WorldWideScience

Sample records for enhanced electrochemical performance

  1. Enhancing the electrochemical performance of commercial TiO2 by eliminating sulfate radicals and coating carbon

    International Nuclear Information System (INIS)

    Wang, Li-Ying; Wu, Yan; Han, Jian-Ping; Zhang, Bo; Bai, Xue; Qi, Yong-Xin; Lun, Ning; Cao, Yu-Mei; Bai, Yu-Jun

    2017-01-01

    Highlights: •Commercial TiO 2 (c-TiO 2 ) exhibits poor electrochemical performance. •The performance of c-TiO 2 is improved by coating carbon at temperatures above 750 °C. •The removal of SO 4 2− and formation of carbon coating are responsible for the enhanced performance. -- Abstract: Despite the low price of commercial TiO 2 (c-TiO 2 ), the poor electrochemical performance restricts its practical application in Li-ion batteries, so clarifying the reasons and taking appropriate measures to improve the performance are of great significance. Herein, c-TiO 2 was coated with carbon at 600 and 750 °C using glucose as the carbon source. The product obtained at 750 °C exhibits markedly enhanced reversible capacities and outstanding rate performance compared to that obtained at 600 °C. In terms of the comparative experiments and detailed characterizations by several techniques, the SO 4 2− remained in the c-TiO 2 is the dominant impurity affecting the electrochemical performance mostly. The thorough decomposition of SO 4 2− at 750 °C and the formation of carbon coating give rise to the enhanced electronic and ionic conductivities of the c-TiO 2 , and thus are responsible for the significant improvement in the electrochemical performance. The easy fabrication and the low cost of the raw materials enable the carbon-coated c-TiO 2 to industrially apply in the LIBs.

  2. Facile route to covalently-jointed graphene/polyaniline composite and it's enhanced electrochemical performances for supercapacitors

    Science.gov (United States)

    Qiu, Hanxun; Han, Xuebin; Qiu, Feilong; Yang, Junhe

    2016-07-01

    A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g-1 at 0.5 A g-1, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  3. Enhancing Electrochemical Performance of Graphene Fiber-Based Supercapacitors by Plasma Treatment.

    Science.gov (United States)

    Meng, Jie; Nie, Wenqi; Zhang, Kun; Xu, Fujun; Ding, Xin; Wang, Shiren; Qiu, Yiping

    2018-04-25

    Graphene fiber-based supercapacitors (GFSCs) hold high power density, fast charge-discharge rate, ultralong cycling life, exceptional mechanical/electrical properties, and safe operation conditions, making them very promising to power small wearable electronics. However, the electrochemical performance is still limited by the severe stacking of graphene sheets, hydrophobicity of graphene fibers, and complex preparation process. In this work, we develop a facile but robust strategy to easily enhance electrochemical properties of all-solid-state GFSCs by simple plasma treatment. We find that 1 min plasma treatment under an ambient condition results in 33.1% enhancement of areal specific capacitance (36.25 mF/cm 2 ) in comparison to the as-prepared GFSC. The energy density reaches 0.80 μW h/cm 2 in polyvinyl alcohol/H 2 SO 4 gel electrolyte and 18.12 μW h/cm 2 in poly(vinylidene difluoride)/ethyl-3-methylimidazolium tetrafluoroborate electrolyte, which are 22 times of that of as-prepared ones. The plasma-treated GFSCs also exhibit ultrahigh rate capability (69.13% for 40 s plasma-treated ones) and superior cycle stability (96.14% capacitance retention after 20 000 cycles for 1 min plasma-treated ones). This plasma strategy can be extended to mass-manufacture high-performance carbonaceous fiber-based supercapacitors, such as graphene and carbon nanotube-based ones.

  4. ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2000-07-01

    This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

  5. Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors

    International Nuclear Information System (INIS)

    Xu, Xiaowei; Shen, Jianfeng; Li, Na; Ye, Mingxin

    2014-01-01

    Highlights: • RGO/CoWO 4 composites were successfully prepared through a facile hydrothermal method. • RGO/CoWO 4 composites show much higher specific capacitances than pure CoWO 4 . • Enhanced electrical conductivity leads to superior electrochemical performance. - Abstract: A facile one-pot hydrothermal method was provided for synthesis of the reduced graphene oxide-cobalt tungstate (RGO/CoWO 4 ) nanocomposites with the enhanced electrochemical performances for supercapacitors for the first time. The resulting nanocomposites are comprised of CoWO 4 nanospheres that are well-anchored on graphene sheets by in situ reducing. The prepared RGO/CoWO 4 nanocomposites have been thoroughly characterized by Fourier–transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, Thermogravimetric analysis, Scanning electron microscopy, Transmission electron microscopy, X-ray photoelectron spectroscopy, and N 2 adsorption–desorption. Importantly, the prepared nanocomposites exhibit superior electrochemical performance to CoWO 4 as electrodes for supercapacitors. As a result, RGO/CoWO 4 nanocomposites with 91.6 wt% CoWO 4 content achieved a specific capacitance about 159.9 F g −1 calculated from the CV curves at 5 mV s −1 , which was higher than that of CoWO 4 (60.6 F g −1 ). The good electrochemical performance can be attributed to the increased electrical conductivity and the creation of new active sites due to the synergetic effect of RGO and CoWO 4 nanospheres. The cyclic stability tests demonstrated capacitance retention of about 94.7% after 1000 cycles, suggesting the potential application of RGO/CoWO 4 nanocomposites in energy-storage devices

  6. Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-30

    This work explored the use of oxide heterostructures for enhancing the catalytic and degradation properties of solid oxide fuel cell (SOFC) cathode electrodes. We focused on heterostructures of Ruddlesden-Popper and perovskite phases. Building on previous work showing enhancement of the Ruddlesden-Popper (La,Sr)2CoO4 / perovskite (La,Sr)CoO3 heterostructure compared to pure (La,Sr)CoO3 we explored the application of related heterostructures of Ruddlesden-Popper phases on perovskite (La,Sr)(Co,Fe)O3. Our approaches included thin-film electrodes, physical and electrochemical characterization, elementary reaction kinetics modeling, and ab initio simulations. We demonstrated that Sr segregation to surfaces is likely playing a critical role in the performance of (La,Sr)CoO3 and (La,Sr)(Co,Fe)O3 and that modification of this Sr segregation may be the mechanism by which Ruddlesden-Popper coatings enhance performances. We determined that (La,Sr)(Co,Fe)O3 could be enhanced in thin films by about 10× by forming a heterostructure simultaneously with (La,Sr)2CoO4 and (La,Sr)CoO3. We hope that future work will develop this heterostructure for use as a bulk porous electrode.

  7. Facile route to covalently-jointed graphene/polyaniline composite and it’s enhanced electrochemical performances for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hanxun [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Han, Xuebin; Qiu, Feilong [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yang, Junhe, E-mail: hxqiu@usst.edu.cn [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2016-07-15

    Highlights: • A novel synthetic approach to graphene/polyaniline composite is developed. • Covalently bonds are introduced between graphene and polyaniline. • The composite exhibits great electrochemical property with capacitance of 489 F g{sup −1}. - Abstract: A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g{sup −1} at 0.5 A g{sup −1}, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  8. Novel quasi-symmetric solid oxide fuel cells with enhanced electrochemical performance

    KAUST Repository

    Chen, Yonghong

    2016-02-16

    Symmetrical solid oxide fuel cell (SSOFC) using same materials as both anode and cathode simultaneously has gained extensively attentions, which can simplify fabrication process, minimize inter-diffusion between components, enhance sulfur and coking tolerance by operating the anode as the cathode in turn. With keeping the SSOFC\\'s advantages, a novel quasi-symmetrical solid oxide fuel cell (Q-SSOFC) is proposed to further improve the performance, which optimally combines two different SSOFC electrode materials as both anode and cathode simultaneously. PrBaFe2O5+δ (PBFO) and PrBaFe1.6Ni0.4O5+δ (PBFNO, Fe is partially substituted by Ni.) are prepared and applied as both cathode and anode for SSOFC, which exhibit desirable chemical and thermal compatibility with Sm0.8Ce0.2O1.9 (SDC) electrolyte. PBFO cathode exhibits higher oxygen reduction reaction (ORR) activity than PBFNO cathode in air, whereas PBFNO anode exhibits higher hydrogen oxidation reaction (HOR) activity than PBFO anode in H2. The as-designed Q-SSOFC of PBFNO/SDC/PBFO exhibits higher electrochemical performance than the conventional SSOFCs of both PBFO/SDC/PBFO and PBFNO/SDC/PBFNO. The superior performance of Q-SSOFC is attributed to the lowest polarization resistance (Rp). The newly developed Q-SSOFCs open doors for further improvement of electrochemical performance in SSOFC, which hold more promise for various potential applications. © 2016 Elsevier B.V. All rights reserved.

  9. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole

    Science.gov (United States)

    Chen, Yanli; Du, Lianhuan; Yang, Peihua; Sun, Peng; Yu, Xiang; Mai, Wenjie

    2015-08-01

    Here, we report robust, flexible CNT-based supercapacitor (SC) electrodes fabricated by electrodepositing polypyrrole (PPy) on freestanding vacuum-filtered CNT film. These electrodes demonstrate significantly improved mechanical properties (with the ultimate tensile strength of 16 MPa), and greatly enhanced electrochemical performance (5.6 times larger areal capacitance). The major drawback of conductive polymer electrodes is the fast capacitance decay caused by structural breakdown, which decreases cycling stability but this is not observed in our case. All-solid-state SCs assembled with the robust CNT/PPy electrodes exhibit excellent flexibility, long lifetime (95% capacitance retention after 10,000 cycles) and high electrochemical performance (a total device volumetric capacitance of 4.9 F/cm3). Moreover, a flexible SC pack is demonstrated to light up 53 LEDs or drive a digital watch, indicating the broad potential application of our SCs for portable/wearable electronics.

  10. Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes

    Directory of Open Access Journals (Sweden)

    C. K. Das

    2012-12-01

    Full Text Available A porous nanocomposite based on polypyrrole (PPy and sodium alginate (SA has been synthesized by easy, inexpensive, eco-friendly method. As prepared nanocomposite showed fibrillar morphology in transmission electron microscopic (TEM analysis. The average diameter of ~100 nm for the nanofibers was observed from scanning electron microscopic (SEM analysis. As prepared nanofiber, was investigated as an electrode material for supercapacitor application in different aqueous electrolyte solutions. PPy nanofiber showed enhanced electrochemical performances in 1M KCl solution as compared to 1M Na2SO4 solution. Maximum specific capacitance of 284 F/g was found for this composite in 1 M KCl electrolyte. It showed 76% specific capacitance retention after 600 cycles in 1 M KCl solution. Electrochemical Impedance Spectra showed moderate capacitive behavior of the composite in both the electrolytes. Further PPy nanofiber demonstrated higher thermal stability as compared to pure PPy.

  11. Enhancement of electrochemical performance of LiFePO4 nanoparticles by direct nanocoating with conductive carbon layers

    Science.gov (United States)

    Świder, Joanna; Molenda, Marcin; Kulka, Andrzej; Molenda, Janina

    2016-07-01

    The results of simple and environmental-friendly method of the carbon nanocoatings on low-conductive cathode material have been shown in this work. The carbon nanocoatings were prepared during wet impregnation process of precursor derived from hydrophilic polymer based on poly(N-vinylformamide) modified by pyromellitic acid. The crystal structures and morphology of all composites were characterized by X-ray powder diffraction (XRD), low temperature nitrogen adsorption/desorption measurements (N2-BET) and transmission electronic microscopy (TEM). The electrical properties of the obtained composites were examined by EC studies. The electrochemical performance was carried out in galvanostatic mode with stable charge-discharge current and performed in Li/Li+/(CCL/LiFePO4) type cells. The process of formation CCL/LiFePO4 nanocomposite significantly enhances the electrical conductivity of the material and improves its capacity retention and electrochemical performance.

  12. Enhanced electrochemical performances with a copper/xylose-based carbon composite electrode

    Science.gov (United States)

    Sirisomboonchai, Suchada; Kongparakul, Suwadee; Nueangnoraj, Khanin; Zhang, Haibo; Wei, Lu; Reubroycharoen, Prasert; Guan, Guoqing; Samart, Chanatip

    2018-04-01

    Copper/carbon (Cu/C) composites were prepared through the simple and environmentally benign hydrothermal carbonization of xylose in the presence of Cu2+ ions. The morphology, specific surface area, phase structure and chemical composition were investigated. Using a three-electrode system in 0.1 M H2SO4 aqueous electrolyte, the Cu/C composite (10 wt% Cu) heat-treated at 600 °C gave the highest specific capacitance (316.2 and 350.1 F g-1 at 0.5 A g-1 and 20 mV s-1, respectively). The addition of Cu was the major factor in improving the electrochemical performance, enhancing the specific capacitance more than 30 times that of the C without Cu. Therefore, the Cu/C composite presented promising results in improving biomass-based C electrodes for supercapacitors.

  13. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline

    International Nuclear Information System (INIS)

    Feng, Huajun; Liang, Yuxiang; Guo, Kun; Long, Yuyang; Cong, Yanqing; Shen, Dongsheng

    2015-01-01

    Highlights: • A method for improving defluorination performance by in situ self-assembly of pollutants was developed. • The mechanisms of 2-FA modification and defluorination are discussed. • Positively-charged diazonium salt is used to weaken the C–F bond. - Abstract: This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO_2"− achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO_2"−, respectively. The residual NO_2"− was less than 0.5 mg/L in the reactor containing added NO_2"−, which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C–F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds.

  14. Controllable growth of MoS{sub 2}/C flower-like microspheres with enhanced electrochemical performance for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Q.Q., E-mail: zjxqq@hdu.edu.cn; Ji, Z.G.

    2016-07-15

    Tailored design/fabrication of hierarchical porous advanced electrodes is of great importance for developing high-performance power sources. Herein, we report a facile solvothermal method for fabrication of hierarchical porous MoS{sub 2}/C flower-like microspheres. Interestingly, the obtained MoS{sub 2}/C microspheres are composed of interconnected secondary thin nanoflakes and an amorphous carbon layer. As an anode material for lithium ion batteries, the resultant MoS{sub 2}/C flower-like microspheres electrode delivers a high specific capacity of 1125.9 mAh g{sup −1} and good cycle capability (916.6 mAh g{sup −1} at 200 mA g{sup −1} up to 400 cycles), as well as enhanced rate performance. The excellent electrochemical performance is attributed to the unique porous composite architecture with fast transportation of ion/electron and good strain accommodation during the lithiation/delithiation reaction. Our research may pave the way for construction of other high-performance metal sulfides electrodes for electrochemical energy storage. - Graphical abstract: We report a facile solvothermal method for fabrication of hierarchical porous MoS{sub 2}/C flower-like microspheres composed of interconnected thin nanoflakes and an amorphous carbon layer. As an anode material for LIBs, MoS{sub 2}/C flower-like microspheres electrode delivers enhanced electrochemical performance. - Highlights: • We prepared MoS{sub 2}/C flower-like microspheres via a facile solvothermal method. • The microsphere consists of interconnected nanoflake and an amorphous carbon layer. • The MoS{sub 2}/C microspheres show high capacity and good rate performance.

  15. One-dimensional coaxial Sb and carbon fibers with enhanced electrochemical performance for sodium-ion batteries

    Science.gov (United States)

    Zhu, Mengnan; Kong, Xiangzhong; Yang, Hulin; Zhu, Ting; Liang, Shuquan; Pan, Anqiang

    2018-01-01

    Antimony (Sb) has been intensively investigated as a promising anode material for sodium ion batteries (SIBs) in recent years. However, bulk Sb particles usually suffer from excessive volume expansion thus leading to dramatic capacity decay after cycling. To address this issue, Sb has been uniformly decorated on Polyacrylonitrile (PAN) derived carbon nanofibers (PCFs) via a simple chemical deposition strategy to form a one-dimensional (1D) core-shell nanostructure of Sb@PCFs. PCFs were first derived from electrospun PAN fibers and treated with subsequent calcination. The PCFs constructed an interwoven carbon network were later employed for Sb deposition, which can effectively alleviate aggregation or further cracking of Sb nanoparticles occurred in electrochemical kinetic process. The as-obtained Sb@PCFs nanocomposites demonstrated excellent cycling stability with good rate performances. This carefully designed core-shell nanostructure of antimony nanoparticles wrapped PCFs are responsible for good electrochemical Na-ion storage. Moreover, the 1D nanostructure manage to pave pathways for fast ions transfer during charge-discharge, which could extra contribute to the enhanced SIBs performances.

  16. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Huajun [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Liang, Yuxiang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Guo, Kun [Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Long, Yuyang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Cong, Yanqing, E-mail: yqcong@hotmail.com [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Shen, Dongsheng [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China)

    2015-12-30

    Highlights: • A method for improving defluorination performance by in situ self-assembly of pollutants was developed. • The mechanisms of 2-FA modification and defluorination are discussed. • Positively-charged diazonium salt is used to weaken the C–F bond. - Abstract: This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO{sub 2}{sup −} achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO{sub 2}{sup −}, respectively. The residual NO{sub 2}{sup −} was less than 0.5 mg/L in the reactor containing added NO{sub 2}{sup −}, which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C–F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds.

  17. Morphological reason for enhancement of electrochemical double layer capacitances of various acetylene blacks by electrochemical polarization

    International Nuclear Information System (INIS)

    Kim, Taegon; Ham, Chulho; Rhee, Choong Kyun; Yoon, Seong-Ho; Tsuji, Masaharu; Mochida, Isao

    2008-01-01

    Enhancement of electrochemical capacitance and morphological variations of various acetylene blacks caused by electrochemical polarization are presented. Acetylene blacks of different mean particle diameters were modified by air-oxidation and heat treatment to diversify the morphologies of the acetylene blacks before electrochemical polarization. The various acetylene blacks were electrochemically oxidized at 1.6 V (vs. Ag/AgCl) for 10 s and the polarization step was repeated until the capacitance values did not change any longer. These polarization steps enhanced the capacitances of the acetylene blacks and the specific enhancement factors range from 2 to 5.5. Such an enhancement is strongly related to morphological modification as revealed by transmission electron microscopic observations. The electrochemical polarization resulted in formation of tiny graphene sheets on the wide graphitic carbon surfaces, which were most responsible for the observed capacitive enhancement. Although the pseudo-capacitance increased after polarization by forming oxygenated species on the surfaces, its contribution to the total capacitance was less than 10%. The mechanism of the formation of the tiny graphene sheets during the electrochemical oxidation is described schematically

  18. 3D printed graphene-based electrodes with high electrochemical performance

    Science.gov (United States)

    Vernardou, D.; Vasilopoulos, K. C.; Kenanakis, G.

    2017-10-01

    Three-dimensional (3D) printed graphene pyramids were fabricated through a dual-extrusion FDM-type 3D printer using a commercially available PLA-based conductive graphene. Compared with flat printed graphene, a substantial enhancement in the electrochemical performance was clearly observed for the case of 3D printed graphene pyramids with 5.0 mm height. Additionally, the charge transfer of Li+ across the graphene pyramids/electrolyte interface was easier enhancing its performance presenting a specific discharge capacity of 265 mAh g-1 with retention of 93% after 1000 cycles. The importance of thickness control towards the printing of an electrode with good stability and effective electrochemical behavior is highlighted.

  19. Enhancement of Capacitive Performance in Titania Nanotubes Modified by an Electrochemical Reduction Method

    Directory of Open Access Journals (Sweden)

    Nurul Asma Samsudin

    2018-01-01

    Full Text Available Highly ordered titania nanotubes (TNTs were synthesised by an electrochemical anodization method for supercapacitor applications. However, the capacitive performance of the TNTs was relatively low and comparable to the conventional capacitor. Therefore, in order to improve the capacitive performance of the TNTs, a fast and facile electrochemical reduction method was applied to modify the TNTs (R-TNTs by introducing oxygen vacancies into the lattice. X-ray photoelectron spectroscopy (XPS data confirmed the presence of oxygen vacancies in the R-TNTs lattice upon the reduction of Ti4+ to Ti3+. Electrochemical reduction parameters such as applied voltage and reduction time were varied to optimize the best conditions for the modification process. The electrochemical performance of the samples was analyzed in a three-electrode configuration cell. The cyclic voltammogram recorded at 200 mV s−1 showed a perfect square-shaped voltammogram indicating the excellent electrochemical performance of R-TNTs prepared at 5 V for 30 s. The total area of the R-TNTs voltammogram was 3 times larger than the unmodified TNTs. A specific capacitance of 11.12 mF cm−2 at a current density of 20 μA cm−2 was obtained from constant current charge-discharge measurements, which was approximately 57 times higher than that of unmodified TNTs. R-TNTs also displayed outstanding cycle stability with 99% capacity retention after 1000 cycles.

  20. Synthesis and enhanced electrochemical performance of the honeycomb TiO2/LiMn2O4 cathode materials

    DEFF Research Database (Denmark)

    Zhang, J.Y.; Shen, J.X.; Wei, C.B.

    2016-01-01

    angle compare to LiMn2O4, implying that TiO2 doping induced a change of crystal structure. By performing electrochemical measurements, we observed an enhancement of specific capacity (127.28 mAhg−1) and an improvement of cycling stability in the TiO2/LiMn2O4 hybrid materials. After 100 cycles of charge...

  1. Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Hang; Yang, Jia-Ying [Central South University, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources (China); Wu, Xiong-Wei [Hunan Agricultural University, College of Science (China); Chen, Xiao-Qing; Yu, Jin-Gang, E-mail: yujg@csu.edu.cn [Central South University, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources (China); Wu, Yu-Ping, E-mail: wuyp@fudan.edu.cn [Fudan University, New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials (China)

    2017-02-15

    In this work, a novel activated carbon containing graphene composite was developed using a fast, simple, and green ultrasonic-assisted method. Graphene is more likely a framework which provides support for activated carbon (AC) particles to form hierarchical microstructure of carbon composite. Scanning electron microscope (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area measurement, thermogravimetric analysis (TGA), Raman spectra analysis, XRD, and XPS were used to analyze the morphology and surface structure of the composite. The electrochemical properties of the supercapacitor electrode based on the as-prepared carbon composite were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), charge/discharge, and cycling performance measurements. It exhibited better electrochemical performance including higher specific capacitance (284 F g{sup −1} at a current density of 0.5 A g{sup −1}), better rate behavior (70.7% retention), and more stable cycling performance (no capacitance fading even after 2000 cycles). It is easier for us to find that the composite produced by our method was superior to pristine AC in terms of electrochemical performance due to the unique conductive network between graphene and AC.

  2. Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material

    International Nuclear Information System (INIS)

    Wang, Zhi-Hang; Yang, Jia-Ying; Wu, Xiong-Wei; Chen, Xiao-Qing; Yu, Jin-Gang; Wu, Yu-Ping

    2017-01-01

    In this work, a novel activated carbon containing graphene composite was developed using a fast, simple, and green ultrasonic-assisted method. Graphene is more likely a framework which provides support for activated carbon (AC) particles to form hierarchical microstructure of carbon composite. Scanning electron microscope (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area measurement, thermogravimetric analysis (TGA), Raman spectra analysis, XRD, and XPS were used to analyze the morphology and surface structure of the composite. The electrochemical properties of the supercapacitor electrode based on the as-prepared carbon composite were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), charge/discharge, and cycling performance measurements. It exhibited better electrochemical performance including higher specific capacitance (284 F g"−"1 at a current density of 0.5 A g"−"1), better rate behavior (70.7% retention), and more stable cycling performance (no capacitance fading even after 2000 cycles). It is easier for us to find that the composite produced by our method was superior to pristine AC in terms of electrochemical performance due to the unique conductive network between graphene and AC.

  3. NbSe{sub 3} nanobelts wrapped by reduced graphene oxide for lithium ion battery with enhanced electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Sun, Qi; Wang, Zhijie; Xiang, Junxiang; Zhao, Benliang [Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Qu, Yan [The Sixth Element Materials Technology Co. Ltd, Changzhou, Jiangsu, 213145 (China); Xiang, Bin, E-mail: binxiang@ustc.edu.cn [Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-08-01

    Highlights: • A core-shell structure of NbSe{sub 3} nanobelts wrapped by rGO is synthesized by a PDDA assisted method. • Cushion effect of the rGO coating enhances the structure integrity. • Performance of the composites during cycling are improved remarkably compared to the pure nanobelts. - Abstract: Recently, layered transition metal chalcogenides (LTMCs) have attracted great attention as anode materials for lithium ion batteries (LIBs). However, the volume expansion and structure instability of LTMCs during the lithiation and delithiation process still remains challenging. Herein, we report NbSe{sub 3} nanobelts wrapped by reduced-graphene oxide (NbSe{sub 3}@rGO) utilized as buffer layers with enhanced electrochemical performance. The X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy were used to probe features of the NbSe{sub 3}@rGO. The NbSe{sub 3}@rGO nanobelts as anode exhibit a discharge capacity of 300 mAh/g at the current density of 100 mAh/g after 250 cycles, several times higher than pure NbSe{sub 3} nanobelts. The improved electrochemical performance of NbSe{sub 3}@rGO is attributed to a buffer effect from the rGO, cushioning the volume-change-induced strain effect on the structure of NbSe{sub 3} nanobelts during cycling.

  4. Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance

    Science.gov (United States)

    Xiong, Pan; Hu, Chenyao; Fan, Ye; Zhang, Wenyao; Zhu, Junwu; Wang, Xin

    2014-11-01

    A ternary manganese ferrite/graphene/polyaniline (MGP) nanostructure is designed and synthesized via a facile two-step approach. This nanostructure exhibits outstanding electrochemical performances, such as high specific capacitance (454.8 F g-1 at 0.2 A g-1), excellent rate capability (75.8% capacity retention at 5 A g-1), and good cycling stability (76.4% capacity retention after 5000 cycles at 2 A g-1), which are superior to those of its individual components (manganese ferrite, reduced-graphene oxide, polyaniline) and corresponding binary hybrids (manganese ferrite/graphene (MG), manganese ferrite/polyaniline (MP), and graphene/polyaniline (GP)). A symmetric supercapacitor device using the as-obtained hybrid has been fabricated and tested. The device exhibits a high specific capacitance of 307.2 F g-1 at 0.1 A g-1 with a maximum energy density of 13.5 W h kg-1. The high electrochemical performance of ternary MGP can be attributed to its well-designed nanostructure and the synergistic effect of the individual components.

  5. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  6. Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance

    Science.gov (United States)

    Wang, Peng; Hu, Junhua; Cao, Guoqin; Zhang, Shilin; Zhang, Peng; Liang, Changhao; Wang, Zhuo; Shao, Guosheng

    2018-03-01

    Different configurations of Sn and C films were deposited and used as a planar anode for Li ion battery. The interplay of carbon layer with Sn as supporting and buffering, respectively, was revealed. The suppression on the allotropic transformation to α phase by a carbon layer results in a significantly improved capacity retention rate, which also avoids the crack of Sn film. As expected, a conductive carbon layer improves rating performance. However, a supporting carbon layer (SC) just contributes to the charge transfer process. A DFT approach was used to assess the allotropic transformation process. An additional barrier (∼0.86 eV) exits on the α-β diagram, which is responsible for the irreversibility of α phase back to β phase. An enhanced persistence of β phase in Sn/C anode contributes to cycling performance. A Li rich condition contributes to the stabilization of β-Sn, which is thermodynamically favored. A nano buffering carbon (BC) layer can evidently alleviate the side reaction on Sn surface, which in turn promotes the diffusion of Li ions in electrode and generates a Li rich condition. The direct contact of Sn with electrolyte leads to serious accumulation of α-Sn during cycling and results in a poor cycling performance. By the synergistic effect of BC and SC, a sandwich C/Sn/C structure demonstrates an enchantment in electrochemical behavior.

  7. Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance

    International Nuclear Information System (INIS)

    Xiao, Huaqing; Wang, Shutao; Zhang, Shuo; Wang, Yihe; Xu, Qingfei; Hu, Wenjie; Zhou, Yan; Wang, Zhaojie; An, Changhua; Zhang, Jun

    2017-01-01

    Rational structural design for electrode materials is essential for fabricating high performance supercapacitors. In this work, we demonstrated a novel way to prepare incompact MoS_2 nanosheets assembled nanorods with the interlayer of MoS_2 nanosheets expanded to 0.89 nm, namely layer expanded MoS_2 nanorods (LE-MoS_2 NRs). The material was characterized by XRD, XPS and electron microscopes. The XRD data and HRTEM images confirmed the existence of expanded interlayer of MoS_2 nanosheets. N_2 adsorption-desorption isotherms of LE-MoS_2 NRs indicated high specific area up to 37.0 m"2 g"−"1. It was found that the expanded interlayer spacing can benefit the ion transportation within the MoS_2 interlayers. The as-prepared electrode material showed capacitance up to 231 F g"−"1 at 1 A g"−"1 charge-discharge current and cycling stability test indicated high capacitance of 177 F g"−"1 was retained after 1000 cycles. - Highlights: • High performance electrochemical supercapacitor electrode material. • Interlayer expanded MoS_2 to achieve enhanced capacitance. • Facile hydrothermal synthesis of interlayer expanded MoS_2. • MoS_2 nanosheets assembled incompact nanorods.

  8. Aligned TiO₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries.

    Science.gov (United States)

    Xie, Keyu; Guo, Min; Lu, Wei; Huang, Haitao

    2014-11-14

    A novel TiO₂ three-dimensional (3D) anode with an aligned TiO₂ nanotube/nanoparticle heterostructure (TiO₂ NTs/NPs) is developed by simply immersing as-anodized TiO₂ NTs into water and further crystallizing the TiO₂ NTs by post-annealing. The heterostructure, with its core in a tubular morphology and with both the outer and inner surface consisting of nanoparticles, is confirmed by FESEM and TEM. A reversible areal capacity of 0.126 mAh · cm(-2) is retained after 50 cycles for the TiO₂ NTs/NPs heterostructure electrode, which is higher than that of the TiO₂ NTs electrode (0.102 mAh · cm(-2) after 50 cycles). At the current densities of 0.02, 0.04, 0.06, 0.08, 0.10 and 0.20 mA · cm(-2), the areal capacities are 0.142, 0.127, 0.117, 0.110, 0.104 and 0.089 mAh · cm(-2), respectively, for the TiO₂ NTs/NPs heterostructure electrode compared to the areal capacities of 0.123, 0.112, 0.105, 0.101, 0.094 and 0.083 mAh · cm(-2), respectively, for the the TiO₂ NTs electrode. The enhanced electrochemical performance is attributed to the unique microstructure of the TiO₂ NTs/NPs heterostructure electrode with the TiO₂ NT core used as a straight pathway for electronic transport and with TiO₂ NP offering enhanced surface areas for facile Li+ insertion/extraction. The results described here inspire a facile approach to fabricate a 3D anode with an enhanced electrochemical performance for lithium-ion microbattery applications.

  9. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries

    International Nuclear Information System (INIS)

    Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu

    2017-01-01

    Highlights: • VO_xNTs were hydrothermally prepared using C_1_2H_2_7N as soft template with scalability. • Polypyrrole/VO_xNTs with less C_1_2H_2_7N template and higher conductivity were obtained. • Polypyrrole/VO_xNTs exhibit better performance as cathode for LIBs compared to VO_xNTs. • Further modification to VO_xNTs with desired electrochemical property can be expected. - Abstract: Vanadium oxide nanotubes (VO_xNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VO_xNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C_1_2H_2_7N) and intrinsic low conductivity of VO_x. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VO_xNTs and simultaneously form polypyrrole coating on VO_xNTs, respectively. The resulting polypyrrole/VO_xNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.

  10. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaowei, E-mail: zhouxiaowei@ynu.edu.cn [Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, Yunnan (China); Chen, Xu; He, Taoling; Bi, Qinsong [Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, Yunnan (China); Sun, Li [Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, Yunnan (China); Department of Mechanical Engineering, University of Houston, Houston 77204, TX (United States); Liu, Zhu, E-mail: zhuliu@ynu.edu.cn [Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, Yunnan (China); Yunnan Key Laboratory of Micro/Nano-Materials and Technology, Yunnan University, Kunming 650091, Yunnan (China)

    2017-05-31

    Highlights: • VO{sub x}NTs were hydrothermally prepared using C{sub 12}H{sub 27}N as soft template with scalability. • Polypyrrole/VO{sub x}NTs with less C{sub 12}H{sub 27}N template and higher conductivity were obtained. • Polypyrrole/VO{sub x}NTs exhibit better performance as cathode for LIBs compared to VO{sub x}NTs. • Further modification to VO{sub x}NTs with desired electrochemical property can be expected. - Abstract: Vanadium oxide nanotubes (VO{sub x}NTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VO{sub x}NTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C{sub 12}H{sub 27}N) and intrinsic low conductivity of VO{sub x}. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VO{sub x}NTs and simultaneously form polypyrrole coating on VO{sub x}NTs, respectively. The resulting polypyrrole/VO{sub x}NTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.

  11. Enhanced photo-electrochemical performances of graphene-based composite functionalized by Zn{sup 2+} tetraphenylporphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhongqiang [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Zhu, Junwu, E-mail: zhujw@njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Han, Qiaofeng [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Cui, Hao [School of Public Administration, Shandong Normal University, Jinan 250014 (China); Bi, Huiping, E-mail: hpbi@njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Wang, Xin [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China)

    2014-12-01

    Graphical abstract: - Highlights: • With the aid of π–π stacking interaction, the graphene was successfully functionalized by zinc tetraphenylporphyrin. • In obtained G/ZnTPP composite, the ZnTPP and graphene can substitute for porphyrin-like ring structure and electron transport chain, respectively. • Combined with graphene, the G/ZnTPP composite shows a high photo-electrochemical performance. - Abstract: Inspired by the role of electron transport chain in chlorophyll, graphene (G) complexation with zinc 5, 10, 15, 20-tetraphenylporphyrin (ZnTPP) is expected to have excellent photo-electrochemical performances. Here, we design a facile strategy to synthesize the functionalized graphene/zinc tetraphenylporphyrin (G/ZnTPP) composite. In which, all characterizations indicate synergistic effect does exist between graphene sheets and ZnTPP. The synergistic effect enables such composite to possess improved photo-electrochemical behaviors that are key features for photoelectric conversion device. On the basis of this, attempts to modify the absorption range, improve specific capacitance and lower resistance to acquire effective photo-current responses have been successfully demonstrated in this research.

  12. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Zhiyong; Lai, Yanqing; Zhang, Zhian; Zhang, Kai; Li, Jie

    2014-01-01

    Graphical abstract: Al2O3-coated separator with developed porous channels is prepared by coating Al2O3 polymer solution on routine separator. The batteries with Al2O3-coated separator exhibited a reversible capacity of as high as 593 mAh g-1 at the rate of 0.2 C after 50th charge/discharge cycle. The enhancement in the electrochemical performance could be attributed to the reduced charge transfer resistance after the introduction of Al2O3 coating layer. Besides, the Al2O3 coating layer, acting as a physical barrier for polysulfides, can effectively prevent polysulfides shuttling between the cathode and the anode. We believe that the Al2O3-coated separator is promising in the lithium sulfur battery applications. - Highlights: • Al 2 O 3 -coated separator is used as the separator of lithium sulfur battery. • The cell with Al 2 O 3 -coated separator exhibits excellent cycling stability and high rate capability. • Al 2 O 3 -coated separator is promising in the lithium sulfur battery applications. - Abstract: In this paper, Al 2 O 3 -coated separator with developed porous channels is prepared to improve the electrochemical performance of lithium sulfur batteries. It is demonstrated that the Al 2 O 3 -coating layer is quite effective in reducing shuttle effect and enhancing the stability of the sulfur electrode. The initial discharge capacity of the cell with Al 2 O 3 -coated separator can reach 967 mAh g −1 at the rate of 0.2 C. After 50th charge/discharge cycle, this cell can also deliver a reversible capacity of as high as 593.4 mAh g −1 . Significantly, the charge-transfer resistance of the electrode tends to be reducing after using Al 2 O 3 -coated separator. The improved cell performance is attributed to the porous architecture of the Al 2 O 3 -coating layer, which serves as an ion-conducting skeleton for trapping and depositing dissolved sulfur-containing active materials, as confirmed by scanning electron microscopy (SEM) and energy-dispersive X

  13. Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors

    Science.gov (United States)

    Yang, Wanlu; Gao, Zan; Wang, Jun; Wang, Bin; Liu, Lianhe

    2013-06-01

    Reduced graphene nanosheets/Fe2O3 nanorods (GNS/Fe2O3) composite has been fabricated by a hydrothermal route for supercapacitor electrode materials. The obtained GNS/Fe2O3 composite formed a uniform structure with the Fe2O3 nanorods grew on the graphene surface and/or filled between the graphene sheets. The electrochemical performances of the GNS/Fe2O3 hybrid supercapacitor were tested by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge tests in 6 M KOH electrolyte. Comparing with the pure Fe2O3 electrode, GNS/Fe2O3 composite electrode exhibits an enhanced specific capacitance of 320 F g-1 at 10 mA cm-2 and an excellent cycle-ability with capacity retention of about 97% after 500 cycles. The simple and cost-effective preparation technique of this composite with good capacitive behavior encourages its potential commercial application.

  14. Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Huaqing; Wang, Shutao; Zhang, Shuo; Wang, Yihe; Xu, Qingfei; Hu, Wenjie [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); Zhou, Yan, E-mail: yanzhou@upc.edu.cn [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); Wang, Zhaojie [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); An, Changhua [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Zhang, Jun, E-mail: zhangj@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China)

    2017-05-01

    Rational structural design for electrode materials is essential for fabricating high performance supercapacitors. In this work, we demonstrated a novel way to prepare incompact MoS{sub 2} nanosheets assembled nanorods with the interlayer of MoS{sub 2} nanosheets expanded to 0.89 nm, namely layer expanded MoS{sub 2} nanorods (LE-MoS{sub 2} NRs). The material was characterized by XRD, XPS and electron microscopes. The XRD data and HRTEM images confirmed the existence of expanded interlayer of MoS{sub 2} nanosheets. N{sub 2} adsorption-desorption isotherms of LE-MoS{sub 2} NRs indicated high specific area up to 37.0 m{sup 2} g{sup −1}. It was found that the expanded interlayer spacing can benefit the ion transportation within the MoS{sub 2} interlayers. The as-prepared electrode material showed capacitance up to 231 F g{sup −1} at 1 A g{sup −1} charge-discharge current and cycling stability test indicated high capacitance of 177 F g{sup −1} was retained after 1000 cycles. - Highlights: • High performance electrochemical supercapacitor electrode material. • Interlayer expanded MoS{sub 2} to achieve enhanced capacitance. • Facile hydrothermal synthesis of interlayer expanded MoS{sub 2}. • MoS{sub 2} nanosheets assembled incompact nanorods.

  15. Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries

    OpenAIRE

    Wang, Bei; Su, Dawei; Park, Jinsoo; Ahn, Hyojun; Wang, Guoxiu

    2012-01-01

    SnO2 nanoparticles were dispersed on graphene nanosheets through a solvothermal approach using ethylene glycol as the solvent. The uniform distribution of SnO2 nanoparticles on graphene nanosheets has been confirmed by scanning electron microscopy and transmission electron microscopy. The particle size of SnO2 was determined to be around 5 nm. The as-synthesized SnO2/graphene nanocomposite exhibited an enhanced electrochemical performance in lithium-ion batteries, compared with bare graphene ...

  16. Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries.

    Science.gov (United States)

    Wang, Bei; Su, Dawei; Park, Jinsoo; Ahn, Hyojun; Wang, Guoxiu

    2012-04-13

    SnO2 nanoparticles were dispersed on graphene nanosheets through a solvothermal approach using ethylene glycol as the solvent. The uniform distribution of SnO2 nanoparticles on graphene nanosheets has been confirmed by scanning electron microscopy and transmission electron microscopy. The particle size of SnO2 was determined to be around 5 nm. The as-synthesized SnO2/graphene nanocomposite exhibited an enhanced electrochemical performance in lithium-ion batteries, compared with bare graphene nanosheets and bare SnO2 nanoparticles. The SnO2/graphene nanocomposite electrode delivered a reversible lithium storage capacity of 830 mAh g-1 and a stable cyclability up to 100 cycles. The excellent electrochemical properties of this graphene-supported nanocomposite could be attributed to the insertion of nanoparticles between graphene nanolayers and the optimized nanoparticles distribution on graphene nanosheets.

  17. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.

    Science.gov (United States)

    Esplandiu, M J; Pacios, M; Cyganek, L; Bartroli, J; del Valle, M

    2009-09-02

    In this paper, the electrochemical behavior of different myoglobin-modified carbon electrodes is evaluated. In particular, the performance of voltammetric biosensors made of forest-like carbon nanotubes, carbon nanotube composites and graphite composites is compared by monitoring mainly the electrocatalytic reduction of H(2)O(2) by myoglobin and their corresponding electroanalytical characteristics. Graphite composites showed the worst electroanalytical performance, exhibiting a small linear range, a limit of detection (LOD) of 9 x 10(-5) M and low sensitivity. However, it was found that the electrochemical response was enhanced with the use of carbon nanotube-based electrodes with LOD up to 5 x 10(-8) M, higher sensitivities and wider linear range response. On the one hand, in the case of the CNT epoxy composite, the improvement in the response can be mainly attributed to its more porous surface which allows the immobilization of higher amounts of the electroactive protein. On the other hand, in the case of the forest-like CNT electrodes, the enhancement is due to an increase in the electron transfer kinetics. These findings encourage the use of myoglobin-modified carbon nanotube electrodes as potential (bio)sensors of H(2)O(2) or O(2) in biology, microbiology and environmental fields.

  18. Enhanced electrochemical performance from 3DG/LiFePO4/G sandwich cathode material

    Science.gov (United States)

    Du, Yahui; Tang, Yufeng; Chang, Chengkang

    2017-08-01

    In this paper, we have successfully synthesized a three dimensional graphene/LiFePO4/graphene (3DG/LFP/G) sandwich composite by an in-situ hydrothermal method, in which chemical vapor deposited 3D graphene acts as the high conductivity supporting framework, while the LiFePO4 nanoparticles are anchored onto the 3D graphene framework covered by graphene sheets. XRD and SEM results confirmed the formation of the 3DG/LFP/G sandwich composite. Cyclic Voltammetry curve of the sandwich composite shows sharper redox peaks and reduced voltage separation when compared to the reference electrodes, suggesting high specific capacity and good rate performance. Further charge/discharge measurements presented high capacity of 164 mAh g-1 at 0.2 C and 124 mAh g-1 at 10 C (75.7% of its initial capacity) for the sandwich composite, with capacity retention of 95.7% after 100 cycles, implying potential application in lithium ion battery at high rates. The EIS investigation suggests that both the electronic conductivity and the Li ion diffusion are promoted by the underlined 3D graphene framework, which is regarded as the reason for the enhanced electrochemical performance.

  19. Controllable Fabrication of Amorphous Co-Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors.

    Science.gov (United States)

    Chen, Chen; Zhang, Ning; He, Yulu; Liang, Bo; Ma, Renzhi; Liu, Xiaohe

    2016-09-07

    Incorporation of two transition metals offers an effective method to enhance the electrochemical performance in supercapacitors for transition metal compound based electrodes. However, such a configuration is seldom concerned in pyrophosphates. Here, amorphous phase Co-Ni pyrophosphates are fabricated as electrodes in supercapacitors. Through controllably adjusting the ratios of Co and Ni as well as the calcination temperature, the electrochemical performance can be tuned. An optimized amorphous Ni-Co pyrophosphate exhibits much higher specific capacitance than monometallic Ni and Co pyrophosphates and shows excellent cycling ability. When employing Ni-Co pyrophosphates as positive electrode and activated carbon as a negative electrode, the fabricated asymmetric supercapacitor cell exhibits favorable capacitance and cycling ability. This study provides facile methods to improve the transition metal pyrophosphate electrodes for efficient electrodes in electrochemical energy storage devices.

  20. Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by controlling the pore structure and nitrogen doping

    International Nuclear Information System (INIS)

    Liu, Lei; Wei, Yanju; Zhang, Chuanfang; Zhang, Chuan; Li, Xu; Wang, Jitong; Ling, Licheng; Qiao, Wenming; Long, Donghui

    2015-01-01

    Graphical abstract: Mesoporous carbon microspheres (MCMs) with tunable pore sizes have been prepared via a high-throughput spray drying-assisted hard template method and used as the hosts to load selenium (Se) for Li-Se batteries. - Abstract: Mesoporous carbon microspheres (MCMs) with tunable pore sizes have been prepared via a high-throughput spray drying-assisted hard template method and used as the hosts to load selenium (Se) for lithium-selenium (Li-Se) batteries. The pore size control of the MCMs (3.8, 5, 6.5, 9.5 nm) was achieved by in-situ polymerized colloid silica templates with different sizes, thus prompting us to focus on tracing the effects of mesopore size on electrochemical performance of MCMs/Se cathodes. The results reveal that relative higher capacity and better cycling performance are presented in MCMs with smaller pores size due to the more effective confinement effect. At an optimal pore size of 3.8 nm, the MCMs/Se with 50% Se loading delivers an initial capacity of 513 mAh g −1 and capacity retention of 300 mAh g −1 after 100 cycles at 0.5 C. Furthermore, it is concluded that nitrogen doping could assist MCMs to retard the diffusion of polyselenide species possibly via an enhanced surface adsorption. The composites thus increase the reversible capacity by 30% after 100 cycles compared with the nitrogen-free composite. These results indicate that controlling pore structure and surface chemistry are good strategies to optimize the electrochemical performance of C/Se based cathodes for Li–Se batteries

  1. Direct growth of Fe3O4-MoO2 hybrid nanofilm anode with enhanced electrochemical performance in neutral aqueous electrolyte

    Directory of Open Access Journals (Sweden)

    Ruizhi Li

    2016-06-01

    Full Text Available To enhance the electrochemical energy storage performance of supercapacitors (SCs, the current researches are general directed towards the cathode materials. However, the anode materials are relatively less studied. In the present work, Fe3O4-MoO2 (FO-MO hybrid nano thin film directly grown on Ti substrate is investigated, which is used as high-performance anode material for SCs in Li2SO4 electrolyte with the comparison to pristine Fe3O4 nanorod array. The areal capacitance of FO-MO hybrid electrode was initially found to be 65.0 mF cm−2 at 2 mV s−1 and continuously increased to 260.0% after 50 cycles of activation. The capacitance values were considerably comparable or higher than many reported thin-film iron oxide-based anodes in neutral electrolyte. With the protection of MoO2 shell, the FO-MO electrode developed in this study also exhibited excellent cyclic stability (increased to 230.8% after 1000 cycles. This work presents a promising way to improve the electrochemical performance of iron oxide-based anodes for SCs.

  2. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

    KAUST Repository

    Rangaswamy, Puttaswamy

    2016-10-13

    Abstract: In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPOF electrode material. Structural and morphological features of LiVPOF were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPOF is modified to LiVPOF/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPOF/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPOF/f-graphene composite, LiVPOF/carbon, and LiVPOF/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system. Graphical Abstract: [Figure not available: see fulltext.

  3. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

    KAUST Repository

    Rangaswamy, Puttaswamy; Shetty, Vijeth Rajshekar; Suresh, Gurukar Shivappa; Mahadevan, Kittappa Malavalli; Nagaraju, Doddahalli H.

    2016-01-01

    Abstract: In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPOF electrode material. Structural and morphological features of LiVPOF were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPOF is modified to LiVPOF/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPOF/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPOF/f-graphene composite, LiVPOF/carbon, and LiVPOF/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system. Graphical Abstract: [Figure not available: see fulltext.

  4. In-situ electrochemical coating of Ag nanoparticles onto graphite electrode with enhanced performance for Li-ion batteries

    International Nuclear Information System (INIS)

    Yun, Jiaojiao; Wang, Yan; Gao, Tian; Zheng, Huiyuan; Shen, Ming; Qu, Qunting; Zheng, Honghe

    2015-01-01

    The effects of silver hexafluorophosphate (AgPF 6 ) as an electrolyte additive on the electrochemical behaviors of graphite anode are systematically studied by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The surface structure and composition of graphite electrode after electrochemical cycles are investigated through scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. It is found that Ag nanoparticles derived from electrochemical reduction of Ag + are homogenously distributed on the graphite surface. Significant improvements on the discharge capacity, rate behavior, and low-temperature performance of graphite electrode are obtained. The reasons are associated with the decreased resistances of solid-electrolyte interface and charge-transfer process, which improve the electrode kinetics for Li + intercalation/deintercalation

  5. Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method

    International Nuclear Information System (INIS)

    Liu Youyong; Cao Chuanbao

    2010-01-01

    A simple and effective method, the ultrasonic-assisted co-precipitation method, was employed to synthesize nano-sized LiFePO 4 /C. A glucose solution was used as the carbon source to produce in situ carbon to improve the conductivity of LiFePO 4 . Ultrasonic irradiation was adopted to control the size and homogenize the LiFePO 4 /C particles. The sample was characterized by X-ray powder diffraction, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). FE-SEM and TEM show that the as-prepared sample has a reduced particle size with a uniform size distribution, which is around 50 nm. A uniform amorphous carbon layer with a thickness of about 4-6 nm on the particle surface was observed, as shown in the HRTEM image. The electrochemical performance was demonstrated by the charge-discharge test and electrochemical impedance spectra measurements. The results indicate that the nano-sized LiFePO 4 /C presents enhanced discharge capacities (159, 147 and 135 mAh g -1 at 0.1, 0.5 and 2 C-rate, respectively) and stable cycling performance. This study offers a simple method to design and synthesis nano-sized cathode materials for lithium-ion batteries.

  6. Pseudocapacitive Oxides and Sulfides for High-Performance Electrochemical Energy Storage

    KAUST Repository

    Xia, Chuan

    2018-03-22

    The intermittent nature of several sustainable energy sources such as solar and wind energy has ignited the demand of electrochemical energy storage devices in the form of batteries and electrochemical capacitors. The future generation of electrochemical capacitors will in large part depend on the use of pseudocapacitive materials in one or both electrodes. Developing pseudocapacitors to have both high energy and power density is crucial for future energy storage systems. This dissertation evaluates two different material systems to achieve high energy density pseudocapacitive energy storage. This research presents the successful preparation and application of ternary NiCo2S4, which is based on the surface redox mechanism, in the area of pseudocapacitive energy storage. Attention has been paid to understanding its basic physical properties which can impact its electrochemical behavior. Well-defined single- and double-shell NiCo2S4 hollow spheres were fabricated for pseudocapacitor applications, showing much improved electrochemical storage performance with good energy and power densities, as well as excellent cycling stability. To overcome the complexity of the preparation methods of NiCo2S4 nanostructures, a one-step approach was developed for the first time. Asymmetric pseudocapacitors using NiCo2S4 as cathode and graphene as anode were also fabricated to extend the operation voltage in aqueous electrolyte, and thus enhance the overall capacity of the cells. Furthermore, high-performance on-chip pseudocapacitive energy storage was demonstrated using NiCo2S4 as electrochemically active materials. This dissertation also involves another material system, intercalation pseudocapacitive VO2 (B), that displays a different charge storage mechanism from NiCo2S4. By constructing high-quality, atomically-thin two-dimensional (2D) VO2 (B) sheets using a general monomer-assisted approach, we demonstrate that a rational design of atomically thin, 2D nanostructures of

  7. Preparation of MnO2 electrodes coated by Sb-doped SnO2 and their effect on electrochemical performance for supercapacitor

    International Nuclear Information System (INIS)

    Zhang, Yuqing; Mo, Yan

    2014-01-01

    Highlights: • Sb-doped SnO 2 coated MnO 2 electrodes (SS-MnO 2 electrodes) are prepared. • The capacitive property and stability of SS-MnO 2 electrode is superior to uncoated MnO 2 electrode and SnO 2 coated MnO 2 electrode. • Sb-doped SnO 2 coating enhances electrochemical performance of MnO 2 effectively. • SS-MnO 2 electrodes are desirable to become a novel electrode material for supercapacitor. - Abstract: To enhance the specific capacity and cycling stability of manganese binoxide (MnO 2 ) for supercapacitor, antimony (Sb) doped tin dioxide (SnO 2 ) is coated on MnO 2 through a sol-gel method to prepare MnO 2 electrodes, enhancing the electrochemical performance of MnO 2 electrode in sodium sulfate electrolytes. The structure and composition of SS-MnO 2 electrode are characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-Ray diffraction spectroscopy (XRD). The electrochemical performances are evaluated and researched by galvanostatic charge-discharge test, cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). The results show that SS-MnO 2 electrodes hold porous structure, displaying superior cycling stability at large current work condition in charge-discharge tests and good capacity performance at high scanning rate in CV tests. The results of EIS show that SS-MnO 2 electrodes have small internal resistance. Therefore, the electrochemical performances of MnO 2 electrodes are enhanced effectively by Sb-doped SnO 2 coating

  8. Enhancement of Electrochemical Performance of LiMn2O4 Spinel Cathode Material by Synergetic Substitution with Ni and S

    Directory of Open Access Journals (Sweden)

    Monika Bakierska

    2016-05-01

    Full Text Available Nickel and sulfur doped lithium manganese spinels with a nominal composition of LiMn2−xNixO4–ySy (0.1 ≤ x ≤ 0.5 and y = 0.01 were synthesized by a xerogel-type sol-gel method followed by subsequent calcinations at 300 and 650 °C in air. The samples were investigated in terms of physicochemical properties using X-ray powder diffraction (XRD, transmission electron microscopy (EDS-TEM, N2 adsorption-desorption measurements (N2-BET, differential scanning calorimetry (DSC, and electrical conductivity studies (EC. Electrochemical characteristics of Li/Li+/LiMn2−xNixO4–ySy cells were examined by galvanostatic charge/discharge tests (CELL TEST, electrochemical impedance spectroscopy (EIS, and cyclic voltammetry (CV. The XRD showed that for samples calcined at 650 °C containing 0.1 and 0.2 mole of Ni single phase materials of Fd-3m group symmetry and nanoparticles size of around 50 nm were obtained. The energy dispersive X-ray spectroscopy (EDS mapping confirmed homogenous distribution of nickel and sulfur in the obtained spinel materials. Moreover, it was revealed that the adverse phase transition at around room temperature typical for the stoichiometric spinel was successfully suppressed by Ni and S substitution. Electrochemical results indicated that slight substitution of nickel (x = 0.1 and sulfur (y = 0.01 in the LiMn2O4 enhances the electrochemical performance along with the rate capability and capacity retention.

  9. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    Science.gov (United States)

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  10. Electrochemical performance of electroactive poly(amic acid)-Cu{sup 2+} composites

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ying [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China); Li, Fangfei [State Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Hanlon, Ashley M.; Berda, Erik B. [Department of Chemistry and Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824 (United States); Liu, Xincai; Wang, Ce [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China); Chao, Danming, E-mail: chaodanming@jlu.edu.cn [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2017-01-15

    Graphical abstract: Electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites on the substrates have been prepared, whose electrochemical properties, including electroactivity, electrochromism and anticorrosion, reveal drastic enhancement after incorporation of Cu{sup 2+} ions. - Highlights: • The electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites were prepared. • A significant current enhancement phenomenon of EPAA-Cu/ITO electrodes was observed. • EPAA-Cu/ITO electrochromic electrodes reveals a shorter switching times. • Excellent corrosive protection for the CS was achieved by incorporating Cu{sup 2+} ions. - Abstract: Electroactive poly(amic acid)-Cu{sup 2+} (EPAA-Cu) composites on substrates were successfully prepared via nucleophilic polycondensation followed by the use of an immersing method. Analysis of the structure properties of EPAA-Cu composites was performed using scanning electron microscopy (SEM), X-ray photoelectron spectra (XPS) and Fourier-transform infrared spectra (FTIR). A significant current enhancement phenomenon of EPAA-Cu/ITO electrodes was found as evident from cyclic voltammetry (CV) measurements. In addition, Cu{sup 2+} ions were incorporated into the composites and had a positive effect on their electrochromic behaviors decreasing their switching times. The anticorrosive performance of EPAA-Cu composites coatings on the carbon steel in 3.5 wt% NaCl solution were also investigated in detail using tafel plots analysis and electrochemical impedance spectroscopy. The anticorrosive ability of these coatings significantly enhanced through the incorporation of Cu{sup 2+} ions.

  11. N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries with greatly enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Guanghui, Wu; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2015-01-01

    Graphical abstract: The study reported a novel N-doped graphene/graphite anode material for lithium ion batteries. The composite exhibits a largely enhanced electrochemical performance. The study also provides an attractive approach for the fabrication of various graphite-based materials for high power batteries. Display Omitted -- Highlights: • The paper developed a new N-doped graphene/graphite composite for lithium ion battery • The composite contains a three-dimensional graphene framework with rich of open pores • The hybrid offers a higher electrical conductivity when compared with pristine graphite • The hybrid electrode provides a greatly enhanced electrochemical performance • The study provides a prominent approach for fabrication of graphite-based materials -- ABSTRACT: Present graphite anode cannot meet the increasing requirement of electronic devices and electric vehicles due to its low specific capacity, poor cycle stability and low rate capability. The study reported a promising N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries. Herein, graphite oxide and urea were dispersed in ultrapure water and partly reduced by ascorbic acid. Followed by mixing with graphite and hydrothermal treatment to produce graphene oxide/graphite hydrogel. The hydrogel was dried and finally annealed in Ar/H 2 to obtain N-doped graphene/graphite composite. The result shows that all of graphite particles was dispersed in three-dimensional graphene framework with a rich of open pores. The open pore accelerates the electrolyte transport. The graphene framework works as a conductive agent and graphite particle connector and improves the electron transfer. Electrical conductivity of the composite reaches 5912 S m −1 , which is much better than that of the pristine graphite (4018 S m −1 ). The graphene framework also acts as an expansion absorber in the anodes of lithium ion battery to relieve the large strains

  12. Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Chen, Xiaodong

    2018-03-01

    Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhanced electrochemical performance of a ZnO-MnO composite as an anode material for lithium ion batteries.

    Science.gov (United States)

    Song, Min Seob; Nahm, Sahn; Cho, Won Il; Lee, Chongmok

    2015-09-28

    A ZnO-MnO composite was synthesized using a simple solvothermal method combined with a high-temperature treatment. To observe the phase change during the heating process, in situ high-temperature XRD analysis was performed under vacuum conditions. The results indicated that ZnMn2O4 transformed into the ZnO-MnO composite phase starting from 500 °C and that this composite structure was retained until 700 °C. The electrochemical performances of the ZnO-MnO composite electrode were evaluated through galvanostatic discharge-charge tests and cyclic voltammetry analysis. Its initial coulombic efficiency was significantly improved to 68.3% compared to that of ZnMn2O4 at 54.7%. Furthermore, the ZnO-MnO composite exhibited improved cycling performance and enhanced rate capability compared with untreated ZnMn2O4. To clarify the discharge-charge mechanism of the ZnO-MnO composite electrode, the structural changes during the charge and discharge processes were also investigated using ex situ XRD and TEM.

  14. Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells

    International Nuclear Information System (INIS)

    R, Navanietha Krishnaraj; R, Karthikeyan; Berchmans, Sheela; Chandran, Saravanan; Pal, Parimal

    2013-01-01

    Highlights: • Preparation of biocompatible chitosan–alginate electrode. • The synergism between Acetobacter aceti and Gluconobacter roseus. • Better biofilm formation and enhanced electricity generation. • Immobilized Prussian blue system replaces the conventional ferricyanide system. - Abstract: This work is aimed at finding new strategies for the modification of anode and cathode that can lead to improved performance of microbial fuel cells (MFCs). The electrochemical deposition of chitosan onto carbon felt followed by further modification with alginate led to the formation of a biocompatible platform for the prolific growth of microorganisms on the anode (Chit–Alg/carbon felt anode). The novel modification strategy for the formation of Prussian blue film, on the electrochemically deposited chitosan layer, has helped in circumventing the disadvantages of using ferricyanide in the cathode compartment and also for improving the electron transfer characteristics of the film in phosphate buffer. The anode was tested for its efficacy with four different substrates viz., glucose, ethanol, acetate and grape juice in a two compartment MFC. The synergistic effect of the mixed culture of Acetobacter aceti and Gluconobacter roseus was utilized for current generation. The electrocatalytic activity of the biofilm and its morphology were characterized by cyclic voltammetry and scanning electron microscopy, respectively. The power densities were found to be 1.55 W/m 3 , 2.80 W/m 3 , 1.73 W/m 3 and 3.87 W/m 3 for glucose, ethanol, acetate and grape juice, respectively. The performance improved by 20.75% when compared to the bare electrode

  15. Significantly enhanced electrochemical performance of lithium titanate anode for lithium ion battery by the hybrid of nitrogen and sulfur co-doped graphene quantum dots

    International Nuclear Information System (INIS)

    Ruiyi, Li; Yuanyuan, Jiang; Xiaoyan, Zhou; Zaijun, Li; Zhiguo, Gu; Guangli, Wang; Junkang, Liu

    2015-01-01

    Graphical abstract: The study reported a facile synthesis of Li4Ti5O12/nitrogen and sulfur co-doped graphene quantum dots (LTO/N,S-GQDs). The unique architecture and the introduction of N,S-GQDs create both ultrafast electron transfer and electrolyte transport. The as-prepared LTO/N,S-GQDs anode provides prominent advantage of specific capacity, high-rate performance and cycle stability. - Highlights: • We reported a new lithium titanate/nitrogen and sulfur co-doped graphene quantum dots hybrid • The synthesis creates a crystalline interconnected porous framework composed of nanoscale LTO • The unique architecture achieves to maximize the rate performance and enhance the power density • Introduction of N,S-GQDs greatly enhances the electron transfer and the storage lithium capacity • The hybrid anode provides an excellent electrochemical performance for lithium-ion batteries - ABSTRACT: The paper reported a facile synthesis of lithium titanate/nitrogen and sulfur co-doped graphene quantum dots(LTO/N,S-GQDs). Tetrabutyl titanate was dissolved in tertbutanol and heated to refluxing state by microwave irradiation. Then, lithium acetate was added into the mixed solution to produce LTO precursor. The precursor was hybridized with N,S-GQDs in ethanol. Followed by drying and thermal annealing at 500 °C in Ar/H_2 to obtain LTO/N,S-GQDs. The synthesis creates fully crystalline interconnected porous framework composed of nanoscale LTO crystals. The unique architecture achieves to maximize the high-rate performance and enhance the power density. More importantly, the introduction of N,S-GQDs don't almost influence on the electrolyte transport, but greatly improve the electron transfer and the storage lithium capacity. The LTO/N,S-GQDs anode exhibits remarkably enhanced electrochemical performance for lithium ion battery. The specific discharge capacity is 254.2 mAh g"−"1 at 0.1C and 126.5 mAh g"−"1 at 10C. The capacity remains 96.9% at least after 2000 cycles

  16. Enhanced electrochemical performance of mesoporous NiCo{sub 2}O{sub 4} as an excellent supercapacitive alternative energy storage material

    Energy Technology Data Exchange (ETDEWEB)

    Bhojane, Prateek [Center for Materials Science and Engineering, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); Sen, Somaditya [Center for Materials Science and Engineering, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); Department of Physics, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); Shirage, Parasharam M., E-mail: paras.shirage@gmail.com [Center for Materials Science and Engineering, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); Department of Physics, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India)

    2016-07-30

    Highlights: • A facile technique to grow mesopores NiCo{sub 2}O{sub 4} flakes. • High specific capacitance. • High capacitance retention at higher cycles. • A promising candidate for energy storage device. - Abstract: Here we report the supercapacitive properties of mesoporous nickel cobalt oxide (NiCo{sub 2}O{sub 4}) synthesized by fast, inexpensive and facile chemical bath method, by avoiding high pressure, high temperature and chemical complexity. Physico-chemical characterization techniques such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Raman Spectra, and nitrogen adsorption–desorption isotherm analysis is performed to characterize the electrode material. Brunauer-Emmett-Teller (BET) measurements reveal the surface area 52.86 m{sup 2} g{sup −1} and from Barrett-Joyner-Halenda (BJH), typical pores size ranges between 10 and 50 nm, also confirms the mesoporosity. The electrochemical properties are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. The synthesized material exhibits remarkably enhanced electrochemical performance with specific capacitance of 1130 F g{sup −1} at 1 mV s{sup −1} sweep rate and 1125 F g{sup −1} at current density of 0.05 A g{sup −1}, highest without supporting base like carbon cloth, Ni-foam, Ti- foil used for direct growth (deposition) of electrode material. It is superior to those of its individual and hybrid components prepared by similar technique. Ragone plot shows high specific energy density (49.25 Wh kg{sup −1}) and corresponding specific power density (1851.31 W kg{sup −1}) even at high current density of 0.5 A g{sup −1}.

  17. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance.

    Science.gov (United States)

    Fan, Xinfei; Zhao, Huimin; Liu, Yanming; Quan, Xie; Yu, Hongtao; Chen, Shuo

    2015-02-17

    Membrane filtration provides effective solutions for removing contaminants, but achieving high permeability, good selectivity, and antifouling ability remains a great challenge for existing membrane filtration technologies. In this work, membrane filtration coupled with electrochemistry has been developed to enhance the filtration performance of a CNTs/Al2O3 membrane. The as-prepared CNTs/Al2O3 membrane, obtained by coating interconnected CNTs on an Al2O3 substrate, presented good pore-size tunability, mechanical stability, and electroconductivity. For the removal of a target (silica spheres as a probe) with a size comparable to the membrane pore size, the removal efficiency and flux at +1.5 V were 1.1 and 1.5 times higher, respectively, than those without electrochemical assistance. Moreover, the membrane also exhibited a greatly enhanced removal efficiency for contaminants smaller than the membrane pores, providing enhancements of 4 orders of magnitude and a factor of 5.7 for latex particles and phenol, respectively. These results indicated that both the permeability and the selectivity of CNTs/Al2O3 membranes can be significantly improved by electrochemical assistance, which was further confirmed by the removal of natural organic matter (NOM). The permeate flux and NOM removal efficiency at +1.5 V were about 1.6 and 3.0 times higher, respectively, than those without electrochemical assistance. In addition, the lost flux of the fouled membrane was almost completely recovered by an electrochemically assisted backwashing process.

  18. Improved Electrochemical Performance of Biomass-Derived Nanoporous Carbon/Sulfur Composites Cathode for Lithium-Sulfur Batteries by Nitrogen Doping

    International Nuclear Information System (INIS)

    Geng, Zhen; Xiao, Qiangfeng; Wang, Dabin; Yi, Guanghai; Xu, Zhigang; Li, Bing; Zhang, Cunman

    2016-01-01

    A two-step method with high-efficiency is developed to prepare nitrogen doped activated carbons (NACs) with high surface area and nitrogen content. Based on the method, series of NACs with similar surface area and pore texture but different nitrogen content and nitrogen group species are successfully prepared. The influence of nitrogen doping on electrochemical performance of carbon/sulfur composites cathode is studied deeply under the conditions of similar surface area and pore texture. It presents the directly experimental demonstration that both nitrogen content and nitrogen group species play crucial roles on electrochemical performance of carbon/sulfur composites cathode. NAC/sulfur composites show the much improved cycling performance, which is about 3.5 times as that of nitrogen free carbon. Improved electrochemical performance is due to synergistic effects between nitrogen content and effective nitrogen groups, which enables effective trapping of lithium polysulfides within carbon framework. Besides, it is found that oxygen groups exist in carbon materials obviously influence electrochemical performance of cathode, which could be ignored in most of studies. Based on above, it can be concluded that enhanced chemisorption to lithium polysulfides by functional groups modification is the effective route to improve the electrochemical performance of Li-S battery.

  19. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun [Dongguk University, Seoul (Korea, Republic of)

    2016-05-15

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications.

  20. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    International Nuclear Information System (INIS)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun

    2016-01-01

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications

  1. Simple fabrication of TiO2/C nanocomposite with enhanced electrochemical performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Bai, Xue; Li, Tao; Qi, Yong-Xin; Gao, Xue-Ping; Yin, Long-Wei; Li, Hui; Zhu, Hui-Ling; Lun, Ning; Bai, Yu-Jun

    2015-01-01

    TiO 2 /C nanocomposites were fabricated by simple hydrolysis of tetrabutyl titanate to yield TiO 2 nanoparticles followed by carbonizing the mixture of glucose and TiO 2 at 600 °C. By merely varying the weight ratio of glucose:TiO 2 , the electrochemical performance of the composites could be optimized significantly. At a ratio of 0.8, the composite exhibits a high reversible capacity of 283.7 mA h g −1 after cycling 100 times at a current density of 100 mA g −1 , as well as the capacities of 245.1, 213.6, 179.9 and 136.6 mA h g −1 at the corresponding densities of 200, 400, 800 and 1600 mA g −1 . After cycling 1000 times at 500 mA g −1 , a capacity of 122.8 mA h g −1 was retained for the composite with a ratio of 0.8, and even a capacity of 149.1 mA h g −1 for the composite with a ratio of 0.7. The enhanced performance is ascribed to the carbon-coated TiO 2 nanoparticles uniformly embedding in the carbon matrix with appropriate carbon content

  2. Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide

    Science.gov (United States)

    Pruna, A.; Wu, Z.; Zapien, J. A.; Li, Y. Y.; Ruotolo, A.

    2018-05-01

    Synthesis of zinc oxide (ZnO) nanostructures is reported by electrochemical deposition from an aqueous electrolyte in presence of graphene oxide (GO) with varying oxidation degree. The properties of hybrids were investigated by scanning electron microscopy, X-ray diffraction, Raman, Fourier-Transform Infrared and X-ray photoelectron spectroscopy techniques and photocatalytic measurements. The results indicated the electrodeposition of ZnO in presence of GO with increased oxygen content led to marked differences in the morphology while Raman measurements indicated an increased defect level both in the ZnO and the electrochemically reduced GO (ErGO) within the hybrids. The decrease in C/O atomic ratio of GO (from 0.79 to 0.71) employed for the electrodeposition of ZnO resulted in an increase in photocatalytic efficiency for methylene blue degradation under UV irradiation from 4-folds to 10-folds with respect to non-hybridized ZnO. The observed synergetic effect of cathodic deposition potential and oxygen content in GO towards improving the photocatalytic activity of immobilized ZnO is expected to contribute to further development of more effective deposition approaches for the preparation of high performance hybrid nanostructures.

  3. Facile synthesis of the N-doped graphene/nickel oxide with enhanced electrochemical performance for rechargeable lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chuanning, E-mail: yangcn1988@outlook.com [Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang, Liaoning 110819 (China); Qing, Yongquan; An, Kai [Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang, Liaoning 110819 (China); Zhang, Zefei; Wang, Linshan [College of Science, Northeastern University, Shenyang, Liaoning 110819 (China); Liu, Changsheng, E-mail: csliu@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang, Liaoning 110819 (China)

    2017-07-01

    The nitrogen-doped graphene/NiO nanohybrids with a hierarchical structure have been successfully synthesized by a one-step hydrothermal route assisted by microwave treatment. The as-obtained products were characterized by scanning electron microscopy, high-resolution transmission microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The nitrogen-doped graphene/NiO electrodes exhibit an enhanced electrochemical performance. The initial discharge capacity can reach 1737 mAh g{sup -1} at the current density of 0.1 A g{sup -1}. Significantly, the nanocomposites anodes also display a relatively high reversible capacity of 1095 mAh g{sup -1} at the current density of 0.3 A g{sup -1} after 100 cycles. Herein, the nitrogen-doped graphene/NiO possesses electrodes enormous potential as the anode materials for lithium ion batteries. - Highlights: • The nitrogen-doped graphene/NiO nanohybrids have been successfully synthesized. • Microwave treatment may enhance conductivity and capacity of electrodes. • The hierarchical structure will help to improve the stability of the electrodes. • The reversible capacity of electrodes can reach 1095 mAh g{sup -1} over 100 cycles.

  4. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Cimpean, Anisoara [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Vasilescu, Ecaterina; Drob, Paula [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Cinca, Ion, E-mail: ion_cinca@hotmail.com [Faculty of Material Science and Engineering, Politehnica University, Spl. Independentei 313, 060042 Bucharest (Romania); Vasilescu, Cora; Anastasescu, Mihai [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Mitran, Valentina [Department of Biochemistry and Molecular Biology, University of Bucharest, Spl. Independentei, 91-95, 050095 Bucharest (Romania); Drob, Silviu Iulian [Department of Electrochemistry and Corrosion, Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2014-05-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances.

  5. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing

    International Nuclear Information System (INIS)

    Cimpean, Anisoara; Vasilescu, Ecaterina; Drob, Paula; Cinca, Ion; Vasilescu, Cora; Anastasescu, Mihai; Mitran, Valentina; Drob, Silviu Iulian

    2014-01-01

    A new Ti–25Ta–5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer–Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti–25Ta–5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances. - Highlights: • Ti–25Ta–5Zr alloy exhibited noble electrochemical, passive behaviour in simulated biofluids. • An electric equivalent circuit with two time constants was modelled. • Corrosion rates show the lowest values for the recrystallized Ti–25Ta–5Zr alloy. • In vitro tests revealed good cytocompatibility of as-cast and processed alloy. • Recrystallized treatment endows the alloy with superior biological performances

  6. A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries.

    Science.gov (United States)

    Xie, Xiuqiang; Su, Dawei; Zhang, Jinqiang; Chen, Shuangqiang; Mondal, Anjon Kumar; Wang, Guoxiu

    2015-02-21

    SnO2/nitrogen-doped graphene nanohybrids have been synthesized by an in situ hydrothermal method, during which the formation of SnO2 nanocrystals and nitrogen doping of graphene occur simultaneously. The as-prepared SnO2/nitrogen-doped graphene nanohybrids exhibit enhanced electrochemical performance for sodium-ion batteries compared to SnO2/graphene nanocomposites. A systematic comparison between SnO2/nitrogen-doped graphene nanohybrids and the SnO2/graphene counterpart as anode materials for sodium-ion batteries has been conducted. The comparison is in a reasonable framework, where SnO2/nitrogen-doped graphene nanohybrids and the SnO2/graphene counterpart have the same SnO2 ratio, similar SnO2 crystallinity and particle size, close surface area and pore size. The results clearly manifest that the improved electron transfer efficiency of SnO2/nitrogen-doped graphene due to nitrogen-doping plays a more important role than the increased electro-active sites within graphene network in enhancing the electro-activity of SnO2/nitrogen-doped graphene nanohybrids compared to the SnO2/graphene counterpart. In contrast to the previous reports which often ascribe the enhanced electro-activity of nitrogen-doped graphene based composites to two nitrogen-doping effects (improving the electron transfer efficiency and increasing electro-active sites within graphene networks) in one single declaration, this work is expected to provide more specific information for understanding the effects of nitrogen-doping into graphene on improving the electrochemical performance of graphene based composites.

  7. Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation

    International Nuclear Information System (INIS)

    Liu, Guang; He, Dongying; Yao, Rui; Zhao, Yong; Li, Jinping

    2017-01-01

    Highlights: •A sol-gel method for synthesis of Fe-doping Ni 2 P nanocatalysts was present. •Fe-doping Ni 2 P sample exhibited high OER activity after electrochemical activation. •In situ formed Fe-NiOOH layer on activated Fe-Ni 2 P provided more active OER sites. -- Abstract: In this work, we reported a facile and safe route for synthesis of Ni 2 P nanocatalysts by sol-gel method and demonstrated that the oxygen evolution reaction (OER) activity of Ni 2 P nanocatalysts can be dramatically enhanced by iron-doping and electrochemical activation. Compared with the fresh Fe-doped Ni 2 P nanocatalysts, a stable Fe-NiOOH layer was formed on the surface of Fe-doped Ni 2 P nanoparticles by electrochemical activation, thus promoting the charge transfer ability and surface electrochemically active sites generation for the electrochemical activated Fe-doped Ni 2 P nanocatalysts, ultimately accounting for the improvement of water oxidation activity, which was evidenced by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectra (XPS) as well as high-resolution transmission electron microscopy (HR-TEM) measurements. For water oxidation reaction in 1 M KOH solution, the electrochemical activated Fe-doped Ni 2 P nanocatalysts can attain 10 mA/cm 2 at an overpotential of 292 mV with Tafel slope of 50 mV/dec, which was also much better than that of individual Ni 2 P, Fe 2 P nanocatalysts as well as commercial RuO 2 electrocatalyst. Moreover, long-term stability performance by chronoamperometric and chronopotentiometric tests for the activated Fe-doped Ni 2 P nanocatalysts exhibited no obvious decline within 56 h. It was demonstrated that modulating the OER catalytic activity for metal phosphide by iron-doping and electrochemical activation may provide new opportunities and avenues to engineer high performance electrocatalysts for water splitting.

  8. Effects of titanium incorporation on phase and electrochemical performance in LiFePO4 cathode material

    International Nuclear Information System (INIS)

    Wang Zhaohui; Pang Quanquan; Deng Kejian; Yuan Lixia; Huang Fei; Peng Yunlong; Huang Yunhui

    2012-01-01

    Highlights: ► Nominal LiFe 1−x Ti x PO 4 cathode materials were synthesized via solid-state reaction. ► A clear feature of Ti-doped LiFePO 4 has been clarified. ► The formation of impurity phases strongly depends on Ti doping level. ► Appropriate amount of Ti in LiFePO 4 can enhance the electrochemical performance. - Abstract: Ti-incorporated LiFe 1−x Ti x PO 4 (0 ≤ x ≤ 0.2) samples have been prepared via a two-step solid-state reaction route. The samples have systematically been investigated with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), cyclic voltammetry (CV) and charge/discharge measurements. The incorporation of Ti in LiFePO 4 significantly enhances the electrochemical performance; the carbon-coated LiFe 0.9 Ti 0.1 PO 4 sample shows the best performance. It is confirmed that LiFe 1−x Ti x PO 4 with x ≤ 0.05 are of single phase while those with 0.07 ≤ x ≤ 0.2 contain impurity phases: LiTi 2 (PO 4 ) 3 and TiP 2 O 7 . The impurities influence not only the electronic conductivity, but also the total specific capacity. Appropriate amount of titanium incorporation is favorable for the improvement in electrochemical performance.

  9. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Flox, Cristina; Skoumal, Marcel; Rubio-Garcia, Javier; Andreu, Teresa; Morante, Juan Ramón

    2013-01-01

    Highlights: ► Improved reactions at the positive electrode in all-vanadium redox flow batteries. ► Graphene-derived and PAN-modified electrodes have been successfully prepared. ► Modification with bimetallic CuPt 3 nanocubes yielded the best catalytic behavior. ► N and O-containing groups enhances the vanadium flow battery performance. - Abstract: Two strategies for improving the electroactivity towards VO 2+ /VO 2 + redox pair, the limiting process in all-vanadium redox flow batteries (VFBs), were presented. CuPt 3 nanoparticles supported onto graphene substrate and nitrogen and oxygen polyacrylonitrile (PAN)-functionalized electrodes materials have been evaluated. The morphology, composition, electrochemical properties of all electrodes prepared was characterized with field emission-scanning electrode microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and cell charge–discharge test. The presence of the CuPt 3 nanocubes and nitrogen and oxygen functionalities enhance the electrocatalytic activity of the electrodes materials accelerating the oxygen and electron transfer processes. The battery performance was also evaluated using PAN-functionalized electrodes exhibiting a high of energy efficiency of 84% (at current density 20 mA cm −2 ) up to 30th cycle, indicating a promising alternative for improving the VFB

  10. Ternary Au/ZnO/rGO nanocomposites electrodes for high performance electrochemical storage devices

    Science.gov (United States)

    Chaudhary, Manchal; Doong, Ruey-an; Kumar, Nagesh; Tseng, Tseung Yuen

    2017-10-01

    The combination of metal and metal oxide nanoparticles with reduced graphene oxides (rGO) is an active electrode material for electrochemical storage devices. Herein, we have, for the first time, reported the fabrication of ternary Au/ZnO/rGO nanocomposites by using a rapid and environmentally friendly microwave-assisted hydrothermal method for high performance supercapacitor applications. The ZnO/rGO provides excellent electrical conductivity and good macro/mesopore structures, which can facilitate the rapid electrons and ions transport. The Au nanoparticles with particle sizes of 7-12 nm are homogeneously distributed onto the ZnO/rGO surface to enhance the electrochemical performance by retaining the capacitance at high current density. The Au/ZnO/rGO nanocomposites, prepared with the optimized rGO amount of 100 mg exhibit a high specific capacitance of 875 and 424 F g-1 at current densities of 1 and 20 A g-1, respectively, in 2 M KOH. In addition, the energy and power densities of ternary Au/ZnO/rGO can be up to 17.6-36.5 Wh kg-1 and 0.27-5.42 kW kg-1, respectively. Results obtained in this study clearly demonstrate the excellence of ternary Au/ZnO/rGO nanocomposites as the active electrode materials for electrochemical pseudocapacitor performance and can open an avenue to fabricate metal/metal oxide/rGO nanocomposites for electrochemical storage devices with both high energy and power densities.

  11. Enhanced electrochemical performance of in situ reduced graphene oxide-polyaniline nanotubes hybrid nanocomposites using redox-additive aqueous electrolyte

    Science.gov (United States)

    Devi, Madhabi; Kumar, A.

    2018-02-01

    Reduced graphene oxide (RGO)-polyaniline nanotubes (PAniNTs) nanocomposites have been synthesized by in situ reduction of GO. The morphology and structure of the nanocomposites are characterized by HRTEM, XRD and micro-Raman spectroscopy. The electrical and electrochemical performances of the nanocomposites are investigated for different RGO concentrations by conductivity measurements, cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy. Highest gravimetric specific capacitance of 448.71 F g-1 is obtained for 40 wt.% of RGO-PAniNTs nanocomposite as compared to 194.92 F g-1 for pure PAniNTs in 1 M KCl electrolyte. To further improve the electrochemical performance of the nanocomposite electrode, KI is used as redox-additive with 1 M KCl electrolyte. Highest gravimetric specific capacitance of 876.43 F g-1 and an improved cyclic stability of 91% as compared to 79% without KI after 5000 cycles is achieved for an optimized 0.1 M KI concentration. This is attributed to the presence of different ionic species of I- ions that give rise to a number of possible redox reactions improving the pseudocapacitance of the electrode. This improved capacitive performance is compared with that of catechol redox-additive in 1 M KCl electrolyte, and that of KI and catechol redox-additives added to 1 M H2SO4 electrolyte.

  12. Electrochemical performance of 3D porous Ni-Co oxide with electrochemically exfoliated graphene for asymmetric supercapacitor applications

    International Nuclear Information System (INIS)

    Kim, Dae Kyom; Hwang, Minsik; Ko, Dongjin; Kang, Jeongmin; Seong, Kwang-dong; Piao, Yuanzhe

    2017-01-01

    Graphical abstract: The paper reported the Ni-Co oxide/electrochemically exfoliated graphene nanocomposites with 3D porous nano-architectures (NC-EEG) using a simple low temperature solution method combined with a thermal annealing treatment. 3D porous architectures provide large surface areas and shorten electron diffusion pathways for high performance asymmetric supercapacitors. Display Omitted -- Highlights: •A simple low temperature solution method was used for preparing NC-EEG. •Graphene sheets were obtained by electrochemically exfoliation process. •A high capacity of NC-EEG in a three-electrode system, as high as 649 C g −1 , was recorded. •Asymmetric supercapacitor based on NC-EEG exhibited excellent energy density and power density. -- Abstract: Ni-Co oxide, one of the binary metal oxides, has many advantages for use in high-performance supercapacitor electrode materials due to its relatively high electronic conductivity and improved electrochemical performance. In this work, Ni-Co oxide/electrochemically exfoliated graphene nanocomposites (NC-EEG) are successfully synthesized using a simple low temperature solution method combined with a thermal annealing treatment. Graphene sheets are directly obtained by an electrochemical exfoliation process with graphite foil, which is very simple, environmentally friendly, and has a relatively short reaction time. This electrochemically exfoliated graphene (EEG) can improve the electrical conductivity of the Ni-Co oxide nanostructures. The as-prepared NC-EEG nanocomposites have 3D porous architectures that can provide large surface areas and shorten electron diffusion pathways. Electrochemical properties were performed by cyclic voltammetry and galvanostatic charge/discharge in a 6 M KOH electrolyte. The NC-EEG nanocomposites exhibited a high capacity value of 649 C g −1 at a current density of 1.0 A g −1 . The asymmetric supercapacitors, manufactured on the basis of NC-EEG nanocomposites as a positive

  13. The nanostructure of microbially-reduced graphene oxide fosters thick and highly-performing electrochemically-active biofilms

    Science.gov (United States)

    Virdis, Bernardino; Dennis, Paul G.

    2017-07-01

    Biofilms of electrochemically-active organisms are used in microbial electrochemical technologies (METs) to catalyze bioreactions otherwise not possible at bare electrodes. At present, however, achievable current outputs are still below levels considered sufficient for economic viability of large-scale METs implementations. Here, we report three-dimensional, self-aggregating biofilm composites comprising of microbial cells embedded with microbially-reduced graphene oxide (rGO) nanoparticles to form a thick macro-porous network with superior electrochemical properties. In the presence of metabolic substrate, these hybrid biofilms are capable of producing up to five times more catalytic current than the control biofilms. Cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy, show that in spite of the increased thickness, the biofilms amended with GO display lower polarization/charge transfer resistance compared to the controls, which we ascribe to the incorporation of rGO into the biofilms, which (1) promotes fast electron transfer, yet conserving a macroporous structure that allows free diffusion of reactants and products, and (2) enhances the interfacial dynamics by allowing a higher load of microbial cells per electrode surface area. These results suggest an easy-to-apply and cost-effective method to produce high-performing electrochemically-active biofilms in situ.

  14. Synthesis and electrochemical performance of polyaniline-MnO2 nanowire composites for supercapacitors

    Science.gov (United States)

    Chen, Ling; Song, Zhaoxia; Liu, Guichang; Qiu, Jieshan; Yu, Chang; Qin, Jiwei; Ma, Lin; Tian, Fengqin; Liu, Wei

    2013-02-01

    Polyaniline-MnO2 nanowire (PANI-MNW) composites were prepared by in situ chemical oxidative polymerization of aniline monomer in a suspension of MnO2 nanowires. The structure and morphology of the PANI-MNW composites were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical properties were investigated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 mol/L KOH electrolyte. The PANI-MNW composites show significantly better specific capacity and redox performance in comparison to the untreated MnO2 nanowires. The enhanced properties can be mainly attributed to the composite structure wherein high porosity is created between MnO2 nanowires and PANI during the process of fabricating the PANI-MNW nanocomposites. A specific capacitance as high as 256 F/g is obtained at a current density of 1 A/g for PANI-MNW-5, and the composite also shows a good cyclic performance and coulomb efficiency.

  15. Surface Modification of MXenes: A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage Devices

    KAUST Repository

    Ahmed, Bilal

    2017-12-31

    The recent discovery of layered transition metal carbides (MXenes) is one of the most important developments in two-dimensional (2D) materials. Preliminary theoretical and experimental studies suggest a wide range of potential applications for MXenes. The MXenes are prepared by chemically etching ‘A’-layer element from layered ternary metal carbides, nitrides and carbonitrides (MAX phases) through aqueous acid treatment, which results in various surface terminations such as hydroxyl, oxygen or fluorine. It has been found that surface terminations play a critical role in defining MXene properties and affects MXene performance in different applications such as electrochemical energy storage, electromagnetic interference shielding, water purification, sensors and catalysis. Also, the electronic, thermoelectric, structural, plasmonic and optical properties of MXenes largely depend upon surface terminations. Thus, controlling the surface chemistry if MXenes can be an efficient way to improve their properties. This research mainly aims to perform surface modifications of two commonly studied MXenes; Ti2C and Ti3C2, via chemical, thermal or physical processes to enhance electrochemical energy storage properties. The as-prepared and surface modified MXenes have been studied as electrode materials in Li-ion batteries (LIBs) and supercapacitors (SCs). In pursuit of desirable MXene surface, we have developed an in-situ room temperature oxidation process, which resulted in TiO2/MXene nanocomposite and enhanced Li-ion storage. The idea of making metal oxide and MXene nanocomposites was taken to the next level by combining a high capacity anode materials – SnO2 – and MXene. By taking advantage of already existing surface functional groups (–OH), we have developed a composite of SnO2/MXene by atomic layer deposition (ALD) which showed enhanced capacity and excellent cyclic stability. Thermal annealing of MXene at elevated temperature under different atmospheres was

  16. Electrochemical performance of graphene-polyethylenedioxythiophene nanocomposites

    International Nuclear Information System (INIS)

    Chen, Yan; Xu, Jianhua; Mao, Yunwu; Yang, Yajie; Yang, Wenyao; Li, Shibin

    2013-01-01

    Highlights: • A facile vapor-phase polymerization method is used to deposit PEDOT on graphene. • The graphene-PEDOT composite films exhibit better capacitive retention capability. • This simple technique has been developed to produce highly ordered thin films. -- Abstract: We propose a facile vapor-phase polymerization (VPP) method used to deposit graphene (G)-polyethylene dioxythiophene (PEDOT) nanocomposite film for electrode materials of electrochemical capacitor. This type of conductive polymer nanocomposite improves the performance of electrochemical capacitor. The specific discharge capacitance of G-PEDOT film is higher than that of pure PEDOT electrode. The G-PEDOT electrode also exhibits better capacitive retention capability after 1000 charge–discharge cycles

  17. Hierarchical architecture of ReS_2/rGO composites with enhanced electrochemical properties for lithium-ion batteries

    International Nuclear Information System (INIS)

    Qi, Fei; Chen, Yuanfu; Zheng, Binjie; He, Jiarui; Li, Qian; Wang, Xinqiang; Lin, Jie; Zhou, Jinhao; Yu, Bo; Li, Pingjian; Zhang, Wanli

    2017-01-01

    Highlights: • The ReS_2/rGO composites have been synthesized by a facile one-pot method. • The ReS_2/rGO composites exhibit hierarchical architecture. • The ReS_2/rGO composites deliver better electrochemical performances than ReS_2. • The enhanced performance is due to porous and conductive structure of ReS_2/rGO. - Abstract: Rhenium disulfide (ReS_2), a two-dimensional (2D) semiconductor, has attracted more and more attention due to its unique anisotropic electronic, optical, mechanical properties. However, the facile synthesis and electrochemical property of ReS_2 and its composite are still necessary to be researched. In this study, for the first time, the ReS_2/reduced graphene oxide (rGO) composites have been synthesized through a facile and one-pot hydrothermal method. The ReS_2/rGO composites exhibit a hierarchical, interconnected, and porous architecture constructed by nanosheets. As anode for lithium-ion batteries, the as-synthesized ReS_2/rGO composites deliver a large initial capacity of 918 mAh g"−"1 at 0.2 C. In addition, the ReS_2/rGO composites exhibit much better electrochemical cycling stability and rate capability than that of bare ReS_2. The significant enhancement in electrochemical property can be attributed to its unique architecture constructed by nanosheets and porous structure, which can allow for easy electrolyte infiltration, efficient electron transfer, and ionic diffusion. Furthermore, the graphene with high electronic conductivity can provide good conductive passageways. The facile synthesis approach can be extended to prepare other 2D transition metal dichalcogenides semiconductors for energy storage and catalytic application.

  18. Infiltration of SOFC Stacks: Evaluation of the Electrochemical Performance Enhancement and the Underlying Changes in the Microstructure

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Zielke, Philipp; Høgh, Jens Valdemar Thorvald

    2016-01-01

    Experimental SOFC stacks with 10 SOFCs (LSM-YSZ/YSZ/Ni-YSZ) were infiltrated with CGO and Ni-CGO on the air and fuel side, respectively in an attempt to counter degradation and improve the output. The electrochemical performance of each cell was characterized (i) before infiltration, (ii) after i...

  19. Enhanced optical performance of electrochemically etched porous silicon carbide

    International Nuclear Information System (INIS)

    Naderi, N; Hashim, M R; Saron, K M A; Rouhi, J

    2013-01-01

    Porous silicon carbide (PSC) was successfully synthesized via electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using various current densities. The cyclic voltammograms of SiC dissolution show that illumination is required for the accumulation of carriers at the surface, followed by surface oxidation and dissolution of the solid. The morphological and optical characterizations of PSC were reported. Scanning electron microscopy results demonstrated that the current density can be considered an important etching parameter that controls the porosity and uniformity of PSC; hence, it can be used to optimize the optical properties of the porous samples. (paper)

  20. Optimization of Electrochemical Performance of LiFePO4/C by Indium Doping and High Temperature Annealing

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2017-10-01

    Full Text Available We have prepared nano-structured In-doped (1 mol % LiFePO4/C samples by sol–gel method followed by a selective high temperature (600 and 700 °C annealing in a reducing environment of flowing Ar/H2 atmosphere. The crystal structure, particle size, morphology, and magnetic properties of nano-composites were characterized by X-ray diffraction (XRD, scanning electron microsopy (SEM, transmission electron microscopy (TEM, and 57Fe Mössbauer spectroscopy. The Rietveld refinement of XRD patterns of the nano-composites were indexed to the olivine crystal structure of LiFePO4 with space group Pnma, showing minor impurities of Fe2P and Li3PO4 due to decomposition of LiFePO4. We found that the doping of In in LiFePO4/C nanocomposites affects the amount of decomposed products, when compared to the un-doped ones treated under similar conditions. An optimum amount of Fe2P present in the In-doped samples enhances the electronic conductivity to achieve a much improved electrochemical performance. The galvanostatic charge/discharge curves show a significant improvement in the electrochemical performance of 700 °C annealed In-doped-LiFePO4/C sample with a discharge capacity of 142 mAh·g−1 at 1 C rate, better rate capability (~128 mAh·g−1 at 10 C rate, ~75% of the theoretical capacity and excellent cyclic stability (96% retention after 250 cycles compared to other samples. This enhancement in electrochemical performance is consistent with the results of our electrochemical impedance spectroscopy measurements showing decreased charge-transfer resistance and high exchange current density.

  1. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  2. Electrochemical synthesis of MoS2 quantum dots embedded nanostructured porous silicon with enhanced electroluminescence property

    Science.gov (United States)

    Shrivastava, Megha; Kumari, Reeta; Parra, Mohammad Ramzan; Pandey, Padmini; Siddiqui, Hafsa; Haque, Fozia Z.

    2017-11-01

    In this report we present the successful enhancement in electroluminescence (EL) in nanostructured n-type porous silicon (PS) with an idea of embedding luminophorous Molybdenum disulfide (MoS2) quantum dots (QD's). Electrochemical anodization technique was used for the formation of PS surface and MoS2 QD's were prepared using the electrochemical route. Spin coating technique was employed for the proper incorporation of MoS2 QD's within the PS nanostructures. The crystallographic analysis was performed using X-ray diffraction (XRD), Raman and Fourier transform infrared (FT-IR) spectroscopy techniques. However, surface morphology was determined using Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The optical measurements were performed on photoluminescence (PL) spectrophotometer; additionally for electroluminescence (EL) study special arrangement of instrumental setup was made at laboratory level which provides novelty to this work. A diode prototype was made comprising Ag/MoS2:PS/Silicon/Ag for EL study. The MoS2:PS shows a remarkable concentration dependent enhancement in PL as well as in EL intensities, which paves a way to better utilize this strategy in optoelectronic device applications.

  3. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Z. Y.; Breese, M. B. H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore Singapore 117542 (Singapore); Lin, Y.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Vittone, E. [Physics Department, NIS Excellence Centre and CNISM, University of Torino, via Pietro Giuria 1, 10125 Torino (Italy)

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  4. Influence of graphene microstructures on electrochemical performance for supercapacitors

    Directory of Open Access Journals (Sweden)

    Youning Gong

    2015-10-01

    Full Text Available The influence of variant graphenes on electrochemical performance for supercapacitors was studied comparatively and systematically by using SEM, FTIR and Raman spectroscopy, cyclic voltammetry (CV, galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS. The results revealed that: 1 the nitrogen-doped graphene (N-G electrode exhibited the highest specific capacitance at the same voltage scan rate; 2 the specific capacitance of the N-G reached up to 243.5 F/g at 1 A/g, while regular graphite oxide (GO was 43.5 F/g and reduced graphene oxide (rGO was 67.9 F/g; 3 N-G exhibited the best supercapacitance performance and the superior electrochemical properties, which made it an ideal electrode material for supercapacitors.

  5. Nanocoating covalent organic frameworks on nickel nanowires for greatly enhanced-performance supercapacitors

    Science.gov (United States)

    Han, Yang; Hu, Nantao; Liu, Shuai; Hou, Zhongyu; Liu, Jiaqiang; Hua, Xiaolin; Yang, Zhi; Wei, Liangming; Wang, Lin; Wei, Hao

    2017-08-01

    Nanocoatings of covalent organic frameworks (COFs) on nickel nanowires (NiNWs) have been designed and successfully fabricated for the first time, which showed greatly enhanced electrochemical performances for supercapacitors. The specific capacitance of electrodes based on as-fabricated COFs nanocoatings reached up to 314 F g-1 at 50 A g-1, which retained 74% of the specific capacitance under the current density of 2 A g-1. The ultrahigh current density makes the charge-discharge process extremely rapid. The outstanding electrochemical performances of COFs nanocoating on NiNWs make it an ideal candidate for supercapacitors. And the nanocoating-design can also give a guidance for application of COFs in high-performance energy storages.

  6. Facile electrochemical pretreatment of multiwalled carbon nanotube - Polydimethylsiloxane paste electrode for enhanced detection of dopamine and uric acid

    Science.gov (United States)

    Buenaventura, Angelo Gabriel E.; Yago, Allan Christopher C.

    2018-05-01

    A facile electrochemical pretreatment via anodization was done on Carbon Paste Electrodes (CPEs) composed of Multiwalled Carbon Nanotubes (MWCNTs) and Polydimethylsiloxane (PDMS) binder to produce `anodized' CPEs (ACPE). Cyclic Voltammetry (CV) technique was used to anodize the CPEs. The anodization step, performed in various solutions (0.2 M NaOH(aq), 0.06 M BR Buffer at pH 7.0, and 0.2 M HNO3(aq)), were found to enhance the electrochemical properties of the ACPEs compared to non-anodized CPE. Electrochemical Impedance Spectroscopy (EIS) measurements revealed a significantly lower charge transfer resistance (Rct) for the ACPEs (4.01-6.25 kΩ) as compared to CPE (25.9 kΩ). Comparison of the reversibility analysis for Fe(CN)63-/4- redox couple showed that the ACPEs have peak current ratio (Ia/Ic) at range of 0.97-1.10 while 1.92 for the CPE; this result indicated better electrochemical reversible behaviors for Fe(CN)63-/4- redox couple using the ACPEs. CV Anodization process was further optimized by varying solution and CV parameters (i.e. pH, composition, number of cycles, and potential range), and the resulting optimized ACPE was used for enhanced detection of Dopamine (DA) and Uric Acid (UA) in the presence of excess Ascorbic Acid (AA). Employing Differential Pulse Voltammetry technique, enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained. The anodic peak currents for the oxidation of DA and UA appeared at 0.263V and 0.414 V, respectively, and it was observed to be linearly increasing with increasing concentrations of biomolecules (25-100 µM). The detection limit was determined to be 3.86 µM for DA and 5.61 µM for UA. This study showed a quick and cost-effective pretreatment for CPEs based on MWCNT-PDMS composite which lead to significant enhancement on its electrochemical properties.

  7. Tin Oxide Crystals Exposed by Low-Energy {110} Facets for Enhanced Electrochemical Heavy Metal Ions Sensing: X-ray Absorption Fine Structure Experimental Combined with Density-Functional Theory Evidence.

    Science.gov (United States)

    Jin, Zhen; Yang, Meng; Chen, Shao-Hua; Liu, Jin-Huai; Li, Qun-Xiang; Huang, Xing-Jiu

    2017-02-21

    Herein, we revealed that the electrochemical behaviors on the detection of heavy metal ions (HMIs) would largely rely on the exposed facets of SnO 2 nanoparticles. Compared to the high-energy {221} facet, the low-energy {110} facet of SnO 2 possessed better electrochemical performance. The adsorption/desorption tests, density-functional theory (DFT) calculations, and X-ray absorption fine structure (XAFS) studies showed that the lower barrier energy of surface diffusion on {110} facet was critical for the superior electrochemical property, which was favorable for the ions diffusion on the electrode, and further leading the enhanced electrochemical performance. Through the combination of experiments and theoretical calculations, a reliable interpretation of the mechanism for electroanalysis of HMIs with nanomaterials exposed by different crystal facets has been provided. Furthermore, it provides a deep insight into understanding the key factor to improve the electrochemical performance for HMIs detection, so as to design high-performance electrochemical sensors.

  8. Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries

    International Nuclear Information System (INIS)

    Zhao, Wenwen; Tanaka, Akinobu; Momosaki, Kyoko; Yamamoto, Shinji; Zhang, Fabi; Guo, Qixin; Noguchi, Hideyuki

    2015-01-01

    Highlights: • Ti substituted P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode was synthesized. • Structural and electrochemical properties of Na 2/3 Ni 1/4 Ti x Mn 3/4-x O 2 were studied. • Ti substituted cathodes exhibit enhanced cycleability and rate performance. • Ti substitution has impact on stabilizing the P2 structure during cycling. -- Abstract: Ti substituted P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode material with the composition of Na 2/3 Ni 1/4 Ti x Mn 3/4-x O 2 has been synthesized by solid state method. The influence of Ti substitution for Mn on the structure, morphology and electrochemical performances of P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 has been investigated. X-ray diffraction (XRD) results of Ti substituted sample show that they exhibit same diffraction patterns as those of pristine P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 . Progressive change in the lattice parameters of Ti substituted samples suggests that Mn was successfully substituted by Ti. In contrast to P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 which shows step-type voltage profiles, Ti substituted samples show sloping voltage profiles. Drastic capacity fade occurred for P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode, while Ti substituted cathodes still show high capacity retention over 92% after 25 cycles at the voltage range of 2.0-4.3 V. Even cycled at high upper cut-off voltage of 4.5 V, Ti=0.20 sample can deliver a reversible capacity of 140 mAhg −1 with the capacity retention over 92% after 25 cycles. Furthermore, Ti substituted cathodes exhibit enhanced rate capability over pristine P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode. Comparison of the Ex-situ XRD results of the cycled P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 and its substituted samples provides evidence that the improved electrochemical performance of Ti substituted cathodes would be attributed to the stabilization of the structure with Ti substitution

  9. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.

    Science.gov (United States)

    Zhu, Yun Guang; Wang, Ye; Han, Zhao Jun; Shi, Yumeng; Wong, Jen It; Huang, Zhi Xiang; Ostrikov, Kostya Ken; Yang, Hui Ying

    2014-12-21

    The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

  10. Polyhedral-Like NiMn-Layered Double Hydroxide/Porous Carbon as Electrode for Enhanced Electrochemical Performance Supercapacitors.

    Science.gov (United States)

    Yu, Mei; Liu, Ruili; Liu, Jianhua; Li, Songmei; Ma, Yuxiao

    2017-11-01

    Polyhedral-like NiMn-layered double hydroxide/porous carbon (NiMn-LDH/PC-x) composites are successfully synthesized by hydrothermal method (x = 1, 2 means different mass percent of porous carbon (PC) in composites). The NiMn-LDH/PC-1 composites possess specific capacitance 1634 F g -1 at a current density of 1 A g -1 , and it is much better than that of pure LDH (1095 F g -1 at 1 A g -1 ). Besides, the sample can retain 84.58% of original capacitance after 3000 cycles at 15 A g -1 . An asymmetric supercapacitor with NiMn-LDH/PC-1 as anode and activated carbon as cathode is fabricated, and the supercapacitor can achieve an energy density of 18.60 Wh kg -1 at a power density of 225.03 W kg -1 . The enhanced electrochemical performance attributes to the high faradaic pseudocapacitance of NiMn-LDH, the introduction of PC, and the 3D porous structure of LDH/PC-1 composites. The introduction of PC hinders serious agglomeration of LDH and further accelerates ions transport. The encouraging results indicate that these materials are one of the most potential candidates for energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors.

    Science.gov (United States)

    Guan, Qun; Cheng, Jianli; Wang, Bin; Ni, Wei; Gu, Guifang; Li, Xiaodong; Huang, Ling; Yang, Guangcheng; Nie, Fude

    2014-05-28

    We synthesized the needle-like cobalt oxide/graphene composites with different mass ratios, which are composed of cobalt oxide (Co3O4 or CoO) needle homogeneously anchored on graphene nanosheets as the template, by a facile hydrothermal method. Without the graphene as the template, the cobalt precursor tends to group into urchin-like spheres formed by many fine needles. When used as electrode materials of aqueous supercapacitor, the composites of the needle-like Co3O4/graphene (the mass ratio of graphene oxide(GO) and Co(NO3)2·6H2O is 1:5) exhibit a high specific capacitance of 157.7 F g(-1) at a current density of 0.1 A g(-1) in 2 mol L(-1) KOH aqueous solution as well as good rate capability. Meanwhile, the capacitance retention keeps about 70% of the initial value after 4000 cycles at a current density of 0.2 A g(-1). The enhancement of excellent electrochemical performances may be attributed to the synergistic effect of graphene and cobalt oxide components in the unique multiscale structure of the composites.

  12. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields

    International Nuclear Information System (INIS)

    Li, Xinyang; Wu, Yue; Zhu, Wei; Xue, Fangqing; Qian, Yi; Wang, Chengwen

    2016-01-01

    Highlights: • We study granular activated carbon (GAC) electrodes coated with catalysts. • GAC coated with ATOT demonstrates an impressive ·OH yield. • This electrode can be used in continuous-flow three-dimensional electrode reactors. • We use Rhodamine B as a model organic compound for removal. • The GAC/ATOT performs better than all other electrodes examined. - Abstract: In this study, granular activated carbon (GAC) coated with SnO 2 -Sb doped TiO 2 (GAC/ATOT) with a high hydroxyl radical (·OH) yield is prepared via the sol-gel method. This material is utilized as a granular electrode in a continuous-flow three-dimensional electrode reactor (CTDER) for the enhanced treatment of synthetic dyeing wastewater containing Rhodamine B (RhB). We then characterize the physical properties, electrochemical properties, and electrochemical oxidation performance of the granular electrode. The results show that using the GAC/ATOT electrode in a CTDER significantly enhances the chemical oxygen demand (COD) removal, decreases the energy consumption, and improves the current efficiency of the wastewater. This is primarily attributed to the higher catalytic activity of GAC/ATOT for ·OH production compared to that of other candidates, such as TiO 2 coated GAC (GAC/T), Sb doped SnO 2 coated GAC (GAC/ATO), and pure GAC. The mechanism of the enhanced electrochemical oxidation afforded by using GAC/ATOT indicates that the high ·OH yield in the reactor packed with GAC/ATOT electrodes contributes to the enhanced electrochemical oxidation performance with respect to organic compounds.

  13. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  14. Enhanced corrosion resistance and biocompatibility of β-type Ti–25Nb–25Zr alloy by electrochemical anodization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei, 112 Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404 Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung, 413 Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, 112 Taiwan (China); Wu, Chia-Ping; Sun, Ying-Sui; Huang, Hsun-Miao [Institute of Oral Biology, National Yang-Ming University, Taipei, 112 Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung, 402 Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung, 402 Taiwan (China)

    2013-12-31

    The biocompatibility of implants is largely determined by their surface characteristics. This study presents a novel method for performing electrochemical anodization on β-type Ti–25Nb–25Zr alloy with a low elastic modulus (approximately 70 GPa). This method results in a thin hybrid layer capable of enhancing the surface characteristics of the implants. We investigated the surface topography and microstructure of the resulting Ti–25Nb–25Zr alloy. The corrosion resistance was evaluated using potentiodynamic polarization curve measurements in simulated body fluid. The cytotoxicity was evaluated according to International Organization for Standardization 10993–5 specification. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed using scanning electron microscopy and fluorescence microscopy. The anodization produced a thin (approximately 40 nm-thick) hybrid oxide layer with a nanoporous outer sublayer (pore size < 15 nm) and a dense inner layer. The thin hybrid oxide layer increased the corrosion resistance of the Ti–25Nb–25Zr alloy by increasing the corrosion potential and decreasing both the corrosion rate and passive current. Ti–25Nb–25Zr alloys with and without anodization treatment were non-toxic. Surface nanotopography on the anodized Ti–25Nb–25Zr alloy enhanced protein adsorption and cell adhesion. Our results demonstrate that electrochemical anodization increases the corrosion resistance and cell adhesion of β-type Ti–25Nb–25Zr alloy while providing a lower elastic modulus suitable for implant applications. - Highlights: • An electrochemical anodization was applied to β-type Ti–25Nb–25Zr alloy surface. • Anodized surface had nanoscale hybrid oxide layer. • Anodized surface increased corrosion resistance due to dense inner sublayer. • Anodized surface enhanced cell adhesion due to nanoporous outer sublayer. • Electrochemical anodization has potential as implant surface treatment.

  15. Enhanced corrosion resistance and biocompatibility of β-type Ti–25Nb–25Zr alloy by electrochemical anodization

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Huang, Hsun-Miao; Lee, Tzu-Hsin

    2013-01-01

    The biocompatibility of implants is largely determined by their surface characteristics. This study presents a novel method for performing electrochemical anodization on β-type Ti–25Nb–25Zr alloy with a low elastic modulus (approximately 70 GPa). This method results in a thin hybrid layer capable of enhancing the surface characteristics of the implants. We investigated the surface topography and microstructure of the resulting Ti–25Nb–25Zr alloy. The corrosion resistance was evaluated using potentiodynamic polarization curve measurements in simulated body fluid. The cytotoxicity was evaluated according to International Organization for Standardization 10993–5 specification. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed using scanning electron microscopy and fluorescence microscopy. The anodization produced a thin (approximately 40 nm-thick) hybrid oxide layer with a nanoporous outer sublayer (pore size < 15 nm) and a dense inner layer. The thin hybrid oxide layer increased the corrosion resistance of the Ti–25Nb–25Zr alloy by increasing the corrosion potential and decreasing both the corrosion rate and passive current. Ti–25Nb–25Zr alloys with and without anodization treatment were non-toxic. Surface nanotopography on the anodized Ti–25Nb–25Zr alloy enhanced protein adsorption and cell adhesion. Our results demonstrate that electrochemical anodization increases the corrosion resistance and cell adhesion of β-type Ti–25Nb–25Zr alloy while providing a lower elastic modulus suitable for implant applications. - Highlights: • An electrochemical anodization was applied to β-type Ti–25Nb–25Zr alloy surface. • Anodized surface had nanoscale hybrid oxide layer. • Anodized surface increased corrosion resistance due to dense inner sublayer. • Anodized surface enhanced cell adhesion due to nanoporous outer sublayer. • Electrochemical anodization has potential as implant surface treatment

  16. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes

    Directory of Open Access Journals (Sweden)

    Tuğrul Çetinkaya

    2017-06-01

    Full Text Available Surface of nano silicon powders were coated with amorphous carbon by pyrolysis of polyacronitrile (PAN polymer. Microstructural characterization of amorphous carbon coated silicon powders (Si-C were carried out using scanning electron microscopy (SEM and thickness of carbon coating is defined by transmission electron microscopy (TEM. Elemental analyses of Si-C powders were performed using energy dispersive X-ray spectroscopy (EDS. Structural and phase characterization of Si-C composite powders were investigated using X-ray diffractometer (XRD and Raman spectroscopy. Produced Si-C powders were prepared as an electrode on the copper current collector and electrochemical tests were carried out using CR2016 button cells at 200 mA/g constant current density. According to electrochemical test results, carbon coating process enhanced the electrochemical performance by reducing the problems stem from volume change and showed 770 mAh/g discharge capacity after 30 cycles.

  17. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    Science.gov (United States)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-10-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.

  18. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    Science.gov (United States)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  19. On the configuration of supercapacitors for maximizing electrochemical performance.

    Science.gov (United States)

    Zhang, Jintao; Zhao, X S

    2012-05-01

    Supercapacitors, which are attracting rapidly growing interest from both academia and industry, are important energy-storage devices for acquiring sustainable energy. Recent years have seen a number of significant breakthroughs in the research and development of supercapacitors. The emergence of innovative electrode materials (e.g., graphene) has clearly provided great opportunities for advancing the science in the field of electrochemical energy storage. Conversely, smart configurations of electrode materials and new designs of supercapacitor devices have, in many cases, boosted the electrochemical performance of the materials. We attempt to summarize recent research progress towards the design and configuration of electrode materials to maximize supercapacitor performance in terms of energy density, power density, and cycle stability. With a brief description of the structure, energy-storage mechanism, and electrode configuration of supercapacitor devices, the design and configuration of symmetric supercapacitors are discussed, followed by that of asymmetric and hybrid supercapacitors. Emphasis is placed on the rational design and configuration of supercapacitor electrodes to maximize the electrochemical performance of the device. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemical splitting of multiwalled carbon nanotubes to enhance electrochemical capacitance for supercapacitors

    Science.gov (United States)

    Li, Xinlu; Li, Tongtao; Zhang, Xinlin; Zhong, Qineng; Li, Hongyi; Huang, Jiamu

    2014-06-01

    Multiwalled carbon nanotubes (MWCNTs) were chemically split and self-assembled to a flexible porous paper made of graphene oxide nanoribbons (GONRs). The morphology and microstructure of the pristine MWCNTs and GONRs were analyzed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. And the specific surface area and porosity structure were measured by N2 adsorption-desorption. The longitudinally split MWCNTs show an enhancement in specific capacitance from 21 F g-1 to 156 F g-1 compared with the pristine counterpart at 0.1 A g-1 in a 6 M KOH aqueous electrolytes. The electrochemical experiments prove that the chemical splitting of MWCNTs will make inner carbon layers opened and exposed to electrochemical double layers, which can effectively improve the electrochemical capacitance for supercapacitors.

  1. Fabrication and electrochemical performance of graphene—ZnO nanocomposites

    International Nuclear Information System (INIS)

    Li Zhen-Peng; Men Chuan-Ling; Wang Wan; Cao Jun

    2014-01-01

    Graphene—ZnO nanocomposites were synthesized successfully through a one-step solvothermal approach. The morphology, structure, and composition of the prepared nanocomposites were investigated by scanning electron microscopy (SEM), transmission electron microscope (TEM), laser micro Raman spectroscopy, and Fourier transform infra-red spectroscopy (FT-IR). The outcomes confirmed that this approach is comparatively steady, practicable, and operable compared with other reported methods. The electrochemical performance of the graphene-ZnO electrodes was analyzed through cyclic voltammetry, altering-current (AC) impedance, and chronopotentiometry tests. The graphene—ZnO electrodes exhibited an improved electrode performance with higher specific capacitance (115 F·g −1 ), higher electrochemical stability, and higher energy density than the graphene electrodes and most reported graphene—ZnO electrodes. Graphene—ZnO nanocomposites have a steady reversible charge/discharge behavior, which makes them promising candidates for electrochemical capacitors (ECs). (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Synthesis, characterization and electrochemical performance of Li 2 ...

    Indian Academy of Sciences (India)

    Positive electrodes; lithium metal silicates; electrical conductivity; cyclic performance ... Furthermore, electrochemical impedance spectra measurements are performed ... It was observed that Li–Li 2 Ni 0.4 Fe 0.6 SiO 4 battery has initial discharge ... Central Metallurgical Research and Development Institute (CMRDI), Tebbin, ...

  3. Optimized dispersion of conductive agents for enhanced Li-storage performance of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moyan; Chen, Ge, E-mail: chenge@bjut.edu.cn

    2016-12-01

    Highlights: • A novel TiO{sub 2}/carbon (TiO{sub 2}/C) composite has been synthesized by a layer-by-layer deposition method combined with electrostatic interaction. • As anode materials for Li-ion batteries, the TiO{sub 2}/C composites exhibit excellent rate capability and cycling stability. • The enhanced electrochemical performance may be attributed to the well-dispersed carbon conductive framework. - Abstract: Novel TiO{sub 2}/carbon (TiO{sub 2}/C) composites have been synthesized by a layer-by-layer deposition method, with electrostatic interaction. The addition of carbon conductive agents enhances the electrochemical performance of TiO{sub 2}. Carbon for these has been sourced 0D nitrogen-doped carbon, 1D carbon nanotubes and 2D graphene. The as-obtained TiO{sub 2}/C composites show carbon nanotubes and titanium dioxide coaxial nanocables anchored on the graphene. The nitrogen-doped carbon is uniformly dispersed on the nanocables. As anode materials for Li-ion batteries, the TiO{sub 2}/C composites exhibit excellent rate capability and cycling stability. A capacity of 150 mAh/g is retained at a current density of 4 A/g. The enhanced electrochemical performance may be attributed to the well-dispersed carbon conductive framework, which facilitates charge transfer during the lithium insertion/extraction process.

  4. Carbonized polydopamine coated single-crystalline NiFe2O4 nanooctahedrons with enhanced electrochemical performance as anode materials in a lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Xinxin; Zhang, Tong; Qu, Yue; Tian, Ge; Yue, Huijuan; Zhang, Dong; Feng, Shouhua

    2017-01-01

    Graphical abstract: NiFe 2 O 4 @ NCweresuccessfullyfabricatedviaasubsequentcarbonizationofpolydopamine.(*) A nanocomposite containing 20% mass fraction of dopamine exhibited enhanced lithium ion battery performance with high reversible cycle capacity and good rate retention performance. - Highlights: • NiFe 2 O 4 nanooctahedrons were synthesized by a facile hydrothermal process. • A phase formation mechanism was studied by time-dependent experiments. • NiFe 2 O 4 with N-doped carbon shell was fabricated via carbonization of polydopamine. • NiFe 2 O 4 @NC 20 showed the best rate capability and cycle stability. - Abstract: Combining nanostructure engineering with conductive carbonaceous material is a promising strategy to obtain high-performance lithium ion batteries (LIBs). In this work, spinel NiFe 2 O 4 nanooctahedrons were initially synthesized at a low temperature without further annealing. We investigated the phase formation mechanism by time-dependent experiments. Next, octahedral NiFe 2 O 4 with a nitrogen-doped carbon shell (NiFe 2 O 4 @NC) were successfully fabricated via a subsequent carbonization of polydopamine (PDA). We systematically varied the dopamine content in the NiFe 2 O 4 /carbon nanocomposites and found that a nanocomposite containing 20% mass fraction of dopamine exhibited enhanced lithium ion battery performance with high reversible cycle capacity and good rate retention performance compared with the pure material. Remarkably, the hybrid nanocomposite delivered a high reversible capacity of 1297 mAh g −1 even after 50 cycles at a current density of 100 mA g −1 . Additionally, a high capacity of 1204 mAh g −1 was retained at a high current density of 500 mA g −1 after 300 cycles. This improvement in electrochemical performance is attributed to the enhanced structural stability and electrical conductivity caused by the carbon layer, and is supported by TEM and EIS measurements.

  5. Hierarchical architecture of ReS{sub 2}/rGO composites with enhanced electrochemical properties for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Fei; Chen, Yuanfu, E-mail: yfchen@uestc.edu.cn; Zheng, Binjie; He, Jiarui; Li, Qian; Wang, Xinqiang; Lin, Jie; Zhou, Jinhao; Yu, Bo; Li, Pingjian; Zhang, Wanli

    2017-08-15

    Highlights: • The ReS{sub 2}/rGO composites have been synthesized by a facile one-pot method. • The ReS{sub 2}/rGO composites exhibit hierarchical architecture. • The ReS{sub 2}/rGO composites deliver better electrochemical performances than ReS{sub 2}. • The enhanced performance is due to porous and conductive structure of ReS{sub 2}/rGO. - Abstract: Rhenium disulfide (ReS{sub 2}), a two-dimensional (2D) semiconductor, has attracted more and more attention due to its unique anisotropic electronic, optical, mechanical properties. However, the facile synthesis and electrochemical property of ReS{sub 2} and its composite are still necessary to be researched. In this study, for the first time, the ReS{sub 2}/reduced graphene oxide (rGO) composites have been synthesized through a facile and one-pot hydrothermal method. The ReS{sub 2}/rGO composites exhibit a hierarchical, interconnected, and porous architecture constructed by nanosheets. As anode for lithium-ion batteries, the as-synthesized ReS{sub 2}/rGO composites deliver a large initial capacity of 918 mAh g{sup −1} at 0.2 C. In addition, the ReS{sub 2}/rGO composites exhibit much better electrochemical cycling stability and rate capability than that of bare ReS{sub 2}. The significant enhancement in electrochemical property can be attributed to its unique architecture constructed by nanosheets and porous structure, which can allow for easy electrolyte infiltration, efficient electron transfer, and ionic diffusion. Furthermore, the graphene with high electronic conductivity can provide good conductive passageways. The facile synthesis approach can be extended to prepare other 2D transition metal dichalcogenides semiconductors for energy storage and catalytic application.

  6. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Webster, Thomas J [Division of Engineering, Brown University, Providence, RI 02912 (United States)], E-mail: Thomas_Webster@Brown.edu

    2008-07-23

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants.

  7. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    International Nuclear Information System (INIS)

    Sirivisoot, Sirinrath; Webster, Thomas J

    2008-01-01

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants

  8. Enhanced electrochemical performance of LiMn2O4 by constructing a stable Mn2+-rich interface

    Science.gov (United States)

    Lu, Zhongpei; Lu, Xiaojun; Ding, Jingjing; Zhou, Ting; Ge, Tao; Yang, Gang; Yin, Fan; Wu, Mingfang

    2017-12-01

    Spinel LiMn2O4 has drawn continuous attentions due to its low cost, good electrochemical performance, environmental friendliness and natural abundant resources. In view of its severe capacity fading, some types of manganese-based compounds with different Mn oxidation states are selected to protect bare LiMn2O4 by constructing a stable coating layer. In this work, LiMn2O4@LiMnPO4 composite, spherical LiMn2O4 (LMO) as core and Mn2+-rich phase of LiMnPO4 (LMP) as shell, is designed and synthesized. Two composites of LiMn2O4 particles coated with 3 wt% and 10 wt% LiMnPO4 have been compared studied. After 100 cycles at 0.5C rate, the two samples deliver capacity retentions of 96.63% and 93.23% of their initial capacities. Moreover, LMO coated by 3 wt% LiMnPO4 delivers 100.3 mAh g-1 after 200 cycles at 10C rate and 76.3 mAh g-1 after 1000 cycles at 20C rate, much higher than bare LiMn2O4 with 90 mAh g-1 and 45.8 mAh g-1, respectively. This core-shell structure with Mn2+-rich phase as a coating layer effectively enhance the material's cycling performance and rate capacity by reducing the contact of LiMn2O4 with electrolyte.

  9. Aggregation of Individual Sensing Units for Signal Accumulation: Conversion of Liquid-Phase Colorimetric Assay into Enhanced Surface-Tethered Electrochemical Analysis.

    Science.gov (United States)

    Wei, Tianxiang; Dong, Tingting; Wang, Zhaoyin; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2015-07-22

    A novel concept is proposed for converting liquid-phase colorimetric assay into enhanced surface-tethered electrochemical analysis, which is based on the analyte-induced formation of a network architecture of metal nanoparticles (MNs). In a proof-of-concept trial, thymine-functionalized silver nanoparticle (Ag-T) is designed as the sensing unit for Hg(2+) determination. Through a specific T-Hg(2+)-T coordination, the validation system based on functionalized sensing units not only can perform well in a colorimetric Hg(2+) assay, but also can be developed into a more sensitive and stable electrochemical Hg(2+) sensor. In electrochemical analysis, the simple principle of analyte-induced aggregation of MNs can be used as a dual signal amplification strategy for significantly improving the detection sensitivity. More importantly, those numerous and diverse colorimetric assays that rely on the target-induced aggregation of MNs can be augmented to satisfy the ambitious demands of sensitive analysis by converting them into electrochemical assays via this approach.

  10. Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application

    Science.gov (United States)

    González, Zoraida; Flox, Cristina; Blanco, Clara; Granda, Marcos; Morante, Juan R.; Menéndez, Rosa; Santamaría, Ricardo

    2017-01-01

    The development of more efficient electrode materials is essential to obtain vanadium redox flow batteries (VRFBs) with enhanced energy densities and to make these electrochemical energy storage devices more competitive. A graphene-modified graphite felt synthesized from a raw graphite felt and a graphene oxide water suspension by means of electrophoretic deposition (EPD) is investigated as a suitable electrode material in the positive side of a VRFB cell by means of cyclic voltammetry, impedance spectroscopy and charge/discharge experiments. The remarkably enhanced performance of the resultant hybrid material, in terms of electrochemical activity and kinetic reversibility towards the VO2+/VO2+, and mainly the markedly high energy efficiency of the VRFB cell (c.a. 95.8% at 25 mA cm-2) can be ascribed to the exceptional morphological and chemical characteristics of this tailored material. The 3D-architecture consisting of fibers interconnected by graphene-like sheets positively contributes to the proper development of the vanadium redox reactions and so represents a significant advance in the design of effective electrode materials.

  11. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  12. Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L.

    2013-01-01

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

  13. Electrochemical performances of diamond-like carbon coatings on carbon steel, stainless steel, and brass

    International Nuclear Information System (INIS)

    Hadinata, Samuel-Sudibyo; Lee, Ming-Tsung; Pan, Szu-Jung; Tsai, Wen-Ta; Tai, Chen-Yi; Shih, Chuan-Feng

    2013-01-01

    Diamond-like carbon (DLC) coatings have been deposited onto stainless steel, carbon steel and brass by plasma-enhanced chemical vapor deposition, respectively. Atomic arrangement, chemical structure, surface morphology and cross-section microstructure of the DLC coatings were examined by X-ray diffraction, Raman scattering spectroscopy and scanning electron microscopy. The electrochemical behaviors of the DLC coatings in 3.5 wt.% NaCl solution were investigated by performing an open circuit potential (OCP) measurement and a potentiodynamic polarization test. The experimental results showed that properly deposited DLC coatings could cause an increase of OCP by hundreds of millivolts and a reduction of anodic current density by several orders of magnitude as compared to that of the substrate. The results also demonstrated that electrochemical techniques could be used as tools to detect the soundness of the DLC coating by examining OCP and polarization curve, which varied with the form of defect and depended on the type of substrate. - Highlights: ► The substrate could affect the quality of diamond-like carbon (DLC) coating. ► Defect-free DLC coating exhibited extremely low anodic current density. ► The quality of DLC coating on metal could be evaluated by electrochemical test

  14. Electrochemical performances of diamond-like carbon coatings on carbon steel, stainless steel, and brass

    Energy Technology Data Exchange (ETDEWEB)

    Hadinata, Samuel-Sudibyo; Lee, Ming-Tsung [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Pan, Szu-Jung [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Tsai, Wen-Ta, E-mail: wttsai@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Tai, Chen-Yi [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Shih, Chuan-Feng [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Department of Electrical Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China)

    2013-02-01

    Diamond-like carbon (DLC) coatings have been deposited onto stainless steel, carbon steel and brass by plasma-enhanced chemical vapor deposition, respectively. Atomic arrangement, chemical structure, surface morphology and cross-section microstructure of the DLC coatings were examined by X-ray diffraction, Raman scattering spectroscopy and scanning electron microscopy. The electrochemical behaviors of the DLC coatings in 3.5 wt.% NaCl solution were investigated by performing an open circuit potential (OCP) measurement and a potentiodynamic polarization test. The experimental results showed that properly deposited DLC coatings could cause an increase of OCP by hundreds of millivolts and a reduction of anodic current density by several orders of magnitude as compared to that of the substrate. The results also demonstrated that electrochemical techniques could be used as tools to detect the soundness of the DLC coating by examining OCP and polarization curve, which varied with the form of defect and depended on the type of substrate. - Highlights: ► The substrate could affect the quality of diamond-like carbon (DLC) coating. ► Defect-free DLC coating exhibited extremely low anodic current density. ► The quality of DLC coating on metal could be evaluated by electrochemical test.

  15. Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode at high cutoff voltage by modifying electrode/electrolyte interface with lithium metasilicate

    International Nuclear Information System (INIS)

    Fu, Jiale; Mu, Daobin; Wu, Borong; Bi, Jiaying; Liu, Xiaojiang; Peng, Yiyuan; Li, Yiqing; Wu, Feng

    2017-01-01

    Highlights: •The electrochemical properties of the LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode are investigated at high voltage of 4.6 V. •The Li 2 SiO 3 suppresses the decomposition of LiPF 6 and carbonate solvents. •Li 2 SiO 3 helpfully retards the transition metal dissolution by consuming HF. •The enhanced electrochemical properties of the LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode mixed with Li 2 SiO 3 . -- Abstract: Developing high-voltage Li ion batteries (LIBs) is an important trend to meet the requirement of high energy density battery. However, high voltage will cause a series of problems harming the cycle performance of LIBs at the same time. This work is to investigate the effect of inorganic substance Li 2 SiO 3 on the electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) cathode at high cutoff voltage of 4.6 V. XRD result shows that the structure of NCM622 cathode material is not affected by mixing Li 2 SiO 3 . However, XPS and EIS tests indicate that Li 2 SiO 3 has an evident influence on suppressing the decomposition of LiPF 6 and carbonate solvents at high voltage, reducing interfacial solid film impedance and modifying electrode/electrolyte interface. In addition, Li 2 SiO 3 retards the transition metal dissolution by consuming HF. Therefore, it enhances the electrochemical properties of the NCM622 cathode significantly. The highest discharge capacity increases to 191.7 mA h g -1 by mixing Li 2 SiO 3 , compared with the value of 180 mA h g -1 in the case of NCM622 cathode. The NCM622 electrode mixed with Li 2 SiO 3 also exhibits a better capacity retention of 73.4% after 200 cycles and a high rate capability at 20C with the value of 89 mA h g -1 , in contrast with 62.2% and 31 mA h g -1 attained in the NCM622 cathode.

  16. Enhanced Supercapacitor Performance Using Electropolymerization of Self-Doped Polyaniline on Carbon Film

    Directory of Open Access Journals (Sweden)

    Po-Hsin Wang

    2018-03-01

    Full Text Available In this work, we electrochemically deposited self-doped polyanilines (SPANI on the surface of carbon-nanoparticle (CNP film, enhancing the superficial faradic reactions in supercapacitors and thus improving their performance. SPANI was electrodeposited on the CNP-film employing electropolymerization of aniline (AN and o-aminobenzene sulfonic acid (SAN comonomers in solution. Here, SAN acts in dual roles of a self-doped monomer while it also provides an acidic environment which is suitable for electropolymerization. The performance of SPANI−CNP-based supercapacitors significantly depends upon the mole ratio of AN/SAN. Supercapacitor performance was investigated by using cyclic voltammetry (CV, galvanostatic charge and discharge (GCD, and electrochemical impedance spectroscopy (EIS. The optimal performance of SPANI−CNP-based supercapacitor exists at AN/SAN ratio of 1.0, having the specific capacitance of 273.3 Fg−1 at the charging current density of 0.5 Ag−1.

  17. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery.

    Science.gov (United States)

    Feng, Lili; Xuan, Zhewen; Zhao, Hongbo; Bai, Yang; Guo, Junming; Su, Chang-Wei; Chen, Xiaokai

    2014-01-01

    Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance.

  18. Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery

    International Nuclear Information System (INIS)

    Ali, Gomaa A.M.; Tan, Ling Ling; Jose, Rajan; Yusoff, Mashitah M.; Chong, Kwok Feng

    2014-01-01

    Highlights: • MnO 2 is recovered from spent zinc–carbon batteries as nanoflowers structure. • Recovered MnO 2 nanoflowers show high specific capacitance. • Recovered MnO 2 nanoflowers show stable electrochemical cycling up to 900 cycles. • Recovered MnO 2 nanoflowers show low resistance in EIS data. - Abstract: The electrochemical performance of MnO 2 nanoflowers recovered from spent household zinc–carbon battery is studied by cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. MnO 2 nanoflowers are recovered from spent zinc–carbon battery by combination of solution leaching and electrowinning techniques. In an effort to utilize recovered MnO 2 nanoflowers as energy storage supercapacitor, it is crucial to understand their structure and electrochemical performance. X-ray diffraction analysis confirms the recovery of MnO 2 in birnessite phase, while electron microscopy analysis shows the MnO 2 is recovered as 3D nanostructure with nanoflower morphology. The recovered MnO 2 nanoflowers exhibit high specific capacitance (294 F g −1 at 10 mV s −1 ; 208.5 F g −1 at 0.1 A g −1 ) in 1 M Na 2 SO 4 electrolyte, with stable electrochemical cycling. Electrochemical data analysis reveal the great potential of MnO 2 nanoflowers recovered from spent zinc–carbon battery in the development of high performance energy storage supercapacitor system

  19. Role of Disorder in Enhancing Lithium-Ion Battery Performance

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; He, W.

    and type of disorder, material performances can be significantly enhanced. Disorder can be tuned by doping, calcination, redox reaction, composition tuning, and so on. Recently we have fabricated a cathode material for lithium ion battery by introducing heterostructure and disorder into the material...... material exhibits the extremely high reversible lithium ion capacity and extraordinary rate capability with high cycling stability at high discharge current. In this presentation we demonstrate that the disorder plays a decisive role in achieving those exceptional electrochemical performances. We describe...... how the disorder affects the migration of both lithium ions and electrons. It is found that both the modified glassy surface and the heterogeneous superlattice structure greatly contribute to the extremely high discharge/charge rates owing to the enhanced storage capacity of lithium ions and ultrafast...

  20. Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage

    International Nuclear Information System (INIS)

    Xiao, Anguo; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-01

    Highlights: • NiO mesoporous nanowall arrays are prepared via hydrothermal method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • NiO mesoporous nanowall arrays show good supercapacitor performance. - Abstract: Mesoporous nanowall NiO arrays are prepared by a facile hydrothermal synthesis method with a following annealing process. The NiO nanowall shows continuous mesopores ranging from 5 to 10 nm and grows vertically on the substrate forming a porous net-like structure with macropores of 20–300 nm. A plausible mechanism is proposed for the growth of mesoporous nanowall NiO arrays. As cathode material of pseudocapacitors, the as-prepared mesoporous nanowall NiO arrays show good pseudocapacitive performances with a high capacitance of 600 F g −1 at 2 A g −1 and impressive high-rate capability with a specific capacitance of 338 F g −1 at 40 A g −1 . In addition, the mesoporous nanowall NiO arrays possess good cycling stability. After 6000 cycles at 2 A g −1 , a high capacitance of 660 F g −1 is attained, and no obvious degradation is observed. The good electrochemical performance is attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, leading to enhanced electrochemical properties

  1. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    Science.gov (United States)

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Improved electrochemical performance of hierarchical porous carbon/polyaniline composites

    International Nuclear Information System (INIS)

    Hu Juan; Wang Huanlei; Huang Xiao

    2012-01-01

    Highlights: ► Polyaniline-coated hierarchical porous carbon (HPC) composites have been synthesized by in situ polymerization. ► The HPC/polyaniline composite has significantly better electrochemical capacitance performance than pure HPC and polyaniline. ► The amount of polyaniline loading has a significant effect on the composites’ electrochemical performances. - Abstract: Polyaniline (PANI)-coated hierarchical porous carbon (HPC) composites (HPC/PANI) for use as supercapacitor electrodes were prepared by in situ chemical oxidation polymerization at 273 K of an aniline solution containing well-dispersed HPC particles. After polymerization, a thin layer of PANI was coated on the surface of the HPC particles, which was confirmed by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM) and scanning electron microscopy (SEM). Compared to pure PANI and HPC, the electrochemical capacitance performance of the composites was significantly improved. The highest specific capacitance of the composites obtained is 478 F g −1 at 1 mV s −1 , which is more than twice as that of pure PANI and three times as that of pure HPC. Because of the influence from the hierarchical pore structure of the carbon material, the calculated specific capacitance of PANI in the composite (pseudocapacitance contribution from PANI) is almost one magnitude higher than that of pure PANI.

  3. Electrochemical surface-enhanced Raman scattering measurement on ligand capped PbS quantum dots at gap of Au nanodimer

    Science.gov (United States)

    Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei

    2018-05-01

    The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.

  4. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    Science.gov (United States)

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Enhanced electrochemical performance of LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 by nanoscale surface modification with Co_3O_4

    International Nuclear Information System (INIS)

    Huang, Yaqun; Huang, Yunhui; Hu, Xianluo

    2017-01-01

    Highlights: • Facile coating method to prepare Co_3O_4-modified NCA. • Co_3O_4 is uniformly coated on the surface of NCA. • The nanolayer coating protects the surface of NCA during Li cycling. • Co_3O_4-modified NCA exhibits enhanced cyclability and rate capability. - Abstract: LiNi_0_._8Co_0_._1_5Al_0_._0_5O_2 (NCA) has attracted much attention because of its high capacity and low cost. Herein, we report a facile wet-chemical route to prepare a Co_3O_4-modified NCA cathode material with enhanced electrochemical performance for lithium-ion batteries. The as-prepared Co_3O_4-coated NCA cathode material delivers a specific capacity of 207.6 mAh g"−"1 with an initial Coulombic efficiency of 90.8% at 0.1 C. The capacity retention of the Co_3O_4-coated NCA cathode material is as high as 91.6% at 1 C between the potential from 2.8 to 4.3 V after 100 cycles. More importantly, the capacity retention of the resulting Co_3O_4-coated NCA is higher than 94.7% after 100 cycles at 0.2 C. In addition, the Co_3O_4-coated NCA cathode material exhibits good rate capability, especially a high discharge capacity at a high current density. The outstanding electrochemical performance of Co_3O_4-coated NCA is assigned to the surface coating of Co_3O_4 that may react with lithium-containing impurities on the surface and decrease the charge-transfer resistance.

  6. Electrochemical Oxidation of Propene with a LSF15/CGO10 Electrochemical Reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    A porous electrochemical reactor, made of La0.85Sr0.15FeO3 (LSF) as electrode and Ce0.9Gd0.1O1.95 (CGO) as electrolyte, was studied for the electrochemical oxidation of propene over a wide range of temperatures. Polarization was found to enhance propene oxidation rate. Ce0.9Gd0.1O1.95 was used...... as infiltration material to enhance the effect of polarization on propene oxidation rate, especially at low temperatures. The influence of infiltrated material, as a function of heat treatment, on the reactor electrochemical behavior has been evaluated by using electrochemical impedance spectroscopy...... in suppressing the competing oxygen evolution reaction and promoting the oxidation of propene under polarization, with faradaic efficiencies above 70% at 250◦C. © 2014 The Electrochemical Society....

  7. Characterization of surface-modified LiMn2O4 cathode materials with indium tin oxide (ITO) coatings and their electrochemical performance

    International Nuclear Information System (INIS)

    Kim, Chang-Sam; Kwon, Soon-Ho; Yoon, Jong-Won

    2014-01-01

    Graphical abstract: -- Highlights: • Indium tin oxide (ITO) is used to modify the surface of LiMn 2 O 4 by a sol–gel method. • The surface-modified layer was observed at a scale of several nanometers on LiMn 2 O 4 . • The ITO-coated LiMn 2 O 4 shows better capacity retention at 30 and 55 °C than pristine LiMn 2 O 4 . -- Abstract: Indium tin oxide (ITO) is used to modify the surface of LiMn 2 O 4 by a sol–gel method in an attempt to improve its electrochemical performance at elevated temperatures. The surface-modified LiMn 2 O 4 is characterized via XRD, FE-SEM, TEM, Auger electron spectroscopy (AES) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The surface layer modified by substitution with indium was observed at a scale of several nanometers near the surface on LiMn 2 O 4 . The concentration of ITO for electrochemical performance was varied from 0.3 wt% to 0.8 wt%. The 0.5 wt% ITO coated LiMn 2 O 4 showed the best electrochemical performance. This enhancement in electrochemical performance is mainly attributed to the effect of the surface layer modified through ITO, which could suppress Mn dissolution and reduce the charge transfer resistance at the solid electrolyte interface

  8. Characterization and electrochemical performances of MoO2 modified LiFePO4/C cathode materials synthesized by in situ synthesis method

    International Nuclear Information System (INIS)

    He, Jichuan; Wang, Haibin; Gu, Chunlei; Liu, Shuxin

    2014-01-01

    Graphical abstract: The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. MoO 2 can sufficiently coat on the LiFePO 4 /C particles surface and does not alter LiFePO 4 crystal structure, and the adding of MoO 2 decreases the particles size and increases the tap density of cathode materials. The existence of MoO 2 improves electrochemical performance of LiFePO 4 cathode materials in specific capability and lithium ion diffusion and charge transfer resistance of cathode materials. - Highlights: • The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. • The existence of MoO 2 decreases the particles size and increases the tap density of cathode materials. • MoO 2 can sufficiently coat on the surface of LiFePO 4 /C cathode materials. • The existence of MoO 2 enhanced electrochemical performance of LiFePO 4 /C cathode materials. - Abstract: The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. Phase compositions and microstructures of the products were characterized by X-ray powder diffraction (XRD), SEM, TEM and EDS. Results indicate that MoO 2 can sufficiently coat on the LiFePO 4 surface and does not alter LiFePO 4 crystal structure, the existence of MoO 2 decreases the particles size and increases the tap density of cathode materials. The electrochemical behavior of cathode materials was analyzed using galvanostatic measurement, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that the existence of MoO 2 improves electrochemical performance of LiFePO 4 cathode materials in specific capability and lithium ion diffusion and charge transfer resistance. The initial charge–discharge specific capacity and apparent lithium ion diffusion coefficient increase, the charge transfer resistance decreases with MoO 2 content and maximizes around the MoO 2 content is 5 wt%. It has been had further proved that

  9. Porous MnO/C of composite nanostructure consisting of nanorods and nano-octahedra as anode of lithium ion batteries with enhanced electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yue-Feng; Xu, Gui-Liang [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Su, Hang [College of Energy, Xiamen University, Xiamen 361005 (China); Chen, Yuan; Fang, Jun-Chuan; Wang, Qi; Huang, Ling [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Li, Jun-Tao [College of Energy, Xiamen University, Xiamen 361005 (China); Sun, Shi-Gang, E-mail: sgsun@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2016-08-15

    Porous MnO/C materials of composite nanostructure consisting of nanorods and nano-octahedra (denoted as nRO-MnO/C) were synthesized for the first time through a one-pot hydrothermal procedure followed by thermal annealing using PEG6000 as a soft template. When served as anode of LIBs, the nRO-MnO/C materials could maintain a reversible capacity as high as 861.3 mAh g{sup −1} after 120 cycles at a rate of 0.13 C (1 C = 755.6 mA g{sup −1}), and a stable capacity of 313.5 mAh g{sup −1} at a much higher rate of 4.16 C. Moreover, excellent long cycleability at high rate has been also evidenced by a capacity of 628.9 mAh g{sup −1} measured after 300 cycles at 1.32 C. In comparison with mono-form porous nanorods (nR-MnO/C) and mono-form porous nano-octahedra (nO-MnO/C), the enhanced electrochemical performances of the nRO-MnO/C materials are attributed to the composite nanostructure, in which the nano-octahedra contact effectively with nanorods by laying in the space between them yielding synergy effect that facilitates the electronic transportation on electrode. - Highlights: • Porous MnO/C with composite nanostructure was prepared by hydrothermal reaction. • The composite nanostructure is consisting of nanorods and nano-octahedra. • The nRO-MnO/C delivers a charge capacity of 628.9 mAh g{sup −1} after 300 cycles at 1.32 C. • The superior electrochemical performance should be owed to composite structure.

  10. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine.

    Science.gov (United States)

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2015-06-15

    In the present work, an enhanced electrochemical sensor for dopamine (DA) was developed based on palladium nanoparticles decorated activated fullerene-C60 (AC60/PdNPs) composite modified screen printed carbon electrode (SPCE). The scanning electron microscopy and elemental analysis confirmed the formation of PdNPs on AC60. The fabricated AC60/PdNPs composite modified electrode exhibited an enhanced electrochemical response to DA with a lower oxidation potential than that of SPCE modified with PdNPs and C60, indicating the excellent electrooxidation behavior of the AC60/PdNPs composite modified electrode. The electrochemical studies confirmed that the electrooxidation of DA at the composite electrode is a diffusion controlled electrochemical process. The differential pulse voltammetry was employed for the determination of DA; under optimum conditions, the electrochemical oxidation signal of DA increased linearly at the AC60/PdNPs composite from 0.35 to 133.35 μM. The limit of detection was found as 0.056 μM with a sensitivity of 4.23 μA μM(-1) cm(-2). The good recovery of DA in the DA injection samples further revealed the good practicality of AC60/PdNPs modified electrode. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Electrochemical performance and stability of Ni1-xCox-based cermet anode for direct methane-fuelled solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Nicharee Wongsawatgul

    2017-01-01

    Full Text Available Carbon deposition on Ni-based anode is well-known as a major barrier for the practical use and commercialization of hydrocarbon-fuelled solid oxide fuel cells (SOFCs. In this work, Co alloying in Ni-YSZ was studied as an alternative anode material for using CH4 as a fuel. The Ni-YSZ and Ni-Co alloyed-YSZ were prepared by the traditional impregnation method without further mixing processes. After sintering and reduction in H2 atmosphere, the introduced Co can completely dissolved into the Ni lattice and changed the morphology with an increase in the Ni-YSZ grain size and showed a better uniform microstructure. The Co alloying also enhanced the electrochemical performance under CH4 fuel by reducing the resistance and anodic overvoltage. Moreover, the Co addition enhanced the stability of the cell with CH4 a constant load current of 80 mA for 60 h. This performance related to the carbon deposition on the anode surface. The Co alloying showed a high efficiency to suppress the carbon deposition and improved the electrochemical performance of an SOFC cell operating under CH4 fuel.

  12. Synergistic Effect between Metal-Nitrogen-Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Water-Oxidation Performance.

    Science.gov (United States)

    Wang, Jun; Li, Kai; Zhong, Hai-xia; Xu, Dan; Wang, Zhong-li; Jiang, Zheng; Wu, Zhi-jian; Zhang, Xin-bo

    2015-09-01

    Identifying effective means to improve the electrochemical performance of oxygen-evolution catalysts represents a significant challenge in several emerging renewable energy technologies. Herein, we consider metal-nitrogen-carbon sheets which are commonly used for catalyzing the oxygen-reduction reaction (ORR), as the support to load NiO nanoparticles for the oxygen-evolution reaction (OER). FeNC sheets, as the advanced supports, synergistically promote the NiO nanocatalysts to exhibit superior performance in alkaline media, which is confirmed by experimental observations and density functional theory (DFT) calculations. Our findings show the advantages in considering the support effect for designing highly active, durable, and cost-effective OER electrocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrochemical performance of NCM/LFP/Al composite cathode materials for lithium-ion batteries

    Science.gov (United States)

    Allahyari, Ehsan; Ghorbanzadeh, Milad; Riahifar, Reza; Hadavi, S. M. M.

    2018-05-01

    The LiNi0.5Mn0.3Co0.2O2 (NCM) was synthesized via conventional solution combustion synthesis method. Different amounts of LiFePO4 (10, 20 and 30 wt%) were added to NCM via the ball milling technique to improve electrochemical performance including discharge capacity, cycle stability, and rate capability. The LiNi0.5Mn0.3Co0.2O2/LiFePO4 containing 20 wt% LiFePO4 was considered as the optimum composition according to the electrochemical results and SEM images. The Al powder was added to optimum LiNi0.5Mn0.3Co0.2/LiFePO4-0.2 composite through planetary ball mill to enhance the conductivity of LiNi0.5Mn0.3Co0.2O2/LiFePO4-0.2. The LiNi0.5Mn0.3Co0.2O2/LiFePO4-0.2/Al composite cathodes provide better electrochemical performance compared to pure LiNi0.5Mn0.3Co0.2O2 cathodes. The results indicate that by addition of 20 wt% of LiFePO4, the internal resistance of the electrode as well as the charge transfer resistance are reduced. Due to the strong P–O bond of the PO4 in LiFePO4, side reactions between the active electrode and electrolyte is prevented. In addition, according to weakness of the Ionic conductivity in solid electrolyte, in this paper aluminum powders added to the electrode for resolving this problem.

  14. Electrochemical synthesis of SnCo alloy shells on orderly rod-shaped Cu current collectors as anode materials for lithium-ion batteries with enhanced performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Fangwei; Zhang, Hui, E-mail: meszhanghui@zju.edu.cn; Qi, Yue; Wang, Jiazheng; Du, Ning; Yang, Deren

    2013-09-05

    Highlights: •Nanostructured SnCo/Cu electrodes have been successfully fabricated. •A simple electrodeposition approach was employed. •The Cu arrays offer large surface area and improve electronic/ionic conductivity. •The electrodes show improved performance as anode for Li-ion batteries. •The improved performance was attributed to the nanostructured current collectors. -- Abstract: In this article, we report a two-step electrodeposition method for the synthesis of Cu/SnCo core–shell rod-shaped arrays as anodes of lithium-ion batteries. Firstly, the arrayed Cu nanorods with diameters of 200 nm were fabricated on a Cu foil through an electrodeposition method with alumina oxide membrane (AAO) as the template. Secondly, the SnCo alloy shells were subsequently electrodeposited on the surface of the rod-shaped Cu arrays to form the hybrid nanostructures. These hybrid electrodes delivered the enhanced cyclic performance and high rate capability serving as the anode materials for lithium-ion batteries. The improved electrochemical performance might be attributed to the large surface-to-volume area, sufficient buffering space, and high electronic conductivity associated with these 3-dimensional (3D) nanostructures.

  15. Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors.

    Science.gov (United States)

    Huang, Yan; Huang, Yang; Meng, Wenjun; Zhu, Minshen; Xue, Hongtao; Lee, Chun-Sing; Zhi, Chunyi

    2015-02-04

    The performance of many stretchable electronics, such as energy storage devices and strain sensors, is highly limited by the structural breakdown arising from the stretch imposed. In this article, we focus on a detailed study on materials matching between functional materials and their conductive substrate, as well as enhancement of the tolerance to stretch-induced performance degradation of stretchable supercapacitors, which are essential for the design of a stretchable device. It is revealed that, being widely utilized as the electrode material of the stretchable supercapacitor, metal oxides such as MnO2 nanosheets have serious strain-induced performance degradation due to their rigid structure. In comparison, with conducting polymers like a polypyrrole (PPy) film as the electrochemically active material, the performance of stretchable supercapacitors can be well preserved under strain. Therefore, a smart design is to combine PPy with MnO2 nanosheets to achieve enhanced tolerance to strain-induced performance degradation of MnO2-based supercapacitors, which is realized by fabricating an electrode of PPy-penetrated MnO2 nanosheets. The composite electrodes exhibit a remarkable enhanced tolerance to strain-induced performance degradation with well-preserved performance over 93% under strain. The detailed morphology and electrochemical impedance variations are investigated for the mechanism analyses. Our work presents a systematic investigation on the selection and matching of electrode materials for stretchable supercapacitors to achieve high performance and great tolerance to strain, which may guide the selection of functional materials and their substrate materials for the next-generation of stretchable electronics.

  16. Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor

    International Nuclear Information System (INIS)

    Pang, Mingjun; Long, Guohui; Jiang, Shang; Ji, Yuan; Han, Wei; Wang, Biao; Liu, Xilong; Xi, Yunlong

    2015-01-01

    Highlights: • Graphene/MnO 2 is successfully fabricated by a facile co-precipitation method. • The graphene/MnO 2 electrode reaches 367 Fg −1 in 1 M KOH electrolyte. • The electrode exhibits good cycling performance of 73.9% retention after 1000 cycles. - Abstract: Nanostructured graphene/amorphous α-MnO 2 composites have been synthesized by a facile co-precipitation method under the alkaline condition, in which graphene nanosheets as a supporting substrate to grow MnO 2 . Characterizations of prepared samples’ morphology and microstructures indicate MnO 2 is successfully formed on the surface of graphene by electrostatic interaction. Moreover, the electrochemical properties of the synthesized electrode materials for supercapacitors are studied in a three-electrode experimental setup using a 1 M KOH aqueous solution as the electrolyte. As a result, the specific capacitance of graphene/MnO 2 composite (weight ratio of graphene to MnO 2 is 1:1) determined by a galvanostatic charge–discharge method at a current density of 1 Ag −1 reaches 367 Fg −1 , which is 1.8 and 4.6 fold higher than that of pure graphene and MnO 2 . The capacity retention of the graphene/MnO 2 composite is 73.9% of the original capacitance after 1000 cycles, indicating graphene/MnO 2 composite is a promising electrode material for supercapacitors

  17. 2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances

    Science.gov (United States)

    Xia, Huicong; Zhang, Jianan; Yang, Zhao; Guo, Shiyu; Guo, Shihui; Xu, Qun

    2017-10-01

    Metal-organic frameworks (MOFs) are of great interest as potential electrochemically active materials. However, few studies have been conducted into understanding whether control of the shape and components of MOFs can optimize their electrochemical performances due to the rational realization of their shapes. Component control of MOFs remains a significant challenge. Herein, we demonstrate a solvothermal method to realize nanostructure engineering of 2D nanoflake MOFs. The hollow structures with Ni/Co- and Ni-MOF (denoted as Ni/Co-MOF nanoflakes and Ni-MOF nanoflakes) were assembled for their electrochemical performance optimizations in supercapacitors and in the oxygen reduction reaction (ORR). As a result, the Ni/Co-MOF nanoflakes exhibited remarkably enhanced performance with a specific capacitance of 530.4 F g-1 at 0.5 A g-1 in 1 M LiOH aqueous solution, much higher than that of Ni-MOF (306.8 F g-1) and ZIF-67 (168.3 F g-1), a good rate capability, and a robust cycling performance with no capacity fading after 2000 cycles. Ni/Co-MOF nanoflakes also showed improved electrocatalytic performance for the ORR compared to Ni-MOF and ZIF-67. The present work highlights the significant role of tuning 2D nanoflake ensembles of Ni/Co-MOF in accelerating electron and charge transportation for optimizing energy storage and conversion devices. [Figure not available: see fulltext.

  18. Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance

    International Nuclear Information System (INIS)

    Xu, Xiaowei; Shen, Jianfeng; Li, Na; Ye, Mingxin

    2014-01-01

    Highlights: • RGO/CoMoO 4 nanocomposites are prepared by microwave irradiation for the first time. • RGO/CoMoO 4 nanocomposites show a high specific capacitance of 322.5 F g −1 . • Enhanced electrical conductivity leads to superior electrochemical performance. • Low crystallinity of CoMoO 4 is favorable to improve the electrochemical performance. - Abstract: A facile and efficient strategy for preparing reduced graphene oxide–cobalt molybdate (RGO/CoMoO 4 ) nanocomposites assisted by microwave irradiation for the first time is demonstrated. The resulting nanocomposites are comprised of CoMoO 4 nanoparticles that are well-anchored on graphene sheets by in situ reducing. The prepared RGO/CoMoO 4 nanocomposites have been thoroughly characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy and X-ray photoelectron spectroscopy. Importantly, the prepared nanocomposites exhibit excellent electrochemical performance for supercapacitors. Results show that RGO/CoMoO 4 nanocomposites exhibited much better electrochemical capability than pure-CoMoO 4 and RGO/CoMoO 4 for annealing. RGO/CoMoO 4 nanocomposites with 37.4 wt% CoMoO 4 content achieved a specific capacitance about 322.5 F g −1 calculated from the CV plots at 5 mV s −1 , which was higher than that of pure-CoMoO 4 (95.0 F g −1 ) and RGO/CoMoO 4 for annealing (102.5 F g −1 ). The good electrochemical performance can be attributed to the synergistic effects of the individual components

  19. Aqueous Binder Enhanced High-Performance GeP5 Anode for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jun He

    2018-02-01

    Full Text Available GeP5 is a recently reported new anode material for lithium ion batteries (LIBs, it holds a large theoretical capacity about 2300 mAh g−1, and a high rate capability due to its bi-active components and superior conductivity. However, it undergoes a large volume change during its electrochemical alloying and de-alloying with Li, a suitable binder is necessary to stable the electrode integrity for improving cycle performance. In this work, we tried to apply aqueous binders LiPAA and NaCMC to GeP5 anode, and compared the difference in electrochemical performance between them and traditional binder PVDF. As can be seen from the test result, GeP5 can keep stable in both common organic solvents and proton solvents such as water and alcohol solvents, it meets the application requirements of aqueous binders. The electrochemistry results show that the use of LiPAA binder can significantly improve the initial Coulombic efficiency, reversible capacity, and cyclability of GeP5 anode as compared to the electrodes based on NaCMC and PVDF binders. The enhanced electrochemical performance of GeP5 electrode with LiPAA binder can be ascribed to the unique high strength long chain polymer structure of LiPAA, which also provide numerous uniform distributed carboxyl groups to form strong ester groups with active materials and copper current collector. Benefit from that, the GeP5 electrode with LiPAA can also exhibit excellent rate capability, and even at low temperature, it still shows attractive electrochemical performance.

  20. Electrochemical performance of polypyrrole/silver vanadium oxide composite cathodes in lithium primary batteries

    Science.gov (United States)

    Anguchamy, Yogesh K.; Lee, Jong-Won; Popov, Branko N.

    Polypyrrole (PPy)/silver vanadium oxide (SVO) composite cathode materials were synthesized by polymerizing pyrrole onto the surface of pure SVO particles. Electrochemical characterization was carried out by performing galvanostatic discharge, pulse discharge and ac-impedance experiments. The composite electrode exhibited better performance than pristine SVO in all the experiments. The composite electrodes yielded a higher discharge capacity and a better pulse discharge capability when compared to the pristine SVO electrode. The pulse discharge and ac-impedance studies indicated that PPy forms an effective conductive network on the SVO surface and thereby reduces the particle-to-particle contact resistance and facilitates the interfacial charge transfer kinetics. To determine the thermal stability of the composite cathode, galvanostatic discharge and ac-impedance experiments were performed at different temperatures. The capacity increased with temperature due to enhanced charge transfer kinetics and low mass transfer limitations. The peak capacity was obtained at 60 °C, after which the performance degraded with any further increase in temperature.

  1. Electrochemical performance of polypyrrole/silver vanadium oxide composite cathodes in lithium primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Anguchamy, Yogesh K.; Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2008-09-15

    Polypyrrole (PPy)/silver vanadium oxide (SVO) composite cathode materials were synthesized by polymerizing pyrrole onto the surface of pure SVO particles. Electrochemical characterization was carried out by performing galvanostatic discharge, pulse discharge and ac-impedance experiments. The composite electrode exhibited better performance than pristine SVO in all the experiments. The composite electrodes yielded a higher discharge capacity and a better pulse discharge capability when compared to the pristine SVO electrode. The pulse discharge and ac-impedance studies indicated that PPy forms an effective conductive network on the SVO surface and thereby reduces the particle-to-particle contact resistance and facilitates the interfacial charge transfer kinetics. To determine the thermal stability of the composite cathode, galvanostatic discharge and ac-impedance experiments were performed at different temperatures. The capacity increased with temperature due to enhanced charge transfer kinetics and low mass transfer limitations. The peak capacity was obtained at 60 C, after which the performance degraded with any further increase in temperature. (author)

  2. Zn substitution NiFe_2O_4 nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Mao, Junwei; Hou, Xianhua; Huang, Fengsi; Shen, Kaixiang; Lam, Kwok-ho; Ru, Qiang; Hu, Shejun

    2016-01-01

    Zn"2"+ ion substituted nickel ferrite nanomaterials with the chemical formula Ni_1_−_xZn_xFe_2O_4 for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g"−"1at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni_1_−_xZn_xFe_2O_4 anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  3. Enhanced electrochemical performance of the solid oxide fuel cell cathode using Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Van Nong, Ngo

    2011-01-01

    This paper reports on the electrochemical performance of an SOFC cathode for potential use in intermediate-temperature solid oxide fuel cells (IT-SOFCs) using the oxygen non-stoichiometric misfit-layered cobaltite Ca3Co4O9+δ or composites of Ca3Co4O9+δ with Ce0.9Gd0.1O1.95 (CGO/Ca3Co4O9+δ......). Electrochemical impedance spectroscopy revealed that symmetric cells with an electrode of pure Ca3Co4O9+δ exhibit a cathode polarization resistance (Rp) of 12.4 Ω cm2, at 600 °C in air. Strikingly, Rp of the composite CGO/Ca3Co4O9+δ with 50 vol.% CGO was reduced by a factor of 19 (i.e. Rp = 0.64 Ω cm2......), the lowest value reported so far for the Ca3Co4O9 family of compounds. These findings together with the reported thermal expansion coefficient, good compatibility with CGO and chemical durability of this material suggest that it is a promising candidate cathode for IT-SOFCs....

  4. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Seok [Department of Chemistry, Inha University, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, Incheon 402-751 (Korea, Republic of)

    2011-11-30

    Graphical abstract: This describes the increase of specific capacitance in hybrid electrodes as a function of melamine content. Display Omitted Highlights: > For N-enriched hybrid carbons, co-precursors, PVDF/melamine composites, were used. > Microporous carbons were formed by only carbonization without chemical activation. > The nitrogen content of microporous carbons was controlled by melamine content. > N-doped carbons showed higher specific capacitance compared to microporous carbons. > It was attributed to the easy electron transfer and pseudocapacitance. - Abstract: Nitrogen-doped microporous carbons (N-MCs) were prepared by the carbonization of the polyvinylidene fluoride (PVDF)/melamine mixture without chemical activation. The electrochemical performance of the N-MCs was investigated as a function of PVDF/melamine ratio. It was found that, without additional activation, the N-MCs had a high specific surface area (greater than 560 m{sup 2}/g) because of the micropore formation by the release of fluorine groups. In addition, although the specific surface area decreased, nitrogen groups were increased with increasing melamine content, leading to an enhanced electrochemical performance. Indeed, the N-MCs showed a better electrochemical performance than that of microporous carbons (MCs) prepared by PVDF alone, and the highest specific capacitance (310 F/g) was obtained at a current density of 0.5 A/g, as compared to a value of 248 F/g for MCs. These results indicate that the microporous features of N-MC lead to feasible ion transfer during charge/discharge duration and the presence of nitrogen groups as strong electron donor on the N-MC electrode in electrolyte could provide a pseudocapacitance by the redox reaction.

  5. Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Shubin; Song, Huaihe; Chen, Xiaohong; Okotrub, A.V.; Bulusheva, L.G.

    2007-01-01

    The effects of etching process on the morphology, structure and electrochemical performance of arc-produced multiwalled carbon nanotubes (CNTs) as anode material for lithium-ion batteries were systematically investigated by TEM and a variety of electrochemical testing techniques. It was found that the etched CNTs exhibited four times higher reversible capacity than that of raw CNTs, and possessed excellent cyclability with almost 100% capacity retention after 30 cycles. The kinetic properties of three kinds of CNTs electrodes involving the pristine (CNTs-1), etched (CNTs-2) as well as etch-carbonized samples (CNTs-3) were characterized via ac impedance measurement. It was indicated that, after 30 cycles the exchange current density i 0 of etched CNTs ((7.6-7.8) x 10 -3 A cm -2 ) was higher than that of the raw CNTs (5.9 x 10 -3 A cm -2 ), suggesting the electrochemical activity of CNTs was enhanced by the etching treatment. The storage characteristics of the CNTs electrodes at room temperature and 50 o C were particularly compared. It was found that the film resistance on CNTs electrode generally tended to become large with the elongation of storage time, especially storage at high temperature. In comparison with CNTs-1 and CNTs-3, CNTs-2 exhibited more distinctly increase of film resistance, which is related with the surface properties

  6. In situ polymerization and characterization of grafted poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite with high electrochemical performances

    International Nuclear Information System (INIS)

    Bai, Xiaoxia; Hu, Xiujie; Zhou, Shuyun; Yan, Jun; Sun, Chenghua; Chen, Ping; Li, Laifeng

    2013-01-01

    Graphical abstract: The homogeneously grafted PEDOT/MWCNTs containing numerous whorl fingerprint-like open ends endows with excellent electrochemical performances. Highlights: ► A ternary phase system with the surfactant AOT is utilized to efficiently solve the problem of the aggregation of MWCNTs. ► The homogenously grafted PEDOT/MWCNTs composite is synthesized by in situ chemical polymerization in the ternary phase system. ► The core–shell nanotubes contain many whorl fingerprint-like open ends that are greatly favorable for the transportation of the electrons and ions. ► The energy density of grafted PEDOT/MWCNTs has been enhanced by a factor of four comparing to that of native MWCNTs. ► The grafted PEDOT/MWCNTs composite manifests better cycle durability than both the constituents. - Abstract: The homogenously grafted composite of poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes (PEDOT/MWCNTs) is synthesized by in situ chemical polymerization in a ternary phase system. When carbon nanotubes are dispersed in this system containing sodium bis(2-ethylhexyl) sulfosuccinate (AOT), the surfactant AOT can efficiently hinter the aggregation of MWCNTs by absorbing and arranging regularly on the MWCNT surface. It is greatly advantageous to the stabilization of MWCNTs, which leads to the equally grafted composite. Its morphology was observed by scanning and transmission electron microscopes. Especially, the core–shell nanotubes contain many whorl fingerprint-like open ends that are efficiently favorable for the transportation of the electrons and ions. Such grafted PEDOT/MWCNTs composite nanotubes manifest enhanced electrochemical performances. We investigate the application of PEDOT/MWCNTs as a high-property supercapacitor and test its capacitive performance by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The energy density of grafted composite, 11.3 Wh kg −1 , has been enhanced by a factor

  7. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor

    International Nuclear Information System (INIS)

    Yang Miaomiao; Cheng Bin; Song Huaihe; Chen Xiaohong

    2010-01-01

    Nitrogen-containing carbon nanotubes (CNTs) with open end and low specific surface area were prepared via the carbonization of polyaniline (PANI) nanotubes synthesized by a rapidly mixed reaction. On the basis of analyzing the morphologies and structures of the original and carbonized PANI nanotubes, the electrochemical properties of PANI-based CNTs obtained at different temperatures as electrode materials for supercapacitors using 30 wt.% aqueous solution of KOH as electrolyte were investigated by galvanostatic charge/discharge and cyclic voltammetry. It was found that the carbonized PANI nanotubes at 700 o C exhibit high specific capacitance of 163 F g -1 at a current density of 0.1 A g -1 and excellent rate capability in KOH solution. Using X-ray photoelectron spectroscopy measurement the nitrogen state and content in PANI-CNTs were analysed, which could play important roles for the enhancement of electrochemical performance. When the appropriate content of nitrogen is present, the presence of pyrrole or pyridone and quaternary nitrogen is beneficial for the improvement of electron mobility and the wettability of electrode.

  8. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yang Miaomiao; Cheng Bin [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Song Huaihe, E-mail: songhh@mail.buct.edu.c [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Chen Xiaohong [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-09-30

    Nitrogen-containing carbon nanotubes (CNTs) with open end and low specific surface area were prepared via the carbonization of polyaniline (PANI) nanotubes synthesized by a rapidly mixed reaction. On the basis of analyzing the morphologies and structures of the original and carbonized PANI nanotubes, the electrochemical properties of PANI-based CNTs obtained at different temperatures as electrode materials for supercapacitors using 30 wt.% aqueous solution of KOH as electrolyte were investigated by galvanostatic charge/discharge and cyclic voltammetry. It was found that the carbonized PANI nanotubes at 700 {sup o}C exhibit high specific capacitance of 163 F g{sup -1} at a current density of 0.1 A g{sup -1} and excellent rate capability in KOH solution. Using X-ray photoelectron spectroscopy measurement the nitrogen state and content in PANI-CNTs were analysed, which could play important roles for the enhancement of electrochemical performance. When the appropriate content of nitrogen is present, the presence of pyrrole or pyridone and quaternary nitrogen is beneficial for the improvement of electron mobility and the wettability of electrode.

  9. Electrochemical supercapacitor behaviour of functionalized candle ...

    Indian Academy of Sciences (India)

    ... and G (graphite) phase of carbon present in the candle soots. The electrochemical characterization was performed by cyclic voltammetry, galvanostatic charge/discharge test and impedance spectroscopy in 1MH2SO4 electrolyte. The functionalized candle soot electrode showed an enhanced specific capacitance value of ...

  10. Simple Synthesis and Enhanced Performance of Graphene Oxide-Gold Composites

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-01-01

    Full Text Available Graphene oxide-gold composites were prepared by one-step reaction in aqueous solution, where the gold nanoparticles were deposited on the graphene oxide during their synthesis process. Transmission electron morphology, X-ray diffraction, Roman spectra, and UV-Vis absorption spectra were used to characterize the obtained composites. Furthermore, based on the BET analysis results, it was found that the surface area of the composite film was obviously enhanced compared with the synthesized graphene oxide. Electrochemical measurements indicated that the modification of the composites on electrode could efficiently enhance the voltammetric response, suggesting the potential application for making electrochemical sensors.

  11. Facile synthesis of Fe-incorporated CuO nanoarrays with enhanced electrochemical performance for lithium ion full batteries

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Bojun [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Department of Applied Physics, Wuhan University of Science and Technology, Wuhan, 430065 (China); Qing, Chen; Wang, Hai; Sun, Daming; Wang, Bixiao [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Tang, Yiwen, E-mail: ywtang@phy.ccnu.edu.cn [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China)

    2015-11-15

    CuO nanoarrays (CNAs) and Fe-incorporated CuO nanoarrays (FCNAs) were fabricated by hydrothermal method. Addition of Fe salt to the reaction mixture allowed the introduction of iron oxide onto the CNAs surface, which was characterized by XPS and HRTEM. Introducing Fe ion into reaction precursor significantly affected not only the morphologies of as-prepared products but also their electrochemical performance as anode for lithium ion full battery. The FCNAs electrodes showed higher specific capacity and better capacity retention at different current densities than that of CNAs. - Highlights: • Fe-incorporated CuO nanoarrays were fabricated by hydrothermal method. • Fe salt in reaction mixture leads to iron oxides forming on the surface of CuO. • Fe-incorporating improves the lithium ion battery performance of CuO anodes.

  12. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  13. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.

    Science.gov (United States)

    Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi

    2015-02-07

    Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.

  14. Carbon treated self-ordered TiO{sub 2} nanotube arrays with enhanced lithium-ion intercalation performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Sik [Energy Material Group, Lotte Chemical, 115, Gajeongbuk-ro, Yuseong-gu, Daejeon 305-726 (Korea, Republic of); Yu, Seung-Ho; Sung, Yung-Eun [School of Chemical and Biological Engineering and Research Center for Energy Conversion and Storage, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kang, Soon Hyung, E-mail: skang@jnu.ac.kr [Department of Chemical Education, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-06-01

    Highlights: • C-doped TONT was prepared by anodization, followed by acetylene treatment. • C-doped TONT exhibited the superior cycle performance and electrochemical kinetics. • It was attributed from the enhanced electrical conductivity from carbon doping. - Abstract: Vertically aligned TiO{sub 2} nanotube (TONT) arrays on titanium substrate developed by facile electrochemical anodization in an aqueous solution of 0.5 M Na{sub 2}SO{sub 4}, 0.5 M H{sub 3}PO{sub 4}, 0.2 M sodium citrate, and 0.5 wt% NaF were prepared having a pore diameter and thickness of 100 nm and 1.2 μm, respectively. The undoped (u-doped) TONT arrays possessing an anatase phase were again annealed at 500 °C under a mixed gas flux of nitrogen (N{sub 2}) and acetylene (C{sub 2}H{sub 2}), to induce the enhancement of electrical conductivity. It was designated as carbon-doped (c-doped) TONT arrays. Undoped and c-doped TONT arrays were compared using various characterization tools, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and X-ray photoelectron spectroscopy (XPS). Furthermore, based on several electrochemical tests (galvanostatic charge/discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS)), it was observed that c-doped TONT arrays revealed improved charge/discharge capacity, cycle stability, and rate capability, due to the enhanced electrical conductivity of c-doped TONT arrays.

  15. Enhanced electrochemical performances of PANI using redox additive of K{sub 4}[Fe(CN){sub 6}] in aqueous electrolyte for symmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugavani, A.; Kaviselvi, S.; Sankar, K.Vijaya; Selvan, R.Kalai, E-mail: selvankram@buc.edu.in

    2015-02-15

    Highlights: • Effect of K{sub 4}[Fe(CN){sub 6}] in H{sub 2}SO{sub 4} studied on the electrochemical properties of PANI. • The polaron band – π* transition reveals the emeraldine salt (conductive) form. • CV curves exhibit quasi-reversible redox behavior. • Symmetric PANI SC shows 228 F g{sup −1} at 1 mA cm{sup −2} in K{sub 4}[Fe (CN){sub 6}] added 1 M H{sub 2}SO{sub 4}. • PANI-1 symmetric supercapacitor shows almost 100% of capacity retention. - Abstract: Polyaniline (PANI) particles were prepared by reflux assisted chemical oxidative polymerization method with the aid of ammonium per sulfate/ferric chloride as oxidants and HCl/H{sub 2}SO{sub 4} as the medium. Amorphous nature and the emeraldine state of PANI were revealed from X-ray diffraction and Fourier transform infrared analysis. Moreover, ultra violet–visible spectra attributes to the polaron band – π* transition of polyaniline. The scanning electron microscopic image shows that the particle size is in the range of 0.2–2 μm. The electrochemical performances of the material were investigated in 1 M H{sub 2}SO{sub 4} and 0.08 M K{sub 4}[Fe(CN){sub 6}] added 1 M H{sub 2}SO{sub 4} aqueous electrolytes. Cyclic voltammetry and galvanostatic charge–discharge studies were carried out to find its suitability as a supercapacitor electrode material. The charge discharge analysis of the fabricated symmetric supercapacitors revealed the fact that the electrolyte containing redox additive (0.08 M K{sub 4}[Fe(CN){sub 6}]) delivered an enhanced specific capacitance of 228 F g{sup −1} (∼912 F g{sup −1} for single electrode) than that of 1 M H{sub 2}SO{sub 4} (100 F g{sup −1}) at 1 mA cm{sup −2}. Further cycling stability is performed at 5 mA cm{sup −2} ensures the durability of the supercapacitor.

  16. “Double-Sandwich-Like” CuS@reduced graphene oxide as an Anode in Lithium Ion Batteries with Enhanced Electrochemical Performance

    International Nuclear Information System (INIS)

    Ren, Yurong; Wei, Hengma; Yang, Bo; Wang, Jiawei; Ding, Jianning

    2014-01-01

    Graphical abstract: CuS@reduced graphene oxide displays excellent electrochemical behavior as an anode material for Lithium ion batteries. - Abstract: The CuS@reduced graphene oxide (CSG) was synthesized and used as an anode material in lithium ion batteries (LIBs). CuS nanoparticles were homogeneously dispersed on the surfaces of reduced graphene oxide (rGO) nanosheets via a hydrothermal method. The rGO nanosheets in the CSG hydrids can improve the electrical conductivity and structure stability of CSG. The LIB with a CSG anode displays excellent performance, with a first discharge capacity up to 851 mAh/g, a reversible capacity of 648.1 mAh/g in the initial cycle, and an enhanced cyclic performance with a discharge capacity of 710.7 mAh/g at the 100 th cycle, which corresponds to 114.3% of the theoretical value of CSG and 83.5% of the first discharge capacity accompanied by an excellent Coulombic efficiency of 99.1% at a current density of 0.2 C, which is much larger than (close to 4.5 times) that with a pure CuS anode at the 100 th cycle (159.7 mAh/g). This phenomenon can be attributed to the synergistic action of CuS nanoparticles and rGO nanosheets in the “double-sandwich-like” CSG hybrids. These results indicate that CSG is an excellent anode material and has promising prospects in lithium ion batteries applications

  17. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance

    International Nuclear Information System (INIS)

    Kim, Ki-Seok; Park, Soo-Jin

    2011-01-01

    Graphical abstract: This describes the increase of specific capacitance in hybrid electrodes as a function of melamine content. Display Omitted Highlights: → For N-enriched hybrid carbons, co-precursors, PVDF/melamine composites, were used. → Microporous carbons were formed by only carbonization without chemical activation. → The nitrogen content of microporous carbons was controlled by melamine content. → N-doped carbons showed higher specific capacitance compared to microporous carbons. → It was attributed to the easy electron transfer and pseudocapacitance. - Abstract: Nitrogen-doped microporous carbons (N-MCs) were prepared by the carbonization of the polyvinylidene fluoride (PVDF)/melamine mixture without chemical activation. The electrochemical performance of the N-MCs was investigated as a function of PVDF/melamine ratio. It was found that, without additional activation, the N-MCs had a high specific surface area (greater than 560 m 2 /g) because of the micropore formation by the release of fluorine groups. In addition, although the specific surface area decreased, nitrogen groups were increased with increasing melamine content, leading to an enhanced electrochemical performance. Indeed, the N-MCs showed a better electrochemical performance than that of microporous carbons (MCs) prepared by PVDF alone, and the highest specific capacitance (310 F/g) was obtained at a current density of 0.5 A/g, as compared to a value of 248 F/g for MCs. These results indicate that the microporous features of N-MC lead to feasible ion transfer during charge/discharge duration and the presence of nitrogen groups as strong electron donor on the N-MC electrode in electrolyte could provide a pseudocapacitance by the redox reaction.

  18. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    Science.gov (United States)

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Electrochemical Synthesis of Nitro-Chitosan and Its Performance in Chromium Removal

    Directory of Open Access Journals (Sweden)

    Scott M. McLennan

    2013-07-01

    Full Text Available A synthesized polymeric form of chitosan, electrochemically precipitated and photochemically modified, has been found to have significant value in removal of toxic chromate oxyanions from solution. Fourier Transform Infra-Red (FTIR, Raman and X-ray photoelectron spectroscopy (XPS indicated that a significant percentage of the amine functional groups were oxidized to nitro groups as a result of reactions with hydroxyl ions formed in the electrochemical process with additional oxidation occurring as a result of exposure to ultra-violet light. The adsorption capacity of the modified chitosan for chromate was investigated in a batch system by taking into account effects of initial concentration, pH of the solution and contact time. Nitro-chitosan showed greater adsorption capacity towards Cr (VI than other forms of chitosan, with a maximum adsorption of 173 mg/g. It was found that pH 3 is the optimum for adsorption, a Langmuir model is the best fit for the adsorption isotherm, and the kinetics of reaction followed a pseudo second order function. Overall, our results indicate that electrochemical modification of chitosan is an effective method to enhance the reactivity of chitosan towards metals.

  20. Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance

    International Nuclear Information System (INIS)

    Guan Xiangfeng; Li Liping; Li Guangshe; Fu Zhengwei; Zheng Jing; Yan Tingjiang

    2011-01-01

    Graphical abstract: Hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and these microspheres showed excellent cycle performance and enhanced lithium storage capacity. Display Omitted Research highlights: → Hierarchical CuO hollow microspheres were prepared by a hydrothermal method. → The CuO hollow microspheres were assembled from radically oriented nanorods. → The growth mechanism was proposed to proceed via self-assembly and Ostwald's ripening. → The microspheres showed good cycle performance and enhanced lithium storage capacity. → Hierarchical microstructures with hollow interiors promote electrochemical property. - Abstract: In this work, hierarchical CuO hollow microspheres were hydrothermally prepared without use of any surfactants or templates. By controlling the formation reaction conditions and monitoring the relevant reaction processes using time-dependent experiments, it is demonstrated that hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and that hierarchical spheres could be tuned to show different morphologies and microstructures. As a consequence, the formation mechanism was proposed to proceed via a combined process of self-assembly and Ostwald's ripening. Further, these hollow microspheres were initiated as the anode material in lithium ion batteries, which showed excellent cycle performance and enhanced lithium storage capacity, most likely because of the synergetic effect of small diffusion lengths in building blocks of nanorods and proper void space that buffers the volume expansion. The strategy reported in this work is reproducible, which may help to significantly improve the electrochemical performance of transition metal oxide-based anode materials via designing the hollow structures necessary for developing lithium ion batteries and the relevant

  1. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    Science.gov (United States)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  2. High-performance asymmetric supercapacitors based on core/shell cobalt oxide/carbon nanowire arrays with enhanced electrochemical energy storage

    International Nuclear Information System (INIS)

    Pan, G.X.; Xia, X.H.; Cao, F.; Chen, J.; Tang, P.S.; Zhang, Y.J.; Chen, H.F.

    2014-01-01

    Graphical abstract: - Highlights: • We prepared a self-supported porous Co 3 O 4 /C core/shell nanowire array. • Core/shell nanowire array showed high pseudo-capacitive properties. • Core/shell array structure was favorable for fast ion and electron transfer. - Abstract: High-reactivity electrode materials are indispensible for developing high-performance electrochemical energy storage devices. Herein, we report self-supported core/shell Co 3 O 4 /C nanowire arrays by using hydrothermal synthesis and chemical vapor deposition methods. A uniform and thin carbon shell is coated on the surface of Co 3 O 4 nanowire forming core/shell nanowires with diameters of ∼100 nm. Asymmetric supercapacitors have been assembled with the core/shell Co 3 O 4 /C nanowire arrays as the positive electrode and activated carbon (AC) as the negative electrode. The core/shell Co 3 O 4 /C nanowire arrays exhibit a specific capacity of 116 mAh g −1 at the working current of 100 mA (4 A g −1 ), and a long cycle life along with ∼ 92% retention after 8000 cycles at 4 A g −1 , higher than the unmodified Co 3 O 4 nanowire arrays (81 mAh g −1 at 4 A g −1 ). The introduction of uniform carbon layer into the core/shell structure is favorable for the enhancement of supercapacitor due to the improved electrical conductivity and reaction kinetics

  3. Biomass derived porous nitrogen doped carbon for electrochemical devices

    Directory of Open Access Journals (Sweden)

    Litao Yan

    2017-04-01

    Full Text Available Biomass derived porous nanostructured nitrogen doped carbon (PNC has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li–S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions, hydrogen evolution reaction are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. Keywords: Biomass, Nitrogen doped carbon, Batteries, Fuel cell, Electrolyzer

  4. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity

    International Nuclear Information System (INIS)

    Xu Bin; Wu Feng; Su Yuefeng; Cao Gaoping; Chen Shi; Zhou Zhiming; Yang Yusheng

    2008-01-01

    This work is focused on the competitive effects on the performance of the electric double layer capacitors (EDLCs) between porosity increase and simultaneous conductivity decrease for KOH-activated carbon nanotubes (CNTs). A series of the CNTs have been activated with KOH to enhance their surface areas for application in EDLCs. The microstructure of the activated carbon nanotubes (ACNTs) is characterized with N 2 adsorption, transmission electron microscopy (TEM) observation and electric conductivity measurement. Their electrochemical performances are evaluated in aqueous KOH electrolyte with galvanostatic charge/discharge, cyclic voltammetry, and ac impedance spectroscopy. It is found that the KOH activation enhances the specific surface area of the CNTs and its specific capacitance but decreases its electric conductivity and the rate performance in EDLC. By controlling the activation of the CNTs to balance the porosity and conductivity, ACNTs with both high capacitance and good rate performance are obtained

  5. Self-Assembled α-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors.

    Science.gov (United States)

    Yang, Shuhua; Song, Xuefeng; Zhang, Peng; Sun, Jing; Gao, Lian

    2014-06-12

    Self-assembled α-Fe2O3 mesocrystals/graphene nanohybrids have been successfully synthesized and have a unique mesocrystal porous structure, a large specific surface area, and high conductivity. Mesocrystal structures have recently attracted unparalleled attention owing to their promising application in energy storage as electrochemical capacitors. However, mesocrystal/graphene nanohybrids and their growth mechanism have not been clearly investigated. Here we show a facile fabrication of short rod-like α-Fe2O3 mesocrystals/graphene nanohybrids by self-assembly of FeOOH nanorods as the primary building blocks on graphene under hydrothermal conditions, accompanied and promoted by concomitant phase transition from FeOOH to α-Fe2O3. A systematic study of the formation mechanism is also presented. The galvanostatic charge/discharge curve shows a superior specific capacitance of the as-prepared α-Fe2O3 mesocrystals/graphene nanohybrid (based on total mass of active materials), which is 306.9 F g(-1) at 3 A g(-1) in the aqueous electrolyte under voltage ranges of up to 1 V. The nanohybrid with unique sufficient porous structure and high electrical conductivity allows for effective ion and charge transport in the whole electrode. Even at a high discharge current density of 10 A g(-1), the enhanced ion and charge transport still yields a higher capacitance (98.2 F g(-1)), exhibiting enhanced rate capability. The α-Fe2O3 mesocrystal/graphene nanohybrid electrode also demonstrates excellent cyclic performance, which is superior to previously reported graphene-based hematite electrode, suggesting it is highly stable as an electrochemical capacitor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Fang; Yao, Yuze; Wang, Haiyan; Xu, Gui-Liang; Amine, Khalil; Sun, Shi-Gang; Shao, Minhua

    2017-04-08

    Rational and precise control of the structure and dimension of electrode materials is an efficient way to improve their electrochemical performance. In this work, solvothermal or co-precipitation method is used to synthesize lithium-rich layered oxide materials of Li1.2Mn0.56Co0.12Ni0.12O2 (LLO) with various morphologies and structures, including microspheres, microrods, nanoplates, and irregular nanoparticles. These materials exhibit strong structure- dependent electrochemical properties. The porous hierarchical structured LLO microrods exhibit the best performance, delivering a discharge capacity of 264.6 mAh g(-1) at 0.5 C with over 91% retention after 100 cycles. At a high rate of 5 C, a high discharge capacity of 173.6 mAh g(-1) can be achieved. This work reveals the relationship between the morphologies and electrochemical properties of LLO cathode materials, and provides a feasible approach to fabricating robust and high-performance electrode materials for lithium-ion batteries.

  7. Electrochemical Performance of Ni-MOFs for Supercapacitors

    Science.gov (United States)

    Li, Yujuan; Song, Lili; Han, Yinghui; Wang, Guangyou

    2018-03-01

    In this work, the Ni-MOFs of electrode material has been synthesized, characterized and studied for the electrochemical properties of electrode materials. The effects of the doping amount of Ni, calcination temperature and time were studied in detail. The results suggested that the electrochemical properties were obviously improved by the Ni-MOFs of electrode material and the best preparation conditions can also improve the electrochemical properties of electrode materials. These results open a way for the design of tailored MOFs as electrode materials for supercapacitors.

  8. Neutron diffraction analysis and electrochemical performance of spinel Ni(Mn{sub 2−x}Co{sub x})O{sub 4} as anode materials for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hu; Liu, Lei; Hu, Zhongbo [College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Limei, E-mail: sunlm@ciae.ac.cn [Department of Nuclear and Physics, China Institute of Atomic Energy, Beijing 102413 (China); Han, Songbai; Liu, Yuntao; Chen, Dongfeng [Department of Nuclear and Physics, China Institute of Atomic Energy, Beijing 102413 (China); Liu, Xiangfeng, E-mail: liuxf@ucas.ac.cn [College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-05-15

    Highlights: • The reversible capacity and cyclability of Ni(Mn{sub 2−x}Co{sub x})O{sub 4} first increases and then decreases with increasing Co content. • Neutron diffraction and Rielveld refinements are applied to analyze the site occupancies of Mn, Co, O and Ni. • Excessive Co ions in 8a and 16d sites reduce the structure stability leading to poor electrochemical performance. - Abstract: The effects of Co substitution on the structure and electrochemical performances of spinel Ni(Mn{sub 2−x}Co{sub x})O{sub 4} (x = 0, 0.5, and 1.0) have been investigated. With the increase of Co content the lattice parameters decrease owing to the smaller ion radius of Co than Mn. The reversible capacity and cyclability of Ni(Mn{sub 2−x}Co{sub x})O{sub 4} first increase and then decrease with the increase of Co content and NiMn{sub 1.5}Co{sub 0.5}O{sub 4} shows the best electrochemical performance in compared to the other two samples. Neutron diffraction and Rielveld refinement are further applied to analyze the site occupancies of the elements of Mn, Co, O and Ni. A certain amount of Co ions substitution are favorable to enhance the electrochemical performance, but excessive Co ions in 8a and 16d sites reduce the stability of host structure which leads to the poor electrochemical performance.

  9. Water/ionic liquid/organic three-phase interfacial synthesis of coral-like polypyrrole toward enhanced electrochemical capacitance

    International Nuclear Information System (INIS)

    Hou Linrui; Yuan Changzhou; Li Diankai; Yang Long; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Highlights: → Interfacial synthesis strategies are proposed to synthesize PPy samples. → Water/ionic liquid /organic three-phase interface for preparing coral-like PPy. → Coral-like PPy with more ordered structure and better electronic conductivity. → Coral-like PPy owns higher rate performance and better electrochemical stability. - Abstract: Two interfacial synthesis strategies are proposed to synthesize polypyrrole samples for electrochemical capacitors (ECs). In contrast to water/organic two-phase route, unique water/ionic liquid (IL)/organic three-phase interface strategy is first performed to prepare coral-like polypyrrole with even better electrochemical capacitance, where 1-Ethyl-3-methylimidazolium tetrafluoroborate IL, as a 'buffering zone', is set between the water and organic phases to control the morphology and micro-structure of the polypyrrole phase during polymerization. The polypyrrole synthesized by three-phase interfacial route owns more ordered structure, less charge transfer resistance and better electronic conductivity, compared with two-phase method, and delivers larger specific capacitance, higher rate performance and better electrochemical stability at large current densities in 3 M KCl aqueous electrolyte.

  10. Electrochemical performances of lithium ion battery using alkoxides of group 13 as electrolyte solvent

    International Nuclear Information System (INIS)

    Kaneko, Fuminari; Masuda, Yuki; Nakayama, Masanobu; Wakihara, Masataka

    2007-01-01

    Tris(methoxy polyethylenglycol) borate ester (B-PEG) and aluminum tris(polyethylenglycoxide) (Al-PEG) were used as electrolyte solvent for lithium ion battery, and the electrochemical property of these electrolytes were investigated. These electrolytes, especially B-PEG, showed poor electrochemical stability, leading to insufficient discharge capacity and rapid degradation with cycling. These observations would be ascribed to the decomposition of electrolyte, causing formation of unstable passive layer on the surface of electrode in lithium ion battery at high voltage. However, significant improvement was observed by the addition of aluminum phosphate (AlPO 4 ) powder into electrolyte solvent. AC impedance technique revealed that the increase of interfacial resistance of electrode/electrolyte during cycling was suppressed by adding AlPO 4 , and this suppression could enhance the cell capabilities. We infer that dissolved AlPO 4 components formed electrochemically stable layer on the surface of electrode

  11. Microwave-assisted synthesis of high-voltage nanostructured LiMn1.5Ni0.5O4 spinel: tuning the Mn3+ content and electrochemical performance

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-08-01

    Full Text Available on the Mn3+ concentration and electrochemistry of the LiMn1.5Ni0.5O4 spinel. It is shown that microwave is capable of tuning the Mn3+ content of the spinel for enhanced electrochemical performance (high capacity, high capacity retention, excellent rate...

  12. Polypyrrole layer coated MnO{sub x}/Fe{sub 2}O{sub 3} nanotubes with enhanced electrochemical performance for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rencheng, E-mail: jinrc427@126.com; Wang, Qingyao; Li, Honghao; Ma, Yuqian; Sun, Yexian; Li, Guihua

    2017-05-01

    Highlights: • MnO{sub x}/Fe{sub 2}O{sub 3}/polypyrrole nanotubes have been fabricated by a facile method. • The composites display the specific capacity of 1060 mA h g{sup −1} after 100 cycles. • The specific capacity maintains at 630 mA h g{sup −1} at 5000 mA g{sup −1}. - Abstract: MnO{sub x}/Fe{sub 2}O{sub 3}/polypyrrole nanotubes have been fabricated by a facile method, which involves a hydrothermal method, chemical solution route, annealing process and a subsequent chemical polymerization method. Electrochemical measurement shows that MnO{sub x}/Fe{sub 2}O{sub 3}/polypyrrole nanotubes display excellent electrochemical properties. A reversible specific capacity of 1060 mA h g{sup −1} is achieved after 100 cycles at the current density of 200 mA g{sup −1}. Even at higher current density of 5000 mA g{sup −1}, the specific capacity of the electrode can be kept at 630 mA h g{sup −1}. The excellent electrochemical performances are ascribed to the synergetic effect of different components and the conductive polypyrrole layer.

  13. All-Carbon Electrode Consisting of Carbon Nanotubes on Graphite Foil for Flexible Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Je-Hwang Ryu

    2014-03-01

    Full Text Available We demonstrate the fabrication of an all-carbon electrode by plasma-enhanced chemical vapor deposition for use in flexible electrochemical applications. The electrode is composed of vertically aligned carbon nanotubes that are grown directly on a flexible graphite foil. Being all-carbon, the simple fabrication process and the excellent electrochemical characteristics present an approach through which high-performance, highly-stable and cost-effective electrochemical applications can be achieved.

  14. Rapid synthesis of graphene/amorphous α-MnO{sub 2} composite with enhanced electrochemical performance for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Mingjun [Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Jiefang Road 2519, Changchun 130012 (China); Long, Guohui [College of Life Sciences, Jilin Agricultural University, Changchun 130118 (China); Jiang, Shang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Ji, Yuan, E-mail: jiyuan@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Jiefang Road 2519, Changchun 130012 (China); Han, Wei [Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Jiefang Road 2519, Changchun 130012 (China); Wang, Biao [Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Jiefang Road 2519, Changchun 130012 (China); School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); Liu, Xilong; Xi, Yunlong [Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Jiefang Road 2519, Changchun 130012 (China)

    2015-04-15

    Highlights: • Graphene/MnO{sub 2} is successfully fabricated by a facile co-precipitation method. • The graphene/MnO{sub 2} electrode reaches 367 Fg{sup −1} in 1 M KOH electrolyte. • The electrode exhibits good cycling performance of 73.9% retention after 1000 cycles. - Abstract: Nanostructured graphene/amorphous α-MnO{sub 2} composites have been synthesized by a facile co-precipitation method under the alkaline condition, in which graphene nanosheets as a supporting substrate to grow MnO{sub 2}. Characterizations of prepared samples’ morphology and microstructures indicate MnO{sub 2} is successfully formed on the surface of graphene by electrostatic interaction. Moreover, the electrochemical properties of the synthesized electrode materials for supercapacitors are studied in a three-electrode experimental setup using a 1 M KOH aqueous solution as the electrolyte. As a result, the specific capacitance of graphene/MnO{sub 2} composite (weight ratio of graphene to MnO{sub 2} is 1:1) determined by a galvanostatic charge–discharge method at a current density of 1 Ag{sup −1} reaches 367 Fg{sup −1}, which is 1.8 and 4.6 fold higher than that of pure graphene and MnO{sub 2}. The capacity retention of the graphene/MnO{sub 2} composite is 73.9% of the original capacitance after 1000 cycles, indicating graphene/MnO{sub 2} composite is a promising electrode material for supercapacitors.

  15. Preparation of hollow Zn2SnO4 boxes@C/graphene ternary composites with a triple buffering structure and their electrochemical performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang, Haijian; Huang, Ying; Wang, Mingyue; Chen, Xuefang; Zhao, Yang; Wang, Ke; Wu, Haiwei

    2014-01-01

    Highlights: • A new hollow Zn 2 SnO 4 boxes@C/graphene ternary composites were synthesized through two hydrothermal processes followed by a calcined process for the first time. • The structure, morphology and electrochemical properties of the ternary composites were investigated by means of XRD, FTIR, Raman, BET, BJH, SEM, TEM, and electrochemical measurements. • The hollow Zn 2 SnO 4 boxes@C/graphene ternary composites were proved to have a triple buffering nanostructure. The hollow interior of the Zn 2 SnO 4 boxes, the carbon coating layer on the surface of the boxes and the 3D carbon network constructed by the graphene sheets can work together to effectively improve the electrochemical performance of the material. • The hollow Zn 2 SnO 4 boxes@C/graphene ternary composites show an enhanced electrochemical performance (726.9 mAh g −1 at a current density of 300 mA g −1 after 50 cycles) and high rate capability compared with the hollow Zn 2 SnO 4 boxes@graphene binary composites, the hollow Zn 2 SnO 4 boxes@C binary composites, the hollow Zn 2 SnO 4 boxes and the solid Zn 2 SnO 4 cubes. - Abstract: Hollow Zn 2 SnO 4 boxes@C/graphene ternary composites with a three-dimensional triple buffering structure are prepared by two hydrothermal processes followed by a calcined process. The structure, morphology and electrochemical properties of the ternary composites were investigated by means of XRD, FTIR, Raman, BET, BJH, SEM, TEM, and electrochemical measurements. The hollow Zn 2 SnO 4 boxes are coated with carbon layer and then supported by graphene sheets to form a 3D carbon conductive network. Compared with the hollow Zn 2 SnO 4 boxes@graphene binary composites, the hollow Zn 2 SnO 4 boxes@C binary composites, the hollow Zn 2 SnO 4 boxes and the solid Zn 2 SnO 4 cubes, the hollow Zn 2 SnO 4 boxes@C/graphene ternary composites show an enhanced electrochemical performance (726.9 mAh g −1 at a current density of 300 mA g −1 after 50 cycles) and high rate

  16. Nanotechnology: A Tool for Improved Performance on Electrochemical Screen-Printed (BioSensors

    Directory of Open Access Journals (Sweden)

    Elena Jubete

    2009-01-01

    Full Text Available Screen-printing technology is a low-cost process, widely used in electronics production, especially in the fabrication of disposable electrodes for (biosensor applications. The pastes used for deposition of the successive layers are based on a polymeric binder with metallic dispersions or graphite, and can also contain functional materials such as cofactors, stabilizers and mediators. More recently metal nanoparticles, nanowires and carbon nanotubes have also been included either in these pastes or as a later stage on the working electrode. This review will summarize the use of nanomaterials to improve the electrochemical sensing capability of screen-printed sensors. It will cover mainly disposable sensors and biosensors for biomedical interest and toxicity monitoring, compiling recent examples where several types of metallic and carbon-based nanostructures are responsible for enhancing the performance of these devices.

  17. Controllable synthesis of hierarchical nickel cobalt sulfide with enhanced electrochemical activity

    Science.gov (United States)

    Tie, Jinjin; Han, Jiaxi; Diao, Guiqiang; Liu, Jiwen; Xie, Zhuopeng; Cheng, Gao; Sun, Ming; Yu, Lin

    2018-03-01

    The composition of nickel cobalt sulfide has great influence on its electrochemical performance. Herein, the nickel cobalt sulfide with different composition and mixed phase were synthesized by one-step solvothermal method through changing the molar ratio of Ni to Co in the reaction system. The electrochemical measurements showed that the nickel cobalt sulfide with a theoretical molar ratio of Ni/Co to be 1.5:1.5 (NCS-2) demonstrates the superior pseudocapacitive performance with a high specific capacitance (6.47 F cm-2 at 10 mA cm-2) and a favorable Coulombic efficiency (∼99%). Whereas, when applied as the catalyst for hydrogen evolution reaction in 1 M KOH aqueous electrolyte, the nickel cobalt sulfide with a theoretical molar ratio of Ni/Co is 1:2 (NCS-1) displays better catalytic activity, and it requires a relatively lower overpotential of 282 mV to deliver the current density of 10 mA cm-2.

  18. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide.

    Science.gov (United States)

    Li, Yingru; Sheng, Kaixuan; Yuan, Wenjing; Shi, Gaoquan

    2013-01-11

    A fibre-shaped solid electrochemical capacitor based on electrochemically reduced graphene oxide has been fabricated, exhibiting high specific capacitance and rate capability, long cycling life and attractive flexibility.

  19. Influence of fabrication procedure on the electrochemical performance of Ag/AgCl reference electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Daniela [Department of Biomedical and Inorganic Chemistry, Laboratoire National de Metrologie et d' Essais, 1 Rue Gaston Boissier, 75015 Paris (France); Brewer, Paul J., E-mail: paul.brewer@npl.co.uk [Analytical Science Division, National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Brown, Richard J.C. [Analytical Science Division, National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Fisicaro, Paola [Department of Biomedical and Inorganic Chemistry, Laboratoire National de Metrologie et d' Essais, 1 Rue Gaston Boissier, 75015 Paris (France)

    2011-11-30

    The influence of several parameters in the preparation procedure of thermal-electrolytic Ag/AgCl electrodes on the resulting electrode performance has been studied. In particular, we report the effect on electrode performance of subtle variations in the preparation of silver oxide paste used for electrode manufacture, in thermal annealing conditions employed and in the procedure for electrochemically converting a fraction of the electrode from silver to silver chloride. Scanning electron microscopy and electrochemical impedance spectroscopy have been used to study the characteristics of the electrodes produced. This work reveals a correlation between the electrochemical behaviour and surface physical characteristics - in particular electrode porosity. The outputs of this study have positive implications for improving the accuracy and comparability of primary pH measurement.

  20. Hierarchical porous microspheres of the Co3O4@graphene with enhanced electrocatalytic performance for electrochemical biosensors.

    Science.gov (United States)

    Yang, MinHo; Jeong, Jae-Min; Lee, Kyoung G; Kim, Do Hyun; Lee, Seok Jae; Choi, Bong Gill

    2017-03-15

    The integration of organic and inorganic building blocks into hierarchical porous architectures makes potentially desirable electrocatalytic materials in many electrochemical applications due to their combination of attractive qualities of dissimilar components and well-constructed charge transfer pathways. Herein, we demonstrate the preparation of the hierarchical porous Co 3 O 4 @graphene (Co 3 O 4 @G) microspheres by one-step hydrothermal method to achieve high electrocatalytic performance for enzyme-free biosensor applications. The obtained Co 3 O 4 @G microspheres are consisted of the interconnected networks of Co 3 O 4 and graphene sheets, and thus provide large accessible active sites through porous structure, while graphene sheets offer continuous electron pathways for efficient electrocatalytic reaction of Co 3 O 4 . These structural merits with synergy effect of Co 3 O 4 and graphene lead to a high performance of enzyme-free detection for glucose: high sensitivity, good selectivity, and remarkable stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electrochemical performance of Ni/TiO_2 hollow sphere in proton exchange membrane water electrolyzers system

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Srivastava, Rohit; Srivastava, Prem Kumar

    2013-01-01

    This work presents the electrocatalytic evaluation of Ni/TiO_2 hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm"−"2 peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO_2 electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm"−"2. In the anodic polarization curves, the performance of 15 wt% Ni/TiO_2 hollow sphere electrocatalyst was evaluated up to 140 mA cm"−"2 at comparatively lower over-potential value. 20 wt% Ni/TiO_2 hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer

  2. A comparative study on electrochemical performances of the electrodes with different nanocarbon conductive additives for lithium ion batteries

    International Nuclear Information System (INIS)

    Chen, Taiqiang; Pan, Likun; Liu, Xinjuan; Sun, Zhuo

    2013-01-01

    Three nanocarbon materials (0 D acetylene black (AB), 1 D carbon nanotubes (CNTs) and 2 D reduced graphene oxide (RGO)) were used as conductive additives (CAs) in the mesocarbon microbead anodes for lithium ion batteries. The electrochemical performances of the electrodes were investigated. The results show that the CAs have a significant impact on the electrode performance because they can influence the electron conduction and lithium ion transportation within the electrode. The electrode with RGO achieves a maximum capacity of 387 mAh g −1 after 50 cycles at a current density of 50 mA g −1 , much higher than those of the electrodes with AB (334 mAh g −1 ) and CNTs (319 mAh g −1 ). The improvement should be mainly ascribed to the “plane-to-point” conducting network formed in the electrode with 2 D RGO which can favor the electron conduction and enhance the lithium ion transportation. - Highlights: • Three carbon materials were used as additives in the electrodes of Li ion battery. • The electrochemical performances of the electrodes were comparatively investigated. • The carbon additives have a significant impact on the electrode performance. • RGO additive acts as a bridge to form a “plane-to-point” conducting network. • The electrode with RGO exhibits better performance than those with other additives

  3. Zn substitution NiFe{sub 2}O{sub 4} nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Junwei [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hou, Xianhua, E-mail: houxh@scnu.edu.cn [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Huang, Fengsi; Shen, Kaixiang [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lam, Kwok-ho [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon 999077 (Hong Kong); Ru, Qiang [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hu, Shejun, E-mail: husj@scnu.edu.cn [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2016-08-15

    Zn{sup 2+} ion substituted nickel ferrite nanomaterials with the chemical formula Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g{sup −1}at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  4. Plasma-assisted nitrogen doping of VACNTs for efficiently enhancing the supercapacitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Mashayekhi, Alireza; Hosseini, Seyed Mahmoud [University of Tehran, Nano-fabricated Energy Devices Laboratory, School of Electrical and Computer Engineering, College of Engineering (Iran, Islamic Republic of); Hassanpour Amiri, Morteza; Namdar, Naser [University of Tehran, Thin Film and Nano-electronics Laboratory, Nano-electronics Centre of Excellence, School of Electrical and Computer Engineering, College of Engineering (Iran, Islamic Republic of); Sanaee, Zeinab, E-mail: z.sanaee@ut.ac.ir [University of Tehran, Nano-fabricated Energy Devices Laboratory, School of Electrical and Computer Engineering, College of Engineering (Iran, Islamic Republic of)

    2016-06-15

    Nitrogen doping of vertically aligned carbon nanotubes (VACNTs) using plasma-enhanced chemical vapour deposition has been investigated to improve the supercapacitance performance of CNTs. Incorporating electrochemical measurements on the open-ended nitrogen-doped CNTs, showed the achievement of 6 times improvement in the capacitance value. For nitrogen-doped CNTs on silicon substrate, specific capacitance of 60 F g{sup −1} was obtained in 0.5 M KCl solution, with capacity retention ratio above 90 % after cycled at 0.1 A g{sup −1} for 5000 cycles. Using this sample, a symmetric supercapacitance was fabricated which showed the power density of 37.5 kW kg{sup −1}. The facile fabrication approach and its excellent capacitance improvement, propose it as an efficient technique for enhancing the supercapacitance performance of the carbon-based electrodes.

  5. Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants

    Directory of Open Access Journals (Sweden)

    Brandy J. Johnson

    2014-06-01

    Full Text Available This effort evaluated the potential of two prototype devices for enhanced electrochemical detection of 2,4,6-trinitrotoluene (TNT and dinitrotoluene (DNT following preconcentration using an organosilicate sorbent. The bench-scale prototype provides adsorption of the targets from aqueous solution followed by elution in a mixture of methanol and potassium chloride (KCl. Following elution, the eluant is diluted using an aqueous KCl solution to provide sufficient electrolyte for electrochemical analysis. Concentrations of methanol greater than 50% were detrimental to sensor performance and lifetime. Calibration of the electrochemical sensor was completed and results of electrochemical analysis were compared to those of HPLC analysis over a range of concentrations and in varied matrices. TNT detection was found to be consistent and detection limits were improved from 200 ppb to 3 ppb depending on the sample volume utilized. DNT detection showed higher variability and significantly greater false response rates. On the basis of these results, a second, more advanced, prototype was developed and utilized in limited field trials with the intention of moving the technology toward in situ applications.

  6. Photocatalytic and electrochemical performance of three-Dimensional reduced graphene Oxide/WS{sub 2}/Mg-doped ZnO composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weiwei [College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114 (China); Chen, Xi’an [Zhejiang Key Laboratory of Carbon Materials, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027 (China); Mei, Wei [College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114 (China); Chen, Chuansheng, E-mail: 1666423158@qq.com [College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114 (China); Tsang, Yuenhong [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077 (China)

    2017-04-01

    Highlights: • 3D graphene oxide/WS{sub 2}/Mg-doped ZnO composites were prepared by electrostatic self-assembly and coprecipitation methods. • A significant photocatalytic activity enhancement of rGWMZ was observed. • The enhancement for photocatalytic activity is ascribed to the synergistic effect of rGO and WS{sub 2} nanosheets. - Abstract: To improve the dispersion of reduced graphene oxide and enhance the photocatalytic property of reduced graphene oxide/Mg-doped ZnO composites (rGMZ), the reduced graphene oxide/WS{sub 2}/Mg-doped ZnO composites (rGWMZ) were prepared by electrostatic self-assembly and coprecipitation methods. The effects of mass ratio of WS{sub 2} nanosheets to reduced graphene oxide (WS{sub 2}/rGO wt.%) and calcination temperature on the photocatalytic and electrochemical property of rGWMZ composites were investigated. Experimental results showed that the photocatalytic efficiency of rGWMZ composites is three-fold compared with that of rGMZ composites when the WS{sub 2}/rGO wt.% is 20.8% and calcination temperature is 500 °C, in which the degradation ratio Rhodamin B (RhB) can reach 95% within 15 min under the UV light and 90% within 90 min under simulated solar light. In addition, the rGWMZ show larger capacitance and smaller resistance than rGMZ. The enhancement for photocatalytic activity and electrochemical performance of rGWMZ is ascribed to improving the specific surface area, electrical conductivity and electronic storage capability because of the synergistic effect of rGO and WS{sub 2} nanosheets.

  7. Synthesis and electrochemical performances of ZnO/MnO2 sea urchin-like sleeve array as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fang, J.; Yuan, Y.F.; Wang, L.K.; Ni, H.L.; Zhu, H.L.; Yang, J.L.; Gui, J.S.; Chen, Y.B.; Guo, S.Y.

    2013-01-01

    MnO 2 is electrodeposited onto ZnO nanorod array grown on Ni foil, forming a binder-free ZnO/MnO 2 composited electrode. XRD, EDS, SEM and TEM are used to analyze the phase and microstructure of this composite. Burr-like MnO 2 nanoflakes grows on ZnO nanorod array, the top of the composite is hollow and at the bottom exists ZnO large block core as an internal support, forming ZnO/MnO 2 sea urchin-like sleeve array. As anode material for lithium ion batteries, ZnO/MnO 2 sleeve array exhibits higher discharge capacity and coulombic efficiency, better rate performance and cycling stability than single ZnO nanorod array or directly electrodepsited MnO 2 , and the composite effect is very remarkable. After 100 cycles, the discharge capacity of ZnO/MnO 2 still reaches 1259 mA h g −1 , and coulombic efficiency surpasses 98%, higher than those of ZnO nanorod array (111 mA h g −1 ) and directly electrodeposited MnO 2 (507 mA h g −1 ). The improvement of the electrochemical performances is due to the unique sea urchin-like sleeve array architecture. MnO 2 burr tube shell structure leads to high electrochemical activity while the internal ZnO core support ensures good structure stability. The gradually opening of sea urchin-like sleeve during the cycling further enhances the electrochemical activity of MnO 2 , stabilizing and increasing electrochemical performances of the ZnO/MnO 2 composite

  8. Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes

    KAUST Repository

    Zhang, Zhonghai

    2013-01-01

    Hetero-element doping (e.g., N, F, C) of TiO2 is inevitably accompanied by significantly increased structural defects due to the dopants\\' nature being foreign impurities. Very recently, in situ self-doping with homo-species (e.g., Ti3+) has been emerging as a rational solution to enhance TiO2 photoactivity within both UV and visible light regions. Herein we demonstrate that conventional electrochemical reduction is indeed a facile and effective strategy to induce in situ self-doping of Ti3+ into TiO2 and the self-doped TiO2 photoelectrodes showed remarkably improved and very stable water splitting performance. In this study, hierarchical TiO2 nanotube arrays (TiO2 NTs) were chosen as TiO2 substrates and then electrochemically reduced under varying conditions to produce Ti3+ self-doped TiO2 NTs (ECR-TiO2 NTs). The optimized saturation photocurrent density and photoconversion efficiency on the ECR-TiO2 NTs under simulated AM 1.5G illumination were identified to be 2.8 mA cm-2 at 1.23 V vs. RHE and 1.27% respectively, which are the highest values ever reported for TiO 2 based photoelectrodes. The electrochemical impedance spectra measurement confirms that the electrochemical induced Ti3+ self-doping improved the electrical conductivity of the ECR-TiO2 NTs. The versatility and effectiveness of the electrochemical reduction method for Ti3+ self-doping in P25 based TiO2 was also examined and confirmed. This journal is © 2013 the Owner Societies.

  9. Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite.

    Science.gov (United States)

    Figueiredo-Filho, Luiz C S; Brownson, Dale A C; Gómez-Mingot, Maria; Iniesta, Jesús; Fatibello-Filho, Orlando; Banks, Craig E

    2013-11-07

    We report the fabrication, characterisation (SEM, TEM, XPS and Raman spectroscopy) and electrochemical implementation of a graphene paste electrode. The paste electrodes utilised are constructed by simply mixing graphene with mineral oil (which acts as a binder) prior to loading the resultant paste into a piston-driven polymeric-tubing electrode-shell, where this electrode configuration allows for rapid renewal of the electrode surface. The fabricated paste electrode is electrochemically characterised using both inner-sphere and outer-sphere redox probes, namely potassium ferrocyanide(ii), hexaammine-ruthenium(iii) chloride and hexachloroiridate(iii), in addition to the biologically relevant and electroactive analytes, l-ascorbic acid (AA) and uric acid (UA). Comparisons are made with a graphite paste alternative and the benefits of graphene implementation as a paste electrode within electrochemistry are explored, as well as the characterisation of their electroanalytical performances. We reveal no observable differences in the electrochemical performance and thus suggest that there are no advantages of using graphene over graphite in the fabrication of paste electrodes. Such work is highly important and informative for those working in the field of electroanalysis where electrochemistry can provide portable, rapid, reliable and accurate sensing protocols (bringing the laboratory into the field), with particular relevance to those searching for new electrode materials.

  10. Excellent electrochemical performances of cabbage-like polyaniline fabricated by template synthesis

    Science.gov (United States)

    Hu, Chenglong; Chen, Shaoyun; Wang, Yuan; Peng, Xianghong; Zhang, Weihong; Chen, Jian

    2016-07-01

    In this article, we explore a novel route to fabricate cabbage-like polyaniline (PANI) by in situ polymerization of aniline using the hydroxylated poly (methyl methacrylate) nanospheres (i.e. PMMAsbnd OHsbnd NS) as a template. A maximum specific capacitance of 584 F/g (the current density is 0.1 A/g) is achieved at 10 mV s-1 as well as a high stability of over 3000 cycles (the decrease in the SC is ∼9.1%), which suggests the potential application of the cabbage-like polyaniline in supercapacitors. The predominant electrochemical performances of the cabbage-like polyaniline can be attributed to their large surface area and larger-scale π-π conjugated system present in the quinoid structure of the PANI molecular chain, which can drastically facilitate electron diffusion and improve the utilization of the electroactive PANI during the charge/discharge processes. Accordingly, the facility of charge transfer can decrease resistance along with the PANI molecular chain to improve the electrochemical stability and achieve high-capacitance response characteristics. The present study introduces a new synthesis method for the development of various morphology of other conducting polymer, which may find potential applications in a variety of high-performance electrochemical devices.

  11. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    Science.gov (United States)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  12. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    Science.gov (United States)

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g-1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g-1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g-1) and high energy density (98.1 Wh kg-1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  13. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes.

    Science.gov (United States)

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-08

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g -1 , which is 6 times higher than disordered CNTs in HClO 4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g -1 ), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g -1 ) and high energy density (98.1 Wh kg -1 ) in EMIBF 4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  14. Cobalt-Doped Nickel Phosphite for High Performance of Electrochemical Energy Storage.

    Science.gov (United States)

    Li, Bing; Shi, Yuxin; Huang, Kesheng; Zhao, Mingming; Qiu, Jiaqing; Xue, Huaiguo; Pang, Huan

    2018-03-01

    Compared to single metallic Ni or Co phosphides, bimetallic Ni-Co phosphides own ameliorative properties, such as high electrical conductivity, remarkable rate capability, upper specific capacity, and excellent cycle performance. Here, a simple one-step solvothermal process is proposed for the synthesis of bouquet-like cobalt-doped nickel phosphite (Ni 11 (HPO 3 ) 8 (OH) 6 ), and the effect of the structure on the pseudocapacitive performance is investigated via a series of electrochemical measurements. It is found that when the cobalt content is low, the glycol/deionized water ratio is 1, and the reaction is under 200 °C for 20 h, the morphology of the sample is uniform and has the highest specific surface area. The cobalt-doped Ni 11 (HPO 3 ) 8 (OH) 6 electrode presents a maximum specific capacitance of 714.8 F g -1 . More significantly, aqueous and solid-state flexible electrochemical energy storage devices are successfully assembled. The aqueous device shows a high energy density of 15.48 mWh cm -2 at the power density of 0.6 KW cm -2 . The solid-state device shows a high energy density of 14.72 mWh cm -2 at the power density of 0.6 KW cm -2 . These excellent performances confirm that the cobalt-doped Ni 11 (HPO 3 ) 8 (OH) 6 are promising materials for applications in electrochemical energy storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties

    International Nuclear Information System (INIS)

    Shalini, Jayakumar; Lin, Yi-Chieh; Chang, Ting-Hsun; Sankaran, Kamatchi Jothiramalingam; Chen, Huang-Chin; Lin, I.-Nan; Lee, Chi-Young; Tai, Nyan-Hwa

    2013-01-01

    The effects of N 2 incorporation in Ar/CH 4 plasma on the electrochemical properties and microstructure of ultra-nanocrystalline diamond (UNCD) films are reported. While the electrical conductivity of the films increased monotonously with increasing N 2 content (up to 25%) in the plasma, the electrochemical behavior was optimized for UNCD films grown in (Ar–10% N 2 )/CH 4 plasma. Transmission electron microscopy showed that the main factor resulting in high conductivity in the films was the formation of needle-like nanodiamond grains and the induction graphite layer encapsulating these grains. The electrochemical process for N 2 -incorporated UNCD films can readily be activated due to the presence of nanographite along the grain boundaries of the films. The formation of needle-like diamond grains was presumably due to the presence of CN species that adhered to the existing nanodiamond clusters, which suppressed radial growth of the nanodiamond crystals, promoting anisotropic growth and the formation of needle-like nanodiamond. The N 2 -incorporated UNCD films outperformed other electrochemical electrode materials, such as boron-doped diamond and glassy carbon, in that the UNCD electrodes could sense dopamine, urea, and ascorbic acid simultaneously in the same mixture with clear resolution

  16. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    Science.gov (United States)

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  17. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  18. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  19. Effect of wrinkles on electrochemical performance of multiwalled carbon nanotubes as anode material for Li ion battery

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Ramaprabhu, S.

    2015-01-01

    Highlights: • Wrinkly surfaced gC is employed as anode material for Li ion battery. • Temperature controlled protrusions were uniformly distributed over the nanotubes. • gC shows superior performance of 373 mAh g −1 at 100 mA g −1 after 150 cycle. • Synergistic effect of defects and conductivity gives higher Li storage over MWNTs. - Abstract: A 1-D monohybrid of multiwalled carbon nanotubes and graphene sheets, graphene wrapped multiwalled carbon nanotubes (gC) structure, synthesized in a template-free simple chemical vapor deposition technique without any chemical functionalization, was employed as efficient anode material for Li ion battery. Graphene nanosheets affixed to the multiwalled carbon nanotubes (MWNTs) surface by van der Waal's attraction gives a wrinkled surface to the final 1-D gC configuration. The protrusions on the surface of the tube enhances the porosity of the system and also acts as defects, enhancing lithium adsorption sites while the inner MWNT core gives high electrical conductivity, resulting enhanced electrochemical performance of 373 mAh g −1 at 100 mA g −1 current density after 150 cycles.

  20. Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells

    International Nuclear Information System (INIS)

    Morales, Julian; Sanchez, Luis; Martin, Francisco; Ramos-Barrado, Jose R.; Sanchez, Miguel

    2004-01-01

    Nanostructured CuO thin films were prepared by using a spray pyrolysis method, copper acetate as precursor and stainless steel as substrate. The textural and structural properties of the films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed thorough coating of the substrate and thickness of 450-1250 nm; the average particle size as determined from the AFM images ranged from 30 to 160 nm. The XRD patterns revealed the formation of CuO alone and the XPS spectra confirmed the presence of Cu 2+ as the main oxidation state on the surface. The films were tested as electrodes in lithium cells and their electrochemical properties evaluated from galvanostatic and step potential electrochemical spectroscopy (SPES) measurements. The discharge STEP curves exhibited various peaks consistent with the processes CuO Cu 2 O Cu and with decomposition of the electrolyte, a reversible process in the light of the AFM images. The best electrode exhibited capacity values of 625 Ah kg -1 over more than 100 cycles. This value, which involves a CuO Cu reversible global reaction, is ca. 50% higher than that reported for bulk CuO. The nanosize of the particles and the good adherence of the active material to the substrate are thought to be the key factors accounting for the enhanced electrochemical activity found

  1. Photo-electrochemical Investigation of Radiation-Enhanced Galvanic Coupling and Hydrogen Permeation in TPBAR-related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-02

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivating effect of metal oxides.

  2. Photo-electrochemical Investigation of Radiation-Enhanced Galvanic Coupling and Hydrogen Permeation in TPBAR-related Materials

    International Nuclear Information System (INIS)

    Larsen, G.

    2017-01-01

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivating effect of metal oxides.

  3. Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties

    International Nuclear Information System (INIS)

    Yang, Yingchang; Lu, Fang; Zhou, Zhou; Song, Weixin; Chen, Qiyuan; Ji, Xiaobo

    2013-01-01

    Graphical abstract: Electrochemically cathodic exfoliation of graphite into few-layer graphene sheets in room temperature ionic liquids (RTILs) N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide (BMPTF 2 N). -- Highlights: • Few-layer graphene sheets were prepared through electrochemically cathodic exfoliation in room temperature ionic liquids. • The mechanism of cathodic exfoliation in ionic liquids was proposed. • The derived activated graphene sheets show enhanced electrochemical properties. -- Abstract: Electrochemically cathodic exfoliation in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide (BMPTF 2 N) has been developed for few-layer graphene sheets, demonstrating low levels of oxygen (2.7 at% of O) with a nearly perfect structure (I D /I G 2 N involves the intercalation of ionic liquids cation [BMP] + under highly negatively charge followed by graphite expansion. Porous activated graphene sheets were also obtained by activation of graphene sheets in KOH. Transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to characterize these graphene materials. The electrochemical performances of the graphene sheets and porous activated graphene sheets for lithium-ion battery anode materials were evaluated using cyclic voltammetry, galvanostatic charge–discharge cycling, and electrochemical impedance spectroscopy

  4. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  5. Improved electrochemical performance of Li4Ti5O12 with a variable amount of graphene as a conductive agent for rechargeable lithium-ion batteries by solvothermal method

    International Nuclear Information System (INIS)

    Rai, Alok Kumar; Gim, Jihyeon; Kang, Sung-Won; Mathew, Vinod; Anh, Ly Tuan; Kang, Jungwon; Song, Jinju; Paul, Baboo Joseph; Kim, Jaekook

    2012-01-01

    We report on the solvothermal preparation of pure Li 4 Ti 5 O 12 and Li 4 Ti 5 O 12 /graphene (15 wt% and 30 wt%) nanocomposites anode for high-performance lithium-ion batteries. Structure and morphology studies of the nanocomposites by X-ray diffraction, field-emission scanning electron microscopy and field-emission transmission electron microscopy reveal Li 4 Ti 5 O 12 nanoparticles embedded onto the graphene nanosheets. On comparison to pure spinel Li 4 Ti 5 O 12 , the electrochemical performances of the Li 4 Ti 5 O 12 /graphene nanocomposites indicate higher capacities and enhanced cycle performances within the voltage domain of 1.0–2.5 V, under current rates as high as 10.4 C. The production of phase pure Li 4 Ti 5 O 12 nanoparticles ensures the short ion-diffusion paths while the presence of graphene facilitates improved structural network and hence enhanced electronic transport in the prepared nanocomposites. These factors eventually amount to impressive electrochemical properties. Highlights: ► A simple polyol-based approach to obtain the graphene nanosheets. ► Li 4 Ti 5 O 12 /graphene nanocomposites synthesis by polyol-based solvothermal process. ► Low temperature solvothermal strategy is one-step process to control nanoparticle sizes. ► The nanoparticles are well anchored onto the graphene nanosheets in the nanocomposites. ► Li 4 Ti 5 O 12 /graphene nanocomposites exhibit impressive electrochemical performances.

  6. Electrochemical properties of opal-V6O13 composites

    International Nuclear Information System (INIS)

    Vernardou, D.; Apostolopoulou, M.; Louloudakis, D.; Spanakis, E.; Katsarakis, N.; Koudoumas, E.; McGrath, J.; Pemble, M.E.

    2014-01-01

    Highlights: • Opal-V 6 O 13 composites grown at 95 °C for 50 h. • The deposition period affects the void filling of the opals. • The electrochemical performance is correlated with the oxide’s characteristics. -- Abstract: Vanadium oxides were hydrothermally grown on opal glass substrates at 95 °C. The deposition period was observed to affect the structure of the oxides and the voids filling of the opal surfaces. V 6 O 13 grown on opal for 50 h presented satisfactory electrochemical performance and electrochromic response with a contrast ratio of 2. The specific capacitance of this composite reached a value of 192 F g −1 , which was stable up to 500 continuous charge intercalation/deintercalation scans. The importance of achieving crystalline V 6 O 13 and high opal surface coverage towards the enhancement of the electrochemical properties is presented

  7. Electrochemical sensors and biosensors based on less aggregated graphene.

    Science.gov (United States)

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Nanostructured Electrode Materials for Electrochemical Capacitor Applications.

    Science.gov (United States)

    Choi, Hojin; Yoon, Hyeonseok

    2015-06-02

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  9. Electrochemical performance of Ni/TiO{sub 2} hollow sphere in proton exchange membrane water electrolyzers system

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Jayeeta; Srivastava, Rohit; Srivastava, Prem Kumar [Birla Institute of Technology, Jharkhand (India)

    2013-08-15

    This work presents the electrocatalytic evaluation of Ni/TiO{sub 2} hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm{sup −2} peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO{sub 2} electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm{sup −2}. In the anodic polarization curves, the performance of 15 wt% Ni/TiO{sub 2} hollow sphere electrocatalyst was evaluated up to 140 mA cm{sup −2} at comparatively lower over-potential value. 20 wt% Ni/TiO{sub 2} hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer.

  10. Effect of symbiotic compound Fe{sub 2}P{sub 2}O{sub 7} on electrochemical performance of LiFePO{sub 4}/C cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuxin, E-mail: liushuxin88@126.com [School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, Sichuan 621000 (China); Gu, Chunlei [School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 (China); Wang, Haibin [School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, Sichuan 621000 (China); Liu, Ruijiang [School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Wang, Hong; He, Jichuan [School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, Sichuan 621000 (China)

    2015-10-15

    In order to study the effect of symbiotic compound Fe{sub 2}P{sub 2}O{sub 7} on electrochemical performance of LiFePO{sub 4}/C cathode materials, the LiFePO{sub 4}/Fe{sub 2}P{sub 2}O{sub 7}/C cathode materials were synthesized by in-situ synthesis method. The phase compositions and microstructures of the products were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscope (FESEM). Results indicate that the existence of Fe{sub 2}P{sub 2}O{sub 7} does not alter LiFePO{sub 4} crystal structure and the existence of Fe{sub 2}P{sub 2}O{sub 7} decreases the particles size of LiFePO{sub 4}. The electrochemical behavior of cathode materials was analyzed using galvanostatic measurement and cyclic voltammetry (CV). The results show that the existence of Fe{sub 2}P{sub 2}O{sub 7} improves electrochemical performance of LiFePO{sub 4} cathode materials in specific capability and lithium ion diffusion rate. The charge–discharge specific capacity and apparent lithium ion diffusion coefficient increase with Fe{sub 2}P{sub 2}O{sub 7} content and maximizes around the Fe{sub 2}P{sub 2}O{sub 7} content is 5 wt%. It has been had further proved that the Fe{sub 2}P{sub 2}O{sub 7} adding enhances the lithium ion transport to improve the electrochemical performance of LiFePO{sub 4} cathode materials. However, excessive Fe{sub 2}P{sub 2}O{sub 7} will block the electron transfer pathway and affect the electrochemical performances of LiFePO{sub 4} directly. - Graphical abstract: The LiFePO{sub 4}/Fe{sub 2}P{sub 2}O{sub 7}/C cathode materials were synthesized by in-situ synthesis method. The existence of Fe{sub 2}P{sub 2}O{sub 7} does not alter LiFePO{sub 4} crystal structure and the existence of Fe{sub 2}P{sub 2}O{sub 7} decreases the particles size of LiFePO{sub 4}. The charge–discharge specific capacity and apparent lithium ion diffusion coefficient increase with Fe{sub 2}P{sub 2}O{sub 7} content. However, excessive Fe{sub 2}P{sub 2}O{sub 7} will

  11. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  12. Vinylene carbonate and tris(trimethylsilyl) phosphite hybrid additives to improve the electrochemical performance of spinel lithium manganese oxide/graphite cells at 60 °C

    International Nuclear Information System (INIS)

    Koo, Bonjae; Lee, Jeongmin; Lee, Yongwon; Kim, Jun Ki; Choi, Nam-Soon

    2015-01-01

    Highlights: •The combination of tris(trimethylsilyl) phosphite and vinylene carbonate improves the electrochemical performance of lithium manganese oxide/graphite cells at 60 °C. •Removal of hydrogen fluoride and water by tris(trimethylsilyl) phosphite suppresses manganese dissolution from lithium manganese oxide. -- Abstract: The organophosphorus compounds tris(trimethylsilyl) phosphite (TMSP) and vinylene carbonate (VC) have been considered for use as functional additives to improve the electrochemical performance of Li 1.1 Mn 1.86 Mg 0.04 O 4 (LMO)/graphite full cells. Our investigation reveals that the combination of VC and TMSP as additives enhances the cycling properties and storage performance of full cells at 60 °C. The unique functions of the TMSP additive in the VC electrolyte are investigated via ex situ X-ray photoelectron spectroscopy (XPS) and 19 F nuclear magnetic resonance (NMR) measurements. The TMSP additive effectively eliminates trace water and hydrogen fluoride (HF) and produces a protective film on the LMO cathode that alleviates manganese dissolution at 60 °C

  13. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan; Xia, Xue; Ivanov, Ivan; Huang, Xia; Logan, Bruce E.

    2014-01-01

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  14. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  15. Electrochemical performance of potentiodynamically deposited polyaniline electrodes in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Dipali S., E-mail: dipali.patilphy@gmail.com [Department of Physics, Yeungnam University, Gyeonbuk 712-749 (Korea, Republic of); Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); Pawar, S.A. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); Department of Materials Science and Engineering, Chonnam National University, Gwangju 500 757 (Korea, Republic of); Patil, S.K.; Salavi, P.P.; Kolekar, S.S. [Department of Chemistry, Shivaji University, Kolhapur 416 004 (India); Devan, R.S.; Ma, Y.R. [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500 757 (Korea, Republic of); Shin, J.C. [Department of Physics, Yeungnam University, Gyeonbuk 712-749 (Korea, Republic of); Patil, P.S., E-mail: patilps_2000@yahoo.com [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2015-10-15

    Present work reports electropolymerization of aniline onto stainless steel substrate using room temperature ionic liquid N-methyl-2-pyrrolidonium hydrogensulfate [NMP][HSO{sub 4}] by potentiodynamic electrodeposition method. To study the effect of electropolymerization cycle number on the electrochemical performance, the number of scans is varied from 1{sup st} to 5{sup th} cycle. X-ray photoelectron spectroscopy is used for the phase identification of polyaniline (PANI) films. Scanning electrochemical microscopy (SECM) was used to study the electrochemical activity of PANI films. The highest specific capacitance of 581 Fg{sup −1} and energy density of 96.6 whkg{sup −1} are obtained for the sample, deposited using four cycle. - Graphical abstract: We have synthesized PANI samples with different thickness (or deposited mass) on stainless steel as a function of deposition cycles by potentiodynamic electrodeposition in room temperature IL [NMP][HSO{sub 4}]. A globular nanostructural growth of PANI is observed over the compact background of PANI for sample P{sub 2}. The sample P{sub 4} revealed a globular structure with spongy porous morphology. This nanostructure and porous structure is useful for supercapacitor, because it reduces the diffusion resistance of the electrolyte into electrode matrix. - Highlights: • Electropolymerization of aniline using room temperature ionic liquid N-methyl-2-pyrrolidonium hydrogensulfate [NMP][HSO4]. • The highest specific capacitance of 581 Fg{sup −1} and energy density of 96.60 Whkg{sup −1} is observed for the optimized sample. • The improved specific capacitance of PANI electrode material can be used to develop high performance supercapacitor.

  16. Electrochemical performance of potentiodynamically deposited polyaniline electrodes in ionic liquid

    International Nuclear Information System (INIS)

    Patil, Dipali S.; Pawar, S.A.; Patil, S.K.; Salavi, P.P.; Kolekar, S.S.; Devan, R.S.; Ma, Y.R.; Kim, J.H.; Shin, J.C.; Patil, P.S.

    2015-01-01

    Present work reports electropolymerization of aniline onto stainless steel substrate using room temperature ionic liquid N-methyl-2-pyrrolidonium hydrogensulfate [NMP][HSO 4 ] by potentiodynamic electrodeposition method. To study the effect of electropolymerization cycle number on the electrochemical performance, the number of scans is varied from 1 st to 5 th cycle. X-ray photoelectron spectroscopy is used for the phase identification of polyaniline (PANI) films. Scanning electrochemical microscopy (SECM) was used to study the electrochemical activity of PANI films. The highest specific capacitance of 581 Fg −1 and energy density of 96.6 whkg −1 are obtained for the sample, deposited using four cycle. - Graphical abstract: We have synthesized PANI samples with different thickness (or deposited mass) on stainless steel as a function of deposition cycles by potentiodynamic electrodeposition in room temperature IL [NMP][HSO 4 ]. A globular nanostructural growth of PANI is observed over the compact background of PANI for sample P 2 . The sample P 4 revealed a globular structure with spongy porous morphology. This nanostructure and porous structure is useful for supercapacitor, because it reduces the diffusion resistance of the electrolyte into electrode matrix. - Highlights: • Electropolymerization of aniline using room temperature ionic liquid N-methyl-2-pyrrolidonium hydrogensulfate [NMP][HSO4]. • The highest specific capacitance of 581 Fg −1 and energy density of 96.60 Whkg −1 is observed for the optimized sample. • The improved specific capacitance of PANI electrode material can be used to develop high performance supercapacitor

  17. Enhancement of electrochemical performance of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 by surface modification with MnO_2

    International Nuclear Information System (INIS)

    Guo, Xin; Cong, Li-Na; Zhao, Qin; Tai, Ling-Hua; Wu, Xing-Long; Zhang, Jing-Ping; Wang, Rong-Shun; Xie, Hai-Ming; Sun, Li-Qun

    2015-01-01

    LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is successfully coated with MnO_2 by a chemical deposition method. The X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) results demonstrate that MnO_2 forms a thin layer on the surface of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 without destroying the crystal structure of the core material. Compared with pristine LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2, the MnO_2-coated sample shows enhanced electrochemical performance especially the rate capability. Even at a current density of 750 mA g"−"1, the discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is 155.15 mAh g"−"1, while that of the pristine electrode is only 132.84 mAh g"−"1 in the range of 2.5–4.5 V. The cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) curves show that the MnO_2 coating layer reacts with Li"+ during cycling, which is responsible for the higher discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2. Electrochemical impedance spectroscopy (EIS) results confirmed that the MnO_2 coating layer plays an important role in reducing the charge transfer resistance on the electrolyte–electrode interfaces. - Highlights: • MnO_2 coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 cathode material is synthesized for the first time. • MnO_2 offers available sites for insertion of extracted lithium. • The preserved surface and crystal structures results in the improved kinetics.

  18. Double-shelled silicon anode nanocomposite materials: A facile approach for stabilizing electrochemical performance via interface construction

    Science.gov (United States)

    Du, Lulu; Wen, Zhongsheng; Wang, Guanqin; Yang, Yan-E.

    2018-04-01

    The rapid capacity fading induced by volumetric changes is the main issue that hinders the widespread application of silicon anode materials. Thus, double-shelled silicon composite materials where lithium silicate was located between an Nb2O5 coating layer and a silicon active core were configured to overcome the chemical compatibility issues related to silicon and oxides. The proposed composites were prepared via a facile co-precipitation method combined with calcination. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated that a transition layer of lithium silicate was constructed successfully, which effectively hindered the thermal inter-diffusion between the silicon and oxide coating layers during heat treatment. The electrochemical performance of the double-shelled silicon composites was enhanced dramatically with a retained specific capacity of 1030 mAh g-1 after 200 cycles at a current density of 200 mA g-1 compared with 598 mAh g-1 for a core-shell Si@Nb2O5 composite that lacked the interface. The lithium silicate transition layer was shown to play an important role in maintaining the high electrochemical stability.

  19. °Enhancing High Temperature Anode Performance with 2° Anchoring Phases

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Robert A. [Montana State Univ., Bozeman, MT (United States); Sofie, Stephen W. [Montana State Univ., Bozeman, MT (United States); Amendola, Roberta [Montana State Univ., Bozeman, MT (United States)

    2015-10-01

    Project accomplishments included developing and optimizing strength testing of aluminum titanate (ALT)-doped Ni-YSZ materials and identified the dopant levels that optimized mechanical strength and enhanced electrochemical performance. We also optimized our ability to fabricate electrolyte supported button cells with anodes consisting of powders provided by Fuel Cell Energy. In several instances, those anodes were infiltrated with ALT and tested with hydrogen for 30 hours at 800°C at an applied potential of 0.4 V. Our research activities were focused in three areas: 1) mechanical strength testing on as prepared and reducced nickel-YSZ structures that were either free of a dopant or prepared by mechanically mixing in ALT at various weight percents (up to 10 wt%); 2) 24-hour electrochemical testing of electroylte supported cells having anodes made from Ni/YSZ and Ni/YSZ/ALT anodes with specific attention focused on modeling degradation rates; and 3) operando EIS and optical testing of both in-house fabricated devices as well as membrane electrode assemblies that were acquired from commercial vendors.

  20. Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors

    International Nuclear Information System (INIS)

    Shi, Zhiqiang; Zhang, Jin; Wang, Jing; Shi, Jingli; Wang, Chengyang

    2015-01-01

    Highlights: • MCMB with the optimal pre-lithiation capacity as negative electrode in LIC. • The capacity design of cathode affects the electrochemical performance of LIC. • The optimal designed capacity of positive electrode has been proposed. - ABSTRACT: Lithium-ion capacitors (LICs) are assembled with activated carbon (AC) cathode and pre-lithiated mesocarbon microbeads (MCMB) anode. The effect of AC cathode capacity design on the electrochemical performance of LIC is investigated by the galvanostatic charging-discharging and electrochemical impedance tests. As the designed capacity of AC positive electrode is lower than 50 mAh g −1 , the working potential of negative electrode is always in the low and stable plateau, which is conductive to the sufficient utilization and the working potential stability of positive electrode. When the designed capacity of positive electrode is higher than 50 mAh g −1 , the instability of negative electrode directly causes the reduced utilization and shortened working potential range of the positive electrode, which is responsible for the capacity attenuation and cycle performance deterioration of LIC. The positive electrode capacity design can realize the optimization of electrochemical performance of LIC. LIC50 exhibits the optimal electrochemical performance, high energy density up to 92.3 Wh kg −1 and power density as high as 5.5 kW kg −1 (based on active material mass of two electrodes), excellent capacity retention of 97.0 % after 1000 cycles. The power density and cycle performance of LIC can be further improved by reducing the AC positive electrode designed capacity

  1. Preparation of Nickel Cobalt Sulfide Hollow Nanocolloids with Enhanced Electrochemical Property for Supercapacitors Application

    Science.gov (United States)

    Chen, Zhenhua; Wan, Zhanghui; Yang, Tiezhu; Zhao, Mengen; Lv, Xinyan; Wang, Hao; Ren, Xiuli; Mei, Xifan

    2016-01-01

    Nanostructured functional materials with hollow interiors are considered to be good candidates for a variety of advanced applications. However, synthesis of uniform hollow nanocolloids with porous texture via wet chemistry method is still challenging. In this work, nickel cobalt precursors (NCP) in sub-micron sized spheres have been synthesized by a facile solvothermal method. The subsequent sulfurization process in hydrothermal system has changed the NCP to nickel cobalt sulfide (NCS) with porous texture. Importantly, the hollow interiors can be tuned through the sulfurization process by employing different dosage of sulfur source. The derived NCS products have been fabricated into supercapacitor electrodes and their electrochemical performances are measured and compared, where promising results were found for the next-generation high-performance electrochemical capacitors. PMID:27114165

  2. Mechanochemical preparation of polydiphenylamine and its electrochemical performance in hybrid supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Palaniappan, SP. [Department of Industrial Chemistry, School of Chemistry, Alagappa University, Alagappapuram, Karaikudi 630003, Tamil Nadu (India); Manisankar, P., E-mail: pms11@rediffmail.com [Department of Industrial Chemistry, School of Chemistry, Alagappa University, Alagappapuram, Karaikudi 630003, Tamil Nadu (India)

    2011-07-01

    Highlights: > For the first time, a simple to adopt, greener, rapid and efficient alternative route was successfully developed for preparing different PDPA salts. > For the first time, a judicial attempt was made to evaluate the performance of mechanochemically prepared PDPA-H{sub 2}SO{sub 4} as cathode material in asymmetric hybrid supercapacitors. > The results obtained are highly promising and the physicochemical properties of PDPA salts could be fine-tuned in the future for large scale applications in energy storage devices. - Abstract: A simple mechanochemical route for the synthesis of high quality inorganic anion doped polydiphenylamines (PDPAs) is reported in this article. Elemental analysis performed for the PDPAs indicated the presence of dopant anions in the polymeric chain. PDPA prepared in the presence of 96 wt% H{sub 2}SO{sub 4} (PDPA-H{sub 2}SO{sub 4}) was found to be better doped than the other polymeric salts. Spectroscopic profiles of the polymers showed that the PDPAs were in a doped conducting state. The X-ray diffraction (XRD) pattern of the as-prepared polymeric powders revealed the presence of more crystalline phases in PDPA-H{sub 2}SO{sub 4}. Field emission scanning electron microscopic (FESEM) images highlighted the formation of inorganic anion doped PDPA particles with different sizes (80-100 nm). Electrochemical studies performed for the polymeric particles depicted the redox behavior and good electrochemical activity of PDPA salts. Thermogravimetric analysis (TGA)/differential thermal analysis (DTA) proved that all the PDPA salts were thermally stable up to 300 deg. C. The electrochemical performance of PDPA-H{sub 2}SO{sub 4} in hybrid supercapacitors was evaluated due to its superior physicochemical properties. The maximum specific capacitance of the hybrid supercapacitor constructed out of PDPA-H{sub 2}SO{sub 4} powder was found to be 108 F g{sup -1}.

  3. Electrochemical Properties for Co-Doped Pyrite with High Conductivity

    Directory of Open Access Journals (Sweden)

    Yongchao Liu

    2015-09-01

    Full Text Available In this paper, the hydrothermal method was adopted to synthesize nanostructure Co-doped pyrite (FeS2. The structural properties and morphology of the synthesized materials were characterized using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Co in the crystal lattice of FeS2 could change the growth rate of different crystal planes of the crystal particles, which resulted in various polyhedrons with clear faces and sharp outlines. In addition, the electrochemical performance of the doping pyrite in Li/FeS2 batteries was evaluated using the galvanostatic discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the discharge capacity of the doped material (801.8 mAh·g−1 with a doping ratio of 7% was significantly higher than that of the original FeS2 (574.6 mAh·g−1 because of the enhanced conductivity. Therefore, the doping method is potentially effective for improving the electrochemical performance of FeS2.

  4. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., NM (United States); Lalk, T R [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering; Appleby, A J [Center for Electrochemical Studies and Hydrogen Research, Texas Engineering Experimentation Station, Texas A and M Univ., College Station, TX (United States)

    1998-02-01

    The processes, losses, and electrical characteristics of a Membrane-Electrode Assembly (MEA) of a Proton Exchange Membrane Fuel Cell (PEMFC) are described. In addition, a technique for numerically modeling the electrochemical performance of a MEA, developed specifically to be implemented as part of a numerical model of a complete fuel cell stack, is presented. The technique of calculating electrochemical performance was demonstrated by modeling the MEA of a 350 cm{sup 2}, 125 cell PEMFC and combining it with a dynamic fuel cell stack model developed by the authors. Results from the demonstration that pertain to the MEA sub-model are given and described. These include plots of the temperature, pressure, humidity, and oxygen partial pressure distributions for the middle MEA of the modeled stack as well as the corresponding current produced by that MEA. The demonstration showed that models developed using this technique produce results that are reasonable when compared to established performance expectations and experimental results. (orig.)

  5. Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel-Cobalt Sulfide Nanosheets.

    Science.gov (United States)

    Liang, Xu; Nie, Kaiwen; Ding, Xian; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Jiang, Ruibin; He, Xuexia; Liu, Zonghuai; Lei, Zhibin

    2018-03-28

    The development of compressible supercapacitor highly relies on the innovative design of electrode materials with both superior compression property and high capacitive performance. This work reports a highly compressible supercapacitor electrode which is prepared by growing electroactive NiCo 2 S 4 (NCS) nanosheets on the compressible carbon sponge (CS). The strong adhesion of the metallic conductive NCS nanosheets to the highly porous carbon scaffolds enable the CS-NCS composite electrode to exhibit an enhanced conductivity and ideal structural integrity during repeated compression-release cycles. Accordingly, the CS-NCS composite electrode delivers a specific capacitance of 1093 F g -1 at 0.5 A g -1 and remarkable rate performance with 91% capacitance retention in the range of 0.5-20 A g -1 . Capacitance performance under the strain of 60% shows that the incorporation of NCS nanosheets in CS scaffolds leads to over five times enhancement in gravimetric capacitance and 17 times enhancement in volumetric capacitance. These performances enable the CS-NCS composite to be one of the promising candidates for potential applications in compressible electrochemical energy storage devices.

  6. The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron

    International Nuclear Information System (INIS)

    Zhu Xiuping; Ni Jinren

    2011-01-01

    Boron-doped diamond (BDD) electrodes are promising anode materials in electrochemical treatment of wastewaters containing bio-refractory organic compounds due to their strong oxidation capability and remarkable corrosion stability. In order to further improve the performance of BDD anode system, electrochemical degradation of p-nitrophenol were initially investigated at the BDD anode in the presence of zero-valent iron (ZVI). The results showed that under acidic condition, the performance of BDD anode system containing zero-valent iron (BDD-ZVI system) could be improved with the joint actions of electrochemical oxidation at the BDD anode (39.1%), Fenton's reaction (28.5%), oxidation–reduction at zero-valent iron (17.8%) and coagulation of iron hydroxides (14.6%). Moreover, it was found that under alkaline condition the performance of BDD-ZVI system was significantly enhanced, mainly due to the accelerated release of Fe(II) ions from ZVI and the enhanced oxidation of Fe(II) ions. The dissolved oxygen concentration was significantly reduced by reduction at the cathode, and consequently zero-valent iron corroded to Fe(II) ions in anaerobic highly alkaline environments. Furthermore, the oxidation of released Fe(II) ions to Fe(III) ions and high-valent iron species (e.g., FeO 2+ , FeO 4 2− ) was enhanced by direct electrochemical oxidation at BDD anode.

  7. Electrochemical performance of multi-element doped α-nickel hydroxide prepared by supersonic co-precipitation method

    International Nuclear Information System (INIS)

    Zhang, Z.J.; Zhu, Y.J.; Bao, J.; Lin, X.R.; Zheng, H.Z.

    2011-01-01

    Highlights: → The α-nickel hydroxides doped with several elements were prepared by supersonic co-precipitation method. → Cyclic voltammetry and electrochemical impedance spectroscopy show sample C has the best electrochemical performance. → The charge/discharge tests show that the 0.5 C discharge capacity (346 mAh/g) of sample C is even larger than that (337 mAh/g) at 0.1 C rate, while the discharge capacity at 0.5 C rate is much lower than that at 0.1 C rate for samples A and B. - Abstract: The multi-element doped α-nickel hydroxides have been prepared by supersonic co-precipitation method. Three kinds of samples A, B, C were prepared by chemically coprecipitating Ni, Al, Co, Y, Zn. It was found that sample C produced better performance than the others. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements indicated that sample C has better electrochemical performance, such as better reaction reversibility, higher proton diffusion coefficient and lower charge-transfer resistance, than those of samples A and B. The charge-discharge tests showed that the discharge capacity (346 mA h/g) of sample C is even larger at 0.5 C rate than that (337mAh/g) at 0.1 C rate, while the discharge capacity at 0.5 C rate is much lower than that at 0.1 C rate for samples A and B. It indicates that all doped elements can produce the synergic effect and further improve the electrochemical properties of the active materials.

  8. The impact of surface composition on Tafel kinetics leading to enhanced electrochemical insertion of hydrogen in palladium

    Science.gov (United States)

    Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt

    2018-05-01

    Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.

  9. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hojin Choi

    2015-06-01

    Full Text Available The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013. Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  10. Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS2 Heterostructures for Energy Storage: Insights from Multiscale Modeling.

    Science.gov (United States)

    Gong, Feng; Ding, Zhiwei; Fang, Yin; Tong, Chuan-Jia; Xia, Dawei; Lv, Yingying; Wang, Bin; Papavassiliou, Dimitrios V; Liao, Jiaxuan; Wu, Mengqiang

    2018-05-02

    Graphene has been combined with molybdenum disulfide (MoS 2 ) to ameliorate the poor cycling stability and rate performance of MoS 2 in lithium ion batteries, yet the underlying mechanisms remain less explored. Here, we develop multiscale modeling to investigate the enhanced electrochemical and thermal transport properties of graphene/MoS 2 heterostructures (GM-Hs) with a complex morphology. The calculated electronic structures demonstrate the greatly improved electrical conductivity of GM-Hs compared to MoS 2 . Increasing the graphene layers in GM-Hs not only improves the electrical conductivity but also stabilizes the intercalated Li atoms in GM-Hs. It is also found that GM-Hs with three graphene layers could achieve and maintain a high thermal conductivity of 85.5 W/(m·K) at a large temperature range (100-500 K), nearly 6 times that of pure MoS 2 [∼15 W/(m·K)], which may accelerate the heat conduction from electrodes to the ambient. Our quantitative findings may shed light on the enhanced battery performances of various graphene/transition-metal chalcogenide composites in energy storage devices.

  11. Synthesis and Electrochemical Performance of Graphene Wrapped SnxTi1−xO2 Nanoparticles as an Anode Material for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xing Xin

    2015-01-01

    Full Text Available Ever-growing development of Li-ion battery has urged the exploitation of new materials as electrodes. Here, SnxTi1-xO2 solid-solution nanomaterials were prepared by aqueous solution method. The morphology, structures, and electrochemical performance of SnxTi1-xO2 nanoparticles were systematically investigated. The results indicate that Ti atom can replace the Sn atom to enter the lattice of SnO2 to form substitutional solid-solution compounds. The capacity of the solid solution decreases while the stability is improved with the increasing of the Ti content. Solid solution with x of 0.7 exhibits the optimal electrochemical performance. The Sn0.7Ti0.3O2 was further modified by highly conductive graphene to enhance its relatively low electrical conductivity. The Sn0.7Ti0.3O2/graphene composite exhibits much improved rate performance, indicating that the SnxTi1-xO2 solid solution can be used as a potential anode material for Li-ion batteries.

  12. Stability enhancement of an electrically tunable colloidal photonic crystal using modified electrodes with a large electrochemical potential window

    Energy Technology Data Exchange (ETDEWEB)

    Shim, HongShik [Samsung Advanced Institute of Technology, Yongin-Si, Gyeonggi-do (Korea, Republic of); Department of Chemistry, Seoul National University, Seoul (Korea, Republic of); Gyun Shin, Chang; Heo, Chul-Joon; Jeon, Seog-Jin; Jin, Haishun; Woo Kim, Jung; Jin, YongWan; Lee, SangYoon; Gyu Han, Moon, E-mail: moongyu.han@samsung.com, E-mail: jinklee@snu.ac.kr [Samsung Advanced Institute of Technology, Yongin-Si, Gyeonggi-do (Korea, Republic of); Lim, Joohyun; Lee, Jin-Kyu, E-mail: moongyu.han@samsung.com, E-mail: jinklee@snu.ac.kr [Department of Chemistry, Seoul National University, Seoul (Korea, Republic of)

    2014-02-03

    The color tuning behavior and switching stability of an electrically tunable colloidal photonic crystal system were studied with particular focus on the electrochemical aspects. Photonic color tuning of the colloidal arrays composed of monodisperse particles dispersed in water was achieved using external electric field through lattice constant manipulation. However, the number of effective color tuning cycle was limited due to generation of unwanted ions by electrolysis of the water medium during electrical switching. By introducing larger electrochemical potential window electrodes, such as conductive diamond-like carbon or boron-doped diamond, the switching stability was appreciably enhanced through reducing the number of ions generated.

  13. Graphene-Conducting Polymer Nanocomposites for Enhancing Electrochemical Capacitive Energy Storage

    DEFF Research Database (Denmark)

    Shen, Fei; Pankratov, Dmitry; Chi, Qijin

    2017-01-01

    The evolution of power generation, expansion of transportation and electrification, and popularization of portable electronic devices have altogether posed growing demands for more efficient energy storage systems. Supercapacitors, as one of major electrochemical energy storage devices, have...... recently received intensive attention. In this minireview, our focus is on graphene-conducting polymer nanocomposites and their applications in supercapacitors that have potential to perform high power and energy density, fast charge/discharge rate, low cost and eco-friendly operation conditions. We first...

  14. A simplified in-situ electrochemical decontamination of lead from polluted soil (abstract)

    International Nuclear Information System (INIS)

    Ansari, T.M.; Ahmad, I.; Khan, Q.M.; Chaudhry, A.H.

    2011-01-01

    This paper reports a simplified In-Situ electrochemical method for remediation of field soil contaminated with lead. A series of electrochemical decontamination experiments including variable conditions such as operating duration and application of enhancement reagent were performed to demonstrate the efficiency of lead removal from spiked and polluted soil samples collected from Lahore, Pakistan. The results showed that the efficiency of lead removal from the contaminated soil increased with increasing the operating duration under a set of experimental conditions. The reagent used as complexing and solubilizing agent i.e. EDTA was found to be efficient in removing lead from the polluted soil. After 15 days duration, 85 % lead removal efficiency was observed in spiked soil under enhanced conditions , however, 63 % lead removal was achieved from the polluted soil samples by the simplified In-situ electrochemical decontamination method. The method is simple, rapid, cheaper and suitable for soil remediation purposes. (author)

  15. Synergetic Fe substitution and carbon connection in LiMn1−xFexPO4/C cathode materials for enhanced electrochemical performances

    International Nuclear Information System (INIS)

    Yan, Su-Yuan; Wang, Cheng-Yang; Gu, Rong-Min; Sun, Shuai; Li, Ming-Wei

    2015-01-01

    Highlights: • LiMn 0.6 Fe 0.4 PO 4 /C cathode material shows enhanced rate capability. • The Fe doped in the partial Mn sites could significantly facilitate the Li ions transfer. • The enhanced Li + ions diffusion contributes to the optimized rate capability of LiMn 0.6 Fe 0.4 PO 4 . • ACM carbonization forms well carbon coating and a 3D carbon network structure. - Abstract: To enhance the rate and cyclic performances of LiMnPO 4 cathode material for lithium-ion batteries, Mn is partially substituted with Fe, and LiMn 1−x Fe x PO 4 (x = 0.2, 0.3, 0.4, 0.5) solid solutions are synthesized and investigated. Amphiphilic carbonaceous material (ACM) forms well carbon coating and connects the LiMn 1−x Fe x PO 4 crystallites by a three-dimensional (3D) carbon network. The synergetic Fe substitution and carbon connection obviously improve the samples’ rate capacities and cyclic stability. The optimized LiMn 0.6 Fe 0.4 PO 4 /C sample delivers discharge capacities of 160 mA h g −1 at 0.05 C, 148 mA h g −1 at 1 C, and 115 mA h g −1 at 20 C. All samples have well capacity retention (>92%) after 50 charge/discharge cycles at 1 C. The enhanced electrochemical properties are mainly attributed to the improvement of Li ion and electron transport in the LiMn 1−x Fe x PO 4 /C samples, respectively mainly resulting from their modified crystal structures caused by Fe substitution and the 3D carbon coating/connection originating from ACM carbonization. LiMn 1−x Fe x PO 4 materials exhibit two discharge plateaus at ∼4.0 and ∼3.5 V (vs. Li + /Li), whose heights respectively reflect the redox potentials of Mn 3+ /Mn 2+ and Fe 3+ /Fe 2+ couples. The plateaus’ lengths correspond to the Mn/Fe ratio in LiMn 1−x Fe x PO 4 and are affected by the kinetic behavior of samples. Though the ∼4.0 V plateau shrinks with increasing discharge rate, the ∼3.5 V plateau may slightly elongate. Moreover, the Fe substituted in the partial Mn sites could significantly improve

  16. Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan; Sun, Hongtao; Yu, Mingpeng; Jiang, Weilin; Liu, Changsheng; Lian, Jie

    2011-12-08

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s-1, the specific capacitance of the pillared GP is 138 F g-1 and 83.2 F g-1 with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s-1, the specific capacitance can reach 80 F g-1 in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. Finally, the pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage.

  17. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    Science.gov (United States)

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  18. Synthesis, spectroscopic analysis and electrochemical performance of modified β-nickel hydroxide electrode with CuO

    Directory of Open Access Journals (Sweden)

    B. Shruthi

    2017-03-01

    Full Text Available In the present work, a modified β-nickel hydroxide (β-Ni(OH2 electrode material with CuO has been prepared using a co-precipitation method. The structure and property of the modified β-Ni(OH2 with CuO were characterized by X-ray diffraction (XRD, Fourier Transform infra-red (FT-IR, Raman and thermal gravimetric-differential thermal analysis (TG-DTA techniques. The results of the FT-IR spectroscopy and TG-DTA indicate that the modified β-Ni(OH2 electrode materials contain intercalated water molecules and anions. A pasted–type electrode was prepared using nickel hydroxide powder as the main active material on a nickel sheet as a current collector. Cyclic voltammetry (CV and Electrochemical impedance spectroscopy (EIS studies were undertaken to assess the electrochemical behavior of pure β-Ni(OH2 and modified β-Ni(OH2 electrode with CuO in a 6 M KOH electrolyte. The addition of CuO into β-nickel hydroxide was found to enhance the reversibility of the electrode reaction and also increase the separation of the oxidation current peak of the active material from the oxygen evolution current. The modified nickel hydroxide with CuO was also found to exhibit a higher proton diffusion coefficient and a lower charge transfer resistance. These findings suggest that the modified β-Ni(OH2 with CuO possesses an enhanced electrochemical response and thus can be recognized as a promising candidate for battery electrode applications.

  19. Application of ionic liquids in electrochemical sensing systems.

    Science.gov (United States)

    Shiddiky, Muhammad J A; Torriero, Angel A J

    2011-01-15

    Since 1992, when the room temperature ionic liquids (ILs) based on the 1-alkyl-3-methylimidazolium cation were reported to provide an attractive combination of an electrochemical solvent and electrolyte, ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, and lithium batteries. However, it has only been in the last few years that electrochemical biosensors based on carbon ionic liquid electrodes (CILEs) and IL-modified macrodisk electrodes have been reported. However, there are still a lot of challenges in achieving IL-based sensitive, selective, and reproducible biosensors for high speed analysis of biological and environmental compounds of interest. This review discusses the principles of operation of electrochemical biosensors based on CILEs and IL/composite-modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed. Key challenges and opportunities of IL-based biosensors to further development and use are considered. Emphasis is given to direct electron-transfer reaction and electrocatalysis of hemeproteins and enzyme-modified composite electrodes. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Optimization of Design Parameters and Operating Conditions of Electrochemical Capacitors for High Energy and Power Performance

    Science.gov (United States)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-03-01

    Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte

  1. Electrochemical soil remediation - accelerated soil weathering?

    Energy Technology Data Exchange (ETDEWEB)

    Ottosen, L.M.; Villumsen, A.; Hansen, H.K.; Jensen, P.E.; Pedersen, A.J. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Environmental Sciences and Engineering, New Univ. of Lisbon, Monte da Caparica (Portugal)

    2001-07-01

    In electrochemical soil remediation systems, where enhancement solutions and complexing agents are not used, a developing acidic front is mobilizing the heavy metals and the electric current is removing the mobilized elements from the soil. The hypotheses investigated in this paper is whether this process may be comparable to the chemical soil weathering that occurs in the environment due to the acidic rain, where the mobilized elements are removed from the soil by the penetrating water. Even through the weathering process is highly accelerated in the electrochemical cell. This paper shows results from electrodialytic remediation experiments performed with four different Danish heavy metal polluted soils. The main emphasis is laid on the relation between the developing acidic front and electromigration of Cu, Zn, Mn, Mg, Fe and Ca. (orig.)

  2. Preparation and electrochemical performance of bramble-like ZnO array as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan, Junfeng; Wang, Gang; Wang, Hui; Zhang, Zhiyong; Ruan, Xiongfei; Zhao, Wu; Yun, Jiangni; Xu, Manzhang

    2015-01-01

    A bramble-like ZnO array with a special three-dimensional (3D) nanostructure was successfully fabricated on Zn foil through a facile two-step hydrothermal process. A possible growth mechanism of the bramble-like ZnO array was proposed. In the first step of hydrothermal process, the crystal nucleus of Zn(OH) 4 2− generated by the zinc atoms and OH − ions fold together preferentially along the positive polar (0001) to form the needle-like ZnO array. In the second step of hydrothermal process, the crystal nuclei of Zn(OH) 4 2− adjust their posture to keep their c-axes vertical to the perching sites due to the sufficient environmental force and further grow preferentially along the (0001) direction so as to form bramble-like ZnO array. The electrochemical properties of the needle- and bramble-like ZnO arrays as anode materials for lithium-ion batteries were investigated and compared. The results show that the bramble-like ZnO material exhibits much better lithium storage properties than the needle-like ZnO sample. Reasons for the enhanced electrochemical performance of the bramble-like ZnO material were investigated

  3. Facile electrochemical polymerization of 2-(thiophen-2-yl)furan and the enhanced capacitance properties of its polymer in acetonitrile electrolyte containing boron trifluoride diethyl etherate

    International Nuclear Information System (INIS)

    Mo, Daize; Zhou, Weiqiang; Ma, Xiumei; Xu, Jingkun

    2015-01-01

    Highlights: • The low-potential polymerization of 2-(thiophen-2-yl)furan into polymer (PTFu) was reported. • The electrochemical performance of PTFu was studied in three different electrolytes. • The specific capacitance of PTFu electrode reached 392.0 F g −1 at 5 A g −1 and had 67.0% retention after 500 cycles. • The addition of boron trifluoride diethyl etherate into acetonitrile electrolyte benefited to enhance the specific capacitance and stability of PTFu electrode. - ABSTRACT: In this study, a new simple hybrid poly(2-(thiophen-2-yl)furan) (PTFu) was easily electrodeposited by direct anodic oxidation of 2-(thiophen-2-yl)furan in acetonitrile solution containing 0.1 M lithium perchlorate (LiClO 4 ). The oxidation onset potential of 2-(thiophen-2-yl)furan monomer in this medium was measured to be 0.90 V, which was lower than those of thiophene (1.47 V) and furan (1.28 V). The structure and morphology of PTFu were characterized by Ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermal analysis. The electrochemical capacitance properties of PTFu electrode in three electrolytes were also investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscope techniques. The electrochemical results showed that the specific capacitance of PTFu electrode was enhanced to 392.0 F g −1 from 249.4 F g −1 at 5 A g −1 and the cycling stability was also enhanced to 67.0% retention from 25.5% retention after 500 cycles when the equivalent boron trifluoride diethyl etherate (BFEE) was added into the acetonitrile electrolyte. Furthermore, the PTFu electrode in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF 6 ) showed a lower specific capacitance value (209.4 F g −1 at 5 A g −1 ) and an improved stability (67.6% retention after 600 cycles). These results indicated that the conducting polymers based on furan should be a promising

  4. The low temperature electrochemical performances of LiFePO4/C/graphene nanofiber with 3D-bridge network structure

    International Nuclear Information System (INIS)

    Xie, Dong; Cai, Guanglan; Liu, Zhichao; Guo, Ruisong; Sun, Dandan; Zhang, Chao; Wan, Yizao; Peng, Jianhong; Jiang, Hong

    2016-01-01

    Highlights: • Highly conductive graphene nanofibers were introduced into the LiFePO 4 /C matrix. • Graphene nanofiber modification improved the discharge capacity at low temperatures. • Graphene nanofiber reduced the polarization of the electrodes at low temperatures. • Modified electrodes exhibited decreased charge-transfer resistance. • Graphene nanofiber modified samples exhibited higher diffusion coefficient of lithium ions. - Abstract: Three-dimensionally assembled LiFePO 4 /C/graphene nanofiber composites were successfully prepared via a suspension mixing method followed by heat-treatment at 400 °C. A faster electron transfer, lower electrochemical polarization as well as higher diffusion coefficient of Li + are obtained with the assistance of graphene nanofibers. The 5 wt% graphene nanofibers modified electrode (G-5) delivers the best electrochemical kinetics including the lowest charge transfer resistance and highest diffusion coefficient of Li + at 0 °C and −20 °C, respectively. Likewise, the G-5 exhibits the highest charge-discharge capability and the most stable cycling performance at low operation temperatures compared with those of LiFePO 4 /C, 3 wt% and 7 wt% graphene nanofibers modified LiFePO 4 /C (G-3 and G-7) composites. The G-5 electrode shows a capacity of 92.8 mAh g −1 with 92.0% capacity retention after 200 cycles at 1C at −20 °C. The reasons for the significant improvement of the low operation temperatures electrochemical performances can be ascribed to the enhanced conductivity and reduced agglomeration of pristine particles due to the introduction of graphene nanofibers. These excellent low temperature performances show that graphene nanofibers modified LiFePO 4 /C electrodes are promising cathode candidates for lithium-ion batteries applications at low temperatures.

  5. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries

    Science.gov (United States)

    Wang, Rui; Feng, Lili; Yang, Wenrong; Zhang, Yinyin; Zhang, Yanli; Bai, Wei; Liu, Bo; Zhang, Wei; Chuan, Yongming; Zheng, Ziguang; Guan, Hongjin

    2017-10-01

    When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, the mixture of styrene butadiene rubber and sodium carboxymethyl cellulose (SBR+CMC), and polyacrylonitrile (LA133) were studied to make anode electrodes (compared to the full battery). The electrochemical tests show that using SBR+CMC and LA133 binder which use water as solution were significantly better than PVDF. The SBR+CMC binder remarkably improve the bonding capacity, cycle stability, and rate performance of battery anode, and the capacity retention was about 87% after 50th cycle relative to the second cycle. SBR+CMC binder was more suitable for making transition metal oxides anodes of LIBs.

  6. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.

    Science.gov (United States)

    Zhang, Jinli; Nie, Ning; Liu, Yuanyuan; Wang, Jiao; Yu, Feng; Gu, Junjie; Li, Wei

    2015-09-16

    An evolutionary composite of LiFePO4 with nitrogen and boron codoped carbon layers was prepared by processing hydrothermal-synthesized LiFePO4. This novel codoping method is successfully applied to LiFePO4 for commercial use, and it achieved excellent electrochemical performance. The electrochemical performance can be improved through single nitrogen doping (LiFePO4/C-N) or boron doping (LiFePO4/C-B). When modifying the LiFePO4/C-B with nitrogen (to synthesis LiFePO4/C-B+N) the undesired nonconducting N-B configurations (190.1 and 397.9 eV) are generated. This decreases the electronic conductivity from 2.56×10(-2) to 1.30×10(-2) S cm(-1) resulting in weak electrochemical performance. Nevertheless, using the opposite order to decorate LiFePO4/C-N with boron (to obtain LiFePO4/C-N+B) not only eliminates the nonconducting N-B impurity, but also promotes the conductive C-N (398.3, 400.3, and 401.1 eV) and C-B (189.5 eV) configurations-this markedly improves the electronic conductivity to 1.36×10(-1) S cm(-1). Meanwhile the positive doping strategy leads to synergistic electrochemical activity distinctly compared with single N- or B-doped materials (even much better than their sum capacity at 20 C). Moreover, due to the electron and hole-type carriers donated by nitrogen and boron atoms, the N+B codoped carbon coating tremendously enhances the electrochemical property: at the rate of 20 C, the codoped sample can elevate the discharge capacity of LFP/C from 101.1 mAh g(-1) to 121.6 mAh g(-1), and the codoped product based on commercial LiFePO4/C shows a discharge capacity of 78.4 mAh g(-1) rather than 48.1 mAh g(-1). Nevertheless, the B+N codoped sample decreases the discharge capacity of LFP/C from 101.1 mAh g(-1) to 95.4 mAh g(-1), while the commercial LFP/C changes from 48.1 mAh g(-1) to 40.6 mAh g(-1).

  7. Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application

    Science.gov (United States)

    Dixon, D.; Babu, D. J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.

    2016-11-01

    Oxygen plasma treatment was applied on commercially available graphite felt electrodes based on rayon (GFA) and polyacrylonitrile (GFD). The formation of functional groups on the surface of the felt was confirmed by X-ray photoelectron spectroscopy measurements. The BET studies of the plasma treated electrodes showed no significant increase in surface area for both the rayon as well as the PAN based felts. Both plasma treated electrodes showed significantly enhanced V3+/V2+ redox activity compared to the pristine electrodes. Since an increase of the surface area has been ruled out for plasma treated electrode the enhanced activity could be attributed to surface functional groups. Interestingly, plasma treated GFD felts showed less electrochemical activity towards V5+/V4+ compared to the pristine electrode. Nevertheless, an overall increase of the single cell performance was still observed as the negative electrode is known to be the performance limiting electrode. Thus, to a great extent the present work helps to preferentially understand the importance of functional groups on the electrochemical activity of negative and positive redox reaction. The study emphasizes the need of highly active electrodes especially at the negative electrode side as inactive electrodes can still facilitate hydrogen evolution and degrade the electrolyte in VRFBs.

  8. Enhancing graphene/CNT based electrochemical detection using magneto-nanobioprobes

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Priyanka Sharma, V Bhalla, E Senthil Prasad, V Dravid, G Shekhawat & C. Raman Suri ### Abstract This protocol describes an optimized signal amplification strategy to develop an ultra-sensitive magneto-electrochemical biosensing platform. The new protocol combines the advantages of carbon nanotube (CNT) and reduced graphene oxide (rGO) together with electrochemical bursting of magnetic nanoparticles. The method involves synthesis of gold-iron (Au/Fe) nano-structures function...

  9. Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review

    OpenAIRE

    Ensano, Benny M. B.; Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo; de Luna, Mark D. G.; Ballesteros, Florencio C.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  10. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    OpenAIRE

    Benny Marie B. Ensano; Laura Borea; Vincenzo Naddeo; Vincenzo Belgiorno; Mark Daniel G. de Luna; Mark Daniel G. de Luna; Florencio C. Ballesteros, Jr.; Florencio C. Ballesteros, Jr.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  11. Solvothermal synthesis of Li–Al layered double hydroxides and their electrochemical performance

    International Nuclear Information System (INIS)

    Wei, Jinbo; Gao, Zan; Song, Yanchao; Yang, Wanlu; Wang, Jun; Li, Zhanshuang; Mann, Tom; Zhang, Milin; Liu, Lianhe

    2013-01-01

    In this paper, for the first time, Li/Al layered double hydroxides (LDHs) were synthesized by a facile and environment-friendly solvothermal approach. X-ray diffraction patterns show that the as-prepared products belong to the hexagonal phase. Well-defined LDHs particles with spiral-shape (1–2 μm), hexagonal (2–3 μm) and petal-like structures (10–15 μm) have been successfully fabricated by adjusting the content of water/ethanol in the synthesis process. A possible growth mechanism was proposed for the formation of these structures. Their electrochemical performances were investigated by cyclic voltammetry, galvanostatic charge/discharge test and electrochemical impedance spectroscopy. The hexagonal Li/Al LDHs calcined at 450 °C exhibit the specific capacitance of 848 F g −1 at a current density of 1.25 A g −1 . The high specific capacitance and remarkable rate capacity of Li/Al LDHs are promising for applications in capacitors and low-cost aqueous lithium ion batteries. - Graphical abstract: Hexagonal Li/Al layered double hydroxides (LDHs) with high specific surface area and remarkable rate capacity via a facile and environmentally friendly solvothermal approach. Highlights: ► Li/Al LDHs with different morphologies were fabricated by a solvothermal method. ► Hexagonal Li/Al LDHs display better electrochemical performance. ► A possible growth mechanism to explain the different morphology is proposed

  12. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2018-02-01

    Full Text Available Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high treatment cost of the used electrolyte solution containing aniline and its polymerization by-products. Here, the composition of the used electrolyte solution was separated and determined by high performance liquid chromatography coupled with diode array detection (HPLC-DAD in the range of ultraviolet and visible (UV-Vis light. The analysis results revealed that the used electrolyte solution consisted of aniline, p-hydroquinone (HQ, p-benzoquinone (BQ, co-oligomers of aniline and p-benzoquinone (CAB and acid. Then, n-octanol and 2-octanone were selected as extracts to remove HQ, BQ and CAB from the used electrolyte solution. Following that, the recycled electrolyte solution was prepared by adjusting the concentration of aniline and acid of the aqueous phase, and the electrochemical polymerization process was conducted. Finally, the obtained PANI was characterized by scanning electron microscope (SEM and electrochemical methods. The experimental results clearly demonstrate that the morphology and specific capacitance of PANI produced from the recycled electrolyte solution can be recovered completely. This research paves the way for reusing the used electrolyte solution for aniline electrochemical polymerization.

  13. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance.

    Science.gov (United States)

    Wu, Ying; Wang, Jixiao; Ou, Bin; Zhao, Song; Wang, Zhi; Wang, Shichang

    2018-02-12

    Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI) materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high treatment cost of the used electrolyte solution containing aniline and its polymerization by-products. Here, the composition of the used electrolyte solution was separated and determined by high performance liquid chromatography coupled with diode array detection (HPLC-DAD) in the range of ultraviolet and visible (UV-Vis) light. The analysis results revealed that the used electrolyte solution consisted of aniline, p-hydroquinone (HQ), p-benzoquinone (BQ), co-oligomers of aniline and p-benzoquinone (CAB) and acid. Then, n-octanol and 2-octanone were selected as extracts to remove HQ, BQ and CAB from the used electrolyte solution. Following that, the recycled electrolyte solution was prepared by adjusting the concentration of aniline and acid of the aqueous phase, and the electrochemical polymerization process was conducted. Finally, the obtained PANI was characterized by scanning electron microscope (SEM) and electrochemical methods. The experimental results clearly demonstrate that the morphology and specific capacitance of PANI produced from the recycled electrolyte solution can be recovered completely. This research paves the way for reusing the used electrolyte solution for aniline electrochemical polymerization.

  14. Electrochemical performance of Li4Mn5O12 nano-crystallites prepared by spray-drying-assisted solid state reactions

    International Nuclear Information System (INIS)

    Jiang, Y.P.; Xie, J.; Cao, G.S.; Zhao, X.B.

    2010-01-01

    Nanosized Li 4 Mn 5 O 12 has been synthesized by a spray-drying-assisted solid state method. The effect of spray drying and drying temperature on the microstructure and electrochemical performance of the final products has been investigated. The microstructure of the products has been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The electrochemical performance of the products has been studied by galvanostatic cycling, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It has been found that the products prepared with a spray-drying pretreatment of the precursor exhibit a smaller grain size and a narrower size distribution than that prepared without the pretreatment. Among the three samples with a precursor pretreatment, that pretreated at 250 o C shows the best electrochemical performance due to the smallest grain size of below 50 nm and the narrowest size distribution.

  15. Solvothermal synthesis and electrochemical performance of hollow LiFePO{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhenmiao [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Pang, Wei Kong [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Tang, Xincun, E-mail: tangxincun@163.com [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Jia, Dianzeng; Huang, Yudai [Institute of Applied Chemistry, Xinjiang University, Urumqi 840046 (China); Guo, Zaiping [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-08-15

    Highlights: • Hollow LiFePO{sub 4} nanoparticles were successfully synthesized via solvothermal method. • The shorter b lattice parameter allows the shorter diffusion path of lithium ion. • Hollow LiFePO{sub 4} nanoparticles show better rate capability than solid LiFePO{sub 4}. - Abstract: Hollow LiFePO{sub 4} nanoparticles were synthesized via a solvothermal technique, using ammonium tartrate as additive and carbon source, and ethylene glycol/water as solvent. The as-prepared samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning and transmission electron microscopies, and Brunauer–Emmett–Teller specific surface area measurements. The electrochemical properties of the LiFePO{sub 4} cathode were examined in coin-type cell configuration and the cathode exhibited excellent rate capability (i.e., discharge capacity of 120.9 mA h g{sup −1} at 10 C) and cycling performance (i.e., >98% of capacity retention rate after 50 cycles). It is believed that the enhanced performance is correlated to the hollow structure, small crystallite and particle sizes, and relatively shorter lattice parameter b.

  16. The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries

    International Nuclear Information System (INIS)

    Tan, Jinli; Liu, Li; Guo, Shengping; Hu, Hai; Yan, Zichao; Zhou, Qian; Huang, Zhifeng; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2015-01-01

    Highlights: •The as-prepared CoF 2 shows excellent electrochemical performance as anode material for lithium ion batteries. •The Li insertion/extraction mechanism of CoF 2 below 1.2 V was firstly proposed. •The electrochemical performance of CoF 2 as anode material in sodium ion batteries was firstly studied. -- Abstract: Cobalt (II) fluoride begins to enter into the horizons of people along with the research upsurge of metal fluorides. It is very significative and theoretically influential to make certain its electrochemical reaction mechanism. In this work, we discover a new and unrevealed reversible interfacial intercalation mechanism reacting below 1.2 V for cobalt (II) fluoride electrode material, which contributes a combined discharge capacity of about 400 mA h g −1 with the formation of SEI film at the initial discharge process. A highly reversible storage capacity of 120 mA h g −1 is observed when the cell is cycled over the voltage of 0.01-1.2 V at 0.2 C, and the low-potential voltage reaction process has a significant impact for the whole electrochemical process. Electrochemical analyses suggest that pure cobalt (II) fluoride shows better electrochemical performance when it is cycled at 3.2-0.01 V compared to the high range (1.0-4.5 V). So, we hold that cobalt (II) fluoride is more suitable to serve as anode material for lithium ion batteries. In addition, we also try to reveal the relevant performance and reaction mechanism, and realize the possibility of cobalt (II) fluoride as anode material for sodium ion batteries

  17. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte

    Science.gov (United States)

    Shruthi, B.; Bheema Raju, V.; Madhu, B. J.

    2015-01-01

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6 M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44 × 10-12 cm2 s-1. Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled.

  18. Graphene Ink Film Based Electrochemical Detector for Paracetamol Analysis

    Directory of Open Access Journals (Sweden)

    Li Fu

    2018-01-01

    Full Text Available Graphene ink is a commercialized product in the graphene industry with promising potential application in electronic device design. However, the limitation of the graphene ink is its low electronic performance due to the ink preparation protocol. In this work, we proposed a simple post-treatment of graphene ink coating via electrochemical oxidation. The electronic conductivity of the graphene ink coating was enhanced as expected after the treatment. The proposed electrochemical oxidation treatment also exposes the defects of graphene and triggered an electrocatalytic reaction during the sensing of paracetamol (PA. The overpotential of redox is much lower than conventional PA redox potential, which is favorable for avoiding the interference species. Under optimum conditions, the graphene ink-based electrochemical sensor could linearly detect PA from 10 to 500 micro molar (μM, with a limit of detection of 2.7 μM.

  19. Enhancing electrochemical methods for producing and regenerating alane by using electrochemical catalytic additive

    Science.gov (United States)

    Zidan, Ragaiy

    2017-12-26

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) and other high capacity hydrides is provided. The electrolytic cell uses an electro-catalytic-additive within a polar non-salt containing solvent to solubilize an ionic hydride such as NaAlH.sub.4 or LiAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3 adduct. AlH.sub.3 is obtained from the adduct by heating under vacuum. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 or LiAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  20. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  1. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  2. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  3. Surfactant-assisted electrochemical deposition of {alpha}-cobalt hydroxide for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ting [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Jiang, Hao; Ma, Jan [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Temasek Laboratories, Nanyang Technological University, Singapore 637553 (Singapore)

    2011-01-15

    A N-methylpyrrolidone (NMP) assisted electrochemical deposition route has been developed to realize the synthesis of a dense {alpha}-Co(OH){sub 2} layered structure, which is composed of nanosheets, each with a thickness of 10 nm. The capacitive characteristics of the as-obtained {alpha}-Co(OH){sub 2} are investigated by means of cyclic voltammetry (CV), charge/discharge characterization, and electrochemical impedance spectroscopy (EIS), in 1 M KOH electrolyte. The results indicate that {alpha}-Co(OH){sub 2} prepared in the presence of 20 vol.% NMP has denser and thin layered structure which promotes an increased surface area and a shortened ion diffusion path. The as-prepared {alpha}-Co(OH){sub 2} shows better electrochemical performance with specific capacitance of 651 F g{sup -1} in a potential range of -0.1 to 0.45 V. These findings suggest that the surfactant-assisted electrochemical deposition is a promising process for building densely packed material systems with enhanced properties, for application in supercapacitors. (author)

  4. Nitrogen-Doped Three Dimensional Graphene for Electrochemical Sensing.

    Science.gov (United States)

    Yan, Jing; Chen, Ruwen; Liang, Qionglin; Li, Jinghong

    2015-07-01

    The rational assembly and doping of graphene play an crucial role in the improvement of electrochemical performance for analytical applications. Covalent assembly of graphene into ordered hierarchical structure provides an interconnected three dimensional conductive network and large specific area beneficial to electrolyte transfer on the electrode surface. Chemical doping with heteroatom is a powerful tool to intrinsically modify the electronic properties of graphene due to the increased free charge-carrier densities. By incorporating covalent assembly and nitrogen doping strategy, a novel nitrogen doped three dimensional reduced graphene oxide nanostructure (3D-N-RGO) was developed with synergetic enhancement in electrochemical behaviors. The as prepared 3D-N-RGO was further applied for catechol detection by differential pulse voltammetry. It exhibits much higher electrocatalytic activity towards catechol with increased peak current and decreased potential difference between the oxidation and reduction peaks. Owing to the improved electro-chemical properties, the response of the electrochemical sensor varies linearly with the catechol concentrations ranging from 5 µM to 100 µM with a detection limit of 2 µM (S/N = 3). This work is promising to open new possibilities in the study of novel graphene nanostructure and promote its potential electrochemical applications.

  5. Combination Carbon Nanotubes with Graphene Modified Natural Graphite and Its Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    DENG Ling-feng

    2017-04-01

    Full Text Available The CNTs/rGO/NG composite lithiumion battery anode material was synthesized by thermal reducing, using graphene oxide (GO and carbon nanotubes (CNTs as precursors for a 5 ∶ 3 proportion. The morphology, structure, and electrochemical performance of the composite were characterized by scanning electron microscopy(SEM, X-ray diffractometry(XRD, Fourier transform infrared spectra (FTIR and electrochemical measurements. The results show that reduced graphene oxide and carbon nanotubes form a perfect three-dimensional network structure on the surface of natural graphite. CNTs/rGO/NG composite has good rate performance and cycle life,compared with pure natural graphite.The initial discharge capacity of designed anode is 479mAh/g at 0.1C, the reversible capacity up to 473mAh/g after 100 cycles,the capacity is still 439.5mAh/g, the capacity retention rate is 92%,and the capacity is 457, 433, 394mAh/g at 0.5, 1, 5C, respectively.

  6. Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films

    International Nuclear Information System (INIS)

    Cheng, J.P.; Fang, J.H.; Li, M.; Zhang, W.F.; Liu, F.; Zhang, X.B.

    2013-01-01

    Graphical abstract: Schematic illustration for the electron transport between the current collector and the active CoAl LDH arrays, where the yellow arrows indicate the high resistance of CoAl LDH, while the green arrows present the high conductivity of Pt films on LDH. -- Highlights: •CoAl layered double hydroxide nanosheet arrays are synthesized by hydrothermal method. •Pt films coated on surface of CoAl nanosheets facilitate fast electron transport. •CoAl LDH nanosheets coated with Pt film for 5 min have an excellent performance. -- Abstract: Three-dimensional network of cobalt and aluminum layered double hydroxide (LDH) nanosheets was synthesized on nickel foam by a simple hydrothermal method. The CoAl-LDH nonosheets were subsequently coated by ion sputtering with thin layers of Pt films to facilitate fast electron transport between current collector and the CoAl-LDH active materials. The optimal thickness of the Pt film acquiring the best performance was identified by applying various sputtering time in controlled experiments. The supercapacitor built by the CoAl-LDH nanosheets coated with Pt film sputtered for 5 min has a high specific capacitance (734.4 F g −1 at 3 A g −1 ), excellent rate capability as well as cycling stability. Moreover, it showed a long life of 77% retention after 6000 cycles and its general morphology was preserved after the test. The synergetic affect of conductive layer of Pt films and CoAl-LDH on the improvement of electrochemical properties was discussed and this would provide a useful clue in designing novel and effective electrode materials for supercapacitors

  7. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.

    Science.gov (United States)

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan; Sun, Hongtao; Yu, Mingpeng; Jiang, Weilin; Liu, Changsheng; Lian, Jie

    2012-02-06

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s(-1) , the specific capacitance of the pillared GP is 138 F g(-1) and 83.2 F g(-1) with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s (-1) , the specific capacitance can reach 80 F g(-1) in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. The pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode.

    Science.gov (United States)

    Nguyen, Hoai Viet; Richtera, Lukas; Moulick, Amitava; Xhaxhiu, Kledi; Kudr, Jiri; Cernei, Natalia; Polanska, Hana; Heger, Zbynek; Masarik, Michal; Kopel, Pavel; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-04-25

    In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.

  9. Donut-shaped Co_3O_4 nanoflakes grown on nickel foam with enhanced supercapacitive performances

    International Nuclear Information System (INIS)

    Han, Zhicheng; Zheng, Xin; Yao, Shunyu; Xiao, Huanhao; Qu, Fengyu; Wu, Xiang

    2016-01-01

    Graphical abstract: The as-synthesized product exhibits a high initial discharge capacitance of 518 mF/cm"2 at a current density of 1 mA cm"−"2 and can maintain 75% capacitance retention even after 6000 charge–discharge cycles. Electrochemical results revealed that the prepared Co_3O_4 nanoflakes possess a remarkable performance in supercapacitor applications. - Highlights: • Donut-shaped Co_3O_4 nanoflakes were first fabricated by a solution approach. • The tests show high discharge areal capacitance and long cycle life stability. • Co_3O_4 nanoflakes might be promising supercapacitor electrode materials. - Abstract: Donut-shaped Co_3O_4 nanoflakes grown on nickel foam were successfully fabricated by a simple one-pot hydrothermal approach. The prepared products were functionalized as the supercapacitors electrodes. Electrochemical performance of the as-prepared products demonstrated high specific capacitance (518 mF cm"−"2) and excellent cycling stability (∼25% loss) after 6000 repetitive cycles at a charge–discharge current density of 1 mA cm"−"2. The superior electrochemical performance may be ascribed into two reasons: one is the unique spatial structures which possess many active sites and provide enhanced combination between the electrode and nickel foam to support fast ion and electron transfer, the other is that donut-shaped Co_3O_4 nanoflakes electrodes show relatively lower resistances. It is expected that the as-obtained donut-shaped Co_3O_4 nanoflakes could have potential applications in portable electronics and electrical vehicles.

  10. Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping

    International Nuclear Information System (INIS)

    Pei Bo; Wang Qiang; Zhang Weixin; Yang Zeheng; Chen Min

    2011-01-01

    Highlights: → Hydrothermal reaction has been adopted to synthesize LiFePO 4 with a narrow size distribution. → LiFePO 4 was modified with carbon coating and cupric cation (Cu 2+ ) doping simultaneously. → Electrochemical properties of LiFePO 4 were improved by carbon coating and cupric cation doping. - Abstract: A hydrothermal reaction has been adopted to synthesize pure LiFePO 4 first, which was then modified with carbon coating and cupric ion (Cu 2+ ) doping simultaneously through a post-heat treatment. X-ray diffraction patterns, transmission electron microscopy and scanning electron microscopy images along with energy dispersive spectroscopy mappings have verified the homogeneous existence of coated carbon and doped Cu 2+ in LiFePO 4 particles with phospho-olivine structure and an average size of 400 nm. The electrochemical performances of the material have been studied by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge measurements. The carbon-coated and Cu 2+ -doped LiFePO 4 sample (LFCu5/C) exhibited an enhanced electronic conductivity of 2.05 x 10 -3 S cm -1 , a specific discharge capacity of 158 mAh g -1 at 50 mA g -1 , a capacity retention of 96.4% after 50 cycles, a decreased charge transfer resistance of 79.4 Ω and superior electrode reaction reversibility. The present synthesis route is promising in making the hydrothermal method more practical for preparation of the LiFePO 4 material and enhancement of electrochemical properties.

  11. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    Science.gov (United States)

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  12. Facile fabrication and electrochemical behaviors of Mn:ZnS nanocrystals

    International Nuclear Information System (INIS)

    Xie, Ruishi; Li, Yuanli; Liu, Haifeng; Guo, Baogang

    2016-01-01

    Here, we demonstrate the rational design and synthesis of Mn:ZnS nanocrystals with adjustable doping concentrations utilizing a facile, cost effective, and environmentally benign chemical protocol. These nanostructures were investigated as electrode materials for lithium-ion batteries. Compared with pristine ZnS nanocrystals, the Mn:ZnS nanocrystals exhibit significantly improved electrochemical performances in terms of specific capacity and cycling performance. The Mn:ZnS nanocrystal sample with doping concentration of 1 at% displays second discharge capacity of 789.9 mA h g"−"1 at a current density of 24 mA g"−"1, about 2.39 times higher than that of the pure ZnS nanocrystal. Furthermore, the Mn:ZnS nanocrystal electrodes represent much better capacity retention than that of the undoped one. The greatly improved electrochemical performances of the Mn:ZnS nanocrystal samples could be attributed to the following factors. The large specific surface area can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mn into the lattice of ZnS improves charge transfer kinetics and results in a faster Li"+ diffusion rate during the charge–discharge process. It is of great significance to incorporate guest metal ions into nanostructured materials to display especial electrochemical characteristics triggering an effective approach to improve the electrochemical properties.

  13. Facile fabrication and electrochemical behaviors of Mn:ZnS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ruishi [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010 (China); Li, Yuanli, E-mail: yuanlyl@foxmail.com [Department of Materials, Southwest University of Science and Technology, Mianyang, 621010 (China); Liu, Haifeng; Guo, Baogang [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010 (China)

    2016-07-05

    Here, we demonstrate the rational design and synthesis of Mn:ZnS nanocrystals with adjustable doping concentrations utilizing a facile, cost effective, and environmentally benign chemical protocol. These nanostructures were investigated as electrode materials for lithium-ion batteries. Compared with pristine ZnS nanocrystals, the Mn:ZnS nanocrystals exhibit significantly improved electrochemical performances in terms of specific capacity and cycling performance. The Mn:ZnS nanocrystal sample with doping concentration of 1 at% displays second discharge capacity of 789.9 mA h g{sup −1} at a current density of 24 mA g{sup −1}, about 2.39 times higher than that of the pure ZnS nanocrystal. Furthermore, the Mn:ZnS nanocrystal electrodes represent much better capacity retention than that of the undoped one. The greatly improved electrochemical performances of the Mn:ZnS nanocrystal samples could be attributed to the following factors. The large specific surface area can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mn into the lattice of ZnS improves charge transfer kinetics and results in a faster Li{sup +} diffusion rate during the charge–discharge process. It is of great significance to incorporate guest metal ions into nanostructured materials to display especial electrochemical characteristics triggering an effective approach to improve the electrochemical properties.

  14. Enhanced Electrochemical Activity and Chromium Tolerance of the Nucleation-Agent-Free La2Ni0.9Fe0.1O4+δ Cathode by Gd0.1Ce0.9O1.95 Incorporation

    Science.gov (United States)

    Ling, Yihan; Xie, Huixin; Liu, Zijing; Du, Xiaoni; Chen, Hui; Ou, Xuemei; Zhao, Ling; Budiman, Riyan Achmad

    2018-03-01

    For the sake of improving the electrochemical activity and chromium tolerance of the K2NiF4-type oxide, La2NiO4+δ (LNO), with nonnucleation agents like Mn and Sr elements, the electrochemical performance and degradation were comparatively studied at two cathodes La2Ni0.9Fe0.1O4+δ (LNF) and LNF-40wt%Gd0.1Ce0.9O1.95 (LNF-GDC) on the GDC electrolyte, where 5wt%Cr2O3 incorporation provides Cr-containing atmosphere. Compared with non-doped LNO, LNF shows a higher interstitial oxygen concentration (δ = 0.298) and a lower electrical conductivity, where bivalent Ni ion, {Ni}_{Ni}^{ × } , and trivalent Ni ion, {Ni}_{Ni}^{ \\cdot } , and trivalent Fe ion on Ni-site, {Fe}_{Ni}^{ \\cdot } , were observed from the XPS measurements. LNF-GDC shows greatly reduced interfacial polarization resistances (Rp), which are only half of those of LNF, indicating a better electrochemical performance. More importantly, no significant degradation of LNF-GDC in performance has been observed under exposure of Cr-containing atmosphere at 700 °C for 350 h, while Rp of LNF increased by nearly 20%, suggesting LNF by GDC incorporation can enhance the electrochemical performance as well as chromium tolerance for intermediate temperature solid oxide fuel cells (IT-SOFCs).

  15. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  16. High-Performance Vertical Organic Electrochemical Transistors.

    Science.gov (United States)

    Donahue, Mary J; Williamson, Adam; Strakosas, Xenofon; Friedlein, Jacob T; McLeod, Robert R; Gleskova, Helena; Malliaras, George G

    2018-02-01

    Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry-normalized transconductance of 814 S m -1 . The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Temperature dependence of Ni3S2 nanostructures with high electrochemical performance

    Science.gov (United States)

    Wang, Y. L.; Wei, X. Q.; Li, M. B.; Hou, P. Y.; Xu, X. J.

    2018-04-01

    Different Ni3S2 nanostructures have been successfully synthesized at different temperatures by a facile and efficient solvothermal method. The Ni3S2 nanostructures with three-dimensional (3D) nanosheets array and silkworm eggs-like morphologies were obtained by adjusting the reaction temperature. A large number of 3D nanosheets are interconnected to form an open network structure with porous of Ni3S2 at 180 °C, and electrochemical tests showed that the special structure exhibited the outstanding specific capacitance (1357 F g -1 at 1 A g-1) and excellent cycling stability (maintained 91% after 3000 cycles). In comparison, the performance of Ni3S2 silkworm eggs-like structure is not very perfect. This may be due to the fact that the 3D nanosheets with porous structure can improve the electrochemical performance by shortening effectively the diffusion path of electrolyte ions and increasing the active sites during charging and discharging. Among them, the reaction temperature is the main factor to control the formation of the 3D nanosheets array. These results indicated the Ni3S2 nanosheets promising applications as high-performance supercapacitor electrode materials.

  18. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    Science.gov (United States)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  19. Electrochemical kinetic performances of electroplating Co–Ni on La–Mg–Ni-based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Tao, Yang; Ke, Dandan; Ma, Yufei [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Han, Shumin, E-mail: hanshm@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-12-01

    Graphical abstract: - Highlights: • The Co–Ni composite coating was prepared by electroplating. • The alloy treated at 10 mA/cm{sup 2} has superior kinetic performances. • The Co–Ni layer accelerates the charge transfer rate on the surface of the alloy. - Abstract: Electroplating Co–Ni treatment was applied to the surface of the La{sub 0.75}Mg{sub 0.25}Ni{sub 3.48} alloy electrodes in order to improve the electrochemical and kinetic performances. The Scanning electron microscope-Energy dispersive spectroscopy and X-ray diffraction results showed that the electrodes were plated with a homogeneous Co–Ni alloy film. The alloy coating significantly improved the high rate dischargeability of the alloy electrode, and the HRD value increased to 57.5% at discharge current density 1875 mA/g after the Co–Ni-coating. The exchange current density I{sub 0}, the limiting current density I{sub L} and the oxidation peak current also increased for the coated alloy. The improvement of overall electrode performances was attributed to an enhancement in electro-catalytic activity and conductivity at the alloy surface, owing to the precipitation of the Co–Ni layer.

  20. Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor.

    Science.gov (United States)

    Yang, Yukun; Cao, Yaoyu; Wang, Xiaomin; Fang, Guozhen; Wang, Shuo

    2015-02-15

    In this work, we presented a three-dimensional (3D) molecularly imprinted electrochemical sensor (MIECS) with novel strategy for ultrasensitive and specific quantification of metolcarb based on prussian blue (PB) mediated amplification combined with signal enhancement of ordered mesoporous carbon. The molecularly imprinted polymers were synthesized by electrochemically induced redox polymerization of para aminobenzoic acid (p-ABA) in the presence of template metolcarb. Ordered mesoporous carbon material (CMK-3) was introduced to enhance the electrochemical response by improving the structure of the modified electrodes and facilitating charge transfer processes of PB which was used as an inherent electrochemical active probe. The modification process for the working electrodes of the MIECS was characterized by scanning electron microscope (SEM) and cyclic voltammetry (CV), and several important parameters controlling the performance of the MIECS were investigated and optimized in detail. The MIECS with 3D structure had the advantages of ease of preparation, high porous surface structure, speedy response, ultrasensitivity, selectivity, reliable stability, good reproducibility and repeatability. Under the optimal conditions, the MIECS offered an excellent current response for metolcarb in the linear response range of 5.0 × 10(-10)-1.0 × 10(-4) mol L(-1) and the limit of detection (LOD) was calculated to be 9.3 × 10 (-11)mol L(-1) (S/N = 3). The proposed MIECS has been successfully applied for the determination of metolcarb in real samples with satisfactory recoveries. Furthermore, the construction route of this ultrasensitive 3D MIECS may provide a guideline for the determination of non-electroactive analytes in environmental control and food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A nanostructured Ni/graphene hybrid for enhanced electrochemical hydrogen storage

    International Nuclear Information System (INIS)

    Choi, Moon-Hyung; Min, Young-Je; Gwak, Gyeong-Hyeon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    Highlights: • Graphene oxide(GO) was hybridized with the Ni(OH) 2 . • The Ni(OH) 2 /GO was reduced to Ni/graphene. • XRD, TEM, and X-ray absorption spectroscopy were examined. • The hydrogen storage property of Ni/graphene was significantly enhanced. - Abstract: To fabricate electrochemical hydrogen storage materials with delaminated structure, the graphene oxide (GO) in the ethylene glycol solution was reassembled in the presence of the precursor of Ni nanoparticles, and then, the reassembled hybrid was reduced under hydrogen atmosphere to obtain Ni/graphene hybrid. X-ray diffraction patterns and X-ray absorption spectscopic (XAS) analysis clearly show that Ni nanoparticles in Ni/graphene hybrid maintain its nanosized nature even after hybridization with graphene nanosheet (GNS). According to the TEM analysis, the Ni nanoparticles with an average size of 5.2 nm are homogeneously distributed onto the GNS in such a way that the nanoporous structure with much amount of void spaces could be fabricated. The obtained Ni/GNS exhibits a hydrogen storage capacity of 160 mA h/g, while the specific capacity of the graphene nanosheet was only 21 mA h/g. A flexible delaminated structure of Ni/GNS nanocomposite could provide additional intercalation sites for accommodation of hydrogen, leading to the enhancement of hydrogen storage capacity

  2. Electrochemical properties of amorphous WO3 coatings grown on polycarbonate by aerosol-assisted CVD

    International Nuclear Information System (INIS)

    Vernardou, D.; Drosos, H.; Spanakis, E.; Koudoumas, E.; Katsarakis, N.; Pemble, M.E.

    2012-01-01

    Highlights: ► Tungsten oxide is aerosol assisted chemically vapor deposited on polycarbonate. ► Their properties are dependent on the Ar:O 2 ratio during deposition. ► The porous structure enhances their electrochemical performance. - Abstract: Tungsten oxide coatings are chemically vapor deposited on polycarbonate via aerosol assisted at 125 °C. The effect of the Ar:O 2 ratio on the structural, morphological and electrochemical properties of the samples is investigated. The coating grown using Ar:O 2 ratio of 50:50, exhibits the best electrochemical activity and the fastest colouration-bleaching response. At the same time it offers a high specific capacitance that does not degrade upon at least 1000 successive charging–discharging cycles as studied by voltammetry in a solution of 1 M LiClO 4 . The importance of morphology towards the enhancement of the electrochromic behaviour of the coatings is discussed.

  3. Tuning inner-layer oxygen functional groups of reduced graphene oxide by potentiostatic oxidation for high performance electrochemical energy storage devices

    International Nuclear Information System (INIS)

    Wang, Huixin; Feng, Bingmei; Ye, Yifan; Guo, Jinghua; Fang, Hai-Tao

    2017-01-01

    Graphical abstract: Tuning inner-layer oxygen functional groups of reduced graphene oxide by potentiostatic oxidation in carbonate-based electrolyte improves the electrochemical performance. - Abstract: The electrochemical lithiation/delithiation of oxygen-containing functional groups (OCFGs) of nanocarbon materials, particularly graphene, have attracted intensive interest in recent years. Here, we propose a controllable potentiostatic oxidation approach to tune the OCFGs of as-prepared reduced graphene oxide (rGO) in a carbonate-based electrolyte to improve the specific capacity and rate capability. By X-Ray absorption spectroscopy in total fluorescence yield mode and X-Ray diffraction, we confirm that potentiostatic oxidations generate new OCFGs in the inner-layer of rGO. The content of OCFGs increases as oxidation potential being elevated. Such increasing of OCFGs in quantity significantly enhances the capacity. For instance, the specific capacity of 170.4 mAh g −1 for pristine rGO electrode is increased to 290.5 mAh g −1 after the oxidation at 5.0 V. We demonstrate that oxidations at moderate potentials can reduce the electrochemical and ohmic polarizations of rGO electrodes without deteriorating diffusion dynamic, thereby improving rate capability. After the optimal oxidation at 4.7 V, rGO electrode exhibits an excellent rate capability, delivering 58.4 mAh g −1 at 20 A g −1 .

  4. Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance.

    Science.gov (United States)

    Zhao, Mingming; Zhao, Qunxing; Li, Bing; Xue, Huaiguo; Pang, Huan; Chen, Changyun

    2017-10-19

    As representative two-dimensional (2D) materials, layered double hydroxides (LDHs) have received increasing attention in electrochemical energy storage and conversion because of the facile tunability between their composition and morphology. The high dispersion of active species in layered arrays, the simple exfoliation into monolayer nanosheets and chemical modification offer the LDHs an opportunity as active electrode materials in electrochemical capacitors (ECs). LDHs are favourable in providing large specific surface areas, good transport features as well as attractive physicochemical properties. In this review, our purpose is to provide a detailed summary of recent developments in the synthesis and electrochemical performance of the LDHs. Their composites with carbon (carbon quantum dots, carbon black, carbon nanotubes/nanofibers, graphene/graphene oxides), metals (nickel, platinum, silver), metal oxides (TiO 2 , Co 3 O 4 , CuO, MnO 2 , Fe 3 O 4 ), metal sulfides/phosphides (CoS, NiCo 2 S 4 , NiP), MOFs (MOF derivatives) and polymers (PEDOT:PSS, PPy (polypyrrole), P(NIPAM-co-SPMA) and PET) are also discussed in this review. The relationship between structures and electrochemical properties as well as the associated charge-storage mechanisms is discussed. Moreover, challenges and prospects of the LDHs for high-performance ECs are presented. This review sheds light on the sustainable development of ECs with LDH based electrode materials.

  5. Enhanced Properties of Porous GaN Prepared by UV Assisted Electrochemical Etching

    International Nuclear Information System (INIS)

    Ainorkhilah Mahmood; Ainorkhilah Mahmood; Siang, C.L.

    2011-01-01

    The structural and optical properties of porous GaN films on sapphire (0001) prepared by UV assisted electrochemical etching were reported in this study. SEM micrographs indicated that the shapes of the pores for both porous samples are nearly hexagonal. XRD revealed that the broadening in spectrum is due to the small size crystallites. As compared to the as grown GaN films, porous layers exhibit a substantial photoluminescence (PL) intensity enhancement with red-shifted band-edge PL peaks associated with the relaxation of compressive stress. The shift of E2(high) to the lower frequency in Raman spectra of the porous GaN films further confirms such a stress relaxation. (author)

  6. Mechanical and Electrochemical Performance of Carbon Fiber Reinforced Polymer in Oxygen Evolution Environment

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-11-01

    Full Text Available Carbon fiber-reinforced polymer (CFRP is recognized as a promising anode material to prevent steel corrosion in reinforced concrete. However, the electrochemical performance of CFRP itself is unclear. This paper focuses on the understanding of electrochemical and mechanical properties of CFRP in an oxygen evolution environment by conducting accelerated polarization tests. Different amounts of current density were applied in polarization tests with various test durations, and feeding voltage and potential were measured. Afterwards, tensile tests were carried out to investigate the failure modes for the post-polarization CFRP specimens. Results show that CFRP specimens had two typical tensile-failure modes and had a stable anodic performance in an oxygen evolution environment. As such, CFRP can be potentially used as an anode material for impressed current cathodic protection (ICCP of reinforced concrete structures, besides the fact that CFRP can strengthen the structural properties of reinforced concrete.

  7. Silver-coated LiVPO4F composite with improved electrochemical performance as cathode material for lithium-ion batteries

    Science.gov (United States)

    Yang, Bo; Yang, Lin

    2015-12-01

    Nano-structured LiVPO4F/Ag composite cathode material has been successfully synthesized via a sol-gel route. The structural and physical properties, as well as the electrochemical performance of the material are compared with those of the pristine LiVPO4F. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that Ag particles are uniformly dispersed on the surface of LiVPO4F without destroying the crystal structure of the bulk material. An analysis of the electrochemical measurements show that the Ag-modified LiVPO4F material exhibits high discharge capacity, good cycle performance (108.5 mAh g-1 after 50th cycles at 0.1 C, 93% of initial discharge capacity) and excellent rate behavior (81.8 mAh g-1 for initial discharge capacity at 5 C). The electrochemical impedance spectroscopy (EIS) results reveal that the adding of Ag decreases the charge-transfer resistance (Rct) of LiVPO4F cathode. This study demonstrates that Ag-coating is a promising way to improve the electrochemical performance of the pristine LiVPO4F for lithium-ion batteries cathode material.

  8. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors

    International Nuclear Information System (INIS)

    Zhang, Jin; Shi, Zhiqiang; Wang, Chengyang

    2014-01-01

    Highlights: • MCMB with different pre-lithiation capacity as negative electrode in LIC. • Pre-lithiation improves the electrochemical performance of LIC. • The optimal pre-lithiation capacity has been proposed. - Abstract: Lithium ion capacitors are assembled with pre-lithiated mesocarbon microbeads (LMCMB) anode and activated carbon (AC) cathode. The effect of pre-lithiation degrees on the crystal structure of MCMB electrode and the electrochemical capacitance behavior of LIC are investigated by X-ray diffraction (XRD) and the charge-discharge test of three-electrode cell. The structure of graphite still maintained when the pre-lithiation capacity is less than 200 mAh g −1 , phase transition takes place with the increase of pre-lithiation capacity from 250 mAh g −1 to 350 mAh g −1 . Pre-lithiation degrees of MCMB anode greatly affect the charge-discharge process and behavior, which impact on the electrochemical performance of LIC. The LIC with pre-lithiation capacity of 300 mAh g −1 has the optimal electrochemical performance. The energy density of LIC300 is up to 92.3 Wh kg −1 , the power density as high as 5.5 kW kg −1 and the capacity retention is 97.0% after 1000 cycles. The excellent electrochemical performance benefits from the appropriate pre-lithiation capacity of negative electrode. The appropriate pre-lithiation ensures the working voltage of negative electrode in low and relative stable charge-discharge platform corresponding to the mutual phase transition from the second stage graphite intercalation compound (LiC 12 ) to the first stage graphite intercalation compound (LiC 6 ). The stable charge-discharge platform of negative electrode is conductive to the sufficient utilization of AC positive electrode

  9. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    Science.gov (United States)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  10. Effects of organic additives containing -NH2 and -SO3H on electrochemical properties of vanadium redox flow battery

    International Nuclear Information System (INIS)

    He, Zhangxing; Liu, Jianlei; Han, Huiguo; Chen, Yong; Zhou, Zhi; Zheng, Shijie; Lu, Wei; Liu, Suqin; He, Zhen

    2013-01-01

    Effects of methanesulfonic acid (MSA) and aminomethylsulfonic acid (AMSA) as additives for positive electrolyte on thermal stability and electrochemical performance are investigated. Both additives can improve the thermal stability of V(V) electrolyte, and AMSA has better effect, especially. The electrochemical results show that V(IV)/V(V) exhibits superior electrochemical activity and reversibility with additives, and the diffusion coefficient of V(IV) species, exchange current density and reaction rate constant become larger with additives in positive electrolyte. Among the two additives, AMSA has better effect for improvement of electrochemical activity and kinetics. The cell using positive electrolyte with additive of AMSA was assembled and the charge–discharge performance was evaluated. The assembled cell using AMSA as positive electrolyte additive shows good cycling performance, with higher energy efficiency (81.5%) and larger discharge capacity retention (40 cycles: 82.7%). The improved electrochemical performance may be ascribed to more active sites provided by -NH 2 group and the enhanced hydrophilicity of the electrode provided by -NH 2 and -SO 3 H groups

  11. Pseudocapacitive Oxides and Sulfides for High-Performance Electrochemical Energy Storage

    KAUST Repository

    Xia, Chuan

    2018-01-01

    The intermittent nature of several sustainable energy sources such as solar and wind energy has ignited the demand of electrochemical energy storage devices in the form of batteries and electrochemical capacitors. The future generation

  12. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Agarwala, S.; Ho, G.W.

    2012-01-01

    In the present work, electrochemical anodization has been used to prepare uniform TiO 2 nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is ∼180 nm, 14 μm and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO 2 nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO 2 nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO 2 nanotube array with Ag nanoparticles. Highlights: ► Uniform array of TiO 2 nanotubes synthesized via electrochemical anodization. ► Back illuminated DSSC gave a cell performance of 4.5%. ► TiO 2 nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  13. High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach

    International Nuclear Information System (INIS)

    Wu, Hui; Li, Dongdong; Zhu, Xufei; Yang, Chunyan; Liu, Dongfang; Chen, Xiaoyuan; Song, Ye; Lu, Linfeng

    2014-01-01

    Although one-dimensional anodic TiO 2 nanotube arrays have shown promise as supercapacitor electrode materials, their poor electronic conductivity embarrasses the practical applications. Here, we develop a simple electrochemical doping method to significantly improve the electronic conductivity and the electrochemical performances of TiO 2 nanotube electrodes. These TiO 2 nanotube electrodes treated by the electrochemical hydrogenation doping (TiO 2 -H) exhibit a very high average specific capacitance of 20.08 mF cm −2 at a current density of 0.05 mA cm −2 , ∼20 times more than the pristine TiO 2 nanotube electrodes. The improved electrochemical performances can be attributed to ultrahigh conductivity of TiO 2 -H due to the introduction of interstitial hydrogen ions and oxygen vacancies by the doping. The supercapacitor device assembled by the doped electrodes delivers a specific capacitance of 5.42 mF cm −2 and power density of 27.66 mW cm −2 , on average, at the current density of 0.05 mA cm −2 . The device also shows an outstanding rate capability with 60% specific capacitance retained when the current density increases from 0.05 to 4.00 mA cm −2 . More interestingly, the electrochemical performances of the supercapacitor after cycling can be recovered by the same doping process. This strategy boosts the performances of the supercapacitor, especially cycling stability

  14. The Comparative Study of Electrochemical Capacitance Performance between Sulphur-Doped Co3O4 and CoS Anodes

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2016-01-01

    Full Text Available Anode materials with high capacitance performance are highly desirable for supercapacitors (SCs. In this work, nanomaterials cobalt sulfide (CoS, sulphur-doped Co3O4 (S-Co3O4, and Co3O4 were fabricated on a carbon cloth substrate by hydrothermal method. The composition and morphology of the material were characterized by X-ray diffraction (XRD patterns and Scanning Electron Microscope (SEM. The electrochemical measurements were performed in a three-electrode system. The result shows that CoS nanomaterial as anode is of the best electrochemical performance, achieving areal capacitance of 1.98 F/cm2 at 2 mA/cm2 in a 5 M LiCl solution. Moreover, the CoS anode has long-term cycling stability with more than 85.7% capacitance retention after 10000 cycles, confirming its larger capacitance, good redox activity, and electrochemical stability.

  15. Electrochemical Investigation of Carbon as Additive to the Negative Electrode of Lead-Acid Battery

    Directory of Open Access Journals (Sweden)

    Fernandez Matthew M.

    2015-01-01

    Full Text Available The increasing demand of cycle life performance of Pb-acid batteries requires the improvement of the negative Pb electrode’s charge capacity. Electrochemical investigations were performed on Pb electrode and Pb+Carbon (Carbon black and Graphite electrodes to evaluate the ability of the additives to enhance the electrochemical faradaic reactions that occur during the cycle of Pb-acid battery negative electrode. The electrodes were characterized through Cyclic Voltammetry (CV, Potentiodynamic Polarization (PP, and Electrochemical Impedance Spectroscopy (EIS. CV revealed that the addition of carbon on the Pb electrode increased anodic and cathodicreactions by tenfold. The kinetics of PbSO4 passivation measured through PPrevealed that the addition of Carbon on the Pb electrode accelerated the oxide formation by tenfold magnitude. The Nyquist plot measured through EIS suggest that the electrochemical mechanism and reaction kinetics is under charge-transfer. From the equivalent circuit and physical model, Pb+CB1 electrode has the lowest EIS parameters while Pb+G has the highest which is attributed to faster faradaic reaction.The Nyquist plot of the passivated Pb+CB1 electrode showed double semicircular shape. The first layer represents to the bulk passive PbSO4 layer and the second layer represents the Carbon+PbSO4 layer. The enhancements upon addition of carbon on the Pb electrode were attributed to the additive’s electrical conductivity and total surface area. The electrochemical active sites for the PbSO4 to nucleate and spread increases upon addition of electrical conductive and high surface area carbon additives.

  16. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    International Nuclear Information System (INIS)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong

    2016-01-01

    Highlights: • A series of Li-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2 (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g"−"1 at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  17. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong, E-mail: changsd@hit.edu.cn

    2016-11-15

    Highlights: • A series of Li-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2}) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2} (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g{sup −1} at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  18. Au-embedded ZnO/NiO hybrid with excellent electrochemical performance as advanced electrode materials for supercapacitor.

    Science.gov (United States)

    Zheng, Xin; Yan, Xiaoqin; Sun, Yihui; Bai, Zhiming; Zhang, Guangjie; Shen, Yanwei; Liang, Qijie; Zhang, Yue

    2015-02-04

    Here we design a nanostructure by embedding Au nanoparticles into ZnO/NiO core-shell composites as supercapacitors electrodes materials. This optimized hybrid electrodes exhibited an excellent electrochemical performance including a long-term cycling stability and a maximum specific areal capacitance of 4.1 F/cm(2) at a current density of 5 mA/cm(2), which is much higher than that of ZnO/NiO hierarchical materials (0.5 F/cm(2)). Such an enhanced property is attributed to the increased electro-electrolyte interfaces, short electron diffusion pathways and good electrical conductivity. Apart from this, electrons can be temporarily trapped and accumulated at the Fermi level (EF') because of the localized schottky barrier at Au/NiO interface in charge process until fill the gap between ZnO and NiO, so that additional electrons can be released during discharge. These results demonstrate that suitable interface engineering may open up new opportunities in the development of high-performance supercapacitors.

  19. Improved in vivo performance of amperometric oxygen (PO2) sensing catheters via electrochemical nitric oxide generation/release.

    Science.gov (United States)

    Ren, Hang; Coughlin, Megan A; Major, Terry C; Aiello, Salvatore; Rojas Pena, Alvaro; Bartlett, Robert H; Meyerhoff, Mark E

    2015-08-18

    A novel electrochemically controlled release method for nitric oxide (NO) (based on electrochemical reduction of nitrite ions) is combined with an amperometric oxygen sensor within a dual lumen catheter configuration for the continuous in vivo sensing of the partial pressure of oxygen (PO2) in blood. The on-demand electrochemical NO generation/release method is shown to be fully compatible with amperometric PO2 sensing. The performance of the sensors is evaluated in rabbit veins and pig arteries for 7 and 21 h, respectively. Overall, the NO releasing sensors measure both venous and arterial PO2 values more accurately with an average deviation of -2 ± 11% and good correlation (R(2) = 0.97) with in vitro blood measurements, whereas the corresponding control sensors without NO release show an average deviation of -31 ± 28% and poor correlation (R(2) = 0.43) at time points >4 h after implantation in veins and >6 h in arteries. The NO releasing sensors induce less thrombus formation on the catheter surface in both veins and arteries (p < 0.05). This electrochemical NO generation/release method could offer a new and attractive means to improve the biocompatibility and performance of implantable chemical sensors.

  20. Electrochemical performance of Si-multiwall carbon nanotube nanocomposite anode synthesized by thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Na, Ye-Seul; Yoo, Hyeonseok; Kim, Tae-Hee; Choi, Jinsub; Lee, Wan In; Choi, Sooseok, E-mail: sooseok@jejunu.ac.kr; Park, Dong-Wha, E-mail: dwpark@inha.ac.kr

    2015-07-31

    Lithium-ion (Li-ion) batteries are widely used in electric devices and vehicles. Silicon is a promising material for the anode of Li-ion battery due to high theoretical specific capacity. However, it shows large volume changes during charge–discharge cycles leading to the pulverization of electrode. In order to improve such disadvantage, a multiwall carbon nanotube (MWCNT) has been used with silicon as composite material. In this work, Si-MWCNT nanocomposite was prepared in thermal plasma by attaching silicon nanoparticles to MWCNT column. Electrochemical tests for raw materials and synthesized nanocomposites were carried out. The discharge capacities of silicon, MWCNT, synthesized nanocomposites collected from a reaction tube, and a chamber were 4000, 310, 200, and 1447 mAh/g, respectively. - Highlights: • Si-Multiwall carbon nanotube nanocomposite was synthesized by thermal plasma. • The effect on the collection position of product after experiment was examined. • Cycle performance of electrodes was measured. • Product collected from chamber showed good electrochemical performance.

  1. Binder-free carbon nanotube electrode for electrochemical removal of chromium.

    Science.gov (United States)

    Wang, Haitao; Na, Chongzheng

    2014-11-26

    Electrochemical treatment of chromium-containing wastewater has the advantage of simultaneously reducing hexavalent chromium (CrVI) and reversibly adsorbing the trivalent product (CrIII), thereby minimizing the generation of waste for disposal and providing an opportunity for resource reuse. The application of electrochemical treatment of chromium is often limited by the available electrochemical surface area (ESA) of conventional electrodes with flat surfaces. Here, we report the preparation and evaluation of carbon nanotube (CNT) electrodes consisting of vertically aligned CNT arrays directly grown on stainless steel mesh (SSM). We show that the 3-D organization of CNT arrays increases ESA up to 13 times compared to SSM. The increase of ESA is correlated with the length of CNTs, consistent with a mechanism of roughness-induced ESA enhancement. The increase of ESA directly benefits CrVI reduction by proportionally accelerating reduction without compromising the electrode's ability to adsorb CrIII. Our results suggest that the rational design of electrodes with hierarchical structures represents a feasible approach to improve the performance of electrochemical treatment of contaminated water.

  2. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Soo, Li Ting; Loh, Kee Shyuan; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Wong, Wai Yin

    2016-01-01

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  3. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Li Ting, E-mail: nicolesoo90@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Loh, Kee Shyuan, E-mail: ksloh@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Mohamad, Abu Bakar, E-mail: drab@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Daud, Wan Ramli Wan, E-mail: wramli@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Wong, Wai Yin, E-mail: waiyin.wwy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); School of Engineering, Taylor' s University' s Lakeside Campus, No. 1, Jalan Taylor' s, 46500 Subang Jaya, Selangor (Malaysia)

    2016-08-25

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  4. Technical report for fabrication and performance test of electrochemical/spectroscopic measurement system

    International Nuclear Information System (INIS)

    Park, Yong Joon; Cho, Young Hwan; Bae, Sang Eun; Im, Hee Jung; Song, Kyu Seok

    2010-01-01

    Development of evaluation technology of electrochemical reactions is very essential to understand chemical behavior of actinides and lanthanides in molten salt media in relation to the development of Pyrochemical process. The on-line electrochemical/spectroscopic measurement system is to produce electrochemical parameters and thermodynamic parameters of actinides and lanthanides in molten salts by using spectroscopic techniques such as UV-VIS absorption as well as electrochemical in-situ measurement techniques. The on-line electrochemical/spectroscopic measurement system can be applied to understand the chemical reactions and oxidation states of actinides and lanthanides in molten salts eventually for the Pyrochemical process

  5. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes.

    Science.gov (United States)

    Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil

    2018-06-14

    Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.

  6. A facile synthesis of α-MnO2 used as a supercapacitor electrode material: The influence of the Mn-based precursor solutions on the electrochemical performance

    Science.gov (United States)

    Li, Wenyao; Xu, Jiani; Pan, Yishuang; An, Lei; Xu, Kaibing; Wang, Guangjin; Yu, Zhishui; Yu, Li; Hu, Junqing

    2015-12-01

    Three types of α-MnO2 nanomaterials are synthesized in different Mn-based precursor solutions by using a facile electrochemical deposition at the same depositional condition. The relationships between the precursor solutions and corresponding MnO2 nanomaterials' morphology as well as the electrochemical performance have been studied. As an electrode, electrochemical measurements show that the MnO2 deposited in MnCl2 precursor solution (MnO2-P3) exhibits an enhanced specific capacitance (318.9 F g-1 at 2 mV s-1). Moreover, this electrode demonstrates a good rate capability with 44% retention, which is higher than the MnO2-P1 deposited with Mn(CH3COOH)2 solution and the MnO2-P2 deposited with Mn(NO3)2 precursor solution. Besides, the specific capacitance of the MnO2-P3 electrode nearly has 98.2% retention after 2000 cycles, showing good long-term cycle stability. These findings show that the MnO2-P3 is a promising electrode material for supercapacitors.

  7. Electrochemical reduction approach-based 3D graphene/Ni(OH)2 electrode for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Yan, Huijun; Bai, Jianwei; Wang, Bin; Yu, Lei; Zhao, Lin; Wang, Jun; Liu, Qi; Liu, Jingyuan; Li, Zhanshuang

    2015-01-01

    Highlights: • 3D graphene foam is synthesized by a simple electrochemical reduction method. • The 3D graphene/Ni(OH) 2 composite is used as a monolithic free-standing electrode material. • The 3D conductive graphene network improves the contact between electrode and electrolyte. • Compositing graphene with Ni(OH) 2 sheets take full advantage of the synergistic effects. • Results show that the as-synthesized products have good electrochemical property. - Abstract: Using a simple electrochemical reduction approach, we have produced three-dimensional (3D) graphene foam having high conductivity and well-defined macroporous structure. Through a hydrothermal process, Ni(OH) 2 sheets are grown in-situ onto the graphene surface. This monolithic 3D graphene/Ni(OH) 2 composite is used as the free-standing electrode for supercapacitor application; it shows a high specific capacitance of 183.1 F g −1 (based on the total mass of the electrode), along with excellent rate capability and cycle performance. The asymmetric supercapacitor based on the 3D graphene/Ni(OH) 2 as a positive electrode and active carbon (AC) as a negative electrode is also assembled and it exhibits a specific capacitance of 148.3 F g −1 at 0.56 A g −1 and a high energy density of 52.7 W h kg −1 at a power density of 444.4 W kg −1 . Moreover, 3D graphene/Ni(OH) 2 //AC has a good cycle stability (87.9% capacitance retention after 1000 cycles), making it promising as one of the most attractive candidates for electrochemical energy storage. This excellent electrochemical performance results from the multiplexed 3D graphene network facilitating electron transport; the interlaced Ni(OH) 2 sheets shorten ion diffusion paths and facilitate the rapid migration of electrolyte ions

  8. Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties

    International Nuclear Information System (INIS)

    Kim, Jieun; Kim, Seok

    2014-01-01

    Highlights: • Reduced graphene oxide surface was modified by introduction of ionic liquids. • Microstructure and capacitance of modified electrode were dependent on the ionic liquids contents. • Modification gives electrode better charge transport and higher specific capacitance. • Modified electrode showed the better capacitive performance such as rate capability and cycle stability. - Abstract: In this work, reduced graphene oxide (rGO)/ionic liquids (IL) composites with different weight ratios of IL to rGO were synthesized by a simple method. In these composites, IL contributed to the exfoliation of rGO sheets and to the improvement of the electrochemical properties of the resulting composites by enhancing the ion diffusion and charge transport. The structure of the composites was examined by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The TEM images showed that IL was coated on the surface of rGO in a translucent manner. The electrochemical analysis of the prepared composites was carried out by performing cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS). Among the prepared composites, the one with a weight ratio of rGO to IL of 1:7 showed the highest specific capacitance of 147.5 F g −1 at a scan rate of 10 mV s −1 . In addition, the rate capability and cycle performance of the composites were enhanced compared to pristine rGO. These enhanced properties make the composites suitable as electrode materials for the better performance supercapacitors

  9. Magnetic field-assisted electrochemical discharge machining

    International Nuclear Information System (INIS)

    Cheng, Chih-Ping; Mai, Chao-Chuang; Wu, Kun-Ling; Hsu, Yu-Shan; Yan, Biing-Hwa

    2010-01-01

    Electrochemical discharge machining (ECDM) is an effective unconventional method for micromachining in non-conducting materials, such as glass, quartz and some ceramics. However, since the spark discharge performance becomes unpredictable as the machining depth increases, it is hard to achieve precision geometry and efficient machining rate in ECDM drilling. One of the main factors for this is the lack of sufficient electrolyte flow in the narrow gap between the tool and the workpiece. In this study a magnetohydrodynamic (MHD) convection, which enhances electrolyte circulation has been applied to the ECDM process in order to upgrade the machining accuracy and efficiency. During electrolysis in the presence of a magnetic field, the Lorenz force induces the charged ions to form a MHD convection. The MHD convection then forces the electrolyte into movement, thus enhancing circulation of electrolyte. Experimental results show that the MHD convection induced by the magnetic field can effectively enhance electrolyte circulation in the micro-hole, which contributes to higher machining efficiency. Micro-holes in glass with a depth of 450 µm are drilled in less than 20 s. At the same time, better electrolyte circulation can prevent deterioration of gas film quality with increasing machining depth, while ensuring stable electrochemical discharge. The improvement in the entrance diameter thus achieved was 23.8% while that in machining time reached 57.4%. The magnetic field-assisted approach proposed in the research does not require changes in the machining setup or electrolyte but has proved to achieve significant enhancement in both accuracy and efficiency of ECDM.

  10. Effect of boron addition on the microstructure and electrochemical performance of La2Mg(Ni0.85Co0.15)9 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Dong Xiaoping; Wang Guoqing; Guo Shihai; Ren Jiangyuan; Wang Xinlin

    2006-01-01

    In order to improve the electrochemical performances of La-Mg-Ni system (PuNi 3 -type) hydrogen storage alloy, a trace of boron was added in La 2 Mg(Ni 0.85 Co 0.15 ) 9 and rapid quenching techniques were used. La 2 Mg(Ni 0.85 Co 0.15 ) 9 B x (x = 0, 0.05, 0.1, 0.15, 0.2) hydrogen storage alloys were prepared by casting and rapid quenching. The microstructures and electrochemical performances of the as-cast and quenched alloys were determined and measured. The effects of the boron content and the quenching rate on the microstructures and electrochemical performances of the alloys were investigated in detail. The obtained results show that the as-cast and quenched alloys are composed of the (La, Mg)Ni 3 phase (PuNi 3 structure), the LaNi 5 phase and the LaNi 2 phase. A trace of the Ni 2 B phase exists in the as-cast alloys containing boron. The Ni 2 B phase in the alloys containing boron nearly disappears after rapid quenching and the relative amount of each phase in the alloys changes with the variety of the quenching rate. The addition of boron obviously enhances the cycle stability of the as-cast and quenched alloys. The effects of boron content on the capacities of the as-cast and quenched alloys are different. The capacities of the as-cast alloys monotonously decrease with the increase of boron content, whereas the capacities of the as-quenched alloys have a maximum value with the change of boron content. The as-cast and quenched alloys have an excellent activation performance

  11. Electrochemical Performance of Low-Carbon Steel in Alkaline Model Solutions Containing Hybrid Aggregates

    NARCIS (Netherlands)

    Koleva, D.A.; Hu, J.; De Wit, J.H.W.; Boshkov, N.; Radeva, T.; Milkova, V.; Van Breugel, K.

    2010-01-01

    This work reports on the electrochemical performance of low-carbon steel electrodes in model alkaline solutions in the presence of 4.9.10-4 g/l hybrid aggregates i.e. cement extract, containing PDADMAC (poly (diallyl, dimethyl ammonium chloride) / PAA (Poly (acrylic acid)/ PDADMAC over a CaO core.

  12. Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor

    Science.gov (United States)

    Yang, Gan; Liu, Xiao-Xia

    2018-04-01

    Interconnected H0.12WO3ṡH2O nanosheets with high electrochemical performances are fabricated on partial exfoliated graphite substrate (Ex-GF) by potential-limited pulse galvanostatic method (PLPG). The dead volume problem of bulk pesudocapacitive materials is addressed by the novel interconnected nanosheets structure, enabling a large specific capacitance of 5.95 F cm-2 (495.8 F g-1) at 2 mA cm-2. Merited from the fluent electrolyte penetration channels established by the plenty voids among nanosheets, as well as fast electron transportation in the electronic conductive tungsten bronze which is directly grown from graphite substrate, the obtained WO3/Ex-GF demonstrates excellent rate capability. The material can maintain 60.0% of its capacitance when the discharge current density increases from 2 to 100 mA cm-2. Moreover, WO3/Ex-GF doesn't show capacitance decay after 5000 galvanostatic charge-discharge cycles, displaying its super stability. Furthermore, a high performance asymmetric supercapacitor assembled by using WO3/Ex-GF and electrochemical fabricated MnO2/Ex-GF as negative and positive electrodes, respectively displays a high energy density of 2.88 mWh cm-3 at the power density of 11.1 mW cm-3, demonstrating its potential application for energy storage.

  13. NiO nanoparticles supported on graphene 3D network current collector for high-performance electrochemical energy storage

    International Nuclear Information System (INIS)

    Wang, Mingjun; Song, Xuefen; Dai, Shuge; Xu, Weina; Yang, Qi; Liu, Jianlin; Hu, Chenguo; Wei, Dapeng

    2016-01-01

    Owing to the faradaic oxidation and reduction reactions mainly taking place on surface, enlarging the specific surface of redox materials is one of the most effective ways to achieve excellent electrochemical performance. Here we report a binder-free three dimensional (3D) architecture electrode consisting of a graphene 3D network (G3DN) structure growing on flexible carbon paper (CP) by chemical vapor deposition and NiO nanoparticles growing on the G3DN by in-situ thermal decomposition for high rate battery and high-performance electrochemical capacitors. Such a nanostructure provides a large specific surface and fast electronic transmission channels. The unique structure design for this electrode enables outstanding performance, showing high specific capacity of 89.1 mAh cm −2 (119.2 mAh/g) at current density of 0.5 mA cm −2 (0.67 A/g) with the NiO loading of 0.7471 mg cm −2 . Meanwhile the electrode displays excellent rate capability and cycling stability, which keeps 85.48% of initial capacity after 3000 deep-discharge cycles. Furthermore, a solid-state symmetric electrochemical capacitor based on two NiO/G3DN/CP electrodes with an area of 4 cm 2 each is fabricated, and two pieces of them in series can light up 100 green LEDs for 2 min. The architecture of G3DN loaded with NiO might be generally applied to different kinds of nanomaterials for high-rate energy storage to improve their overall electrochemical performance.

  14. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Lizhai; Wei, Tian

    2017-01-01

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi 2 CdO 4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  15. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    Science.gov (United States)

    Xu, Shoutao

    . Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment. Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads. The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to

  16. Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors

    Science.gov (United States)

    Lang, Xingyou; Zhang, Ling; Fujita, Takeshi; Ding, Yi; Chen, Mingwei

    2012-01-01

    We report three-dimensional bicontinuous nanoporous Au/polyaniline (PANI) composite films made by one-step electrochemical polymerization of PANI shell onto dealloyed nanoporous gold (NPG) skeletons for the applications in electrochemical supercapacitors. The NPG/PANI based supercapacitors exhibit ultrahigh volumetric capacitance (∼1500 F cm-3) and energy density (∼0.078 Wh cm-3), which are seven and four orders of magnitude higher than these of electrolytic capacitors, with the same power density up to ∼190 W cm-3. The outstanding capacitive performances result from a novel nanoarchitecture in which pseudocapacitive PANI shells are incorporated into pore channels of highly conductive NPG, making them promising candidates as electrode materials in supercapacitor devices combing high-energy storage densities with high-power delivery.

  17. Surface-Enhanced Infrared Absorption of o-Nitroaniline on Nickel Nanoparticles Synthesized by Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yufang Niu

    2014-01-01

    Full Text Available Nickel nanoparticles were electrochemically deposited on indium-tin oxide (ITO coated glass plate in a modified Watt’s electrolyte. The surface-enhanced infrared absorption (SEIRA effect of the nanoparticles was evaluated by attenuated total reflection spectroscopy (ATR-FTIR using o-nitroaniline as a probe molecule. Electrodeposition parameters such as deposition time, pH value, and the type of surfactants were investigated. The morphology and the microstructure of the deposits were characterized by the field emission scanning electron microscope (FESEM and the atomic force microscope (AFM, respectively. The results indicate that the optimum parameters were potential of 1.3 V, time of 30 s, and pH of 8.92 in the solution of 0.3756 mol/L diethanolamine, 0.1 mol/L nickel sulfate, 0.01 mol/L nickel chloride, and 0.05 mol/L boric acid. The FESEM observation shows that the morphology of nickel nanoparticles with best enhancement effect is spherical and narrowly distributed particles with the average size of 50 nm. SEIRA enhancement factor is about 68.

  18. Novel quasi-symmetric solid oxide fuel cells with enhanced electrochemical performance

    KAUST Repository

    Chen, Yonghong; Cheng, Zhuanxia; Yang, Yang; Gu, Qingwen; Tian, Dong; Lu, Xiaoyong; Yu, Weili; Lin, Bin

    2016-01-01

    Symmetrical solid oxide fuel cell (SSOFC) using same materials as both anode and cathode simultaneously has gained extensively attentions, which can simplify fabrication process, minimize inter-diffusion between components, enhance sulfur and coking

  19. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    Science.gov (United States)

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Facile Electrochemical Sensor for Nonylphenol Determination Based on the Enhancement Effect of Cetyltrimethylammonium Bromide

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2013-01-01

    Full Text Available A facile electrochemical sensor for the determination of nonylphenol (NP was fabricated in this work. Cetyltrimethylammonium bromide (CTAB, which formed a bilayer on the surface of the carbon paste (CP electrode, displayed a remarkable enhancement effect for the electrochemical oxidation of NP. Moreover, the oxidation peak current of NP at the CTAB/CP electrode demonstrated a linear relationship with NP concentration, which could be applied in the direct determination of NP. Some experimental parameters were investigated, such as external solution pH, mode and time of accumulation, concentration and modification time of CTAB and so on. Under optimized conditions, a wide linear range from 1.0 × 10−7 mol·L−1 to 2.5 × 10−5 mol·L−1 was obtained for the sensor, with a low limit of detection at 1.0 × 10−8 mol·L−1. Several distinguishing advantages of the as-prepared sensor, including facile fabrication, easy operation, low cost and so on, suggest a great potential for its practical applications.

  1. Electrochemical Impedance Spectroscopy Illuminating Performance Evolution of Porous Core–Shell Structured Nickel/Nickel Oxide Anode Materials

    International Nuclear Information System (INIS)

    Yan, Bo; Li, Minsi; Li, Xifei; Bai, Zhimin; Dong, Lei; Li, Dejun

    2015-01-01

    Highlights: • The electrochemical reaction kinetics of the Ni/NiO anode was studied for the first time. • Charge transfer resistance is main contribution to total resistance during discharge process. • The slow growth of the SEI film is responsible for the capacity fading upon cycling. • Some promising strategies to optimize NiO anode performance were summarized. - Abstract: The electrochemical reaction kinetics of the porous core–shell structured Ni/NiO anode for Li ion battery application is systematically investigated by monitoring the electrochemical impedance evolution for the first time. The electrochemical impedance under prescribed condition is measured by using impedance spectroscopy in equilibrium conditions at various depths of discharge (DOD) during charge–discharge cycles. The Nyquist plots of the binder-free porous Ni/NiO electrode are interpreted with a selective equivalent circuit composed of solution resistance, solid electrolyte interphase (SEI) film, charge transfer and solid state diffusion. The impedance analysis shows that the change of charge transfer resistance is the main contribution to the total resistance change during discharge, and the surface configuration of the obtained electrode may experience significant change during the first two cycles. Meanwhile, the increase of internal resistance reduced the utilization efficiency of the active material may be another convincing factor to increase the irreversible capacity. In addition, the impedance evolution of the as-prepared electrode during charge–discharge cycles reveals that the slow growth of the SEI film is responsible for the capacity fading after long term cycling. As a result, several strategies are summarized to optimize the electrochemical performances of transition metal oxide anodes for lithium ion batteries

  2. Plasmonic optical antenna design for performing tip-enhanced Raman spectroscopy and microscopy

    International Nuclear Information System (INIS)

    Kharintsev, S S; Fishman, A I; Salakhov, M Kh; Hoffmann, G G

    2013-01-01

    This paper highlights optical plasmonic antennas designed with dc-pulsed low-voltage electrochemical etching of a gold wire for implementing tip-enhanced Raman scattering (TERS) measurements. We demonstrate a versatile electrochemical system that allows one to engineer TERS-active metallic gold tips with diverse shapes and sizes in a highly reproducible fashion. The underlying etching mechanism at a voltage-driven meniscus around a gold wire immersed into an electrolyte is discussed in detail. We show that the developed method is suitable to produce not only the simplest geometries such as cones and spheroids, but more complex designs. Attempts have been made to design plasmonic tapered antennas with quasi-uniformly spaced nano-sized bumps on the mesoscopic zone for the extra surface plasmon-light coupling. The capability of the patterned antenna to enhance and localize optical fields is demonstrated with near-field Raman microscopy and spectroscopy of single-walled carbon nanotubes bundles. (paper)

  3. Significant improvement of electrochemical performance of Cu ...

    Indian Academy of Sciences (India)

    LiVPO4F cathode material for lithium-ion batteries. YU ZHANGa,∗, XIAOLAN BAIb ... and energy dispersive spectroscopy (EDS). ... Analysis of electrochemical impedance spectra (EIS) ... studied with a SEM (JSM-7500F, Japan) equipped with.

  4. Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zainab, Ghazala [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Xianfeng, E-mail: wxf@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Yu, Jianyong [Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Zhai, Yunyun; Ahmed Babar, Aijaz; Xiao, Ke [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Ding, Bin, E-mail: binding@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China)

    2016-10-01

    Lithium ion batteries (LIBs) for high performance require separators with auspicious reliability and safety. Keeping LIBs reliability and safety in view, microporous polyacrylonitrile (PAN)/polyurethane (PU) nonwoven composite separator have been developed by electrospinning technique. The physical, electrochemical and thermal properties of the PAN/PU separator were characterized. Improved ionic conductivity up to 2.07 S cm{sup −1}, high mechanical strength (10.38 MPa) and good anodic stability up to 5.10 V are key outcomes of resultant membranes. Additionally, high thermal stability displaying only 4% dimensional change after 0.5 h long exposure to 170 °C in an oven, which could be valuable addition towards the safety of LIBs. Comparing to commercialized polypropylene based separators, resulting membranes offered improved internal short-circuit protection function, offering better rate capability and enhanced capacity retention under same observation conditions. These fascinating characteristics endow these renewable composite nonwovens as promising separators for high power LIBs battery. - Highlights: • The PAN/PU based separators were prepared by multi-needle electrospinning technique. • The electrospun separators displays good mechanical properties and thermal stability. • These separators exhibit good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection. • Nanofibrous composite nonwoven possesses stable cyclic performance which give rise to acceptable battery performances.

  5. Facile synthesis of core–shell structured PANI-Co_3O_4 nanocomposites with superior electrochemical performance in supercapacitors

    International Nuclear Information System (INIS)

    Hai, Zhenyin; Gao, Libo; Zhang, Qiang; Xu, Hongyan; Cui, Danfeng; Zhang, Zengxing; Tsoukalas, Dimitris; Tang, Jun; Yan, Shubin; Xue, Chenyang

    2016-01-01

    Graphical abstract: - Highlights: • PANI-Co_3O_4 is synthesized by carbon-assisted and in situ polymerization methods. • PANI coating improves the properties of Co_3O_4 affecting electrochemical performance. • The nanocomposites exhibit a high specific capacitance of 1184 F g"−"1 at 1.25 A g"−"1. - Abstract: Core–shell structured PANI-Co_3O_4 nanocomposites for supercapacitor applications were synthesized by combination of carbon-assisted method and in situ polymerization method. The crystalline structure, optical band gap, morphology, and hydrophilic property, as the major factors affecting the performances of supercapacitors, were investigated by X-ray diffraction (XRD), UV–vis spectrophotometry (UV–vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle (WCA). The core–shell structured PANI-Co_3O_4 nanocomposites are characterized by amorphous PANI, small bandgaps, large surface area and favorable hydrophilicity, which indicates the superior electrochemical performances of the nanocomposites as electrode material for supercapacitors. Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurements were conducted in 6 M KOH aqueous solution to evaluate the electrochemical performances. The results shows that core–shell structured PANI-Co_3O_4 nanocomposites exhibit a high specific capacitance of 1184 F g"−"1 at 1.25 A g"−"1, excellent cycling stability of a capacitance retention of 84.9% after 1000 galvanostatic charge/discharge cycles, good electrical conductivity and ion diffusion behavior.

  6. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.

    Science.gov (United States)

    Choi, Suhee; Ahn, Miri; Kim, Jongwon

    2013-05-24

    The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes

    International Nuclear Information System (INIS)

    Beline, Thamara; Garcia, Camila S.; Ogawa, Erika S.; Marques, Isabella S.V.; Matos, Adaias O.; Sukotjo, Cortino; Mathew, Mathew T.

    2016-01-01

    The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sandblasted with Al 2 O 3 , and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (R p ) (P < .0001) and the highest capacitance (CPE) (P < .006), corrosion current density (I corr ) and corrosion rate (P < .0001). In contrast, acid etching increased R p and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced R p (P < .008) and increased I corr and corrosion rate (P < .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P < .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi. - Highlights: • Acid etching enhanced the electrochemical stability of cpTi. • Hydrogen peroxide and sodium fluoride reduced the corrosion resistance of cpTi. • Chlorhexidine gluconate and cetylpyridinium chloride can be safely used.

  8. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes

    Energy Technology Data Exchange (ETDEWEB)

    Beline, Thamara [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br — Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch (Brazil); Garcia, Camila S. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); Ogawa, Erika S. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br — Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch (Brazil); Marques, Isabella S.V. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); Matos, Adaias O. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br — Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch (Brazil); Sukotjo, Cortino [Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL 60612 (United States); IBTN — Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Mathew, Mathew T. [IBTN — Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison, Chicago, IL 60612 (United States); and others

    2016-02-01

    The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sandblasted with Al{sub 2}O{sub 3}, and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (R{sub p}) (P < .0001) and the highest capacitance (CPE) (P < .006), corrosion current density (I{sub corr}) and corrosion rate (P < .0001). In contrast, acid etching increased R{sub p} and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced R{sub p} (P < .008) and increased I{sub corr} and corrosion rate (P < .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P < .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi. - Highlights: • Acid etching enhanced the electrochemical stability of cpTi. • Hydrogen peroxide and sodium fluoride reduced the corrosion resistance of cpTi. • Chlorhexidine gluconate and cetylpyridinium chloride can be safely used.

  9. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  10. The Impact of Hydrocalumites Additives on the Electrochemical Performance of Zinc-Nickel Secondary Cells

    International Nuclear Information System (INIS)

    Wen, Xing; Yang, Zhanhong; Xiao, Xiang; Yang, Huan; Xie, Xiaoe; Huang, Jianhang

    2016-01-01

    Hydrocalumites additives are synthesized and proposed as an anodic additive for Zinc/Nickel alkaline secondary batteries. The as-prepared additives are characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). And the results illustrate that hydrocalumites additives are successfully prepared and have the typical structure of layered double hydroxides (LDHs). The effects of hydrocalumites additives on electrochemical performances of ZnO have been investigated by cyclic voltammetry (CV), tafel polarization tests, electrochemical impedance spectroscopy (EIS) and galvanostatic charge and discharge. Compared to the electrode with pure ZnO, the electrodes containing hydrocalumites additives show better reversibility, reveal better anti-corrosion property and exhibit more stable cycle performance. Especially when the electrode added with 12% (wt.) hydrocalumites, it exhibits the best cycle performance than the other electrodes. And its discharge capacity is about 450 mAh g −1 all the time, and hardly declines over all the 400 cycles. Based on these observations, the prepared hydrocalumites may be a promising and efficient additive for the ZnO electrode.

  11. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries

    Science.gov (United States)

    Zhang, Jun; Dong, Zimin; Wang, Xiuli; Zhao, Xuyang; Tu, Jiangping; Su, Qingmei; Du, Gaohui

    2014-12-01

    Two kinds of graphene-sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ∼5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene-sulfur composite (S-G mixture), sulfur shows larger and uneven size (50-200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S-G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium-sulfur (Li-S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g-1 with the sulfur utilization of 83.7% at a current density of 335 mA g-1. The capacity keeps above 720 mAh g-1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the "shuttle effect", resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li-S batteries.

  12. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwala, S., E-mail: agarwala.shweta@gmail.com [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore); Ho, G.W. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore)

    2012-05-15

    In the present work, electrochemical anodization has been used to prepare uniform TiO{sub 2} nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is {approx}180 nm, 14 {mu}m and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO{sub 2} nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO{sub 2} nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO{sub 2} nanotube array with Ag nanoparticles. Highlights: Black-Right-Pointing-Pointer Uniform array of TiO{sub 2} nanotubes synthesized via electrochemical anodization. Black-Right-Pointing-Pointer Back illuminated DSSC gave a cell performance of 4.5%. Black-Right-Pointing-Pointer TiO{sub 2} nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  13. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    Science.gov (United States)

    Huang, Fenglin; Liu, Wenting; Li, Peiying; Ning, Jinxia; Wei, Qufu

    2016-01-01

    A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm) was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–shell composite nanofibrous membrane showed good wettability (16.5°, contact angle), high porosity (69.77%), and super electrolyte compatibility (497%, electrolyte uptake). It had a higher ionic conductivity (13.897 mS·cm−1) than those of pure polymer fibrous membrane and commercial separator. In addition, the rate capability (155.56 mAh·g−1) was also superior to the compared separator. These excellent performances endowed LLTO composite nanofibrous membrane as a promising separator for high-performance lithium-ion batteries. PMID:28787873

  14. Performance of Liquid Phase Exfoliated Graphene As Electrochemical Double Layer Capacitors Electrodes

    Science.gov (United States)

    Huffstutler, Jacob; Wasala, Milinda; Richie, Julianna; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Talapatra, Saikat

    2014-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using liquid-phase exfoliated graphene. Several electrolytes, such as aqueous potassium hydroxide KOH (6M), ionic 1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and ionic 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate[BMP][FAP] were used. These EDLC's show good performance compared to other carbon nanomaterials based EDLC's devices. We found that the liquid phase exfoliated graphene based devices possess specific capacitance values as high as 262 F/g, when used with ionic liquid electrolyte[BMP][FAP], with power densities (~ 454 W/kg) and energy densities (~ 0.38Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. A detailed electrochemical impedance spectroscopy analysis in order to understand the phenomenon of charge storage in these materials will be presented.

  15. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong [Xinjiang Univ., Xinjiang (China). School of Civil Engineering and Architecture; Pei, Lizhai; Wei, Tian [Anhui Univ. of Technology, Anhui (China). School of Materials Science and Engineering

    2017-07-15

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi{sub 2}CdO{sub 4} phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  16. In situ one-pot synthesis of graphene–polyaniline nanofiber composite for high-performance electrochemical capacitors

    International Nuclear Information System (INIS)

    Jin, Yuhong; Fang, Mou; Jia, Mengqiu

    2014-01-01

    In this work, graphene–polyaniline nanofiber (G/PANI-F) composite is prepared through a new and one-pot method that includes the reduction of graphene oxide (GO) by aniline and then followed by in-situ polymerization. Aniline plays the two roles in this method: as a chemical reducing agent to reduce GO to graphene and as a monomer to prepare polyaniline nanofiber (PANI-F). Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy and transmission electron microscopy are employed to confirm that GO can be reduced by aniline and PANI-F can be deposited on the surface of graphene. The electrochemical properties of G/PANI-F composite electrode are measured by using cyclic voltammetry, galvanostatic charge–discharge test and electrochemical impedance spectroscopy. The G/PANI-F composite electrode exhibits enhanced specific capacitance of 965 F g −1 at 0.5 A g −1 and the capacity retention is 90% after 2000 cycles.

  17. The origin of the enhanced performance of nitrogen-doped MoS_2 in lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Weijun, Xia; Wu, Zhenjun; Huo, Jia; Liu, Dongdong; Wang, Shuangyin; Wang, Qiang

    2016-01-01

    MoS_2 with a similar layered structure to graphene has been widely applied in various areas including lithium ion batteries. However, low conductivity, capacity fading and poor rate performance are still the main challenges for MoS_2 anode materials. In this work, for the first time, we prepared nitrogen-doped MoS_2 (N-MoS_2) nanosheets through a simple two-step method involving the preparation of MoS_2 with defects by the hydrothermal method, followed by sintering in a NH_3 atmosphere. Our electrochemical characterizations and density functional theory calculations demonstrated that nitrogen doping could enhance the electron conductivity and showed higher specific capacity than pristine MoS_2 as anode materials of lithium ion batteries, which can be attributed to the faster transportation of electrons and ions because of nitrogen doping. This work helps us understand the origin of the enhanced performance of N-doped MoS_2 in lithium ion batteries. (paper)

  18. Corrosion of conductive polypyrrole: Effects of environmental factors, electrochemical stimulation, and doping anions

    International Nuclear Information System (INIS)

    Qi Kai; Qiu Yubing; Chen Zhenyu; Guo Xingpeng

    2012-01-01

    Highlights: ► Corrosive galvanic cells form on PPy film with the electrochemical reduction of O 2. ► Suitable electrochemical stimulation can inhibit the PPy’s corrosion. ► PPy film doped with larger sized anions has better corrosion resistance performance. - Abstract: The effects of environmental factors, electrochemical stimulation, and doping anions on the corrosion behaviour of conductive polypyrrole (PPy) films in alkaline aqueous media were studied with cyclic voltammetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. High concentrations of electrolyte, low dissolved oxygen and low temperatures enhance the stability of PPy. Polarising PPy at a negative potential inhibits its corrosion obviously. PPy doped with large counter anions shows better corrosion resistance than PPy doped with small counter ions. The possible mechanism involved in PPy corrosion process is discussed.

  19. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    Science.gov (United States)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  20. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries

    Science.gov (United States)

    Suharto, Yustian; Lee, Yongho; Yu, Ji-Sang; Choi, Wonchang; Kim, Ki Jae

    2018-02-01

    Finding an alternative to glass fiber (GF) separators is a crucial factor for the fast commercialization of sodium-ion batteries (SIBs), because GF separators are too thick for use in SIBs, thereby decreasing the volumetric and gravimetric energy density. Here we propose a microporous composite separator prepared by introducing a polymeric coating layer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP co-polymer) with ZrO2 nanoparticles to a polyethylene (PE) separator. The coated separator efficiently enhances the cell performance of SIBs. The ZrO2 nanoparticles, finely dispersed on the polymeric coating layer, induce the formation of many micropores on the polymeric coating layer, suggesting that micropore formation on the coating layer renders the composite separator more open in structure. An ethylene carbonate/propylene carbonate liquid electrolyte for SIBs is not absorbed by PE separators even after 1 h of electrolyte droplet testing, while the proposed separator with many micropores is completely wetted by the electrolyte. Sodium ion migration across the composite separator is therefore effectively enhanced by the formation of ion transfer pathways, which improve ionic conductivity. As a result, the microporous composite separator affords stable cycle performances and excellent specific capacity retention (95.8%) after 50 cycles, comparable to those offered by a SIB with a GF separator.

  1. Comprehensive methods to enhance the electrochemical performances of LiFe0.94Mg0.03Cu0.03PO4/C cathode for lithium ion batteries

    International Nuclear Information System (INIS)

    Fan, Chang-ling; Zhang, Ke-he; Han, Shao-chang

    2013-01-01

    Graphical abstract: Relationships between the conductivities of LFPC-2 cathode and the volume percentages of AB (a) and PAn (b). - Highlights: • LiFe 0.94 Mg 0.03 Cu 0.03 PO 4 /C is synthesized by adding glucose with two-step method. • Conductive polymer polyaniline is used to replace acetylene black. • The content of conductive additive is optimized by the percolation theory. • LFPC-2 cathode containing polyaniline possesses the excellent performance. - Abstract: Comprehensive methods were utilized to improve the electrochemical performances of LiFe 0.94 Mg 0.03 Cu 0.03 PO 4 /C (LFPC) composite cathode. Experimental results show that LFPC-2, prepared by adding glucose in two steps, possesses the effective incorporated of doping ions and well-distributed pyrolysis carbon. It possesses higher conductivity and discharge capacity. The percolation theory analysis shows that the conductivity of LFPC-2 cathode film reaches its maximum value at the mass content of 15 wt.%. The replacement of acetylene black with polyaniline can greatly improve the electrochemical performances of LFPC-2 cathode. Its discharge capacity is 85.3 mAh g −1 and its potential platform is as high as 3.2 V at the current density of 850 mA g −1 when 15 wt.% polyaniline is used. The cycle performance of LFPC-2 is improved when polyaniline is used as conductive additives. And the change of charge transfer resistance of LFPC-2 cathode containing polyaniline is very small after 24 cycles

  2. Porous sulfated metal oxide SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} as an anode material for Li-ion batteries with enhanced electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Lv, Qianqian; Huang, Xiaoxiong; Tan, Yueyue; Tang, Bohejin, E-mail: tangbohejin@sues.edu.cn [Shanghai University of Engineering Science, College of Chemistry and Chemical Engineering (China)

    2017-01-15

    Sulfated metal oxide SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} was prepared by a novel facile sol–gel method combined with a subsequent heating treatment process. The as-synthesized products were analyzed by XRD, FTIR, and FE-SEM. Compared with the unsulfated Fe{sub 2}O{sub 3}, the agglomeration of particles has been alleviated after the incorporation of SO{sub 4}{sup 2−}. Interestingly, the primary particle size of the SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} (about 5 nm) is similar to its normal counterparts even after the calcination treatment. More importantly, SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} exhibits a porous architecture, which is an intriguing feature for electrode materials. When used as anode materials in Li-ion batteries, SO{sub 4}{sup 2−}/Fe{sub 2}O{sub 3} delivered a higher reversible discharge capacity (992 mAh g{sup −1}), with smaller charge transfer resistance, excellent rate performance, and better cycling stability than normal Fe{sub 2}O{sub 3}. We believed that the presence of SO{sub 4}{sup 2−} and porous architecture should be responsible for the enhanced electrochemical performance, which could provide more continuous and accessible conductive paths for Li{sup +} and electrons.

  3. Hierarchically Mesostructured Aluminum Current Collector for Enhancing the Performance of Supercapacitors.

    Science.gov (United States)

    Huang, Yilun; Li, Yuyao; Gong, Qianming; Zhao, Guanlei; Zheng, Pengjie; Bai, Junfei; Gan, Jianning; Zhao, Ming; Shao, Yang; Wang, Dazhi; Liu, Lei; Zou, Guisheng; Zhuang, Daming; Liang, Ji; Zhu, Hongwei; Nan, Cewen

    2018-05-16

    Aluminum (Al) current collector is one of the most important components of supercapacitors, and its performance has vital effects on the electrochemical performance and cyclic stability of supercapacitors. In the present work, a scalable and low-cost, yet highly efficient, picosecond laser processing method of Al current collectors was developed to improve the overall performance of supercapacitors. The laser treatment resulted in hierarchical micro-nanostructures on the surface of the commercial Al foil and reduced the surface oxygen content of the foil. The electrochemical performance of the Al foil with the micro-nanosurface structures was examined in the symmetrical activated carbon-based coin supercapacitors with an organic electrolyte. The results suggest that the laser-treated Al foil (laser-Al) increased the capacitance density of supercapacitors up to 110.1 F g -1 and promoted the rate capability due to its low contact resistance with the carbonaceous electrode and high electrical conductivity derived from its larger specific surface areas and deoxidized surface. In addition, the capacitor with the laser-Al current collector exhibited high cyclic stability with 91.5% capacitance retention after 10 000 cycles, 21.3% higher than that with pristine-Al current collector due to its stronger bonding with the carbonaceous electrode that prevented any delamination during aging. Our work has provided a new strategy for improving the electrochemical performance of supercapacitors.

  4. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Kaveh Movlaee

    2017-11-01

    Full Text Available Iron oxide nanostructures (IONs in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (biochemical substances.

  5. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    Science.gov (United States)

    Movlaee, Kaveh; Ganjali, Mohmmad Reza; Norouzi, Parviz

    2017-01-01

    Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances. PMID:29168771

  6. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine.

    Science.gov (United States)

    Qiu, Xinlan; Lu, Limin; Leng, Jing; Yu, Yongfang; Wang, Wenmin; Jiang, Min; Bai, Ling

    2016-01-01

    A novel electrochemical platform was designed for the simultaneous determination of Sunset Yellow (SY) and Tartrazine (TT), synthetic food dyes, by combining the signal amplification properties of graphene oxide (GO) and the excellent electronic and antifouling properties of multi-walled carbon nanotubes (MWCNTs). Stable dispersion of GO/MWCNTs composite was produced by sonication mixing. Compared with glassy carbon, MWCNTs and GO electrodes, GO/MWCNTs electrode exhibited strong enhancement effect and greatly increased the oxidation signal of SY and TT. Under optimized conditions, the enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 0.09-8.0 μM, with a low limit of detection of 0.025 μM for SY and 0.01 μM for TT (S/N = 3), respectively. To further validate its possible application, the proposed method was successfully used for the determination of SY and TT in orange juice with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  8. Electrochemical Determination of Baicalin in Traditional Chinese Medicine Based on the Enhancement Effect of MoO3-Reduced Graphene Oxide Nanocomposite

    Science.gov (United States)

    Hu, Weibing; Zhang, Wen; Wang, Meng; Feng, Fu

    2018-02-01

    The nanocomposites of MoO3-reduced graphene oxide (MoO3-RGO) were synthesized by hydrothermal reduction using MoCl5 and graphene oxide as precursors. The resulting composites were characterized with scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman spectra, and were further used to modify the glassy carbon electrode (GCE). After optimizing the parameters, the electrochemical behavior of baicalin on different types of electrodes was investigated. The MoO3-RGO composite-modified GCE exhibited remarkably enhanced electrochemical signals of baicalin. After 90 s, under open circuit potential, oxidation and reduction peaks appeared at 0.207 V and 0.103 V, respectively. A sensitive and simple electrochemical method was proposed for the determination of baicalin in which the calibration curve ranges from 1.0 × 10-9 M to 4.3 × 10-5 M, and the detection limit is 3.81 × 10-10 M.

  9. Light-Regulated Electrochemical Sensor Array for Efficiently Discriminating Hazardous Gases.

    Science.gov (United States)

    Liang, Hongqiu; Zhang, Xin; Sun, Huihui; Jin, Han; Zhang, Xiaowei; Jin, Qinghui; Zou, Jie; Haick, Hossam; Jian, Jiawen

    2017-10-27

    Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C 3 H 6 , NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.

  10. Electrochemical study of a novel high performance supercapacitor based on MnO{sub 2}/nitrogen-doped graphene nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, Hamid Reza, E-mail: hrnaderi@ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Norouzi, Parviz, E-mail: norouzi@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza, E-mail: ganjali@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-03-15

    Graphical abstract: - Highlights: • MnO{sub 2} nanoparticles was prepared by sonochemical method. • MnO{sub 2} are anchored on the surface of nitrogen-doped reduced graphene oxide (NRGO). • MnO{sub 2}/NRGO nanocomposite show high capacitance, good rate and cycling performance. • The nanocomposite electrode exhibits specific capacitance of 522 F g{sup −1} in 2 mV s{sup −1}. • The electrode reveals 97% retention of initial capacitance after 4000 cycles. - Abstract: A new nanocomposite was synthesized via deposition of MnO{sub 2} on Nitrogen-doped reduced graphene (MnO{sub 2}/NRGO) by sonochemical method, in which, the particles of manganese oxide were uniformly distributed on NRGO sheets. The structure and morphology of MnO{sub 2}/NRGO nanocomposites are characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The electrochemical supercapacitive performance of the nanocomposite was investigated by cyclic voltammetry (CV), continuous cyclic voltammetry (CCV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS) methods. The MnO{sub 2}/NRGO nanocomposite shows enhanced specific capacitance of 522 F g{sup −1} at 2 mV s{sup −1} and its high synergistic effect was compared with MnO{sub 2}/RGO. The high specific capacitance and exceptionally high cyclic stability of MnO{sub 2}/NRGO attributes to the doping of nitrogen and uniform dispersion of MnO{sub 2} particles on NRGO. The CCV showed that the capacity retention for MnO{sub 2}/NRGO and MnO{sub 2}/RGO still maintained at 96.3% and 93% after 4000 CVs. The improved supercapacitive performance enables this nanocomposite as efficient electrode material for supercapacitor electrodes.

  11. Soft plasma electrolysis with complex ions for optimizing electrochemical performance

    Science.gov (United States)

    Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun

    2017-03-01

    Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model.

  12. Donut-shaped Co{sub 3}O{sub 4} nanoflakes grown on nickel foam with enhanced supercapacitive performances

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhicheng; Zheng, Xin; Yao, Shunyu; Xiao, Huanhao; Qu, Fengyu; Wu, Xiang, E-mail: wuxiang05@163.com

    2016-03-01

    Graphical abstract: The as-synthesized product exhibits a high initial discharge capacitance of 518 mF/cm{sup 2} at a current density of 1 mA cm{sup −2} and can maintain 75% capacitance retention even after 6000 charge–discharge cycles. Electrochemical results revealed that the prepared Co{sub 3}O{sub 4} nanoflakes possess a remarkable performance in supercapacitor applications. - Highlights: • Donut-shaped Co{sub 3}O{sub 4} nanoflakes were first fabricated by a solution approach. • The tests show high discharge areal capacitance and long cycle life stability. • Co{sub 3}O{sub 4} nanoflakes might be promising supercapacitor electrode materials. - Abstract: Donut-shaped Co{sub 3}O{sub 4} nanoflakes grown on nickel foam were successfully fabricated by a simple one-pot hydrothermal approach. The prepared products were functionalized as the supercapacitors electrodes. Electrochemical performance of the as-prepared products demonstrated high specific capacitance (518 mF cm{sup −2}) and excellent cycling stability (∼25% loss) after 6000 repetitive cycles at a charge–discharge current density of 1 mA cm{sup −2}. The superior electrochemical performance may be ascribed into two reasons: one is the unique spatial structures which possess many active sites and provide enhanced combination between the electrode and nickel foam to support fast ion and electron transfer, the other is that donut-shaped Co{sub 3}O{sub 4} nanoflakes electrodes show relatively lower resistances. It is expected that the as-obtained donut-shaped Co{sub 3}O{sub 4} nanoflakes could have potential applications in portable electronics and electrical vehicles.

  13. High performance electrochemical and electrothermal artificial muscles from twist-spun carbon nanotube yarn

    Science.gov (United States)

    Lee, Jae Ah; Baughman, Ray H.; Kim, Seon Jeong

    2015-04-01

    High performance torsional and tensile artificial muscles are described, which utilize thermally- or electrochemically-induced volume changes of twist-spun, guest-filled, carbon nanotube (CNT) yarns. These yarns were prepared by incorporating twist in carbon nanotube sheets drawn from spinnable CNT forests. Inserting high twist into the CNT yarn results in yarn coiling, which can dramatically amplify tensile stroke and work capabilities compared with that for the non-coiled twisted yarn. When electrochemically driven in a liquid electrolyte, these artificial muscles can generate a torsional rotation per muscle length that is over 1000 times higher than for previously reported torsional muscles. All-solid-state torsional electrochemical yarn muscles have provided a large torsional muscle stroke (53° per mm of yarn length) and a tensile stroke of up to 1.3% when lifting loads that are ~25 times heavier than can be lifted by the same diameter human skeletal muscle. Over a million torsional and tensile actuation cycles have been demonstrated for thermally powered CNT hybrid yarns muscles filled with paraffin wax, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. At lower actuation rates, these thermally powered muscles provide tensile strokes of over 10%.

  14. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhancing the Supercapacitor Performance of Graphene/MnO 2 Nanostructured Electrodes by Conductive Wrapping

    KAUST Repository

    Yu, Guihua

    2011-10-12

    MnO2 is considered one of the most promising pseudocapactive materials for high-performance supercapacitors given its high theoretical specific capacitance, low-cost, environmental benignity, and natural abundance. However, MnO2 electrodes often suffer from poor electronic and ionic conductivities, resulting in their limited performance in power density and cycling. Here we developed a "conductive wrapping" method to greatly improve the supercapacitor performance of graphene/MnO2-based nanostructured electrodes. By three-dimensional (3D) conductive wrapping of graphene/MnO2 nanostructures with carbon nanotubes or conducting polymer, specific capacitance of the electrodes (considering total mass of active materials) has substantially increased by ∼20% and ∼45%, respectively, with values as high as ∼380 F/g achieved. Moreover, these ternary composite electrodes have also exhibited excellent cycling performance with >95% capacitance retention over 3000 cycles. This 3D conductive wrapping approach represents an exciting direction for enhancing the device performance of metal oxide-based electrochemical supercapacitors and can be generalized for designing next-generation high-performance energy storage devices. © 2011 American Chemical Society.

  16. Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Mengjie; Wang, Shubin; Yu, Yalin; Feng, Qihang; Yang, Jiping; Zhang, Boming

    2017-01-01

    Highlights: • Carboxyl functionalized CF is acquired by simple chemical oxidation method. • These CF have preserved the tensile strength, better electrochemical properties. • The presence of H_3PO_4 prevented the turbostratic carbon from over-oxidization. • There CF can be used as anodes of multifunctional structural battery. • The preservation and improvement is result from the hindered over-oxidization. - Abstract: Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical properties were acquired through a simple chemical oxidation method, and the proposed underlying mechanism was verified. The surface of carboxyl functionalizing carbon fibers is necessary in acquiring functional groups on the surface of carbon fibers to further improve the thermal, electrical or mechanical properties of the fibers. Functionalization should preserve the tensile strength and electrochemical properties of carbon fibers, because the anodes of structural batteries need to have high strength and electrochemical properties. Functionalized with mixed H_2SO_4/HNO_3 considerably reduced the tensile strength of carbon fibers. By contrast, the appearance of H_3PO_4 preserved the tensile strength of functionalized carbon fibers, reduced the dispersion level of tensile strength values, and effectively increased the concentration of functional acid groups on the surface of carbon fibers. The presence of phosphoric acid hindered the over-oxidation of turbostratic carbon, and consequently preserved the tensile strength of carbon fibers. The increased proportion of turbostratic carbon on the surface of carbon fibers concurrently enhanced the electrochemical properties of carbon fibers.

  17. A metal-organic framework derived hierarchical nickel-cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors.

    Science.gov (United States)

    Tao, Kai; Han, Xue; Ma, Qingxiang; Han, Lei

    2018-03-06

    Metal-organic frameworks (MOFs) have emerged as a new platform for the construction of various functional materials for energy related applications. Here, a facile MOF templating method is developed to fabricate a hierarchical nickel-cobalt sulfide nanosheet array on conductive Ni foam (Ni-Co-S/NF) as a binder-free electrode for supercapacitors. A uniform 2D Co-MOF nanowall array is first grown in situ on Ni foam in aqueous solution at room temperature, and then the Co-MOF nanowalls are converted into hierarchical Ni-Co-S nanoarchitectures via an etching and ion-exchange reaction with Ni(NO 3 ) 2 , and a subsequent solvothermal sulfurization. Taking advantage of the compositional and structural merits of the hierarchical Ni-Co-S nanosheet array and conductive Ni foam, such as fast electron transportation, short ion diffusion path, abundant active sites and rich redox reactions, the obtained Ni-Co-S/NF electrode exhibits excellent electrochemical capacitive performance (1406.9 F g -1 at 0.5 A g -1 , 53.9% retention at 10 A g -1 and 88.6% retention over 1000 cycles), which is superior to control CoS/NF. An asymmetric supercapacitor (ASC) assembled by using the as-fabricated Ni-Co-S/NF as the positive electrode and activated carbon (AC) as the negative electrode delivers a high energy density of 24.8 W h kg -1 at a high power density of 849.5 W kg -1 . Even when the power density is as high as 8.5 kW kg -1 , the ASC still exhibits a high energy density of 12.5 W h kg -1 . This facile synthetic strategy can also be extended to fabricate other hierarchical integrated electrodes for high-efficiency electrochemical energy conversion and storage devices.

  18. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property

    Science.gov (United States)

    Lv, Zijian; Zhong, Qin; Bu, Yunfei

    2018-05-01

    Owing to the metalloid characteristic and superior electrical conductivity, the metal phosphides have received increasing interests in energy storage systems. Here, xrGO/Ni2P composites are successfully synthesized via an In-situ phosphorization process with GO/Ni-MOF as precursors. Compared to pure Ni2P, the xrGO/Ni2P composites appear enhanced electrochemical properties in terms of the specific capacitance and cycling performance as electrodes for supercapacitors. Especially, the 2rGO/Ni2P electrode shows a highest specific capacitance of 890 F g-1 at 1 A g-1 among the obtained composites. The enhancement can be attributed to the inherited structure from Ni-MOF and the well assembled of rGO and Ni2P through the In-situ conversion process. Moreover, when applied as positive electrode in a hybrid supercapacitor, an energy density of 35.9 W h kg-1 at a power density of 752 W kg-1 has been achieved. This work provides an In-situ conversion strategy for the synthesis of rGO/Ni2P composite which might be a promising electrode material for SCs.

  19. Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors

    International Nuclear Information System (INIS)

    Sivakkumar, S.R.; Ko, Jang Myoun; Kim, Dong Young; Kim, B.C.; Wallace, G.G.

    2007-01-01

    A ternary composite of CNT/polypyrrole/hydrous MnO 2 is prepared by in situ chemical method and its electrochemical performance is evaluated by using cyclic voltammetry (CV), impedance measurement and constant-current charge/discharge cycling techniques. For comparative purpose, binary composites such as CNT/hydrous MnO 2 and polypyrrole/hydrous MnO 2 are prepared and also investigated for their physical and electrochemical performances. The specific capacitance (SC) values of the ternary composite, CNT/hydrous MnO 2 and polypyrrole/hydrous MnO 2 binary composites estimated by CV technique in 1.0 M Na 2 SO 4 electrolyte are 281, 150 and 35 F g -1 at 20 mV s -1 and 209, 75 and 7 F g -1 at 200 mV s -1 , respectively. The electrochemical stability of ternary composite electrode is investigated by switching the electrode back and forth for 10,000 times between 0.1 and 0.9 V versus Ag/AgCl at 100 mV s -1 . The electrode exhibits good cycling stability, retaining up to 88% of its initial charge at 10,000th cycle. A full cell assembled with the ternary composite electrodes shows a SC value of 149 F g -1 at a current loading of 1.0 mA cm -2 during initial cycling, which decreased drastically to a value of 35 F g -1 at 2000th cycle. Analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmet-Teller (BET) surface area measurement and inductively coupled plasma-atomic emission spectrometry (ICP-AES) are also used to characterize the composite materials

  20. G eobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions

    KAUST Repository

    Sun, Dan; Call, Douglas; Wang, Aijie; Cheng, Shaoan; Logan, Bruce E.

    2014-01-01

    © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G.sulfurreducensPCA and Geobacter metallireducensGS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290±29Am-3 in a high-concentration phosphate buffer solution (PBS-H, 200mM). This current density was significantly higher than that produced by the mixed culture (189±44Am-3) or the type strains (<70Am-3). In a highly saline water (SW; 50mM PBS and 650mM NaCl), current by SD-1 (158±4Am-3) was reduced by 28% compared with 50mM PBS (220±4Am-3), but it was still higher than that of the mixed culture (147±19Am-3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.

  1. G eobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions

    KAUST Repository

    Sun, Dan

    2014-07-16

    © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G.sulfurreducensPCA and Geobacter metallireducensGS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290±29Am-3 in a high-concentration phosphate buffer solution (PBS-H, 200mM). This current density was significantly higher than that produced by the mixed culture (189±44Am-3) or the type strains (<70Am-3). In a highly saline water (SW; 50mM PBS and 650mM NaCl), current by SD-1 (158±4Am-3) was reduced by 28% compared with 50mM PBS (220±4Am-3), but it was still higher than that of the mixed culture (147±19Am-3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.

  2. Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance

    International Nuclear Information System (INIS)

    Yan, Yong; Ben, Liubin; Zhan, Yuanjie; Huang, Xuejie

    2016-01-01

    Highlights: • Nano-Sn embedded in interlayers of expanded graphite is fabricated. • The graphene/nano-Sn/graphene stacked structure promotes cycling stability of Sn. • The Sn/EG shows improved low temperature electrochemical performance. • Chemical diffusion coefficients of the Sn/EG are obtained by GITT. • The Sn/EG exhibits faster Li-ion intercalation kinetics than graphite. - Abstract: Metallic tin (Sn) used as anode material for lithium ion batteries has long been proposed, but its low temperature electrochemical performance has been rarely concerned. Here, a Sn/C composite with nano-Sn embedded in expanded graphite (Sn/EG) is synthesized. The nano-Sn particles (∼30 nm) are uniformly distributed in the interlayers of expanded graphite forming a tightly stacked layered structure. The electrochemical performance of the Sn/EG, particularly at low temperature, is carefully investigated compared with graphite. At -20 °C, the Sn/EG shows capacities of 200 mAh g −1 at 0.1C and 130 mAh g −1 at 0.2C, which is much superior to graphite (<10 mAh g −1 ). EIS measurements suggest that the charge transfer impedance of the Sn/EG increases less rapidly than graphite with decreasing temperatures, which is responsible for the improved low temperature electrochemical performance. The Li-ion chemical diffusion coefficients of the Sn/EG obtained by GITT are an order of magnitude higher at room temperature than that at -20 °C. Furthermore, the Sn/EG exhibits faster Li-ion intercalation kinetics than graphite in the asymmetric charge/discharge measurements, which shows great promise for the application in electric vehicles charged at low temperature.

  3. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors

    Science.gov (United States)

    Liu, Haiyan; Song, Huaihe; Chen, Xiaohong; Zhang, Su; Zhou, Jisheng; Ma, Zhaokun

    2015-07-01

    A kind of nitrogen- and oxygen-containing activated carbon nanotubes (ACNTs) has been prepared by carbonization and activation of polyaniline nanotubes obtained by rapidly mixed reaction. The ACNTs show oxygen content of 15.7% and nitrogen content of 2.97% (atomic ratio). The ACNTs perform high capacitance and good rate capability (327 F g-1 at the current density of 10 A g-1) when used as the electrode materials for supercapacitors. Hydrogen reduction has been further used to investigate the effects of surface functional groups on the electrochemical performance. The changes for both structural component and electrochemical performance reveal that the quinone oxygen, pyridinic nitrogen, and pyrrolic nitrogen of carbon have the most obvious influence on the capacitive property because of their pseudocapacitive contributions.

  4. Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Xuqing; Xie, Dong; Zhong, Yu; Wang, Donghuang; Wu, Jianbo; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2017-08-04

    Lithium-sulfur batteries (LSBs) are considered to be among the most promising next-generation high-energy batteries. It is a consensus that improving the conductivity of sulfur cathodes and impeding the dissolution of lithium polysulfides are two key accesses to high-performance LSBs. Herein we report a sulfur/carbon black (S/C) cathode modified by self-polymerized polydopamine (pDA) with the assistance of polymerization treatment. The pDA acts as a novel and effective shell on the S/C cathode to stop the shuttle effect of polysulfides. By the synergistic effect of enhanced conductivity and multiple blocking effect for polysulfides, the S/C@pDA electrode exhibits improved electrochemical performances including large specific capacity (1135 mAh g -1 at 0.2 C), high rate capability (533 mAh g -1 at 5 C) and long cyclic life (965 mAh g -1 after 200 cycles). Our smart design strategy may promote the development of high-performance LSBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hongmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Chang, Gang, E-mail: changgang@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Lei, Ming [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); He, Hanping [College of Chemistry and Chemical Engineer, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062 (China); Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2016-10-30

    Highlights: • Pt/DGNs/GC composites were obtained via a clean and facile method without any templates, surfactants, or stabilizers. • Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. • The obtained Pt/DGNs/GC composites with high electrochemical active surface area (ECSA) show superior electrocatalytic activity to glucose. • The sensor based on Pt/DGNs/GC exhibited excellent sensitivity, selectivity and stability for nonenzymatic glucose detection. - Abstract: Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the

  6. High performance reversible electrochemical cell for H2O electrolysis or conversion of CO2 and H2O to fuel

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a reversible electrochemical cell, such as an electrolysis cell for water splitting or for conversion of carbon dioxide and water into fuel. The present invention relates also to an electrochemical cell that when operated in reverse performs as a fuel cell...

  7. Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability.

    Science.gov (United States)

    Tang, Xian; Liang, Weiyuan; Zhao, Jinlai; Li, Zhongjun; Qiu, Meng; Fan, Taojian; Luo, Crystal Shaojuan; Zhou, Ye; Li, Yu; Guo, Zhinan; Fan, Dianyuan; Zhang, Han

    2017-12-01

    Phosphorene has attracted great interest due to its unique electronic and optoelectronic properties owing to its tunable direct and moderate band-gap in association with high carrier mobility. However, its intrinsic instability in air seriously hinders its practical applications, and problems of technical complexity and in-process degradation exist in currently proposed stabilization strategies. A facile pathway in obtaining and stabilizing phosphorene through a one-step, ionic liquid-assisted electrochemical exfoliation and synchronous fluorination process is reported in this study. This strategy enables fluorinated phosphorene (FP) to be discovered and large-scale, highly selective few-layer FP (3-6 atomic layers) to be obtained. The synthesized FP is found to exhibit unique morphological and optical characteristics. Possible atomistic fluorination configurations of FP are revealed by core-level binding energy shift calculations in combination with spectroscopic measurements, and the results indicate that electrolyte concentration significantly modulates the fluorination configurations. Furthermore, FP is found to exhibit enhanced air stability thanks to the antioxidation and antihydration effects of the introduced fluorine adatoms, and demonstrate excellent photothermal stability during a week of air exposure. These findings pave the way toward real applications of phosphorene-based nanophotonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Promoting Effect of Layered Titanium Phosphate on the Electrochemical and Photovoltaic Performance of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Deng Changsheng

    2010-01-01

    Full Text Available Abstract We reported a composite electrolyte prepared by incorporating layered α-titanium phosphate (α-TiP into an iodide-based electrolyte using 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4 ionic liquid as solvent. The obtained composite electrolyte exhibited excellent electrochemical and photovoltaic properties compared to pure ionic liquid electrolyte. Both the diffusion coefficient of triiodide (I3 − in the electrolyte and the charge-transfer reaction at the electrode/electrolyte interface were improved markedly. The mechanism for the enhanced electrochemical properties of the composite electrolyte was discussed. The highest conversion efficiency of dye-sensitized solar cell (DSSC was obtained for the composite electrolyte containing 1wt% α-TiP, with an improvement of 58% in the conversion efficiency than the blank one, which offered a broad prospect for the fabrication of stable DSSCs with a high conversion efficiency.

  9. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    Science.gov (United States)

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Electrochemical fabrication of a novel conducting metallopolymer nanoparticles and its electrocatalytic application

    International Nuclear Information System (INIS)

    Kazemi, Sayed Habib; Mohamadi, Rahim

    2013-01-01

    Graphical abstract: Nanoparticles of nickel-curcumin conducting polymer (Ni-Curc-NPs) were fabricated by a two steps electrochemical method. In the first step, nickel source was immobilized at the electrode surface in the form of nickel nanoparticles (NiNPs). Then, electropolymerization of Ni-curcumin was performed at the NiNPs modified electrode. These nanostructures were successfully employed for electrooxidative determination of glucose and significant increase in the electrochemical sensitivity and lower limit of detection were observed. -- Highlights: • A novel two steps method for fabrication of nickel-curcumin conducting polymer was described. • Nickel-curcumine nanoparticles were easily prepared instead of thin film. • Ni-Curc-NPs modified electrode was successfully employed for electrooxidation of glucose. • Significant improvement in the sensitivity and limit of detection was observed. -- Abstract: Present article is the first example of a novel two step electrochemical route for fabrication of nanoparticles of conducting metallopolymer of Ni-curcumin (Ni-Curc-NPs). Firstly, nickel nanoparticles (Ni-NPs) were electrochemically deposited on the electrode surface. Then, electropolymerization of Ni-Curc-NPs were performed at the electrode modified with Ni-NPs. These nanostructures were characterized using electrochemical methods including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and hydrodynamic amperometry, also surface analysis methods and electron microscopy including energy dispersive analysis of X-ray (EDAX), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, application of the Ni-Curc-NPs modified electrode toward glucose electrooxidation was examined. A lower limit of detection and enhanced dynamic linear range for determination of glucose were observed at Ni-Curc-NPs modified electrode compared to Ni-NPs modified electrode

  11. Electrochemical capacitive performances of nanoporous carbon derived from sunflower seed shell

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Xing, W.; Zhuo, S.; Zhou, J. [Shandong Univ. of Technology, Zibo (China). School of Chemical Engineering

    2010-07-01

    Electrochemical double-layer capacitances (EDLCs) are used in applications were high power density and long cycle life are required. Nanoporous materials are typically used to prepare EDLC electrodes due to their high surface area, good physicochemical stability, and high conductivity. In this study, nanoporous carbon materials were prepared from sunflower seed shells and used as an electrode material for an EDLC. The surface and structural properties of the carbon materials were analyzed using N{sub 2} adsorption and scanning electron microscopy (SEM) techniques. The study showed that AC-X-Y carbons prepared using the impregnation-activation process had a better capacitive behaviour and higher capacitance retention ratio at fast charge-discharge rates than carbons made using the carbonization-activation process. The improved electrochemical performance of the carbons was attributed to the abundant macroscopic pores and decreased interior micropore surface. The specific capacitances of the carbon was approximately twice that of a hard-templated mesoporous carbon in all current densities ranging from 0.25 to 10 A per g. Results indicated that sunflower seed shells can be used to prepare EDLCs. 2 refs., 1 fig.

  12. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    Energy Technology Data Exchange (ETDEWEB)

    Sadik, Omowunmi A., E-mail: osadik@binghamton.ed [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Mwilu, Samuel K.; Aluoch, Austin [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States)

    2010-05-30

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  13. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    International Nuclear Information System (INIS)

    Sadik, Omowunmi A.; Mwilu, Samuel K.; Aluoch, Austin

    2010-01-01

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  14. Electrochemical surface plasmon spectroscopy-Recent developments and applications

    International Nuclear Information System (INIS)

    Zhang, Nan; Schweiss, Ruediger; Zong, Yun; Knoll, Wolfgang

    2007-01-01

    A survey is given on recent developments and applications of electrochemical techniques combined with surface plasmon resonance (SPR) spectroscopy. Surface plasmon spectroscopy (SPS) and optical waveguide mode spectroscopy make use of evanescent waves on metal-dielectric interfaces and can be conveniently combined with electrochemical methods. Selected examples of applications of high-pressure surface electrochemical plasmon resonance spectroscopy to study supramolecular architectures such as layer-by-layer films of conducting polymers or thin composite films will be presented. Then a combination of SPS with the electrochemical quartz crystal microbalance (EQCM) will be introduced and illustrated with a study on doping/de-doping process of a conducting polymer. This combination allows for simultaneous electrochemical, optical and microgravimetric characterization of interfaces. Finally, new technical developments including integration of SPS into microfluidic devices using a grating coupler and surface plasmon enhanced diffraction will be discussed

  15. Nanotubular surface modification of metallic implants via electrochemical anodization technique.

    Science.gov (United States)

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.

  16. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua; Xie, Xing; Pan, Lijia; Bao, Zhenan; Cui, Yi

    2013-01-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer

  17. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review.

    Science.gov (United States)

    Putzbach, William; Ronkainen, Niina J

    2013-04-11

    The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  18. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Niina J. Ronkainen

    2013-04-01

    Full Text Available The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  19. Robust and thermal-enhanced melamine formaldehyde–modified glassfiber composite separator for high-performance lithium batteries

    International Nuclear Information System (INIS)

    Wang, Qingfu

    2015-01-01

    The composite separator of melamine formaldehyde resin coated glass microfiber membrane was prepared for high performance lithium ion battery. It was demonstrated that this composite membranes possessed a significantly enhanced tensile strength and a modified porous structure, compared with that of pristine glass microfiber membrane. Impressive improvements in thermo-stability, with no shrinkage at an elevated temperature of 150 °C. Meanwhile, such composite membrane presented a favorable wettability and remarkable electrochemical stability in commercial liquid electrolyte. In addition, the battery test results of LiCoO 2 /graphite cells proved the composite membrane was a promising separator with an improved cycling performance and rate capability. The cycle performance of LiFePO 4 /Li cells at the elevated temperature of 120 °C demonstrated their excellent safety characteristic as separator in LIB, indicating the composite membrane was a potential separator candidate for high power battery.

  20. Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors

    International Nuclear Information System (INIS)

    Lee, Hye-Min; Kwac, Lee-Ku; An, Kay-Hyeok; Park, Soo-Jin; Kim, Byung-Joo

    2016-01-01

    Highlights: • Electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. • Activated carbon fibers showed enhanced specific surface area from 1520 to 3230 m 2 /g. • The increase in the specific capacitance of the samples was determined by charged pore structure during charging and discharging. - Abstract: In the present study, electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. The surface and structural characteristics of activated carbon fibers were observed using scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated using N 2 /77 K adsorption isotherms. The activated carbon fibers were applied as electrodes for electrical double-layer capacitors and analyzed in relation to the activation time. The specific surface area and total pore volume of the activated carbon fibers were determined to be 1520–3230 m 2 /g and 0.61–1.87 cm 3 /g, respectively. In addition, when the electrochemical characteristics were analyzed, the specific capacitance was confirmed to have increased from 1.1 F/g to 22.5 F/g. From these results, it is clear that the pore characteristics of pitch-based activated carbon fibers changed considerably in relation to steam activation and charge/discharge cycle; therefore, it was possible to improve the electrochemical characteristics of the activated carbon fibers.

  1. Electrochemical properties of N-doped hydrogenated amorphous carbon films fabricated by plasma-enhanced chemical vapor deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoriko; Furuta, Masahiro; Kuriyama, Koichi; Kuwabara, Ryosuke; Katsuki, Yukiko [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan); Kondo, Takeshi [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Fujishima, Akira [Kanagawa Advanced Science and Technology (KAST), 3-2-1, Sakato, Takatsu-ku, Kawasaki-shi, Kanagawa 213-0012 (Japan); Honda, Kensuke, E-mail: khonda@yamaguchi-u.ac.j [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan)

    2011-01-01

    Nitrogen-doped hydrogenated amorphous carbon thin films (a-C:N:H, N-doped DLC) were synthesized with microwave-assisted plasma-enhanced chemical vapor deposition widely used for DLC coating such as the inner surface of PET bottles. The electrochemical properties of N-doped DLC surfaces that can be useful in the application as an electrochemical sensor were investigated. N-doped DLC was easily fabricated using the vapor of nitrogen contained hydrocarbon as carbon and nitrogen source. A N/C ratio of resulting N-doped DLC films was 0.08 and atomic ratio of sp{sup 3}/sp{sup 2}-bonded carbons was 25/75. The electrical resistivity and optical gap were 0.695 {Omega} cm and 0.38 eV, respectively. N-doped DLC thin film was found to be an ideal polarizable electrode material with physical stability and chemical inertness. The film has a wide working potential range over 3 V, low double-layer capacitance, and high resistance to electrochemically induced corrosion in strong acid media, which were the same level as those for boron-doped diamond (BDD). The charge transfer rates for the inorganic redox species, Fe{sup 2+/3+} and Fe(CN){sub 6}{sup 4-/3-} at N-doped DLC were sufficiently high. The redox reaction of Ce{sup 2+/3+} with standard potential higher than H{sub 2}O/O{sub 2} were observed due to the wider potential window. At N-doped DLC, the change of the kinetics of Fe(CN){sub 6}{sup 3-/4-} by surface oxidation is different from that at BDD. The rate of Fe(CN){sub 6}{sup 3-/4-} was not varied before and after oxidative treatment on N-doped DLC includes sp{sup 2} carbons, which indicates high durability of the electrochemical activity against surface oxidation.

  2. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells

    KAUST Repository

    Ren, Zhiyong; Ramasamy, Ramaraja P.; Cloud-Owen, Susan Red; Yan, Hengjing; Mench, Matthew M.; Regan, John M.

    2011-01-01

    The relationship between anode microbial characteristics and electrochemical parameters in microbial fuel cells (MFCs) was analyzed by time-course sampling of parallel single-bottle MFCs operated under identical conditions. While voltage stabilized within 4. days, anode biofilms continued growing during the six-week operation. Viable cell density increased asymptotically, but membrane-compromised cells accumulated steadily from only 9% of total cells on day 3 to 52% at 6. weeks. Electrochemical performance followed the viable cell trend, with a positive correlation for power density and an inverse correlation for anode charge transfer resistance. The biofilm architecture shifted from rod-shaped, dispersed cells to more filamentous structures, with the continuous detection of Geobacter sulfurreducens-like 16S rRNA fragments throughout operation and the emergence of a community member related to a known phenazine-producing Pseudomonas species. A drop in cathode open circuit potential between weeks two and three suggested that uncontrolled biofilm growth on the cathode deleteriously affects system performance. © 2010 Elsevier Ltd.

  3. Electrochemical performance and safety features of high-safety lithium ion battery using novel branched additive for internal short protection

    International Nuclear Information System (INIS)

    Li Yuhan; Lee, Meng-Lun; Wang Fuming; Yang, Chang-Rung; Chu, Peter P.J.; Yau, Shueh-Lin; Pan, Jing-Pin

    2012-01-01

    Highlights: ► N-phenylmaleimide-containing branched oligomer has been employed as an additive in lithium cells. ► The branched oligomer additive enhances safety and cycling performance of Li ion battery. ► The highest temperature of branched oligomer-containing battery was only 85 °C in the nail penetration test. - Abstract: In this study, we have investigated N-phenylmaleimide/bismaleimide-containing branched oligomer (BO1) as additive in Li-ion batteries to increase the safety performance by reducing the probability of batteries suffering an internal short circuit. In the nail penetration test, a LiCoO 2 /MCMB full battery with N-phenylmaleimide/bismaleimide-containing branched oligomer (BO1) showed a significant improvement in thermal stability and was able to restrain the temperature of the battery at about 85 °C. Furthermore, we found that N-phenylmaleimide/bismaleimide-containing branched oligomer (BO1) contained battery revealed better cycling and electrochemical performance, compared with the battery with bismaleimide-containing branched oligomer (BO3) in the electrolyte. The improvement might result from the favorable ionic conductivity, Li ion mobility and lower resistance in the battery. This additive can meet the cycling performance and safety requirements for Li-ion batteries.

  4. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine.

    Science.gov (United States)

    Zhao, Zhenting; Sun, Yongjiao; Li, Pengwei; Zhang, Wendong; Lian, Kun; Hu, Jie; Chen, Yong

    2016-09-01

    A highly sensitive electrochemical sensor of hydrazine has been fabricated by Au nanoparticles (AuNPs) coating of carbon nanotubes-electrochemical reduced graphene oxide composite film (CNTs-ErGO) on glassy carbon electrode (GCE). Cyclic voltammetry and potential amperometry have been used to investigate the electrochemical properties of the fabricated sensors for hydrazine detection. The performances of the sensors were optimized by varying the CNTs to ErGO ratio and the quantity of Au nanoparticles. The results show that under optimal conditions, a sensitivity of 9.73μAμM(-1)cm(-2), a short response time of 3s, and a low detection limit of 0.065μM could be achieved with a linear concentration response range from 0.3μM to 319μM. The enhanced electrochemical performances could be attributed to the synergistic effect between AuNPs and CNTs-ErGO film and the outstanding catalytic effect of the Au nanoparticles. Finally, the sensor was successfully used to analyse the tap water, showing high potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants.

    Science.gov (United States)

    Madhan Kumar, A; Nagarajan, S; Ramakrishna, Suresh; Sudhagar, P; Kang, Yong Soo; Kim, Hyongbum; Gasem, Zuhair M; Rajendran, N

    2014-10-01

    The present investigation describes the versatile fabrication and characterization of a novel composite coating that consists of polypyrrole (PPy) and Nb2O5 nanoparticles. Integration of the two materials is achieved by electrochemical deposition on 316L stainless steel (SS) from an aqueous solution of oxalic acid containing pyrrole and Nb2O5 nanoparticles. Fourier transform infrared spectral (FTIR) and X-ray diffraction (XRD) studies revealed that the existence of Nb2O5 nanoparticles in PPy matrix with hexagonal structure. Surface morphological analysis showed that the presence of Nb2O5 nanoparticles strongly influenced the surface nature of the nanocomposite coated 316L SS. Micro hardness results revealed the enhanced mechanical properties of PPy nanocomposite coated 316L SS due to the addition of Nb2O5 nanoparticles. The electrochemical studies were carried out using cyclic polarization and electrochemical impedance spectroscopy (EIS) measurements. In order to evaluate the biocompatibility, contact angle measurements and in vitro characterization were performed in simulated body fluid (SBF) and on MG63 osteoblast cells. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than pure PPy coatings. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Fenglin Huang

    2016-01-01

    Full Text Available A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–shell composite nanofibrous membrane showed good wettability (16.5°, contact angle, high porosity (69.77%, and super electrolyte compatibility (497%, electrolyte uptake. It had a higher ionic conductivity (13.897 mS·cm−1 than those of pure polymer fibrous membrane and commercial separator. In addition, the rate capability (155.56 mAh·g−1 was also superior to the compared separator. These excellent performances endowed LLTO composite nanofibrous membrane as a promising separator for high-performance lithium-ion batteries.

  7. Enhanced electrocatalytic activity of graphene-gold nanoparticles hybrids for peroxynitrite electrochemical detection on hemin-based electrode.

    Science.gov (United States)

    Wang, Beibei; Ji, Xueping; Ren, Jujie; Ni, Ruixing; Wang, Lin

    2017-12-01

    A simple, ultrasensitive peroxynitrite anion (ONOO - ) electrochemical sensing platform was developed by immobilizing hemin on a density controllable electrochemically reduced graphene oxide-Au nanoparticles (ERGO-AuNPs) nanohybrids. The ERGO-AuNPs in situ nanohybrids were produced onto a glass carbon electrode (GCE) by one-step electrodeposition, the density of which could be easily controlled by electrodeposited time. The morphology of ERGO-AuNPs nanohybrids was characterized by a scanning electron microscope (SEM). The ERGO-AuNPs nanohybrids showed a high electrocatalytic activity for immobilized-hemin, because the nanostructures hybrids could effectively promote electron transfer rate between hemin and the electrode. Due to nanohybrids-enhanced catalytic effect for hemin, they were firstly selected for use as a highly sensitive electrochemical platform for ONOO - detection. The resulted sensor showed a high electrocatalytic activity toward ONOO - oxidation, being free from the electroactive interferents, including nitrite, nitrate, dopamine and uric acid at an applied potential of 0.7V. The sensor exhibited a high sensitivity of 123.1nAμM -1 and a lower detection limit of 0.1μM, and a wide linear range of 2.4×10 -6 to 5.5×10 -5 M, which could be attributed to the synergy between ERGO and AuNPs in hybrids. The nanohybrids in situ preparation and ONOO - detection methods would be beneficial to developing other sensing interface and have promising applications in biological molecules analysis and clinical diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mengjie [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang, Shubin, E-mail: shubinwang@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yu, Yalin; Feng, Qihang; Yang, Jiping; Zhang, Boming [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-01-15

    Highlights: • Carboxyl functionalized CF is acquired by simple chemical oxidation method. • These CF have preserved the tensile strength, better electrochemical properties. • The presence of H{sub 3}PO{sub 4} prevented the turbostratic carbon from over-oxidization. • There CF can be used as anodes of multifunctional structural battery. • The preservation and improvement is result from the hindered over-oxidization. - Abstract: Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical properties were acquired through a simple chemical oxidation method, and the proposed underlying mechanism was verified. The surface of carboxyl functionalizing carbon fibers is necessary in acquiring functional groups on the surface of carbon fibers to further improve the thermal, electrical or mechanical properties of the fibers. Functionalization should preserve the tensile strength and electrochemical properties of carbon fibers, because the anodes of structural batteries need to have high strength and electrochemical properties. Functionalized with mixed H{sub 2}SO{sub 4}/HNO{sub 3} considerably reduced the tensile strength of carbon fibers. By contrast, the appearance of H{sub 3}PO{sub 4} preserved the tensile strength of functionalized carbon fibers, reduced the dispersion level of tensile strength values, and effectively increased the concentration of functional acid groups on the surface of carbon fibers. The presence of phosphoric acid hindered the over-oxidation of turbostratic carbon, and consequently preserved the tensile strength of carbon fibers. The increased proportion of turbostratic carbon on the surface of carbon fibers concurrently enhanced the electrochemical properties of carbon fibers.

  9. Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F.; Luais, E. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Thobie-Gautier, C. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Tessier, P.-Y. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France)], E-mail: mohammed.boujtita@univ-nantes.fr

    2009-04-15

    Radiofrequency argon plasma was used for screen-printed carbon electrodes (SPCE) surface treatment. The cyclic voltammetry of ferri/ferrocyanide as redox couple showed a remarkable improvement of the electrochemical reactivity of the SPCE after the plasma treatment. The effect of the plasma growth conditions on the efficiency of the treatment procedure was evaluated in term of electrochemical reactivity of the SPCE surface. The electrochemical study showed that the electrochemical reactivity of the treated electrodes was strongly dependant on radiofrequency power, treatment time and argon gas pressure. X-ray photoelectron spectroscopy (XPS) analysis showed a considerable evolution on the surface chemistry of the treated electrodes. Our results clearly showed that the argon plasma treatment induces a significant increase in the C{sub sp2}/C{sub sp3} ratio. The scanning electron micrograph (SEM) also showed a drastic change on the surface morphology of the treated SPCEs.

  10. Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials

    Science.gov (United States)

    Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.

    2016-09-01

    The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.

  11. Enhancing hybrid direct carbon fuel cell anode performance using Ag2O

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    A hybrid-direct carbon fuel cell (HDCFC), consisting of a molten slurry of solid carbon black and (Li-K)2CO3 added to the anode chamber of a solid oxide fuel cell, was characterized using current-potential-power density curves, electrochemical impedance spectroscopy, and cyclic voltammetry. Two...... types of experimental setups were employed in this study, an anode-supported full cell configuration (two electrodes, two atmospheres setup) and a 3-electrode electrolyte-supported half-cell setup (single atmosphere). Anode processes with and without catalysts were investigated as a function...... of temperature (700-800 °C) and anode sweep gas (N2, 4-100% CO2 in N2-CO2). It was shown that the addition of silver based catalysts (Ag, Ag2O, Ag2CO3) into the carbon-carbonate slurry enhanced the performance of the HDCFC....

  12. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com; Shahdost-fard, Faezeh

    2016-11-01

    In the present study, we report a selective electrochemical aptasensor for the ultrasensitive detection of an anti-inflammatory drug, ibuprofen (IBP). The proposed system was achieved by the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes/ionic liquid/chitosan (MWCNTs/IL/Chit) nanocomposite and the covalent immobilization of the IBP specific aptamer (Apt) onto the modified electrode surface followed by methylene blue (MB) intercalated onto the Apt as the electrochemical redox marker. Upon the incubation of the IBP as a target in the proposed aptasensor, the peak current of MB decreases due to the formation of the Apt-IBP complex and the displacement of MB from the immobilized Apt onto the modified electrode surface. The nanocomposite not only increases the electrode surface area and accelerate the electron transfer kinetics but also it provides a highly stable matrix to enhance the loading amount of the Apt DNA sequence. Through differential pulse voltammetry (DPV) experiments, it was found that the proposed aptasensor could detect the IBP with a linear range (70 pM up to 6 μM) and the detection limit (LOD) as low as 20 pM. The results showed that the aptasensor had good sensitivity, stability, reproducibility, and specificity to detect the IBP. The proposed aptasensor was successfully applied for measuring the IBP concentration in real samples. Based on our experiments we can say that the present method proposes new horizons for the development of other aptasensors for diagnostic application in biosensing. - Highlights: • An electrochemical aptasensor is developed for ultrasensitive detection of IBP. • The aptasensor is made by covalent immobilization of aptamer on a modified GCE. • A nanocomposite as a modifier provides a specific surface with high conductivity. • This nanocomposite leads to a high density of the DNA sequence on the GCE surface. • This method proposes new horizons for development other aptasensors for

  13. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Shahdost-fard, Faezeh

    2016-01-01

    In the present study, we report a selective electrochemical aptasensor for the ultrasensitive detection of an anti-inflammatory drug, ibuprofen (IBP). The proposed system was achieved by the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes/ionic liquid/chitosan (MWCNTs/IL/Chit) nanocomposite and the covalent immobilization of the IBP specific aptamer (Apt) onto the modified electrode surface followed by methylene blue (MB) intercalated onto the Apt as the electrochemical redox marker. Upon the incubation of the IBP as a target in the proposed aptasensor, the peak current of MB decreases due to the formation of the Apt-IBP complex and the displacement of MB from the immobilized Apt onto the modified electrode surface. The nanocomposite not only increases the electrode surface area and accelerate the electron transfer kinetics but also it provides a highly stable matrix to enhance the loading amount of the Apt DNA sequence. Through differential pulse voltammetry (DPV) experiments, it was found that the proposed aptasensor could detect the IBP with a linear range (70 pM up to 6 μM) and the detection limit (LOD) as low as 20 pM. The results showed that the aptasensor had good sensitivity, stability, reproducibility, and specificity to detect the IBP. The proposed aptasensor was successfully applied for measuring the IBP concentration in real samples. Based on our experiments we can say that the present method proposes new horizons for the development of other aptasensors for diagnostic application in biosensing. - Highlights: • An electrochemical aptasensor is developed for ultrasensitive detection of IBP. • The aptasensor is made by covalent immobilization of aptamer on a modified GCE. • A nanocomposite as a modifier provides a specific surface with high conductivity. • This nanocomposite leads to a high density of the DNA sequence on the GCE surface. • This method proposes new horizons for development other aptasensors for

  14. Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications

    International Nuclear Information System (INIS)

    He, Linghao; Wang, Hongfang; Xia, Guangmei; Sun, Jing; Song, Rui

    2014-01-01

    Graphical abstract: Nanocomposites by introducing graphene oxide (GO) into chitosan (CS) matrix were prepared and the effect of GO on the crystallization, thermal stability and mechanical properties of the films were investigated. In addition, the electrochemical behavior of the CS/GO modified electrode was comparatively studied with that of the neat CS-modified electrode. - Highlights: • Graphene oxide (GO) with well dispersion in the biopolymer chitosan (CS) matrix. • Detectable interactions do exist between the GO nanosheets and CS segments. • The addition of minor GO can improve the electrochemical activity of the neat CS. - Abstract: A series of chitosan (CS) nanocomposites incorporated with graphene oxide (GO) nanosheets were facilely prepared by sonochemical method. Characterized by scanning electron microscopy, the obtained nanocomposites showed fine dispersion of GO in the CS matrix. Meanwhile, a marked interfacial interaction was also revealed as the values of glass transition temperature, the decomposition temperature and the storage modulus were significantly increased with the addition of GO. Furthermore, the well dispersed GO nanosheets could significantly improve the electrochemical activity of the CS as demonstrated by the electrochemical behaviors of pure CS and the GO/CS composite electrodes. Hence, the GO/CS nanocomposites film could be a promising candidate in the fabrication of electrochemical biosensors

  15. Electrochemical synthesis of nanosized TiO2 nanopowder involving choline chloride based ionic liquids

    International Nuclear Information System (INIS)

    Anicai, Liana; Petica, Aurora; Patroi, Delia; Marinescu, Virgil; Prioteasa, Paula; Costovici, Stefania

    2015-01-01

    Highlights: • TiO 2 nanopowder electrochemically prepared using choline chloride based ionic liquids. • The new proposed method allowed high anodic synthesis efficiencies of minimum 92%. • High surface area of the electrochemically synthesized titania nanopowders. • Enhanced photocatalytic activity. - Abstract: The paper presents some experimental results regarding the electrochemical synthesis of TiO 2 nanopowders through anodic dissolution of Ti metal in choline chloride based eutectic mixtures (DES). A detailed characterization of the obtained titania has been performed, using various techniques, including XRD, Raman spectroscopy, XPS, SEM associated with EDX analysis, BET and UV–vis diffuse reflectance spectra. The anodic behavior of Ti electrode in DES has been also investigated. The photoreactivity of the synthesized materials was evaluated for the degradation of Orange II dye under UV (λ = 365 nm) and visible light irradiation. An anodic synthesis efficiency of minimum 92% has been determined. The as-synthesized TiO 2 showed amorphous structure and a calcination post-treatment at temperatures between 400 and 600 °C yielded anatase. The anodically obtained nanocrystalline oxides have crystallite sizes of 8–18 nm, a high surface area and enhanced photocatalytic effect

  16. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Peng, Feng, E-mail: cefpeng@scut.edu.cn

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent is explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.

  17. Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay [Carbon Technology Unit, Engineering Materials Division, National Physical Laboratory, New-Delhi, 110012 (India); Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan); Japan Science and Technology Agency, Kawaguchi-shi, Saitama, 332-0012 (Japan); Gupta, Shubhra; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan)

    2010-06-01

    Spinels are not known for their supercapacitive nature. Here, we have explored electrochemically synthesized nanostructured NiCo{sub 2}O{sub 4} spinel thin-film electrode for electrochemical supercapacitors. The nanostructured NiCo{sub 2}O{sub 4} spinel thin film exhibited a high specific capacitance value of 580 F g{sup -1} and an energy density of 32 Wh kg{sup -1} at the power density of 4 kW kg{sup -1}, accompanying with good cyclic stability. (author)

  18. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes.

    Science.gov (United States)

    Hou, Ye; Cheng, Yingwen; Hobson, Tyler; Liu, Jie

    2010-07-14

    For efficient use of metal oxides, such as MnO(2) and RuO(2), in pseudocapacitors and other electrochemical applications, the poor conductivity of the metal oxide is a major problem. To tackle the problem, we have designed a ternary nanocomposite film composed of metal oxide (MnO(2)), carbon nanotube (CNT), and conducting polymer (CP). Each component in the MnO(2)/CNT/CP film provides unique and critical function to achieve optimized electrochemical properties. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance (SC) of the ternary composite electrode can reach 427 F/g. Even at high mass loading and high concentration of MnO(2) (60%), the film still showed SC value as high as 200 F/g. The electrode also exhibited excellent charge/discharge rate and good cycling stability, retaining over 99% of its initial charge after 1000 cycles. The results demonstrated that MnO(2) is effectively utilized with assistance of other components (fFWNTs and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in the electrode. Such ternary composite is very promising for the next generation high performance electrochemical supercapacitors.

  19. Novel Au/CaIn{sub 2}S{sub 4} nanocomposites with plasmon-enhanced photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Meng, Suci, E-mail: mengsc@ujs.edu.cn; Wang, Tianyong; Xu, Qing; Shao, Leqiang; Jiang, Deli, E-mail: dlj@ujs.edu.cn; Chen, Min

    2017-02-28

    Highlights: • Au/CaIn{sub 2}S{sub 4} nanocomposites were fabricated by a simple photoreduction process. • The nanocomposites shown plasmon-enhanced visible light photocatalytic activity. • The enhanced activity was mainly due to improved separation of charge carriers. • The superoxide radicals and holes are the two main photoactive species. - Abstract: A series of Au/CaIn{sub 2}S{sub 4} nanocomposites with different Au contents were prepared by a simple photoreduction process. Under visible light irradiation, the as-prepared Au/CaIn{sub 2}S{sub 4} nanocomposites exhibited plasmon-enhanced photocatalytic activity for the degradation of methylene blue (MB) compared to that of bare CaIn{sub 2}S{sub 4}. The sample with 4 wt% Au hybridized CaIn{sub 2}S{sub 4} exhibited the highest photocatalytic efficiency for MB degradation compared with those of the other nanocomposites. The mechanism for improving the photocatalytic performance of the Au/CaIn{sub 2}S{sub 4} nanocomposites was proposed by using the photoluminescence measurement and electrochemical analyses. The enhanced photocatalytic performance could be attributed to the high separation efficiency of the photogenerated electron-hole pairs. This work could provide a new insight into the fabrication of CaIn{sub 2}S{sub 4}-based plasmonic photocatalysts with enhanced performance.

  20. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Enhanced electrochemical performance of CoMoO4 nanorods/reduced graphene oxide as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Ting; Zhang, Haonan; Luo, Yazi; Mei, Lin; Guo, Di; Li, Qiuhong; Wang, Taihong

    2015-01-01

    Highlights: • Facile, green and large scale synthesis method. • CoMoO 4 nanorods possess small diameter (about 40∼60 nm in width and 1.5∼2 μm in length) and uniformly distributed on reduced graphene oxide. • CoMoO 4 nanorods/reduced graphene oxide composite delivered high initial discharge capacity (1496 mA h g −1 at a current density of 100 mA g −1 ), and good cycling (628 mA h g −1 after 100 cycles) and rate performance (a reversible capacity of 372 mA h g −1 at the rate of 5 A g −1 ). - Abstract: CoMoO 4 nanorods with small diameter (about 40∼60 nm in width and 1.5∼2 μm in length) uniformly distributed on reduced graphene oxide (rGO) nanosheets were synthesized via a facile, green wet chemical method. The as-prepared CoMoO 4 /rGO composite was studied as anode material for lithium-ion batteries. It delivered an initial discharge capacity of 1496 mA h g −1 at a current density of 100 mA g −1 , and good cycling (628 mA h g −1 after 100 cycles) and rate performance (a reversible capacity of 372 mA h g −1 at the rate of 5 A g −1 ). The excellent electrochemical performance can be attributed to the small diameter of the synthesized CoMoO 4 nanorods and the presence of rGO nanosheets, making it a promising candidate for next generation anode material of rechargeable lithium ion batteries

  2. Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical response to tetrabromobisphenol A

    International Nuclear Information System (INIS)

    Wang, Yanying; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Li, Chunya; Wu, Kangbing

    2016-01-01

    Cysteine (Cys) was electrochemically deposited on a glassy carbon electrode (GCE) by cyclic voltammetry. The poly-Cys modified electrode was placed in a solution of gold nanorods (GNRs) to induced self-assembly of the GNRs. The GNRs/poly-Cys/GCEs were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. A voltammetric study on tetrabromobisphenol A (TBBPA) with this GCE showed the current response to be enhanced by a factor of 11 compared to a non-modified GCE. Based on these findings, a square wave voltammetric assay was worked out. Under optimized conditions, a linear relationship between the oxidation peak current and TBBPA is found for the 10 nM to 10 μM concentration range. The detection limit is 3.2 nM (at an S/N ratio of 3). The electrode was successfully applied to the determination of TBBPA in spiked tap water and lake water samples. (author)

  3. An Electrochemical Processing Strategy for Improving Tribological Performance of Aisi 316 Stainless Steel Under Grease Lubrication

    Science.gov (United States)

    Zou, Jiaojuan; Li, Maolin; Lin, Naiming; Zhang, Xiangyu; Qin, Lin; Tang, Bin

    2014-12-01

    In order to improve the tribological performance of AISI 316 stainless steel (316 SS) under grease lubrication, electrochemical processing was conducted on it to obtain a rough (surface texturing-like) surface by making use of the high sensitivity of austenitic stainless steel to pitting corrosion in Cl--rich environment. Numerous corrosion pits or micro-ditches acted as micro-reservoirs on the obtained surface. While the grease could offer consistent lubrication, and then improve the tribological performance of 316 SS. Tribological behaviors of raw 316 SS and the treated sample were measured using a reciprocating type tribometer sliding against GCr15 steel counterpart under dry and grease lubrication conditions. The results showed that the mass losses of the two samples were in the same order of magnitude, and the raw sample exhibited lower friction coefficient in dry sliding. When the tests were conducted under grease lubrication condition, the friction coefficients and mass losses of the treated sample were far lower than those of the raw 316 SS. The tribological performance of 316 SS under grease lubrication was drastically improved after electrochemical processing.

  4. Promotional role of Li4Ti5O12 as polysulfide adsorbent and fast Li+ conductor on electrochemical performances of sulfur cathode

    Science.gov (United States)

    Zeng, Tianbiao; Hu, Xuebu; Ji, Penghui; Shang, Biao; Peng, Qimeng; Zhang, Yaoyao; Song, Ruiqiang

    2017-08-01

    Lithium-sulfur (Li-S) batteries attract much attention due to its high specific capacity and energy density compared to lithium-ion batteries (LiBs). Herein, a novel composite named as (void/nano-Li4Ti5O12 pieces)@C [(v/n-L)@C] was designed and prepared as a sulfur host. Spinel Li4Ti5O12 here as a multifunctional additive played as polysulfide adsorbent agent and fast Li+ conductor, and carbon shell was designed as electronic conductor, as well as volume barrier to limit the volume expansion caused by sulfur. As-prepared (S/nano-Li4Ti5O12 pieces)@C [(S/n-L)@C] are core-shell spheres, which are about 200 nm in size. Nano-Li4Ti5O12 and sulfur were coated by the outer carbon shell with a thickness of about 20 nm. The experimental results show that electrochemical performances of (S/n-L)@C cathode were enhanced effectively compared to S@C cathode. At 0.5C and 1C, the discharge capacity of (S/n-L)@C was 33.5% and 40.1% higher than that of S@C at 500th cycle. Even at 2C, its capacity reached 600.9 mAh g-1 at 1000th cycle. Li+ conductivity of (S/n-L)@C was one order of magnitude higher than that of S@C, which was reach to 2.55 × 10-8 S cm-1. The experiment results indicate Li4Ti5O12 plays a promotional role on electrochemical performances of sulfur cathode, especially for stable cycling performance and high rate performance.

  5. Performance of palladium nanoparticle–graphene composite as an efficient electrode material for electrochemical double layer capacitors

    International Nuclear Information System (INIS)

    Dar, Riyaz A.; Giri, Lily; Karna, Shashi P.; Srivastava, Ashwini K.

    2016-01-01

    Highlights: • Single step synthesis of palladium nanoparticles decorated-graphene nanocomposite. • Improved electron transfer kinetics and superior capacitive performance. • High specific capacitance of 637 F g −1 at a current density of 1.25 A g −1 . • Retention of 91.4% of its initial capacitance after 10000 cycles of testing. - Abstract: Palladium nanoparticle–graphene nanosheet composite (PdNP–GN) is demonstrated as an efficient electrode material in energy storage applications in supercapacitors. Palladium nanoparticle (PdNP) decorated graphene nanosheet (GN) composite was synthesized via a chemical approach in a single step by the simultaneous reduction of graphene oxide (GO) and palladium chloride from the aqueous phase using ascorbic acid as reducing agent. The materials were characterized by scanning and high resolution transmission electron microscopy, Raman, X-ray diffraction and energy dispersive X-ray spectroscopy which demonstrate that the metal nanoparticles have been uniformly deposited on the surface of graphene nanosheets. The synthesized material has been analyzed by cyclic voltammetry, electrochemical impedance spectrometry and chronopotentiometry using 1 M KCl as the supporting electrolyte for its application in electrochemical double layer supercapacitors. PdNPs-GN composite showed improved electron transfer kinetics and superior capacitive performance with large specific capacitance of 637 F g −1 , excellent cyclic performance and maximum energy and power densities of 56 Wh kg −1 and 1166 W kg −1 , respectively at a current density of 1.25 A g −1 . This highlights the importance of the synergetic effects of electrochemically efficient Pd nanoparticles and graphene for energy storage applications in supercapacitors.

  6. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sumi; Kim, Kyuwon [Incheon National University, Incheon (Korea, Republic of)

    2016-03-15

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  7. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Park, Sumi; Kim, Kyuwon

    2016-01-01

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  8. Facile synthesis of core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites with superior electrochemical performance in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Zhenyin [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Gao, Libo [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, Kowloon 999077 (Hong Kong); Zhang, Qiang [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Xu, Hongyan [School of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051 (China); Cui, Danfeng; Zhang, Zengxing [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Tsoukalas, Dimitris [Department of Applied Physics, National Technical University of Athens, Zografou GR-15780 (Greece); Tang, Jun; Yan, Shubin [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Xue, Chenyang, E-mail: xuechenyang@nuc.edu.cn [Key Laboratory of Instrumentation and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China)

    2016-01-15

    Graphical abstract: - Highlights: • PANI-Co{sub 3}O{sub 4} is synthesized by carbon-assisted and in situ polymerization methods. • PANI coating improves the properties of Co{sub 3}O{sub 4} affecting electrochemical performance. • The nanocomposites exhibit a high specific capacitance of 1184 F g{sup −1} at 1.25 A g{sup −1}. - Abstract: Core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites for supercapacitor applications were synthesized by combination of carbon-assisted method and in situ polymerization method. The crystalline structure, optical band gap, morphology, and hydrophilic property, as the major factors affecting the performances of supercapacitors, were investigated by X-ray diffraction (XRD), UV–vis spectrophotometry (UV–vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle (WCA). The core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites are characterized by amorphous PANI, small bandgaps, large surface area and favorable hydrophilicity, which indicates the superior electrochemical performances of the nanocomposites as electrode material for supercapacitors. Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurements were conducted in 6 M KOH aqueous solution to evaluate the electrochemical performances. The results shows that core–shell structured PANI-Co{sub 3}O{sub 4} nanocomposites exhibit a high specific capacitance of 1184 F g{sup −1} at 1.25 A g{sup −1}, excellent cycling stability of a capacitance retention of 84.9% after 1000 galvanostatic charge/discharge cycles, good electrical conductivity and ion diffusion behavior.

  9. Correlations among structure, composition and electrochemical performances of WO3 anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Pu; Li, Xing; Zhao, Ziyan; Wang, Mingshan; Fox, Thomas; Zhang, Qian; Zhou, Ying

    2016-01-01

    Highlights: • The residual precursor ions affect the charge/discharge performances of WO 3 . • Lithiated monoclinic WO 3 reveals the best discharge capacity. • Lithiation can enhance the conductivity of WO 3 . - Abstract: Suitable host structure for lithium insertion and extraction is crucial for lithium-ion batteries. Tungsten trioxides (WO 3 ) are particularly interesting materials for this purpose. In this work, the influences of structure and composition of WO 3 on the charge/discharge performances of Li-ion batteries are systematically investigated. Firstly, lithiated tungsten trioxides (Li-WO 3 ) are successfully synthesized by a hydrothermal method followed by annealing at different temperatures (200–600 °C). It is found that the hexagonal framework collapses and gradually transforms to the monoclinic phase due to the release of NH 4 + and NH 3 molecules. Unexpectedly, monoclinic WO 3 reveals better performances than that of hexagonal WO 3 . Among all the investigated samples, the lithiated WO 3 annealed at 500 °C exhibits the highest discharge capacity and cycle performance (703 mAh g −1 after 10 cycles). We believe that the Li + remained in the solid structure of WO 3 can lead to a more stable structure. In addition, Li + could inhibit the oxidation of W 5+ during the heat treatment process, which increases the electron conductivity of WO 3 . Our results indicate that the electrochemical properties of WO 3 are strongly related to the residual precursor and crystal structure.

  10. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor

    International Nuclear Information System (INIS)

    Sun, Xianzhong; Zhang, Xiong; Liu, Wenjie; Wang, Kai; Li, Chen; Li, Zhao; Ma, Yanwei

    2017-01-01

    Highlights: • Three-electrode pouch cell is used to investigate the capacity fading of AC/HC LIC. • the electrode potential swing is critical for the cycleability of a LIC cell. • Different capacity fading behaviors are discussed. • A large-capacity LIC pouch cell has been assembled with a specific energy of 18.1 Wh kg −1 based on the total weight. - Abstract: Lithium ion capacitor (LIC) is one of the most promising electrochemical energy storage devices, which offers rapid charging-discharging capability and long cycle life. We have fabricated LIC pouch cells using an electrochemically-driven lithium pre-doping method through a three-electrode pouch cell structure. The active materials of cathode and anode of LIC cell are activated carbon and pre-lithiated hard carbon, respectively. The electrochemical performances and the capacity fading behaviors of LICs in the voltage range of 2.0 − 4.0 V have been studied. The specific energy and specific power reach 73.6 Wh kg −1 and 11.9 kW kg −1 based on the weight of the active materials in both cathode and anode, respectively. Since the cycling performance is actually determined by hard carbon anode, the anode potential swings are emphasized. The capacity fading of LIC upon cycling is proposed to be caused by the increases of internal resistance and the consumption of lithium stored in anode. Finally, a large-capacity LIC pouch cell has been assembled with a maximum specific energy of 18.1 Wh kg −1 and a maximum specific power of 3.7 kW kg −1 based on the weight of the whole cell.

  11. Materials for electrochemical capacitors

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  12. Effects of carbon source and carbon content on electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C prepared by one-step solid-state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xuebu [College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066 (China); Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Lin Ziji [China National Quality Supervision and Inspection Center for Alcoholic Beverage Products and Processed Food, Luzhou, Sichuan 646100 (China); Yang Kerun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Hua, Yongjian [China Aviation Lithium Battery Co. Ltd., Luoyang, Henan 471009 (China); Deng Zhenghua, E-mail: zhdeng@cioc.ac.cn [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China)

    2011-05-30

    Highlights: > A simple route to prepare the Li{sub 4}Ti{sub 5}O{sub 12}/C by one-step solid-state reaction. > Carbon source and carbon content are two important factors on the electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C. > As-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C under optimized conditions shows excellent electrochemical performances. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12}/C composites were synthesized by one-step solid-state reaction method using four commonly used organic compounds or organic polymers as carbon source, i.e., polyacrylate acid (PAA), citric acid (CA), maleic acid (MA) and polyvinyl alcohol (PVA). The physical characteristics of Li{sub 4}Ti{sub 5}O{sub 12}/C composites were investigated by X-ray diffraction, electron microscopy, Raman spectroscopy, particle size distribution and thermogravimetry-derivative thermogravimetry techniques. Their electrochemical properties were characterized by cyclic voltammograms, electrochemical impedance spectra, constant current charge-discharge and rate charge-discharge. These analyses indicated that the carbon source and carbon content have a great effect on the physical and electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. An ideal carbon source and appropriate carbon content effectively improved the electrical contact between the Li{sub 4}Ti{sub 5}O{sub 12} particles, which enhanced the discharge capacity and rate capability of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. PAA was the best carbon source for the synthesis of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. When the carbon content was 3.49 wt.% (LiOH.H{sub 2}O/PAA molar ratio of 1), as-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C showed the maximum discharge capacity. At 0.2 C, initial capacity of the optimized sample was 168.6 mAh g{sup -1} with capacity loss of 2.8% after 50 cycles. At 8 and 10 C, it showed discharge capacities of 143.5 and 132.7 mAh g{sup -1}, with capacity loss of 8.7 and 9.9% after 50 cycles

  13. Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode

    International Nuclear Information System (INIS)

    Jian, Xuan; Yang, Hui-min; Li, Jia-gang; Zhang, Er-hui; Cao, Le-le; Liang, Zhen-hai

    2017-01-01

    Highlights: • Porous nanostructure carbon quantum dots/polypyrrole composite film was successfully synthesized by direct electrochemical method. • A flexible all-solid-state supercapacitor device was fabricated using the carbon quantum dots/polypyrrole composite electrode. • The flexible supercapacitor exhibits high specific capacitance, excellent reliability and long cycling life. - Abstract: Recently, carbon quantum dots (CQDs) as a new zero-dimensional carbon nanomaterial have become a focus in electrochemical energy storage. In this paper, flexible all-solid-state supercapacitors (ASSSs) were electrochemically synthesized by on-step co-deposition of appropriate amounts of pyrrole monomer and CQDs in aqueous solution. The different electrodeposition time plays an important role in controlling morphologies of stainless steel wire meshes (SSWM)-supported CQDs/PPy composite film. The morphologies and compositions of the obtained CQDs/PPy composite electrodes were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Furthermore, a novel flexible ASSS device was fabricated using CQDs/PPy composite as the electrode and separated by polyvinyl alcohol/LiCl gel electrolyte. Benefiting from superior electrochemical properties of CQDs and PPy, the as-prepared CQDs/PPy composite ASSSs exhibit outstanding electrochemical performance with the areal capacitance 315 mF cm −2 (corresponding to specific capacitance of 308 F g −1 ) at a current density of 0.2 mA cm −2 and long cycle life with 85.7% capacitance retention after 2 000 cycles.

  14. Nanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.

    Science.gov (United States)

    Xu, Shusheng; Li, Xiaolin; Yang, Zhi; Wang, Tao; Jiang, Wenkai; Yang, Chao; Wang, Shuai; Hu, Nantao; Wei, Hao; Zhang, Yafei

    2016-10-10

    Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH) 2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm 3 at 0.5 A/cm 3 ) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH) 2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm 3 (at 0.25 A/cm 3 ) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm 3 , which is much higher than that of most thin film lithium batteries (1-10 mWh/cm 3 ). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.

  15. SERS- and Electrochemically Active 3D Plasmonic Liquid Marbles for Molecular-Level Spectroelectrochemical Investigation of Microliter Reactions.

    Science.gov (United States)

    Koh, Charlynn Sher Lin; Lee, Hiang Kwee; Phan-Quang, Gia Chuong; Han, Xuemei; Lee, Mian Rong; Yang, Zhe; Ling, Xing Yi

    2017-07-17

    Liquid marbles are emergent microreactors owing to their isolated environment and the flexibility of materials used. Plasmonic liquid marbles (PLMs) are demonstrated as the smallest spectroelectrochemical microliter-scale reactor for concurrent spectro- and electrochemical analyses. The three-dimensional Ag shell of PLMs are exploited as a bifunctional surface-enhanced Raman scattering (SERS) platform and working electrode for redox process modulation. The combination of SERS and electrochemistry (EC) capabilities enables in situ molecular read-out of transient electrochemical species, and elucidate the potential-dependent and multi-step reaction dynamics. The 3D configuration of our PLM-based EC-SERS system exhibits 2-fold and 10-fold superior electrochemical and SERS performance than conventional 2D platforms. The rich molecular-level electrochemical insights and excellent EC-SERS capabilities offered by our 3D spectroelectrochemical system are pertinent in charge transfer processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  17. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  18. High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties

    International Nuclear Information System (INIS)

    Li, Lingjun; Xu, Ming; Chen, Zhaoyong; Zhou, Xiang; Zhang, Qiaobao; Zhu, Huali; Wu, Chun; Zhang, Kaili

    2015-01-01

    The mechanisms and effects of three typical chelating agents, namely glucose, citric acid and sucrose on the sol-gel synthesis process, electrochemical degradation and structural evolution of 0.5Li 2 MnO 3 ·0.5LiNi 0.5 Co 0.2 Mn 0.3 O 2 (LLMO) materials are systematically compared for the first time. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis indicate that the sample synthesized from sucrose owns well structure, homogenous distribution, low Ni 3+ concentration and good surface structural stability during cycling, respectively. Electrochemical tests further prove that the LLMO material obtained from sucrose maintains 258.4 mAh g −1 with 94.8% capacity retention after 100 cycles at 0.2 C. The superior electrochemical performance can be ascribed to the exceptional complexing mechanism of sucrose, compared to those of the glucose and citric acid. Namely, one mole sucrose can be hydrolyzed into two different monosaccharides and further chelates three M (Li, Ni, Co and Mn) ions to form a more uniform ion-chelated matrix during sol-gel process. This discovery is an important step towards understanding the selection criterion of chelating agents for sol-gel method, that chelating agent with excellent complexing capability is beneficial to the distribution, structural stability and electrochemical properties of advanced lithium-rich layered materials

  19. Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors.

    Science.gov (United States)

    Xing, Ling-Li; Huang, Ke-Jing; Fang, Lin-Xia

    2016-11-01

    Tungsten oxide (WO 3 ), which was originally poor in capacitive performance, is made into an excellent electrode material for supercapacitors by dispersing it on graphene (Gr). The obtained Gr-WO 3 hybrids are characterized by X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy and scanning electron microscopy techniques, and evaluated as electrode materials for high-performance supercapacitors by cyclic voltammetry, galvanostatic charge-discharge curves and electrochemical impedance spectroscopy. A great improvement in specific capacitance is achieved with the present hybrids, from 255 F g -1 for WO 3 nanoparticles to 580 F g -1 for Gr-WO 3 hybrids (scanned at 1 A g -1 in 2 M KOH over a potential window of 0 to 0.45 V). The Gr-WO 3 hybrid exhibits an excellent high rate capability and good cycling stability with more than 92% capacitance retention over 1000 cycles at a current density of 5 A g -1 . The enhancement in supercapacitor performance of Gr-WO 3 is not only attributed to its unique nanostructure with large specific surface area, but also its excellent electro-conductivity, which facilitates efficient charge transport and promotes electrolyte diffusion. As a whole, this work indicates that Gr-WO 3 hybrids are a promising electrode material for high-performance supercapacitors.

  20. Fast and low-cost synthesis of 1D ZnO–TiO{sub 2} core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Simelys, E-mail: simelys.hernandez@iit.it [Center for Space Human Robotics (IIT-POLITO), Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Cauda, Valentina; Hidalgo, Diana; Farías Rivera, Vivian; Manfredi, Diego; Chiodoni, Angelica [Center for Space Human Robotics (IIT-POLITO), Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Pirri, Fabrizio C. [Center for Space Human Robotics (IIT-POLITO), Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-12-05

    Highlights: • Simple, fast and low-cost synthesis of 1-D ZnO–TiO{sub 2} core–shell heterostructures. • ZnO NWs completely covered with a shell of anatase TiO{sub 2} nanocrystals in only 3 min. • The TiO{sub 2} shell thickness depends on the impregnation time in the titania synthesis bath. • 2-fold enhancement of photo-electrochemical activity and better stability of ZnONWs. • Forty- times higher photocurrent densities than TiO{sub 2} nanoparticles film. - Abstract: We report on a simple, fast and low-cost synthesis procedure for the complete covering of zinc oxide (ZnO) 1D nanostructures with a protective shell of titania (TiO{sub 2}) nanoparticles. ZnO nanowires (NWs) were grown on transparent F-doped Tin Oxide (FTO) conductive layer on glass by seed layer-assisted hydrothermal route in aqueous media, while the titania shell was deposited on the ZnO NWs through an in situ non-acid sol–gel synthesis. The nanowires impregnation time in the titania sol was varied from 3 to 10 min. The resulting core–shell ZnO–TiO{sub 2} structures were characterized by different techniques, including Scanning and Transmission Electron Microscopy, X-ray diffraction and UV–Vis spectroscopy, confirming the uniform coverage of the wurzite ZnO NWs with anatase TiO{sub 2} nanoparticles (NPs), with a shell thickness dependent on the impregnation time in the titania synthesis bath. Photoelectrochemical (PEC) tests of the ZnO–TiO{sub 2} material, used as anode for the water splitting reaction, confirmed the formation of the heterojunction by the enhanced photocurrent densities, reaching values of about 0.7 mA/cm{sup 2} under simulated solar light (AM1.5G, 100mW/cm{sup 2}). The core–shell photo-anodes performance was about twice and forty- times better than the ones with a film of equivalent thickness of bare ZnO NWs and TiO{sub 2} NPs, respectively. Steady-state measures of the photocurrent over the time and FESEM analysis confirmed that this procedure could be

  1. Electrochemical synthesis of nanosized TiO{sub 2} nanopowder involving choline chloride based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Anicai, Liana, E-mail: lanicai@itcnet.ro [POLITEHNICA University of Bucharest, Center of Surface Science and Nanotechnology, Splaiul Independentei 313, Bucharest, 060042 (Romania); Petica, Aurora [Leather and Footwear Research Institute (ICPI), Ion Minulescu 93, Bucharest, 031215 (Romania); Patroi, Delia; Marinescu, Virgil; Prioteasa, Paula [INCDIE ICPE-Advanced Research, Splaiul Unirii 313, Bucharest (Romania); Costovici, Stefania [POLITEHNICA University of Bucharest, Center of Surface Science and Nanotechnology, Splaiul Independentei 313, Bucharest, 060042 (Romania)

    2015-09-15

    Highlights: • TiO{sub 2} nanopowder electrochemically prepared using choline chloride based ionic liquids. • The new proposed method allowed high anodic synthesis efficiencies of minimum 92%. • High surface area of the electrochemically synthesized titania nanopowders. • Enhanced photocatalytic activity. - Abstract: The paper presents some experimental results regarding the electrochemical synthesis of TiO{sub 2} nanopowders through anodic dissolution of Ti metal in choline chloride based eutectic mixtures (DES). A detailed characterization of the obtained titania has been performed, using various techniques, including XRD, Raman spectroscopy, XPS, SEM associated with EDX analysis, BET and UV–vis diffuse reflectance spectra. The anodic behavior of Ti electrode in DES has been also investigated. The photoreactivity of the synthesized materials was evaluated for the degradation of Orange II dye under UV (λ = 365 nm) and visible light irradiation. An anodic synthesis efficiency of minimum 92% has been determined. The as-synthesized TiO{sub 2} showed amorphous structure and a calcination post-treatment at temperatures between 400 and 600 °C yielded anatase. The anodically obtained nanocrystalline oxides have crystallite sizes of 8–18 nm, a high surface area and enhanced photocatalytic effect.

  2. Effects of carbon additives on the performance of negative electrode of lead-carbon battery

    International Nuclear Information System (INIS)

    Zou, Xianping; Kang, Zongxuan; Shu, Dong; Liao, Yuqing; Gong, Yibin; He, Chun; Hao, Junnan; Zhong, Yayun

    2015-01-01

    Highlights: • The negative electrode sheets are prepared by simulating manufacture condition of negative plates. • The effect of carbon additives on negative electrode sheets is studied by electrochemical method. • Carbon additives in NAM enhance electrochemical properties of the negative sheets. • The negative sheets with 0.5 wt% carbon additive exhibit better electrochemical performance. • The charge-discharge mechanism is discussed in detail according to the experimental results. - Abstract: In this study, carbon additives such as activated carbon (AC) and carbon black (CB) are introduced to the negative electrode to improve its electrochemical performance, the negative electrode sheets are prepared by simulating the negative plate manufacturing process of lead-acid battery, the types and contents of carbon additives in the negative electrode sheets are investigated in detail for the application of lead-carbon battery. The electrochemical performance of negative electrode sheets are measured by chronopotentiometry, galvanostatic charge-discharge and electrochemical impedance spectroscopy, the crystal structure and morphology are characterized by X-ray diffraction and scanning electron microscopy, respectively. The experimental results indicate that the appropriate addition of AC or CB can enhance the discharge capacity and prolong the cycle life of negative electrode sheets under high-rate partial-state-of-charge conditions, AC additive exerts more obvious effect than CB additive, the optimum contents for the best electrochemical performance of the negative electrode sheets are determined as 0.5wt% for both AC and CB. The reaction mechanism of the electrochemical process is also discussed in this paper, the appropriate addition of AC or CB in negative electrode can promote the conversion of PbSO 4 to Pb, suppress the sulfation of negative electrode sheets and reduce the electrochemical reaction resistance

  3. Defect physics vis-à-vis electrochemical performance in layered mixed-metal oxide cathode materials

    Science.gov (United States)

    Hoang, Khang; Johannes, Michelle

    Layered mixed-metal oxides with different compositions of (Ni,Co,Mn) [NCM] or (Ni,Co,Al) [NCA] have been used in commercial lithium-ion batteries. Yet their defect physics and chemistry is still not well understood, despite having important implications for the electrochemical performance. In this presentation, we report a hybrid density functional study of intrinsic point defects in the compositions LiNi1/3Co1/3Mn1/3O2 (NCM1/3) and LiNi1/3Co1/3Al1/3O2 (NCA1/3) which can also be regarded as model compounds for NCM and NCA. We will discuss defect landscapes in NCM1/3 and NCA1/3 under relevant synthesis conditions with a focus on the formation of metal antisite defects and its implications on the electrochemical properties and ultimately the design of NCM and NCA cathode materials.

  4. Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization

    International Nuclear Information System (INIS)

    Zhou, Dong; Fan, Li-Zhen; Fan, Huanhuan; Shi, Qiao

    2013-01-01

    Cross-linked trimethylolpropane trimethylacrylate-based gel polymer electrolytes (GPE) were prepared by in situ thermal polymerization. The ionic conductivity of the GPEs are >10 −3 S cm −1 at 25 °C, and continuously increased with the increase of liquid electrolyte content. The GPEs have excellent electrochemical stability up to 5.0 V versus Li/Li + . The LiCoO 2 |TMPTMA-based GPE|graphite cells exhibit an initial discharge capacity of 129 mAh g −1 at the 0.2C, and good cycling stability with around 83% capacity retention after 100 cycles. Both the simple fabricating process of polymer cell and outstanding electrochemical performance of such new GPE make it potentially one of the most promising electrolyte materials for next generation lithium ion batteries

  5. Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection.

    Science.gov (United States)

    Ferry, Barbara; Gifu, Elena-Patricia; Sandu, Ioana; Denoroy, Luc; Parrot, Sandrine

    2014-03-01

    Electrochemical methods are very often used to detect catecholamine and indolamine neurotransmitters separated by conventional reverse-phase high performance liquid chromatography (HPLC). The present paper presents the development of a chromatographic method to detect monoamines present in low-volume brain dialysis samples using a capillary column filled with sub-2μm particles. Several parameters (repeatability, linearity, accuracy, limit of detection) for this new ultrahigh performance liquid chromatography (UHPLC) method with electrochemical detection were examined after optimization of the analytical conditions. Noradrenaline, adrenaline, serotonin, dopamine and its metabolite 3-methoxytyramine were separated in 1μL of injected sample volume; they were detected above concentrations of 0.5-1nmol/L, with 2.1-9.5% accuracy and intra-assay repeatability equal to or less than 6%. The final method was applied to very low volume dialysates from rat brain containing monoamine traces. The study demonstrates that capillary UHPLC with electrochemical detection is suitable for monitoring dialysate monoamines collected at high sampling rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The preparation and electrochemical performances of LiFePO4-multiwalled nanotubes composite cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Feng Yan

    2010-01-01

    LiFePO 4 -MWCNTs (multi-walled carbon nanotubes) composite cathode materials were prepared by mixing LiFePO 4 and MWCNTs in ethanol followed by heat-treatment at 500 deg. C for 5 h. The structural, morphology and electrochemical performances of LiFePO 4 -MWCNTs composite materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge-discharge cycle tests, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results indicated that MWCNTs adding improved the electronic conductivity, the discharge capacity, cycle stability and lithium ion diffusion kinetics of LiFePO 4 , but MWCNTs adding did not charge the orthorhombic olivine-type structure of LiFePO 4 . In all these prepared LiFePO 4 with x wt.% MWCNTs (x = 4, 7, 10) composites, 7 wt.% MWCNTs adding composite cathode shows the best electrochemical performance, which gets an initial discharge capacity of 152.7 mAh g -1 at 0.18 C discharge rates with capacity retention ratio of 97.77% after 100 cycles.

  7. Hydrothermal Synthesis and Electrochemical Performance of Manganese Oxide (Na-OMS-2) Nanorods.

    Science.gov (United States)

    Zhang, Qing; Xu, Shan; Zheng, Hao; Luo, Zhaohui; Liu, Kang; Wang, Wei; Li, Guohua; Wang, Shiquan; Liu, Jianwen; Feng, Chuanqi

    2017-02-01

    Sodium octahedral molecular sieve nanorods (Na-OMS-2) were prepared through a facile hydrothermal method. The effects of reaction temperature and duration on particle sizes of the products were investigated. The electrochemical performance of samples was studied by constant current charge–discharge tests as cathode material for Li-ion batteries (LIBs). The initial discharge capacity of Na-OMS-2 is 123.4 mAh g−1 and the capacity retention was 123.9 mAh g−1 after 100 cycles. The result demonstrates that Na-OMS-2 cathode material behaves a good cycling stability.

  8. Electrochemical techniques for practical evaluation of corrosion inhibitor effectiveness. Performance of cerium nitrate as corrosion inhibitor for AA2024T3 alloy

    International Nuclear Information System (INIS)

    Rosero-Navarro, N.C.; Curioni, M.; Bingham, R.; Duran, A.; Aparicio, M.; Cottis, R.A.; Thompson, G.E.

    2010-01-01

    In this work, a split-cell technique and image-assisted electrochemical noise analysis, which provide minimal perturbation of the freely corroding system and good time resolution, are proposed as a tool for simultaneous investigation of the corrosion inhibition mechanism and assessment of performance. The results obtained are compared with results from traditional electrochemical impedance spectroscopy, disclosing the advantages of these techniques in the evaluation of inhibitor performance. Specific attention is also given to the investigation of corrosion inhibition by cerium nitrate.

  9. High voltage electrophoretic deposition for electrochemical energy storage and other applications

    Science.gov (United States)

    Santhanagopalan, Sunand

    High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to

  10. Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings

    International Nuclear Information System (INIS)

    Meroufel, A.; Deslouis, C.; Touzain, S.

    2008-01-01

    In this work, hydrochloride polyaniline (PANI-Cl) powder was incorporated as a conductive pigment into powder zinc-rich primer (ZRP) formulations in order to enhance the electronic conduction paths between zinc particles inside the coating and the steel substrate (i.e. percolation). Coatings were applied onto steel substrates and immersed in a 3% NaCl solution at ambient temperature. The protective properties and electrochemical behaviour of coatings were investigated by monitoring the free corrosion potential versus time and by using EIS. It was found that corrosion potential remains cathodic and constant for a long time up to 100 days of immersion. From EIS results, it was shown that the coatings exhibit larger impedance values than those observed with liquid or other zinc-rich powder formulations containing carbon black. From Raman spectroscopy results, it may be proposed that zinc particles in contact with PANI-Cl pigments were passivated. Other zinc particles remain still active which ensures the cathodic protection of the substrate. Moreover, coatings exhibit good barrier properties

  11. SnO_2 Nanoparticles Anchored on 2D V_2O_5 Nanosheets with Enhanced Lithium-Storage Performances

    International Nuclear Information System (INIS)

    Yang, Gongzheng; Song, Huawei; Wu, Mingmei; Wang, Chengxin

    2016-01-01

    Developing two dimensional (2D) graphene-based nanomaterials with surface-to-surface architectures has been an important strategy for achieving high-performance lithium ion electrodes. However, almost all of them involve multistep procedures and expensive precursors. This paper reports a novel 2D nanocomposites composed of ultrafine SnO_2 nanoparticles anchored on V_2O_5 nanosheets via a one-pot hydrothermal method, which exhibit high reversible capacities and rate stabilities. The enhanced electrochemical performances compared to pure SnO_2 nanoparticles have been attributed to the effective prevention of self-agglomerations of the pulverized nanograins upon cycling. We speculate that the 2D V_2O_5 nanosheets with layered structures maybe a good substitute for the graphene nanosheets.

  12. Electrochemical remediation technologies for soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Doering, F. [Electrochemical Processes I.I. c. Valley Forge, PA (United States)]|[P2 Soil Remediation, Inc. Stuttgart (Germany); Doering, N. [P2 Soil Remediation, Inc. Stuttgart (Germany)

    2001-07-01

    In Direct Current Technologies (DCTs) a direct current electricity is passed between at least two subsurface electrodes in order to effect the remediation of the groundwater and/or the soil. DCTs in line with the U.S.-terminology comprise of the ElectroChemical Remediation Technologies (ECRTs), and GeoKinetics. The primary distinction between ECRTs and ElectroKinetics are the power input, and the mode of operation, which are electrochemical reactions vs. mass transport. ECRTs combine phenomena of colloid (surface) electrochemistry with the phenomena of Induced Polarization (IP). This report focuses on ECRTs, comprising of the ElectroChemical GeoOxidation (ECGO) for the mineralization of organic pollutants to finally carbon dioxide and water, and Induced Complexation (IC), related to the electrochemical conversion of metals enhancing the mobilization and precipitation of heavy metals on both electrodes. Both technologies are based on reduction-oxidation (redox) reactions at the scale of the individual soil particles. (orig.)

  13. Evolution of electrochemical performance in Li3V2(PO4)3/C composites caused by cation incorporation

    International Nuclear Information System (INIS)

    Zhang, Lu-Lu; Liang, Gan; Peng, Gang; Jiang, Yan; Fang, Hui; Huang, Yun-Hui; Croft, Mark C.; Ignatov, Alexander

    2013-01-01

    Graphical abstract: Four electrochemically active cations (M = Fe, Co, Ni, Mn) are doped into Li 3 V 2 (PO 4 ) 3 . M-incorporation does not change the monoclinic structure of Li 3 V 2 (PO 4 ) 3 , but forms some solid solutions. Minor LiMPO 4 impurity phases can be formed in the LVMP/C samples. Moreover, FePO 4 also exists as impurity in the LVFeP/C sample. Compared with pristine LVP/C, LVNiP/C electrode exhibits the lowest capacity, resulting from the decreased electronic conductivity and the lowest Li-ion diffusion coefficient, whereas LVFeP/C shows the best electrochemical performance. -- Highlights: • Cation-incorporated Li 3 V 2 (PO 4 ) 3 /C have been systematically investigated. • Cation incorporation in Li 3 V 2 (PO 4 ) 3 does not change the monoclinic structure but form solid solution. • Fe-incorporation shows the best electrochemical performance whereas Ni-incorporation shows the poorest performance. • A clear profile of cation incorporation with Fe, Co, Ni, Mn ions in Li 3 V 2 (PO 4 ) 3 /C is obtained. -- Abstract: Li 3 V 2 (PO 4 ) 3 /C (LVP/C) composites incorporated by a series of electrochemically active cations (Fe, Co, Ni, Mn) have been successfully prepared by a conventional solid-state reaction. M-incorporation (M = Fe, Co, Ni, Mn) in Li 3 V 2 (PO 4 ) 3 does not change the monoclinic structure. Analyzed with X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and high-resolution transmission electron microscopy, we find that the valence is between +2.67 and +3 for Fe, and is +2 for Co, Ni and Mn. M-doped LVP and LiMPO 4 phases coexist in the incorporated LVP/C composites. Compared with pristine LVP/C, Fe-incorporated LVP/C shows the best electrochemical performance with the highest initial discharge capacity of 131.4 mAh g −1 at 0.1 C between 2.5 and 4.3 V. The Fe-incorporated LVP/C sample also exhibits excellent rate capability with an average capacity of 122.4 mAh g −1 at 1 C and 93.5 mAh g −1 at 5 C, resulting from the

  14. Study on Electrochemical Performance of Carbonnanotubes/Fey 04 Composite Electrode Material

    Directory of Open Access Journals (Sweden)

    WANG Fang--yong

    2017-02-01

    Full Text Available For single super capacitor materials,each material has its own unique advantages and defects. In this paper, the synthesis of complex multi walled carbon nanotubes with Fe304 nanoparticles by simple hydrothermal method. Composite performance for Fe3 OQ nanoparticles adsorbed on carbon nano tube wall composed of reticular structure morphology. Synergy of two component,provides the binary nanometer compound larger specific capacity, excellent properties and good cycle stability. The experimental results proved that the improvement effects of CNT carbon materials on the electrochemical properties of pseudocapacitive electrode material,and CNT/Fe3 OQ nano- composites applied to supercapacitor electrode material.

  15. Nanorods of a new metal-biomolecule coordination polymer showing novel bidirectional electrocatalytic activity and excellent performance in electrochemical sensing.

    Science.gov (United States)

    Yang, Jiao; Zhou, Bo; Yao, Jie; Jiang, Xiao-Qing

    2015-05-15

    Metal organic coordination polymers (CPs), as most attractive multifunctional materials, have been studied extensively in many fields. However, metal-biomolecule CPs and CPs' electrochemical properties and applications were studied much less. We focus on this topic aiming at electrochemical biosensors with excellent performance and high biocompatibility. A new nanoscaled metal-biomolecule CP, Mn-tyr, containing manganese and tyrosine, was synthesized hydrothermally and characterized by various techniques, including XRD, TEM, EDS, EDX mapping, elemental analysis, XPS, and IR. Electrode modified with Mn-tyr showed novel bidirectional electrocatalytic ability toward both reduction and oxidation of H2O2, which might be due to Mn. With the assistance of CNTs, the sensing performance of Mn-tyr/CNTs/GCE was improved to a much higher level, with high sensitivity of 543 mA mol(-1) L cm(-2) in linear range of 1.00×10(-6)-1.02×10(-4) mol L(-1), and detection limit of 3.8×10(-7) mol L(-1). Mn-tyr/CNTs/GCE also showed fast response, high selectivity, high steadiness and reproducibility. The excellent performance implies that the metal-biomolecule CPs are promising candidates for using in enzyme-free electrochemical biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance

    Science.gov (United States)

    Aghazadeh, Mustafa; Maragheh, Mohammad Ghannadi; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-02-01

    Cathodic electrodeposition of MnO2 from a nitrate solution, via pulsed base (OH-) electrogeneration was performed for the first time. The deposition experiments were performed in a pulse current mode in typical on-times and off-times (i.e. ton = 1 s and toff = 1 s) with a peak current density of 2 mA cm-2 (Ia = 2 mA cm-2). The structural characterizations conducted by XRD and FTIR techniques revealed that the prepared MnO2 is composed of both α and γ phases. Morphological observation by SEM and TEM showed that the prepared MnO2 is made up of nanobelts with uniform shapes (an average diameter and length of 50 nm and 1 μm, respectively). Further electrochemical measurements by cyclic voltammetry and charge-discharge techniques revealed that the prepared MnO2 nanostructures have excellent capacitive behaviors, like a specific capacitance of 235.5 F g-1 and capacity retention of 91.3% after 1000 cycling at the scan rate of 25 mV s-1.

  17. Performance evaluation of CNT/polypyrrole/MnO{sub 2} composite electrodes for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Sivakkumar, S.R. [Department of Applied Chemistry and Biotechnology, Hanbat National University, San 16-1, Dukmyung-Dong, Yusung-Gu, Daejeon 305-719 (Korea, Republic of); Ko, Jang Myoun [Department of Applied Chemistry and Biotechnology, Hanbat National University, San 16-1, Dukmyung-Dong, Yusung-Gu, Daejeon 305-719 (Korea, Republic of)]. E-mail: jmko@hanbat.ac.kr; Kim, Dong Young [Optoelectronic Materials Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Kim, B.C. [ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Wallace, G.G. [ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)

    2007-09-15

    A ternary composite of CNT/polypyrrole/hydrous MnO{sub 2} is prepared by in situ chemical method and its electrochemical performance is evaluated by using cyclic voltammetry (CV), impedance measurement and constant-current charge/discharge cycling techniques. For comparative purpose, binary composites such as CNT/hydrous MnO{sub 2} and polypyrrole/hydrous MnO{sub 2} are prepared and also investigated for their physical and electrochemical performances. The specific capacitance (SC) values of the ternary composite, CNT/hydrous MnO{sub 2} and polypyrrole/hydrous MnO{sub 2} binary composites estimated by CV technique in 1.0 M Na{sub 2}SO{sub 4} electrolyte are 281, 150 and 35 F g{sup -1} at 20 mV s{sup -1} and 209, 75 and 7 F g{sup -1} at 200 mV s{sup -1}, respectively. The electrochemical stability of ternary composite electrode is investigated by switching the electrode back and forth for 10,000 times between 0.1 and 0.9 V versus Ag/AgCl at 100 mV s{sup -1}. The electrode exhibits good cycling stability, retaining up to 88% of its initial charge at 10,000th cycle. A full cell assembled with the ternary composite electrodes shows a SC value of 149 F g{sup -1} at a current loading of 1.0 mA cm{sup -2} during initial cycling, which decreased drastically to a value of 35 F g{sup -1} at 2000th cycle. Analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmet-Teller (BET) surface area measurement and inductively coupled plasma-atomic emission spectrometry (ICP-AES) are also used to characterize the composite materials.

  18. Facile synthesis of Co3O4 nanowires grown on hollow NiO microspheres with superior electrochemical performance

    International Nuclear Information System (INIS)

    Fan, Meiqing; Ren, Bo; Yu, Lei; Song, Dalei; Liu, Qi; Liu, Jingyuan; Wang, Jun; Jing, Xiaoyan; Liu, Lianhe

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • The NiO hollow spheres were decorated by Co 3 O 4 nanowires. • The NiO hollow spheres were comprised of many NiO particles. • The Co 3 O 4 nanowires were composed of nanoparticles. • The NiO/Co 3 O 4 core/shell nanocomposites have good electrochemical properties. - Abstract: The NiO/Co 3 O 4 core/shell composites as a promising supercapacitor material have been fabricated by facile hydrothermal process. The structure and morphology of the NiO/Co 3 O 4 core/shell composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicated that the NiO hollow spheres were decorated by Co 3 O 4 nanowires, and the nanowires were composed of nanoparticles. Electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. The results suggested that the NiO/Co 3 O 4 core/shell composites had good electrochemical reversibility and displayed superior capacitive performance with large capacitance (510 F g −1 ). Moreover, NiO/Co 3 O 4 core/shell composites showed excellent cyclic performanceafter 1000 cycles

  19. Enhanced photocatalytic performance of BiVO_4 in aqueous AgNO_3 solution under visible light irradiation

    International Nuclear Information System (INIS)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-01-01

    Graphical abstract: Ag"+ ions enhanced photocatalytic activity of BiVO_4 under visible light irradiation. - Highlights: • The presence of Ag"+ ions enhanced the photodegradation activity of BiVO_4. • Photoreduction of Ag deposited on the BiVO_4 surface was obtained. • Luminescence and electrochemical results elucidated the photocatalytic mechanism. • Holes and oxygen radicals were the main reactive species generated by BiVO_4/Ag"+. • Used BiVO_4/Ag"+ exhibited photocatalytic antibacterial activity toward E. coli. - Abstract: Monoclinic-phase bismuth vanadate (BiVO_4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag"+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO_3 to BiVO_4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO_4/Ag"+. Superior photocatalytic performance was obtained when BiVO_4 was mixed with 0.01%(w/v) AgNO_3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO_4 or AgNO_3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron–hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag"+ and the formation of a BiVO_4/Ag heterojunction. The synergic effect between BiVO_4 and Ag"+ was discovered to be unique. BiVO_4/Ag"+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO_4 and a R6G solution to detect Ag"+ ions in water was discovered.

  20. Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection.

    Science.gov (United States)

    Gevaerd, Ava; Blaskievicz, Sirlon F; Zarbin, Aldo J G; Orth, Elisa S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2018-07-30

    The modification of electrode surfaces has been the target of study for many researchers in order to improve the analytical performance of electrochemical sensors. Herein, the use of an imidazole-functionalized graphene oxide (GO-IMZ) as an artificial enzymatic active site for voltammetric determination of progesterone (P4) is described for the first time. The morphology and electrochemical performance of electrode modified with GO-IMZ were characterized by scanning electron microscopy and cyclic voltammetry, respectively. Under optimized conditions, the proposed sensor showed a synergistic effect of the GO sheets and the imidazole groups anchored on its backbone, which promoted a significant enhancement on electrochemical reduction of P4. Figures of merits such as linear dynamic response for P4 concentration ranging from 0.22 to 14.0 μmol L -1 , limit of detection of 68 nmol L -1 and limit of quantification and 210 nmol L -1 were found. In addition, presented a higher sensitivity, 426 nA L µmol -1 , when compared to the unmodified electrode. Overall, the proposed device showed to be a promising platform for a simple, rapid, and direct analysis of progesterone. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Surface-reconstructed Cu Electrode via a Facile Electrochemical Anodization-Reduction Process for Low Overpotential CO 2 reduction

    KAUST Repository

    Min, Shixiong

    2017-03-21

    A high-surface-area Cu electrode, fabricated by a simple electrochemical anodization-reduction method, exhibits high activity and selectivity for CO2 reduction at low overpotential in 0.1 M KHCO3 solution. A faradaic efficiency of 37% for HCOOH and 27% for CO production was achieved with the current density of 1.5 mA cm-2 at −0.64 V vs. RHE, much higher than that of polycrystalline Cu. The enhanced catalytic performance is a result of the formation of the high electrochemical active surface area and high density of preferred low-index facets.

  2. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery

    Science.gov (United States)

    Kumar, S.; Jayanti, S.

    2017-08-01

    In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.

  3. Effect of binder properties on electrochemical performance for silicon-graphite anode: Method and application of binder screening

    International Nuclear Information System (INIS)

    Yim, Taeeun; Choi, Soo Jung; Jo, Yong Nam; Kim, Tae-Hyun; Kim, Ki Jae; Jeong, Goojin; Kim, Young-Jun

    2014-01-01

    Highlights: • Binder properties are systematically characterized to estimate their suitability. • Interpretation of binder properties in connection with binding affinity, electrode properties, and degree of phase separation in slurry. • According to the screening results, hybridization of poly(acrylic acid) and poly(amide imide) is recommended. • The modified binder showed improved cycle performance based on enhanced binder properties. - Abstract: With increasing demand for lithium-ion batteries (LIBs) with high energy density, silicon-based negative electrode material has attracted much interest because of its high specific capacity. Practical utilization of Si remains unattainable, however, owing to severe volume expansion in the electrode, resulting in a loss of the electrical Si network, which is directly connected to drastic capacity fading of the cell. Therefore, there have been systematic studies on the characterization of fundamental binder properties to estimate the suitability of various binder materials. The binder properties are subdivided into mechanical and adhesion characteristics, electrode properties (rigidity and recovery), and phase separation behavior of slurry to correlate with the electrochemical performance and practical acceptance of candidate materials. Systematic screening showed that hybridization of poly(acrylic acid) (PAA) and poly(amide imide) (PAI) could complement each other's properties and the hybridized PAA–PAI was synthesized by a one-step, acid-catalyzed reaction. The PAA–PAI hybrid showed enhancement in overall properties as a result of co-polymerization and exhibited remarkable cycling performance after 300 cycles. Based on these results, it can be concluded that an understanding of binder characteristics provides useful insight into the search for a more efficient binder material, and fine tuning of fundamental binder properties through screening will be advantageous to the construction of more efficient LIB

  4. Enhanced host–guest electrochemical recognition of herbicide MCPA using a b-cyclodextrin carbon nanotube sensor

    OpenAIRE

    Rahemi, V.; Vandamme, J.J.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J.

    2012-01-01

    An electrochemical sensor for the determination of the chlorophenoxy herbicide MCPA has been developed, based on a combination of multi-walled carbon nanotubes with incorporated b-cyclodextrin and a polyaniline film modified glassy carbon electrode. The proposed molecular host–guest recogni-tion based sensor has a high electrochemical sensitivity for the determination of MCPA. The electrochemical behaviour of MCPA at the chemically modified electrode was investigated in detail by cyclic volta...

  5. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  6. Effect of Aging on the Electrochemical Performance of LSM-YSZ Cathodes

    DEFF Research Database (Denmark)

    Baqué, L. C.; Jørgensen, Peter Stanley; Zhang, Wei

    2015-01-01

    resistance shows no clear tendency with aging time, while the ionic conductivity decreases up to ∼79%. Accordingly, the electrochemically active thickness contracts from 60–135 μm to 45–60 μm. The changes observed in the cathode transport and electrochemical properties are mostly explained by the evolution......Investigations of degradation mechanisms of solid oxide fuel cells are crucial for achieving a widespread commercialization of the technology. In this work, electrochemical impedance spectroscopy (EIS) was applied for studying the aging effect on LSM-YSZ cathodes exposed to humidified air at 900°C...... for up to 3000 h. EIS spectra were fitted by a transmission line model for estimating relevant parameters associated with the LSM/YSZ charge transfer reaction and the oxide ion conduction through the YSZ network. For the reference non-aged sample, the ionic conductivity values are the expected ones...

  7. Applications of Ionic Liquids in Electrochemical Sensors and Biosensors

    Directory of Open Access Journals (Sweden)

    Virendra V. Singh

    2012-01-01

    Full Text Available Ionic liquids (ILs are salt that exist in the liquid phase at and around 298 K and are comprised of a bulky, asymmetric organic cation and the anion usually inorganic ion but some ILs also with organic anion. ILs have attracted much attention as a replacement for traditional organic solvents as they possess many attractive properties. Among these properties, intrinsic ion conductivity, low volatility, high chemical and thermal stability, low combustibility, and wide electrochemical windows are few. Due to negligible or nonzero volatility of these solvents, they are considered “greener” for the environment as they do not evaporate like volatile organic compounds (VOCs. ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, lubricants, plasticizers, solvent, lithium batteries, solvents to manufacture nanomaterials, extraction, gas absorption agents, and so forth. Besides a brief discussion of the introduction, history, and properties of ILs the major purpose of this review paper is to provide an overview on the advantages of ILs for the synthesis of conducting polymer and nanoparticle when compared to conventional media and also to focus on the electrochemical sensors and biosensors based on IL/composite modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed.

  8. Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating

    International Nuclear Information System (INIS)

    Duan, Jianguo; Wu, Ceng; Cao, Yanbing; Du, Ke; Peng, Zhongdong; Hu, Guorong

    2016-01-01

    Highlights: • LiMnPO 4 was introduced to modify Ni-rich cathode materials. • LiMnPO 4 uniformly coated NCA composite has been constructed successfully. • Olivine structured skin restrains the formation of residues on NCA during cycling. • LiMnPO 4 improves the structural and thermal stability of NCA@LMP. - Abtract: LiNi 0.80 Co 0.15 Al 0.05 O 2 has been widely pursued as an alternative to LiCoO 2 cathode materials for lithium ion batteries because of its high capacity and acceptable cycling property. However, that NCA can react with commercialized electrolyte during cycling restrains its wide use. Here, olivine structured LiMnPO 4 has been introduced to modify the surface of NCA by a sol-gel method. Characterizations from structure, morphology and composition analysis technologies demonstrate that a LiMnPO 4 layer has been uniformly coated on NCA particles. The electrochemical performance and thermo stability of modified samples are characterized by electrochemical tests, XRD and metallic nail penetration tests. The olivine structured skin, which provides structural and thermal stability, is used to encapsulate the high powered core via using the effective coating technique. The modified material displays a high discharge capacity of 211.0 mAh g −1 at 0.2 C and better rate performance and promoted cycling stability than the uncoated control sample. Furthermore, the thermal stability of coated sample in the delithiated state is upgraded to the pristine powders remarkably.

  9. Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing; Zhuo, Ying, E-mail: yingzhuo@swu.edu.cn; Chai, Yaqin; Yu, Yanqing; Liao, Ni; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn

    2013-08-06

    Graphical abstract: -- Highlights: •A reusable electrochemical immunosensor is developed for thyroxine detection. •Cascade catalysis as signal amplified enhancer. •Multi-functionalized magnetic graphene sphere as signal tag. •The novel strategy has the advantages of high sensitivity, good selectivity and reproducibility. -- Abstract: This paper constructed a reusable electrochemical immunosensor for the detection of thyroxine at an ultralow concentration using cascade catalysis of cytochrome c (Cyt c) and glucose oxidase (GOx) as signal amplified enhancer. It is worth pointing out that numerous Cyt c and GOx were firstly carried onto the double-stranded DNA polymers based on hybridization chain reaction (HCR), and then the amplified responses could be achieved by cascade catalysis of Cyt c and GOx recycling with the help of glucose. Moreover, multi-functionalized magnetic graphene sphere was synthesized and used as signal tag, which not only exhibited good mechanical properties, large surface area and an excellent electron transfer rate of graphene, but also possessed excellent redox activity and desirable magnetic property. With a sandwich-type immunoreaction, the proposed cascade catalysis amplification strategy could greatly enhance the sensitivity for the detection of thyroxine. Under the optimal conditions, the immunosensor showed a wide linear ranged from 0.05 pg mL{sup −1} to 5 ng mL{sup −1} and a low detection limit down to 15 fg mL{sup −1}. Importantly, the proposed method offers promise for reproducible and cost-effective analysis of biological samples.

  10. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    Science.gov (United States)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  11. A Ni-P@NiCo LDH core-shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors.

    Science.gov (United States)

    Xing, Jiale; Du, Jing; Zhang, Xuan; Shao, Yubo; Zhang, Ting; Xu, Cailing

    2017-08-14

    Recently, transition metal-based nanomaterials have played a key role in the applications of supercapacitors. In this study, nickel phosphide (Ni-P) was simply combined with NiCo LDH via facile phosphorization of Ni foam and subsequent electrodeposition to form core-shell nanorod arrays on the Ni foam; the Ni-P@NiCo LDH was then directly used for a pseudocapacitive electrode. Owing to the splendid synergistic effect between Ni-P and NiCo LDH nanosheets as well as the hierarchical structure of 1D nanorods, 2D nanosheets, and 3D Ni foam, the hybrid electrode exhibited significantly enhanced electrochemical performances. The Ni-P@NiCo LDH electrode showed a high specific capacitance of 12.9 F cm -2 at 5 mA cm -2 (3470.5 F g -1 at a current density of 1.3 A g -1 ) that remained as high as 6.4 F cm -2 at a high current density of 100 mA cm -2 (1700 F g -1 at 27 A g -1 ) and excellent cycling stability (96% capacity retention after 10 000 cycles at 40 mA cm -2 ). Furthermore, the asymmetric supercapacitors (ASCs) were assembled using Ni-P@NiCo LDH as a positive electrode and activated carbon (AC) as a negative electrode. The obtained ASCs delivered remarkable energy density and power density as well as good cycling performance. The enhanced electrochemical activities open a new avenue for the development of supercapacitors.

  12. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  13. DC-pulsed voltage electrochemical method based on duty cycle self-control for producing TERS gold tips

    International Nuclear Information System (INIS)

    Vasilchenko, V E; Kharintsev, S S; Salakhov, M Kh

    2013-01-01

    This paper presents a modified dc-pulsed low voltage electrochemical method in which a duty cycle is self tuned while etching. A higher yield of gold tips suitable for performing tip-enhanced Raman scattering (TERS) measurements is demonstrated. The improvement is caused by the self-control of the etching rate along the full surface of the tip. A capability of the gold tips to enhance a Raman signal is exemplified by TERS spectroscopy of single walled carbon nanotubes bundle, sulfur and vanadium oxide

  14. Enhancing LAN performance

    CERN Document Server

    Held, Gilbert

    2004-01-01

    Enhancing LAN Performance, Fourth Edition explains how to connect geographically separated LANs with appropriate bandwidth, the issues to consider when weighing the use of multiport or dualport devices, how to estimate traffic for new networks, the effects of configuration changes on the performance of Ethernet and Token Ring networks, the design of switch-based networks that prevent traffic bottlenecks, and other critical topics. It provides the tools to address these issues in relation to specific network requirements. This volume develops mathematical models of various LAN performance issue

  15. Electrochemical construction of a bio-inspired micro/nano-textured structure with cell-sized microhole arrays on biomedical titanium to enhance bioactivity

    International Nuclear Information System (INIS)

    Liang, Jianhe; Song, Ran; Huang, Qiaoling; Yang, Yun; Lin, Longxiang; Zhang, Yanmei; Jiang, Pinliang; Duan, Hongping; Dong, Xiang; Lin, Changjian

    2015-01-01

    Highlights: • The bio-inspired structure mimicked mulit-level structures of natural bone. • Ordered cell-sized microhole arrays were employed as microscale structure. • High surface roughness and superhydrophilicity were achieved on the titanium surface. • The bio-inspired titanium surface showed superior ability of biomineralization. • Cell responses were enhanced on the bio-inspired micro/nano-texutred surface. - Abstract: Biomimetic surface design of medical implants is vitally crucial to improve cellular responses and the integration of tissue onto materials. In this study, a novel hierarchical cell-sized microhole array combined with a nano-network structure was fabricated on a medical titanium surface to mimic multi-level bone structure. A three-step procedure was developed as follows: 1) electrochemical self-organization of etching on titanium substrate to create highly ordered cell-sized microhole arrays, 2) suitable dual acid etching to increase the roughness of the microholes, and then 3) electrochemical anodization in a NaOH electrolyte to construct a nano-network porous titania layer on the above micro-roughened surface. The bio-inspired micro/nano-textured structure presented the enhanced wettability and superhydrophilicity. The ability of in vitro biomineralization and corrosion resistance of the bio-inspired micro/nano-textured structure were enhanced after annealing treatment. More importantly, the bio-inspired micro/nano-textured structure on the titanium surface possessed a favourable interfacial environment to enhance attachment and proliferation of human osteoblast-like MG63 cells. All of the results demonstrated that such a bio-inspired surface of micro/nano-textured porous TiO 2 is a most promising candidate for the next generation of titanium implants

  16. A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor

    KAUST Repository

    Das, Sabuj Kanti

    2018-03-02

    Covalent organic frameworks (COFs) build via periodic arrangement of organic building blocks are attracting increasing interest in recent times due to the huge scope in their synthesis through a wide range of structural motifs and diversity in their potential applications. Here we report the synthesis of a new porous extended network π-conjugated TFP-NDA-COF via solvothermal Schiff base condensation of 1,3,5-triformylphloroglucinol (TFP) with 1,5-diaminonaphthalene (NDA). The electrochemical study demonstrates that TFP-NDA-COF has the capability of energy storage up to 379 F g−1 at 2 mV s−1 scan rate, 348 F g−1 at 0.5 A g−1 and offer excellent specific capacitance retention of 75% after 8000 charge discharge cycles. High electrochemical performance could be attributed to the π-electronic conjugation along the polymeric 2D layered network and ion conduction inside the porous channel and permanent porosity of the framework. This indicates that the COF reported herein meets the key requirements like energy storage ability and electrochemical stability needed for developing an efficient energy storage device.

  17. A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor

    KAUST Repository

    Das, Sabuj Kanti; Bhunia, Kousik; Mallick, Arijit; Pradhan, Anirban; Pradhan, Debabrata; Bhaumik, Asim

    2018-01-01

    Covalent organic frameworks (COFs) build via periodic arrangement of organic building blocks are attracting increasing interest in recent times due to the huge scope in their synthesis through a wide range of structural motifs and diversity in their potential applications. Here we report the synthesis of a new porous extended network π-conjugated TFP-NDA-COF via solvothermal Schiff base condensation of 1,3,5-triformylphloroglucinol (TFP) with 1,5-diaminonaphthalene (NDA). The electrochemical study demonstrates that TFP-NDA-COF has the capability of energy storage up to 379 F g−1 at 2 mV s−1 scan rate, 348 F g−1 at 0.5 A g−1 and offer excellent specific capacitance retention of 75% after 8000 charge discharge cycles. High electrochemical performance could be attributed to the π-electronic conjugation along the polymeric 2D layered network and ion conduction inside the porous channel and permanent porosity of the framework. This indicates that the COF reported herein meets the key requirements like energy storage ability and electrochemical stability needed for developing an efficient energy storage device.

  18. Controllable synthesis of porous LiFePO4 for tunable electrochemical Li-insertion performance

    International Nuclear Information System (INIS)

    Tian, Xiaohui; Zhou, Yingke; Wu, Guan; Wang, Pengcheng; Chen, Jian

    2017-01-01

    Highlights: • A templated freeze-drying method is developed to prepare the porous LiFePO 4 . • The pore size and porosity can be controlled by adjusting the conditions. • The effects of the porous properties on the Li-insertion performances are studied. • The optimized composite presents excellent specific capacity and rate capability. - Abstract: A templated freeze-drying method is developed to prepare the porous LiFePO 4 materials with the controlled pore size and porosity, by conveniently adjusting the size and content of the template in the precursor solution. The morphology and structure of the porous LiFePO 4 materials are characterized and the relavant electrochemical lithium-insertion performances are systematically studied. It’s found that the porous characteristics play a critical role in the lithium-ion intercalation processes and significantly affect the power capability of LiFePO 4 . The optimized porous LiFePO 4 material presents remarkable specific capacity (167 mAh g −1 at 0.1 C), rate capability (151 mAh g −1 at 1 C and 110 mAh g −1 at 10 C) and cycling stability (99.3% retention after 300 cycles at 1 C). These findings demonstrate that the electrochemical performance of the electrode material can be purposely tuned and remarkably improved by the rational design and introduction of the suitable pores, which open up new strategies for the synthesis of advanced porous materials for the lithium-ion power battery applications.

  19. Influence of surfactants on the microstructure and electrochemical performance of the tin oxide anode in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Hui, E-mail: sunyanhui0102@163.com [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006 (China); Dong, Pei-Pei; Liu, Shan; Nan, Jun-Min [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006 (China)

    2016-02-15

    Highlights: • CTAB and SDS alter the formation of SnO{sub 2} from nanosheets to nanocubes during oxalate precipitation. • The CTAB concentration affects the SnO{sub 2} crystal growth direction, morphology and size. • The SnO{sub 2} anode synthesized using CTAB exhibited superior electrochemical performance. • Proposed a mechanism of influence of surfactant on SnO{sub 2} in the precipitation and annealing process. - Abstract: Different SnO{sub 2} micro–nano structures are prepared by precipitation using a surfactant-assisted process. The surfactants, such as cetyltriethylammonium bromide (CTAB) or sodium dodecyl benzene sulfonate (SDBS), can change the crystal growth direction and microstructure of SnO{sub 2} primary and secondary particles. Larger SnO{sub 2} nanosheets were synthesized without surfactant, and micro-fragments composed of small nanospheres or nanocubes were synthesized using CTAB and SDBS. The CTAB-assisted process resulted in smaller primary particles and larger specific surface area and larger pore volume, as a lithium-ion-battery anode that exhibits superior electrochemical performance compared to the other two anodes. Further investigation showed that the concentration of CTAB had a substantial influence on the growth of the crystal face, morphology and size of the SnO{sub 2} secondary particles, which influenced the electrochemical performance of the anode. A simple mechanism for the influence of surfactants on SnO{sub 2} morphology and size in the precipitation and annealing process is proposed.

  20. Pseudocapacitance effects for enhancement of capacitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Lota, G.; Frackowiak, E. [Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, 60-965 Poznan, Piotrowo 3 (Poland)

    2010-10-15

    We report on the pseudo-capacitance induced by a nitrogen substituted in the carbon network composite prepared by a simple carbonisation (750 C) of formaldehyde and melamine in the presence of carbon nanotubes. Nitrogen content in the composites varied from 7.4 to 21.7 wt.%. Such materials have a higher density than activated carbons, hence, they can supply better volumetric capacity. N-rich composites show an excellent charge propagation at current loads from 500 mA g{sup -1} to 50 A g{sup -1} because of multiwalled nanotubes which play a conducting as well as a supporting role. The electrochemical performance of various composites was investigated in two- and three-electrode cells using acidic (1 mol L{sup -1} H{sub 2}SO{sub 4}), alkaline (6 mol L{sup -1}KOH), neutral (1 mol L{sup -1} Na{sub 2}SO{sub 4}) and organic electrolytes (1 mol L{sup -1} TEABF{sub 4} in acetonitrile). Organic and neutral medium is not adapted for N-rich carbon electrodes of supercapacitor. The detailed electrochemical characterisation pointed out the differences of charge propagation of electrodes with the different polarity. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Synergetic Fe substitution and carbon connection in LiMn{sub 1−x}Fe{sub x}PO{sub 4}/C cathode materials for enhanced electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Su-Yuan; Wang, Cheng-Yang [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072 (China); Gu, Rong-Min [Department of Chemistry, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072 (China); Sun, Shuai [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072 (China); Li, Ming-Wei, E-mail: mingweili@tju.edu.cn [Department of Chemistry, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072 (China)

    2015-04-15

    Highlights: • LiMn{sub 0.6}Fe{sub 0.4}PO{sub 4}/C cathode material shows enhanced rate capability. • The Fe doped in the partial Mn sites could significantly facilitate the Li ions transfer. • The enhanced Li{sup +} ions diffusion contributes to the optimized rate capability of LiMn{sub 0.6}Fe{sub 0.4}PO{sub 4}. • ACM carbonization forms well carbon coating and a 3D carbon network structure. - Abstract: To enhance the rate and cyclic performances of LiMnPO{sub 4} cathode material for lithium-ion batteries, Mn is partially substituted with Fe, and LiMn{sub 1−x}Fe{sub x}PO{sub 4} (x = 0.2, 0.3, 0.4, 0.5) solid solutions are synthesized and investigated. Amphiphilic carbonaceous material (ACM) forms well carbon coating and connects the LiMn{sub 1−x}Fe{sub x}PO{sub 4} crystallites by a three-dimensional (3D) carbon network. The synergetic Fe substitution and carbon connection obviously improve the samples’ rate capacities and cyclic stability. The optimized LiMn{sub 0.6}Fe{sub 0.4}PO{sub 4}/C sample delivers discharge capacities of 160 mA h g{sup −1} at 0.05 C, 148 mA h g{sup −1} at 1 C, and 115 mA h g{sup −1} at 20 C. All samples have well capacity retention (>92%) after 50 charge/discharge cycles at 1 C. The enhanced electrochemical properties are mainly attributed to the improvement of Li ion and electron transport in the LiMn{sub 1−x}Fe{sub x}PO{sub 4}/C samples, respectively mainly resulting from their modified crystal structures caused by Fe substitution and the 3D carbon coating/connection originating from ACM carbonization. LiMn{sub 1−x}Fe{sub x}PO{sub 4} materials exhibit two discharge plateaus at ∼4.0 and ∼3.5 V (vs. Li{sup +}/Li), whose heights respectively reflect the redox potentials of Mn{sup 3+}/Mn{sup 2+} and Fe{sup 3+}/Fe{sup 2+} couples. The plateaus’ lengths correspond to the Mn/Fe ratio in LiMn{sub 1−x}Fe{sub x}PO{sub 4} and are affected by the kinetic behavior of samples. Though the ∼4.0 V plateau shrinks with

  2. The influence of current collector corrosion on the performance of electrochemical capacitors

    Science.gov (United States)

    Wojciechowski, Jarosław; Kolanowski, Łukasz; Bund, Andreas; Lota, Grzegorz

    2017-11-01

    This paper discusses the effect of current collector (stainless steel 316L) corrosion on the performance of electrochemical capacitors operated in aqueous electrolytes. This topic seems to be often neglected in scientific research. The studied electrolytes were 1 M H2SO4, 1 M KI, 1 M Na2SO4, 1 M KOH and 6 M KOH. The corrosion process was investigated by means of selected direct and alternating current techniques. The surface of the current collectors as well as the corrosion products were characterised using scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy and atomic force microscopy. Stainless steel 316L in alkaline solutions is characterised by the lowest values of corrosion potentials whereas the potentials in acidic media become the most noble. Our studies show that corrosion potentials increase with decreasing pH value. This phenomenon can be explained with the formation of passive oxide films on the stainless steel current collectors. The passive oxide films are usually thicker and more porous in alkaline solutions than that in the other electrolytes. The processes occurring at the electrode/electrolyte interfaces strongly influence the working parameters of electrochemical capacitors such as voltage, working potentials of single electrodes, self-discharge as well as the internal resistance and cycling stability.

  3. Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries

    International Nuclear Information System (INIS)

    Schmuelling, Guido; Meyer, Hinrich-Wilhelm; Placke, Tobias; Winter, Martin; Oehl, Nikolas; Knipper, Martin; Kolny-Olesiak, Joanna; Plaggenborg, Thorsten; Parisi, Jürgen

    2014-01-01

    Tin is able to lithiate and delithiate reversibly with a high theoretical specific capacity, which makes it a promising candidate to supersede graphite as the state-of-the-art negative electrode material in lithium ion battery technology. Nevertheless, it still suffers from poor cycling stability and high irreversible capacities. In this contribution, we show the synthesis of three different nano-sized core/shell-type particles with crystalline tin cores and different amorphous surface shells consisting of SnO x and organic polymers. The spherical size and the surface shell can be tailored by adjusting the synthesis temperature and the polymer reagents in the synthesis, respectively. We determine the influence of the surface modifications with respect to the electrochemical performance and characterize the morphology, structure, and thermal properties of the nano-sized tin particles by means of high-resolution transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis. The electrochemical performance is investigated by constant current charge/discharge cycling as well as cyclic voltammetry. (paper)

  4. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries.

    Science.gov (United States)

    Li, Jiachen; Pu, Jun; Liu, Ziqiang; Wang, Jian; Wu, Wenlu; Zhang, Huigang; Ma, Haixia

    2017-08-02

    The energy and power densities of rechargeable batteries urgently need to be increased to meet the ever-increasing demands of consumer electronics and electric vehicles. Alloy anodes are among the most promising candidates for next-generation high-capacity battery materials. However, the high capacities of alloy anodes usually suffer from some serious difficulties related to the volume changes of active materials. Porous supports and nanostructured alloy materials have been explored to address these issues. However, these approaches seemingly increase the active material-based properties and actually decrease the electrode-based capacity because of the oversized pores and heavy mass of mechanical supports. In this study, we developed an ultralight porous nickel to scaffold with high-capacity SnSb alloy anodes. The porous-nickel-supported SnSb alloy demonstrates a high specific capacity and good cyclability for both Li-ion and Na-ion batteries. Its capacity retains 580 mA h g -1 at 2 A g -1 after 100 cycles in Li-ion batteries. For a Na-ion battery, the composite electrode can even deliver a capacity of 275 mA h g -1 at 1 A g -1 after 1000 cycles. This study demonstrates that combining the scaffolding function of ultralight porous nickel and the high capacity of the SnSb alloy can significantly enhance the electrochemical performances of Li/Na-ion batteries.

  5. Electrochemical performance of high specific capacity of lithium-ion cell LiV3O8//LiMn2O4 with LiNO3 aqueous solution electrolyte

    International Nuclear Information System (INIS)

    Zhao Mingshu; Zheng Qingyang; Wang Fei; Dai Weimin; Song Xiaoping

    2011-01-01

    Research highlights: → In this paper, the electrochemical performance of aqueous rechargeable lithium battery with LiV 3 O 8 and LiMn 2 O 4 in saturated LiNO 3 electrolyte is studied. → The electrochemical performance tests show that the specific capacity of LiMn 2 O 4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. → In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries. - Abstract: The electrochemical performance of aqueous rechargeable lithium battery (ARLB) with LiV 3 O 8 and LiMn 2 O 4 in saturated LiNO 3 electrolyte is studied. The results indicate that these two electrode materials are stable in the aqueous solution and no hydrogen or oxygen produced, moreover, intercalation/de-intercalation of lithium ions occurred within the range of electrochemical stability of water. The electrochemical performance tests show that the specific capacity of LiMn 2 O 4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries.

  6. Electrochemical characterization of silicon/graphene/MWCNT hybrid lithium-ion battery anodes produced via RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Toçoğlu, Ubeyd, E-mail: utocoglu@sakarya.edu.tr; Hatipoğlu, Gizem; Alaf, Miraç; Kayış, Fuat; Akbulut, Hatem

    2016-12-15

    Graphical abstract: Silicon/graphene/MWCNT hybrid composite anodes were produced via RF magnetron sputtering technique. CR2016 type coin cells were assembled for electrochemical characterization of anodes. Electrochemical characterizations of anodes were conducted via galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy techniques. - Highlights: • Silicon/graphene/MWCNT hybrid negative lithium ion battery anodes were produced via magnetron sputtering. • Structural and electrochemical characterizations of composite anodes were conducted comprehensively. • The capacity values exhibited by composite anodes were found to be almost more than two times compared to thin film anodes after 100 cycles. - Abstract: In this study it was aimed to enhance cycling performance of silicon lithium ion battery anodes via producing flexible Silicon/Graphene/MWCNT composite structures. The volumetric expansions, which are the primary obstacle that hinders the practical usage of silicon anodes, were tried to suppress using flexible graphene/MWCNT paper substrates. Moreover to achieve lightweight and high electrical conductive anodes, the advantage of graphene was aimed to be exploited. Silicon/graphene/MWCNT flexible composite anodes were produced via radio frequency (RF) magnetron sputtering technique. Graphene/MWCNT papers were produced with vacuum filtration technique as substrate for sputtering process. At coating process of papers constant sputtering power was applied. Phase analysis was conducted with X-ray diffraction (XRD) technique and Raman spectroscopy. Field emission scanning electron microscopy (FESEM). Cyclic voltammetry (CV) tests were carried out to reveal reversible reactions between silicon and lithium. Galvanostatic charge/discharge technique was employed to determine the cyclic performance of anodes. Electrochemical impedance spectroscopy technique was used to understand the relation between cyclic performance and

  7. Electrochemical characterization of silicon/graphene/MWCNT hybrid lithium-ion battery anodes produced via RF magnetron sputtering

    International Nuclear Information System (INIS)

    Toçoğlu, Ubeyd; Hatipoğlu, Gizem; Alaf, Miraç; Kayış, Fuat; Akbulut, Hatem

    2016-01-01

    Graphical abstract: Silicon/graphene/MWCNT hybrid composite anodes were produced via RF magnetron sputtering technique. CR2016 type coin cells were assembled for electrochemical characterization of anodes. Electrochemical characterizations of anodes were conducted via galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy techniques. - Highlights: • Silicon/graphene/MWCNT hybrid negative lithium ion battery anodes were produced via magnetron sputtering. • Structural and electrochemical characterizations of composite anodes were conducted comprehensively. • The capacity values exhibited by composite anodes were found to be almost more than two times compared to thin film anodes after 100 cycles. - Abstract: In this study it was aimed to enhance cycling performance of silicon lithium ion battery anodes via producing flexible Silicon/Graphene/MWCNT composite structures. The volumetric expansions, which are the primary obstacle that hinders the practical usage of silicon anodes, were tried to suppress using flexible graphene/MWCNT paper substrates. Moreover to achieve lightweight and high electrical conductive anodes, the advantage of graphene was aimed to be exploited. Silicon/graphene/MWCNT flexible composite anodes were produced via radio frequency (RF) magnetron sputtering technique. Graphene/MWCNT papers were produced with vacuum filtration technique as substrate for sputtering process. At coating process of papers constant sputtering power was applied. Phase analysis was conducted with X-ray diffraction (XRD) technique and Raman spectroscopy. Field emission scanning electron microscopy (FESEM). Cyclic voltammetry (CV) tests were carried out to reveal reversible reactions between silicon and lithium. Galvanostatic charge/discharge technique was employed to determine the cyclic performance of anodes. Electrochemical impedance spectroscopy technique was used to understand the relation between cyclic performance and

  8. Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries

    Science.gov (United States)

    Eguia-Barrio, A.; Castillo-Martínez, E.; Klein, F.; Pinedo, R.; Lezama, L.; Janek, J.; Adelhelm, P.; Rojo, T.

    2017-11-01

    Transition metal carbodiimides (TMNCN) undergo conversion reactions during electrochemical cycling in lithium and sodium ion batteries. Micron sized copper and zinc carbodiimide powders have been prepared as single phase as confirmed by PXRD and IR and their thermal stability has been studied in air and nitrogen atmosphere. CuNCN decomposes at ∼250 °C into CuO or Cu while ZnNCN can be stable until 400 °C and 800 °C in air and nitrogen respectively. Both carbodiimides were electrochemically analysed for sodium and lithium ion batteries. The electrochemical Na+ insertion in CuNCN exhibits a relatively high reversible capacity (300 mAh·g-1) which still indicates an incomplete conversion reaction. This incomplete reaction confirmed by ex-situ EPR analysis, is partly due to kinetic limitations as evidenced in the rate capability experiments and in the constant potential measurements. On the other hand, ZnNCN shows incomplete conversion reaction but with good capacity retention and lower hysteresis as negative electrode for sodium ion batteries. The electrochemical performance of these materials is comparable to that of other materials which operate through displacement reactions and is surprisingly better in sodium ion batteries in comparison with lithium ion batteries.

  9. Experiences on MIC monitoring by electrochemical techniques

    DEFF Research Database (Denmark)

    Cristiani, P.; Perboni, G.; Hilbert, Lisbeth Rischel

    2002-01-01

    Some results of practical experiences on the performances of electrochemical and electric MIC monitoring techniques, coming from the discussion in the Brite-Euram thematic network "MIC of industrial materials", are presented in this paper.......Some results of practical experiences on the performances of electrochemical and electric MIC monitoring techniques, coming from the discussion in the Brite-Euram thematic network "MIC of industrial materials", are presented in this paper....

  10. Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings

    International Nuclear Information System (INIS)

    Dong, Youzhong; Zhao, Yanming; Duan, He; Liang, Zhiyong

    2014-01-01

    By a simple wet ball-milling method, Li 3 VO 4 -coated LiMnPO 4 samples were prepared successfully for the first time. The thin Li 3 VO 4 coating layer with a three-dimensional Li + -ion transport path and high mobility of Li + -ion strongly adhered to the LiMnPO 4 material reduces Mn dissolution and increases the Li + flux through the surface of the LiMnPO 4 itself by preventing formation of phases on the surface that would normally block Li + as well as Li + -ion permeation into the surface of the LiMnPO 4 electrode and therefore improve the rate capability as well as the cycling stability of LiMnPO 4 materials. The electrochemical testing shows that the 5% Li 3 VO 4 -coated LiMnPO 4 sample shows a clear voltage plateau in the charge curves and a much higher reversible capacity at different discharge rates compared with the pristine LiMnPO 4 . EIS results also show that the surface charge transfer resistance and Warburg impedance of the Li 3 VO 4 -coated LiMnPO 4 samples significantly decreased. The surface charge transfer resistance and Warburg impedance for the pristine LiMnPO 4 are 955.1 Ω and 400.3 Ω, respectively. While, for the 5% Li 3 VO 4 -coated LiMnPO 4 , the value are only 400.2 Ω and 283.6 Ω, respectively. The surface charge transfer resistance decreases more than half. All of the improved performance will be favorable for application of the LiMnPO 4 in high-power lithium ion batteries

  11. Morphology and electrical properties of electrochemically synthesized pyrrole–formyl pyrrole copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Gholami, Mehrdad, E-mail: mehrdad897@um.edu.my [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Marvdasht Branch, Islamic Azad University, P.O. Box 465, Marvdasht (Iran, Islamic Republic of); Nia, Pooria Moozarm, E-mail: pooriamn@yahoo.com [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Alias, Yatimah, E-mail: yatimah70@um.edu.my [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2015-12-01

    Graphical abstract: - Highlights: • The (Py–co-FPy) copolymer was synthesized electrochemically. • This copolymer has 1.6 times higher surface coverage compared to polypyrrole. • This copolymer showed 2.5 times lower resistance compared to polypyrrole. • The conjugated structure between Py and FPy causes enhancement of conductivity. • This conducting copolymer has a strong potential to be used in various applications. - Abstract: A direct electrochemical copolymerization of pyrrole–formyl pyrrole (Py–co-FPy) was carried out by oxidative copolymerization of formyl pyrrole and pyrrole in LiClO{sub 4} aqueous solution through galvanostatic method. The (Py–co-FPy) copolymer was characterized using Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FESEM), energy-filtering transmission electron microscope (EFTEM), thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FESEM images showed that the synthesized copolymer had a hollow whelk-like helixes structure, which justifies the enhancement of charge transportation through the copolymer film. Cyclic voltammetry studies revealed that the electrocatalytic activity of synthesized copolymer has improved and the surface coverage in copolymer enhanced 1.6 times compared to polypyrrole alone. Besides, (Py–co-FPy) copolymer showed 2.5 times lower electrochemical charge transfer resistance (R{sub ct}) value in impedance spectroscopy. Therefore, this copolymer has a strong potential to be used in several applications such as sensor applications.

  12. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  13. Effects of Capacity Ratios between Anode and Cathode on Electrochemical Properties for Lithium Polymer Batteries

    International Nuclear Information System (INIS)

    Kim, Cheon-Soo; Jeong, Kyung Min; Kim, Keon; Yi, Cheol-Woo

    2015-01-01

    The areal capacity ratio of negative to positive electrodes (N/P ratio) is the most important factor to design the lithium ion batteries with high performance in the consideration of balanced electrochemical reactions. In this study, the effect of N/P ratio (1.10, 1.20, and 1.30) on electrochemical properties has been investigated with a lithium polymer battery with PVdF-coated separator and 1.40 Ah of capacity. The N/P ratio is controlled by adjusting the anode thickness with a fixed anode density. The cell with an N/P ratio higher than 1.10 effectively suppresses the lithium plating at the 0.85C-rate charging at 25 °C and the cell with 1.20 of N/P ratio shows the enhanced cycle performance in comparison with other cells. Among the cells with differently designed N/P ratios, significant difference was not observed in the aging test with fully charged batteries at 25 and 45 °C. The effect of N/P ratio on electrochemical properties of lithium batteries can help to design the safe full cell without lithium plating

  14. Experimental Investigation on the Performance of Grinding Assisted Electrochemical Discharge Drilling of Glass

    Directory of Open Access Journals (Sweden)

    Ladeesh V G

    2016-01-01

    Full Text Available Grinding assisted electrochemical discharge drilling (G-ECDD is a novel technique for producing micro and macro holes in brittle materials including advanced ceramics and glass, both efficiently and economically. G-ECDD involves the use of a rotating diamond core drill as the tool in a normal electrochemical discharge machine setup. The material removal happens by a combination of thermal melting due to electric discharges, followed by grinding action of diamond grits and chemical etching action. In this study, the effect of process parameters like voltage, duty cycle, cycle time and electrolyte concentration on material removed (MR was investigated systematically using response surface methodology. Analysis of variance was performed to identify the significant factors and their percentage contribution. The most significant factor was found to be duty cycle followed by voltage, cycle time and concentration. A quadratic mathematical model was developed to predict MR. Tool wear was found for different frequencies and voltages. Higher tool wear was observed for high frequency above 5kHz pulsed DC supply at high voltage of 110V. Tool wear at the end face of the tool was found to be a significant problem affecting the tool life.

  15. Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes

    Science.gov (United States)

    Yadav, Abhijit A.; Chavan, U. J.

    2018-04-01

    Transition-metal oxides with porous structure are considered for use as promising electrodes for high-performance supercapacitors. Nanocrystalline nickel oxide (NiO) thin films have been prepared as active material for supercapacitors by spray pyrolysis. In this study, the effects of the film thickness on its structural, morphological, optical, electrical, and electrochemical properties were studied. X-ray diffraction analysis revealed cubic structure with average crystalline size of around 21 nm. Scanning electron microscopy showed porous morphology. The optical bandgap decreased from 3.04 eV to 2.97 eV with increase in the film thickness. Electrical resistivity measurements indicated semiconducting behavior. Cyclic voltammetry and galvanostatic charge/discharge study revealed good pseudocapacitive behavior. Specific capacitance of 564 F g-1 at scan rate of 5 mV s-1 and 553 F g-1 at current density of 1 A g-1 was observed. An NiO-based supercapacitor delivered specific energy of 22.8 W h kg-1 at specific power of 2.16 kW kg-1, and retained 93.01% specific capacitance at current density of 1 A g-1 after 1000 cycles. Therefore, taking advantage of the porous morphology that exists in the nanostructure, such NiO materials can be considered for use as promising electrodes for high-performance supercapacitors.

  16. Enhanced photoelectrochemical perporties of graphene nanowalls–CdS composite materials

    International Nuclear Information System (INIS)

    Song, Xuefen; Wang, Mingjun; Wei, Dapeng; Liu, Dun; Shi, Haofei; Hu, Chenguo; Fang, Liang; Zhang, Wei; Du, Chunlei

    2015-01-01

    A photo-electrochemical electrode of CdS–modified graphene walls (GWs) is fabricated via a successive ionic layer adsorption and reaction (SILAR) process. The as-prepared CdS–GWs composite structures could notably enhance photon absorption (in the visible region) and effectively facilitate the spatial separation of photo-generated carriers, bringing the enhanced photocurrent response. The effective area between CdS nanoparticles (NPs) and GWs is a crucial factor for the photocurrent density. Remarkably, the proposed CdS–GWs photo-anode displays satisfactory performance with the excellent photo-current density of 470 μA/cm 2 and wonderful stability as long as dozens of days. Our studies confirm that CdS–GWs nano-composites could work as high-performance photo-electrochemical electrodes for a lot of potential applications. - Highlights: • The GWs/CdS composites were synthesized via a simple SILAR process. • The mechanism of enhanced photocurrent response was investigated. • The GWs/CdS anode exhibits photo-current density of 470 μA/cm 2 . • The GWs/CdS anode has excellent stability.

  17. Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingwei; Li, Xiaohan; Dai, Na; Wang, Gengchao; Wang, Zhun [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237 (China)

    2010-08-15

    Super-hydrophilic conducting polyaniline was prepared by surface modification of polyaniline using tetraethyl orthosilicate in water/ethanol solution, whereas its conductivity was 4.16 S cm{sup -1} at 25 C. And its electrochemical capacitance performances as an electrode material were evaluated by the cyclic voltammetry and galvanostatic charge/discharge test in 0.1 M H{sub 2}SO{sub 4} aqueous solution. Its initial specific capacitance was 500 F g{sup -1} at a constant current density of 1.5 A g{sup -1}, and the capacitance still reached about 400 F g{sup -1} after 5000 consecutive cycles. Moreover, its capacitance retention ratio was circa 70% with the growth of current densities from 1.5 to 20 A g{sup -1}, indicating excellent rate capability. It would be a promising electrode material for aqueous redox supercapacitors. (author)

  18. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review

    International Nuclear Information System (INIS)

    Tang, Juan; Tang, Dianping

    2015-01-01

    Electrochemical immunodetection has attracted considerable attention due to its high sensitivity, low cost and simplicity. Large efforts have recently made in order to design ultrasensitive assays. Noble metal nanoparticles (NM-NPs) offer advantages such as high conductivity and large surface-to-volume ratio. NM-NPs therefore are excellent candidates for developing electrochemical platforms for immunodetection and as signal tags. The use of biofunctionalized NM-NPs often results in amplified recognition via stronger loading of signal tags, and also in enhanced signal. This review (with 87 references) gives an overview on the current state in the use of NM-NPs in Non-enzymatic electrochemical immunosensing. We discuss the application of NM-NPs as electrode matrices and as electroactive labels (either as a carrier or as electrocatalytic labels), and compare the materials (mainly nanoparticles of gold, platinum, or of bimetallic materials) in terms of performance (for example by increasing sensitivity via label amplification or via high densities of capture molecules). A conclusion covers current challenges and gives an outlook. Rather than being exhaustive, the review focuses on representative examples that illustrate novel concepts and promising applications. NM-NPs based immunosensing opens a series of concepts for basic research and offers new tools for determination of trace amounts of protein-related analytes in environment and clinical applications. (author)

  19. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material

    International Nuclear Information System (INIS)

    Wang, Dan; Huang, Yan; Huo, Zhenqing; Chen, Li

    2013-01-01

    Highlights: • Layered Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 (2x = 0, 0.01, 0.02, 0.05) were synthetized. • Li[Li 0.2 Ni 0.2−x Mn 0.6−x Mg 2x ]O 2 exhibit enhanced electrochemical properties. • The improved performance is attributed to enhanced structure stability. -- Abstract: Mg-doped Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 as a Li-rich cathode material of lithium-ion batteries were prepared by co-precipitation method and ball-milling treatment using Mg(OH) 2 as a dopant. Scanning electron microscopy (SEM), ex situ X-ray powder diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvantatic charge/discharge were used to investigate the effect of Mg doping on structure and electrochemical performance. Compared with the bare material, Mg-doped materials exhibit better cycle stabilities and superior rate capabilities. Li[Li 0.2 Ni 0.195 Mn 0.595 Mg 0.01 ]O 2 displays a high reversible capacity of 226.5 mAh g −1 after 60 cycles at 0.1 C. The excellent cycle performance can be attributed to the improvement in structure stability, which is verified by XRD tests before and after 60 cycles. EIS results show that Mg doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance

  20. Fabrication of Micro Components by Electrochemical Deposition

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    The main issue of this thesis is the combination of electrochemical deposition of metals and micro machining. Processes for electroplating and electroless plating of nickel and nickel alloys have been developed and optimised for compatibility with microelectronics and silicon based micromechanics...... of electrochemical machining and traditional machining is compared to micro machining techniques as performed in the field of microelectronics. Various practical solutions and equipment for electrochemical deposition of micro components are demonstrated, as well as the use and experience obtained utilising...

  1. Performance-Enhancing Drugs: Know the Risks

    Science.gov (United States)

    ... edge by taking muscle-building supplements or other performance-enhancing drugs? Learn how these drugs work and how they can affect your health. By ... to testosterone and estradiol in both men and women. Andro is available legally ... use as a performance-enhancing drug is illegal in the United States. ...

  2. Three-dimensional activated reduced graphene oxide nanocup/nickel aluminum layered double hydroxides composite with super high electrochemical and capacitance performances

    International Nuclear Information System (INIS)

    Lin, Yan; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Yinjun, Fang; Guangli, Wang; Zhiguo, Gu

    2013-01-01

    The paper reported a three-dimensional activated reduced graphene oxide nanocup/nickel aluminum layered double hydroxides composite (3D-ARGON/NiAl-LDH) with super high electrochemical and capacitance performances. Graphene oxide was reduced by hydrazine in ammonia medium to form three-dimensional reduced graphene oxide nanocup using polystyrene colloidal particle as sacrificial template. The nanocup was then activated by the alkali corrosion and thermal annealing. The 3D-ARGON/NiAl-LDH was finally fabricated by the hydrothermal synthesis via in situ growth of ultrathin NiAl-LDH nanoflakes on the 3D-ARGON in an ethanol medium. The study demonstrated that the composite offers special 3D architecture with a macropore on the rim of a cup and large mesoporous structure on the wall of a cup, which will greatly boost the electron transfer and mass transport during the faradaic redox reaction, and displays excellent electrochemical and capactance performances, including high specific capacitance and rate capability, good charge/discharge stability and long-term cycling life. Its maximum specific capacitance was found to be 2712.7 F g −1 at the current density of 1 A g −1 , which is more than 7-fold that of pure NiAl-LDH, 3-fold that of common reduced graphene oxide/NiAl-LDH and 1.8-fold that of two-dimensional activated reduced graphene oxide/NiAl-LDH. The specific capacitance can remain 1174 F g −1 when the current density increases up to 50 A g −1 . After 5000 cycles at the current density of 30 A g −1 , the capacitance can keep at least 98.9%. This study provides a promising approach for the design and synthesis of graphene-based materials with largely enhanced supercapacitor behaviors, which can be potentially applied in energy storage/conversion devices

  3. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Qin [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Xia, Shanhong; Tong, Jianhua [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing, 100190 (China); Wu, Kangbing, E-mail: kbwu@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2015-08-05

    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO{sub 3} nanoparticles (nano-CaCO{sub 3}) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO{sub 3}. The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO{sub 3} weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO{sub 3} weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L{sup −1} for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. - Highlights: • PC samples with different morphology and electrochemical activities were prepared. • Highly sensitive electrochemical sensing platform was developed for food colourants. • The accuracy and practicability was testified to be good by HPLC.

  4. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon

    International Nuclear Information System (INIS)

    Cheng, Qin; Xia, Shanhong; Tong, Jianhua; Wu, Kangbing

    2015-01-01

    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO 3 nanoparticles (nano-CaCO 3 ) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO 3 . The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO 3 weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO 3 weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L −1 for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. - Highlights: • PC samples with different morphology and electrochemical activities were prepared. • Highly sensitive electrochemical sensing platform was developed for food colourants. • The accuracy and practicability was testified to be good by HPLC

  5. Improved electrochemical performances of oxygen plasma treated LiMn2O4 thin films

    International Nuclear Information System (INIS)

    Chen, C C; Chiu, K-F; Lin, K M; Lin, H C; Yang, C-R; Wang, F M

    2007-01-01

    LiMn 2 O 4 spinel thin films were deposited by radio frequency (rf) magnetron sputtering followed by annealing at 600 0 C in air.The films were then post-treated with an rf driven oxygen plasma. The crystallization and surface morphology of LiMn 2 O 4 thin films were seen to change with rf power. The treated samples were tested under harsh conditions such as deep discharge to 1.5 V and cycling at elevated temperature of 60 0 C to verify the electrochemical performances of LiMn 2 O 4 cathodes. The oxygen plasma treatments improved the electrochemical properties of LiMn 2 O 4 thin films significantly. As the cells were cycled in the range of 4.5-2.0 V at 60 0 C, the samples treated at a proper rf power of 50 W exhibited an initial capacity greater than ∼400 mAh g -1 with reasonable cycling stability. The results were attributed to the change of morphology and the formation of a surface layer induced by the oxygen plasma irradiation

  6. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  7. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...... understanding of the nature of the electrochemical promotion is also presented....

  8. The effects of element Cu on the electrochemical performances of Zinc-Aluminum-hydrotalcites in Zinc/Nickel secondary battery

    International Nuclear Information System (INIS)

    Wen, Xing; Yang, Zhanhong; Xie, Xiaoe; Feng, Zhaobin; Huang, Jianhang

    2015-01-01

    Zn-Cu-Al-CO_3 layered double hydroxides (LDHs) have been successfully synthesized by using the method of constant pH co-precipitation. And it also has been proposed as a novel anodic material in Zinc-Nickel secondary batteries. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the as-prepared sample exhibit that the samples are well crystallized and have hexagon structure. The electrochemical performances of Zn-Al-LDHs and Zn-Cu-Al-LDHs with different Zn/Cu/Al molar ratios are investigated by the measurements such as galvanostatic charge-discharge, cyclic voltammogram and electrochemical impedance spectroscopy (EIS). Comparing with the pure Zn-Al-LDHs, Zn-Cu-Al-LDHs show more stable cycling performance, exhibit better reversibility and display lower charge-transfer resistance. Especially, the Zn-Cu-Al-LDHs with the Zn/Cu/Al molar ratio being 2.8:0.2:1 exhibits the best electrochemical properties than other samples. After 800 cell cycles, the specific discharge capacity of Zn-Cu-Al-LDHs with the Zn/Cu/Al molar ratio of 2.8:0.2:1is 345 mA h g"−"1, while that of pure Zn-Al-LDHs is only 177 mA h g"−"1. Based on these observations, the prepared Zn-Cu-Al-LDHs may be a promising anode active material for Zinc/Nickel secondary batteries.

  9. The Electrochemical Performance and Durability of Carbon Supported Pt Catalyst in Contact with Aqueous and Polymeric Proton Conductors

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Skou, Eivind Morten

    2014-01-01

    Significant differences in catalyst performance and durability are often observed between the use of a liquid electrolyte (e.g. sulfuric acid), and a solid polymer electrolyte (e.g. Nafion®). To understand this phenomenon, we studied the electrochemical behavior of a commercially available carbon...

  10. Facile surfactant- and template-free synthesis and electrochemical properties of SnO{sub 2}/graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing, E-mail: xy13787103391@126.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Xia, E-mail: zyx02090229@163.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Guo, Jianqiang; Peng, Rufang [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Xie, Ruishi [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); Huang, Yeju; Qi, Yongcheng [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-07-25

    In this work, we demonstrate a facile and green hydrothermal process without using any surfactant or template to synthesize SnO{sub 2} nanoflowers (NFs)/graphene nanosheets (GNSs) composites as a high-performance electrode material for electric double layer capacitors (EDLCs). The crystal structure and morphology of the products were characterized by X-ray diffraction, scanning electron microscopy, and transition electron microscopy. The electrochemical properties were investigated by galvanostatic charge/discharge cycling and cycling voltammetry in a voltage range of −0.2–0.8 V. The results exhibit that the addition of GNSs did not change the tetragonal crystal structure of SnO{sub 2}, and the GNSs were successfully coated on the flower-like surface of SnO{sub 2}. The grain morphology of SnO{sub 2}@GNSs composites has a flower-like appearance suggesting excellent electrochemical properties which were confirmed by electrochemical techniques. Compared with the GNSs, the SnO{sub 2}@GNSs composites exhibit a high specific discharge capacitance of 126 F g{sup −1} at 0.2 A g{sup −1} and remains 98.2% after 2000 charge–discharge cycles. The combination of GNSs and SnO{sub 2} could significantly improve the electrical conductivity, enhance the interactions between GNSs and SnO{sub 2} NFs and provide more reaction sites, thereby resulting in improved electrochemical properties for the SnO{sub 2}@GNSs composites in contrast with the pristine GNSs sample. The high specific capacity and long stability make the SnO{sub 2}@GNSs nanocomposite as a electrode material for high-performance supercapacitors. - Highlights: • SnO{sub 2} nanoflowers (NFs)/Graphene nanosheets(GNSs) composites were prepared by a simple and rapid hydrothermal process. • The results show that the GNSs were homogeneously and tightly attached on the surface of SnO{sub 2} NFs. • The SnO{sub 2} NFs/GNSs composites electrode exhibited the enhanced capacitive performances than those of pure GNSs.

  11. Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors.

    Science.gov (United States)

    Silva, Tiago A; Zanin, Hudson; May, Paul W; Corat, Evaldo J; Fatibello-Filho, Orlando

    2014-12-10

    Porous diamond-like carbon (DLC) electrodes have been prepared, and their electrochemical performance was explored. For electrode preparation, a thin DLC film was deposited onto a densely packed forest of highly porous, vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the carbon nanotubes to clump together to form a microstructured surface with an enlarged surface area. DLC:VACNT electrodes show fast charge transfer, which is promising for several electrochemical applications, including electroanalysis. DLC:VACNT electrodes were applied to the determination of targeted molecules such as dopamine (DA) and epinephrine (EP), which are neurotransmitters/hormones, and acetaminophen (AC), an endocrine disruptor. Using simple and low-cost techniques, such as cyclic voltammetry, analytical curves in the concentration range from 10 to 100 μmol L(-1) were obtained and excellent analytical parameters achieved, including high analytical sensitivity, good response stability, and low limits of detection of 2.9, 4.5, and 2.3 μmol L(-1) for DA, EP, and AC, respectively.

  12. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  13. Fabrication of Freestanding Sheets of Multiwalled Carbon Nanotubes (Buckypapers) for Vanadium Redox Flow Batteries and Effects of Fabrication Variables on Electrochemical Performance

    International Nuclear Information System (INIS)

    Mustafa, Ibrahim; Lopez, Ivan; Younes, Hammad; Susantyoko, Rahmat Agung; Al-Rub, Rashid Abu; Almheiri, Saif

    2017-01-01

    Typically, multiwalled carbon nanotubes (MWCNTs) are drop-casted on the surface of the underlying carbon substrates; the outcome is a randomly distributed MWCNT layers leading to uncontrollable structure and unreproducible results. Additionally, we suspect that the electrochemical response is influenced by the primary carbon-based substrate. Herein, we propose the use of freestanding sheets of MWCNTs (buckypapers, BP electrodes) as electrode materials for vanadium redox flow batteries to directly probe the electrochemical activity of MWCNTs toward VO 2+ /VO 2 + and V 2+ /V 3+ redox couples; henceforth, eliminating the need for an underlying carbon substrate. The amount of surfactant and the sonication time used during the fabrication of BP electrodes affect their morphological characteristics and electrochemical performances. Although the electrical conductivity of BP electrodes decreases with increasing surfactant amount and increasing sonication time, the heterogeneous rate constants for both redox couples increase as these fabrication variables are increased, indicating that the performance-limiting process is not electrical conductivity but the number of active sites available for the electrochemical reaction. The standard heterogeneous rate constant of the BP electrode with the highest amount of surfactant is comparable to those of state-of-the-art electrodes. Our promising results call for more research on the potential use of BP electrodes in redox flow batteries.

  14. Electrochemical degradation of the chloramphenicol at flow reactor

    International Nuclear Information System (INIS)

    Rezende, Luis Gustavo P.; Prado, Vania M. do; Rocha, Robson S.; Beati, Andre A.G.F.; Sotomayor, Maria del Pilar T.; Lanza, Marcos R.V.

    2010-01-01

    This paper reports a study of electrochemical degradation of the chloramphenicol antibiotic in aqueous medium using a flow-by reactor with DSA anode. The process efficiency was monitored by chloramphenicol concentration analysis with liquid chromatography (HPLC) during the experiments. Analysis of Total Organic Carbon (TOC) was performed to estimate the degradation degree and Ion Chromatography (IC) was performed to determinate inorganic ions formed during the electrochemical degradation process. In electrochemical flow-by reactor, 52% of chloramphenicol was degraded, with 12% TOC reduction. IC analysis showed the production of chloride ions (25 mg L -1 ), nitrate ions (6 mg L -1 ) and nitrite ions (4.5 mg L -1 ). (author)

  15. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification

    Directory of Open Access Journals (Sweden)

    Il-Hoon Cho

    2018-01-01

    Full Text Available An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT. Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms.

  16. Sleep Deprivation Impairs and Caffeine Enhances My Performance, but Not Always Our Performance.

    Science.gov (United States)

    Faber, Nadira S; Häusser, Jan A; Kerr, Norbert L

    2017-02-01

    What effects do factors that impair or enhance performance in individuals have when these individuals act in groups? We provide a framework, called the GIE ("Effects of Grouping on Impairments and Enhancements") framework, for investigating this question. As prominent examples for individual-level impairments and enhancements, we discuss sleep deprivation and caffeine. Based on previous research, we derive hypotheses on how they influence performance in groups, specifically process gains and losses in motivation, individual capability, and coordination. We conclude that the effect an impairment or enhancement has on individual-level performance is not necessarily mirrored in group performance: grouping can help or hurt. We provide recommendations on how to estimate empirically the effects individual-level performance impairments and enhancements have in groups. By comparing sleep deprivation to stress and caffeine to pharmacological cognitive enhancement, we illustrate that we cannot readily generalize from group results on one impairment or enhancement to another, even if they have similar effects on individual-level performance.

  17. Comparison of Lithium-Ion Anode Materials Using an Experimentally Verified Physics-Based Electrochemical Model

    Directory of Open Access Journals (Sweden)

    Rujian Fu

    2017-12-01

    Full Text Available Researchers are in search of parameters inside Li-ion batteries that can be utilized to control their external behavior. Physics-based electrochemical model could bridge the gap between Li+ transportation and distribution inside battery and battery performance outside. In this paper, two commercially available Li-ion anode materials: graphite and Lithium titanate (Li4Ti5O12 or LTO were selected and a physics-based electrochemical model was developed based on half-cell assembly and testing. It is found that LTO has a smaller diffusion coefficient (Ds than graphite, which causes a larger overpotential, leading to a smaller capacity utilization and, correspondingly, a shorter duration of constant current charge or discharge. However, in large current applications, LTO performs better than graphite because its effective particle radius decreases with increasing current, leading to enhanced diffusion. In addition, LTO has a higher activation overpotential in its side reactions; its degradation rate is expected to be much smaller than graphite, indicating a longer life span.

  18. Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte

    Science.gov (United States)

    Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.

    2015-04-01

    The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.

  19. In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Lin, Qian; Sha, Yujing; Zhao, Bote; Chen, Yubo; Tadé, Moses O.; Shao, Zongping

    2015-01-01

    Highlights: • Cobalt oxide nanosheets in situ electrochemical generated from commercial LiCoO_2. • TEM indicates creation of cobalt oxide nanosheets from coarse layered LiCoO_2_. • Coarse-type LiCoO_2 with high tap density shows promising anode performance. • Optimizing weight ratio of LiCoO_2 in electrode, a high capacity was achieved. - Abstract: Cobalt oxides are attractive alternative anode materials for next-generation lithium-ion batteries (LIBs). To improve the performance of conversion-type anode materials such as cobalt oxides, well dispersed and nanosized particulate morphology is typically required. In this study, we describe the in situ electrochemical generation of cobalt oxide nanosheets from commercial micrometer-sized LiCoO_2 oxide as an anode material for LIBs. The electrode material as prepared was analyzed by XRD, FE-SEM and TEM. The electrochemical properties were investigated by cyclic voltammetry and by a constant current galvanostatic discharge–charge test. The material shows a high tap density and promising anode performance in terms of capacity, rate performance and cycling stability. A capacity of 560 mA h g"−"1 is still achieved at a current density of 1000 mA g"−"1 by increasing the amount of additives in the electrode to 40 wt%. This paper provides a new technique for developing a high-performance conversion-type anode for LIBs.

  20. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.

    Science.gov (United States)

    Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian

    2013-02-01

    MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.