer were installed in working ship engine.Originality/value: The chemical composition of the powder was new one. Also using the laser cladding technique for ship engine parts subject of interesting.

  7. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ali Can; Uludamar, Erinc; Aydin, Kadir [Department of Mechanical Engineering, Cukurova University, 01330 Adana (Turkey)

    2010-10-15

    In this study, hydroxy gas (HHO) was produced by the electrolysis process of different electrolytes (KOH{sub (aq)}, NaOH{sub (aq)}, NaCl{sub (aq)}) with various electrode designs in a leak proof plexiglass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a four cylinder, four stroke, compression ignition (CI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions and engine performance characteristics were investigated. Experiments showed that constant HHO flow rate at low engine speeds (under the critical speed of 1750 rpm for this experimental study), turned advantages of HHO system into disadvantages for engine torque, carbon monoxide (CO), hydrocarbon (HC) emissions and specific fuel consumption (SFC). Investigations demonstrated that HHO flow rate had to be diminished in relation to engine speed below 1750 rpm due to the long opening time of intake manifolds at low speeds. This caused excessive volume occupation of hydroxy in cylinders which prevented correct air to be taken into the combustion chambers and consequently, decreased volumetric efficiency was inevitable. Decreased volumetric efficiency influenced combustion efficiency which had negative effects on engine torque and exhaust emissions. Therefore, a hydroxy electronic control unit (HECU) was designed and manufactured to decrease HHO flow rate by decreasing voltage and current automatically by programming the data logger to compensate disadvantages of HHO gas on SFC, engine torque and exhaust emissions under engine speed of 1750 rpm. The flow rate of HHO gas was measured by using various amounts of KOH, NaOH, NaCl (catalysts). These catalysts were added into the water to diminish hydrogen and oxygen bonds and NaOH was specified as the most appropriate catalyst. It was observed that if the molality of NaOH in solution exceeded 1% by mass, electrical current supplied from the battery increased dramatically due to the too much reduction of electrical resistance. HHO system addition to the engine without any modification resulted in increasing engine torque output by an average of 19.1%, reducing CO emissions by an average of 13.5%, HC emissions by an average of 5% and SFC by an average of 14%. (author)

  8. Exhaust circulation into dry gas desulfurization process to prevent carbon deposition in an Oxy-fuel IGCC power generation

    International Nuclear Information System (INIS)

    Highlights: Power plant with semi-closed gas turbine and O2CO2 coal gasifier was studied. We adopt dry gas sulfur removal process to establish the system. The exhaust gas circulation remarkably prevented carbon deposition. Efficiency loss for exhaust gas circulation is quite small. Appropriate operating condition of sulfur removal process is revealed. - Abstract: Semi-closed cycle operation of gas turbine fueled by oxygenCO2 blown coal gasification provides efficient power generation with CO2 separation feature by excluding pre-combustion type CO2 capture that usually brings large efficiency loss. The plant efficiency at transmission end is estimated as 44% at lower heating value (LHV) providing compressed CO2 with concentration of 93 vol%. This power generation system will solve the contradiction between economical resource utilization and reduction of CO2 emission from coal-fired power plant. The system requires appropriate sulfur reduction process to protect gas turbine from corrosion and environment from sulfur emission. We adopt dry gas sulfur removal process to establish the system where apprehension about the detrimental carbon deposition from coal gas. The effect of circulation of a portion of exhaust gas to the process on the retardation of carbon deposition was examined at various gas compositions. The circulation remarkably prevented carbon deposition in the sulfur removal sorbent. The impact of the circulation on the thermal efficiency is smaller than the other auxiliary power consumption. Thus, the circulation is appropriate operation for the power generation

  9. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  10. NOx remediation in oxygen-rich exhaust gas using atmospheric pressure non-thermal plasma generated by a pulsed nanosecond dielectric barrier discharge

    International Nuclear Information System (INIS)

    It is clearly seen that the application of non-thermal plasmas (NTP) to remove NOx from gas mixture containing a large amount of oxygen (O2) is dominated by NO to NO2 oxidation. Experiments have been conducted using a NTP generated by a nanosecond pulsed dielectric barrier discharge in synthetic exhaust gas, prepared from N2, O2, NO, H2O, and C3H6, over a large range of gas temperature (20-300 deg. C). Results show that the NOx removal rate significantly increased with increasing specific energy deposition. For example, at a temperature of 100 deg. C and an energy deposition of 27 J l-1, 92% of the NO molecules have been removed. The W values for NO is dramatically reduced to values scaling from approx. 15 eV at 27 J l-1 down to approx. 4 eV at 7 J l-1. NOx removal efficiency around 43% was obtained at a temperature of 260 deg. C and a space velocity of 60 000 h-1 for a specific input energy of 27 J l-1. W values for NOx were less than approx. 30 eV. Such treatments in exhaust gas with and without the presence of water vapour induced reactions leading to the production of a large variety of by-products such as acetaldehyde, propylene oxide, formic acid, methyl nitrate, and nitromethane. (author)

  11. Exhaust gas analysis and formation mechanism of SiC nanowires synthesized by thermal evaporation method

    Directory of Open Access Journals (Sweden)

    Noppasint Jiraborvornpongsa

    2014-09-01

    Full Text Available Silicon carbide nanowires (SiCNWs are a set of promising reinforcement materials due to their superior properties. However, formation mechanism of the SiCNWs synthesized by the thermal evaporation method without metal catalyst is still unclear. To understand the formation mechanism, SiCNWs were synthesized by the thermal evaporation method at 1350C using a pre-oxidized Si powder and CH4 gas as precursors. SiCNWs obtained by this method were ?-SiC/SiO2 coreshell nanowires with average diameter about 55nm and with a length up to 1mm. The exhaust gases during the SiCNWs synthesis process were examined by gas chromatography and the photographs of growth activity of SiCNWs inside the furnace were captured. CO gas was detected during the active formation of SiCNWs. It was clarified that CO gas was one of the byproducts from SiCNWs synthesis process, and the formation reaction of SiCNWs should be 3SiO(g+3C(s?2SiC(s+SiO2(s+CO(g. The formation of SiCNWs was discussed based on the oxide-assisted-growth mechanism.

  12. Design of a diesel exhaust-gas purification system for inert-gas drilling

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C.

    1982-01-01

    To combat the serious oxygen corrosion of drill pipe when a low density drilling fluid (air or mist) is used in geothermal drilling, a system has been designed that produces an inert gas (essentially nitrogen) to be substituted for air. The system fits on three flatbed trailers, is roadable and produces 2000 scfm of gas. The projected cost for gas is slightly less than $2.00 per thousand standard cubic feet.

  13. Process and apparatus for separating and recovering krypton-85 from exhaust gas of nuclear reactor or the like

    International Nuclear Information System (INIS)

    An apparatus is described for separating and recovering radioactive krypton-85 contained in an exhaust gas of a nuclear reactor or the like, which comprises a plurality of adsorption beds connected in parallel with respect to a passageway for the exhaust gas, each being packed with activated carbon, wherein adsorption and desorption of krypton-85 in each of the beds are alternatively and repeatedly performed by operating valves disposed between each of the beds and means for reducing pressure in the beds to be desorbed in accordance with a predetermined time schedule. The adsorption and concentration efficiencies are markedly increased by combining the above adsorption apparatus and a distillation apparatus

  14. A study on exhaust gas emissions from ships in Turkish Straits

    International Nuclear Information System (INIS)

    The Turkish Straits, i.e. Istanbul (Bosphorus) and Canakkale (Dardanellen), which connect Black Sea and Aegean Sea, have a continuously increasing maritime traffic. Especially, the maritime traffic on Bosphorus (Istanbul Strait) that connects the continents of Europe and Asia is too complex due to geographical conditions. The maritime traffic in the Turkish Straits includes the ships, which are in use in domestic transport, the transit passing ships with various aims and fishing, sport or strolling ships. In this paper, fuel consumption and exhaust gas emissions NOx, CO, CO2, VOC, PM exhausted from ships such as transit vessels, which are passing both Bosphorus and Dardanellen, and passenger ships used in domestic transport on the Bosphorus are calculated. In order to do this the general characteristics, the main engine systems, the fuel types, cruising times and speeds of all vessels are taken into consideration. The calculated NOx emissions on the Bosphorus are 2720t from domestic passenger ships and 4357t from transit ships. In this case it is clear that the transit ships cause more than half of the total amount of emissions from ships on the Bosphorus. The amount of nitrogen oxide emissions from domestic passenger ships used for public transport in Istanbul Strait is equal to approx. 4% of nitrogen oxide emissions from motor vehicles in Istanbul. Finally, the future emissions from ships in Turkish Straits are discussed. (Author)

  15. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail: axel.munack@vti.bund.de; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)

    2008-07-01

    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  16. Novel Gas Sensors for High-Temperature Fossil Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera; Francis Tanzella

    2005-03-01

    SRI International (SRI) is developing ceramic-based microsensors to detect exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems under this DOE NETL-sponsored research project. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes attached to a solid state electrolyte and are designed to operate at the high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. The sensors can be easily integrated into online monitoring systems for active emission control. The ultimate objective is to develop sensors for multiple gas detection in a single package, along with data acquisition and control software and hardware, so that the information can be used for closed-loop control in novel advanced power generation systems. This report details the Phase I Proof-of-Concept, research activities performed from October 2003 to March 2005. SRI's research work includes synthesis of catalytic materials, sensor design and fabrication, software development, and demonstration of pulse voltammetric analysis of NO, NO{sub 2}, and CO gases on catalytic electrodes.

  17. Application of Irradiation. Application to polymer processing, exhaust gas treatment, sterilization of medical instruments and food

    International Nuclear Information System (INIS)

    Many fields such as industry, agriculture, medical treatment and environment use radiation. This report explained some examples of irradiation applications. Radiation source is 60Co γ-ray. Polymer industry use radiation for radiation curing (thermally stable polymer), tire, expanded polymer, radiation induced graft copolymerization and electron beam curing. On environmental conservation, radiation is used for elimination of NOx and SOx in exhaust combustion gas. In the medical treatment, radiation is applied to sterilization of medical instruments, that occupied about 50% volume, and blood for transfusion, which is only one method to prevent GVHD after transfusion. On agriculture, irradiation to spice, dry vegetable, frozen kitchen, potato and garlic are carried out in 30 countries. However, potato is only a kind food in Japan. Radiation breeding and pest control are put in practice. (S.Y.)

  18. Dual-catalyst aftertreatment of lean-burn natural gas engine exhaust

    International Nuclear Information System (INIS)

    A dual-catalyst system for the reduction of NO with CH4 under lean conditions was investigated. The system is comprised of a mixed bed containing a Co/ZrO2 catalyst, active for the oxidation of NO to NO2, and a Pd/sulfated zirconia (SZ) catalyst that is active for the reduction of NO2 with CH4. Such a system is capable of taking advantage of higher reduction rates for NO2, as compared to NO, that have been previously observed. When simulated exhaust streams from lean-burn natural gas engines are used as feed, the dual-catalyst system is simultaneously active for the reduction of NOx and the oxidation of unburned hydrocarbons and CO. (author)

  19. Detection of very large ions in aircraft gas turbine engine combustor exhaust: charged small soot particles?

    Science.gov (United States)

    Wilhelm, S.; Haverkamp, H.; Sorokin, A.; Arnold, F.

    Small electrically charged soot particles (CSP) present in the exhaust of a jet aircraft engine combustor have been detected by a Large Ion Mass Spectrometer and quantitatively measured by an Ion Mobility Analyzer. The size and concentration measurements which took place at an aircraft gas-turbine engine combustor test-rig at the ground covered different combustor conditions (fuel flow=FF, fuel sulphur content=FSC). At the high-pressure turbine stage of the engine, CSP-diameters were mostly around 6 nm and CSP-concentrations reached up to 4.810 7 cm -3 (positive and negative) corresponding to a CSP-emission index ECSP=2.510 15 CSP kg -1 fuel burnt. The ECSP increased with FF but did not increase with FSC. The latter indicates that sulphur was not a major component of the large ions. Possible CSP-sources and CSP-sinks as well as CSP-roles are discussed.

  20. The Effect of Ambient Temperature and Exercise to the Level of Exhaustion on

    Directory of Open Access Journals (Sweden)

    Somaye Kasharafifard

    2014-06-01

    Full Text Available Background: The increase in the amount of heat shock protein and C-reactive protein occurring as a result of stress was done with the aims of returning cell homeostasis, successful restoration of cell injury and protection of cell against more injuries. Materials and Methods: Fifteen climber and 15 non athlete subjects were chosen. A selected aerobic test was done by the subjects using Monark bicycle under two different conditions. Before starting the test, the subjects were exposed to a normal condition with the temperature of 242C for an hour and a blood sample was taken from all the subjects. Then immediately, the subjects took the selected aerobic test to the level of exhaustion and blood sample was taken again. A week later, these subjects were exposed to a heated environment with the temperature of 382C, followed by blood sample taking. Finally, the test was done by the subjects to the level of exhaustion and the last blood sample was taken. Then, the amount of heat shock protein (HSP and C - reactive protein (CRP in blood samples was measured. Results: A meaningful difference was observed in the changes of heat shock proteins (p=0.012 and C-reactive protein (p=0.02 between athlete and non athlete subjects. There was no meaningful difference in CRP and HSP in normal and hot condition for non athlete subjects before and after the test. But the result of the study demonstrates that There was a meaningful difference for athletes in both conditions before and after the test (p=0.002. Conclusion: Based on the study, it is claimed that while an athlete is exposed to several stressful conditions (e.g. high temperature and physical exercise, compared to a non athlete, the reaction of his body cells is more significant in order to prevent the injury.

  1. Low-temperature gas from marine shales

    OpenAIRE

    Jarvie Daniel M; Mango Frank D

    2009-01-01

    Abstract Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas). Decomposition is believed to occur at high temperatures, between 100 and 200C in the subsurface and generally above 300C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100C, robust gas generation below 100C under ordinary laboratory conditions is unprecede...

  2. Flow rate measuring method for radioactive off gas in local exhaustion facility

    International Nuclear Information System (INIS)

    In the inside of an exhaustion duct extending horizontally for flowing radioactive off-gas, a baffle plate having a size substantially covering the cross section of the duct is pivoted at the upper end thereof by means of a rotational shaft. The baffle plate is thus pivoted to the duct in a state where in can incline in the radial direction of the cross section of the duct around the rotational shaft. An indication pointer is secured to the upper end of the baffle plate penetrating a duct wall, and the pointer is tiltable together with the baffle plate around the rotational axis as a fulcrum. A display plate having gradients showing a relation between the inclination of the indication pointer and the flow rate in the duct is disposed at the back of the display pointer. When gas flows in the duct, buoyancy is caused to the baffle plate in accordance with the flow rate of the gas, whereby the baffle plate is inclined to display the flow rate corresponding to the indication pointer. (I.N.)

  3. Simplified prediction of soot emissions in the exhaust of gas turbines operated at atmospheric pressure

    International Nuclear Information System (INIS)

    In previous works [1, 2], a correlation for the prediction of soot in gas turbine exhaust has been presented. The development of the correlation is based on 300 of experimental data for a total of 19 fuels burned both at atmospheric and high pressure (0.1 to 0.9 MPa) and two scales (1/2 and 1/3) of a Laval type combustion chamber. With the wide range of fuels burned in the experiment giving a smoke number variation from 0 to 100, the accuracy of the correlation (Standard Deviation of 40%) is acceptable for most purposes Later on the correlation has been improved using data from the full scaled combustion chamber as shown in [3]. A detailed analysis of the correlation is undertaken within the present work for the case of the experiments at atmospheric pressure. The result is a simplification of the correlation presented in [3] without a major deterioration of the standard deviation. This result leads to a simplification of the previous proposed soot formation and oxidation model within gas turbine combustors (operated at atmospheric pressure) and limits the analysis of the phenomenon on essential functional parameters as well. Gas turbines are generally used in aircraft, ships, and in stationary production of electricity, heat and vapor. (author)

  4. Method and apparatus for separation and recovery of rare gas from reactor exhaust gas

    International Nuclear Information System (INIS)

    Object: To reduce the probability of leakage of radioactive rare gases to thereby enhance safety and reduce the running cost and facilitate operation. Structure: A processed gas having been deprived of water and oxygen is subjected to pressure reduction to 10 to several 100 mm Hg by a vacuum pump and then cooled down through heat exchange with helium, hydrogen, nitrogen and like gases. The resultant gas is passed through an adsorber, which is cooled to 80 to 1200K by a freezer for adsorbing Ar, Kr, Xe and like rare gases and part of nitrogen. The adsorber is then heated to liberate the adsorbed gas, and the liberated gas is led to a condenser which is cooled to 60 to 800K, thus causing condensation of only the rare gases. Thereafter, the condenser is heated to liberate the rare gases from it, these gases then being sealed in a separate recovery tank. (Ikeda, J.)

  5. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Science.gov (United States)

    2010-07-01

    ...the distance from the exhaust manifold flange(s), or turbocharger outlet to any exhaust aftertreatment device shall be the...system ducting from the exit of the engine exhaust manifold or turbocharger outlet to smoke meter exceeds 12 feet (3.7 m) in...

  6. [Effects of exhaust gas on adrenal cortex activity, general growth and variation of intermediate metabolism in the male rate during a period of growth].

    Science.gov (United States)

    El Feki, A; Sakly, M; Kamoun, A

    1984-10-01

    The exhaust gas induces a stressing action, similar to classical type agression: activation of the pituitary adrenal-axis, with increase of relative adrenal weight, and of the rate of corticosterone production. After chronic exposure, deep metabolic changes appear, which reflect an accentuated state of exhaustion of the organism. Moreover perturbation of spermatogenesis with azoospermia is noted. Thus exhaust gas is to be considered as a very potent toxic agent. PMID:6084481

  7. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Sren Juhl

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based on a finite-element approach. On each discretized segment, fluid properties, heat transfer process and TEG performance are locally calculated for higher model precision. To benefit both the system design and fabrication, the way to model TEG modules is herein reconsidered; a database of commercialized compact plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance of the model accuracy and the optimization on system configuration. Future studies will concentrate on heat exchanger structures.

  8. Low-temperature gas from marine shales

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2009-02-01

    Full Text Available Abstract Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas. Decomposition is believed to occur at high temperatures, between 100 and 200C in the subsurface and generally above 300C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100C, robust gas generation below 100C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300 below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50C, six percent of the hydrocarbons (kerogen & bitumen in a Mississippian marine shale decomposed to gas (C1C5. The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour, nearly five times more gas was generated at 50C (57.4 ?g C1C5/g rock than at 350C by thermal cracking (12 ?g C1C5/g rock. The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300 below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible.

  9. Numerical Simulation of Exhaust Gas Cooling in Channels with Periodic Elbows for Application in Compact Heat Recovery Systems

    International Nuclear Information System (INIS)

    Miniature and Micro devices represent the new frontier for advanced heat and mass transfer technology. Due to the small length scales, the use of CFD is very useful for designing and optimizing microfluidic devices since experimentation and visualization at these scales can be difficult. In this work a high temperature air microfluidic cooling strategy for applications such as compact waste heat recovery, exhaust gas recirculation and fuel cell thermal management is proposed. Initially, the application of a simple straight microchannel is considered. In an effort to partially compensate for the poor thermal properties of air, right-angle bends are introduced in order to induce Dean vortices which periodically restart the thermal boundary layer development, thus improving the heat transfer and fluid mixing. Numerical simulations in the range of 100 ? ReDh ? 1000 have been carried out for channels of square cross-section. Channel wall lengths of 1.0 mm are investigated for elbow spacings of 5 mm, 10 mm and 15 mm. High temperature air (300C) at atmospheric inlet pressure is the working fluid. The results indicate that the elbows substantially improve the local and average heat transfer in the channels while increasing the pressure drop. Design considerations are discussed which take into account the heat transfer and pressure drop characteristics of the channels.

  10. Effect of exhaust gas recirculation on emissions from a flame-tube combustor using Liquid Jet A fuel

    Science.gov (United States)

    Marek, C. J.; Tacina, R. R.

    1976-01-01

    The effects of uncooled exhaust gas recirculation as an inert diluent on emissions of oxides of nitrogen (NO + NO2) and on combustion efficiency were investigated. Ratios of recirculated combustion products to inlet airflow were varied from 10 to 80 percent by using an inlet air ejector nozzle. Liquid Jet A fuel was used. The flame-tube combustor was 10.2 cm in diameter. It was operated with and without a flameholder present. The combustor pressure was maintained constant at 0.5 MPa. The equivalence ratio was varied from 0.3 to 1.0. The inlet air temperature was varied from 590 to 800 K, and the reference velocity from 10 to 30 m/sec. Increasing the percent recirculation from 10 to 25 had the following effects: (1) the peak NOx emission was decreased by 37 percent, from 8 to 5 g NO2/kg fuel, at an inlet air temperature of 590 K and a reference velocity of 15 m/sec; (2) the combustion efficiency was increased, particularly at the higher equivalence ratios; and (3) for a high combustion efficiency of greater than 99.5 percent, the range of operation of the combustor was nearly doubled in terms of equivalence ratio. Increasing the recirculation from 25 to 50 percent did not change the emissions significantly.

  11. On exhaust emissions from petrol-fuelled passenger cars at low ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use

    1998-11-01

    The study at hand deals with regulated and unregulated exhaust emissions from petrol-fuelled cars at low ambient temperatures with present-day or near-future exhaust after treatment systems. The subject has been investigated at VTT over a decade and this report compiles data from various sub-studies carried out between the years 1993 - 1997. Each one of them viewed different aspects of the phenomenon, like determining the low-temperature response of today`s new cars employing three-way catalytic converters or assessing the long-term durability and the influence of vehicle mileage upon the low-temperature emissions performance. Within these studies, together more than 120 cars of model years from 1990 to 1997 have been tested. Most of them were normal, in-service vehicles with total mileages differing between only a few thousand kilometres for new cars up to 80,000 km or even more for the in-use vehicles. Both the US FTP75 and the European test cycle have been employed, and the ambient temperatures ranged from the baseline (+22 deg C) down to +- O deg C, -7 deg C and in some cases even to -20 deg C. The studies attested that new cars having today`s advanced emissions control systems produced fairly low levels of emissions when tested in conditions designated in the regulations that are the basis of the current new-vehicle certification. However, this performance was not necessarily attained at ambient temperatures that were below the normative range. Fairly widespread response was recorded, and cars having almost equal emissions output at baseline could produce largely deviating outcomes in low-temperature conditions. On average, CO and HC emissions increased by a factor of five to 10, depending on the ambient temperature and vehicle type. However, emissions of NO{sub x} were largely unaffected. Apart from these regulated emissions, many unregulated species were also determined, either by using traditional sampling and chromatography methods or on-line, employing the latest FTIR technology. Overall, the levels of these emissions were also mostly elevated at subnormal temperatures. Total vehicle mileage seemed not to affect cold-start emissions (CO and HC) at low temperatures. Nor did the overall durability of the emission control system appear to be worse in cold-climate conditions typical for Finland. The deterioration of the emissions performance in the tested vehicles either closely followed the average trend defined by the normal, assigned deterioration factors or was even lesser. The conclusions of this report underline the necessity of a separate low-temperature test in order to really effectively curb real-world emissions. Standards at normal temperature are no more effective alone, but need to be accompanied with additional requirements for good performance also in conditions closer to the everyday use, which comprises many cold-starts even in low ambient temperature conditions. (orig.) 75 refs.

  12. PERFORMANCE AND EXHAUST GAS EMISSIONS ANALYSIS OF DIRECT INJECTION CNG-DIESEL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    RANBIR SINGH

    2012-03-01

    Full Text Available Existing diesel engines are under stringent emission regulation particularly of smoke and particulate matter in their exhaust. Compressed Natural Gas and Diesel dual fuel operation is regarded as one of the best ways to control emissions from diesel engines and simultaneously saving petroleum based diesel fuel. Dual fuel engineis a conventional diesel engine which burn either gaseous fuel or diesel or both at the same time. In the present paper an experimental research was carried out on a laboratory single cylinder, four-stroke variable compression ratio, direct injection diesel engine converted to CNG-Diesel dual fuel mode to analyze the performance and emission characteristics of pure diesel first and then CNG-Diesel dual fuel mode. The measurements were recorded for the compression ratio of 15 and 17.5 at CNG substitution rates of 30% and 60% and varying theload from idle to rated load of 3.5kW in steps of 1 up to 3kW and then to 3.5kW. The results reveal that brake thermal efficiency of dual fuel engine is in the range of 30%-40% at the rated load of 3.5 kW which is 11%-13% higher than pure diesel engine for 30% and 60% CNG substitution rates. This trend is observed irrespective of the compression ratio of the engine. Brake specific fuel consumption of dual fuel engine is found better than pure diesel engine at all engine loads and for both CNG substitution rates. It is found that there is drastic reduction in CO, CO2, HC, NOx and smoke emissions in the exhaust of dual fuel engine at all loads and for 30% and 60% CNG substitution rates by employing some optimum operating conditions set forth for experimental investigations in this study.

  13. Improvement on functions and performances of exhaust gas sensor and its electronic module; Haiki seibun sensing no kudo kairo ni yoru kokino/koseinoka

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, S.; Minami, N. [Hitachi Car Engineering Co., Tokyo (Japan); Ouchi, S.; Noto, Y. [Hitachi Ltd., Ibaraki (Japan)] Hasegawa, N. [The Technology Reseach Association of Automotive Products, Tokyo (Japan)

    1998-06-01

    This improvement on functions and performances of exhaust gas sensor should be indispensable to qualify the emission regulation of ULEV. The tubular zirconia cell with limited diffusion layer laminated platinum foil heater on it have been prepared for sensor. The electronic module mainly consists of an ASIC and a single-chip micro-computer. By time shared (4msec) feed back control for constant electromotive force (0.5V) and constant cell temperature (700degC), it have been achieved frequency response (20Hz), warm-up time (5sec) and required on board durability. 4 refs., 15 figs.

  14. 40 CFR 86.1709-99 - Exhaust emission standards for 1999 and later light light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ...2010-07-01 false Exhaust emission standards...AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...calibrations (e.g., air to fuel ratio, spark timing, and exhaust gas recirculation), may be used...coolant temperature, air charge...

  15. 40 CFR 86.1708-99 - Exhaust emission standards for 1999 and later light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ...2010-07-01 false Exhaust emission standards...AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...calibrations (e.g. air to fuel ratio, spark timing, and exhaust gas recirculation), may be used...coolant temperature, air charge...

  16. Study of an exhaust gas recirculation equipped micro gas turbine supplied with bio-fuels

    International Nuclear Information System (INIS)

    The authors discuss in this paper some aspects related to the employment of liquid and gaseous bio-fuels in a micro-gas turbine. Besides the purpose of checking the effectiveness of methods for supplying the micro-turbine with fuels from renewable sources, the attention is focused on the need of controlling the pollutant emission. To this aim, several solutions are experienced and numerically tested. For the liquid fuel supply, a new shape and location of the main fuel injector is combined with a modified position of the pilot injector. In the case of the biogas fuelling, an external EGR option is considered as activated. Both methods aim at the reduction of the thermal and prompt NO formation by approaching the flameless combustion concept. -- Highlights: External and internal EGR concepts applied to NOx control from micro gas turbines. For gaseous fuels: internal EGR is obtained by a proper location of the pilot injector. For liquid fuels: replacing the original radial injectors with a pressure swirl atomizer. We apply a CFD based method, after validation with experimental data. Blends of bio-fuels with fossil fuels promise noticeable benefits

  17. Numerical Simulation of Exhaust Gas Cooling in Channels with Periodic Elbows for Application in Compact Heat Recovery Systems

    Science.gov (United States)

    Di Bari, Sergio; Cotton, James S.; Robinson, Anthony J.

    2012-11-01

    Miniature and Micro devices represent the new frontier for advanced heat and mass transfer technology. Due to the small length scales, the use of CFD is very useful for designing and optimizing microfluidic devices since experimentation and visualization at these scales can be difficult. In this work a high temperature air microfluidic cooling strategy for applications such as compact waste heat recovery, exhaust gas recirculation and fuel cell thermal management is proposed. Initially, the application of a simple straight microchannel is considered. In an effort to partially compensate for the poor thermal properties of air, right-angle bends are introduced in order to induce Dean vortices which periodically restart the thermal boundary layer development, thus improving the heat transfer and fluid mixing. Numerical simulations in the range of 100 air (300C) at atmospheric inlet pressure is the working fluid. The results indicate that the elbows substantially improve the local and average heat transfer in the channels while increasing the pressure drop. Design considerations are discussed which take into account the heat transfer and pressure drop characteristics of the channels.

  18. Development of techniques to characterize particulates emitted from gas turbine exhausts

    Science.gov (United States)

    Johnson, M. P.; Hilton, M.; Waterman, D. R.; Black, J. D.

    2003-07-01

    Particles emitted from aircraft play a role in the formation of contrails and it is essential to characterize them to understand the physical and chemical processes that are happening. Current methods for measuring aircraft particulate emissions study the reflectance of samples collected in filter papers. A series of experiments to more fully characterize particulates has been performed on a small-scale gas turbine engine. An intrusive sampling system conforming to current ICAO regulations for aircraft emissions was used with a scanning mobility particle sizer (SMPS). Non-intrusive measurements were made using laser induced incandescence (LII) and samples were taken from the exhaust to analyse using a transmission electron microscope. Results obtained from different techniques showed good agreement with each other. As engine power conditions increased, both the SMPS and LII indicated that the mass of soot had decreased. Differences were observed between measurements of diluted and undiluted samples. The mean particle size decreased with dilution but the size distribution became bi-modal. The study has shown how significant the sampling environment is for measuring particulates and careful techniques need to be used to ensure that accurate, consistent results can be obtained.

  19. Development and testing of a washing process for exhaust gas of stationary operated internal combustion engines. Final report. Entwicklung und Erprobung eines Verfahrens der Abgaswaesche fuer stationaere Verbrennungsmotoren. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Coutelle, R.; Huss, R.; Wimberger, H.J.

    1986-01-01

    An exhaust gas washer for stationary operated diesel engines has been developed and tested in combination with a heat pump. The exhaust gas is washed with its own condensate in a packed column. The condensate circulation is performed by mammoth pumps. The pollutant emissions have been reduced depending on operating conditions (speed, temperature, pH of the condensate) by the following rates: HC by 30-85%, aldehydes by 35-99%, phenols by 50-80%, PAH by 80-95%, soot by 25-70%, SO/sub 2/ by 65-90%, NOsub(x) by 5-20%. It has been possible to reduce the NOsub(x) emissions by 75% at an inconsiderably increased fuel consumption by recycling exhaust gases. But higher soot emissions have to be accepted in this case. The condensate is completely degradable in a septic tank after being mixed with waste water containing phosphate. With 42 refs., 13 tabs., 32 figs.

  20. Reduction of the exhaust gas emissions during warm up by improving the mixture preparation of spark-ignition engines

    International Nuclear Information System (INIS)

    During warm-up the engine emits the highest concentration of exhaust gas emissions. An improvement of the atomization behaviour of the injected fuel should lead to a good mixture preparation in the manifold and combustion chamber and further to lower exhaust gas emissions during warm up. During these investigations it was found out that the build-up of fuel film in the manifold of cold spark-ignition engines can not be prevented. But by injecting the fuel at the open inlet valve it is possible to reduce the fuel film. The injection of extremely finely atomized fuel at the open inlet valve leads to a better mixture preparation with smaller fuel dropplets in the manifold and combustion chamber. This again leads, during warm-up of the spark ignition engine, to a reduction of the HC emissions of 30% and the CO emissions of 50%. (author)

  1. Positional Arrangements of Waste Exhaust Gas Ducts of C-Type Balanced Chimney Heating Devices on Building Faades

    Directory of Open Access Journals (Sweden)

    Erkan AVLAR

    2009-01-01

    Full Text Available In Turkey today, with the increase in availability of natural gas,detached heating devices are being preferred over existingheating devices. Due to the lack of chimneys in existing buildingsin Turkey or the presence of chimneys that fail to conformto standards, the use of C-type balanced chimney devices has increased.C-type balanced chimney devices take the combustionair directly from the outside by a specific air duct as detachedheating equipment, with enclosed combustion chambers anda specific waste gas exhaust duct, and they are ventilated independentlyof the field of equipment. Because of their essentiality,the use of a chimney is not required in these devices;the waste gas is exhausted through walls, windows, doors, orbalconies. The natural gas is a clean fossil fuel that requires nostorage in buildings and is easy to use. However, water vapor,carbon dioxide and nitrogen oxides are produced by the combustionof natural gas. It is widely known that high concentrationsof these products can have some adverse effects onhumans such as dizziness, headaches and nausea. As a result,the waste products could recoil through wall openings on thefaade to create unhealthy indoor environments that could bedangerous to human health. Therefore, the importance of standardsand regulations about the positional arrangements of thewaste gas exhaust ducts of C-type balanced chimney devices onbuilding faades is increasing. In this research, we analyze thestudies of the Institution of Turkish Standards, Chamber of MechanicalEngineers, gas distribution companies, municipalitiesand authorized firms and compare the criteria to determine thenecessary application method. According to our comparison ofthe references accessed, the criteria are not uniform.

  2. Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor

    Science.gov (United States)

    Adelman, H. G.; Browning, L. H.; Pefley, R. K.

    1975-01-01

    A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.

  3. On Developing a Spectroscopic System for Fast Gas Temperature Measurements in Combustion Environments

    OpenAIRE

    Evseev, Vadim; Clausen, Snnik

    2009-01-01

    Fourier Transform Infra Red (FTIR) spectroscopy techniques are known to provide reliable results for gas temperature measurements and can be comparatively easily performed on an industrial scale such as a boiler on a power plant or an exhaust of a ship engine cylinder. However temporal resolution is not high enough to trace fast temperature variations which are of great importance for complete combustion diagnostics. To eliminate the above mentioned shortcoming, a new IR spectroscopic-imaging...

  4. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine

    International Nuclear Information System (INIS)

    Highlights: • A new parameter is proposed for optimizing economic performance of the ORC system. • Maximal thermodynamic and economic performances of an ORC system are presented. • The corresponding operating pressures in turbine of optimum thermodynamic and economic performances are investigated. • An optimal effectiveness of pre-heater is obtained for the ORC system. - Abstract: The aim of this study is to investigate the thermodynamic and economic performances optimization for an ORC system recovering the waste heat of exhaust gas from a large marine diesel engine of the merchant ship. Parameters of net power output index and thermal efficiency are used to represent the economic and thermodynamic performances, respectively. The maximum net power output index and thermal efficiency are obtained and the corresponding turbine inlet pressure, turbine outlet pressure, and effectiveness of pre-heater of the ORC system are also evaluated using R1234ze, R245fa, R600, and R600a. Furthermore, the analyses of the effects of turbine inlet temperature and cooling water temperature on the optimal economic and thermodynamic performances of the ORC system are carried out. The results show that R245fa performs the most satisfactorily followed by R600, R600a, and R1234ze under optimal economic performance. However, in the optimal thermodynamic performance evaluations, R1234ze has the largest thermal efficiency followed by R600a, R245fa, and R600. The payback periods will decrease from 0.5 year for R245fa to 0.65 year for R1234ze respectively as the system is equipped with a pre-heater. In addition, compared with conventional diesel oil feeding, the proposed ORC system can reduce 76% CO2 emission per kilowatt-hour

  5. Robust control of speed and temperature in a power plant gas turbine.

    Science.gov (United States)

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(?) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions. PMID:22062324

  6. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Directory of Open Access Journals (Sweden)

    Yacine Halfaya

    2016-02-01

    Full Text Available We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO 2 and 15 ppm-NH 3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  7. NO sub x removal from gas engine exhaust gases. NO sub x -verwijdering uit uitlaatgassen van gasmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Der Kinderen, J.M.; Heijkoop, G.; Geus, J.W. (VEG-Gasinstituut NV, Apeldoorn (Netherlands) Rijksuniversiteit Utrecht (Netherlands))

    1990-01-01

    In burning natural gas less NO{sub x} is formed than with other fossil fuels but gas engines produce relatively much NO{sub x}. The most drastic reduction of the NO{sub x} content can be achieved by catalytic after-treatment of the exhaust gases. This article reports on research by VEG-Gasinstituut in cooperation with Gaz de France into the development and testing of catalysts and a system of non-elective NO{sub x} reduction. 6 figs., 6 refs., 5 ills.

  8. Palladium based catalysts for exhaust aftertreatment of natural gas powered vehicles and biofuel combustion

    International Nuclear Information System (INIS)

    Hydrothermally aged (1000/850C, 12/16h) Pd-Ce-supported alumina catalysts with high and low Ce content were prepared and tested in conversion of gas mixtures simulating the emissions from natural gas (NG) driven vehicles and biofuel combustion. The test procedure contained lean and rich light-off activity tests, stationary and oscillating lambda sweeps, space velocity tests as well as runs with sulphur poisoning. The catalysts exhibited high conversion of the model pollutants. In the oscillating lambda sweep experiments, the Pd-Ce/Al2O3 with high Ce loading showed high activities in conversion of CH4 and CO at lean ? values up to 1.04. Ageing under the reactants flow as well as hydrothermal treatment of the catalysts resulted in improved catalytic activities in terms of light-off temperatures of the model pollutants. This activation was believed to be a result of both Cl-release from the surface as well as restructuring of the Pd-particles. Interaction of Pd-Ce or Al-Ce induced at high temperature was also believed to affect the activation. Addition of 5ppm of SO2 into the gas mixture of simulated emissions from biofuel combustion raised the T50% of CH4 by approximately 100C. SO2-TPD experiments were used to correlate the catalytic activity to S-poisoning. The catalysts were characterised by H2-adsorption, XPS, FTIR, SO2-/NO-/O2-TPD, XRD, XRF and N2-physisorption

  9. Temperature Modulation of a Catalytic Gas Sensor

    Directory of Open Access Journals (Sweden)

    Eike Brauns

    2014-10-01

    Full Text Available The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additional information about the gas characteristics can be measured and drift effects caused by material shifting or environmental temperature changes can be avoided. In this work a miniaturized catalytic gas sensor which offers a very short response time (<150 ms was developed. Operation with modulated temperature allows analysis of the signal spectrum with advanced information content, based on the Arrhenius approach. Therefore, a high-precise electronic device was developed, since theory shows that harmonics induced by the electronics must be avoided to generate a comprehensible signal.

  10. Gas-particle partitioning of primary organic aerosol emissions: (1) Gasoline vehicle exhaust

    Science.gov (United States)

    May, Andrew A.; Presto, Albert A.; Hennigan, Christopher J.; Nguyen, Ngoc T.; Gordon, Timothy D.; Robinson, Allen L.

    2013-10-01

    The gas-particle partitioning of the primary organic aerosol (POA) emissions from fifty-one light-duty gasoline vehicles (model years 1987-2012) was investigated at the California Air Resources Board Haagen-Smit Laboratory. Each vehicle was operated over the cold-start unified cycle on a chassis dynamometer and its emissions were sampled using a constant volume sampler. Four independent yet complementary approaches were used to investigate POA gas-particle partitioning: sampling artifact correction of quartz filter data, dilution from the constant volume sampler into a portable environmental chamber, heating in a thermodenuder, and thermal desorption/gas chromatography/mass spectrometry analysis of quartz filter samples. This combination of techniques allowed gas-particle partitioning measurements to be made across a wide range of atmospherically relevant conditions - temperatures of 25-100 C and organic aerosol concentrations of designed to be applied to quartz filter POA emission factors in order to update emissions inventories for use in chemical transport models.

  11. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    OpenAIRE

    Gong Jing; Zhang Yingjia; Tang Chenglong; Huang Zuohua

    2014-01-01

    Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx) and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas re...

  12. Investigation of ambient temperature on the performance of GE-F5 gas turbine

    International Nuclear Information System (INIS)

    The role of ambient temperature in determining the performance of GE-F5 gas turbine is analysed by investigating the Shirvan gas turbine power plant 10MW, 15MW and 20MW power output. These parameters have been brought as a function of ambient temperature. The results show when ambient temperature increases 1 deg C, The compressor pressure decreases about 20kPa, compressor outlet temperature increases about 1.13 deg C and exhaust temperature increases about 2.5 deg C. It is revealed that variations are due to decreasing the efficiency of compressor and less due to mass flow rate of air reduction as ambient temperature increases at constant power output. The results shows cycle efficiency reduces 3% with increasing 50 of ambient temperature, also the m increases as ambient temperature increase for constant turbine work. These are also because of reducing the compressor efficiency as ambient temperature increases

  13. Temperature Modulation of a Catalytic Gas Sensor

    OpenAIRE

    Eike Brauns; Eva Morsbach; Sebastian Kunz; Marcus Baeumer; Walter Lang

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additi...

  14. Estimation of exhaust gas aerodynamic force on the variable geometry turbocharger actuator: 1D flow model approach

    International Nuclear Information System (INIS)

    Highlights: • Estimation of aerodynamic force on variable turbine geometry vanes and actuator. • Method based on exhaust gas flow modeling. • Simulation tool for integration of aerodynamic force in automotive simulation software. - Abstract: This paper provides a reliable tool for simulating the effects of exhaust gas flow through the variable turbine geometry section of a variable geometry turbocharger (VGT), on flow control mechanism. The main objective is to estimate the resistive aerodynamic force exerted by the flow upon the variable geometry vanes and the controlling actuator, in order to improve the control of vane angles. To achieve this, a 1D model of the exhaust flow is developed using Navier–Stokes equations. As the flow characteristics depend upon the volute geometry, impeller blade force and the existing viscous friction, the related source terms (losses) are also included in the model. In order to guarantee stability, an implicit numerical solver has been developed for the resolution of the Navier–Stokes problem. The resulting simulation tool has been validated through comparison with experimentally obtained values of turbine inlet pressure and the aerodynamic force as measured at the actuator shaft. The simulator shows good compliance with experimental results

  15. Thermally grown oxide films and corrosion performance of ferritic stainless steels under simulated exhaust gas condensate conditions

    International Nuclear Information System (INIS)

    Highlights: Five ferritic stainless steels with dissimilar composition included. Thermal oxide films and performance under exhaust gas condensate conditions studied. Oxide films grown at 300 and 600 C show differences in structure and properties. Performance of alloys with >11.5 wt.% Cr is related to elements Ti, Si, Nb and Mo. Compositional optimization requires knowledge on several linked processes. - Abstract: Five ferritic stainless steels are characterized in terms of thermally grown oxide films and corrosion performance under simulated exhaust gas condensate conditions. Oxide films developed at 300 C show only little variation in microstructure and properties between the alloys, whereas those evolved at 600 C exhibit clear differences. Especially in alloys with >11.5 wt.% chromium, the presence and distribution of such alloying elements as titanium, silicon, niobium and molybdenum are crucial for the film properties and the overall corrosion performance. The results may be exploited in the compositional optimization of the alloys for the cold-end components of automotive exhaust system

  16. Optical Temperature Sensor For Gas Turbines

    Science.gov (United States)

    Mossey, P. W.

    1987-01-01

    New design promises accuracy even in presence of contamination. Improved sensor developed to measure gas temperatures up to 1,700 degree C in gas-turbine engines. Sensor has conical shape for mechanical strengths and optical configuration insensitive to deposits of foreign matter on sides of cone.

  17. Oxidation and corrosion fatigue aspects of cast exhaust manifolds

    OpenAIRE

    Ekstrm, Madeleine

    2015-01-01

    Emission regulations for heavy-duty diesel engines are becoming increasingly restrictive to limit the environmental impacts of exhaust gases and particles. Increasing the specific power output of diesel engines would improve fuel efficiency and greatly reduce emissions, but these changes could lead to increased exhaust gas temperature, increasing demands on the exhaust manifold material. This is currently the ferritic ductile cast iron alloy SiMo51, containing about 4 wt% Si and ~1 wt% Mo, wh...

  18. Effects of Gas Velocity and Temperature on Nitric Oxide Conversion in Simulated Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Sathaporn Chuepeng

    2012-01-01

    Full Text Available Problem statement: Gaseous emissions from gasoline engine such as carbon monoxide, unburned hydrocarbon and nitrogen oxides were usually reduced in three-way catalytic converter simultaneously around theoretical fuel and air combustion. Engine speed and load and other parameters were varied over a wide range of operating conditions, resulting in different exhaust gas composition and condition intake into catalytic converter. This work was studied the conversion of Nitric Oxide (NO in exhaust gas catalytic converter affected by gas velocity and inlet temperature using numerical modeling. Approach: The simulation was based on a one-dimensional time-dependent model within a single monolith channel of the converter. Upon certain assumptions, the study was considered heterogeneous combustion reaction between gas and solid phases based on lumped kinetic reactions. In this study, constants and variables used for mass and heat transfers were dependent on gas or solid phase temperature and mole fraction. Finite difference scheme incorporated with the generated computer code was established for solving species and energy balances within gas and solid phases. Results: The NO conversion was increased with transient period in initial and reached steady state at different values. The lower inlet gas temperature was resulted in lesser NO conversion at the same inlet NO concentration and gas velocity. The light-off temperatures were up to 520 K and a sudden rise in NO conversion was from 550-605 K and decreasing onwards, generating working temperature window. NO conversion increased throughout the catalyst bed from the inlet and the conversion decreased as the gas velocity increased. Conclusion/Recommendations: Gas space velocity and gas temperature intake to the converter affected the NO conversion over the time and the axial distance from the catalyst bed inlet. The numerical results have summarily demonstrated a good approximation compared to experimental data provided in the literature. Further investigation of such effects on other gaseous components is recommended for future work.

  19. Effect of ejector dilutors on measurements of automotive exhaust gas aerosol size distributions

    International Nuclear Information System (INIS)

    Ejector dilutors have long been used for automotive exhaust particle sampling, as they can offer a low-cost option for stable dilution. In an ejector dilutor, pressurized air expanding in the periphery of a nozzle draws in and mixes with an exhaust sample which is then led to analytical equipment. The combination of processes involved may lead to particle losses which can affect the measurement. This study examines the losses of diesel exhaust particles of different characteristics (nucleation mode, non-volatile accumulation mode, internally and externally mixed accumulation mode) when these are sampled through an ejector dilutor. A scanning mobility particle sizer (SMPS), an electrical low-pressure impactor and a diffusion charger were used as analytical equipment to characterize losses with different instruments. Particle losses were found negligible for all practical applications of diesel exhaust aerosol sampling. Also, the sampling outlet and the operating pressure of the ejector dilutor were found to have a non-measurable effect on the distribution shape. Some variation of the labile nucleation mode particles was attributed to evaporation within the SMPS rather than an ejector effect, and this was confirmed by sampling solid NaCl particles in the same size range. The study further confirms the usability of ejector dilutors for exhaust particle sampling and dilution

  20. Temperature modulation of a catalytic gas sensor.

    Science.gov (United States)

    Brauns, Eike; Morsbach, Eva; Kunz, Sebastian; Baeumer, Marcus; Lang, Walter

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additional information about the gas characteristics can be measured and drift effects caused by material shifting or environmental temperature changes can be avoided. In this work a miniaturized catalytic gas sensor which offers a very short response time (Arrhenius approach. Therefore, a high-precise electronic device was developed, since theory shows that harmonics induced by the electronics must be avoided to generate a comprehensible signal. PMID:25356643

  1. Optical Sensor Of High Gas Temperatures

    Science.gov (United States)

    Hill, Arthur J.

    1988-01-01

    Contact pyrometer resists effects of heat, vibration, and moisture. New sensor consists of shielded sapphire rod with sputtered layer of precious metal on end. Metal layer acts as blackbody. Emits radiation having known dependence of spectral distribution with temperature of metal and temperature of hot gas flowing over metal. Fiber-optic cable carries radiation from sapphire rod to remote photodetector.

  2. Noble Gas Temperature Proxy for Climate Change

    Science.gov (United States)

    Noble gases in groundwater appear to offer a practical approach for quantitatively determining past surface air temperatures over recharge areas for any watershed. The noble gas temperature (NGT) proxy should then permit a paleothermometry of a region over time. This terrestria...

  3. Increasing the Selectivity of Pt-Gate SiC Field Effect Gas Sensors by Dynamic Temperature Modulation

    OpenAIRE

    Bur, Christian; Reimann, Peter; Andersson, Mike; Schuetze, Andreas; Lloyd Spetz, Anita

    2012-01-01

    Based on a diode coupled silicon carbide field effect transistor (FET) with platinum as catalytic gate material, the influence of dynamic temperature modulation on the selectivity of gas analysis sensors FETs has been investigated. This operating mode, studied intensively for semiconductor gas sensors, has only recently been applied to FETs. A suitable temperature cycle for detection of typical exhaust gases (CO, NO, C3H6, H-2, NH3) was developed and combined with appropriate signal processin...

  4. Medium temperature carbon dioxide gas turbine reactors

    International Nuclear Information System (INIS)

    Carbon dioxide (CO2) partial pre-cooling and partial condensation gas turbine cycles attain comparable cycle efficiencies of 46 to 48% at medium temperature of 650degC with a typical helium (He) gas turbine cycle of PBMR (45.3%) at 900degC. This higher efficiency is ascribed to: reduced compression work around the critical point of CO2 and in the liquid phase (only available in the partial condensation cycle); and consideration of variation in CO2 specific heat at constant pressure, Cp, with temperature and pressure into cycle configuration. Compared to He cycles, the CO2 cycle gas turbomachinery weight is about one-fifth while recuperator size is comparable. Considering these results, power generation cost per unit electricity is evaluated to be lower for the CO2 cycle than in the He cycle. At medium temperature of 650degC, corrosion resistance of materials and reliability of components in CO2 have been proven during extensive operation in AGRs. Lowering temperature to 650degC provides flexibility in choosing materials and eases maintenance through the lower diffusion leak rate of fission products from coated particle fuel. The proposed medium temperature CO2 gas turbine reactors are expected to be alternative solutions to current high temperature He gas turbine reactors. (author)

  5. Effect of ambient temperature on the performance of micro gas turbine with cogeneration system in cold region

    International Nuclear Information System (INIS)

    A small-scale prime mover especially micro gas turbine is a key factor in order to widespread the utilization of biogas. It is well known that a performance of large-scale gas turbine is greatly affected by its inlet air temperature. However, the effect of the inlet air temperature on the performance of small-scale gas turbine (micro gas turbine) is not widely reported. The purpose of the present study is to investigate the effect of the inlet air temperature on the performance of a micro gas turbine (MGT) with cogeneration system (CGS) arrangement. An analysis model of the MGT-CGS was set up on the basis of experimental results obtained in a previous study and a manufacturer standard data, and it was analysed under a various ambient temperature condition in a cold region. The results show that when ambient temperature increased, electrical efficiency ?ele of the MGT decreased but exhaust heat recovery ?ehr increased. It was also found that when ambient temperature increased, exhaust heat to mass flow rate Qexe/me and exhaust heat recovery to mass flow rate Qehr/me increased, with maximum ratios of 259 kJ/kg and 200 kJ/kg, respectively were found in summer peak. Furthermore, it was also found that the exhaust heat to power ratio Qexe/Pe had a similar characteristic with exhaust heat recovery to power ratio Qehr/Pe. Qexe/Pe and Qehr/Pe increased with the increase of ambient temperature. Moreover, although different values of total energy efficiency, fuel energy saving and CO2 reduction for every temperature condition were found comparing with a two conventional system that were considered, the MGT-CGS could annually reduce 30,000-80,000 m3/y of fuel consumption and 35-94 t-CO2/y of CO2 emissions. - Research highlights: ? Micro gas turbine cogeneration system (MGT-CGS) has higher electrical efficiency and lower exhaust heat recovery efficiency under cold condition. ? MGT-CGS has lower exhaust heat and exhaust heat recovery to power ratio under cold condition. ? The performance of MGT-CGS depends on heat and electrical demands of applied facilities, and it can decide the necessity of inlet precooling. ? MGT-CGS is very efficient on total energy efficiency, fuel saving and CO2 reduction.

  6. 40 CFR 86.110-90 - Exhaust gas sampling system; diesel vehicles.

    Science.gov (United States)

    2010-07-01

    ... measure the true mass of both gaseous and particulate emissions in the exhaust of either diesel light-duty...) Filter acceptance criteria. Valid diesel particulate net filter weights shall be accepted according to... flow over the test period. The mass of particulate emissions is determined from a proportional...

  7. REDUCING DIESEL NOX AND SOOT EMISSIONS VIA PARTICLE-FREE EXHAUST GAS RECIRCULATION - PHASE I

    Science.gov (United States)

    Diesel engines play an important role in the United States economy for power generation and transportation. However, NOx and soot emissions from both stationary and mobile diesel engines are a major contributor to air pollution. Many engine modifications and exhaust-after-t...

  8. DEVELOPMENT AND TESTING OF AN AMMONIA REMOVAL UNIT FROM THE EXHAUST GAS OF A MANURE DRYING SYSTEM

    Directory of Open Access Journals (Sweden)

    A. E. Ghaly

    2013-01-01

    Full Text Available The storage and handling of animal wastes is one of the main sources of ammonia gas emissions. Ammonia gas has a distinct, unpleasant odor and can become detrimental to the health of humans and animals at high concentrations. Ammonia emissions are of particular concern in manure drying systems, where large losses of nitrogen, in the form of ammonia can cause air quality concerns. The aim of this study was to develop an ammonia removal system for a poultry manure drying system. The thin layer drying of poultry manure in 1-3 cm thick layers resulted in effective sterilization; with the removal of 99.44-99.56% of total bacterial count, 88.51-93.705 of yeast and mold cells, 99.13-99.565 of E.coli cells, and complete removal of Salmonellae. The drying of poultry manure resulted in a large loss of nitrogen, through ammonia loss in the exhaust gasses. The use of a water scrubber resulted in a 75-99% removal of ammonia gas from the exhaust gases. The absorption of ammonia into the scrubber??s water resulted in an increase in pH, which subsequently fell as the drying process finished, and ammonia emission decreased. The heated air drying of poultry manure, with the use of an ammonia removal system proved effective in reducing the odor intensity and offensiveness of the poultry manure drying process, resulting in increased air quality. While producing a high value product.

  9. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 ?m, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz. PMID:26253286

  10. The Performance Test on Local Exhaust Ventilation (LEV) System to Prevent Chlorine Gas Leakage in Water Treatment Plant

    OpenAIRE

    Nor Halim Hasan; M. R. Said; A. M. Leman; Anuar Mohd Mokhtar

    2013-01-01

    Water is a necessity of life to humans and animals. In Malaysia, Government Link Companies (GLC) or Private Companies manages most of the water treatment plants. Chlorine gas is used as one of the water treatment media to treat raw water that will then be distributed for public or commercial usage. The large volume of Chlorine gases used and stored in these treatment plants has the potential to create a disaster if it leaks. Objective of this paper to highlight a result of Local Exhaust Venti...

  11. Iodine retention from process gas and exhaust air in dissolving aluminium-clad fuel elements in nitric acid

    International Nuclear Information System (INIS)

    In the 99Mo Production Facility Rossendorf (AMOR) aluminium-clad fuel elements irradiated for about 200 h in the Rossendorf Research Reactor are chemically reprocessed after a cooling time of 48 h. The iodine isotopes produced together with a number of the other fission products have to be separated from the solution gas because of their radiotoxicity, volatility, and amount. Although iodine is retained in the facility, the existing exhaust air system was completed by a specific filter system in order to prevent any iodine releases

  12. Electrochemical cell with integrated hydrocarbon gas sensor for automobile exhaust gas; Elektrochemische Zelle mit integriertem Kohlenwasserstoff-Gassensor fuer das Automobilabgas

    Energy Technology Data Exchange (ETDEWEB)

    Biskupski, D.; Moos, R. [Univ. Bayreuth (Germany). Bayreuth Engine Research Center, Lehrstuhl fuer Funktionsmaterialien; Wiesner, K.; Fleischer, M. [Siemens AG, Corporate Technology, CT PS 6, Muenchen (Germany)

    2007-07-01

    In the future sensors will be necessary to control the compliance with hydrocarbon limiting values, allowing a direct detection of the hydrocarbons. Appropriate sensor-active functional materials are metal oxides, which have a hydrocarbon sensitivity but are also dependent on the oxygen partial pressure. It is proposed that the gas-sensing layer should be integrated into an electrochemical cell. The authors show that the integration of a resistive oxygen sensor into a pump cell allows a defined oxygen concentration level at the sensor layer in any exhaust gas.

  13. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2012-12-31

    ...Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate...EPA also proposed adopting the gas turbine engine test procedures of ICAO...airplanes that are powered by aircraft gas turbine engines of the classes...

  14. Prediction of emissions and exhaust temperature for direct injection diesel engine with emulsified fuel using ANN

    OpenAIRE

    KKKLNK, Grkem; AKDO?AN, Erhan; Ayhan, Vezir

    2012-01-01

    Exhaust gases have many effects on human beings and the environment. Therefore, they must be kept under control. The International Convention for the Prevention of Pollution from Ships (MARPOL), which is concerned with the prevention of marine pollution, limits the emissions according to the regulations. In Emission Control Area (ECA) regions, which are determined by MARPOL as ECAs, the emission rates should be controlled. Direct injection (DI) diesel engines are commonly used as a prop...

  15. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    Science.gov (United States)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  16. Gas conduction in a high temperature reactor

    International Nuclear Information System (INIS)

    The hot gas is distributed and mixed by polygonal blocks in the reactor floor. Radial and an annular channel are used for this purpose. This annular channel also carried circular ducts distributed evenly over the circumference, which lead to a heat exchanger. Temperature differences across the crossection of the reactor floor are evened out by multiple deflection, combination and renewed splitting of the gas flows. (DG)

  17. Influence of steam injection through exhaust heat recovery on the design performance of solid oxide fuel cell . gas turbine hybrid systems

    International Nuclear Information System (INIS)

    This study analyzed the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. Two different configurations (pressurized system and ambient pressure system) were examined and the effects of injecting steam, generated by recovering heat from the exhaust gas, on system performances were compared. Performance variations according to the design of different turbine inlet temperatures were examined. Two representative gas turbine pressure ratios were used. Without steam injection, the pressurized system generally exhibits higher system efficiency than the ambient pressure system. The steam injection augments gas turbine power, thus increasing the power capacity of the hybrid system. The power boost effect due to the steam injection is generally greater in the relatively higher pressure ratio design in both the pressurized and ambient pressure systems. The effect of the steam injection on system efficiency varies depending on system configurations and design conditions. The pressurized system hardly takes advantage of the steam injection in terms of system efficiency. On the other hand, the steam injection contributes to the efficiency improvement of the ambient pressure system in some design conditions. In particular, a higher pressure ratio provides a better chance of efficiency increase due to the steam injection

  18. Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation

    Science.gov (United States)

    Castellano, Christopher R. (Ringoes, NJ); Moini, Ahmad (Princeton, NJ); Koermer, Gerald S. (Basking Ridge, NJ); Furbeck, Howard (Hamilton, NJ); Schmieg, Steven J. (Troy, MI); Blint, Richard J. (Shelby Township, MI)

    2011-05-17

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver and a platinum group metal on a particulate alumina support, the atomic fraction of the platinum group metal being less than or equal to about 0.25. Methods of manufacturing catalysts are described in which silver is impregnated on alumina particles.

  19. Potassium promoted iron oxide catalysts for simultaneous catalytic removal of nitrogen oxides and soot from diesel exhaust gas

    International Nuclear Information System (INIS)

    This paper deals with the preparation and modification of iron oxide catalysts with different alkali metals. Among the prepared catalysts, Fe1.9K0.1O3 proved to be the most promising catalyst for the simultaneous removal of NOx and soot from diesel engines exhaust and was selected for the rest of investigations. The present study has shown that long-time treatment leads to a decline in the activity, and remains constant after at least 20 TPR experiments. This shows that the used catalysts still possess considerable activity. On the other hand long-time treatment causes a significant enhancement of N2 selectivity, and the formation of by-product N2O was not observed. This alteration of catalytic performance is likely due to agglomeration of the promoter potassium being present at surface. Catalytic performance of the used Fe1.9K0.1O3 catalyst was also carried out in a more realistic diesel exhaust gas with two different types of feed gas compositions. This study confirms that Fe1.9K0.1O3 is a suitable catalyst for simultaneous removal of soot and NOx between 350 and 480C. It is assumed that (CO) intermediates, formed by catalytic reaction of NOx and oxygen with soot surface, play an important role in NOx-soot conversion

  20. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  1. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    Science.gov (United States)

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  2. Low-temperature gas from marine shales: wet gas to dry gas over experimental time

    OpenAIRE

    Jarvie Daniel M; Mango Frank D

    2009-01-01

    Abstract Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under ga...

  3. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  4. 40 CFR 86.1311-94 - Exhaust gas analytical system; CVS bag sample.

    Science.gov (United States)

    2010-07-01

    ...formaldehyde is performed using high pressure liquid chromatography (HPLC) of 2,4-dinitrophenylhydrazine...Methane Measurement Using Gas Chromatography. (Incorporated by reference...has the option of using gas chromatography to measure NMHC...

  5. 78 FR 63017 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2013-10-23

    ...Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate...amending the emission standards for turbine engine powered airplanes to incorporate...EPA also proposed adopting the gas turbine engine test procedures of...

  6. METHANOL MEASUREMENT IN AUTO EXHAUST USING A GAS-FILTER CORRELATION SPECTROMETER

    Science.gov (United States)

    Spectroscopic methods offer an alternative to wet chemical methods for analysis of methanol emissions from automobiles. The gas filter correlation infrared optical analysis approach appears very promising. The report describes the gas correlation optical system constructed to ana...

  7. Design of thermoelectric generators operating on exhaust gas from marine diesel engines

    Directory of Open Access Journals (Sweden)

    Khalykov Kamil Rafaelevich

    2010-04-01

    Full Text Available The design of thermoelectric generator (TEG, forming the exhaust system of the vessel, is offered in the paper. Thermal calculation of the TEG for the ves-sel engine, Ro-8 6VDS48/42-AL2, with the capacity of 2 650 kW is given. Values of output parameters of the TEG are comparable with output values of the pa-rameters of existing analogues. The thermoelectric generator with the received parameters can be used on a vessel as an additional source of the direct current electric power.

  8. Quantification of diesel exhaust gas phase organics by a thermal desorption proton transfer reaction mass spectrometer

    Directory of Open Access Journals (Sweden)

    M. H. Erickson

    2012-02-01

    Full Text Available A new approach was developed to measure the total abundance of long chain alkanes (C12 and above in urban air using thermal desorption with a proton transfer reaction mass spectrometer (PTR-MS. These species are emitted in diesel exhaust and may be important precursors to secondary organic aerosol production in urban areas. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The yield of the fragment ions is a function of drift conditions. At a drift field strength of 80 Townsends, the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Higher drift field strengths yield greater normalized sensitivity implying that the proton affinity of the long chain n-alkanes is less than H2O. Analysis of diesel fuel shows the mass spectrum was dominated by alkanes (CnH2n+1, monocyclic aromatics, and an ion group with formula CnH2n?1 (m/z 97, 111, 125, 139. The PTR-MS was deployed in Sacramento, CA during the Carbonaceous Aerosols and Radiative Effects Study field experiment in June 2010. The ratio of the m/z 97 to 85 ion intensities in ambient air matched that found in diesel fuel. Total diesel exhaust alkane concentrations calculated from the measured abundance of m/z 85 ranged from the method detection limit of ~1 ?g m?3 to 100 ?g m?3 in several air pollution episodes. The total diesel exhaust alkane concentration determined by this method was on average a factor of 10 greater than the sum of alkylbenzenes associated with spark ignition vehicle exhaust.

  9. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    International Nuclear Information System (INIS)

    The aim of the research described in this thesis is the development of a mixed conducting oxide layer, which can be used as an oxygen permselective membrane in an amperometric NOx sensor. The sensor will be used in exhaust gas systems. The exhaust gas-producing engine will run in the lean mix mode. The preparation of this sensor is carried out using screen-printing technology, in which the different layers of the sensor are applied successively. Hereafter, a co-firing step is applied in which all layers are sintered together. This co-firing step imposes several demands on the selection of materials. The design specifications of the sensor further include requirements concerning the operating temperature, measurement range and overall stability. The operating temperature of the sensor varies between 700 and 850C, enabling measurement of NOx concentrations between 50 and 1200 ppm with a measurement accuracy of 10 ppm. Concerning the stability of the sensor, it must withstand the exhaust gas atmosphere containing, amongst others, smoke, acids, abrasive particles and sulphur. Because of the chosen lean-mix engine concept, in which the fuel/air mixture switches continuously between lean (excess oxygen) and fat (excess fuel) mixtures, the sensor must withstand alternately oxidising and reducing atmospheres. Besides, it should be resistant to thermal shock and show no cross-sensitivity of NOx with other exhaust gas constituents like oxygen and hydrocarbons. The response time should be short, typically less than 500 ms. Because of the application in combustion engines of cars, the operational lifetime should be longer than 10 years. Demands on the mixed conducting oxide layer include the following ones. The layer should show minimal catalytic activity towards NOx-reduction. The oxygen permeability must be larger than 6.22 10-8 mol/cm2s at a layer thickness between 3-50 ?m. Since the mixed conducting oxide layer is coated on the YSZ electrolyte embodiment, the two materials must be co-firable and, hence, match in thermal, chemical and mechanical behaviour. A number of studies on different mixed oxygen ion/electron conducting materials is described in this thesis. Emphasis is put on the demands of the targeted sensor application, in which these materials are used as mixed conducting dense ceramic membranes. In Chapter 2, a series of perovskite materials is studied. The general composition is ABO3-? (A = Gd, Pr, Y; B = Mn, Cr, Fe), being partially doped with Ca2+ and Sr2+ on the A-site to create mobile oxygen vacancies. The main focus of the work presented is on the measurement of catalytic activities towards NOx and the ionic conductivities of the selected materials. In Chapter 3, the preparation and characterisation of a material with the overall composition of Gd0.7Ca0.3CoOx is described. Dual phase composite membranes are the subject of investigations presented in Chapters 4-7. The main advantage of these type of materials is that their properties can be tailored to meet the demands imposed by the sensor design. Emphasis is on the preparation of the materials, characterisation by SEM-EDX, XRD, catalytic activity and measurement of ionic/electronic conductivities. In Chapter 4, dual phase composites of composition Gd0.7Ca0.3CoOx/Ce0.8Gd0.2O2- are studied. Composites ZrO2/In2O3 and ZrO2/ITO are subject to the investigations reported in Chapters 5 and 6, respectively. Finally, in Chapter 7, composite Au/YSZ and Au/Ce0.8Gd0.2O2- membranes are studied. Finally, in Chapter 8 a summary of the results is given together with recommendations for future research

  10. Impact of intake CO 2 addition and exhaust gas recirculation on NO x emissions and soot reactivity in a common rail diesel engine

    KAUST Repository

    Al-Qurashi, Khalid

    2012-10-18

    The impact of intake CO 2 addition and exhaust gas recirculation (EGR) on engine combustion characteristics, NO x emissions, and soot oxidative reactivity was studied in a common rail diesel engine equipped with a cooled EGR system. The engine test results and the heat release analysis show that the reduced flame temperature, induced by the reduction of the oxygen concentration (dilution effect) is the dominant mechanism via which CO 2 and EGR lower NO x emissions in diesel engines. On the other hand, the collected soot from the engine tests was examined for its oxidative reactivity using a thermogravimetric analyzer (TGA). Results show that EGR has a significant effect on soot reactivity and results in higher initial active sites compared to the CO 2 case. We conclude that the reduced flame temperature (thermal effect) which is a consequence of the dilution effect is responsible for the observed increase in soot reactivity. These results confirm observations from our past work on flame soot, which showed that the peak adiabatic flame temperature is the governing factor affecting soot reactivity. These findings imply that driving the combustion concepts toward low temperature is favorable to effectively control engine pollutants, including soot reactivity. © 2012 American Chemical Society.

  11. An experimental investigation on engine performance and emissions of a single cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Probir Kumar; Maji, Dines [Department of Mechanical Engineering, Jadavpur University, Heat Power Laboratory, Kolkata 32, West Bengal (India)

    2009-06-15

    Fast depletion of fossil fuels is demanding an urgent need to carry out research work to find out the viable alternative fuels for meeting sustainable energy demand with minimum environmental impact. In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. The technology for producing hydrogen from a variety of resources, including renewable, is evolving and that will make hydrogen energy system as cost-effective. Hydrogen safety concerns are not the cause for fear but they simply are different than those we are accustomed to with gasoline, diesel and other fossil fuels. For the time being full substitution of diesel with hydrogen is not convenient but use of hydrogen in a diesel engine in dual fuel mode is possible. So Hydrogen has been proposed as the perfect fuel for this future energy system. The experiment is conducted using diesel-hydrogen blend. A timed manifold induction system which is electronically controlled has been developed to deliver hydrogen on to the intake manifold. The solenoid valve is activated by the new technique of taking signal from the rocker arm of the engine instead of cam actuation mechanism. In the present investigation hydrogen-enriched air has been used in a diesel engine with hydrogen flow rate at 0.15 kg/h. As diesel is substituted and hydrogen is inducted, the NO{sub x} emission is increased. In order to reduce NO{sub x} emission an EGR system has been developed. In the EGR system a lightweight EGR cooler has been used instead of bulky heat exchanger. In this experiment performance parameters such as brake thermal efficiency, volumetric efficiency, BSEC are determined and emissions such as oxides of nitrogen, carbon dioxide, carbon monoxide, hydrocarbon, smoke and exhaust gas temperature are measured. Dual fuel operation with hydrogen induction coupled with exhaust gas recirculation results in lowered emission level and improved performance level compared to the case of neat diesel operation. (author)

  12. High-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The goal of broadening industrial applications of nuclear energy while significantly cutting CO2 emission can be achieved with the near-term deployable, passively-safe high-temperature gas-cooled reactors (HTGRs), which can supply heat of high-temperatures of up to 950degC to a wide range of industrial plants for CO2-free hydrogen production, power generation, etc. This paper introduces technical features of HTGR and the current status of HTGR developments worldwide with emphasis on the R and D activities conducted by Japan Atomic Energy Agency (JAEA). JAEA as the center of excellence on R and D of the HTGR system in Japan, which leads the world R and D on HTGR and nuclear hydrogen production technologies, has successfully carried out the reactor passive safety demonstration and most recently the 50-day high-temperature operation test by using the High Temperature Engineering Test Reactor (HTTR) of 30 MWt. Based on the test results obtained in the HTTR, a commercial power generation system with gas turbine and an advanced system cogenerating electricity by the gas turbine and hydrogen by a thermochemical method have been designed. This paper concludes by giving a perspective of future HTGR developments. (author)

  13. Simultaneous high-speed gas property measurements at the exhaust gas recirculation cooler exit and at the turbocharger inlet of a multicylinder diesel engine using diode-laser-absorption spectroscopy.

    Science.gov (United States)

    Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P

    2015-02-10

    A diode-laser-absorption-spectroscopy-based sensor system was used to perform high-speed (100 Hz to 5 kHz) measurements of gas properties (temperature, pressure, and H(2)O vapor concentration) at the turbocharger inlet and at the exhaust gas recirculation (EGR) cooler exit of a diesel engine. An earlier version of this system was previously used for high-speed measurements of gas temperature and H(2)O vapor concentration in the intake manifold of the diesel engine. A 1387.2 N?m tunable distributed feedback diode laser was used to scan across multiple H(2)O absorption transitions, and the direct absorption signal was recorded using a high-speed data acquisition system. Compact optical connectors were designed to conduct simultaneous measurements in the intake manifold, the EGR cooler exit, and the turbocharger inlet of the engine. For measurements at the turbocharger inlet, these custom optical connectors survived gas temperatures as high as 800 K using a simple and passive arrangement in which the temperature-sensitive components were protected from high temperatures using ceramic insulators. This arrangement reduced system cost and complexity by eliminating the need for any active water or oil cooling. Diode-laser measurements performed during steady-state engine operation were within 5% of the thermocouple and pressure sensor measurements, and within 10% of the H(2)O concentration values derived from the CO(2) gas analyzer measurements. Measurements were also performed in the engine during transient events. In one such transient event, where a step change in fueling was introduced, the diode-laser sensor was able to capture the 30 ms change in the gas properties; the thermocouple, on the other hand, required 7.4 s to accurately reflect the change in gas conditions, while the gas analyzer required nearly 600 ms. To the best of our knowledge, this is the first implementation of such a simple and passive arrangement of high-temperature optical connectors as well as the first documented application of diode-laser absorption for high-speed gas dynamics measurements in the turbocharger inlet and EGR cooler exit of a diesel engine. PMID:25968043

  14. The Evolution of High Temperature Gas Sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, F. H. (Fernando H.); Brosha, E. L. (Eric L.); Mukundan, R. (Rangachary)

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  15. On Developing a Spectroscopic System for Fast Gas Temperature Measurements in Combustion Environments

    DEFF Research Database (Denmark)

    Evseev, Vadim; Clausen, Snnik

    2009-01-01

    Fourier Transform Infra Red (FTIR) spectroscopy techniques are known to provide reliable results for gas temperature measurements and can be comparatively easily performed on an industrial scale such as a boiler on a power plant or an exhaust of a ship engine cylinder. However temporal resolution...... is not high enough to trace fast temperature variations which are of great importance for complete combustion diagnostics. To eliminate the above mentioned shortcoming, a new IR spectroscopic-imaging system has been developed at Ris DTU. The schematic of the system is presented. Results on lab and...

  16. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuels characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the projects objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

  17. The Performance Test on Local Exhaust Ventilation (LEV System to Prevent Chlorine Gas Leakage in Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Nor Halim Hasan

    2013-08-01

    Full Text Available Water is a necessity of life to humans and animals. In Malaysia, Government Link Companies (GLC or Private Companies manages most of the water treatment plants. Chlorine gas is used as one of the water treatment media to treat raw water that will then be distributed for public or commercial usage. The large volume of Chlorine gases used and stored in these treatment plants has the potential to create a disaster if it leaks. Objective of this paper to highlight a result of Local Exhaust Ventilation (LEV monitoring system and their performance test in controlling of air flow from the chlorine gas building to prevent leakage and spread to the surrounding environment. Methodology used follows the American Governmental Industrial Hygienist (ACGIH. The Chlorine Gas leakage system is checked and verified by using ACGIH Standard. Finally as a result, all the measured parameters (velocity, flow rate, face velocity and brake horse power (bhp show that the measurement and monitoring system of LEV are complied with ACGIH Standard and Local Law and Regulations.

  18. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  19. 14 CFR 29.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 29.1123 Section 29.1123... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System 29.1123 Exhaust piping. (a) Exhaust... by operating temperatures. (b) Exhaust piping must be supported to withstand any vibration...

  20. 14 CFR 27.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 27.1123 Section 27.1123... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Exhaust System 27.1123 Exhaust piping. (a) Exhaust piping... operating temperatures. (b) Exhaust piping must be supported to withstand any vibration and inertia loads...

  1. Low-temperature gas from marine shales: wet gas to dry gas over experimental time

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2009-11-01

    Full Text Available Abstract Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1 to predominantly light hydrocarbons (56% C1, 8% C5, the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  2. Investigation of exhaust gas NO reduction by thermal nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Experimental and theoretical investigations on the reduction of nitric oxides in flue gases by thermal nitrogen plasma treatment were carried out at the Steinbeis Transferzentrum - Raumfahrtsysteme (TZ-RS). The feasibility of this technology was experimentally investigated on a small combustor test facility at the Institut fuer Raumfahrtsysteme in Stuttgart. Preliminary experiments have shown that the process works for low oxygen concentrations in the flue gas. Reduction rates of more than 30% have been realized using pure nitrogen as plasma gas. (author)

  3. Analysis Proton Conducting Electrolyte IT-SOFC Hybrid System Exhaust Gas With External Reforming of Biofuel

    Directory of Open Access Journals (Sweden)

    Nizar Amir

    2013-03-01

    Full Text Available In this analysis, a hybrid system containing proton SOFC (P-SOFC combine with micro gas turbine (MGT with biofuel external reforming is investigation to decrease the greenhouse gases problem facing in electrical power plant. The hybrid system consist of a proton solid oxide fuel cell stack, a micro gas turbine, a combustor, compressors, heat exchangers and external reformer. The main operating parameter such as, fuel utilization and steam - carbon ratio is determined in this analysis.

  4. Analysis Proton Conducting Electrolyte IT-SOFC Hybrid System Exhaust Gas With External Reforming of Biofuel

    OpenAIRE

    Nizar Amir; I.N.G. Wardana

    2013-01-01

    In this analysis, a hybrid system containing proton SOFC (P-SOFC) combine with micro gas turbine (MGT) with biofuel external reforming is investigation to decrease the greenhouse gases problem facing in electrical power plant. The hybrid system consist of a proton solid oxide fuel cell stack, a micro gas turbine, a combustor, compressors, heat exchangers and external reformer. The main operating parameter such as, fuel utilization and steam - carbon ratio is determined in this analysis.

  5. High temperature gas-cooled reactor: gas turbine application study

    International Nuclear Information System (INIS)

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project

  6. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  7. Process for separating krypton from a radioactive exhaust gas mixture, and gas separating unit to carry out the process

    International Nuclear Information System (INIS)

    In nuclear fuels reprocessing radioactive waste gases in the form of krypton and xenon are produced. These nuclides are separated in the carrier gas flow from CO2, NOsub(x), hydrocarbons and water vapour, cooled down, liquefied, and separated using liquid nitrogen. The radioactive krypton is then separated from the carrier gas by leading it through activated carbon. (TK)

  8. Study on Thermal Conductivity Gas Sensor Constant Temperature Detection Method

    OpenAIRE

    Xi-bo Ding; Xiao-yan Guo; Yue-chao Chen; Xue Sun; Zhao-xia Li

    2013-01-01

    The thermal conductivity gas sensor can detect gas concentration that measure the thermal conductivity coefficient of the measured gas different from the background gas.This paper analyzes the theory of thermal conductivity gas sensor and method of measurement,proposes thermal conductivity gas sensor constant temperature detection method,and experimentally validate the feasibility of ambient temperature compensation. Experimental results show that the method effectively reduces the effect of ...

  9. Modelling diesel engines with a variable-geometry turbocharger and exhaust gas recirculation by optimization of model parameters for capturing non-linear system dynamics

    OpenAIRE

    Wahlstrm, Johan; Eriksson, Lars

    2011-01-01

    A mean-value model of a diesel engine with a variable-geometry turbocharger (VGT) and exhaust gas recirculation (EGR) is developed, parameterized, and validated. The intended model applications are system analysis, simulation, and development of model-based control systems. The goal is to construct a model that describes the gas flow dynamics including the dynamics in the manifold pressures, turbocharger, EGR, and actuators with few states in order to obtain short simulation times. An investi...

  10. Bimodular high temperature planar oxygen gas sensor

    Science.gov (United States)

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Puxian; Lei, Yu

    2014-08-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 C, 600 C and 800 C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  11. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    YuLei

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 C, 600 C and 800 C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  12. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2012-12-31

    ... rated thrusts greater than 26.7 kilonewtons (kN) (76 FR 45012). The EPA also proposed adopting the gas... turbojet engines with rated thrusts greater than 26.7 kilonewtons (kN) (76 FR 45012, July 27, 2011). The final rule adopting these proposals was published in the Federal Register on June 18, 2012 (77 FR...

  13. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 11: COMPRESSOR DRIVER EXHAUST

    Science.gov (United States)

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  14. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions

    Science.gov (United States)

    Zupanc, Frank J. (Inventor); Yankowich, Paul R. (Inventor)

    2006-01-01

    A fuel-air mixer for use in a combustion chamber of a gas turbine engine is provided. The fuel air mixing apparatus comprises an annular fuel injector having a plurality of discrete plain jet orifices, a first swirler wherein the first swirler is located upstream from the fuel injector and a second swirler wherein the second swirler is located downstream from the fuel injector. The plurality of discrete plain jet orifices are situated between the highly swirling airstreams generated by the two radial swirlers. The distributed injection of the fuel between two highly swirling airstreams results in rapid and effective mixing to the desired fuel-air ratio and prevents the formation of local hot spots in the combustor primary zone. A combustor and a gas turbine engine comprising the fuel-air mixer of the present invention are also provided as well as a method using the fuel-air mixer of the present invention.

  15. Development of a catalytic water gas shift reactor for fusion fuel exhaust streams

    International Nuclear Information System (INIS)

    Catalytic reactors based on the water gas shift reaction were designed, built and tested to provide data for the design of a prototype reactor as an alternative to the uranium hot metal beds in a Fusion Fuel Clean Up (FCU) system. The reactor was designed so it could be implemented into a FCU using only existing technology. A closed loop system was chosen so that safety and net efficiency would not be compromised during upset conditions. The system uses only pure reactants thus eliminating the requirement for a carrier gas. The prototype reactor contains only 10 g of catalyst and is expected to last at least five years. The reactor is small and operates at about490 K. It will convert water to hydrogen, at a CO/H2O ratio of 1.5 with greater than 98% efficiency and with an estimated 95% efficiency for a tritiated stream of 90,000 Ci/day

  16. Flow characteristics in the exhaust of a pulsed megawatt gas fed arc

    Science.gov (United States)

    Michels, C. J.; York, T. M.

    1973-01-01

    The transient flow generated by a pulsed, megawatt-level, gas-fed arc with an applied magnetic nozzle has been examined with a new design piezoelectric pressure transducer. Sensor thermal conduction and accelerations have been examined and eliminated in the 500 microsec period of plasma flow. Existence of a large magnitude cold gas pressure front of 20 microsec duration has been reconfirmed and its relationship to the following plasma flow of about 200 microsec duration has been examined for the first time. At a point 30 cm from the arc source, initially near vacuum conditions (typically with an arc current of 11.2 kA and 1 tesla applied magnetic field), a pressure pulse of unionized gas with a magnitude of 10,000 N/sq m is followed by plasma flows with nearly constant impact pressure of 1000 N/sq m. Pressure and number density in this plasma region are seen to decrease with applied magnetic field strength.

  17. Experimental Investigation of a Temperature-Controlled Car Seat Powered by an Exhaust Thermoelectric Generator

    Science.gov (United States)

    Du, H.; Wang, Y. P.; Yuan, X. H.; Deng, Y. D.; Su, C. Q.

    2015-10-01

    To improve the riding comfort and rational utilization of the electrical energy captured by an automotive thermoelectric generator (ATEG), a temperature-controlled car seat was constructed to adjust the temperature of the car seat surface. Powered by the ATEG and the battery, the seat-embedded air conditioner can improve the riding comfort using a thermoelectric device to adjust the surface temperature of the seat, with an air duct to regulate the cold side and hot side of the thermoelectric device. The performance of the thermoelectric cooler (TEC) and theoretical analysis on the optimum state of the TEC device are put forward. To verify the rationality of the air duct design and to ensure sufficient air supply, the velocity field of the air duct system was obtained by means of the finite element method. To validate the reliability of the numerical simulation, the air velocity around the thermoelectric device was measured by a wind speed transmitter. The performance of the temperature-controlled car seat has been validated and is in good agreement with bench tests and real vehicle tests.

  18. Development of High Temperature Gas Sensor Technology

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  19. Purex canyon exhaust fan bearing temperature monitoring system doric 245 datalogger programming

    International Nuclear Information System (INIS)

    A micro-processor based datalogger is used to monitor, display, and log seventeen RTD temperature channels. Five bearings are monitored for each of the three electric motor-fan assemblies and two bearings are monitored on the steam turbine unit. Several alarms per data channel (a High alarm at 236 degrees and a High High alarm at 246 degrees F) will alert the operation's staff to increasing abnormal bearing temperatures. This procedure is cross-referenced to the manufacturers manual. All programming steps will have the following footnote: Mpg x-xx. The Mpg refers to the Manual page, with x as the section number and xx as the page number in that section. When more information is needed, such as pictures or details, then the manual section and page number is provided

  20. Optical fiber sensor for temperature measurement from 600 to 1900 C in gas turbine engines

    Science.gov (United States)

    Tregay, G. W.; Calabrese, P. R.; Kaplin, P. L.; Finney, M. J.

    1991-01-01

    A temperature sensor system has been fabricated specifically for the harsh environment encountered in temperature measurement on gas turbine engines. Four components comprised the system: a thermally emissive source, a high temperature lightguide, a flexible optical cable and an electro-optic signal processor. The emissive source was located inside a sapphire rod so that the sapphire serves as both a lightguide and as a protective shroud. As the probe was heated, the thermal radiation from the emissive source increased with increasing temperature. The flexible optical cable was constructed with 200 micron core fiber and ruggedized for turbine engine applications. The electro-optic signal processor used the ratio of intensity in two wavelength intervals to determine a digital value of the temperature. The probe tip was operated above 1900 C in a low velocity propane flame and above 1500 C at Mach .37. Probe housings, optical cables, and signal processors were constructed and environmentally tested for the temperature and vibration experienced by turbine engine sensors. This technology was used to build an optical exhaust gas sensor for a General Electric Aircraft Engines F404 turbine. The four optical probes and optical cable were a functional replacement for four thermocouple probes. The system was ground tested for 50 hours with an excess of 1000 thermal cycles. This optical temperature sensor system measured gas temperature up to the operational limit of the turbine engine.

  1. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Science.gov (United States)

    2010-07-01

    ... and analysis shall comply with the requirements of 40 CFR part 1065, with the following exceptions and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test.... (A) For diesel fueled and biodiesel fueled locomotives and engines, the wall temperature of the...

  2. LDV measurements of mean velocity components and turbulence intensities in supersonic high-temperature exhaust plumes

    Science.gov (United States)

    Jiang, L.-Y.; Sislian, J. P.

    1993-07-01

    Comprehensive analyses and tests with a two-dimensional LDV system were extensively carried out which made this research possible. The experimental analysis has proved that the effect of multiaxial-mode lasers on the Doppler frequency could be neglected. The LDV system was optimized to reduce various biases and other errors. The mean velocity components and turbulence quantities were carefully measured at ten cross-sections and along the axis for a supersonic high-temperature jet (1200 m/s) with and without a coflowing air; the recirculation region was mapped in detail. Results obtained provide benchmark data for numerical modeling of such flows.

  3. Electrochemical high-temperature gas sensors

    Science.gov (United States)

    Saruhan, B.; Stranzenbach, M.; Yce, A.; Gnll, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300C to 800C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200?m thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550C and 600C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600C and 800C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  4. High-Performance Silicon-Germanium-Based Thermoelectric Modules for Gas Exhaust Energy Scavenging

    Science.gov (United States)

    Romanjek, K.; Vesin, S.; Aixala, L.; Baffie, T.; Bernard-Granger, G.; Dufourcq, J.

    2015-06-01

    Some of the energy used in transportation and industry is lost as heat, often at high-temperatures, during conversion processes. Thermoelectricity enables direct conversion of heat into electricity, and is an alternative to the waste-heat-recovery technology currently used, for example turbines and other types of thermodynamic cycling. The performance of thermoelectric (TE) materials and modules has improved continuously in recent decades. In the high-temperature range ( T hot side > 500C), silicon-germanium (SiGe) alloys are among the best TE materials reported in the literature. These materials are based on non-toxic elements. The Thermoelectrics Laboratory at CEA (Commissariat l'Energie Atomique et aux Energies Alternatives) has synthesized n and p-type SiGe pellets, manufactured TE modules, and integrated these into thermoelectric generators (TEG) which were tested on a dedicated bench with hot air as the source of heat. SiGe TE samples of diameter 60 mm were created by spark-plasma sintering. For n-type SiGe doped with phosphorus the peak thermoelectric figure of merit reached ZT = 1.0 at 700C whereas for p-type SiGe doped with boron the peak was ZT = 0.75 at 700C. Thus, state-of-the-art conversion efficiency was obtained while also achieving higher production throughput capacity than for competing processes. A standard deviation 3.6 W. An air-water heat exchanger was developed and 30 TE modules were clamped and connected electrically. The TEG was tested under vacuum on a hot-air test bench. The measured output power was 45 W for an air flow of 16 g/s at 750C. The hot surface of the TE module reached 550C under these conditions. Silicon-germanium TE modules can survive such temperatures, in contrast with commercial modules based on bismuth telluride, which are limited to 400C.

  5. High temperature coatings for gas turbines

    Science.gov (United States)

    Zheng, Xiaoci Maggie

    2003-10-21

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  6. Development of high temperature metallic melting processes related to detritiation of exhausted control rods

    Energy Technology Data Exchange (ETDEWEB)

    Dworschak, H.; Mannone, F.; Modica, G. [Commission of the European Communities, Ispra (Italy). Joint Research Centre; Nannicini, R. [Anima Unione Costruttori di Caldareria, Milan (Italy)

    1994-05-01

    A rather critical problem to be faced in developing a safe strategy for the management of tritiated solid wastes is dealing with the outgassing property of tritium. Releases of tritium under elemental or oxide form may occur from waste items at different temperatures and rates depending upon the nature of tritium bonds into the waste matrix as well as on its `contamination history`. Apart from the commercial value of tritium, its release from waste packages anyhow represents a risk of tritium exposure that cannot be accepted by skippers, by store and disposal site operators as well as by the general public. Consequently it is mandatory to carry out the detritiation of such wastes before their packaging and storage or disposal. In the boron carbide control rods from the Lingen BWR after about three years of operation, tritium generated by neutron reaction was essentially retained in the B{sub 4}C matrix. The objectives of the study are to demonstrate the feasibility of two processes aimed at reducing to the maximum practicable extent the level of tritium contamination in such waste management are facilitated.

  7. Development of high temperature metallic melting processes related to detritiation of exhausted control rods

    International Nuclear Information System (INIS)

    A rather critical problem to be faced in developing a safe strategy for the management of tritiated solid wastes is dealing with the outgassing property of tritium. Releases of tritium under elemental or oxide form may occur from waste items at different temperatures and rates depending upon the nature of tritium bonds into the waste matrix as well as on its 'contamination history'. Apart from the commercial value of tritium, its release from waste packages anyhow represents a risk of tritium exposure that cannot be accepted by skippers, by store and disposal site operators as well as by the general public. Consequently it is mandatory to carry out the detritiation of such wastes before their packaging and storage or disposal. In the boron carbide control rods from the Lingen BWR after about three years of operation, tritium generated by neutron reaction was essentially retained in the B4C matrix. The objectives of the study are to demonstrate the feasibility of two processes aimed at reducing to the maximum practicable extent the level of tritium contamination in such waste management are facilitated

  8. The Analysis of Exhaust Gas Thermal Energy Recovery Through a TEG Generator in City Traffic Conditions Reproduced on a Dynamic Engine Test Bed

    Science.gov (United States)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Wojciechowski, Krzysztof T.

    2015-06-01

    We present an analysis of thermal energy recovery through a proprietary thermoelectric generator (TEG) in an actual vehicle driving cycle reproduced on a dynamic engine test bed. The tests were performed on a 1.3-L 66-kW diesel engine. The TEG was fitted in the vehicle exhaust system. In order to assess the thermal energy losses in the exhaust system, advanced portable emission measurement system research tools were used, such as Semtech DS by Sensors. Aside from the exhaust emissions, the said analyzer measures the exhaust mass flow and exhaust temperature, vehicle driving parameters and reads and records the engine parameters. The difficulty related to the energy recovery measurements under actual traffic conditions, particularly when passenger vehicles and TEGs are used, spurred the authors to develop a proprietary method of transposing the actual driving cycle as a function V = f( t) onto the engine test bed, opn which the driving profile, previously recorded in the city traffic, was reproduced. The length of the cycle was 12.6 km. Along with the motion parameters, the authors reproduced the parameters of the vehicle and its transmission. The adopted methodology enabled high repeatability of the research trials while still ensuring engine dynamic states occurring in the city traffic.

  9. Radon and Thoron Measured in Petrol and Gas-oil Exhaust Fumes by Using CR-39 and LR-115 II Nuclear Track Detectors: Radiation Doses to the Respiratory Tract of Mechanic Workers.

    Science.gov (United States)

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-06-01

    Mechanic workers are exposed to exhaust fumes when controlling vehicle engines in motion inside repair shops. To assess radiation doses due to radon short-lived progeny from the inhalation of exhaust fumes by mechanic workers, concentrations of these radionuclides were measured in petrol (gasoline) and gas-oil exhaust fumes by evaluating mean critical angles of etching of the CR-39 and LR-115 type II SSNTDs for alpha particles emitted by the radon and thoron decay series. Committed effective doses due to ?Po and ?Po short-lived radon decay products from the inhalation of petrol and gas-oil exhaust fumes by workers were evaluated. A maximum value of 1.35 mSv y? due to radon short-lived decay products from the inhalation of gas-oil exhaust fumes by mechanic workers was found, which is lower than the (3-10 mSv y?) dose limit interval for workers. PMID:25905520

  10. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  11. A car air-conditioning system based on an absorption refrigeration cycle using energy from exhaust gas of an internal combustion engine

    Scientific Electronic Library Online (English)

    G, Vicatos; J, Gryzagoridis; S, Wang.

    Full Text Available Energy from the exhaust gas of an internal combustion engine is used to power an absorption refrigeration system to air-condition an ordinary passenger car. The theoretical design is verified by a unit that is tested under both laboratory and road-test conditions. For the latter, the unit is install [...] ed in a Nissan 1400 truck and the results indicate a successful prototype and encouraging prospects for future development.

  12. Mean gas opacity for circumstellar environments and equilibrium temperature degeneracy

    CERN Document Server

    Malygin, M G; Klahr, H; Dullemond, C P; Henning, Th

    2014-01-01

    In a molecular cloud dust opacity typically dominates over gas opacity, yet in the vicinities of forming stars dust is depleted, and gas is the sole provider of opacity. In the optically thin circumstellar environments the radiation temperature cannot be assumed to be equal to the gas temperature, hence the two-temperature Planck means are necessary to calculate the radiative equilibrium. By using the two-temperature mean opacity one does obtain the proper equilibrium gas temperature in a circumstellar environment, which is in a chemical equilibrium. A careful consideration of a radiative transfer problem reveals that the equilibrium temperature solution can be degenerate in an optically thin gaseous environment. We compute mean gas opacities based on the publicly available code DFSYNTHE by Kurucz and Castelli. We performed the calculations assuming local thermodynamic equilibrium and an ideal gas equation of state. The values were derived by direct integration of the high-resolution opacity spectrum. We prod...

  13. Exhaust Emission Characteristics of Diesel Engine Operating on Biodiesel and its Blends at Elevated Temperature of Air

    OpenAIRE

    Sureshkumar, K; *, K.Muralidharan

    2014-01-01

    In this study, performance and exhaust emission characteristics of Pongamia Pinnata oil blends (B10,B20,B30 and B50) with mineral diesel were investigated in preheated intake air conditions in a single cylinder 4-Stroke direct injection CI engine at 75 % maximum load and its rated engine speed 1500 rpm. Two types of heat exchanger designed to preheat the suction air and the heating is accomplished by both engine cooling water and exhaust gases. Two types of heat exchanger incl...

  14. Mean gas opacity for circumstellar environments and equilibrium temperature degeneracy

    Science.gov (United States)

    Malygin, M. G.; Kuiper, R.; Klahr, H.; Dullemond, C. P.; Henning, Th.

    2014-08-01

    Context. In a molecular cloud dust opacity typically dominates over gas opacity, yet in the vicinities of forming stars dust is depleted, and gas is the sole provider of opacity. In the optically thin circumstellar environments the radiation temperature cannot be assumed to be equal to the gas temperature, hence the two-temperature Planck means are necessary to calculate the radiative equilibrium. Aims: By using the two-temperature mean opacity one does obtain the proper equilibrium gas temperature in a circumstellar environment, which is in a chemical equilibrium. A careful consideration of a radiative transfer problem reveals that the equilibrium temperature solution can be degenerate in an optically thin gaseous environment. Methods: We compute mean gas opacities based on the publicly available code DFSYNTHE by Kurucz and Castelli. We performed the calculations assuming local thermodynamic equilibrium and an ideal gas equation of state. The values were derived by direct integration of the high-resolution opacity spectrum. Results: We produced two sets of gas opacity tables: Rosseland means and two-temperature Planck means. For three metallicities [Me/H] = 0.0, 0.3 we covered the parameter range 3.48 ? log Trad [K] ? 4.48 in radiation temperature, 2.8 ? log Tgas [K] ? 6.0 in gas temperature, and -10 ? log P [dyn cm-2] ? 6 in gas pressure. We show that in the optically thin circumstellar environment for a given stellar radiation field and local gas density there are several equilibrium gas temperatures possible. Conclusions: We conclude that, in general, equilibrium gas temperature cannot be determined without treating the temperature evolution. The opacity tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A91 as well as via http://www.mpia.de/~malygin

  15. Determination of benzene in exhaust gas from biofuels. Final report; Bestimmung von Benzol im Abgas von Biokraftstoffen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dutz, M.; Buenger, J.; Gnuschke, H.; Halboth, H.; Gruedl, P.; Krahl, J.

    2001-10-01

    With the advance of environmental legislation and practices oriented towards sustainability renewable energy resources are becoming increasingly important. Use of replenishable raw materials helps preserve fossil resources. In the fuel sector the most widely used replenishable materials are rape methyl ester (RME) and ethyl tertiary butyl ether (ETBE). The purpose of the present project on the ''Determination of benzene in exhaust gas from biofuels'' was to generate orienting data on the potential health relevance of mixtures of fossil and renewable fuel intended for use in spark ignition and diesel engines. This included a determination of benzene emissions and the mutagenicity of particles. Beyond the applied-for scope of research measurements were also performed on the test engine's toluene, ethyl benzene and xylene emissions as well as on the smoke spot number and nitrogen oxide (NO{sub x}) and hydrocarbon (HC) emissions of the diesel engine. [German] Regenerative Energien gewinnen durch die Umweltgesetzgebungen und das Streben nach einer nachhaltigen Entwicklung zunehmend an Bedeutung. Durch die Verwendung nachwachsender Rohstoffe koennen die fossilen Ressourcen geschont werden. Im Kraftstoffsektor sind hier hauptsaechlich Rapsoelmethylester (RME) und optional Ethyltertiaerbutylether (ETBE) zu nennen. Um fuer Diesel- und Ottomotoren insbesondere mit Blick auf Kraftstoffgemische aus fossilen und regenerativen Komponenten orientierende Daten ueber eine potenzielle Gesundheitsrelevanz zu generieren, wurde das Projekt 'Bestimmung von Benzol im Abgas von Biokraftstoffen' durchgefuehrt. Neben der Benzolemission wurde die Mutagenitaet der Partikeln ermittelt. Ueber den beantragten Untersuchungsrahmen hinaus wurden die Tuluol-, Ethylbenzol-, und Xylolemissionen der eingesetzten Motoren, sowie die Russzahl (RZ) und die Stickoxid- (NO{sub x}) und Kohlenwasserstoffemissionen (HC) des Dieselmotors bestimmt. (orig.)

  16. Inhalation of Whole Diesel Exhaust but not Gas-Phase Components Affects In Vitro Platelet Aggregation in Hypertensive Rats

    Science.gov (United States)

    Rationale: Intravascular thrombosis and platelet aggregation are enhanced following exposure to diesel exhaust (DE) and other respirable particulate matter; however, the roles of endothelial and circulating mediators on platelet aggregation remain unclear. We hypothesized that ad...

  17. Hydrogen production from biomass pyrolysis gas via high temperature steam reforming process

    International Nuclear Information System (INIS)

    Full text: The aim of this work has been undertaken as part of the design of continuous hydrogen production using the high temperature steam reforming process. The steady-state test condition was carried out using syngas from biomass pyrolysis, whilst operating at high temperatures between 600 and 1200 degree Celsius. The main reformer operating parameters (e.g. temperature, resident time and steam to biomass ratio (S/B)) have been examined in order to optimize the performance of the reformer. The operating temperature is a key factor in determining the extent to which hydrogen production is increased at higher temperatures (900 -1200 degree Celsius) whilst maintaining the same as resident time and S/B ratio. The effects of exhaust gas composition on heating value were also investigated. The steam reforming process produced methane (CH4) and ethylene (C2H4) between 600 to 800 degree Celsius and enhanced production ethane (C2H6) at 700 degree Celsius. However carbon monoxide (CO) emission was slightly increased for higher temperatures all conditions. The results show that the use of biomass pyrolysis gas can produce higher hydrogen production from high temperature steam reforming. In addition the increasing reformer efficiency needs to be optimized for different operating conditions. (author)

  18. Deactivation of Pd Catalysts by Water during Low Temperature Methane Oxidation Relevant to Natural Gas Vehicle Converters

    Directory of Open Access Journals (Sweden)

    Rahman Gholami

    2015-03-01

    Full Text Available Effects of H2O on the activity and deactivation of Pd catalysts used for the oxidation of unburned CH4 present in the exhaust gas of natural-gas vehicles (NGVs are reviewed. CH4 oxidation in a catalytic converter is limited by low exhaust gas temperatures (500550 C and low concentrations of CH4 (4001500 ppmv that must be reacted in the presence of large quantities of H2O (1015% and CO2 (15%, under transient exhaust gas flows, temperatures, and compositions. Although Pd catalysts have the highest known activity for CH4 oxidation, water-induced sintering and reaction inhibition by H2O deactivate these catalysts. Recent studies have shown the reversible inhibition by H2O adsorption causes a significant drop in catalyst activity at lower reaction temperatures (below 450 C, but its effect decreases (water adsorption becomes more reversible with increasing reaction temperature. Thus above 500 C H2O inhibition is negligible, while Pd sintering and occlusion by support species become more important. H2O inhibition is postulated to occur by either formation of relatively stable Pd(OH2 and/or partial blocking by OH groups of the O exchange between the support and Pd active sites thereby suppressing catalytic activity. Evidence from FTIR and isotopic labeling favors the latter route. Pd catalyst design, including incorporation of a second noble metal (Rh or Pt and supports high O mobility (e.g., CeO2 are known to improve catalyst activity and stability. Kinetic studies of CH4 oxidation at conditions relevant to natural gas vehicles have quantified the thermodynamics and kinetics of competitive H2O adsorption and Pd(OH2 formation, but none have addressed effects of H2O on O mobility.

  19. Controlling exhaust gas recirculation

    Science.gov (United States)

    Zurlo, James Richard (Madison, WI); Konkle, Kevin Paul (West Bend, WI); May, Andrew (Milwaukee, WI)

    2012-01-31

    In controlling an engine, an amount of an intake charge provided, during operation of the engine, to a combustion chamber of the engine is determined. The intake charge includes an air component, a fuel component and a diluent component. An amount of the air component of the intake charge is determined. An amount of the diluent component of the intake charge is determined utilizing the amount of the intake charge, the amount of the air component and, in some instances, the amount of the fuel component. An amount of a diluent supplied to the intake charge is adjusted based at least in part on the determined amount of diluent component of the intake charge.

  20. Photochemical transformation of aircraft exhausts at their transition from the plume to the large scale dispersion in the Northern temperature belt

    Energy Technology Data Exchange (ETDEWEB)

    Karol, I.L.; Kiselev, A.A. [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1997-12-31

    The 2-D diurnally varying photochemical model of the Northern temperate zonal tropospheric belt with fixed (off line) temperature and air transport is used for the description of the formation of aircraft exhaust concentration distribution in the North Atlantic commercial flight corridor, based on actual flights in summer and winter. A strong diurnal and seasonal variation of emitted NO{sub x} oxidation rate is revealed and evaluated. (author) 11 refs.

  1. 14 CFR 34.21 - Standards for exhaust emissions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Standards for exhaust emissions. 34.21... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) 34.21 Standards for exhaust emissions. (a) Exhaust emissions...

  2. 14 CFR 34.31 - Standards for exhaust emissions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Standards for exhaust emissions. 34.31... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) 34.31 Standards for exhaust emissions. (a) Exhaust...

  3. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Snnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) <- X(2)Pi gamma-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in the...... range from 23 degrees C to 1,500 degrees C. The gas temperature was evaluated (1) from the analysis of the structure of selected NO high-resolution gamma-absorption bands and (2) from the analysis of vibrational distribution in the NO gamma-absorption system in the (211-238) nm spectral range. The...... accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 degrees C over an optical absorption path length of 0.533 m....

  4. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Snnik; Srensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good agreement with thermocouple readings. Gas lines and bands from CO, CO2 and H2O can be observed in the spectra. CO was only observed at the first measuring port (100ms) with the strongest CO-signal seen during experiments with straw particles. Variations in gas concentration (CO2 and H2O) and the signal from solid particles reflects variations in particle feeding rates during the experiments.

  5. Tailoring the structural and microstructural properties of nanosized tantalum oxide for high temperature electrochemical gas sensors.

    Science.gov (United States)

    Bonavita, Anna; Di Bartolomeo, Elisabetta; Chevallier, Laure; D'Ottavi, Cadia; Licoccia, Silvia; Traversa, Enrico

    2009-07-01

    Ta2O5 nanopowders to be used as sensing electrodes in high temperature electrochemical gas sensors for hydrocarbons detection were synthesized using a sol-gel method and their structural and microstructural properties were investigated. The as-synthesized powders were heated at different temperatures in the range 250-1000 degrees C and characterized by TG-DTA, XRD, SEM, TEM and FT-IR. This investigation allowed to identify the correct thermal treatments to achieve the microstructural, textural and functional stability of materials working at high temperature, preserving their nano-metric grain size. Planar sensors fabricated by using Ta2O5 powders treated at 750 degrees C showed promising results for the selective detection of propylene at high temperature (700 degrees C). The good stability of the sensing response after gas exposure at high temperature was correlated to the stable microstructure the electrodes. Thus, Ta2O5 powders seems good candidate as sensing electrode for sensors for automotive exhausts monitoring. PMID:19916469

  6. Swirl and blade wakes in the interaction between gas turbines and exhaust diffusers investigated by endoscopic particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Opilat, Victor

    2011-10-21

    Exhaust diffusers studied in this thesis are installed behind the last turbine stage of gas turbines, including those used in combined cycle power plants. Extensive research made in recent years proved that effects caused by an upstream turbine need to be taken into account when designing efficient diffusers. Under certain conditions these effects can stabilize the boundary layer in diffusers and prevent separation. In this research the impact of multiple parameters, such as tip leakage flow, swirl, and rotating blade wakes, on the performance of a diffuser is studied. Experiments were conducted using a diffuser test rig with a rotating bladed wheel as a turbine effect generator and with an additional tip leakage flow insert. The major advantages of this test rig are modularity and easy variation of the main parameters. To capture the complexity and understand the physics of diffuser flow, and to clarify the phenomenon of the flow stabilisation, the 2D endoscopic laser optical measurement technique Partide Image Velocimetry (PIV) was adopted to the closed ''rotating'' diffuser test rig. Intensity and distribution of vortices in the blade tip area are decisive for diffuser performance. Large vortices in the annular diffuser inlet behind the blade tips interact with the boundary layer in diffusers. At design point these vortices are very early suppressed by the main flow. For the operating point with a low value of the flow coefficient (negative swirl), vortices are ab out two tim es stronger than for design point and the boundary layer is destabilized. V mtices develop in the direction contrary to swirl in the main flow and just cause flow destabilization. Coherent back flow zones are induced and reduction of diffuser performance occurs. For the operating point with positive swirl (for a high flow coefficient value), these vortices are also strong but do not counteract the main flow because they develop in the same direction with the swirl in the main flow. Pressure recovery in the annular diffuser is even high er than for design point because vortices energize the boundary layer and the turbulence level in the core flow is very high. Turbulent energy is better transported to the peripheral zones of the channel by the swirled flow. A small positive swirl angle in the inlet flow (behind the rotating bladed wheel in experiments) has a stabilizing effect on the diffuser, while negative swirl decreases its performance. This occurs due to change in the development of vertical structures downstream of the rotor blade tip area. The tip leakage flow from the last turbine stage positively affects pressure recovery in the diffuser energizing the boundary layer. Comparison of results for different diffuser test rig configurations with results from a more gas turbine-like test rig with a similar diffuser and a scaled turbine stage model and for higher Mach numbers showed similar pressure recovery trends, verifying the results.

  7. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  8. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  9. Apparatus using radioactive particles for measuring gas temperatures

    International Nuclear Information System (INIS)

    Apparatus for producing a signal indicative of the temperature of a heated gas is described comprising a beta particle source; a beta particle detector which intercepts particles emitted from said source; circuitry for converting the detector output to a signal indicative of the density of the gas; a pressure transducer for generating a signal indicative of the pressure on the gas; and circuitry for dividing the pressure signal by the density signal to produce a signal indicative of the average temperature of the gas along the path between the beta particle source and the beta particle detector. (auth)

  10. Temperature detection in a gas turbine

    Science.gov (United States)

    Lacy, Benjamin; Kraemer, Gilbert; Stevenson, Christian

    2012-12-18

    A temperature detector includes a first metal and a second metal different from the first metal. The first metal includes a plurality of wires and the second metal includes a wire. The plurality of wires of the first metal are connected to the wire of the second metal in parallel junctions. Another temperature detector includes a plurality of resistance temperature detectors. The plurality of resistance temperature detectors are connected at a plurality of junctions. A method of detecting a temperature change of a component of a turbine includes providing a temperature detector include ing a first metal and a second metal different from the first metal connected to each other at a plurality of junctions in contact with the component; and detecting any voltage change at any junction.

  11. Studi Experimental Penggunaan Venturi Scrubber dan Cyclonic Separator Untuk Meningkatkan Kinerja pada Sistem Exhaust Gas Recirculation (EGR dalam Menurunkan NOX pada Motor Diesel

    Directory of Open Access Journals (Sweden)

    Samsu Dlukha N

    2012-09-01

    Full Text Available Salah satu cara yang efektif untuk mengurangi NOX adalah dengan menggunakan metode Exhaust Gas Recirculation (EGR. Dengan metode EGR, oksigen yang masuk ke ruang bakar akan berkurang sehingga NOX dapat diturunkan dengan signifikan, akan tetapi power dari mesin tersebut juga akan berkurang dan Particulate Matter (PM akan naik secara signifikan. Dalam penelitian ini dibahas penggunaan EGR yang telah di optimalkan dengan penambahan venturi scrubber dan cyclonic separator, tujuannya mengurangi NOX tanpa meningkatkan PM. Hasil pengujian menunjukkan NOX turun sebesar 48.89% dan PM turun dari 69,87% menjadi 9.87%.

  12. Controlling automotive exhaust emissions: successes and underlying science.

    Science.gov (United States)

    Twigg, Martyn V

    2005-04-15

    Photochemical reactions of vehicle exhaust pollutants were responsible for photochemical smog in many cities during the 1960s and 1970s. Engine improvements helped, but additional measures were needed to achieve legislated emissions levels. First oxidation catalysts lowered hydrocarbon and carbon monoxide, and later nitrogen oxides were reduced to nitrogen in a two-stage process. By the 1980s, exhaust gas could be kept stoichiometric and hydrocarbons, carbon monoxide and nitrogen oxides were simultaneously converted over a single 'three-way catalyst'. Today, advanced three-way catalyst systems emissions are exceptionally low. NOx control from lean-burn engines demands an additional approach because NO cannot be dissociated under lean conditions. Current lean-burn gasoline engine NOx control involves forming a nitrate phase and periodically enriching the exhaust to reduce it to nitrogen, and this is being modified for use on diesel engines. Selective catalytic reduction with ammonia is an alternative that can be very efficient, but it requires ammonia or a compound from which it can be obtained. Diesel engines produce particulate matter, and, because of health concerns, filtration processes are being introduced to control these emissions. On heavy duty diesel engines the exhaust gas temperature is high enough for NO in the exhaust to be oxidised over a catalyst to NO2 that smoothly oxidises particulate material (PM) in the filter. Passenger cars operate at lower temperatures, and it is necessary to periodically burn the PM in air at high temperatures. PMID:15901550

  13. Not adiabatic temperature of combustion gas-air mixture

    Science.gov (United States)

    Iovleva, O. V.

    2015-06-01

    In the present work was carried out thermodynamic analysis, the purpose of which was to determine the formula for calculating the temperature of combustion gas-air mixture in non-adiabatic conditions.

  14. Nitrogen charge temperature prediction in a gas lift valve

    Scientific Electronic Library Online (English)

    Marcelo M., Ganzarolli; Carlos A. C., Altemani.

    2010-03-01

    Full Text Available The operation of a class of retrievable gas-lift valves (GLV) is controlled by the axial movement of a bellows. One force acting on the bellows is due to the pressure exerted by the nitrogen gas contained in the GLV dome. It depends on the nitrogen temperature, which is influenced by both the produc [...] tion fluid and the injection gas temperatures in the well. This work investigated this dependence for a GLV installed in a side pocket mandrel tube. Three independent procedures were used for this purpose, comprising a compact thermal model, an experimental investigation with a thermal mockup and a numerical analysis. From these, a correlation for the nitrogen temperature was proposed, based on the local production fluid and injection gas temperatures, and on their convective coefficients with the mandrel tube surfaces.

  15. Fuel arrangement for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Disclosed is a fuel arrangement for a high temperature gas cooled reactor including fuel assemblies with separate directly cooled fissile and fertile fuel elements removably inserted in an elongated moderator block also having a passageway for control elements

  16. Seismic stability of VGM type high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    The main principles of the design provision of high temperature gas cooled VGM reactors seismic stability and the results of calculations, performed by linear-spectral method are presented. (author). 1 ref., 10 figs

  17. Probe For Measuring Dynamic Gas Temperature In Reversing Flows

    Science.gov (United States)

    Fralick, Gustave C.

    1993-01-01

    In proposed technique for determining time-varying temperature of flowing gas, raw measurements of three thermocouples of different sizes processed by relatively simple data-reduction software. Three-thermocouple technique overcomes limitation of single-thermocouple technique.

  18. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    International Nuclear Information System (INIS)

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide (CO2) and carbon monoxide (CO). In addition, O2 concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NOx) and carbon dioxide (CO2) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O2) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NOx gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NOx but increased the particulate matter concentrations in the exhaust gases

  19. The temperature distribution in a gas core fission reactor

    International Nuclear Information System (INIS)

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author)

  20. The temperature distribution in a gas core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C. (Interuniversitair Reactor Inst., Delft (Netherlands)); Kistemaker, J.; Boersma-Klein, W.; Vitalis, F. (FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author).

  1. Analysis and improvement of gas turbine blade temperature measurement error

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  2. Isolating Gas Sensor From Pressure And Temperature Effects

    Science.gov (United States)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  3. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory.

    Science.gov (United States)

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C

    2011-01-01

    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns. PMID:21126058

  4. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    Science.gov (United States)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  5. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    Science.gov (United States)

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  6. Simultaneous conversion of nitrogen oxides and soot into nitrogen and carbon dioxide over iron containing oxide catalysts in diesel exhaust gas

    International Nuclear Information System (INIS)

    This paper deals with the simultaneous catalytic conversion of NOx and soot into N2 and CO2 in diesel exhaust gas. Several iron containing oxide catalysts were partially modified by the alkali metal potassium and were used for NOx-soot reaction in a model exhaust gas. Fe1.9K0.1O3 has shown highest catalytic performance for N2 formation in the so far investigated catalysts. Further studies have shown that Fe1.9K0.1O3 was deactivated in a substantial way after about 20 TPR experiments due to the agglomeration of the promoter potassium. Experiments carried out over the aged Fe1.9K0.1O3 catalyst have shown that NOx-soot reaction was suppressed at higher O2 concentration, since O2-soot conversion was kinetically favored. In contrast to that, the catalytic activity was increased in presence of NO2 and H2O. Mechanistic examinations suggest that (CO) intermediates, formed at the soot surface, are the reactive sites in the NOx-soot reaction. Higher catalytic performance in presence of NO2 could be explained by the enhanced formation of these (CO) species. Moreover, nitrate species formed at the catalyst surface might also play an important role in NOx-soot conversion

  7. Metal oxide gas sensors upon various temperature-induced profiles

    Science.gov (United States)

    Gwi?d?, Patryk; Brudnik, Andrzej; Zakrzewska, Katarzyna

    2014-08-01

    This paper presents how an array of sensors with different sensitivities to gases can be applied for detection of hydrogen in the presence of humidity when operated upon various temperature - induced profiles. The sensors in the array are subject to temperature modulation over the range of 350 - 500C. Temperature profiles are based on a cardinal sine as well as Meyer wavelet phi and psi functions. Changes in the sensor operating temperature lead to distinct resistance patterns of the sensors depending on gas concentration. The sensors responses are studied as a function of target gas concentration (0 - 3000 ppm) and relative humidity level (0 - 75%Rh). Feedforward back-propagation neural networks are used in order to facilitate gas concentration and humidity level prediction. The results show reliable hydrogen detection upon temperature modulation and a reduction of the total power consumption.

  8. Improved gas distributor for coating high-temperature gas-cooled reactor fuel particles

    International Nuclear Information System (INIS)

    A new and improved gas distributor was developed for use in coating fuel particles for the high-temperature gas-cooled reactor. The coating gas enters the coating furnace through multiple thin regions of a porous plate. This more uniformly disperses the gas and leads to improved coating properties. High-quality carbon and silicon carbide coatings were deposited with the new distributor in both 13- and 24-cm (130- and 240-mm)-diam coating furnaces

  9. Development history of the gas turbine modular high temperature reactor

    International Nuclear Information System (INIS)

    The development of the high temperature gas cooled reactor (HTGR) as an environmentally agreeable and efficient power source to support the generation of electricity and achieve a broad range of high temperature industrial applications has been an evolutionary process spanning over four decades. This process has included ongoing major development in both the HTGR as a nuclear energy source and associated power conversion systems from the steam cycle to the gas turbine. This paper follows the development process progressively through individual plant designs from early research of the 1950s to the present focus on the gas turbine modular HTGR. (author)

  10. GC/MS Gas Separator Operates At Lower Temperatures

    Science.gov (United States)

    Sinha, Mahadeva P.; Gutnikov, George

    1991-01-01

    Experiments show palladium/silver tube used to separate hydrogen carrier gas from gases being analyzed in gas-chromatography/mass-spectrometry (GC/MS) system functions satisfactorily at temperatures as low as 70 to 100 degrees C. Less power consumed, and catalytic hydrogenation of compounds being analyzed diminished. Because separation efficiency high even at lower temperatures, gas load on vacuum pump of mass spectrometer kept low, permitting use of smaller pump. These features facilitate development of relatively small, lightweight, portable GC/MS system for such uses as measuring concentrations of pollutants in field.

  11. Effects of Gas Velocity and Temperature on Nitric Oxide Conversion in Simulated Catalytic Converter

    OpenAIRE

    Sathaporn Chuepeng

    2012-01-01

    Problem statement: Gaseous emissions from gasoline engine such as carbon monoxide, unburned hydrocarbon and nitrogen oxides were usually reduced in three-way catalytic converter simultaneously around theoretical fuel and air combustion. Engine speed and load and other parameters were varied over a wide range of operating conditions, resulting in different exhaust gas composition and condition intake into catalytic converter. This work was studied the conversion of Nitric Oxide (NO) in exhaust...

  12. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark and...

  13. Effect of Exhaust Gas Recirculation on the Dual Fuel Combustion of Gasoline and CNG by Compression Ignition

    Directory of Open Access Journals (Sweden)

    A. Rashid A. Aziz

    2011-01-01

    Full Text Available Homogeneous Charge Compression Ignition (HCCI is a combustion process that promises the combination of diesel like efficiencies and very low NOx emissions. The major issues with HCCI are high heat release rates, lack of combustion control and high CO and HC emissions. Operating HCCI with two fuels of different properties and recirculation of exhaust gases are effective strategies of promoting and controlling autoignition. This study discusses the effects of EGR on the combustion characteristics of dual fuel HCCI of gasoline and CNG. The results show that EGR retards ignition timing, affects thermal efficiency and reduces heat release rates.

  14. Temperature dependence of thermal diffusion in CO isotopic gas mixtures

    International Nuclear Information System (INIS)

    The temperature dependence of thermal diffusion in several different isotopic gas mixtures of CO is investigated theoretically and the results are compared with experiment. The temperature range includes the inversion temperatures for all mixtures. Thermal conductivity and diffusion coefficients are also calculated. The basis of the study is a previously presented theory which provides expressions for classical collision integrals for molecules with rotational structure in terms of spherical ?* integrals

  15. Corona discharge reactor for removal of PM and NO{sub x} in diesel exhaust; Corona hoden ni yoru diesel hai gas chu no ryushijo busshitsu to chisso sankabutsu no jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Morimune, T.; Kinoshita, K. [Shonan Institute of Technology, Kanagawa (Japan)

    2000-03-25

    In order to remove particulate matter (PM) and nitrogen oxides (NO{sub x}) contained in diesel exhaust gas, the gas is excited by passing through a corona discharge tubes in a high electric voltage field. A corona discharge collector for PM (CCPM) is designed to collect diesel PM electrically on central electrode and accumulated PM will be removed by a controlled burning (regeneration) process every 15-20 minutes. In a corona discharge reactor for NO{sub x} removal (CRNR), the NO is oxidized to NO{sub 2}, and OH radical generated from H{sub 2}O in gas reacts with NO{sub 2}, and NO{sub x} concentration decreases as a result of formation of HNO{sub 3}. In this paper, the discharge instability of CCPM by the PM accumulation on electrodes is investigated, and PM collection efficiency > 90% is obtained under the condition of 23kv, 0.35 mA. As for CRNR, the effect of inlet temperature on the NO{sub x} reduction rate is discussed experimentally. The NO{sub x} removal rate of about 95% is observed at an input power of 80 watts. The configuration of a prototype reactor coupled with CCPM and CRNR is proposed in our study. (author)

  16. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  17. Bimodular high temperature planar oxygen gas sensor

    OpenAIRE

    YuLei; HaiyongGao; PuxianGao

    2014-01-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high tempera...

  18. On the gas temperature in circumstellar disks around A stars

    CERN Document Server

    Kamp, I; Kamp, Inga; Zadelhoff, Gerd-Jan van

    2001-01-01

    In circumstellar disks or shells it is often assumed that gas and dust temperatures are equal where the latter is determined by radiative equilibrium. This paper deals with the question whether this assumption is applicable for tenous circumstellar disks around young A stars. In this paper the thin hydrostatic equilibrium models described by Kamp & Bertoldi (2000) are combined with a detailed heating/cooling balance for the gas. The most important heating and cooling processes are heating through infrared pumping, heating due to the drift velocity of dust grains, and fine structure and molecular line cooling. Throughout the whole disk gas and dust are not efficiently coupled by collisions and hence their temperatures are quite different. Most of the gas in the disk models considered here stays well below 300 K. In the temperature range below 300 K the gas chemistry is not much affected by T_gas and therefore the simplifying approximation T_gas = T_dust can be used for calculating the chemical structure of...

  19. Design and development of gas turbine high temperature reactor 300

    International Nuclear Information System (INIS)

    JAERI (Japan Atomic Energy Research Institute) has been designing a Japan's original gas turbine high temperature reactor, GTHTR300 (Gas Turbine High Temperature Reactor 300). The greatly simplified design based on salient features of the HTGR (High Temperature Gas-cooled reactor) with a closed helium gas turbine enables the GTHTR300 a high efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the HTTR (High Temperature Engineering Test Reactor) and fossil gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original features of this system are core design with two-year refueling interval, conventional steel material usage for a reactor pressure vessel, innovative plant flow scheme and horizontally installed gas turbine unit. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200 thousands Yen/kWe, and the electric generation cost is close to a target cost of 4 Yen/kWh. This paper describes the original design features focusing on reactor core design, fuel design, in-core structure design and reactor pressure vessel design except PCU design. Also, R and D for developing the power conversion unit is briefly described. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  20. A laser-based sensor for measurement of off-gas composition and temperature in basic oxygen steelmaking

    International Nuclear Information System (INIS)

    We are developing an optical sensor for process control in basic oxygen steelmaking. The sensor measures gas temperature and relative CO/CO2 concentration ratios in the furnace off-gas by transmitting the laser probe beam directly above the furnace lip and below the exhaust hood during oxygen blowing. Dynamic off-gas information is being evaluated for optimizing variables such as lance height, oxygen flow, post-combustion control, and prediction of final melt-carbon content. The non-invasive nature of the optical sensor renders it robust and relatively maintenance-free. Additional potential applications of the method are process control for electric arc furnace and bottom-blown oxygen steelmaking processes. (author)

  1. 40 CFR 87.31 - Standards for exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Standards for exhaust emissions. 87.31... (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from...

  2. 40 CFR 87.21 - Standards for exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Standards for exhaust emissions. 87.21... (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) 87.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each...

  3. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    OpenAIRE

    Wail Aladayleh; Ali Alahmer

    2015-01-01

    This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700C, Stirling engine will work effectively....

  4. High temperature gas dynamics an introduction for physicists and engineers

    CERN Document Server

    Bose, Tarit K

    2014-01-01

    High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques.This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a sectio...

  5. High-temperature oxidation of graphite rods with temperature control by combustion gas recycle

    International Nuclear Information System (INIS)

    The combustion of graphite (fuel blocks) is of fundamental importance in the fuel reprocessing scheme for the High-Temperature Gas-Cooled Reactor (HTGR). A study was made to evaluate a chunk-type burner for possible application in this reprocessing step. The combustion gases were recycled to allow operation at higher burn rates without an increase in graphite temperature. Graphite rods of two diameters were oxidized with makeup oxygen and recycled stack gases at various gas flow rates in an insulated reactor. Results of this study indicate a strong dependence of oxygen transfer on gas flow rate with little effect resulting from changes in graphite temperature. High carbon monoxide concentrations in the exit gas were not a problem except at oxygen concentrations below approx. 5%. Stable operation of a recycle controlled burner was achieved, avoiding the temperature excursions common in previous graphite burners

  6. Coolant purification system of high-temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Systems for purifying the coolant of high-temperature gas-cooled reactors are discussed. In the Dragon reactor helium is purified from radioactive isotopes of inert gases by adsorbing them on activated carbon at -1960C. Krypton and xenon are retained in a system consisting of five identical adsorbers. The use of four adsorbers (the fifth is in reserve) ensures retention of xenon for 200 hr and of krypton for 15 hr. The Peach Bottom reactor also has cryogenic purification system with helium blown through the fuel elements. The gas temperature at the activated carbon outlet is 210C and the operating temperature is 16 to 420C. The full heat load of the adsorbers is 1.7 kW; the calculated temperature is 1960C. A purification system for a high-temperature thorium reactor with 300 MW (el) power is also described. The basic parameters used in designing a coolant purification system are given. In the Fulton reactor, with 1160 MW (el), there is an additional regeneration system for radioactive gas. The total operating time of the system is several months per year. Analysis of the purification system loops of the high-temperature gas-cooled reactors shows that fission product escape is prevented by three barriers, which ensure protection of personnel and the environment from the hazard of radioactive gases. These are the fuel particle coatings, the first loop, and the shielding within which the facility is located. The advantages of the cryogenic system of purification - high efficiency, small dimensions, and reliability in operation - have been demonstrated in operation on producing high-temperature gas reactors. The data obtained are widely used in designing similar systems for higher power high-temperature reactors. (H.E.)

  7. Gas sensing properties of nanocrystalline diamond at room temperature

    OpenAIRE

    Davydova, Marina; Kulha, Pavel; Laposa, Alexandr; Hruska, Karel; Demo, Pavel; Kromka, Alexander

    2014-01-01

    This study describes an integrated NH3 sensor based on a hydrogenated nanocrystalline diamond (NCD)-sensitive layer coated on an interdigitated electrode structure. The gas sensing properties of the sensor structure were examined using a reducing gas (NH3) at room temperature and were found to be dependent on the electrode arrangement. A pronounced response of the sensor, which was comprised of dense electrode arrays (of 50 m separation distance), was observed. The sensor functionality was e...

  8. A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol

    Science.gov (United States)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Jayaratne, E. Rohan; Kokot, Serge

    Elements emitted from the exhausts of new Ford Falcon Forte cars powered by unleaded petrol (ULP) and liquefied petroleum gas (LPG) were measured on a chassis dynamometer. The measurements were carried out in February, June and August 2001, and at two steady state driving conditions (60 and 80 km h -1). Thirty seven elements were quantified in the exhaust samples by inductively coupled plasma mass spectrometry (ICPMS). The total emission factors of the elements from the exhausts of ULP cars were higher than those of LPG cars at both engine speeds even though high variability in the exhaust emissions from different cars was noted. The effect of the operating conditions such as mileage of the cars, engine speed, fuel and lubricating oil compositions on the emissions was studied. To investigate the effects of these conditions, multivariate data analysis methods were employed including exploratory principal component analysis (PCA), and the multi-criteria decision making methods (MCDM), preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA), for ranking the cars on the basis of the emission factors of the elements. PCA biplot of the complete data matrix showed a clear discrimination of the February, June and August emission test results. In addition, (i) platinum group elements (PGE) emissions were separated from each other in the three different clusters viz. Pt with February, Pd with June and Rh with August; (ii) the motor oil related elements, Zn and P, were particularly associated with the June and August tests (these vectors were also grouped with V, Al and Cu); and (iii) highest emissions of most major elements were associated with the August test after the cars have recorded their highest mileage. Extensive analysis with the aid of the MCDM ranking methods demonstrated clearly that cars powered by LPG outperform those powered by ULP. In general, cars tested in June perform better than those tested in August, which suggested that mileage was the key criterion of car performance on the basis of elemental emission factors.

  9. Gravitational collapse of a magnetized fermion gas with finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Gaspar, I. [Instituto de Geofisica y Astronomia (IGA), La Habana (Cuba); Perez Martinez, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Sussman, Roberto A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico); Ulacia Rey, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico)

    2013-07-15

    We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein-Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (''point-like'') and anisotropic (''cigar-like''), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m{sub f} {proportional_to} 10{sup -6} and T/m{sub f} {proportional_to} 10{sup -3}. (orig.)

  10. Utilisation of CO2, fixation of nitrogen and exhaust gas cleaning in electric discharge with electrode catalysis

    International Nuclear Information System (INIS)

    The method reported here provides a contribution to CO2 utilisation, nitrogen fixation and combustion exhaust cleaning using synergetic effect of electric discharge with heterogeneous catalysis on electrodes. The efficiency of CO2 removal is about 40-65%. The process of CO2 removal is always accompanied by NOx, VOC, SX and other component removal and is connected with O2 formation. The final product of process is powder with fractal microstructure, low specific weight, water insoluble suitable for use as nitrogen containing fertilizer. The main component (95%) of solid product is amorphous condensate of amino acids with about 5% of metal organic compound with catalytic properties. The condensate has character of statistical proteinoid. Its creation seems to play important role during formation of life in pre-biotic Earth

  11. Gas turbine high temperature reactor 300 (GTHTR300)

    International Nuclear Information System (INIS)

    In Japan, the development of High Temperature Gas Cooled Reactor (HTGR) technology has been conducted for over 20 years. The High Temperature Engineering Test Reactor (HTTR) with outlet gas temperatures of 950 deg. C and a thermal power of 30 MW was constructed at Oarai Research Centre in the Japan Atomic Energy Research Institute (JAERI). First criticality was attained in 1998 and full power operation with outlet gas temperatures of 850 deg. C was completed on December 7, 2001. Since then, a safety demonstration test has been conducted and operational data to establish and upgrade the HTGR technology base will be accumulated over the next several years. In parallel to the development and successful operation of the HTTR, since 1997 JAERI had undertaken a feasibility study on various types of HTGRs with Gas Turbines (HTGR-GT). As a result of this study, JAERI selected a block-fuel-type HTGR with a direct cycle gas turbine system as the best candidate for a future commercial reactor purely from an economic and technological point of view. Since 2001, JAERI has been designing an original Japan gas turbine high temperature reactor, Gas Turbine High Temperature Reactor 300 (GTHTR300). The greatly simplified design is based on salient features of the HTGR with a closed helium gas turbine and enables the GTHTR300, a highly efficient and economically competitive reactor, to be deployed in the early 2010s. Also, the GTHTR300 takes full advantage of experience accumulated in the design, construction and operation of the HTTR and fossil gas turbine systems to reduce technological development necessary to complete a reactor and electric generation system. The original features of this system are: a reactor core design based on a newly proposed refuelling scheme named sandwich shuffling; use of conventional steel material for a reactor pressure vessel; an innovative plant flow scheme and a horizontally-installed gas turbine unit. The GTHTR300 can be continuously operated without the refuelling for two years. The principal stakeholder in the GTHTR300 is Japan Atomic Energy Research Institute (JAERI)

  12. MAGNETIC RESONANCE STUDIES OF ATOMIC HYDROGEN GAS AT LOW TEMPERATURES

    OpenAIRE

    Hardy, W.; Morrow, M.; Jochemsen, R.; Statt, B.; Kubik, P.; Marsolais, R.; Berlinsky, A.; Landesman, A.

    1980-01-01

    Using a pulsed low temperature discharge in a closed cell containing H2 and 4He, we have been able to store a low density (~ 1012 atoms/cc) gas of atomic hydrogen for periods of order one hour in zero magnetic field and T ? 1 K. Pulsed magnetic resonance at the 1420 MHz hyperfine transition has been used to study a number of the properties of the gas, including the recombination rate H + H + 4He ? H2 + 4He, the hydrogen spin-exchange relaxation rates, the diffusion coefficient of H in 4He gas...

  13. Current correlation functions of ideal Fermi gas at ?nite temperature

    Indian Academy of Sciences (India)

    R P Kaur; K Tankeshwar; K N Pathak

    2002-04-01

    Expressions for transverse and longitudinal currentcurrent correlation functions of an ideal Fermi gas describing the current ?uctuations induced in the electron system by external probe perpendicular and parallel to the propagation of electron wave, have been obtained at ?nite temperature. The results obtained for transverse and longitudinal functions are presented for different values of wavelength and frequency at different temperatures. The diamagnetic susceptibility as a function of temperature has also been obtained from transverse current correlation function as its long wavelength and static limit, which smoothly cross over from known quantum values to the classical limit with increase in temperature.

  14. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Science.gov (United States)

    2010-07-01

    ...sampling system; Otto-cycle and non-petroleum-fueled engines. 86.1309-90...sampling system; Otto-cycle and non-petroleum-fueled engines. (a)(1) General...gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or...

  15. Materials for high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    The main components of high temperature gas-cooled reactors, for which heat resistant alloys are used, are high temperature structural materials such as the heating tubes of intermediate heat exchangers and the liners of pipings and the material for cladding control rods. In this report, only the heat resistant alloys for high temperature structures, which involve many material engineering problems peculiar to high temperature gas-cooled reactors, are described. The main characteristics generally considered in the heat resistant alloys used for high temperature structures are creep and creep rupture characteristics, high cycle and low cycle fatigue, creep-fatigue interaction, the effect of thermal ageing on short time properties, creep ratchet characteristics, creep buckling characteristics, and the environmental effect by helium containing impurities of a minute amount. The heat resistant alloys which approach the condition of the practical use for high temperature structures are Alloy 800 H for 800-850 deg C, Hastelloy XR for 900-950 deg C and Inconel 617 for 950 deg C. The present state of developing high performance materials in various countries is reported. Also the examples of using graphite and carbon materials for high temperature gas-cooled reactors are described. (K.I.)

  16. Partially integrated exhaust manifold

    Science.gov (United States)

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  17. Quantification of benzene, toluene, ethylbenzene and o-xylene in internal combustion engine exhaust with time-weighted average solid phase microextraction and gas chromatography mass spectrometry.

    Science.gov (United States)

    Baimatova, Nassiba; Koziel, Jacek A; Kenessov, Bulat

    2015-05-11

    A new and simple method for benzene, toluene, ethylbenzene and o-xylene (BTEX) quantification in vehicle exhaust was developed based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME) fiber coating. The rationale was to develop a method based on existing and proven SPME technology that is feasible for field adaptation in developing countries. Passive sampling with SPME fiber retracted into the needle extracted nearly two orders of magnitude less mass (n) compared with exposed fiber (outside of needle) and sampling was in a time weighted-averaging (TWA) mode. Both the sampling time (t) and fiber retraction depth (Z) were adjusted to quantify a wider range of Cgas. Extraction and quantification is conducted in a non-equilibrium mode. Effects of Cgas, t, Z and T were tested. In addition, contribution of n extracted by metallic surfaces of needle assembly without SPME coating was studied. Effects of sample storage time on n loss was studied. Retracted TWA-SPME extractions followed the theoretical model. Extracted n of BTEX was proportional to Cgas, t, Dg, T and inversely proportional to Z. Method detection limits were 1.8, 2.7, 2.1 and 5.2 mg m(-3) (0.51, 0.83, 0.66 and 1.62 ppm) for BTEX, respectively. The contribution of extraction onto metallic surfaces was reproducible and influenced by Cgas and t and less so by T and by the Z. The new method was applied to measure BTEX in the exhaust gas of a Ford Crown Victoria 1995 and compared with a whole gas and direct injection method. PMID:25911428

  18. Simulation of wake vortex radiometric detection via jet exhaust proxy

    Science.gov (United States)

    Daniels, Taumi S.

    2015-06-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  19. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    Science.gov (United States)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  20. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density sh...

  1. Factors affecting low temperature performance of zirconia gas sensors.

    OpenAIRE

    Page, Julian

    2001-01-01

    A reduction in the operation temperature of zirconia ceramic gas sensors is highly desirable for a number of practical reasons. This work seeks to investigate the factors that prevent a reduction in operation temperature and propose methods by which these may be resolved. A novel approach to sensor fabrication has been developed and employed with the advantage of reduced device complexity that should lead to subsequent cost and reliability benefits. Leakage rates in these devices have bee...

  2. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential.

  3. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding......The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...

  4. Shear Viscosity of a Superfluid Dipolar Gas at Low Temperatures

    OpenAIRE

    M. Khademi Dehkordi

    2014-01-01

    We compute the shear viscosity of superfluid Bose and Fermi gases on the base of Boltzmann equation and relaxation times. We show that, in the low temperature limit, the shear viscosities of Bose and Fermi gases are proportional to T-1evp0/T and T-4, respectively. For the superfluid Bose gas at low temperature limit, only splitting processes contribute to the shear viscosity.

  5. Temperatures of dust and gas in S~140

    CERN Document Server

    Koumpia, E; Ossenkopf, V; van der Tak, F F S; Mookerjea, B; Fuente, A; Kramer, C

    2015-01-01

    In dense parts of interstellar clouds (> 10^5 cm^-3), dust & gas are expected to be in thermal equilibrium, being coupled via collisions. However, previous studies have shown that the temperatures of the dust & gas may remain decoupled even at higher densities. We study in detail the temperatures of dust & gas in the photon-dominated region S 140, especially around the deeply embedded infrared sources IRS 1-3 and at the ionization front. We derive the dust temperature and column density by combining Herschel PACS continuum observations with SOFIA observations at 37 $\\mu$m and SCUBA at 450 $\\mu$m. We model these observations using greybody fits and the DUSTY radiative transfer code. For the gas part we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and C18O 1-0 emission lines mapped with the IRAM-30m over a 4' field. Around IRS 1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9 and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust model derived wit...

  6. Denuder for measuring emissions of gaseous organic exhaust gas constituents; Denuder zur Emissionsmessung von gasfoermigen organischen Abgasinhaltsstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Gerchel, B.; Jockel, W.; Kallinger, G.; Niessner, R.

    1997-05-01

    Industrial plants which emit carcinogenic or other noxious substances should be given top priority in any policy to ward off harmful environmental effects. This also applies to many volatile and semi-volatile air constituents such as volatile aliphatic carbonyls or amines. To date there are no satisfactory methods for determining trace organic components of exhaust gases. It is true that aldehydes are considered in the VDI Guideline 3862, but the measuring methods given there are based on absorption in liquids and are accordingly difficult to use and show a high cross-sensitivity for other substances. No VDI Guideline exists to date on amine emissions. In view of the complexity of exhaust gases a selective enrichment of certain families of substances would appear indicated. Sampling trouble could be reduced if it was possible only to accumulate the gaseous phase, or even just one family of gaseous constituents. A particularly suitable air sampling method is that of diffusion separation. These diffusion separators (denuders) are well known as a powerful measuring system which is able to accumulate trace pollutants in the outside air. The purpose of the present study was to find out whether the concept of diffusion separation is also applicable to emission monitoring, and in particular whether it is suitable for detecting volatile aliphatic aldehydes and amines (primary and secondary) at extremely low concentrations (<10 ppb). (orig./SR) [Deutsch] Fuer Anlagen mit Emissionen von krebserzeugenden und gesundheitsgefaehrdenden Stoffen ergibt sich ein besonderer Handlungsbedarf zum Schutz vor schaedlichen Umwelteinwirkungen. Zu diesen Stoffen gehoeren auch viele leicht- und mittelfluechtigen Luftinhaltsstoffe, wie z.B. die leichtfluechtigen aliphatischen Carbonyle oder Amine. Fuer organische Komponenten, die nur in geringen Konzentrationen im Abgas vorkommen, existieren bisher keine zufriedenstellenden Messverfahren. Fuer die Aldehyde liegt zwar die VDI-Richtlinie 3862 vor, diese Messverfahren beruhen aber auf dem Absorptionsprinzip in Fluessigkeiten, das umstaendlich zu handhaben ist und eine grosse Querempfindlichkeit zu anderen Stoffen besitzt. Fuer die Emissionsmessung von Aminen gibt es derzeit noch keine VDI-Richtlinie. Aufgrund der Komplexitaet des Mediums Abgas ist eine selektive Anreicherung bestimmter Substanzklassen wuenschenswert. So koennen Stoerungen bei der Probenahme verringert werden, indem nur die Gasphase, und hier moeglichst nur eine Substanzklasse, selektiv angereichert wird. Dazu eignet sich besonders die Luftprobenahme auf dem Prinzip der Diffusionsabscheidung. Diese Diffusionsabscheider (Denuder) sind ein bekanntes Messsystem zur nachweisstarken und selektiven Anreicherung von Spurenschadstoffen in der Aussenluft. In diesem Vorhaben soll nun dieses Konzept der Diffusionsabscheidung auf die Anwendbarkeit im Emissionsbereich ueberprueft werden, speziell zur Erfassung der leichtfluechtigen aliphatischen Aldehyde und Amine (primaere und sekundaere) mit extrem niedrigen Nachweisgrenzen (<10 ppb). (orig./SR)

  7. Pengaruh Variasi Temperatur Sintesa, Temperatur Operasi dan Konsentrasi gas CO terhadap sensitivitas Sensor Gas Co dari Material ZnO

    Directory of Open Access Journals (Sweden)

    Endah Lutfiana

    2014-03-01

    Full Text Available Karbon monoksida ( CO merupakan gas yang tidak berwarna dan tidak berbau yang dihasilkan dari proses pembakaran yang tidak sempurna. Gas ini sangat beracun bagi tubuh manusia karena sifat biologinya yang mampu berikatan dengan hemoglobin yang mana bertugas membawa oksigen dalam darah, sehingga kadar oksigen dapat menurun drastis dan menyebabkan keracunan bahkan kematian. Sehingga dibutuhkan suatu alat pendeteksi atau sensor untuk mendeteksi adanya gas tersebut.Oksida metal seringkali digunakan untuk material sensor. ZnO merupakan suatu material semikonduktor yang telah digunakan untuk aplikasi sensor. Dalam penelitian ini pembuatan sensor ZnO dilakukan dengan mengoksidasi serbuk Zn pada variasi temperatur 800, 850, 900 oC selama 40 menit. Selanjutnya dibuat pelet sensor dengan mengkompaksi serbuk ZnO hasil Oksidasi dengan tekanan 200 Bar. Pelet kemudian disinter dengan temperatur 500oC. Setelah itu dilakukan pengujian SEM, XRD, dan uji Sensitivitas dengan variasi temperatur operasi 30, 50, 100 oC dan variasi konsentrasi 10 ppm, 50 ppm, 100 ppm, 250 ppm, 500 ppm. Dari hasil pengujian didapatkan nilai sensitivitas tertinggi pada temperatur sintesa 800oC dengan konsentrasi gas CO 500 ppm pada temperatur operasi sensor 100oC yaitu sebesar 0,52.

  8. Amperometric Gas Detection Using Room Temperature Ionic Liquid Solvents

    OpenAIRE

    Rogers, EI; O'Mahony, AM; Aldous, L; Compton, RG

    2010-01-01

    The electrochemistry of various gases, including oxygen, carbon dioxide, hydrogen, ammonia, hydrogen sulfide, sulfur dioxide and nitrogen dioxide, in room temperature ionic liquids (RTILs) is reviewed. The application of RTILs to gas sensor design and development is highlighted. The Electrochemical Society.

  9. THE FLUIDIZED BED DRYING AT OSCILLATING GAS TEMPERATURE

    OpenAIRE

    Maria G?owacka; Jerzy Malczewski

    1985-01-01

    The fluidized bed drying of granular materials at oscillating gas temperature have been investigated theoretically and experimentally. The model of the diffusion in the sphere was solved analitically and proved experimentally. The parameters ? and ? were proven to have essential influence on thermal energy saving. The energy saving of the oscillating system is up to a few per cent.

  10. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  11. Simulation of fission gas release during temperature transients

    International Nuclear Information System (INIS)

    Paper discusses the release of fission gases Xe and Kr as a diffusion process. It takes into account gas generation due to fission, gas precipitation in bubbles within the grains, diffusion of gas towards the grain boundaries, formation of grain boundary bubbles, its saturation and subsequent gas release, resolution of the gas contained into both types of bubbles and grain growth. Temperature profile calculations have allowed to evaluate the gas distribution in fuel pellet and in each grain. Analytical and numerical methods are used. Several experiments are simulated with the code and a good agreement between the measured Paper discusses the release of fission gases Xe and Kr as a diffusion process. It takes into and calculated results has been obtained. The influence of the initial grain size and density on fission gas release has been evaluated. It has been found that larger grain size and lower density both yield lower release, but density variation has a minor effect on the release. (author). 10 refs, 4 figs

  12. DEVELOPMENT AND TESTING OF AN AMMONIA REMOVAL UNIT FROM THE EXHAUST GAS OF A MANURE DRYING SYSTEM

    OpenAIRE

    A. E. Ghaly; Macdonald, K. N.

    2013-01-01

    The storage and handling of animal wastes is one of the main sources of ammonia gas emissions. Ammonia gas has a distinct, unpleasant odor and can become detrimental to the health of humans and animals at high concentrations. Ammonia emissions are of particular concern in manure drying systems, where large losses of nitrogen, in the form of ammonia can cause air quality concerns. The aim of this study was to develop an ammonia removal system for a poultry manure drying system. The thin layer ...

  13. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Science.gov (United States)

    2010-07-01

    ... uncharacterized CVS, addition of an unknown inlet restriction on the dilution air, etc.). (2) The gas mixture... silicone oil). There is no response time requirement for a CVS equipped with a heat exchanger. (3) The... this section, with the addition of electronic flow controllers, metering valves, separate flow...

  14. Generating usable and safe CO{sub 2} for enrichment of greenhouses from the exhaust gas of a biomass heating system

    Energy Technology Data Exchange (ETDEWEB)

    Dion, L.M.; Lefsrud, M. [McGill Univ., Macdonald Campus, Ste-Anne-deBellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    This study demonstrated the use of biomass as a renewable fuel to enrich a greenhouse with carbon dioxide (CO{sub 2}). CO{sub 2} enrichment of greenhouses has been shown to improve crop production whether it occurs from liquid CO{sub 2} or combustion of fossil fuels. Biomass, in the form of wood chips or pellets, has received much interest as a sustainable and economically viable alternative to heat greenhouses. As such, the opportunity exists to convert exhaust gases from a greenhouse wood heating system into a useful resource. CO{sub 2} can be extracted from flue gas via membrane separation instead of electrostatic precipitators. This technique has shown potential for large industries trying to reduce and isolate CO{sub 2} emissions for sequestration and may be applicable to the greenhouse industry. Some research has also been done with wet scrubbers using catalysts to obtain plant fertilizers. Sulphur dioxide (SO{sub 2}) and nitrogen (NO) emissions can be stripped from flue gas to form ammonium sulphate as a valuable byproduct for fertilizer markets. This study will review the potential of these techniques in the summer of 2010 when experiments will be conducted at the Macdonald Campus of McGill University.

  15. Temperature and distortion transients in gas tungsten-arc weldments

    International Nuclear Information System (INIS)

    An analysis and test program to develop a fundamental understanding of the gas tungsten-arc welding process has been undertaken at the Bettis Atomic Power Laboratory to develop techniques to determine and control the various welding parameters and weldment conditions so as to result in optimum weld response characteristics. These response characteristics include depth of penetration, weld bead configuration, weld bead sink and roll, distortion, and cracking sensitivity. The results are documented of that part of the program devoted to analytical and experimental investigations of temperatures, weld bead dimensions, and distortions for moving gas tungsten-arc welds applied to Alloy 600 plates

  16. 40 CFR 1039.245 - How do I determine deterioration factors from exhaust durability testing?

    Science.gov (United States)

    2010-07-01

    ...deterioration factors from exhaust durability testing...AGENCY (CONTINUED) AIR POLLUTION CONTROLS...deterioration factors from exhaust durability testing...any engines that use exhaust-gas recirculation or...

  17. Nanostructured Materials for Room-Temperature Gas Sensors.

    Science.gov (United States)

    Zhang, Jun; Liu, Xianghong; Neri, Giovanni; Pinna, Nicola

    2016-02-01

    Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high-performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high-temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room-temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of room-temperature sensors will have to address are also discussed. PMID:26662346

  18. Measurement of characteristics of exhaust pipe for the system for gas-vapor medium filtration of NPP

    International Nuclear Information System (INIS)

    Pilot investigation into the dependence of thermal power of pipe of (air-air heat exchanger) from the flow and temperature of heating air was conducted, temperature fields from top to bottom of the pipe was measured. Experiments were performed in the follow regime parameters: the flow of cold (heated) air is equal to 30 m2/h (?0.01 kg/s), the temperature at the inlet was changed in the ranges of Tinlc=28-36 Deg C; the flow of heating air was equal to 30, 90, 150 and 220 m3/h (0,01-0.075 kg/s) at the temperature at the inlet Tinlh=170, 220 and 280 Deg C. In addition to experiments were conducted at 120 Deg C. At 280 Deg C increase of the flow from 0.01 to 0.02 kg/s is over thermal power approximately by 2 times

  19. Discussion of the effects of recirculating exhaust air on performance and efficiency of a typical microturbine

    International Nuclear Information System (INIS)

    This paper reports on a specific phenomenon, noticed during steam injection experiments on a microturbine. During the considered experiments, measurements indicated an unsteady inlet air temperature of the compressor, resulting in unstable operation of the microturbine. Non-continuous exhaust air recirculation was a possible explanation for the observed behaviour of the microturbine. The aim of this paper is to investigate and demonstrate the effects of exhaust recirculation on a microgasturbine. Depending on wind direction, exhaust air re-entered the engine, resulting in changing inlet conditions which affects the operating regime of the microturbine. For this paper, a series of experiments were performed in the wind tunnel. These series of experiments allowed investigation of the effect of the wind direction on flue gasses flow. Next to the experiments, steady-state simulations of exhaust recirculation were performed in order to study the effect of exhaust recirculation on thermodynamic performance of the microturbine. Dynamic simulations of the non-continuous recirculation revealed the effects of frequency and amplitude on average performance and stability. Results from simulations supported the important impact of exhaust recirculation. Wind tunnel tests demonstrated the influence of the wind direction on recirculation and revealed the necessity to heighten the stack, thus preventing exhaust recirculation. -- Highlights: ? Unstable operation of a T100 microturbine during steam injection tests was noticed, caused by exhaust gas recirculation. ? Wind tunnel tests were performed to study the effect of the wind direction on the recirculation process. ? Steady-state simulations to investigate the effect of exhaust gas recirculation on thermodynamic performance. ? Dynamic simulations to reveal effects of frequency and amplitude on average performance and stability. ? Wind tunnel tests revealed the necessity to heighten the stack to prevent exhaust recirculation.

  20. Technical assessment of gas turbine cycle for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The gas turbine cycle appears to be the best near-term power conversion method for the high temperature gas-cooled reactor (HTGR). The author extensively investigates the gas turbine cycle including direct cycle, open indirect cycle and closed indirect cycle with medium of helium, nitrogen and air. Each cycle is analyzed and optimized from the thermodynamic standpoint and its turbo-machine is aerodynamically designed. As a result, the direct cycle with helium is an ideal option for the HTGR gas turbine cycle; however it is not easy to be realized based on current technology. The closed indirect cycle with helium or nitrogen is a practical one at present time, which can get the gas turbine cycle and lay technical bases for the future direct cycle

  1. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study possible poisoning and the durability of the catalyst were not performed because of practical reasons and due to the limited time left for such investigations. The outcome of the survey, including novel technical solutions made, proved the installed test rig to be an advanced and diversified platform for thermochemical conversion studies at high temperatures and at enhanced pressures. The unit will be used in other projects, some of which are already initiated within the EU framework, and others to come.

  2. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    stberg, Martin

    1996-01-01

    The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K by...... injection of NH3 with carrier gas into the flue gas. NH3 can react with NO and form N2, but a competing reaction path is the oxidation of NH3 to NO.The SNR process is briefly described and it is shown by chemical kinetic modelling that OH radicals under the present conditions will initiate the reaction of...

  3. Anisotropic ordering in a two-temperature lattice gas

    DEFF Research Database (Denmark)

    Szolnoki, Attila; Szab, Gyrgy; Mouritsen, Ole G.

    1997-01-01

    We consider a two-dimensional lattice gas model with repulsive nearest- and next-nearest-neighbor interactions that evolves in time according to anisotropic Kawasaki dynamics. The hopping of particles along the principal directions is governed by two heat baths at different temperatures T-x and T......-y. The stationary states of this nonequilibrium model are studied using a simple mean-field theory and linear stability analysis. The results are improved by a generalized dynamical mean-field approximation. In the stable ordered state the particles form parallel chains which are oriented along the...... direction of the higher temperature. In the resulting phase diagram in the T-x-T-y plane the critical temperature curve shows a weak maximum as a function of the parallel temperature which is confirmed by Monte Carlo simulations. Finite-size scaling analysis suggests that the model leaves the equilibrium...

  4. Gas temperature measurement in combustors by use of suction pyrometry

    International Nuclear Information System (INIS)

    The purpose of this paper is to introduce new measurement techniques and configurations in gas suction pyrometry. A detailed description of three types of mini-pyrometers for the study of burning and heat transfer processes is presented. A suction pyrometer whose inner cavity is insulated by ceramic wool was developed for use in high velocity and high temperature jets of combustion products. A second type of pyrometer was developed for measuring oscillating gas temperatures, based on a micron-size sensitive head located in a spherical piece of fibrous material, through which the hot gases are aspirated. A third pyrometer was developed with an electrically-heated thermocouple and pulsed suction for use in low velocity 'dirty' gaseous media

  5. Effect of temperature on elastic properties of rare gas solids

    International Nuclear Information System (INIS)

    We have derived expressions for the first and second order pressure derivatives of the bulk and shear moduli of rare gas solids, including the effect of temperature. The computed results of these expressions, i.e. dK/dP, dCS/dP, dC'44/dP, d2K/dP2, d2CS/dP2 and dC'44/dP2, for Ne, Ar, Kr and Xe up to their critical temperature are showing a distinct behaviour as compared to that of the corresponding ionic solids, and are in good agreement with the available experimental and theoretical results. The results are also satisfying Swenson's relation. Thus the present analysis may be useful to obtain information on the third and fourth-order elastic constants, for potential expansions in a lattice dynamics model and also in the study of the equation of state of rare gas solids

  6. Room temperature hydrogen gas sensitivity of nanocrystalline pure tin oxide.

    Science.gov (United States)

    Shukla, S; Seal, S

    2004-01-01

    Nanocrystalline (6-8 nm) tin oxide (SnO2) thin film (100-150 nm) sensor is synthesized via sol-gel dip-coating process. The thin film is characterized using focused ion-beam microscopy (FIB) and high-resolution transmission electron microscopy (HRTEM) techniques to determine the film thickness and the nanocrystallite size. The utilization of nanocrystalline pure-SnO2 thin film to sense a typical reducing gas such as hydrogen, at room temperature, is demonstrated in this investigation. The grain growth behavior of nanocrystalline pure-SnO2 is analyzed, which shows very low activation energy (9 kJ/mol) for the grain growth within the nanocrystallite size range of 3-20 nm. This low activation energy value is correlated, via excess oxygen-ion vacancy concentration, with the room temperature hydrogen gas sensitivity of the nanocrystalline pure-SnO2 thin film sensor. PMID:15112557

  7. High temperature gas cooled reactor steam-methane reformer design

    International Nuclear Information System (INIS)

    The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam-methane reforming reaction, is being evaluated by the Department of Energy as an energy source/application for use early in the 21st century. This paper summaries the design of a helium heated steam reformer utilized in conjunction with an intermediate loop, 850/degree/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, the materials selection and the structural design analysis. 12 refs

  8. Fuel for high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    The fuel for high temperature gas-cooled reactors is composed of heat resistant materials such as carbon, graphite and ceramics without using metals, therefore, the safety is very high, high burnup is easily attained, and it is economically attractive in view of the utilization of thorium. The fuel is basically the minute fuel spheres of smaller than 1 mm diameter with four layers of carbon and carbide ceramic coatings. The coating layers are innermost buffer pyrolytic carbon (PyC) layer, high density PyC layer, SiC layer and outermost high density PyC layer. The buffer PyC layer protects the outer high density PyC layer from the damage due to nuclear fission recoil, and becomes the space for FP gas and CO gas. The other layers hold FP, and the SiC layer maintains the strength of a whole coated particle. A coated particle is formed into pellet, compact or ball shape by being mixed with graphite powder and phenol resin or pitch binder. The coated particle can hold FP inside even at 2000 deg C in a short time. The trend of development of the fuel for high temperature gas-cooled reactors in various countries, the behavior of the fuel, the improvement of the fuel and the disposal of spent fuel is reported. (K.I.)

  9. Properties of super alloys for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    The existing data on the properties at high temperature in helium gas of iron base super alloys. Incoloy-800, -802 and -807, nickel base super alloys, Hastelloy-X, Inconel-600, -617 and -625, and a casting alloy HK-40 were collectively evaluated from the viewpoint of the selection of material for HTGRs. These properties include corrosion resistance, strength and toughness, weldability, tube making, formability, radioactivation, etc. Creep strength was specially studied, taking into consideration the data on the creep characteristics in the actual helium gas atmosphere. The necessity of further long run creep data is suggested. Hastelloy-X has completely stable corrosion resistance at high temperature in helium gas. Incoloy 800 and 807 and Inconel 617 are not preferable in view of corrosion resistance. The creep strength of Inconel 617 extraporated to 1,000 deg C for 100,000 hours in air was the greatest rupture strength of 0.6 kg/mm2 in all above alloys. However, its strength in helium gas began to fall during a relatively short time, so that its creep strength must be re-evaluated in the use for long time. The radioactivation and separation of oxide film in primary construction materials came into question, Inconel 617 and Incoloy 807 showed high induced radioactivity intensity. Generally speaking, in case of nickel base alloys such as Hastelloy-X, oxide film is difficult to break away. (Iwakiri, K.)

  10. Comment on 'Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning' [Phys. Plasmas 16, 114502 (2009)

    International Nuclear Information System (INIS)

    The following comments are intended to clarify whether it is possible to convert CO2 into C+O2 by supplying just one-twentieth of energy required thermodynamically, only under the condition that the negative high voltage of dc is applied to the gas stream perpendicularly, in a recent article by Uhm and Kim [H. S. Uhm and C. H. Kim, Phys. Plasmas 16, 114502 (2009)]. Of particular concern is the disobedience of the first and second laws of thermodynamics together with the indistinct measurement of experimental data.

  11. Automobile Exhaust Pollution and Purification Methods

    OpenAIRE

    Tang, Dawei

    2014-01-01

    As we all know, the automobile gas exhaust pollution has become more and more severe at recent years. It influences both to the human beings health and to quality of environment. The purpose of this thesis is to find out what are the main components of the exhaust gases, and give a basic and effective way to solve the problem. In this thesis, first the danger of exhaust pollution and its components will be presented. Then the writer will give the general mechanism of automobile exhaust ...

  12. Low temperature dynamic characteristics of a three-way catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Balenovic, M.; Backx, A.C.P.M. [Technische Univ. Eindhoven (Netherlands). Dept. of Electrical Engineering; Harmsen, J.M.A.; Hoebink, J.H.B.J. [Technische Univ. Eindhoven (Netherlands). Lab. of Chemical Reactor Engineering

    2001-07-01

    A mathematical model of a three-way catalytic converter based on a detailed chemical kinetic model has been created mainly to analyze the converter's dynamic behavior at low temperatures. The light-off process of the converter is analyzed in detail. Competition of species for empty noble metal surface determines the light-off characteristic, as inhibition processes increase light-off temperatures of some exhaust gas components in the complete exhaust mixture. Perturbations of the exhaust gas mixture around stoichiometry can in certain conditions decrease the effect of inhibition and lower the light-off temperature for some exhaust components. (orig.)

  13. Low temperature dynamic characteristics of a three-way catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Balenovic, M.; Backx, A.C.P.M. [Eindhoven University of Technology (Netherlands). Dept. of Electrical Engineering; Harmsen, J.M.A.; Hoebink, J.H.B.J. [Eindhoven University of Technology (Netherlands). Laboratory of Chemical Reactor Engineering

    2001-07-01

    A mathematical model of a three-way catalytic converter based on a detailed chemical kinetic model has been created mainly to analyze the converter's dynamic behavior at low temperatures. The light-off process of the converter is analyzed in detail. Competition of species for empty noble metal surface determines the light-off characteristic, as inhibition processes increase light-off temperatures of some exhaust gas components in the complete exhaust mixture. Perturbations of the exhaust gas mixture around stoichiometry can in certain conditions decrease the effect of inhibition and lower the light-off temperature for some exhaust components. (author)

  14. Corrosion of Alloy 617 in high-temperature gas environments

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Tsung-Kuang [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chang, Hao-Ping [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Wang, Mei-Ya, E-mail: meywang@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300, Taiwan (China); Yuan, Trai [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Kai, Ji-Jung [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2014-05-01

    High-temperature gas-cooled reactors (HTGRs) with helium gas as the primary coolant have been considered as one type of the Generation IV nuclear power reactor systems. Several nickel-based superalloys, including Alloy 617, are potential structural materials to serve as pressure boundary components, such as the intermediate heat exchanger (IHX) in an HTGR. Impurities in a helium coolant, such as H{sub 2}O and O{sub 2}, can interact with structural materials at working temperatures of >900 C, leading to serious degradation on these materials. In addition, defects in IHX surface coatings would allow these species to reach and interact with the external surfaces of these components, leading to similar or even more serious degradation. In this study we investigated the oxidation behavior of Alloy 617 in high-temperature, gaseous environments with various levels of O{sub 2} and H{sub 2}O. A series of general corrosion tests were conducted at test temperatures of 650 C, 750 C, 850 C and 950 C under various coolant compositions of dry air, 1% O{sub 2}, 10% relative humidity (RH), and 50% RH. Preliminary results showed that the surface morphologies of the Alloy 617 samples exhibited distinct evidence of intergranular corrosion. Compact chromium oxide layers were observed on the sample surfaces. The oxidation mechanisms of this alloy in the designated environments are discussed.

  15. Feasibility study on different gas turbine cycles for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    There is growing global interest in modular High Temperature Gas-cooled Reactor (HTGR), due to its attractive features of enhanced safety. Meanwhile, the gas turbine cycle (Brayton cycle) appears to be the best near-term power conversion method for maximizing the economic potential of modular HTGR. Therefore the modular HTGR coupled with the gas turbine cycle is considered as one of the leading candidate concepts for future nuclear power deployment. In this paper, several typical gas turbine cycles for modular HTGRs are investigated theoretically, including close direct cycle (using helium as the working fluid), closed indirect cycle (using helium or nitrogen) and open indirect cycle (using air). Key factors affecting the efficiency of a cycle include the turbine inlet temperature, compressor and turbine adiabatic efficiencies, recuperator effectiveness and cycle fractional pressure loss. These parameters and their effects on the cycle performance are examined in detail. Each cycle is analyzed and optimized from the thermodynamic point of view and its turbocompressor, one of the most important components for the cycle, is aerodynamically designed. As a result, the closed direct cycle using helium as the working fluid is an ideal cycle for the modular HTGR gas turbine cycle; however it is not easy to be realized based on current technology. And the closed indirect cycle using helium or nitrogen is a practical one now; it can realize the gas turbine cycle method and make the technical bases for the future direct cycle. (author)

  16. Design and instrumentation of an automotive heat pump system using ambient air, engine coolant and exhaust gas as a heat source

    International Nuclear Information System (INIS)

    Because the amount of waste heat used for comfort heating of the passenger compartment in motor vehicles decreases continuously as a result of the increasing engine efficiencies originating from recent developments in internal combustion engine technology, it is estimated that heat requirement of the passenger compartment in vehicles using future generation diesel engines will not be met by the waste heat taken from the engine coolant. The automotive heat pump (AHP) system can heat the passenger compartment individually, or it can support the present heating system of the vehicle. The AHP system can also be employed in electric vehicles, which do not have waste heat, as well as vehicles driven by a fuel cell. The authors of this paper observed that such an AHP system using ambient air as a heat source could not meet the heat requirement of the compartment when ambient temperature was extremely low. The reason is the decrease in the amount of heat taken from the ambient air as a result of low evaporating temperatures. Furthermore, the moisture condensed from air freezed on the evaporator surface, thus blocking the air flow through it. This problem can be solved by using the heat of engine coolant or exhaust gases. In this case, the AHP system can have a higher heating capacity and reuse waste heat. (author)

  17. Utilizing the response patterns of a temperature modulated chemoresistive gas sensor for gas diagnosis

    International Nuclear Information System (INIS)

    The observed features in the temporal response patterns of a temperature-modulated chemoresistive gas sensor were used for gas diagnosis. The patterns were recorded for clean air and air contaminated with different levels of some volatile organic compounds while a staircase heating voltage waveform had been applied to the microheater of a tin oxide gas sensor that modulated its operating temperature. Combining the steady-state and transient parameters of the recorded responses in the 50-400 deg. C range resulted in discriminatory feature vectors which were utilized for contaminant classification. The information content of these feature vectors was proved sufficient for discrimination of methanol, ethanol, 1-butanol, and acetone contaminations in a wide concentration range.

  18. Effect of nozzle hole size coupling with exhaust gas re-circulation on the engine emission perfomance based on KH-ACT spray model

    Directory of Open Access Journals (Sweden)

    Zhang Liang

    2015-01-01

    Full Text Available To research an effective measure of reducing the Soot and NOx in engine at the same time, different nozzle hole diameters coupled with exhaust gas recirculation (EGR were adopted in this study based on KH-ACT spray breakup model, which takes the aerodynamic-induced ,cavitation-induced and turbulence-induced breakup into account. The SAGE detailed chemistry combustion and the new atomization model used in the simulation have been verified with the experiment data from a YN4100QBZL engine. Different diesel nozzles was adopted in the study combined with different EGR rates ranging from 0% to 40%. The simulation results show that the NOx emission could be reduced effectively for both small(0.1mm and large(0.15mm diesel nozzle when increasing EGR ratio. The soot emission increases for the small nozzle hole size as the EGR increasing. However, when it comes to the large diesel nozzle, the emission increases slightly first and decrease quickly when the EGR rate above 20%.

  19. La catalyse d'puration des gaz d'chappement automobiles. Situation actuelle et nouvelles orientations Catalytic Automotive Exhaust Gas Depollution. Present Status and New Trends

    Directory of Open Access Journals (Sweden)

    Prigent M.

    2006-11-01

    Full Text Available Cet article passe en revue les diffrents systmes catalytiques de post-traitement utiliss actuellement sur la plupart des automobiles pour limiter leurs rejets de polluants. Les systmes sont diffrencis par leur mode de fonctionnement, le type de moteur dpolluer (deux-temps, quatre-temps, diesel ou essence ou par leur mode de ralisation. Les nouvelles orientations, prvues pour respecter les futures rglementations antipollution, sont galement dcrites. On montre que certains vhicules prototypes, quips de moteurs combustion interne, sont capables d'avoir des missions trs proches de zro tout comme les vhicules lectriques. A review is made of the various types of exhaust gas aftertreatment systems presently used on most vehicles to reduce pollutant emissions. The systems are differentiated by their mode of action, according to the engine type to be depolluted (two-stroke, four-stroke, diesel or spark-ignition, and by their type of make-up. The major developments foreseen in the future, in view of compliance with the new legislations, are described. It is shown that some prototype vehicles with internal combustion engines are able to emit pollutant quantities really close to zero, such as electric cars.

  20. CO{sub 2}-fertilization via exhaust gas treatment of reciprocating gas engines: developments and experiences; Fertilisation au CO{sub 2} par traitement des gaz provenant de moteurs a gaz alternatifs: developpement et experience

    Energy Technology Data Exchange (ETDEWEB)

    Bekker, M.; Hoving, K.; Klimstra, J.; Top, H. [N.V. Nederlandse Gasunie (Netherlands)

    2000-07-01

    The Dutch climate is such that greenhouses are used to produce vegetables, flowers and other plants. To heat the greenhouse, boilers and combined heat and power systems (CHP) are used. CHP has a better fuel utilisation than a boiler because of the simultaneously production of heat and power. In a greenhouse, CO{sub 2} has to be added to compensate the CO{sub 2} consumed by the plants to grow. Higher CO{sub 2} concentration than ambient are being used to increase plant growth and yield. The use of 'clean' flue gas from boilers was common practice but nowadays flue gas of engines can be used after cleaning. Exhaust gas cleaning systems (EGC) based on a Selective Reduction Catalyst and an Oxidation Catalyst make this possible. This paper describes the principle of these EGCs, gives insight into the important parameters which determine the required cleanliness and discusses the research results of Gasunie Research on this topic. It is found that different catalyst makes have their own specific behaviour depending on the monolith and active material and the how the catalyst is manufactured, mechanical mixed or impregnated. The use of CHP gives a high fuel utilisation and, in combination with EGC, increased crop yields. This results in an even more efficient use of the primary fuel, natural gas. (authors)