WorldWideScience

Sample records for electrolytes synthesis rheology

  1. Self-Assembled Silica Nano-Composite Polymer Electrolytes: Synthesis, Rheology & Electrochemistry

    Khan, Saad A.: Fedkiw Peter S.; Baker, Gregory L.

    2007-01-24

    The ultimate objectives of this research are to understand the principles underpinning nano-composite polymer electrolytes (CPEs) and facilitate development of novel CPEs that are low-cost, have high conductivities, large Li+ transference numbers, improved electrolyte-electrode interfacial stability, yield long cycle life, exhibit mechanical stability and are easily processable. Our approach is to use nanoparticulate silica fillers to formulate novel composite electrolytes consisting of surface-modified fumed silica nano-particles in polyethylene oxides (PEO) in the presence of lithium salts. We intend to design single-ion conducting silica nanoparticles which provide CPEs with high Li+ transference numbers. We also will develop low-Mw (molecular weight), high-Mw and crosslinked PEO electrolytes with tunable properties in terms of conductivity, transference number, interfacial stability, processability and mechanical strength

  2. Novel reversible and switchable electrolytes based on magneto-rheology

    Ding, Jie; Peng, Gangrou; Shu, Kewei; Wang, Caiyun; Tian, Tongfei; Yang, Wenrong; Zhang, Yuanchao; Wallace, Gordon G.; Li, Weihua

    2015-10-01

    Replacing organic liquid electrolytes with solid electrolytes has led to a new perspective on batteries, enabling high-energy battery chemistry with intrinsically safe cell designs. However, most solid/gel electrolytes are easily deformed; under extreme deformation, leakage and/or short-circuiting can occur. Here, we report a novel magneto-rheological electrolyte (MR electrolyte) that responds to changes in an external magnetic field; the electrolyte exhibits low viscosity in the absence of a magnetic field and increased viscosity or a solid-like phase in the presence of a magnetic field. This change from a liquid to solid does not significantly change the conductivity of the MR electrolyte. This work introduces a new class of magnetically sensitive solid electrolytes that can enhance impact resistance and prevent leakage from electronic devices through reversible active switching of their mechanical properties.

  3. Rheological and Electrochemical Properties of Nanoclay Added Electrolyte for Dye Sensitized Solar Cells

    Highlights: • We study nanoclay added electrolyte in comparison to liquid electrolyte. • Electrolyte containing nanoclay shows viscoelastic behavior. • Nanoclay in the electrolyte increases thermal stability and suppresses aging. • Two parallel charge transport mechanisms of the electrolyte are examined. - Abstract: We explored quasi-solid electrolyte containing nanoclay and iodide/triiodide (I−/I3−) redox mediator in dye sensitized solar cells (DSSCs). Compared with traditional iodine based liquid electrolyte, nanoclay-based quasi-solid electrolyte provided similar conversion efficiency and carrier diffusivity. In addition, the nanoclay in the electrolyte increases thermal stability and suppresses aging behavior. The rheology measurement showed that the enhancement was attributed to the gelation of the quasi-solid electrolyte. The addition of nanoclay increased the optimum amount of iodine in the electrolyte, since a partial adsorption of iodide ions on the positive surface of the nanoclay reduces ion concentration in the electrolyte and changes the carrier transfer path. This adsorption increased in the quantity of the iodide to optimize the performance of the quasi-solid electrolyte. We have found that the charge transport in the electrolyte occurs via two parallel processes: normal physical diffusion and grotthus-type bond exchange

  4. Electrolytic Synthesis and Characterizations of Silver Nanopowder

    T. Theivasanthi; M. Alagar

    2011-01-01

    This work reports a simple, novel, cost effective and eco-friendly electrolytic synthesis of silver nanoparticles using AgNO3 as metal precursor. The synthesis rate is much faster than other methods and this approach is suitable for large scale production. They are characterized by XRD, SEM and FT-IR techniques to analyze size, morphology and functional groups. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles. Their particle size is found to be 24 nm and speci...

  5. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    MichaelStoukides

    2014-01-01

    Developed in the early 1900s, the HaberBosch synthesis is the dominant NH3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS), more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus fa...

  6. Electrolytic Synthesis and Characterizations of Silver Nanopowder

    Theivasanthi, T

    2011-01-01

    This work reports a simple, novel, cost effective and eco-friendly electrolytic synthesis of silver nanoparticles using AgNO3 as metal precursor. The synthesis rate is much faster than other methods and this approach is suitable for large scale production. They are characterized by XRD, SEM and FT-IR techniques to analyze size, morphology and functional groups. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles. Their particle size is found to be 24 nm and specific surface area (SSA) is 24 m2/g. Analysis of Ag nanoparticles SSA reports that increasing their SSA improves their antibacterial actions. Microbiology assay founds that Ag nanoparticles are effective against E.coli and B.megaterium bacteria. SSA of bacteria analysis reveals that it plays a major role while reacting with antimicrobial agents.

  7. Synthesis and characterizations of novel polymer electrolytes

    Chanthad, Chalathorn

    Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate end-blocks is described for the first time. The synthetic strategy involves the preparation of the telechelic fluoropolymers using a functional benzoyl peroxide initiator as the macro-chain transfer agent for subsequent RAFT polymerization of the imidazolium methacrylate monomer. As revealed in DSC, SAXS and dielectric relaxation spectroscopy (DRS) measurements, there was no microphase separation in the triblock copolymers, likely due to solubility of ionic liquid moieties in the fluoropolymer matrix. The anionic counterion has direct impact on the thermal properties, ionic conductivity and segmental dynamics of the polymers. The temperature dependence of the ionic conductivity is well described by the Vogel-Tamman-Fulcher model, suggesting that ion motion is closely coupled to segmental motion. In Chapter 4 and 5, new solid electrolytes for lithium cations have been synthesized by catalyzed hydrosilylation reaction involving hydrogen atoms of polysiloxane and polyhedral oligomeric silsesquioxane (POSS) and double bonds of vinyl tris17-bromo-3,6,9,12,15- pentaoxaheptadecan-1-ol silane. The obtained structures are based on branched or dendritic with ionic liquid-ethylene oxide oligomer. High room temperature ionic conductivities have been obtained in the range of 10-4-10-5 can be regarded as solid electrolytes. This is attributed to the high concentration of ions from ionic liquid moieties in the tripodand molecule, high segmental mobility, and high ion dissociation from ethylene oxide spacers. The influence of anion structures and lithium salts and concentration has been investigated.

  8. Electrolytes and Electrodes for Electrochemical Synthesis of Ammonia

    Lapina, Alberto

    evaluate their applicability to electrochemical synthesis of ammonia. First a number of potential electrolytes are investigated in the temperature range 25-400°C in order to find a proton conductor with a conductivity higher than 10-4 S/cm in dry atmosphere (pH2O < 0.001 atm). The conductivity of materials...... synthesis....

  9. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    MichaelStoukides

    2014-01-01

    Full Text Available Developed in the early 1900's, the “Haber-Bosch” synthesis is the dominant NH3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS, more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13×10−8 mol s−1 cm−2, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe0.7Cu0.1Ni0.2O3, cathode. At high temperatures (>500oC the maximum rate was 9.5*10-9 mol s−1 cm−2 using Ce0.8Y0.2O2-δ -[Ca3(PO42 -K3PO4] as electrolyte and Ag-Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level, are discussed.

  10. Synthesis and rheological properties of an iron oxide ferrofluid

    A ferrofluid (FF) was synthesized in air using a co-precipitation method. Some rheological properties and magnetoviscous effects of this sample were studied. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for characterization of the solid particles, and the rheological properties were investigated with a special rheometer with variable magnetic field. Magnetic particles with mean particle size of 10.6 nm were obtained. Rheological results show that the shear thinning behavior in the absence and presence of magnetic field is different from that based fluid behavior. Moreover, contrary to expectation, the magnetoviscous effect showed an initial increase at low shear rates (near 15 s-1) and decrease at higher shear rates. The rheological properties of FF depend on the rearrangement of nanoparticles. In addition, time is an effective factor in the formation and destruction of magnetically induced structures

  11. Synthesis and rheological properties of an iron oxide ferrofluid

    Ghasemi, E. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of); Inorganic Pigment and Glaze Group, Institute for Colorants, Paint and Coating (ICPC), Tehran 16688 14811 (Iran, Islamic Republic of)], E-mail: eghasemi@iust.ac.ir; Mirhabibi, A. [IUST Centre of Excellence for Advanced Materials and Processing (CEAMP), Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of); Edrissi, M. [Chemical Engineering Department, Amirkabir University of Technology (AUT), Tehran (Iran, Islamic Republic of)

    2008-11-15

    A ferrofluid (FF) was synthesized in air using a co-precipitation method. Some rheological properties and magnetoviscous effects of this sample were studied. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for characterization of the solid particles, and the rheological properties were investigated with a special rheometer with variable magnetic field. Magnetic particles with mean particle size of 10.6 nm were obtained. Rheological results show that the shear thinning behavior in the absence and presence of magnetic field is different from that based fluid behavior. Moreover, contrary to expectation, the magnetoviscous effect showed an initial increase at low shear rates (near 15 s{sup -1}) and decrease at higher shear rates. The rheological properties of FF depend on the rearrangement of nanoparticles. In addition, time is an effective factor in the formation and destruction of magnetically induced structures.

  12. Nanocomposite electrolytes with fumed silica in poly(methyl methacrylate): thermal, rheological and conductivity studies

    Ahmad, Shahzada; Agnihotry, S.A. [Electronic Materials Division, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Ahmad, Sharif [Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2005-01-10

    Composite polymer electrolytes (CPEs), were prepared by adding hydrophilic fumed silica in different proportions upto 5wt.% to gel polymeric electrolyte (GPE) comprising liquid electrolyte (1M LiClO{sub 4} in propylene carbonate) immobilized with 15wt.% poly(methyl methacrylate) (PMMA). The effect of fumed silica content in the CPEs on the ionic conductivity and viscosity over a wide temperature range was investigated. The resultant CPEs showed room temperature conductivity ({sigma}{sub 25}) as high as 3.8mScm{sup -1} along with viscosity value of 3700P for 2wt.% SiO{sub 2} addition. Fumed silica addition both to the liquid electrolyte and to the GPE exhibits similar conductivity behaviour and this suggests a passive role of PMMA. The shear thinning behaviour, pointing towards easy processablity, high thermal stability and low volatility, makes these CPEs potential candidates as solid-like electrolytes for electrochemical devices. (author)

  13. Synthesis and electric conductivity of solid electrolyte of NASICON type

    The sequences of solid-phase reactions during synthesis of solid electrolyte corresponding to Na3Zr2Si2PO12 stoichiometric composition are studied. It is shown that solid-phase reaction of ZrO(NO3)2x2H2O, Na2CO3, NH4H2PO4 and amorphous SiO2 proceeds through stages of nitrate-zirconium oxide dehydration, ammonium dihydrophosphate decomposition, formation and decomposition of ammonium and sodium. Intermediate reaction products are sodium and zirconium phosphates, and some of ZrO2 takes part in the reaction in the form of amorphous or metastable tetragonal modification and another part transforms into a stable monoclinic one. NASICON formation starts at 1000 deg C, only at this stage silicon dioxide begins to react, which is already transformed from amorphous phase into a mixture of tridymite and α-crystobalyte. After annealing at 1230 deg C a single-phase solid electrolyte Na3Zr2Si2PO12 having conductivity 0.14 S/cm at 300 deg C and 0.00028 S/cm at 25 deg C

  14. Synthesis, rheology and forming of Y-Ba-Cu-O ceramics

    Green, T.M.

    1993-07-01

    A chemical synthesis route is discussed which results in a low- temperature precursor to Y-Ba-Cu-O ceramics; it is based on use of molten Ba(OH){sub 2}{center_dot}8H{sub 2}O flux. Two different chemical systems have been examined; the first one, based on nitrate salts, has been demonstrated to be a viable precursor material for tape casting and extrusion; the second, made from acetate salts, has been used for powder synthesis and extrusion. Rheology of pastes shows that their flow may be fit to either Bingham Plastic or Hershel- Bulkley models. Yield stress is controlled in both pastes by volume fraction solids. Viscosity also follows solids loading in the paste. Shear thinning is controlled by colloidal nature of precursor. The paste has colloidal microstructure. Comparison of concentric cylinder rheometry and piston extrusion rheometry shows order of magnitude differences in yield stress, resulting from the test method and paste dilation.

  15. Synthesis, rheology and forming of Y-Ba-Cu-O ceramics

    A chemical synthesis route is discussed which results in a low- temperature precursor to Y-Ba-Cu-O ceramics; it is based on use of molten Ba(OH)28H2O flux. Two different chemical systems have been examined; the first one, based on nitrate salts, has been demonstrated to be a viable precursor material for tape casting and extrusion; the second, made from acetate salts, has been used for powder synthesis and extrusion. Rheology of pastes shows that their flow may be fit to either Bingham Plastic or Hershel- Bulkley models. Yield stress is controlled in both pastes by volume fraction solids. Viscosity also follows solids loading in the paste. Shear thinning is controlled by colloidal nature of precursor. The paste has colloidal microstructure. Comparison of concentric cylinder rheometry and piston extrusion rheometry shows order of magnitude differences in yield stress, resulting from the test method and paste dilation

  16. Synthesis of and characterization of lithium ceramic electrolytes

    Rangasamy, Ezhiylmurugan

    The depleting fossil fuel reserves, rising oil prices and the need for reduction in CO2 emissions have created an unprecedented impetus for vehicle electrification. Lithium batteries have the highest energy density of the various available battery technologies. They are the most promising battery candidate to enable Hybrid Electric Vehicles (HEVs) and Plug-in Electric Vehicles (PEVs). However, current Li-ion current battery technology is costly and requires a significant increase in energy density to achieve range comparable to conventional gasoline-powered vehicles. Advanced lithium battery technologies such as Li-S and Li-O2 could potentially offer significant improvements in energy density to address the limitations with current Li-ion technology. The implementation of these advanced battery technologies, however, has been limited by the lack of electrolyte technology to enable the use of metallic lithium anodes. Thus, there is a clear and compelling need to develop new electrolyte materials that exhibit the unique combination of fast ion conductivity, stability against lithium, air and moisture. Lithium Lanthanum Titanium Oxide (LLTO) and Lithium Lanthanum Zirconium Oxide (LLZO) have been identified as viable candidates for the advanced battery technologies. However, issues concerning phase purity and densification warrant developing new and novel synthetic techniques. A single step procedure has been developed for the synthesis of Lithium Lanthanum Titanium Oxide (LLTO) membranes. The single step procedure combines phase formation and densification of the ceramic electrolyte in a hot pressing technique. The effect of synthetic technique on relative density, grain structure and ionic conductivity of the LLTO membranes has been explored in detail. The critical step of synthesizing cubic Lithium Lanthanum Zirconium Oxide (LLZO) has been systematically studied through the controlled doping of Al, using X-Ray Diffraction (XRD) analysis. Effects of Li and Al concentration on the crystal structure of LLZO were also studied in detail. Critical dopant concentration of Al to stabilize cubic LLZO was established during the course of this study. Systematic doping studies on the 24c site of La3+ in the primary lattice have also been explored in detail using XRD analysis to improve the ionic conductivity by maintaining the Li sub-lattice free of dopants. It is hypothesized that the supervalent substitutions create Li vacancies in the sub-lattice promoting disorder, thereby stabilizing cubic LLZO. While Ce4+ substitution for La3+ proved to be effective in synthesizing cubic LLZO, precipitation of Ce4+ observed under Backscattered electron (BSE) imaging limited its ionic conductivity. In an effort to develop flexible, solution-based synthetic techniques, two novel processes were established to prepare low dimensional, cubic LLZO powders. Hot pressing of the synthesized LLZO samples yielded high relative density (>95%) ceramic electrolyte membranes. Arrhenius studies using EIS to measure activation energy revealed and empirical relationship between the grain size and activation energy for dense LLZO membranes.

  17. Synthesis and characterization of aminated perfluoro polymer electrolytes

    Page-Belknap, Zachary Stephan Glenn

    Polymer electrolytes have been developed for use in anion exchange membrane fuel cells for years. However, due to the highly corrosive environment within these fuel cells, poor chemical stability of the polymers and low ion conductivity have led to high development costs and thus prevention from widespread commercialization. The work in this study aims to provide a solution to these problems through the synthesis and characterization of a novel polymer electrolyte. The 800 EW 3M PFSA sulfonyl fluoride precursor was aminated with 3-(dimethylamino)-1-propylamine to yield a functional polymer electrolyte following quaternization, referred to in this work as PFSa-PTMa. 1 M solutions of LiPF6, HCL, KOH, NaOH, CsOH, NaHCO3 and Na2CO3 were used to exchange the polymer to alternate counterion forms. Chemical structure analysis was performed using both FT and ATR infrared spectroscopy to confirm sulfonyl fluoride replacement and the absence of sulfonic acid sites. Mechanical testing of the polymer, following counterion exchange with KOH, at saturated conditions and 60 ºC exhibited a tensile strength of 13 +/- 2.0 MPa, a Young's modulus of 87 +/- 16 MPa and a degree of elongation reaching 75% +/- 9.1%, which indicated no mechanical degradation following exposure to a highly basic environment. Conductivities of the polymer in the Cl- and OH- counterion forms at saturated conditions and 90 ºC were observed at 26 +/- 8.0 mS cm-1 and 1.1 +/- 0.1 mS cm-1, respectively. OH- conductivities were slightly above those observed for CO32- and HCO 3- counterions at the same conditions, 0.63 +/- 0.18 and 0.66 +/- 0.21 mS cm-1 respectively. The ion exchange capacity (IEC) of the polymer in the Cl- counterion form was measured via titration at 0.57 meq g-1 which correlated to 11.2 +/- 0.10 water molecules per ion site when at 60ºC and 95% relative humidity. The IEC of the polymer in the OH- counterion form following titration expressed nearly negligible charge density, less than 0.01 meq g -1. The low OH- conductivities and IEC were attributed to the formation of a predominately zwitterionic polymer when exposed to a strong base. Removal of the sulfonamide proton following counterion exchange with a strong base and formation of a zwitterion was confirmed by FTIR with the absence of a primary amine stretch between 3000-3600 cm-1. 1H NMR analysis of small molecule analogues established that the sulfonamide site was not methylated during quaternization as evident by the exclusion of a strong singlet around 2.9 ppm. pH indication tests with Thymolphthalein illuminated the slight presence of free OH- ions within the polymer following counterion exchange thus validating the low IEC and formation of a predominately zwitterionic polymer. Recommended future work with this polymer electrolyte consists of fine tuning the polymer to be less or completely zwitterionic, pKa analysis of the sulfonamide linkage with small molecule analogues, implementation into microbial fuel cell and biological separation processes for pH regulation, and development as a support infrastructure for ionic liquids.

  18. Synthesis and characterization of polyethylene oxide based nano composite electrolyte

    M Malathi; K Tamilarasan

    2014-08-01

    Polyethylene oxide (PEO) – montmorillonite (MMT) composite electrolytes were synthesised by solution casting technique. The salt used for the study is Lithium perchlorate (LiClO4). The morphology and percentage of crystallinity data were obtained through X-ray Diffraction and Differential Scanning Caloriemetry. The ionic conductivity of the polymer electrolytes was studied by impedance spectroscopy. The addition of MMT resulted in an increase in conductivity over the temperature range of 25–60°C. The ionic conductivity of a composite polymer electrolyte containing 1.2 wt% MMT was 1 × 10-5 S cm−1 at 25°C, which is at least one order of magnitude higher than that of the polymer electrolyte (4 × 10-7S cm−1). The increase in ionic conductivity is explained on the basis of crystallinity of the polymer electrolyte.

  19. Microplasma synthesis on aluminum with additions of iron and nickel soluble complexes in electrolyte

    Highlights: ► Alkaline homogeneous electrolyte with transition metals complexes. ► Coatings contain metallic iron, nickel and their oxides in alumina–silica matrix. ► Effect of Fe/Ni ratio on coatings properties and process characteristics. - Abstract: The microplasma synthesis of coatings containing iron and nickel from homogeneous electrolytes has been studied. For stabilization of transition metals in solution, it is proposed to use chelation. It was found that the synthesis of coatings using alternating current leads to the formation of metallic iron and nickel particles in addition to oxide phases. The iron and nickel complexes concentrations ratio in the electrolyte correlates with the coatings composition. Obtained coatings have been studied by scanning electron microscopy with X-ray microanalyser and by X-ray diffraction with Cu and Mo radiation. The metal content in the coating was determined spectrophotometrically from the absorption of iron thiocyanate complexes and nickel dimethylglyoxime complex.

  20. Synthesis and Characterization of Solid Polymer Electrolyte based on Activated Carbon for Solid State Capacitor

    Graphical abstract: - Highlights: • New silver ion conducting solid polymer electrolyte based on activated carbon. • 70(70PEO:30AgI):30 AC exhibits the highest conductivity. • All solid state symmetric capacitor is reported. • The presence of activated carbon mimics as capacitive behavior. - Abstract: This paper describes the synthesis and characterization of a new silver ion conducting solid polymer electrolyte based on activated carbon. Solid nanocomposite polymer electrolytes and their application in energy storage devices has been widely studied because of their environmental safe, no leakage and ion transport mechanism directly connected with the salt (silver iodide) used. Aqueous and non-aqueous electrolytes are widely used in electronic devices but have numerous limitations such as volatility, flammability and leakage. Therefore, we have developed all solid state capacitor in this report and used polymer electrodes and electrolyte as the host. A solid polymer electrode of type 1–x (70 polyethylene oxide: 30 silver iodide): x activated carbon (where x = 10 ≤ x ≤ 50 wt.%) composites have been synthesized using hot press method. The ionic conductivity has been significantly improved for the optimum amount (30 wt.%) of the activated carbon added into the polymer host. The performance of the synthesized electrodes is studied by various physical and electrochemical methods. The leakage current and self-discharge characteristics of the solid state capacitor device have been reported

  1. Synthesis of High-Quality Graphene through Electrochemical Exfoliation of Graphite in Alkaline Electrolyte

    Tripathi, Prashant; Patel, Ch. Ravi Prakash; Shaz, M. A.; Srivastava, O N

    2013-01-01

    Owing to wide variety of applications of graphene, high-quality and economical way of synthesizing graphene is highly desirable. In this study, we report a cost effective and simple approach to production of high-quality graphene. Here the synthesis route is based on electrochemical exfoliation of graphite. Instead of using strong acids (which oxidise and damage the geometrical topology of graphene), we have used alkaline solution (KOH dissolved in water) as electrolyte. TEM analysis shows th...

  2. Synthesis and thermal behaviour of an amorphous solid polymer electrolyte

    Barbosa, P. C.; Rodrigues, L.C.; Silva, Maria Manuela; Smith, Michael John; Costa, Marta Slvia Freitas da

    2010-01-01

    In this study the synthesis of an amorphous polymer network, poly[oxymethylene-oligo(oxyethylene)], designated as aPEO, is described. This polymer has been characterized by gel permeation chromatography, thermal analysis, conductivity measurements, evaluation of electrochemical stability and nuclear magnetic resonance spectroscopy. The synthetic procedure developed permits partial fractionation of the product of the polymerization reaction. This linear macromolecule appears to be a promising ...

  3. Synthesis of tough nanoporous metals by controlled electrolytic dealloying

    Senior, N. A.; Newman, R. C.

    2006-05-01

    Dealloying (selective dissolution) of homogeneous metallic alloys such as Ag-Au generates nanoporous metals with intriguing properties. Until now, it has not been possible routinely to prepare such materials in a form in which they would resist mechanical strains, such as might be encountered in applications as membranes, sensors or actuators. Now a threshold potential has been identified, for dealloying of Ag-Au in aqueous HClO4, above which spontaneous transgranular fracture occurs due to the formation of a monolayer of gold hydroxide. The fracture mechanism involves a reduction in surface diffusivity, preventing relaxation of induced tension in the porous material, and possible more exotic effects. By optimizing the Au content of the alloy, staying below the threshold potential and increasing the temperature of the electrolyte, dealloyed membranes with a high degree of mechanical integrity have been prepared. When prepared in this way, the nanoporous material shows peculiar behaviours, such as grain-boundary sintering under annealing, and reversible stiffening and embrittlement when dried in air.

  4. Electrolytic Synthesis and Characterization of Electrocatalytic Ni-W Alloy

    Elias, Liju; Scott, Keith; Hegde, A. Chitharanjan

    2015-11-01

    Inspired by the more positive (about 0.38 V nobler) discharge potential of hydrogen on Ni-W alloy compared to that on both Ni and W, a Ni-W alloy has been developed electrolytically as an efficient electrode material for water electrolysis. The deposition conditions, for peak performance of the electrodeposits for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH medium have been optimized. Electrocatalytic activity of the coatings, deposited at different current densities (c.d.'s) for water splitting reactions of HER and OER was tested by cyclic voltammetry and chronopotentiometry. It was found that Ni-W alloys deposited, at 4.0 A/dm2 (having about 12.49 wt.% W) and 1.0 A/dm2 (having about 0.95 wt.% W) are good electrode materials as cathode (for HER) and anode (for OER), respectively. A dependency of the electrocatalytic activity for HER and OER with relative amount of Ni and W, in the deposit was found. The variation of electrocatalytic activity with W content showed the existence of a synergism between high-catalytic property of W (due to low hydrogen overvoltage) and Ni (having increased adsorption of OH- ions), for hydrogen (as cathode) and oxygen (as anode) evolution, respectively. Electrocatalytic activities of the coatings, developed at different c.d.'s were explained in the light of their phase structure, surface morphology, and chemical composition, confirmed by XRD, FESEM, and EDX analysis. The effect of c.d. on thickness, hardness, composition, HER, and OER was analyzed, and results were discussed with possible mechanisms.

  5. RHEOLOGICAL PHASE SYNTHESIS AND CHARACTERIZATION OF MICRO-SIZED Li4Ti5O12

    LINGLING XIE

    2010-01-01

    Full Text Available Zero-strain anode material of Li4Ti5O12 for lithium ion battery was successfully synthesized via the rheological phase reaction (RPR method. The as-prepared powders were characterized by means of powder X-ray diffraction (XRD, scanning electron microscope (SEM and particle size distribution analysis (PSD, and the electrochemical properties of the powders were evaluated by the galvanostatic discharge test and cyclic voltammetry (CV. The results revealed that well-crystallized uniform micro-sized Li4Ti5O12 powders were obtained at 800°C for different calcination times via the simple template-free rheological phase route. Among these RPR-derived Li4Ti5O12 powders, one synthesized at 800°C for 22 h displays the initial discharge capacity of 184.3 mAh/g and excellent characteristic of cyclic voltammetry.

  6. RHEOLOGICAL PHASE SYNTHESIS AND CHARACTERIZATION OF MICRO-SIZED Li4Ti5O12

    LINGLING, XIE; XIAOYU, CAO; CHANGWEI, LIU; CHIWEI, WANG.

    Full Text Available Zero-strain anode material of Li4Ti5O12 for lithium ion battery was successfully synthesized via the rheological phase reaction (RPR) method. The as-prepared powders were characterized by means of powder X-ray diffraction (XRD), scanning electron microscope (SEM) and particle size distribution analy [...] sis (PSD), and the electrochemical properties of the powders were evaluated by the galvanostatic discharge test and cyclic voltammetry (CV). The results revealed that well-crystallized uniform micro-sized Li4Ti5O12 powders were obtained at 800C for different calcination times via the simple template-free rheological phase route. Among these RPR-derived Li4Ti5O12 powders, one synthesized at 800C for 22 h displays the initial discharge capacity of 184.3 mAh/g and excellent characteristic of cyclic voltammetry.

  7. High-temperature electrolytic synthesis of tungsten carbide in chloride metaphosphate melts under the excess pressure of carbon oxide

    Consideration is given to possibility of multielectron processes of tungsten electrolytic reduction from dimeric forms in a narrow potential range and control of process potential, using acidic-basis properties o melt. Conditions of convergence of reduction potentials of carbon dioxide and tungsten dimeric forms were determined. Principle possibility of direct electrolytic synthesis of tungsten carbide under the excess pressure of carbon dioxide was shown. 20 refs.; 5 figs

  8. Synthesis of Single Phase Hg-1223 High Tc Superconducting Films With Multistep Electrolytic Process

    Shivagan, D D; Ekal, L A; Pawar, S H

    2003-01-01

    We report the multistep electrolytic process for the synthesis of high Tc single phase HgBa2Ca2Cu3O8+? (Hg-1223) superconducting films. The process includes : i) deposition of BaCaCu precursor alloy, ii) oxidation of BaCaCu films, iii) electrolytic intercalation of Hg in precursor BaCaCuO films and iv) electrochemical oxidation and annealing of Hg-intercalated BaCaCuO films to convert into Hg1Ba2Ca2Cu3O8+? (Hg-1223). Films were characterized by thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrolytic intercalation of Hg in BaCaCuO precursor is proved to be a novel alternative to high temperature-high pressure mercuration process. The films are single phase Hg-1223 with Tc = 121.5 K and Jc = 4.3 x 104 A/cm2.

  9. Synthesis and Rheological Properties of an Associative Star Polymer in Aqueous Solutions

    Hietala, Sami; Mononen, Pekka; Strandman, Satu; Järvi, Paula; Torkkeli, Mika; Jankova Atanasova, Katja; Hvilsted, Søren; Tenhu, Heikki

    Rheological properties of aqueous solutions and hydrogels fonned by an amphiphiIic star block copolymer poly(acrylic acid)-blockpolystyrene (PAAS4-b-PS6)4. were investigated as a function of the polymer concentration (Cp), temperature, and added saIt concentration. The water-soluble polymer...... synthesised by atom transfer radical. polymerization (ATRP) was found to fonn hydrogels at room temperature at polymer concentrations. Cp, over 22 gIL due to the interpolymer drophobic association of the PS blocks. Increasing Cp leads to stronger elastic networks at room temperature that show a gel...

  10. Chocolate rheology

    Estela Vidal Gonçalves; Suzana Caetano da Silva Lannes

    2010-01-01

    Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mas...

  11. Reactions with ZrO(NO3)2 in the synthesis of solid electrolytes of the NASICON type

    The process of NASICON solid phase synthesis is studied in detail. Solid phase reactions during the synthesis of solid electrolytes of the NASICON type taking place with zirconium dinitrate-oxide end at 300-400 deg C,i.e.before the teransition of appearing zirconium dioxide into the stable monoclinic modification The presense of the nitrate group brings about the decrease in the temperature of intensive decomposition of sodium carbonate and nitrate and sodium zirconate formation close to 180 deg C

  12. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties.

    Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K

    2016-03-01

    A group of crosslinked cyclic siloxane (SiO) and silazane (SiN) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed. PMID:26785633

  13. Synthesis of yttria-doped zirconia anodes and calcium-doped ceria electrolyte to fuel cell

    From the pursuit of lower operating temperature of fuel cells solid oxide was used polymeric precursor for the synthesis of reactive powder compositions Zr0,92Y0,08O2 for the anode and Ce0,88Ca0,12O2 for the electrolyte. The solutions were prepared using the metal in much of the composition and citric acid molar ratio of 1:3, under stirring at 60 deg C/1 h. The mixture of metallic citrates was subjected to agitation at a temperature of 80 deg C which was added ethylene glycol in the ratio 60:40 by weight citric acid / ethylene glycol, to form a resin that was pre-calcined at 300 deg C/3 h for to form the expanded resin. The powders were disaggregated in a mortar, screened and calcined at 400, 600 and 800 deg C/2 h. The powders were characterized by standard X-ray diffraction. (author)

  14. Segmented polyurethane elastomers with liquid crystalline hard segments. 1. Synthesis, characterization and rheology

    Tang, W.; MacKnight, W.J.; Welder, W. [Univ. of Massachusetts, Amherst, MA (United States)] [and others

    1995-12-01

    Segmented liquid crystalline polyurethanes (LCPUE) have been studied with hard segments composed of the mesogen 4,4`-bis(6-hydroxyhexoxy)biphenyl, 2,4-tolylene diisocyanate, and 2,6-tolylene diisocyanate and soft segments composed of poly(tetramethylene oxides). Differential scanning calorimetry and wide-angle X-ray scattering experiments show the existence of an enantiotropic mesophase in the hard domains of the elastomer. Compared with nonsegmented polyurethane containing the same mesogen, the isotropization temperature of the mesophase in the elastomer is depressed. This is a result of the oligomeric structure of the hard domains. The endotherm corresponding to the isotropization transition is also broadened, reflecting a lack of uniformity of the hard domains. Furthermore, the mesophase can be oriented by elastic deformation, and it forms a more ordered chain packing during this process. The tensile properties of these segmented polyurethanes are determined by their morphologies and can be manipulated by controlling the hard- and soft-segment concentration ratio. The rheological study indicates a broad transition from a viscoelastic solid to a viscoelastic liquid at the isotropization temperature of the mesophase. Physical gelation studies identify a liquid/solid transition when cooled to 106{degrees}C or below, and show the characteristic, critical behavior at the gel point with a power law relaxation spectrum at low frequencies.

  15. Synthesis and suspension rheology of titania nanoparticles grafted with zwitterionic polymer brushes.

    Shao, Zhen; Yang, Youngjun; Lee, Hyunsuk; Kim, Jin Woong; Osuji, Chinedum O

    2012-11-15

    Titania nanoparticles were modified by free-radical graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) at the particle surface, resulting in the formation of a 1-2 nm thick polymer brush. The zwitterionic nature of the polymer layer suggests that the suspension stability is a delicate function of pH, as well as volume fraction, salt concentration and the presence of charged or un-charged additives which may act as depletants or to screen charge interactions in the system. In this context, we characterized the suspension rheology as a function of volume fraction, pH, ionic strength and the concentration of surfactants in the suspension. Near-neutral pH, the brush layer is effective in stabilizing particles against aggregation with Newtonian behavior observed for volume fractions approaching 14%. Flocculation of particles and an onset of shear-thinning behavior was observed on decreasing pH from near-neutral. Conversely, suspension stability was maintained on increasing pH from near-neutral. Likewise, flocculation could be quickly induced by the addition of salt and cationic surfactant in small amounts, but the suspensions displayed greater stability to anionic and non-ionic surfactant additives. These results have important implications for the successful formulation of complex fluids employing zwitterionic colloids. PMID:22909963

  16. Synthesis, morphology and rheology of core-shell silicone acrylic emulsion stabilized with polymerisable surfactant

    2010-11-01

    Full Text Available Core-shell silicone acrylic emulsions with 3-methacryloxypropyl trimethoxysilane (MPTS in the shell were prepared by seeded polymerization with the assistance of polymerisable maleate surfactant (MT. Fourier transform infrared (FT-IR demonstrated the incorporation of polymerisable surfactant in copolymer. It was found that small amount of octadecyl acrylate was beneficial to emulsion stability with decreasing the particle size from 194.6 to 165.7 nm. It was also found that the particle size increased from 165.7 to 242.9 nm with the increase of MPTS concentration. Furthermore, rheological measurement indicated that the emulsion was endowed with pseudoplasticity. At low shear rate, marginal reduction in viscosity was detected when MPTS concentration increased to 2%, while great increase in viscosity was observed with higher MPTS concentration, the interaction force among emulsion particles became the predominant factor instead of particle size. In addition, better water resistance was observed when MT concentration was lower than 1.5%, and MPTS concentration higher than 2%. Moreover, surface roughness was increased with MPTS addition, the crosslinking among core and shell reconstructed the surface morphology of film.

  17. Study and synthesis of orthophosphates by electrolytic method: new methodology in the generation of nanostructured materials

    An electrochemical synthesis of orthophosphated compounds (PO43-) of divalent cations is made to establish a standardized synthetic route for the production of nano-sized particles. The hypothesis was established on the use of common ligands producing a supersaturated system of ions and that the application of an electric current in the system functions as a generator of electromotive force and nanometric crystals of a specific phase. The method has been synthesized carbonated apatite from: hydroxyapatite nanometer dimension and /or defended in calcium, carbonated apatite of nanometer-sized strontium, barium carbonate apatite, apatite doped with magnesium and lanthanum cations, apatite doped with silicate anions. A study was realized to find any relationship of particle size dependent of parameters in initial pH and current density. A crystallographic study of Pawley was used to determine network parameters and crystallite size from diffraction patterns. Besides phases are confirmed produced with complementary techniques such as FT-IR thermogravimetric analysis (TGA) and elemental analysis (EDS). Kinetic studies were conducted following the oxidation of EDTA and calcium intake in determining the precise point of the electrolytic synthesis reaction of apatites. (author)

  18. Synthesis and characterization of lithium-salt complexes with difluoroalkoxyborates for application as lithium electrolytes

    We present a modified method for the synthesis of a Lewis acid of acidity lower than that of BF3: ROBF2, (where R is an oligooxyethylene substituent containing 1 to 7 ethylene oxide (EO) monomeric units). The synthesis consisted of thermal decomposition of trifluoroalkoxyborate salts under reduced pressure. The derivatives synthesized were applied in complexation reactions with low-molecular-weight lithium salts, such as LiF, LiI, LiPF6 CH3COOLi, CF3COOLi and (COOLi)2. The salts obtained show properties of ionic liquids at ambient temperature. On the basis of NMR, FTIR and EIS spectroscopy, the course of the complexation reaction has been proposed and the properties of the salts obtained have been determined. The system with CF3COOLi has the highest ambient-temperature ionic conductivity of the carboxylic complex salts studied (on the order of 10−4 S cm−1). The product of the reaction of CH3(OCH2CH2)2OBF2 and LiI, applied in a solid polymer electrolyte (10 mol% in PEO), was characterized by ionic conductivity of the order of 10−6 − 10−3 S cm−1 over a temperature range between 20 − 90 °C, and high lithium transference number (0.80 − 0.87)

  19. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher energetic thermal treatments to attain high densities. In relation to the sintered products, it was confirmed the excellent homogeneity and crystallinity of microstructure provided by the chosen route, the restriction of grain growth by alumina addition, raise of hardness and fracture toughness, and higher ionic conductivity, even tough a lower bulk conductivity. These results indicate that the addition of 5 wt % alumina in CSZ matrix allows the application of this material as solid oxide fuel cell electrolytes, due to its better fracture toughness and ionic conductivity, compared to yttria-stabilized cubic zirconia ceramics. (author)

  20. Synthesis of ozone from air via a polymer-electrolyte-membrane cell with a doped tin oxide anode

    Wang, YH; Cheng, S.; Chan, KY

    2006-01-01

    The generation of ozone from air using an electrochemical cell consisting of an air cathode, a polymer-electrolyte-membrane (PEM), and a doped tin oxide anode is reported. This synthesis is environmentally friendly compared to the conventional high-voltage corona discharge process since NOx formation is eliminated; a higher ozone concentration is generated; and lower energy may be required. © The Royal Society of Chemistry 2006.

  1. Synthesis and examination of electrolytic sodium-vanadium oxide compounds intended for cathodes of lithium batteries: the mechanism of formation of electrolytic bronze ?-NaxV2O5

    For ascertaining the mechanism of electrolytic sodium-vanadium oxide bronze e-NaxV2O5 formation, which had been previously synthesized from acid vanadyl sulfate electrolyte, synthesis of ?-bronze i-NaxV2O5 was performed by electrolytic (e) oxide e-V2O5 exposure in the same sodium-containing electrolyte without current and with subsequent annealing of the exposed sample. The investigation, conducted by the methods of IR spectroscopy thermal and X-ray phase analyses, permitted ascertaining the identity of two modification of ?-bronze (e-NaxV2O5, i-NaxV2O5) and the proof of ion-exchange mechanism realization of electrolytic precursors of ?-bronze NaxV2O5 was found

  2. Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells

    Highlights: A solgel route for the synthesis of rutile TiO2 was modified to synthesize TiOxNy-C. N atoms were doped into TiOx nanoparticles solely by the heat-treatment under N2 gas. The N2-treatment produced sites more active toward ORR compared with NH3-treatment. TiOx doped with a small amount of N atoms are suggested to be responsible for ORR. -- Abstract: For use as the oxygen reduction reaction (ORR) catalyst in polymer electrolyte fuel cell cathodes, carbon-supported titanium oxynitride (TiOxNy-C) nanoparticles with a size of approximately 5 nm or less were synthesized without using NH3 gas. A solgel route developed for the synthesis of pure rutile TiO2 nanopowders was modified to prepare the carbon-supported titanium oxide nanoparticles (TiOx-C). For the first time, N atoms were doped into TiOx solely by heating TiOx-C under an inexpensive N2 atmosphere at 873 K for 3 h, which could be due to carbothermal reduction. The TiOx-C powder was also heated under NH3 gas at various temperatures (8731273 K) and durations (330 h). This step resulted in the formation of a TiN phase irrespective of the heating conditions. Both N2- and NH3-treated TiOxNy-C did not crystallize well; however, the former showed a mass activity more than three times larger than that of the latter at 0.74 V versus the standard hydrogen electrode. Thus, titanium oxide nanoparticles doped with a small amount of N atoms are suggested to be responsible for catalyzing ORR in the case of N2-treated TiOxNy-C

  3. Computational rheology

    Owens, RG

    2002-01-01

    Modern day high-performance computers are making available to 21st-century scientists solutions to rheological flow problems of ever-increasing complexity. Computational rheology is a fast-moving subject - problems which only 10 years ago were intractable, such as 3D transient flows of polymeric liquids, non-isothermal non-Newtonian flows or flows of highly elastic liquids through complex geometries, are now being tackled owing to the availability of parallel computers, adaptive methods and advances in constitutive modelling.Computational Rheology traces the development of numerical methods fo

  4. Molecular rheology of branched polymers: Decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling

    Van Ruymbeke, Evelyne

    2014-01-01

    An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched polymers. It is important to appreciate that, even optimal model systems, i.e., those synthesized with high-vacuum anionic methods, need thorough characterization via a combination of techniques. Besides helping to improve synthetic techniques, this methodology will be significant in fine-tuning mesoscopic tube-based models and addressing outstanding issues such as the quantitative description of the constraint release mechanism. © 2014 the Partner Organisations.

  5. Sludge Rheology

    Baudez, J.C.

    2010-01-01

    There is continuous pressure on industries which pump and process sludge to improve efficiency and increase concentration. This leads to an increase in the non-Newtonian nature of the sludge. This presentation gives you an overview of sludge rheology.

  6. Chocolate rheology

    Estela Vidal Gonçalves

    2010-12-01

    Full Text Available Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mass transfer. Consumer demands make it possible to obtain a product that complies with these requirements. Chocolate industries work with products in a liquid phase in conching, tempering, and also during pumping operations. A good design of each type of equipment is essential for optimum processing. In the design of every process, it is necessary to know the physical characteristics of the product. The rheological behavior of chocolate can help to know the characteristics of application of the product and its consumers. Foods are generally in a metastable state. Their texture depends on the structural changes that occur during processing. Molten chocolate is a suspension with properties that are strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Chocolate rheology is extensively studied, and it is known that chocolate texture and stability is strongly affected by the presence of specific crystals

  7. Synthesis and characterization of nanocrystalline dysprosia stabilized zirconia based electrolyte for intermediate-temperature solid oxide fuel cell

    The present work concerns studies on synthesis (by chemical co-precipitation) and characterization (microstructural and electrical) of 8 and 10 mol% dysprosia stabilized nanocrystalline cubic-zirconia (DySZ) for use as electrolyte materials in solid oxide fuel cell in the intermediate temperature range. Identity and crystallite size of the calcined powders were determined by X-ray diffraction. Microstructural studies of calcined/sintered product by transmission and scanning electron microscopes allowed verification of crystallite/particle size and analysis of morphology/density/distribution of the defects, respectively. Impedance spectroscopy revealed that the contribution of grain boundary resistance is higher than that of the bulk. Furthermore, conductivity analysis evidenced an Arrhenius type thermally activated ionic conduction above 300 deg. C. Thus, DySZ appears a possible alternative to yttria stabilized zirconia (YSZ) as electrolyte for solid oxide fuel cells due to its lower thermal and comparable ionic conductivity as YSZ.

  8. Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte

    Subramanian, V.; Zhu, Hongwei; Wei, Bingqing

    2008-03-01

    Different nanostructured manganese oxides have been synthesized by a simple precipitation technique using KMnO4 and different alcohols. The synthesized manganese oxides were extensively studied using TEM, XRD, XPS, surface area measurements and electrochemical studies. TEM observations showed a range of nanostructures from nanowiskers to nanoparticles. This synthesis method promises the tuning of electronic and structural properties of the nanostructured manganese oxides by simply varying the alcohols used in the reactions. MnO2 shows more whisker-like morphology while the Mn2O3 shows particle morphology. The nanostructured manganese oxides showed excellent performance as a pseudocapacitor electrode in a neutral electrolyte.

  9. Synthesis and investigation of electrolytic sodium-vanadium oxide compounds for cathodes of lithium batteries: the production of compounds with stable initial characteristics

    Heterogeneous vanadium oxide compounds were prepared during electrolysis of vanadyl sulfate solution in the presence of sodium ions. The limits of process parameters for synthesis of electrolysis products with stable initial electrochemical characteristics were ascertained. It is shown that the presence of sodium ions gives rise to the deposit adhesion o substrate. Electrochemical properties of the electrolytic deposits depend on the content of sodium ions in deposition electrolyte and subsequent thermal treatment of the deposit. Specific discharge capacity of electrolytic Na-vanadium oxide compounds may reach 320 Ah/kg in case of discharge up to 2.0 V at a density of 100 μA/cm2

  10. The Dilemma of Supporting Electrolytes for Electroorganic Synthesis: A Case Study on Kolbe Electrolysis.

    Stang, Carolin; Harnisch, Falk

    2016-01-01

    Remarkably, coulombic efficiency (CE, about 50?% at 1?Farad equivalent), and product composition resulting from aqueous Kolbe electrolysis are independent of reactor temperature and initial pH value. Although numerous studies on Kolbe electrolysis are available, the interrelations of different reaction parameters (e.g., acid concentration, pH, and especially electrolytic conductivity) are not addressed. A systematic analysis based on cyclic voltammetry reveals that solely the electrolytic conductivity impacts the current-voltage behavior. When using supporting electrolytes, not only their concentration, but also the type is decisive. We show that higher concentrations of KNO3 result in reduced CE and thus in significant increase in electric energy demand per converted molecule, whereas Na2 SO4 allows improved space-time yields. Pros and cons of adding supporting electrolytes are discussed in a final cost assessment. PMID:26609800

  11. Synthesis and conductivity of PEGME branched poly(ethylene-alt-maleimide) based solid polymer electrolyte

    A thermally stable comb-like polymer electrolyte, poly(ethylene glycol) monomethyl ether (PEGME) grafted poly(ethylene-alt-maleimide), has been synthesized and characterized. The copolymer was thermally stable up to 250.deg.C and had good film forming property. The copolymer was well mixed with poly(ethylene glycol) dimethyl ether(PEGDME, Mw = 400). The activation energy of ionic conduction decreased and conductivity increased with the increase of PEGDME content in the polymer electrolyte. The maximum conductivity of the resulting polymer electrolyte containing 66 wt% of PEGDME was found to be 3 x 10-4 S/cm at 30.deg.C. The polymer electrolyte showed electrochemical stability window of greater than 4.7 V

  12. Synthesis and characterisation of solid low-Tg polymer electrolytes for lithium-ion batteries

    Törmä, Erik

    2014-01-01

    Electrolytes of poly(trimethylene carbonate-co-ε-caprolactone), poly(TMC-co-CL), and LiTFSI have been prepared and characterised. The copolymers were analysed with GPC and NMR, which showed that random high molecular weight copolymers of desired compositions had been obtained. The electrolytes with varied salt concentration were examined with TGA, DSC, FTIR and impedance spectroscopy. The highest ionic conductivities were measured for the copolymer of 60:40 ratio of TMC:CL and for the homopol...

  13. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  14. Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite

    Polymer nanocomposite gel electrolytes consisting of high molecular weight poly(methyl methacrylate) PMMA-clay nanocomposite, ethylene carbonate (EC)/propylene carbonate (PC) as plasticizer, and LiClO4 electrolyte are reported. Montmorillonite clay was ion exchanged with a zwitterionic surfactant (octadecyl dimethyl betaine) and dispersed in methyl methacrylate, which was then polymerized to synthesize PMMA-clay nanocomposites. The nanocomposite was dissolved in a mixture of EC/PC with LiClO4, heated and pressed to obtain polymer gel electrolyte. X-ray diffraction (XRD) of the gels indicated intercalated clay structure with d-spacings of 2.85 and 1.40 nm. In the gel containing plasticizer, the clay galleries shrink suggesting intercalation rather than partial exfoliation observed in the PMMA-clay nanocomposite. Ionic conductivity varied slightly and exhibited a maximum value of 8 x 10-4 S/cm at clay content of 1.5 wt.%. The activation energy was determined by modeling the conductivity with a Vogel-Tamman-Fulcher expression. The clay layers are primarily trapped inside the polymer matrix. Consequently, the polymer does not interact significantly with LiClO4 electrolyte as shown by FTIR. The presence of the clay increased the glass transition temperature (Tg) of the gel as determined by differential scanning calorimetry. The PMMA nanocomposite gel electrolyte shows a stable lithium interfacial resistance over time, which is a key factor for use in electrochemical applications

  15. Synthesis and characterization of amorphous poly(ethylene oxide)/poly(trimethylene carbonate) polymer blend electrolytes

    Solid polymer electrolytes (SPEs) have been proposed as substitutes for conventional non-aqueous electrolytes in various electrochemical devices. These promising materials may be of interest in various practical devices including batteries, sensors and electrochromic displays as they can offer high performance in terms of specific energy and specific power (batteries), safe operation, form flexibility in device arquitecture and low manufacturing costs. Many different host polymers have been characterized over the last 30 years, however a relatively un-explored strategy involves the use of interpenetrating blends incorporating two or more polymers. Electrolyte systems based on interpenetrating blends of known host polymers, poly(ethylene oxide) and poly(trimethylene carbonate), doped with lithium perchlorate, were prepared by co-dissolution in acetonitrile. This combination of polymer components results in the formation of a material that may be applicable in batteries and electrochromic devices. The results of characterization of polymer electrolyte systems based on interpenetrating blends of amorphous poly(ethylene oxide) and poly(trimethylene carbonate) host matrices, with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as guest salt, are described in this study. Electrolytes with compositions of n between 5 and 15 (where n represents the total number of cation-coordinating units per lithium ion) were obtained as flexible, transparent and free-standing films that were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry.

  16. Synthesis of a Lewis-acidic boric acid ester monomer and effect of its addition to electrolyte solutions and polymer gel electrolytes on their ion transport properties

    A polymerizable anion receptor based on a boric acid ester was synthesized. When the anion receptor was added to different electrolyte solutions consisting of an aprotic solvent and a lithium salt, the ionic conductivity of certain electrolyte solutions, composed of low polar solvents or salts with low dissociation abilities, was enhanced appreciably. Viscosity measurements for the electrolyte solutions, with and without the added anion receptor, indicated that the conductivity enhancement was caused by an increase in the ionic dissociation due to the addition of the anion receptor. Pulse-field-gradient spin-echo (PGSE) NMR and 11B-NMR spectra supported that the ionic dissociation was facilitated by interaction between the Lewis-acidic anion receptor and Lewis-basic anions. The polymerizable anion receptor was crosslinked with a polyether macromonomer in different electrolyte solutions. Ionic conductivity of the resulting polymer gel electrolytes was also altered like that of the electrolyte solutions containing the anion receptor monomer

  17. Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes

    Maria Assunta Navarra

    2015-11-01

    Full Text Available Cellulose-based hydrogels, obtained by tuned, low-cost synthetic routes, are proposed as convenient gel electrolyte membranes. Hydrogels have been prepared from different types of cellulose by optimized solubilization and crosslinking steps. The obtained gel membranes have been characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic-extensional properties, respectively. Hydrogels liquid uptake capability and ionic conductivity, derived from absorption of aqueous electrolytic solutions, have been evaluated, to assess the successful applicability of the proposed membranes as gel electrolytes for electrochemical devices. To this purpose, the redox behavior of electroactive species entrapped into the hydrogels has been investigated by cyclic voltammetry tests, revealing very high reversibility and ion diffusivity.

  18. Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes

    C. K. Das

    2012-12-01

    Full Text Available A porous nanocomposite based on polypyrrole (PPy and sodium alginate (SA has been synthesized by easy, inexpensive, eco-friendly method. As prepared nanocomposite showed fibrillar morphology in transmission electron microscopic (TEM analysis. The average diameter of ~100 nm for the nanofibers was observed from scanning electron microscopic (SEM analysis. As prepared nanofiber, was investigated as an electrode material for supercapacitor application in different aqueous electrolyte solutions. PPy nanofiber showed enhanced electrochemical performances in 1M KCl solution as compared to 1M Na2SO4 solution. Maximum specific capacitance of 284 F/g was found for this composite in 1 M KCl electrolyte. It showed 76% specific capacitance retention after 600 cycles in 1 M KCl solution. Electrochemical Impedance Spectra showed moderate capacitive behavior of the composite in both the electrolytes. Further PPy nanofiber demonstrated higher thermal stability as compared to pure PPy.

  19. Pilot-scale synthesis and rheological assessment of poly(methyl methacrylate) polymers: perspectives for medical application.

    Linan, Lamia Zuniga; Nascimento Lima, Nádson M; Filho, Rubens Maciel; Sabino, Marcos A; Kozlowski, Mark T; Manenti, Flavio

    2015-06-01

    This work presents the rheological assessment of poly(methyl methacrylate) (PMMA) polymers synthesized in a dedicated pilot-scale plant. This material is to be used for the construction of scaffolds via Rapid Prototyping (RP). The polymers were prepared to match the physical and biological properties required for medical applications. Differential Scanning Calorimetry (DSC) and Size Exclusion Chromatography (SEC) measurements verified that the synthesized polymers were atactic, amorphous and linear in chains. Rheological properties such as viscosity, storage and loss modulus, beyond the loss factor, and creep and recovery were measured in a plate-plate sensor within the viscoelastic linear region. The results showed the relevant influence of the molecular weight on the viscosity and elasticity of the material, and how, as the molecular weight increases, the viscoelastic properties are getting closer to those of human bone. This article demonstrates that by using the implemented methodology it is possible to synthesize a polymer, with properties comparable to commercially-available PMMA. PMID:25842114

  20. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  1. Spray pyrolytic synthesis and electrolytic properties of BiCuVOx films for fuel cell applications

    The fuel cell material of bismuth copper vanadium oxide (BICUVOX) were deposited in thin film form on glass substrates using spray pyrolysis technique. The substrate temperature, quantity of sprayed solution and annealing temperature were charged to study the structural and electrolytic properties of BICUVOX thin films for fuel cell applications. It has been observed that the changes in spray parameters can be used to monitor the electrical properties of BICUVOX thin films suitable for their potential application as electrolyte for solid oxide fuel cell. It is found that the onset of the ionic conductivity region shifts to low temperature region of the fuel cell operating temperature with increase in substrate temperature of the films. (author)

  2. Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes

    Das, C. K.; Sahoo, S; S. Dhibar

    2012-01-01

    A porous nanocomposite based on polypyrrole (PPy) and sodium alginate (SA) has been synthesized by easy, inexpensive, eco-friendly method. As prepared nanocomposite showed fibrillar morphology in transmission electron microscopic (TEM) analysis. The average diameter of ~100 nm for the nanofibers was observed from scanning electron microscopic (SEM) analysis. As prepared nanofiber, was investigated as an electrode material for supercapacitor application in different aqueous electrolyte solutio...

  3. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  4. Iodide-conducting polymer electrolytes based on poly-ethylene glycol and MgI2: Synthesis and structural characterization

    A major obstacle for a viable technological development of dye sensitized solar cells (DSSCs) is still the synthesis of a high performance iodide-conducting polymer electrolyte. Here we present a series of eight electrolytic complexes with formula PEG1000/(MgI2)x(I2)y (0.0038 ? x ? 0.5801, 0 ? y ? 0.0636). The synthesis involves the preparation of a disordered form of MgI2 by a metallorganic route, which enables us to dissolve high amounts of salt in the chosen polymer host. The thermal analysis of the resulting polymer electrolytes was performed using modulated differential scanning calorimetry measurements. Vibrational studies were carried out using medium FT-IR, far FT-IR and FT-Raman. The variation of the CO and OH stretching modes in the medium infrared, as a function of the mole-to-mole ratio nMg/nO, was investigated by Gaussian decomposition to provide insight into the polymerpolymer and saltpolymer interactions in these materials. The FT-Raman spectra confirmed and complemented the vibrational assignment. The conductivity study of these systems was performed by electrical spectroscopy in the frequency interval 10 mHz10 MHz. The direct current conductivity (?DC) profiles versus the reciprocal temperature exhibited a Vgel-Tamman-Flcher (VTF) behavior. The best ?DC at 50 C was 5 10?5 S cm?1. The overall results indicate the presence of bivalent, monovalent and neutral species, Mg2+, [MgI]+ and MgI2, respectively, which participate in the conduction process. These results are consistent with what was previously observed in PEG400-based systems doped with ?-MgCl2. The presence of at least one Mg site containing a distribution in parameters was observed using 25Mg solid state magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The site has been assigned to a Mg complex involving the coordination by oxygen atoms of the polymer backbone.

  5. Synthesis of polymeric pour point depressants for Nada crude oil (Gujarat, India) and its impact on oil rheology

    Deshmukh, Srushti; Bharambe, D.P. [Department of Applied Chemistry, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, VADODARA-390 001, Gujarat (India)

    2008-03-15

    Five flow improvers have been synthesized to study rheological properties of Nada crude oil (Gujarat, India). Anhydride copolymers were prepared making use of the copolymerization of acrylates of different alkyls with maleic anhydride and the Poly (n-alkyl acrylates-co-N-hexadecylmaleimide) were prepared by the reaction of copolymer with hexadecylamine. The additives were purified and characterized by FTIR, GPC. The prepared polymeric additives shows dual function both as wax dispersants and flow improvers and all of them acts as good pour point depressants. Yield stress and the viscosity of the crude oil at different temperatures and concentrations of additives were evaluated by zero friction advanced rheometer AR-500 of TA instrument. Comparison of morphologies and structures of wax crystals or aggregates in waxy crude oils beneficiated with and without a PPD was also done by micro photographic studies which show the modification in wax crystal morphology due to additives. (author)

  6. Electrochemical synthesis of methanol from CO{sub 2} in high-pressure electrolyte

    Li, J.; Prentice, G. [Univ. of Detroit Mercy, MI (United States). Dept. of Chemical Engineering

    1997-12-01

    The authors synthesized CH{sub 3}OH from CO{sub 2} and H{sub 2}O on a copper cathode in the high-pressure CO{sub 2}-C{sub 2}H{sub 5}OH-H{sub 2}O-LiCl system. Methanol was the only product of CO{sub 2} reduction detected in the electrolytic solution, with a maximum current efficiency for methanol production of 40% at a current density of 9 mA/cm{sup 2} and potential of {minus}1.1 V vs. Ag/AgCl. This is the highest efficiency yet reported for methanol production at this current density. Current-potential curves shifted in the positive potential direction with increasing temperature and with increasing CO{sub 2} pressure up to approximately 60 atm. When the applied potential is more negative than about {minus}1.2 V vs. Ag/AgCl, the current density decreases dramatically with time. Electrolyte conductivity in this system increases with increasing temperature, increasing concentration of LiCl, and decreasing CO{sub 2} pressure.

  7. Synthesis of LiNi0.65Co0.25Mn0.1O2 as cathode material for lithium-ion batteries by rheological phase method

    Research highlights: ? In this paper, for the first time, rheological phase method, a simple and effective route, was applied to synthesis high capacity cathode material LiNi0.65Co0.25Mn0.1O2. ? All of the results obtained by X-ray diffraction spectrometer, X-ray photoelectron spectrometer, charge-discharge tests and electrochemical impedance spectroscopy show that the rheological phase production have better properties than that of the report. - Abstract: Rheological phase (RP) method has been successfully applied to synthesize a promising cathode material LiNi0.65Co0.25Mn0.1O2. X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma and transmission electron microscope are used to investigate the structure, composition and morphology, respectively. XRD result shows that the as-prepared powder has a layered ?-NaFeO2 structure. XPS pattern reveals that the Ni ions have valences of 2+ and 3+, and the Co and Mn are 3+, 4+, respectively. The electrode consisting of the obtained powder presents the better electrochemical properties, which is attributed to the fewer amounts of Ni2+ ions and the smaller particles. All the results suggest that the rheological phase method is a promising technique for the preparation of LiNi0.65Co0.25Mn0.1O2 cathode material of lithium-ion batteries.

  8. Synthesis, rheological behavior and swelling properties of copolymer hydrogels based on poly(N-isopropylacrylamide with hydrophilic monomers

    D. Aliouche

    2013-09-01

    Full Text Available In this study, hydrogels of poly(N-isopropylacrylamide-co-acrylamide and poly(N-isopropylacrylamide-co-acrylic acid having a thermoresponsive character were prepared by aqueous free-radical co-polymerization using the ammonium persulfate/N,N,N',N'-tetramethylethylenediamine (APS/TEMED redox-pair initiator system in the presence of N,N'-methylenebisacrylamide (MBAAm crosslinker. (NIPAAm-co-AAm and (NIPAAm-co-AAc hydrogels with different thermoresponsive properties were obtained by fixing the initial NIPAAm/AAm mole ratio and and (NIPAAm-co-AAc mole ratio to 80/20 and changing the crosslinker concentration. The copolymers were characterized with infrared spectroscopy (IR and differential scanning calorimetry (DSC techniques. The swelling response of the copolymers networks as a function of time, temperature and swelling environment has been observed to be dependent on both structural aspects of the polymers and swelling environment. The swelling has been observed to be decrease with increase in MBAAm in the copolypolymers networks. Rheological behavior was studies in oscillatory module. All copolymers have a viscoelastic behaviour. We note that the elastic modulus G' increases with increasing hydrophilic monomers.DOI: http://dx.doi.org/10.4314/bcse.v27i3.14

  9. Synthesis and investigation of electrolytic sodium-vanadium oxide compounds for lithium battery cathodes: electrolytic bronze β-Na0.33V2O5

    By the method of electrolysis from vanadyl sulfate electrolytes in the presence of 10-20 g/l of sium ions deposits were prepared, which after high-temperature effect transformed into bronze with monoclinic structure of β-Na0.33V2O5 composition. The bronze composition and properties were studied by the method of X-ray diffraction and thermal analyses, absorption IR spectroscopy, as well as by electrochemical methods. It is shown that the synthesized electrolytic bronze β-Na0.33V2O5 features a high specific discharge capacity and efficiency of cycling in propylenecarbonate + dimethoxyethane + 1 M LiClO4 electrolyte

  10. Combustion synthesis-derived tantalum powder for solid-electrolyte capacitors

    In this paper, the synthesis of capacitor-grade tantalum (Ta) powder via the self-propagating high-temperature synthesis (SHS) method is described. In addition, the sintering aspects and electrical characteristics of the powder are discussed. Ta powder was prepared via the combustion of a Ta2O5-xMg-kNaCl mixture, under argon pressure. The morphology and size of the final powder particles was controlled by adjusting the Mg-NaCl concentration. The final powder particles had nodular shapes and sizes ranging from 0.1 to 0.5 ?m. A leakage current of a sintered Ta sample containing the smallest particle size was 10 ?A; its capacitance was 92,738 CV, when a 40-V voltage was applied to the sample.

  11. Electrochemical synthesis of polypyrrole on ferrous and non-ferrous metals from sweet aqueous electrolytic medium

    Bazzaoui, M. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)]. E-mail: bazzaoui@fe.up.pt; Martins, J.I. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Reis, T.C. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Bazzaoui, E.A. [Faculte des Sciences, Departement de Chimie, Universite Mohammed I er, 60 000 Oujda (Morocco); Nunes, M.C. [Faculdade de Engenharia, Departamento de Electrotecnica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Martins, L. [Centre de Recherche Public de la Sante, 18 rue Dicks (Luxembourg)

    2005-08-01

    The electrodeposition of polypyrrole (PPy) on oxidizable metals such as aluminum and iron has been achieved in aqueous medium of saccharin and pyrrole. Scanning electron microscopy and X-ray photoelectron spectroscopy analysis reveal a good homogeneity of the obtained PPy film. The electrochemical synthesis of PPy coating has been achieved successfully under potentiodynamic, galvanostatic and potentiostatic techniques. The corrosion experiments performed in HCl show that the PPy coating increases the corrosion potential and decreases the corrosion current density.

  12. Synthesis, processing and characterization of calcia-stabilized zirconia solid electrolytes for oxygen sensing applications

    Precursor powders of calcia-stabilized zirconia (CSZ) solid electrolytes have been synthesized by a sol-gel method. The phase evolution of the precursor powders after thermal treatments at different temperatures were analysized by X-ray diffraction technique. Disc-shaped sensor elements were fabricated via uniaxial pressing of the calcined powders and subsequently sintered at 1650 deg. C. Scanning electron microscopy (SEM) was used to analyze the microstructure of the sintered pellets. Platinum electrodes were applied to the sintered elements to produce potentiometric/electrochemical gas sensors. The electrical response of the gas sensors to oxygen and the complex impedance of the sensors in air were measured at various temperatures. Impedance analyses indicate that the sensor cell with 15 mol% CaO has much lower resistance (the sum of bulk and grain-boundary resistance) than the sensor cell with 22 mol% CaO. This is also reflected by the EMF responses of both sensor cells to various oxygen concentrations in the testing gas. The EMF deviation from the theoretical value of the CSZ sensor cell with 22 mol% CaO was larger than that of the CSZ sensor cell with 15 mol% CaO. The corrrelations between material compositions, microstructures of the sintered pellets and the electrical properties of the sensors are discussed

  13. Synthesis and proton conductivity studies of doped azole functional polymer electrolyte membranes

    The development of anhydrous proton-conducting membranes is important for the operation of polymer electrolyte membrane fuel cell (PEMFC) at intermediate temperature (100-200 oC). In this work, poly(vinylbenzylchloride), PVBC was produced by free radical polymerization of 4-vinylbenzylchloride and then it was modified with 5-aminotetrazole (ATET) to obtain poly(vinylbenzylaminotetrazole), PVBC-ATET. The composition of the polymer was verified by elemental analysis (EA) and the structure was characterized by FT-IR and 13C NMR spectra. According to the elemental analysis result, PVBC was modified by ATET with 80% yield. The polymer was doped with trifluoromethanesulfonic acid (TA) at various molar ratios, x = 1.25, 2.5, 3.75 with respect to tetrazole unit. The proton transfer from TA to the tetrazole rings was proved with FT-IR spectroscopy. Thermogravimetry (TG) analysis showed that the samples are thermally stable up to approximately 200 oC. Differential scanning calorimetry (DSC) results illustrated the homogeneity of the materials. Cyclic voltammetry (CV) study illustrated that the electrochemical stability domain for PVBC-ATET-TA2.5 extends over 3.0 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Maximum proton conductivity of PVBC-ATET-TA2.5 was found to be 0.01 S/cm at 150 oC in the anhydrous state.

  14. Synthesis, spectroscopic and electrochemical performance of pasted ?-nickel hydroxide electrode in alkaline electrolyte

    Shruthi, B.; Bheema Raju, V.; Madhu, B. J.

    2015-01-01

    ?-Nickel hydroxide (?-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the ?-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the ?-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using ?-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the ?-Ni(OH)2 electrode in 6 M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of ?-Ni(OH)2. The proton diffusion coefficient (D) for the present ?-Ni(OH)2 electrode material is found to be 1.44 10-12 cm2 s-1. Further, electrochemical impedance studies confirmed that the ?-Ni(OH)2 electrode reaction processes are diffusion controlled.

  15. Synthesis and proton conductivity studies of doped azole functional polymer electrolyte membranes

    Ozden, Sehmus [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey); Celik, Sevim Unueguer, E-mail: sunugur@fatih.edu.t [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey); Bozkurt, Ayhan [Department of Chemistry, Fatih University, 34500 Bueyuekcekmece-Istanbul (Turkey)

    2010-12-01

    The development of anhydrous proton-conducting membranes is important for the operation of polymer electrolyte membrane fuel cell (PEMFC) at intermediate temperature (100-200 {sup o}C). In this work, poly(vinylbenzylchloride), PVBC was produced by free radical polymerization of 4-vinylbenzylchloride and then it was modified with 5-aminotetrazole (ATET) to obtain poly(vinylbenzylaminotetrazole), PVBC-ATET. The composition of the polymer was verified by elemental analysis (EA) and the structure was characterized by FT-IR and {sup 13}C NMR spectra. According to the elemental analysis result, PVBC was modified by ATET with 80% yield. The polymer was doped with trifluoromethanesulfonic acid (TA) at various molar ratios, x = 1.25, 2.5, 3.75 with respect to tetrazole unit. The proton transfer from TA to the tetrazole rings was proved with FT-IR spectroscopy. Thermogravimetry (TG) analysis showed that the samples are thermally stable up to approximately 200 {sup o}C. Differential scanning calorimetry (DSC) results illustrated the homogeneity of the materials. Cyclic voltammetry (CV) study illustrated that the electrochemical stability domain for PVBC-ATET-TA{sub 2.5} extends over 3.0 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Maximum proton conductivity of PVBC-ATET-TA{sub 2.5} was found to be 0.01 S/cm at 150 {sup o}C in the anhydrous state.

  16. Non-electrolytic synthesis of copper oxide/carbon nanocomposite by surface plasma in super-dehydrated ethanol

    Kozak, Dmytro S.; Sergiienko, Ruslan A.; Etsuro Shibata; Atsushi Iizuka; Takashi Nakamura

    2016-01-01

    Electrolytic processes are widely used to synthesize different nanomaterials and it does not depend on what kind of the method has been applied (wet-chemistry, sonochemistry, plasma chemistry, electrolysis and so on). Generally, the reactions in the electrolyte are considered to be reduction/oxidation (REDOX) reactions between chemical reagents or the deposition of matter on the electrodes, in line with Faraday’s law. Due to the presence of electroconductive additives in any electrolyte, the ...

  17. Synthesis and Characterization of a Gel-Type Electrolyte with Ionic Liquid Added for Dye-Sensitized Solar Cells

    Shi, Le-Yan; Chen, Tien-Li; Chen, Chih-hao; Cho, Kun-Ching

    2013-01-01

    This study intends to develop the electrolyte needed in dye-sensitized solar cells (DSSCs). Moreover, three different ionic liquids in different molalities are added to the gel-type electrolyte. Experimental results show that the DSSC composed of the gel-type electrolyte with no ionic liquid added can acquire 4.13% photoelectric conversion efficiency. However, the DSSC composed of the gel-type electrolyte with 0.4 M of 1-butyl-3-methylimidazolium chloride added has an open-circuit voltage of ...

  18. Synthesis and characterization of polymer electrolyte membranes with controlled ion transport properties

    Xu, Kui

    2011-12-01

    Ion-containing block copolymers hold promise as next-generation polymer electrolyte membrane (PEM) materials due to their capability to self-assemble into ordered nanostructures facilitating proton transport over a wide range of conditions. Ion-containing block copolymers, sulfonated poly(styrene- b-vinylidene fluoride-b-styrene), with varied degrees of sulfonation were synthesized. The synthetic strategy involved a new approach to chain-end functionalized poly(vinylidene fluoride) as a macro-initiator followed by atom transfer polymerization of styrene and sulfonation. Characterization of the polymers were extensively carried out by 1H and 19F nuclear magnetic resonance and Fouriertransform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry analysis. Tapping mode atomic force microscopy and transmission electron microscopy were applied to study the phase separation and self-assembled morphology. Strong dependence of ion exchange capacity, water absorption, morphology and proton conductivity on the degree of sulfonation has been found. It has been observed that the conductivities of the block copolymers are considerably higher than the random copolymers of polystyrene and sulfonated polystyrene possessing similar ion exchange capacities. Copolymers of vinylidene fluoride and perfluoro(4-methyl-3,6-dioxane-7-ene) sulfonyl fluoride containing amino end-groups were synthesized for the first time. The prepared aminoterminated polymers underwent cross-linking reactions with 1,3,5-benzene triisocyanate to form proton conductive networks. The chain-end crosslinked fluoropolymer membranes exhibited excellent thermal, hydrolytic and oxidative stabilities. The ion exchange capacity, water uptake, the state of absorbed water, and transport properties of the membranes were found to be highly dependent upon the chemical composition of the copolymers. The cross-linked membranes showed extremely low methanol permeability, while maintaining high proton conductivity at the same order of magnitude as Nafion. This unique transport feature gave rise to exceedingly higher electrochemical selectivity in relation to Nafion. The selectivity characteristics have been rationalized based on the formation of restrained ionic domains and the state of the absorbed water within the membranes. A series of new Nafion-based composite membranes were prepared via an in situ sol-gel reaction of 3-(trihydroxylsilyl) propane-1-sulfonic acid and solution casting method. The morphological structure, ion-exchange capacity, water uptake, proton conductivity, and methanol permeability of the resulting composite membranes were extensively investigated as functions of the content of sulfopropylated polysilsesquioxane filler, temperature, and relative humidity. Unlike the conventional Nafion/silica composites, the prepared membranes exhibit an increased water uptake and associated enhancement in proton conductivity compared to unmodified Nafion. In particular, considerably high proton conductivities at 80 and 120 °C under 30% relative humidity were demonstrated in the composite membranes, which are over 2 times greater than that of Nafion. In addition to a remarkable improvement in proton conductivity, the composite membranes displayed lower methanol permeability and superior electrochemical selectivity in comparison to the pure Nafion membrane. A versatile and facile synthetic approach was developed for the preparation of a family of new ionomers with rigid aromatic backbones and pendant perfluorinated sulfonic acid groups. Variation in the chemical composition and structure of the new aromatic ionomers were performed to optimize PEM properties and fuel cell performance. The ionomers prepared from condensation polymerization of Sodium 1,1,2,2-tetrafluoro-2-(2',3',5',6'-tetrafluoro-phenoxy)- ethane sulfonate and bisphenol monomers, e.g. hydroquinone, 4,4'-biphenol, or their mixture with appropriate ratio, exhibited comparable or greater proton conductivity in relation to Nafion. New aromatic ionomers also showed other outstanding PEM prop

  19. Synthesis and characterization of perfluorinated sulfonimide copolymers as polymer electrolyte membranes

    Zhou, Shuang

    Ionomers for polymer electrolyte membranes in fuel cell applications were developed utilizing the acidic bis(perfluoromethyl sulfonyl) imide functional group. Perfluorinated vinyl ether sulfonimide monomers CF2=CFOCF 2CF(CF3)O(CF2)2SO2N(Na)SO 2CF3 (1), CF2=CFOCF2CF(CF 3)O(CF2)2SO2N(Na)SO2(CF 2)4SO2N(Na)CF3 (2), CF 2=CFOCF2CF(CF3)O(CF2)2SO 2N(Na)SO2(CF2)6SO2N(Na)CF 3 (3) and CF2=CFOCF2CF(CF3)O(CF2) 2SO2N(Na)SO2(CF2)2O(CF 2)2SO2N(Na)CF3 (4) were synthesized through multiple steps. The complete coupling reaction between the water sensitive CF3SO 2N(Na)Si(CH3)3 and the bromine-protected Dupont monomer BrCF2CFBrOCF2CF(CF3)O(CF2) 2SO2F is an important step to incorporate the sulfonimide group into the monomer 1. Bis(fluorosulfonyl) perfluoroalkanes FSO2RfSO2F (Rf = -(CF 2)4-, -(CF2)6- and -(CF 2)2O(CF2)2-) were used to introduce multifunctional sulfonimides into monomers 2, 3 and 4. Disulfonyl fluoride compounds were reacted with CF 3SO2N(Na)SiMe3 affording the unsymmetrical sulfonyl fluoride intermediates CF3SO2N(Na)SO2R fSO2F. After the transformation of -SO2F into -SO2N(Na)Si(CH3), the coupling reaction of the silyl compounds with BrCF2CFBrOCF2CF(CF3)O(CF 2)2SO2F followed by debromination gave the final products 2, 3 and 4. Copolymers of the sulfonimide monomers with tetrafluoroethylene (TFE) were produced by semi-batch free-radical emulsion copolymerizations. The perflurinated vinyl ether sulfonimide, TFE, the redox initiator pair (NH4) 2S2O8/NaHSO3, the emulsifier C 7F15COONH4 and the buffer NaH2PO 4/Na2HPO4 were mixed in a stirred Parr autoclave at 10C. During the copolymerization, TFE pressure and the sulfonimide monomer concentration were kept nearly constant in the reaction system to generate copolymers with acidic groups randomly distributed in the polymer chains. Copolymerization conditions were optimized through variations of some important reaction parameters such as the initiator concentration, TFE pressure, the sulfonimide monomer concentration and the surfactant concentration. Self-emulsifying copolymerizations of 2, 3 and 4 with TFE were also investigated. Among them, only monomer 4 can be copolymerized with TFE in the absence of the emulsifier C7F 15COONH4. Perfluorinated sulfonimide copolymers were characterized using the functional analysis, NMR and thermal analyses. The membranes and solutions produced from these sulfonimide copolymers exhibited excellent performance when incorporated into membrane electrode assemblies for fuel cell testing.

  20. Synthesis and characterization of zirconia electrolytes for potential use in energy conversion

    The present work is part of a program to develop ionically conducting materials for potential use in energy storage and conversion systems. With applications in high energy-density batteries, magneto-hydrodynamic (MHD) generators, fuel cells and sensors, they ae playing an increasinly important role in developing more efficient energy storage and conversion devices. Using a wet-chemical procedure, a series of compostions having between 0 and 22.2 mol percent CaO in zirconia, was prepared and subsequently formed into sintered samples having a relative density from 95 to 98 percent. Sintered samples were prepared of each composition with a geometry appropriate for determining the thermal, electrical or microstructural characteristics. This report covers only the microstructural aspects of powder synthesis and the development of sintered materials. Using the reactive, homogeneous, chemically prepared powders, it has been shown that cubic and monoclinic zirconia can coexist in compositions containing up to 10 mol percent CaO. From 10 to 20 mol percent CaO, only the cubic phase is formed, whereas at higher CaO concentrations the cubic phase coexits with CaZro3. The change from a two-phase to single-phase system as the CaO concentration is increased above 10 mol percent, increases the grain size nearly an order of magnitude. It has been found that 5 and 7.6 mol percent CaO materials develop considerable stress during the cooling stage of the firing cycle. As a result, they undergo a progressive and irreversible expansion with each thermal shock cycle: the magnitude of the expansion is proportional to the severity of the thermal shock. The microstructural texture of these partially stablilized materials was also shown to be dependent on the thermal history and hence a strong dependence of the electrical and thermal properties can be anticipated. (auth)

  1. Nickel electrocrystallization in different electrolytes: An in-process and post synthesis analysis

    The present report is solicited for contributions of nucleationgrowth mechanisms of electrodeposition of nickel in different aqueous solutions. The cyclic voltammetry (CV) analysis has been performed on electrocrystallized Ni to understand the deposition and dissolution processes in four types of baths i.e. sulphate, chloride, Watts and sulphamate baths. The result shows that for chloride and sulphate bath there are distinct peaks but for Watts and sulphamate there is no such cathodic peaks, rather it increased to the specified vertex potential. And also it is observed that for sulphate bath the dissolution peak is observed but the physical observation of the electrode after the completion of CV depicts that dissolution takes place partially. The in-process and post synthesis analysis was studied by electrochemical techniques followed by morphological studies (by scanning electron microscope (SEM) and atomic force microscope (AFM)). The other technique used in this study includes XRD to analyze the phase, crystallite size and lattice strain, surface profilometer and Nanoindenter to analyze the structure and properties of deposits (residual stress and hardness). The thickness of the film varies from 1.3 to 2.7 ?m for baths from sulphate, sulphamate, Watts to chloride baths. The compressive stress obtained for different baths vary from 4.015 to 11.231 GPa and tensile stress vary from 3.778 to 16.608 GPa from sulphamate, Watts, sulphate to chloride baths. Also the stress reduces and hardness increases from sulphamate, Watts, sulphate to chloride baths. The grain size decreases and lattice strain increases from sulphamate, Watts, sulphate to chloride baths

  2. Synthesis and electrochemical characterization of hybrid membrane Nafion-SiO2 for application as polymer electrolyte in PEM fuel cell

    In this work, the effect of sol-gel synthesis parameters on the preparation and polarization response of Nafion-SiO2 hybrids as electrolytes for proton exchange membrane fuel cells (PEMFC) operating at high temperatures (130 degree C) was evaluated. The inorganic phase was incorporated in a Nafion matrix with the following purposes: to improve the Nafion water uptake at high temperatures (> 100 degree C); to increase the mechanical strength of Nafion and; to accelerate the electrode reactions. The hybrids were prepared by an in-situ incorporation of silica into commercial Nafion membranes using an acid-catalyzed sol-gel route. The effects of synthesis parameters, such as catalyst concentration, sol-gel solvent, temperature and time of both hydrolysis and condensation reactions, and silicon precursor concentration (Tetraethyl orthosilicate - TEOS), were evaluated as a function on the incorporation degree and polarization response. Nafion-SiO2 hybrids were characterized by gravimetry, thermogravimetric analysis (TGA), scanning electron microscopy and X-ray dispersive energy (SEM-EDS), electrochemical impedance spectroscopy (EIS), and X-ray small angle scattering (SAXS). The hybrids were tested as electrolyte in single H2/O2 fuel cells in the temperature range of 80 - 130 degree C and at 130 degree C and reduced relative humidity (75% and 50%). Summarily, the hybrid performance showed to be strongly dependent on the synthesis parameters, mainly, the type of alcohol and the TEOS concentration. (author)

  3. Polymer Electrolytes

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  4. Synthesis and surface modified hard magnetic properties in Co0.5Pt0.5 nanocrystallites from a rheological liquid precursor

    Small crystallites of a metastable phase Co0.5Pt0.5 are precipitated by heating a rheological liquid precursor of cobalthydrazine complex and platinum chloride H2PtCl6xH2O in polymer molecules of poly(vinylpyrrolidone) (PVP) in ethylene glycol. The hydrazine co-reduces nascent atoms from the Co2+ and Pt4+ that recombine and grow as Co0.5Pt0.5. The PVP molecules cap a growing Co0.5Pt0.5 as it achieves a critical size so that it stops growing further in given conditions. X-ray diffraction pattern of a recovered powder reveals a crystalline Co0.5Pt0.5 phase (average crystallite size D?8 nm) of a well-known Fm3m-fcc crystal structure with the lattice parameter a=0.3916 nm (density ?=14.09 g/cm3). A more ordered L10 phase (?=15.91 g/cm3) transforms (D?25 nm) upon annealing the powder at temperature lesser than 700 C (in vacuum). At room temperature, the virgin crystallites bear only a small saturation magnetization Ms=5.54 emu/g (D=8 nm) of a soft magnet and it hardly grows on bigger sizes (D?31 nm) in a canted ferromagnetic structure. A rectangular hysteresis loop is markedly expanded on an optimally annealed L10 phase at 800 C for 60 min, showing a surface modified coercivity Hc=7.781 kOe with remnant ratio Mr/Ms=0.5564, and Ms=39.75 emu/g. Crystallites self-assembled in an acicular shape tailor large Hc from ideal single domains and high magnetocrystalline anisotropy of a hard magnet L10 phase. - Highlights: ? A modified polyol process is reported for the synthesis of CoPt nanoparticles. ? Different particle sizes were obtained by varying the order of addition. ? Effect of particle size on fcc to fct phase transformation is discussed. ? Effect of heat treatments on evolution of magnetic properties is reported. ? Fully transformed CoPt nanoparticles resulted in a coercivity of 11.310 kOe.

  5. Synthesis of polycarbonate polymer electrolytes for lithium ion batteries and study of additives to raise the ionic conductivity

    Andersson, Jonas

    2015-01-01

    Polymer electrolyte films based on poly(trimethylene carbonate) (PTMC) mixed with LiTFSI salt in different compositions were synthesized and investigated as electrolytes for lithium ion batteries, where the ionic conductivity is the most interesting material property. Electrochemical impedance spectroscopy (EIS) and DSC were used to measure the ionic conductivity and thermal properties, respectively. Additionally, FTIR and Raman spectroscopy were used to examine ion coordination in the materi...

  6. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance. PMID:26595277

  7. Synthesis of calcium-deficient by hydroxyapatite-collage composite by the electrolytic deposition method; Denkai sekishutsu ho ni yoru karushiumu kesson hidorokishiapataito-coragen fukugotai no gosei

    Okamura, H. [Niigata University, Niigata (Japan). Graduate School Of Science and Technology; Yasuda, M.; Oota, M. [Niigata University, Niigata (Japan)

    1997-07-05

    Hydroxyapatite is known as that it has a good joining property with teeth and bone, and a study on the application to the living body was conducted by using this property. Its application examples were given as the cement used in dentistry, the artificial tooth root, the artificial bone, the bone cement and the artificial joint. However, they were a sinter heated at more than 1000degC, and were put into use by means of reinforcement using a titanium alloy since their mechanical strength was low. In this study, synthesis of calcium-deficient hydroxyapatite (DAp) and collagen composite by the electrolytic deposition method was attempted in order to develop bionic materials, and the correlation of various physical properties of the obtained composite and the electrolytic deposition conditions were investigated. When the electrolytic voltage is more than 22.0V, a single phase of DAp could be obtained. It was clarified that a DAp and collagen composite was synthesized from results of IR and ESR. 16 refs., 5 figs.

  8. Synthesis of graphene nanosheets by the electrolytic exfoliation of graphite and their direct assembly for lithium ion battery anodes

    Graphene nanosheets were produced through electrolytic exfoliation of graphite foils in an aqueous solution containing an electrolyte, poly(sodium-4-styrenesulfonate). We confirmed the formation of graphene nanosheets by X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy. The electrochemical performance of the graphene nanosheets was evaluated using cyclic voltammetry, galvanostatic charge–discharge cycling, and electrochemical impedance spectroscopy. In order to address the feasibility of their use as lightweight anodes for a Li ion battery, we also present the direct assembly of graphene nanosheets onto metal current collectors and the fabrication of freestanding graphene nanosheets paper electrodes. Highlights: ► Graphene nanosheets were electrolytically synthesized from graphite foils. ► The direct electrophoretic deposition of the graphenes onto current collectors is described. ► Promising Li storage capabilities of graphene anode were found.

  9. Rheology and deep tectonics

    G. Ranalli

    1997-06-01

    Full Text Available The distribution of the rheological properties of the lithosphere in space, and their variations in time, have a profound effect on the resulting tectonic deformation. A classical way of estimating these properties makes use of rheological profiles (strength envelopes. Although rheological profiles are based on assumptions and approximations which limit their resolving power, they are an efficient first-order tool for the study of lithosphere rheology, and their application clarifies the dynamics of tectonic processes. Two examples of the interaction of rheology and tectonics are discussed, namely, the post-orogenic relaxation of Moho topography (which is an additional factor to be considered in tectonic inversion, and the strength control on the level of necking in extension (which may lead to apparent local isostasy at passive continental margins and in sedimentary basins.

  10. Synthesis and properties of aromatic polyethers containing poly(ethylene oxide) side chains as polymer electrolytes for lithium ion batteries

    Polymer electrolytes consisting of polar pyridine units in the backbone and poly(ethylene oxide) (PEO) side chains are designed for possible application in lithium ion batteries. In particular, aromatic polyethers bearing PEO side chains with varying length are synthesized either by copolymerization of the corresponding PEO based diols with different arylfluorides or by modification of dihydroxyl functionalized precursor polymers with poly(ethylene oxide) methyl ether tosylate. The formation of free standing films is dependent on the PEO content, polymers' composition as well as on the different monomers used. The mechanical properties study shows that the glass transition temperature can be controlled by varying the PEO content. Thermal stability is also influenced by the PEO length: the shorter the PEO side chain, the higher the stability. XRD analysis gives information about the desired amorphous character of these polymers, which is independent of the PEO content. Solid polymer electrolytes prepared by blending the PEO-based polymers with lithium salt and PEO 2000 (used as plasticizer) show ambient temperature conductivities in the range of 10−6 S/cm. To further improve conductivity doping of PEO-based polymers in liquid electrolyte (1 M LiPF6 in EC/DMC 1/1) in some cases results in high conductivities in the range of 10−3 S cm−1 at 80 °C. - Highlights: • Polymer electrolytes bearing PEO side chains of varying lengths were designed. • DMA and TGA show that Tg and Td can be controlled by varying the PEO content. • XRD confirms polymers amorphous character, independent of the PEO content. • Membranes doped in liquid electrolyte have high conductivities (10−3 S cm−1, 80 °C)

  11. Synthesis and properties of aromatic polyethers containing poly(ethylene oxide) side chains as polymer electrolytes for lithium ion batteries

    Vge, Andrea, E-mail: andreavoege@online.de [Department of Chemistry, University of Patras, 26500 Patras (Greece); Deimede, Valadoula, E-mail: deimede@upatras.gr [Department of Chemistry, University of Patras, 26500 Patras (Greece); Paloukis, Fotis; Neophytides, Stylianos G. [Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras 26504 (Greece); Kallitsis, Joannis K. [Department of Chemistry, University of Patras, 26500 Patras (Greece)

    2014-11-14

    Polymer electrolytes consisting of polar pyridine units in the backbone and poly(ethylene oxide) (PEO) side chains are designed for possible application in lithium ion batteries. In particular, aromatic polyethers bearing PEO side chains with varying length are synthesized either by copolymerization of the corresponding PEO based diols with different arylfluorides or by modification of dihydroxyl functionalized precursor polymers with poly(ethylene oxide) methyl ether tosylate. The formation of free standing films is dependent on the PEO content, polymers' composition as well as on the different monomers used. The mechanical properties study shows that the glass transition temperature can be controlled by varying the PEO content. Thermal stability is also influenced by the PEO length: the shorter the PEO side chain, the higher the stability. XRD analysis gives information about the desired amorphous character of these polymers, which is independent of the PEO content. Solid polymer electrolytes prepared by blending the PEO-based polymers with lithium salt and PEO 2000 (used as plasticizer) show ambient temperature conductivities in the range of 10{sup ?6}S/cm. To further improve conductivity doping of PEO-based polymers in liquid electrolyte (1M LiPF{sub 6} in EC/DMC 1/1) in some cases results in high conductivities in the range of 10{sup ?3}Scm{sup ?1} at 80C. - Highlights: Polymer electrolytes bearing PEO side chains of varying lengths were designed. DMA and TGA show that T{sub g} and T{sub d} can be controlled by varying the PEO content. XRD confirms polymers amorphous character, independent of the PEO content. Membranes doped in liquid electrolyte have high conductivities (10{sup ?3}Scm{sup ?1}, 80C)

  12. Properties of Sulfolane Based Aprotic Electrolytes

    Josef, Maca; Martin, Frk; Zdenka, Rozsivalova; Marie, Sedlarikova.

    2013-11-11

    Full Text Available The article deals with description of rheological and electrical properties of solvents for electrolytes of lithium-ion batteries. Solvents mixture of dimethyl sulfone and sulfolane at different volume ratios and with a lithium salt (LiClO4) appears as a potentially suitable electrolyte. In this wor [...] k, we investigate the influence of different solvents and their mixtures in order to find a solvent which increases the fire safety of such battery. The aim of this experiment is to investigate the rheological properties, particularly density and dynamic viscosity of solvents with lithium salt in temperature dependence and to find the optimal composition of the electrolyte from the perspective of achieving the lowest dynamic viscosity and better electrical conductivity, because both quantities are closely related with Walden's rule. The vibration method is used to determine the values of dynamic viscosity.

  13. Activated Sludge Rheology

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank; Rosenberger, Sandra; Naessens, Wouter; Nopens, Ingmar; Bentzen, Thomas Ruby

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this....

  14. Rheological phenomena in focus

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  15. Ce0.8Sm0.2O1.9 synthesis for solid oxide fuel cell electrolyte by ultrasound assisted co-precipitation method.

    Okkay, Hikmet; Bayramoglu, Mahmut; Faruk kszmer, M

    2013-05-01

    In this study, the synthesis of Ce(0.8)Sm(0.2)O(1.9) (SDC) solid electrolyte by the ultrasound assisted co-precipitation method was accomplished to explore the effects of ultrasound power, ultrasound pulse ratio and probe type upon the ionic conductivity of SDC as well as the lattice parameter, the microstructure and the density. Fine powders of uniform crystallite sizes (average 11.700.62nm) were obtained, needing lower sintering temperature. The SDC powders were successfully sintered to a relative density of over 95% at 1200C (5Cmin(-1)) for 6h. The micrograph of SDC pellets showed non-agglomerated and well-developed grains with average size of about 200nm. X-ray diffraction analysis showed that the lattice parameter increased with increasing acoustic intensity and reached a maximum for the 14.94Wcm(-2). Further, a linear relationship was detected between the lattice parameter and the ionic conductivity, inspiring a dopant like effect of US on the electrolyte properties. The highest ionic conductivity as ?(800C)=3.0710(-2)Scm(-1) with an activation energy E(a)=0.871kJmol(-1) was obtained with pulsed ultrasound for an acoustic intensity of 14.94Wcm(-2), using 19mm probe and 8:2 pulse ratio. PMID:23178079

  16. Development of a model colloidal system for rheology simulation.

    Schunk, Peter Randall; Tallant, David Robert; Piech, Martin (United Technologies Research Center, East Hartford, CT); Bell, Nelson Simmons; Frischknecht, Amalie Lucile

    2008-10-01

    The objective of the experimental effort is to provide a model particle system that will enable modeling of the macroscopic rheology from the interfacial and environmental structure of the particles and solvent or melt as functions of applied shear and volume fraction of the solid particles. This chapter describes the choice of the model particle system, methods for synthesis and characterization, and results from characterization of colloidal dispersion, particle film formation, and the shear and oscillatory rheology in the system. Surface characterization of the grafted PDMS interface, dispersion characterization of the colloids, and rheological characterization of the dispersions as a function of volume fraction were conducted.

  17. Electrochemical polymer electrolyte membranes

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  18. Rheology of Active Gels

    Chen, Daniel

    2015-03-01

    Active networks drive a diverse range of critical processes ranging from motility to division in living cells, yet a full picture of their rheological capabilities in non-cellular contexts is still emerging, e.g., How does the rheological response of a network capable of remodeling under internally-generated stresses differ from that of a passive biopolymer network? In order to address this and other basic questions, we have engineered an active gel composed of microtubules, bidirectional kinesin motors, and molecular depletant that self-organizes into a highly dynamic network of active bundles. The network continually remodels itself under ATP-tunable cycles of extension, buckling, fracturing, and self-healing. Using confocal rheometry we have simultaneously characterized the network's linear and non-linear rheological responses to shear deformation along with its dynamic morphology. We find several surprising and unique material properties for these active gels; most notably, rheological cloaking, the ability of the active gel to drive large-scale fluid mixing over several orders of flow magnitude while maintaining an invariant, solid-like rheological profile and spontaneous flow under confinement, the ability to exert micro-Newton forces to drive persistent directed motion of the rheometer tool. Taken together, these results and others to be discussed highlight the rich stress-structure-dynamics relationships in this class of biologically-derived active gels.

  19. Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes

    S Ibrahim; A Ahmad; N S Mohamed

    2015-09-01

    Polyurethane (PU) based on polyol, derived from castor oil has been synthesized and characterized for potential use as a base material for electrolytes. Transesterification process of castor oil formed a polyol with hydroxyl value of 190 mg KOH g–1 and molecular weight of 2786 g mol–1. The polyols together with 4,4′-diphenylmethane diisocyanate were used to synthesize the desired bio-based PU. The molecular structure of PU was investigated by Fourier transform infrared (FTIR) spectroscopy. The disappearance of NCO peak in the FTIR spectrum at 2270–2250 cm–1 showed that diisocyanate has completely reacted to form PU. Morphological characteristic of the PU film was analysed using scanning electron microscopy, whereas thermal characteristics of the materials were characterized using dynamic mechanical analysis and thermal gravimetric analysis. The cross-sectional micrograph showed that the prepared film was highly amorphous and homogeneous. Thermal studies revealed that the film had low glass transition temperature, –15.8°C, and was thermally stable up to 259°C. These observations indicated the synthesized PU possessed favourable properties to act as a base material in polymer electrolytes.

  20. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  1. Rheological properties of controlelled-rheology metallocene popypropylenes

    Tzoganakis, Costas; Zatloukal, M.; Pivokonský, Radek

    Hersonisos : European Society of Rheology, 2006. s. 184. [Annual European Rheology Conference AERC 2006 /3./. 27.04.2006-29.04.2006, Hersonisos, Crete] R&D Projects: GA AV ČR KJB2810401 Institutional research plan: CEZ:AV0Z20600510 Keywords : metallocene popypropylenes * controlled-rheology * elongational viscosity Subject RIV: BK - Fluid Dynamics

  2. Polymer electrolytes

    Abbrent, Sabina; Greenbaum, S.; Peled, E.; Golodnitsky, D.

    Singapore : World Scientific Publishing , 2015 - (Dudney, N.; West, W.; Nanda, J.), s. 523-589 ISBN 978-981-4651-89-9 Institutional support: RVO:61389013 Keywords : polymer electrolytes * applications * mesuring techniques Subject RIV: CD - Macromolecular Chemistry

  3. The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells

    Tucker, Telpriore G.

    This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300C) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140C. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180C) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94C. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62C ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265C and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases producing water vapor. Principle advantage is high-energy efficiency of up to 70% in contrast to an internal combustion engine fuel cells are prone to carbon monoxide catalytic poisoning and polymer membrane degradation unless heavily hydrated under cell-pressurization. This novel "SiPOH" solid-electrolytic gel (originally liquid-state) operated in the fuel cell at 121C yielding current and power densities high as 731mAcm-2 and 345mWcm-2, respectively. Enhanced proton conduction significantly increased H2 fuel efficiency to 89.7% utilizing only 3.1mlmin-1 under dry, unpressurized testing conditions. All these energy devices aforementioned evidently have future promise; therefore in early developmental stages.

  4. Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane

    In this work silica (SiO2) and sulfonic acid-functionalized silica (sul-SiO2) were synthesized by sol–gel method from tetraethoxysilane (TEOS) and 3-mercatopropyltrimethoxysilane (MPTMS) with various ratios between them. The synthesized materials were characterized by x-ray diffraction (XRD) for crystalline structure, Brunauer–Emmet–Teller (BET) specific surface area analysis, transmission electronic microscopy (TEM) and dynamic light scattering (DLS) for particle size analysis, and ion exchange capacity (IEC) for determining sulfur content in Sul-SiO2 materials. The initial results showed that the average particle size of amorphous SiO2 and Sul-SiO2 at different TEOS: MPTMS ratios are in narrow distribution with average diameter about 20–30 nm. The particle size of Sul-SiO2 is almost unaffected by the content of MPTMS while IEC depends strongly on it. Composite membranes of 60 μm thickness were successfully prepared from blending of poly(vinylidene fluoride) (PVDF) and synthesized amorphous SiO2. It was shown that the latter may be used as a reinforced phase for composite membrane electrolytes based on PVDF. (paper)

  5. Synthesis and characterization of -Bi2O3 based solid electrolyte doped with Nb2O5

    Handan Ozlu; Soner Cakar; Caner Bilir; Ersay Ersoy; Orhan Turkoglu

    2014-06-01

    -phase bismuth oxide is a well known high oxygen ion conductor and can be used as an electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). This study aims to determine new phases of Bi2O3–Nb2O5 binary system and the temperature dependence of the electrical transport properties. The reaction products obtained in open air atmosphere were characterized by X-ray powder diffractions (XRD). The unit cell parameters were defined from the indexes of the powder diffraction patterns. The -Bi2O3 crystal system were obtained by doping 0.01 < mole% Nb2O5 < 0.04 at 750 °C for 48 and 96 h. Thermal behaviour and thermal stability of the phases were investigated by thermal analysis techniques. Surface and grain properties of the related phases were determined by SEM analysis. The temperature dependence of the electrical properties of -Bi2O3 solid solution was measured by four-point probe d.c. conductivity method. In the investigated system, the highest value of conductivity was observed for $\\sigma_{T}$ = 0.016 ohm-1 cm-1 at 650 °C on 4 mole% Nb2O5 addition. The electrical conductivity curves of studied materials revealed regular increase with temperature in the form of the Arrhenius type conductivity behaviour.

  6. Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte.

    Sundaram, Manickam Minakshi; Watcharatharapong, Teeraphat; Chakraborty, Sudip; Ahuja, Rajeev; Duraisamy, Shanmughasundaram; Rao, Penki Tirupathi; Munichandraiah, Nookala

    2015-12-14

    Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn(1/3)Co(1/3)Ni(1/3)PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a non-aqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices. PMID:26530639

  7. Rock and soil rheology

    The aim of the Euromech Colloquium 196 devoted to Rock and Soil Rheology is to review some of the main results obtained in the last years in this field of research and also to formulate some of the major not yet solved problems which are now under consideration. Exchange of opinions and scientific discussions are quite helpful mainly in those areas where some approaches are controversial and the progress made is quite fast. That is especially true for the rheology of geomaterials, domain of great interest for mining and petroleum engineers, engineering geology, seismology, geophysics, civil engineering, nuclear and industrial waste storage, geothermal energy storage, caverns for sports, culture, telecommunications, storage of goods and foodstuffs (cold, hot and refrigerated storages), underground oil and natural gas reservoirs etc. Some of the last obtained results are mentioned in the present volume. (orig./HP)

  8. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  9. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10−4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application

  10. Rheology of Attractive Emulsions

    Datta, Sujit S.; Gerrard, Dustin D.; Rhodes, Travers S.; Mason, Thomas G.; Weitz, David A.

    2012-01-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, RCP, can form soft gel-like elastic solids. However, above RCP, attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, an...

  11. Blood rheology and aging

    Michael J. Simmonds; Meiselman, Herbert J.; Baskurt, Oguz K

    2013-01-01

    Journal of Geriatric Cardiology (2013) 10: 291301 ©2013 JGC All rights reserved; www.jgc301.com http://www.jgc301.com; | Journal of Geriatric Cardiology Review  Open Access  Blood rheology and aging Michael J. Simmonds1, Herbert J. Meiselman2, Oguz K. Baskurt3 1Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, QLD 4222, Australia 2Department of Physiology and Biophysics, Keck School of Medicine, University of S...

  12. Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(benzoxazine and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell

    Hyuk Chang

    2013-01-01

    Full Text Available Elevated-temperature (100~200 °C polymer electrolyte membrane (PEM fuel cells have many features, such as their high efficiency and simple system design, that make them ideal for residential micro-combined heat and power systems and as a power source for fuel cell electric vehicles. A proton-conducting solid-electrolyte membrane having high conductivity and durability at elevated temperatures is essential, and phosphoric-acid-containing polymeric material synthesized from cross-linked polybenzoxazine has demonstrated feasible characteristics. This paper reviews the design rules, synthesis schemes, and characteristics of this unique polymeric material. Additionally, a membrane electrode assembly (MEA utilizing this polymer membrane is evaluated in terms of its power density and lifecycle by an in situ accelerated lifetime test. This paper also covers an in-depth discussion ranging from the polymer material design to the cell performance in consideration of commercialization requirements.

  13. THE ANALYSIS OF CONCRETE RHEOLOGICAL CHARACTERISTICS BEHAVIOUR

    Ramona PINŢOI

    2013-05-01

    Full Text Available In the rheological models used in the mathematical description of the rheological behavior ofconcrete. Plays stiffness modulus variation, tangential effort, apparent viscosity, friction angle.

  14. Rheology of electrorheological fluids

    We present experimental and theoretical results on the shear thinning of electrorheological fluids. Rheological measurements on a model fluid consisting of monodisperse silica spheres immersed in a dielectric liquid show a power-law dependence μ∝γ-Δ of the apparent viscosity μ on the strain rate γ, with Δ in the range Δ=0.68--0.93. We present a theoretical treatment of steady-state cluster formation in applied electric and shear fields, which correctly predicts the observed power-law shear thinning albeit with an exponent Δ=2/3. We observe no true yield stress in this material

  15. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  16. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within 5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports. For the first time, in situ FTIR measurements in acid electrolyte showed that highly dispersed Pt nanoparticles (2--5nm) on NbRuyO z (at% 8Nb:1Ru) catalyze the formation of CO2 from ethanol in greater yield, and 0.35--0.4V lower, than Pt(111). Compared to conventional Pt/carbon, this indicates that, (1) Pt supported on NbRuyO z can be more effective at splitting the C---C bond in ethanol and, (2) the scission occurs at potentials more ideal for a higher efficiency fuel cell anode. Ex situ-microscopy revealed the polarization-induced two- and three-dimensional formation of Pt-NbOx interfacial adsorption sites responsible for the facilitation of the total oxidation pathway of ethanol. The results show that synthesis and post-treatment of niobia supports can bias the utility of Pt/niobia systems towards the ethanol oxidation reaction at the anode or the oxygen reduction reaction at the cathode. Experimental and computational-theoretical analyses indicate that the mechanism of interfacial site formation is dependent upon the local oxygen concentration, as well as the availability of multiple, energetically accessible oxidation states like those inherent to niobia. Future directions for the development of highly active, niobium-based materials tailored for efficient catalysis of the total oxidation pathway of ethanol are discussed.

  17. Utilization of the secondary energy of Itaipu, Parana State, Brazil, for electrolytical ammonia production for nitrogenous fertilizers synthesis; Utilizacao da energia secundaria da usina hidreletrica de Itaipu, PR, Brasil para producao de amonia eletrolitica para sintese de fertilizantes nitrogenados

    Souza, S.N.M. de; Siqueira, J.A.C.

    2000-07-01

    Secondary energy can be described as a surplus of electrical energy in hydraulic power plant due to the lower demand of energy during some periods of time, and the excess of water in the reservoir, during rainy periods. The largest hydroelectric power plant both in Brazil and South America is Itaipu, jointly operated by Brazil and Paraguay. This power plant has a large amount of secondary energy available, and this energy is lost as no turbine spilled water out of the reservoir. This study proposes the using of this energy for electrolytic hydrogen production and ammonia for nitrogenous fertilizers. The hydrogen is produced as a gas by mean of electrolyses and with the atmospheric nitrogen for the electrolytic ammonia synthesis, used as the most important raw material for the nitrogen fertilizers synthesis. This study performs the determination of the minimal cost of hydrogen production and the correspondent hydrogen production capacity in accordance with the ammonia market for nitrogenated fertilizers in the Center/South region, estimating the better production capacity for an ammonia plant to be installed close to Itaipu.

  18. Solid state electrolyte systems

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  19. Molecular Rheology of Complex Fluids

    Huang, Qian; Hassager, Ole; Skov, Anne Ladegaard; Rasmussen, Henrik Koblitz

    2013-01-01

    The processing of polymer materials is highly governed by its rheology, and influences the properties of the final product. For example, a recurring problem is instability in extrusion that leads to imperfect plastic parts. The ability to predict and control the rheological behavior of polymer fluids as a function of molecular chemistry has attracted a long history of collaboration between industry and academia. In industrial polymer processes, there is usually a combination of both shear and...

  20. Rheological characterization of aged asphalts

    The present work shows the rheological properties of the three Colombian asphalts produced in the refineries at Barrancabermeja, Cartagena and Apiay, exposed to the open air during 18 months using a specially designed testing bank. rheological behavior was evaluated using the new specifications of SHRP technology in the Brookfield and DSR rheometers to determine viscosity, shear stress, shear rate, dynamic share modulus and other related variables. The measurements were made using different temperatures and load times

  1. Rheological characterization of dental waxes

    Zhang, Kehao

    2004-01-01

    Objectives The purpose of this study was to evaluate the rheological behaviour of new experimental dental waxes in dependent on temperature. Material and method Seven experimental dental waxes, provided by Dentaurum GmbH, were tested. No.018 was chosen as a control. Rheological experiments were performed at different temperatures using a Paar Physica Rheometer UDS200 equiped with a parallel plate cell. The temperature was regulated with a Peltier system (TEK130P) and a thermostat un...

  2. RHEOLOGICAL CHARACTERIZATION OF AGED ASPHALTS

    Natalia Afanasieva; Mario Álvarez; Mónica J. Ortiz

    2002-01-01

    The present work shows the rheological properties of the three Colombian asphalts produced in the refineries at Barrancabermeja, Cartagena and Apiay, exposed to the open air during 18 months using a specially designed testing bank. Rheological behavior was evaluated using the new specifications of SHRP technology in the Brookfield and DSR rheometers to determine viscosity, Shear Stress, Shear Rate, Dynamic Share Modulus and other related variables. The measurements were made using different t...

  3. Rheological Modifiers and Wetting Agents

    DOE tank waste treatment plants, the Waste Treatment Plant (WTP) at Hanford and Defense Waste Processing Facility (DWPF) at Savannah River, are designed to vitrify radioactive waste slurries for long-term storage. Plant throughput is currently limited by the waste solids loading. To increase waste throughput rates in the plant, an increase in the slurry solids concentration (or conversely, a reduction in the mass fraction of water in the waste) is being considered. However, the present mechanical designs used to mix and transport theses slurries are limited by the rheological properties. This reduction of water results in an increase in rheological properties that challenge plant design and performance. To support this increase in throughput, there is a need to reduce the rheological properties of these waste slurries. The objective of this project is to determine a small set of well-performing and commercially available rheological modifiers that allow control rheological properties of various simulated and actual waste slurries and to understand the physical mechanisms that govern modification of waste rheology. It is estimated that processing at a higher solids concentration will reduce the operating life of these plants by one year for both facilities, representing roughly $1B in lifecycle cost savings. In addition, this research is potentially important to sustainable operations of both WTP and DWPF

  4. Rheological Modifiers and Wetting Agents

    Chun, Jaehun; Hansen, Erich; Berg, John C.

    2009-10-01

    DOE tank waste treatment plants, the Waste Treatment Plant (WTP) at Hanford and Defense Waste Processing Facility (DWPF) at Savannah River, are designed to vitrify radioactive waste slurries for long-term storage. Plant throughput is currently limited by the waste solids loading. To increase waste throughput rates in the plant, an increase in the slurry solids concentration (or conversely, a reduction in the mass fraction of water in the waste) is being considered. However, the present mechanical designs used to mix and transport theses slurries are limited by the rheological properties. This reduction of water results in an increase in rheological properties that challenge plant design and performance. To support this increase in throughput, there is a need to reduce the rheological properties of these waste slurries. The objective of this project is to determine a small set of well-performing and commercially available rheological modifiers that allow control rheological properties of various simulated and actual waste slurries and to understand the physical mechanisms that govern modification of waste rheology. It is estimated that processing at a higher solids concentration will reduce the operating life of these plants by one year for both facilities, representing roughly $1B in lifecycle cost savings. In addition, this research is potentially important to sustainable operations of both WTP and DWPF

  5. Synthesis and characterization of sulfonate polystyrene-lignosulfonate-alumina (SPS-LS-Al2O3) polyblends as electrolyte membranes for fuel cell

    Gonggo, Siang Tandi

    2015-09-01

    The new type of electrolyte membrane materials has been prepared by blend sulfonated polystyrene (SPS), lignosulfonate (LS), and alumina (SPS-LS-Al2O3) by casting polymer solution. The resulting polymer electrolyte membranes were then characterized by functional groups analysis, mechanical properties, water uptake, ion exchange capacity, and proton conductivity. SPS-LS-Al2O3 membranes with alumina composition various have been proven qualitatively by analysis of functional groups. Increasing the Al2O3 ratio resulted in higher ion exchange capacity (IEC), mechanical strength and proton conductivity, but water uptake decreased. The SPS-LS-Al2O3 blend showed higher proton conductivity than Nafion 117.

  6. Study of an industrial process for the synthesis of high molar mass ethylene oxide-propylene oxide copolymers usable as extrusible electrolyte; Etude d`un procede industriel de synthese de copolymeres oxyde d`ethylene-oxyde de propylene de hautes masses molaires utilisables comme electrolyte extrudable

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Caselles, E. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France)

    1996-12-31

    The aim of this work is to develop an industrial process for the synthesis of an extrusible electrolyte polymer for lithium batteries. From literature data and precise specifications the high molar mass EO/OP copolymers synthesis by coordinative catalysis has been studied in order to reach a high productivity and to minimize the treatment steps. Two catalytic systems have been studied: the aluminium alkoxide-based Vandenberg-type catalysis and the calcium alcoholate amides catalysis. The first catalysis performed in solution gives excellent results. Its adaptation to silicon supported catalysis leads to a directly usable polymer in suspension but the productivity falls down and remains to be optimized. The calcium amide catalysis in heptane suspension generates acceptable productivities but also a too high proportion of low molar masses. Various approaches have been studied to minimize this proportion due to the presence of secondary sites that generate a cationic mechanism. The two synthesis ways explored are promising but remain to be optimized in order to increase the productivity of the efficient catalytic site and to reduce the formation of low molar masses generated by parasite catalytic sites. (J.S.) 9 refs.

  7. Rheology of fractal networks

    Patricio, Pedro; Duarte, Jorge; Januario, Cristina

    2015-01-01

    We investigate the rheology of a fractal network, in the framework of the linear theory of viscoelasticity. We identify each segment of the network with a simple Kelvin-Voigt element, with a well defined equilibrium length. The final structure retains the elastic characteristics of a solid or a gel. By considering a very simple regular self-similar structure of segments in series and in parallel, in 1, 2 or 3 dimensions, we are able to express the viscoelasticity of the network as an effective generalised Kelvin-Voigt model with a power law spectrum of retardation times, $\\phi\\sim\\tau^{\\alpha-1}$. We relate the parameter $\\alpha$ with the fractal dimension of the gel. In some regimes ($0<\\alpha<1$), we recover the weak power law behaviours of the elastic and viscous moduli with the angular frequencies, $G'\\sim G''\\sim w^\\alpha$, that occur in a variety of soft materials, including living cells. In other regimes, we find different and interesting power laws for $G'$ and $G''$.

  8. Surface rheology and interface stability.

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D. (Carnegie Mellon University, Pittsburgh, PA); Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk fluid.

  9. Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/Yttria-stabilized zirconia

    The ceramic films of strontium-doped lanthanum manganite (LSM) and strontium doped lanthanum manganite/Yttria-stabilized zirconia (LSM/YSZ) are used as cathodes of the high temperature solid oxide fuel cells (HTSOFC). These porous ceramic films had been deposited on the YSZ dense ceramic substrate, used as electrolyte, structural component of the module, thus conferring a configuration of half-cell called auto-support. The study of the half-cell it is basic, therefore in the interface cathode/electrolyte occurs the oxygen reduction reaction, consequently influencing in the performance of the HTSOFC. In this direction, the present work contributes for the processing of thin films, using the wet powder spraying technique, adopted for the conformation of the ceramic films for allowing the attainment of porous layers with thicknesses varied in the order of micrometers. The LSM powders were synthesized by the citrate technique and the LSM/YSZ powders synthesized by the solid mixture technique. In the stage of formation were prepared organic suspensions of LSM and LSM/YSZ fed by gravity in a manual aerograph. For the formation of the YSZ substrate was used a hydraulic uniaxial press. The attainment of solid oxide half-cells cathode/electrolyte was possible of crystalline structures hexagonal for phase LSM and cubic for phase YSZ. The half-cells micrographs show that the YSZ substrate is dense, enough to be used as solid electrolyte, and the LSM and LSM/YSZ films are presented porous with approximately 30 μm of thickness and good adherence between the cathodes and the electrolyte. The presence of composite cathode between the LSM cathode and YSZ substrate, presented an increase in the electrochemical performance in the oxygen reduction reaction. (author)

  10. Rheological characterization of nuclear waste using falling-ball rheometry

    Knowledge of the rheological properties of saturated solutions containing solid particles is very important in nuclear waste management technology. For example, the nuclear waste in the Hanford Site high-level radioactive waste tanks contains strong electrolyte solutions with a high concentration of solids. Previous attempt using rotational viscometers to determine the rheology has shown unusual thixotropic and shear thinning behaviors with a lack of reproducibility. Using falling-ball rheometry, the rheology of the undisturbed simulant may be determined with much better reproducibility. In this study, a well-mixed simulant which has similar chemical composition to the actual waste will be tested. Falling-ball size and density will be varied to get data in a wide range of shear rates. To determine the rheogram, several methods will be tried to match the observed data. Based on these tests, a rheogram can be determined from the model and its best-fit parameters. The simulant shows shear-thinning behavior and a yield stress. This would suggest a H-B model. But when fitting to one of the simulants which showed a very low yield stress, the predictions assuming no yield and assuming yield resulted in no improvement in the fit when assuming yield

  11. The deflocculation of kaolin suspensions : the effect of various electrolytes

    Penkavová, V.; Guerreiro, Margarida; Tihon, J; Teixeira, J. A.

    2013-01-01

    The deflocculation effect of conventional additives to kaolin suspensions is evaluated from the results standard rheological measurements. Several widely used electrolytes (NaOH, Na2C03, Na2Si03, SHMP = sodium hexametaphosphate, and CMC = sodium salts of carboxymethylcellulose) have been tested. The optimal concentrations of these deffloculants, in respect to reaching the maximum reduction of initial suspension viscosity, are found. The stability of deflocculated kaolin suspens...

  12. Synthesis and characterization of sulfonate polystyrene-lignosulfonate-alumina (SPS-LS-Al{sub 2}O{sub 3}) polyblends as electrolyte membranes for fuel cell

    Gonggo, Siang Tandi, E-mail: standigonggo@yahoo.com [Chemistry Research Groups, Faculty of Teacher Training and Educational Sciences, Tadulako University (Indonesia)

    2015-09-30

    The new type of electrolyte membrane materials has been prepared by blend sulfonated polystyrene (SPS), lignosulfonate (LS), and alumina (SPS-LS-Al{sub 2}O{sub 3}) by casting polymer solution. The resulting polymer electrolyte membranes were then characterized by functional groups analysis, mechanical properties, water uptake, ion exchange capacity, and proton conductivity. SPS-LS-Al{sub 2}O{sub 3} membranes with alumina composition various have been proven qualitatively by analysis of functional groups. Increasing the Al{sub 2}O{sub 3} ratio resulted in higher ion exchange capacity (IEC), mechanical strength and proton conductivity, but water uptake decreased. The SPS-LS-Al{sub 2}O{sub 3} blend showed higher proton conductivity than Nafion 117.

  13. Synthesis, characterization and electrical properties of solid electrolyte for solid oxide fuel cell; Preparacao, caracterizacao e propriedades eletricas de eletrolito solido para celula a combustivel de oxido solido

    Berton, Marco Antonio Coelho; Garcia, Carlos Mario; Matos, Jeferson Hrenechen [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], Emails: felsky@latec.org.br, garcia@latec.org.br, jeferson.h@latec.org.br

    2010-04-15

    Solid electrolytes of BaCe{sub 08}Gd{sub O29} were prepared by the polymeric precursor method. X-ray diffraction data shows a single phase with orthorhombic crystalline structure. The densification process was followed by scanning electronic microscopy and apparent density measurements. The apparent density was developed for different temperatures of sintering, reaching > 96% for sintered temperature of 1550 {sup 0}C deg . The electrochemical impedance analysis was development in the temperature of 400-700 deg C, in air atmosphere at 700 deg C a value of 30,6 mS.cm{sup -1} was obtained. The results of conductivity have confirmed the gadolinium doped barium cerate has a great potential for use as solid electrolyte for intermediate temperature solid oxide fuel cell, at experimental controlled conditions. (author)

  14. Design of magneto-rheological (MR) valve

    Grunwald, Artur; Olabi, Abdul-Ghani

    2008-01-01

    Magneto-Rheological Fluid (“MRF”) technology has been successfully employed in various low and high volume automotive applications. Good understanding of specific design constraints is required to define and to optimize a magneto-rheological device. This article presents parametrical analyses with magnetic simulations, of a magneto-rheological valve and a magneto-rheological orifice. Experimental rig assemblies of two different control devices have been designed, built and the performances ha...

  15. Rheology of Biopolymer Solutions and Gels

    Picout, David R.; Ross-Murphy, Simon B.

    2003-01-01

    Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio) polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi...

  16. Molecular Rheology of Complex Fluids

    Huang, Qian; Rasmussen, Henrik Koblitz

    fluids as a function of molecular chemistry has attracted a long history of collaboration between industry and academia. In industrial polymer processes, there is usually a combination of both shear and extensional flows. In some processing operations such as blow molding and fiber spinning, extensional......The processing of polymer materials is highly governed by its rheology, and influences the properties of the final product. For example, a recurring problem is instability in extrusion that leads to imperfect plastic parts. The ability to predict and control the rheological behavior of polymer...

  17. Rheology for chemists an introduction

    Goodwin, J W

    2000-01-01

    Rheology is an integral part of life, from decorative paint and movement of volcanic lava to the flow of blood in our veins. This book describes, without the use of complex mathematics, how atoms and molecules interact to control the handling properties of materials ranging from simple ionic crystals through polymers to colloidal dispersions.Beginning with an introduction to essential terminology, Rheology for Chemists goes on to discuss limiting behaviour, temporal behaviour and non-linear behaviour. Throughout, examples of everyday experiments are provided to illustrate the theory, which inc

  18. Facile Synthesis of Fe2O3 Nano-Dots@Nitrogen-Doped Graphene for Supercapacitor Electrode with Ultralong Cycle Life in KOH Electrolyte.

    Liu, Li; Lang, Junwei; Zhang, Peng; Hu, Bin; Yan, Xingbin

    2016-04-13

    Fe2O3 nanodots supported on nitrogen-doped graphene sheets (denoted as Fe2O3 NDs@NG) with different loading masses are prepared through a facile one-pot solvothermal method. The resulting Fe2O3 NDs@NG composites exhibit outstanding electrochemical properties in aqueous KOH electrolyte. Among them, with the optimal loading mass of Fe2O3 NDs, the corresponding Fe2O3 NDs@NG-0.75 sample is able to deliver a high specific capacitance of 274 F g(-1) at 1 A g(-1) and the capacitance is still as high as 140 F g(-1) even at a ultrahigh current density of 50 A g(-1), indicating excellent rate capability. More remarkably, it displays superior capacitance retention after 100 000 cycles (about 75.3% at 5 A g(-1)), providing the best reported long-term cycling stability for iron oxides in alkaline electrolytes to date. Such excellent electrochemical performance is attributed to the right combination of highly dispersed Fe2O3 NDs and appropriately nitrogen-doped graphene sheets, which enable the Fe2O3 NDs@NG-0.75 to offer plenty of accessible redox active sites, facilitate the electron transfer and electrolyte diffusion, as well as effectively alleviate the volume change of Fe2O3 NDs during the charge-discharge process. PMID:27007301

  19. Synthesis of poly(ionic liquids) both in solution and on surface of silica nanoparticles as novel quasi-solid state electrolytes

    Hu, Heyi

    Ionic liquids (ILs) are compounds composed of cations and anions with low melting point, usually below room temperature. ILs have some unique properties, such as high intrinsic ionic conductivity, non-volatility, non-flammability, thermal and chemical stability. Based on these properties, ILs have been considered as promising electrolyte materials. However, the sealing and fabrication of IL electrolytes remained a challenge in industry applications due to their liquid property. One way to solve this problem was to polymerize the ILs. Compared to ILs, poly(ionic liquids) (PILs) have enhanced mechanical stability, improved processability and durability. However, PILs have their own drawback, which is that once polymerized, the ionic conductivity of PILs drops a lot, usually several orders of magnitude lower than that of their monomers. To successfully apply PILs as electrolyte materials, the ionic conductivity must be improved. To have high conductivity, the PILs synthesized must have low Tgs. A series of low Tg polymer polyepichlorohydrin (polyEPCH) with molecular weight ranging from 22,000 to 76,000 were synthesized by anionic ring-opening polymerization. After quaternarization and ion exchange, a novel family of PIL electrolytes were synthesized and characterized. The PILs obtained showed not only low T g, high conductivity and good thermal stability, but also a high viscosity, which is beneficial in fabricating process. To get even higher conductivity, another low T g monomer, 2-((2-(2-(2-methoxyethoxy)ethoxy)ethoxy)methyl)oxirane (ME 3MO), was synthesized and randomly copolymerized with EPCH by cationic ring-opening polymerization. The resulting copolymer (polyEPCH-co -polyME3MO) was quaternarized and ion exchanged to form a PIL copolymer (polyGBIMTFSI-co-polyME3MO). By tuning the monomer composition, a series of PIL copolymers from polyGBIMTFSI- co-polyME3MO-8/1 to polyGBIMTFSI-co-polyME 3MO-1/4 were synthesized. All PIL copolymer samples showed higher ionic conductivity than PIL homopolymer. Among them, polyGBIMTFSI-co-polyME 3MO-1/1 showed the highest ionic conductivity (around 1.2 x 10 -4 S/cm at 25 °C), which was more than 1 order of magnitude higher than PIL homopolymer (9.3 x 10-6 S/cm at 25 °C). We also synthesized PILs on the surface of silica nanoparticles via surface initiated atom transfer radical polymerization (ATRP). A gel electrolyte was formed by dispersing the PIL/silica nanocomposites in 1-methyl-3-propylimidazolium iodide and heating for 1 h. The gel electrolyte was used as a quasi-solid state electrolyte in DSSC and a 0.37 % conversion efficiency was achieved.

  20. Rheological investigations of hydrate slurries

    Rensing, P.J.; Liberatore, M.W.; Koh, C.A.; Sloan, E.D. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering, Center for Hydrate Research

    2008-07-01

    The oil and gas industry has been challenged by the formation of clathrate hydrates that plug oil pipelines, and is moving towards risk management to avoid pipeline blockages. In order to effectively implement this new heuristic, phenomena like clathrate hydrate rheology must be understood. This paper demonstrated how pressurized rheological measurements could be utilized to investigate the flowability of clathrate hydrate slurries. Rheological properties such as viscosity and yield stress were measured. The paper presented the experimental methodology as well as the results. It was concluded that rheology is an effective tool to study clathrate hydrate formation and aggregation. Clathrate hydrate nucleation was observed in both shear and oscillatory time sweep experiments. The oscillatory measurements provided a novel way to detect clathrate hydrate dissociation, as well as structural evolution over time. It was also found that shear reduced the effective Bingham yield stress of the hydrate sample. These results suggest that clathrate hydrate formation may not be overly problematic in a pipeline as long as the clathrate hydrates could be sufficiently sheared. 3 refs., 7 figs.

  1. Synthesis, structural analysis and electrochemical performances of BLSITCFx as new cathode materials for solid oxide fuel cells (SOFC) based on BIT07 electrolyte

    Letilly, M.; Le Gal La Salle, A.; Joubert, O. [Institut des Materiaux Jean Rouxel (IMN), CNRS- Universite de Nantes, 2 rue de la Houssiniere, BP 32229, 44322 Nantes (France); Lachgar, A. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2010-08-01

    BaIn{sub 0.3}Ti{sub 0.7}O{sub 2.85} (BIT07) is a suitable electrolyte for Solid Oxide Fuel Cell (SOFC) but half cells based on La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF) as a cathode material show a degradation of the Area Specific Resistance (ASR) at 700 C with time. This study deals with the characterization of alternative cathode materials showing a better compatibility with BIT07 than LSCF. A new solid solution, Ba{sub x}La{sub 0.58(1-x)}Sr{sub 0.4(1-x)}In{sub 0.3x}Ti{sub 0.7x}Co{sub 0.2(1-x)} Fe{sub 0.8(1-x)}O{sub 3-{delta}}, with 0 {<=} x {<=} 1, also called BLSITCFx, with in this case x expressed in molar %, derived from BIT07 and LSCF, has been synthesized at 1350 C in air using BIT07 and LSCF powders. Two compositions, BLSITCF12 and BLSITCF25, have been selected due to their thermal expansion and conductivity properties. Symmetrical half cells based on these two new materials deposited on BIT07 electrolyte have been studied by complex impedance spectroscopy in air versus temperature and time. Their behaviour is comparable to LSCF's, with ASR values never exceeding 0.2 {omega}cm{sup 2} at 700 C, and moreover their less important Thermal Expansion Coefficient (TEC) mismatch with BIT07 lead to a better mechanical compatibility with time. These new compounds are therefore better candidates than LSCF as cathode materials for SOFC based on BIT07 electrolyte. (author)

  2. Nanoporous polymer electrolyte

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  3. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene Diamine

    Hsien-Ming Kao

    2012-06-01

    Full Text Available Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol-block-poly(ethylene glycol-block-poly(propylene glycol bis(2-aminopropyl ether complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS and 3-(triethoxysilylpropyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC, Fourier transform infrared (FTIR spectroscopy, alternating current (AC impedance and solid-state nuclear magnetic resonance (NMR spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains.

  4. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  5. SUMMARY OF 2009 RHEOLOGY MODIFIER PROGRAM

    Hansen, E.

    2009-12-08

    The overall objective of the EM-31 Rheological Modifiers and Wetting Agents program is to utilize commercially available rheology modifiers to increase the solids fraction of radioactive sludge based waste streams, resulting in an increase in throughput and decreasing the overall processing time. The program first investigates the impact of rheology modifiers on slurry simulants and then utilizes the most effective rheology modifiers on radioactive slurries. The work presented in this document covers the initial investigation of rheology modifier testing with simulants. This task is supported by both the Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL). The SRNL EM-31 task, for this year, was to investigate the use of rheology modifiers on simulant Defense Waste Processing Facility (DWPF) melter feeds. The task is to determine, based on the impact of the rheology modifier, if there are rheology modifiers that could reduce the water content of the slurry going to the DWPF melter, hence increasing the melt rate by decreasing the water loading. The rheology modifier in essence would allow a higher solids content slurry to have the same type of rheology or pumpability of a lower solids slurry. The modifiers selected in this report were determined based on previous modifiers used in high level waste melter feed simulants, on-going testing performed by counterparts at PNNL, and experiences gain through use of modifiers in other Department of Energy (DOE) processes such as grout processing. There were 12 rheology modifiers selected for testing, covering both organic and inorganic types and they were tested at four different concentrations for a given melter feed. Five different DWPF melter feeds were available and there was adequate material in one of the melter feeds to increase the solids concentration, resulting in a total of six simulants for testing. The mass of melter feed available in each simulant was not adequate for testing each rheology modifier, hence based on the changes in rheology for a given rheology modifier, rheology modifiers were either dropped or added between simulants. Three rheology modifiers were used on all simulants. The results from this testing indicate that citric acid or polycarboxylate based rheology modifiers are the most effective in reducing the yield stress, by as much as 70% at the higher rheology modifier additions and were effective on most of the tested simulants. These rheology modifiers are organic, hence the can also be used as reductants in melter operations. The most effective non-organic rheology modifiers, sodium metasilicate reduced the yield stress by 10%. It is recommended that both citric acid and commercially available polycarboxylate rheology modifiers be further investigated. Different molecular weight polycarboxylates and different types of polycarboxylates used in other industries must be considered. These polycarboxylates are extensively utilized in the cement, ceramic, and water treatment processes, hence readily available. Future work on DWPF melter feeds involving rheology modifiers should include, assuming the present method of processing sludge through DPWF does not change, is: (1) Investigate the use of polycarboxylate in various processes and procure polycarboxylates for testing. Limit rheology modifier selection and future testing between four and eight different types. (2) Test rheology modifiers on at least two different chemical types or bounding DWPF SME product simulants. Test to include the impact of boiling and the effectiveness in reducing water content via rheology versus weight percent curves. (3) Based on selected modifiers, perform testing on actual radioactive melter feed based on results from simulant testing.

  6. Synthesis and Characterization of Nafion-SiO2 Composite Membranes as an Electrolyte for Medium Temperature and Low Relative Humidity

    Endang Sulistyowati

    2011-12-01

    Full Text Available The weakness of the Nafion membrane as electrolyte of PEMFC associated with physical properties that is easy to shrink at temperatures above 80C due to dehydration. Shrinkage will decrease the conductivity and membrane damage. Nafion-SiO2 composite membranes can improve membrane stability. The role of SiO2 in the Nafion clusters is as water absorbent cause the membrane remains wet at high temperatures and low humidity and conductivity remains high. The results showed the content of 2.8 wt% of SiO2 in the Nafion membrane, the conductivity of composite membrane is higher than the pure Nafion membrane that are 0.127 S cm-1 in dry conditions and 0.778 S cm-1 in wet conditions at room temperature. Compared with the pure Nafion membrane conductivity are 0.0661 S cm-1 and 0.448 S cm-1 respectively in dry and wet conditions.

  7. Synthesis and characterization of nanoporous anodic oxide film on aluminum in H3PO4 + KMnO4 electrolyte mixture at different anodization conditions

    Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe

    2016-04-01

    The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.

  8. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher energetic thermal treatments to attain high densities. In relation to the sintered products, it was confirmed the excellent homogeneity and crystallinity of microstructure provided by the chosen route, the restriction of grain growth by alumina addition, raise of hardness and fracture toughness, and higher ionic conductivity, even tough a lower bulk conductivity. These results indicate that the addition of 5 wt % alumina in CSZ matrix allows the application of this material as solid oxide fuel cell electrolytes, due to its better fracture toughness and ionic conductivity, compared to yttria-stabilized cubic zirconia ceramics. (author)

  9. Effects of swimming on erythrocyte rheological properties

    AE Ustuntas; Topcu, A.; I. Aksu; B Ozcaldiran; BM Kayatekin; O Acikgoz; CS Bediz

    2010-01-01

    Exercise and lactate usually change blood rheology but, effect of swimming on blood rheology is not clear. Blood lactate concentration increases after 400-meter freestyle swimming. In the hemorheological studies, determination of the erythrocyte deformability and aggregation facilitates the evaluation of rheological behaviours of the erythrocytes. The present study was performed to investigate the effects of acute swimming exercise on erythrocyte deformability and aggregation. Seventeen male ...

  10. Rheological Properties and Transfer Phenomena of Nanofluids

    Jung, Kang-min; Kim, Sung Hyun

    2008-07-01

    This study focused on the synthesis of stable nanofluids and investigation of their rhelogical properties and transfer phenomena. Nanofluids of diamond/ethylene glycol, alumina/transformer oil and silica/water were made to use in this study. Rheological properties of diamond nanofluids were determined at constant temperature (25 °C) using a viscometer. For the convective heat transfer experiment, alumina nanofluid passed through the plate heat exchanger. CO2 absorption experiment was conducted in a bubble type absorber containing silica nanofluid. Diamond nanofluid showed non-Newtonian behaviors under a steady-shear flow except the case of very low concentration of solid nanoparticles. The heat transfer coefficient of alumina nanofluid was higher than that of base fluid. One possible reason is that concentration of nanoparticles at the wall side is higher than that of microparticles. Silica nanofluid showed that both average CO2 absorption rate and total absorption amount enhanced than those of base fluid. The stably suspended nanoparticles create a mesh-like structure. That structure arrangement cracks the gas bubble and increases the surface area.

  11. Synthesis of 8YSZ-LSGM Composite Thick Film Ceramics for Solid Electrolyte From Nanopowder Utilizing Local Zircon Prepared Using Sol Gel Process

    Thick film ceramics of 8% mol Y2O3 doped-ZrO2(8YSZ)-La0.8Sr0.2Ga0.2Mg0.8O3(LSGM) composite for solid electrolyte have been synthesized from nanopowder. Concentration of LSGM was 0 and 10% weight. A paste for the thick films was made from 8YSZ nanopowder prepared using sol gel method and LSGM powder prepared by solid state reaction. Precursors for the 8YSZ nanopowder preparation were ZrOCl2·8H2O derived from local zircon as byproduct of Tin processing at Bangka Island using caustic fusion method, and Y(NO3)3. The thick films were produced by screen printing technique on alumina substrates. The films were sintered at 1500 deg. C for 2 hours in air. X-ray diffraction (XRD) data showed that the nanopowder of 8YSZ was well produced with broad peaks. The particle size of the 8YSZ powder was about 12 nm as calculated using Debye Scherrer method. The thick films of 8YSZ and 8YSZ-LSGM (90:10 in weight %) composite could be produced, however, the films still contain voids. The ionic conductance of the YSZ-10LSGM films was smaller than that of the YSZ films.

  12. Stabilized γ-BIMNVOX solid electrolyte: Ethylene glycol–citrate sol–gel synthesis, microwave-assisted calcination, and structural and electrical characterization

    Al-Areqi, Niyazi A.S., E-mail: niyazi.alareqi@gmail.com [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Beg, Saba [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Al-Alas, Ahlam [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Hafeez, Shehla [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)

    2013-12-25

    Highlights: •γ-BIMNVOX was synthesized by ethylene glycol–citrate sol–gel route. •γ-BIMNVOX crystallizes by 25-min microwave-assisted calcination. •Smaller particle sizes for microwave calcined BIMNVOX samples. •Best oxide-ion performance for microwave calcined BIMNVOX samples. -- Abstract: Samples of γ-BIMNVOX (Bi{sub 2}V{sub 1−x}Mn{sub x}O{sub 5.5−x/2}; 0.13 ⩽ x ⩽ 0.20) system were synthesized by an ethylene glycol–citrate sol–gel route. The resulting xerogels were then calcined by the microwave heating using a modified domestic microwave oven operated at 2.45 GHz. Microwave-assisted calcination samples in comparison with other conventionally calcined samples were characterized in terms of phase crystallization, stabilization and particle size using simultaneous thermogravimetric–differential thermal analysis (TG–DTA), X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The AC impedance spectroscopy was employed for electrical characterization. It was found that the microwave-assisted calcination route successfully produces better crystalline stabilized γ-BIMNVOX samples with appreciably small average particle sizes after only 25 min of microwave heating. The electrical properties of microwave calcined γ-BIMNVOX system make it an advanced low-temperature solid electrolyte suitable for use in oxide-ion based electrochemical applications.

  13. Synthesis of 8YSZ-LSGM Composite Thick Film Ceramics for Solid Electrolyte From Nanopowder Utilizing Local Zircon Prepared Using Sol Gel Process

    Syarif, Dani Gustaman; Soepriyanto, Syoni; Ismunandar, Korda, Akhmad

    2010-10-01

    Thick film ceramics of 8% mol Y2O3 doped-ZrO2 (8YSZ)-La0.8Sr0.2Ga0.2Mg0.8O3 (LSGM) composite for solid electrolyte have been synthesized from nanopowder. Concentration of LSGM was 0 and 10% weight. A paste for the thick films was made from 8YSZ nanopowder prepared using sol gel method and LSGM powder prepared by solid state reaction. Precursors for the 8YSZ nanopowder preparation were ZrOCl2ṡ8H2O derived from local zircon as byproduct of Tin processing at Bangka Island using caustic fussion method, and Y(NO3)3. The thick films were produced by screen printing technique on alumina substrates. The films were sintered at 1500° C for 2 hours in air. X-ray diffraction (XRD) data showed that the nanopowder of 8YSZ was well produced with broad peaks. The particle size of the 8YSZ powder was about 12 nm as calculated using Debye Scherrer method. The thick films of 8YSZ and 8YSZ-LSGM (90:10 in weight %) composite could be produced, however, the films still contain voids. The ionic conductance of the YSZ-10LSGM films was smaller than that of the YSZ films.

  14. Stabilized γ-BIMNVOX solid electrolyte: Ethylene glycol–citrate sol–gel synthesis, microwave-assisted calcination, and structural and electrical characterization

    Highlights: •γ-BIMNVOX was synthesized by ethylene glycol–citrate sol–gel route. •γ-BIMNVOX crystallizes by 25-min microwave-assisted calcination. •Smaller particle sizes for microwave calcined BIMNVOX samples. •Best oxide-ion performance for microwave calcined BIMNVOX samples. -- Abstract: Samples of γ-BIMNVOX (Bi2V1−xMnxO5.5−x/2; 0.13 ⩽ x ⩽ 0.20) system were synthesized by an ethylene glycol–citrate sol–gel route. The resulting xerogels were then calcined by the microwave heating using a modified domestic microwave oven operated at 2.45 GHz. Microwave-assisted calcination samples in comparison with other conventionally calcined samples were characterized in terms of phase crystallization, stabilization and particle size using simultaneous thermogravimetric–differential thermal analysis (TG–DTA), X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The AC impedance spectroscopy was employed for electrical characterization. It was found that the microwave-assisted calcination route successfully produces better crystalline stabilized γ-BIMNVOX samples with appreciably small average particle sizes after only 25 min of microwave heating. The electrical properties of microwave calcined γ-BIMNVOX system make it an advanced low-temperature solid electrolyte suitable for use in oxide-ion based electrochemical applications

  15. Sol-gel synthesis and characterization of Zn2+ and Mg2+ doped La10Si6O27 electrolytes for solid oxide fuel cells

    Setsoafia, D. D. Y.; Hing, P.; Jung, S. C.; Azad, A. K.; Lim, C. M.

    2015-10-01

    Achieving high densification at low sintering temperatures for lanthanum silicate apatites is a major technological hurdle to enable this class of materials to be evaluated as electrolytes for solid oxide fuel cells. Using sol-gel process, materials close to 97% of theoretical density have been obtained at a low sintering temperature of 1773 K for both doped and undoped samples. The effect of varying concentrations of Zn2+ doping on the sinterability, electrical, thermal and microstructural properties of 0.2 mol Mg2+ doped La10Si6O27 were investigated. Ionic conductivity of the samples was measured using electrochemical impedance spectroscopy in the temperature range of 573 K-1073 K. A total ionic conductivity of 1.7 × 10-2 Scm-1 with a corresponding activation energy of 0.33 eV at 1073 K were measured for the composition La10Zn0.2(SiO4)5.8O2.5 which is higher than 9 × 10-3 Scm-1 for the undoped composition La10(SiO4)6O3. The composition La10Mg0.2Zn0.4(SiO4)5.4O4.8 has the lowest thermal expansion coefficient of 8.470 × 10-6 K-1 of all the samples investigated.

  16. Synthesis and characterization of perovskite-type (Li,Sr)(Zr,Nb)O3 quaternary solid electrolyte for all-solid-state batteries

    Yu, Ran; Du, Qing-Xia; Zou, Bang-Kun; Wen, Zhao-Yin; Chen, Chun-Hua

    2016-02-01

    Stable solid electrolytes with high lithium ionic conductivity are crucial for all-solid-state lithium ion batteries. The compatibility with electrodes require a sintering temperature around 1000 °C. A perovskite-type (Li,Sr)(Zr,Nb)O3 system with A-site vacancy is designed and synthesized by a solid-state reaction route. Four compositions with different concentrations of A-site vacancy and several sintering temperatures between 1100 and 1300 °C are selected to find an optimal composition. X-ray diffraction and scanning electron microscope are employed to analyze the crystalline phases and the microstructure of the sintered samples. The ionic conductivities of the materials are measured by AC impedance spectroscopy. For the sample with the optimal composition Li3/8Sr7/16Zr1/4Nb3/4O3 and sintered at 1200 °C, its total ionic conductivity is 2.00×10-5 and 1.65×10-4 Scm-1 at 30 and 100 °C, respectively. Its activation energy for lithium ion conduction is 0.26 eV.

  17. Chocolate rheology / Reologia de chocolate

    Estela Vidal, Gonalves; Suzana Caetano da Silva, Lannes.

    2010-12-01

    Full Text Available Reologia a cincia que estuda a deformao e fluxo de slidos e fluidos sob a influncia de foras mecnicas. As determinaes reolgicas de um produto no estgio de produo podem ser teis no controle de qualidade. A microestrutura de um produto pode ser correlacionada com o comportamento reolg [...] ico, permitindo desenvolver novos materiais. A reometria permite a aplicao de equaes reolgicas em processos de engenharia, particularmente nas operaes unitrias que envolvem aquecimento e transferncia de massa. A demanda dos consumidores torna possvel obter um produto que esteja de acordo com as necessidades. As indstrias de chocolates trabalham com o produto na fase lquida na concha, na temperadeira e tambm durante o bombeamento. O desenho de cada tipo de equipamento essencial para o timo processamento. No desenho de cada processo necessrio conhecer as caractersticas fsicas do produto. O comportamento reolgico do chocolate pode auxiliar no conhecimento das caractersticas de aplicao e dos consumidores do produto. Alimentos esto geralmente em estado metaestvel. Sua textura depende das trocas estruturais que ocorrem com seu processamento. Chocolate lquido uma suspenso com propriedades que so fortemente afetadas pelas caractersticas das partculas, incluindo no somente partculas dispersas mas tambm cristais de gordura formados durante o resfriamento e solidificao. A reologia de chocolates extensivamente estudada, a textura do chocolate e sua estabilidade so fortemente afetadas pela presena de cristais especficos Abstract in english Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological [...] behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mass transfer. Consumer demands make it possible to obtain a product that complies with these requirements. Chocolate industries work with products in a liquid phase in conching, tempering, and also during pumping operations. A good design of each type of equipment is essential for optimum processing. In the design of every process, it is necessary to know the physical characteristics of the product. The rheological behavior of chocolate can help to know the characteristics of application of the product and its consumers. Foods are generally in a metastable state. Their texture depends on the structural changes that occur during processing. Molten chocolate is a suspension with properties that are strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Chocolate rheology is extensively studied, and it is known that chocolate texture and stability is strongly affected by the presence of specific crystals

  18. Rheology of unstable mineral emulsions

    Sokolović Dunja S.

    2013-01-01

    Full Text Available In this paper, the rheology of mineral oils and their unstable water emulsion were investigated. The oil samples were domestic crude oil UA, its fractions UA1, UA4 and blend semi-product UP1, while the concentration of oil in water emulsions was in the range from 1 up to 30%. The results were analyzed based on shear stress. The oil samples UA, UA1 and UP1 are Newtonian fluids, while UA4 is pseudoplastic fluid. The samples UA and UA4 show higher value of shear stress (83.75 Pa, 297 Pa, then other two samples UA1 and UP1 (18.41 Pa, 17.52 Pa. Rheology of investigated oils due to its complex chemical composition should be analyzed as a simultaneous effect of all their components. Therefore, structural composition of the oils was determined, namely content of paraffins, naphthenes, aromatics and asphaltenes. All samples contain paraffins, naphthenes and aromatics but only oils UA and UA4 contain asphaltenes as well. All investigated emulsions except 30% EUA4 are Newtonian fluids. The EUA4 30% emulsion shows pseudoplastic behaviour, and it is the only 30% emulsion among investigated ones that achieves lower shear stress then its oil. The characteristics of oil samples that could have an influence on their properties and their emulsion rheology, were determined. These characteristics are: neutralization number, interfacial tension, dielectric constant, and emulsivity. Oil samples UA and UA4 have significantly higher values of neutralization number, dielectric constants, and emulsivity. The sample UA has the lowest value of interface tension and the greatest emulsivity, indicating that this oil, among all investigated, has the highest preference for building emulsion. This could be the reason why 20% and 30% emulsions of the oil UA achieve the highest shear stress among all investigated emulsions.

  19. Towards Prognostics of Electrolytic Capacitors

    National Aeronautics and Space Administration — A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several...

  20. Synthesis and Characterization of Cu- and Co-Doped Bi4V2O11 for Intermediate-Temperature Solid Oxide Fuel Cell Electrolytes by Carbonate Coprecipitation

    Lee, Jin Goo; Yoon, Hyon Hee

    2011-01-01

    Bi2MexV1-xO5.5-3x/2 (Me = Cu; 0≤x≤0.2) powders were prepared by the ammonium carbonate coprecipitation method. The starting salts were bismuth nitrate, copper nitrate, cobalt nitrate, and vanadium sulphate. The thermal decomposition of Bi2MexV1-xO5.5-3x/2 precursors was completed at about 500 °C. The crystallite structure, surface morphology, and ionic conductivity of the prepared powders and pellets were examined using X-ray diffractometry, field emission scanning electron microscopy, and an impedance analyzer, respectively. The average particle sizes of the Bi2Cu0.1V0.9O5.35 and Bi2Co0.1V0.9O5.35 powders were 10-50 nm. The tetragonal structure (γ-phase) appeared at sintering temperatures higher than 700 °C and the peak intensity increased at higher sintering temperatures. The ionic conductivities of the Bi2Cu0.1V0.9O5.35 and Bi2Co0.1V0.9O5.35 pellets sintered at 800 °C showed the highest values of 6.8×10-2 S cm-1 at 700 °C and 9.1×10-2 S cm-1 at 700 °C, respectively. The optimum concentration of the Cu and Co dopants in Bi2MexV1-xO5.5-3x/2 was determined to be 0.1. The results of this study demonstrated that the ammonium carbonate coprecipitation process could be used as an economical method for the preparation of Bi2MexV1-xO5.5-3x/2 electrolytes for intermediate-temperature solid oxide fuel cells.

  1. Synthesis of anodic titania nanotubes in Na2SO4/NaF electrolyte: A comparison between anodization time and specimens with biomaterial based approaches

    Surface modification of commercially pure titanium (cp-Ti) has been carried out by electrochemical anodic oxidation at constant voltage for different time periods (0.5, 1, 2 and 4.5 h). Currents developed during the anodization indicate that the nanotubes are formed due to the competition of titania formation and dissolution under the assistance of electric field. Topologies of the anodized titanium change remarkably with time of oxidation. The morphology of the as-prepared nanotubes was characterized by scanning electron microscopy and atomic force microscopy while the chemistry and crystallinity were characterized by energy-dispersive X-ray spectroscopy and X-ray diffraction respectively. The as-anodized oxide was of amorphous but transformed to anatase and/or rutile crystal structure upon annealing for 3 h at 600 C. The anatase structure showed excellent apatite-forming ability and produced a compact apatite layer covering the surface completely upon treatment in simulated body fluid (SBF) solution for 30 h. Corrosion of anodized titanium samples was studied in a SBF solution using open circuit potential, polarization and electrochemical impedance measurements and compared with that of non-oxidized titanium. Among these samples, titanium anodized for 4.5 h exhibited superior corrosion properties. - Highlights: We synthesized TiO2 nanotubes by anodization in Na2SO4/NaF electrolyte. Topologies of the anodized titanium change remarkably with oxidation time. We studied surface morphologies of TiO2 nanotubes. TiO2 nanotubes show superior corrosion resistance

  2. RHEOLOGICAL CHARACTERIZATION OF AGED ASPHALTS

    Natalia Afanasieva

    2002-12-01

    Full Text Available The present work shows the rheological properties of the three Colombian asphalts produced in the refineries at Barrancabermeja, Cartagena and Apiay, exposed to the open air during 18 months using a specially designed testing bank. Rheological behavior was evaluated using the new specifications of SHRP technology in the Brookfield and DSR rheometers to determine viscosity, Shear Stress, Shear Rate, Dynamic Share Modulus and other related variables. The measurements were made using different temperatures and load times.En el presente trabajo se estudian las propiedades reológicas de los tres tipos de asfaltos industriales producidos en Colombia, en las refinerías de Barrancabermeja, Cartagena y Apiay, después del envejecimiento durante 18 meses en un banco de pruebas al aire libre especialmente diseñado. La evaluación del comportamiento reológico se realizó a través de ensayos basados en las nuevas especificaciones de la tecnología SHRP en los reómetros Brookfield y DSR para determinar características tales como: viscosidad, esfuerzo de corte, susceptibilidad térmica, velocidad de deformación y módulo de corte dinámico, a diferentes temperaturas y tiempos de carga.

  3. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80

    Jiao, Jim; Burgess, Diane J.

    2003-01-01

    Multiple emulsions are often stabilized using a combination of hydrophilic and hydrophobic surfactants. The ratio of these surfactants is important in achieving stable multiple emulsions. The objective of this study was to evaluate the long-term stability of water-in-oil-in-water (W/O/W) multiple emulsions with respect to the concentrations of Span 83 and Tween 80. In addition, the effect of surfactant and electrolyte concentration on emulsion bulk rheological properties was investigated. Lig...

  4. Anion exchange polymer electrolytes

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  5. Lithium-ion transport in inorganic solid state electrolyte

    Jian, Gao; Yu-Sheng, Zhao; Si-Qi, Shi; Hong, Li

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. Project supported by the National Natural Science Foundation of China (Grant No. 51372228), the Shanghai Pujiang Program, China (Grant No. 14PJ1403900), and the Shanghai Institute of Materials Genome from the Shanghai Municipal Science and Technology Commission, China (Grant No. 14DZ2261200).

  6. Sol-Gel Synthesis and Conductivity Properties of Sodium Ion Solid State Electrolytes Na3Zr2Si2PO12

    ZHANG Zhi-Zhen, SHI Si-Qi, HU Yong-Sheng, CHEN Li-Quan

    2013-11-01

    Full Text Available NASICON-structured Na3Zr2Si2PO12 was synthesized by a Sol-Gel approach. Phase-pure samples were successfully sintered at 1050℃ when adding 10% excessive Na and P in the precursors, while a small amount of ZrO2 impurity was detected without adding excessive phosphorus. Electrochemical impedance spectrum tests indicate that the ionic conductivity of the former is as high as 5.4×10-4 S/cm at room temperature, which is higher than that of samples prepared from the precursors without adding excessive phosphorus (3.7×10-4 S/cm. Further analysis reveals that the evaporation of phosphorus at high temperature would cause the formation of ZrO2 impurity in the samples, leading to a lower ionic conductivity. Compared with solid state reaction approach, samples with enhanced ionic conductivity can be obtained at a rather lower temperature by Sol-Gel synthesis.

  7. Nuclear electrolytic hydrogen

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  8. Nanoscale Organic Hybrid Electrolytes

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Granular rheology in zero gravity

    Bossis, G [LPMC UMR 6622, Universite de Nice, Parc Valrose, 06108 Nice Cedex 2 (France); Grasselli, Y [EAI Tech CERAM, Rue A Einstein, BP 085, 06902 Sophia Antipolis Cedex (France); Volkova, O [LPMC UMR 6622, Universite de Nice, Parc Valrose, 06108 Nice Cedex 2 (France)

    2004-05-12

    We present an experimental investigation on the rheological behaviour of model granular media made of nearly elastic spherical particles. The experiments are performed in a cylindrical Couette geometry and the experimental device is placed inside an aeroplane undergoing parabolic flights to cancel the effect of gravity. The corresponding curves, shear stress versus shear rate, are presented, and a comparison with existing theories is proposed. The quadratic dependence on the shear rate is clearly shown, and the behaviour as a function of the solid volume fraction of particles exhibits a power law function. It is shown that theoretical predictions overestimate the experimental results. We observe, at intermediate volume fractions, the formation of rings of particles regularly spaced along the height of the cell. The differences observed between experimental results and theoretical predictions are discussed and related to the structures formed in the granular medium submitted to the external shear.

  10. Theory of rheology in confinement

    Aerov, Artem A.; Krger, Matthias

    2015-10-01

    The viscosity of fluids is generally understood in terms of kinetic mechanisms, i.e., particle collisions, or thermodynamic ones as imposed through structural distortions upon, e.g., applying shear. Often the latter are more relevant, which allows a simpler theoretical description, and, e.g., (damped) Brownian particles can be considered good fluid model systems. We formulate a general theoretical approach for rheology in confinement, based on microscopic equations of motion and classical density functional theory. Specifically, we discuss the viscosity for the case of two parallel walls in relative motion as a function of the wall-to-wall distance, analyzing its relation to the slip length found for a single wall. The previously observed [A. A. Aerov and M. Krger, J. Chem. Phys. 140, 094701 (2014)., 10.1063/1.4866450] deficiency of inhomogeneous (unphysical) stresses under naive application of shear in confinement is healed when hydrodynamic interactions are included.

  11. Theory of rheology in confinement.

    Aerov, Artem A; Krüger, Matthias

    2015-10-01

    The viscosity of fluids is generally understood in terms of kinetic mechanisms, i.e., particle collisions, or thermodynamic ones as imposed through structural distortions upon, e.g., applying shear. Often the latter are more relevant, which allows a simpler theoretical description, and, e.g., (damped) Brownian particles can be considered good fluid model systems. We formulate a general theoretical approach for rheology in confinement, based on microscopic equations of motion and classical density functional theory. Specifically, we discuss the viscosity for the case of two parallel walls in relative motion as a function of the wall-to-wall distance, analyzing its relation to the slip length found for a single wall. The previously observed [A. A. Aerov and M. Krüger, J. Chem. Phys. 140, 094701 (2014).] deficiency of inhomogeneous (unphysical) stresses under naive application of shear in confinement is healed when hydrodynamic interactions are included. PMID:26565234

  12. Rheologically interesting polysaccharides from yeasts

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  13. Rheology of welding: experimental constraints

    Quane, S. L.; Russell, J. K.; Kennedy, L. A.

    2003-04-01

    The rheological behavior of pyroclastic deposits during welding is incompletely understood and is based on a surprisingly small number of experimental studies. Previous pioneering experimental studies were done on small (1 cm thick) samples of ash/crystal mixtures under constant load. They established minimum welding temperatures between 600 and 700^oC under loads of 0.7 MPa (40 m of ignimbrite) to 3.6 MPa (250 m depth of ignimbrite). However, these data are neither sufficiently comprehensive nor coherent enough to fully describe the rheology of pyroclastic mixtures. In addition, previous studies did not examine the microstructural and geometric changes associated with welding compaction. Our goal is to provide accurate and comprehensive constitutive relationships between material properties, temperature, load and strain rate for pyroclastic material undergoing welding. Here we present results from a newly designed experimental apparatus. The experimental apparatus consists of a LoadTrac II fully automated uniaxial compression load frame manufactured by Geocomp Corporation. The load frame has a built in displacement transducer and can run both constant strain rate (10-6 to 0.25 cm/s) and constant load (up to 1150 kg) tests to a maximum displacement of 7.5 cm. The sample assembly comprises 5 cm diameter cylindrical upper and lower pistons (insulating ceramic with steel conductive ends) housed in a copper jacket. Samples are 5 cm diameter cores and can vary in length from 1 to 15 cm depending on experimental needs. A fiber insulated tube furnace capable of reaching temperatures ?1000^oC surrounds the sample assembly. Temperature is measured using a thermocouple located inside the sample through the bottom piston; the furnace controller is capable of maintaining temperature fluctuations to welding of pyroclastic material.

  14. Hybrid inorganic-organic polymer electrolytes: synthesis, FT-Raman studies and conductivity of {Zr[(CH2CH2O)8.7]ρ/(LiClO4)z}n network complexes

    This paper describes the synthesis and characterization of three-dimensional hybrid inorganic-organic networks prepared by a polycondensation reaction between Zr(O(CH2)3CH3)4 and polyethylene glycol 400 (PEG400). Eleven hybrid networks doped with varying concentrations of LiClO4 salt were prepared. On the basis of analytical data and FT-Raman studies it was concluded that these polymer electrolytes consist of inorganic-organic networks with zirconium atoms bonded together by PEG400 bridges. These polymers are transparent with a solid rubber consistency and are very stable under inert atmosphere. Scanning electron microscopy revealed a smooth glassy surface. X-ray fluorescence microanalysis with energy dispersive spectroscopy demonstrated that all the constituent elements are homogeneously distributed in the materials. Thermogravimetric measurements revealed that these materials are thermally stable up to 262 deg. C. Differential Scanning Calorimetry measurements indicated that the glass transition temperature Tg of these inorganic-organic hybrids varies from -43 to -15 deg. C with increasing LiClO4 concentration. FT-Raman investigations revealed the TGT (T=trans, G=gauche) conformation of polyether chains and allowed characterization of the types of ion-ion and ion-polymer host interactions in the bulk materials. The conductivity of the materials at different temperatures was determined by impedance spectroscopy over the 20 Hz-1 MHz frequency range. Results indicated that the materials conduct ionically and that their ionic conductivity is strongly influenced by the segmental motion of the polymer network and the type of ionic species distributed in the bulk material. Finally, it is to be highlighted that the hybrid network with a nLi/nO molar ratio of 0.0223 shows a conductivity of ca. 1x10-5 S cm-1 at 40 deg. C

  15. Study on Rheological Behavior of Konjac Glucomannan

    Wang, Chao; Xu, Mei; Lv, Wen-ping; Qiu, Pei; Gong, Yuan-yuan; Li, Dong-sheng

    Konjac glucomannan (KGM) gum belongs to pseudoplastic fluid. Remarkable non-linear change tendencies of shear rheological behavior of KGM were detected through analysis of the correlation of viscosity (η)-shear rates and shear stress- shear rates respectively. The result shows that the sample concentration, sheer rate and temperature has great influence to its rheological property, and its shear rheological curves conformed to the Power Law (τ=KDn). When the concentration belows 0.55%, the hydrosol behaves approximate Newtonian fluid, and at higher concentration, it behaves pseudoplastically. When temperature changes from 0 to 85°, the viscosity declines remarkably.

  16. Rheology v.2 theory and applications

    Eirich, Frederick

    1958-01-01

    Rheology: Theory and Applications, Volume II deals with the specific rheological subjects, such as deformational behavior in relation to the classic subjects and topics of rheology. This volume is divided into 13 chapters. Considerable chapters are devoted to the theory and aspects of viscoelastic and relaxation phenomena, as well as the applied theory concerning substances related to these phenomena, including elastomers, gelatins, and fibers. Other chapters cover the general principles of geological deformations derived from the study of less """"immobile"""" objects. The remaining chapt

  17. RHEOLOGICAL BEHAVIOUR OF PSYLLIUM GUM FRACTIONS

    Mohammad Hojjatoleslamyi

    2013-10-01

    Full Text Available Psyllium (Plantago psyllium is a native plant that grows widely in India, Iran and Pinjab. Studies showed psyllium gum has good rheological properties for using in wide range of food products. In this study, different fractions of psyllium gum extracted by water and alkali treatment. Rheological properties of these fractions determined by Brookfield rheometer (RV DVIII. Obtained data fitted in three temperatures 30, 60 and 80°C by Herschel-bulkly rheological model. Results showed that fractions have different behaviour during heating treatment. The most difference observed in AEG0.5 fraction.

  18. Analogy between dynamics of thermo-rheological and piezo-rheological pendulums

    Hedrih, K [Faculty of Mechanical Engineering University of Nis, Mathematical Institute SANU, ul. Vojvode Tankosic 3/V/22, 18000-Nis (Serbia)], E-mail: katica@masfak.ni.ac.yu, E-mail: khedrih@eunet.yu

    2008-02-15

    The constitutive stress-strain relations of the standard thermo-rheological and piezo-rheological hereditary element in differential form as well as in two different integro-differential forms are defined. The considered problem of a thermo-rheological hereditary discrete system nonlinear dynamics in the form of thermo-rheological double pendulum system with coupled pendulums gets the significance of two constrained bodies in plane motion problem, as a problem important for studying a sensor dynamics or actuator dynamics in active structure dynamics. System of the averaged equations in the first approximation for amplitudes and phases are derived and qualitatively analyzed. Analogy between nonlinear dynamics of the double pendulum systems with thermo-rheological and piezo-rheological properties between pendulums is pointed out.

  19. Synthesis and electrochemical characterization of hybrid membrane Nafion-SiO{sub 2} for application as polymer electrolyte in PEM fuel cell; Sintese e caracterizacao eletroquimica de membranas hibridas Nafion-SiO{sub 2} para aplicacao como eletrolito polimerico em celulas a combustivel tipo PEM

    Dresch, Mauro Andre

    2009-07-01

    In this work, the effect of sol-gel synthesis parameters on the preparation and polarization response of Nafion-SiO{sub 2} hybrids as electrolytes for proton exchange membrane fuel cells (PEMFC) operating at high temperatures (130 degree C) was evaluated. The inorganic phase was incorporated in a Nafion matrix with the following purposes: to improve the Nafion water uptake at high temperatures (> 100 degree C); to increase the mechanical strength of Nafion and; to accelerate the electrode reactions. The hybrids were prepared by an in-situ incorporation of silica into commercial Nafion membranes using an acid-catalyzed sol-gel route. The effects of synthesis parameters, such as catalyst concentration, sol-gel solvent, temperature and time of both hydrolysis and condensation reactions, and silicon precursor concentration (Tetraethyl orthosilicate - TEOS), were evaluated as a function on the incorporation degree and polarization response. Nafion-SiO{sub 2} hybrids were characterized by gravimetry, thermogravimetric analysis (TGA), scanning electron microscopy and X-ray dispersive energy (SEM-EDS), electrochemical impedance spectroscopy (EIS), and X-ray small angle scattering (SAXS). The hybrids were tested as electrolyte in single H{sub 2}/O{sub 2} fuel cells in the temperature range of 80 - 130 degree C and at 130 degree C and reduced relative humidity (75% and 50%). Summarily, the hybrid performance showed to be strongly dependent on the synthesis parameters, mainly, the type of alcohol and the TEOS concentration. (author)

  20. Rheologycal properties of sodium carboxymethylcellulose in the presence of electrolyte and mixed micelle of surfactants

    Sovilj Verica J.

    2003-01-01

    Full Text Available One of the most significant aspects of polymer-surfactant interaction, from the practical point of view, is that of rheology control and viscosity enhancement. In the oppositely charged polyelectrolyte-surfactant system strong ionic interaction often leads to precipitation of the formed complex yielding serious problems. In this paper the interaction between anionic polyelectrolyte - sodium carboxymethylcellulose (NaCMC and cationic surfactant - cethyltrimethylammonium bromide (CTMAB has been investigated by rheological measurements. Addition of electrolyte NaBr and nonionic surfactant - Tween 80 reduced the binding strength, prevented the precipitation of the complex and increased the viscosity of the system. It was found that rheological properties are strong influenced by NaCMC-CTMAB interaction and the system exhibits either pseudoplastic or thixotropic or rheopectic behavior according to the intensity of interaction.

  1. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Aurelia Ionescu; Iuliana Aprodu; Gabriela Gurau; Iuliana Banu

    2011-01-01

    Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the stora...

  2. Rheology of a sonofluidized granular packing

    Caballero-Robledo, G. A.; Clément, E

    2009-01-01

    We report experimental measurements on the rheology of a dry granular material under a weak level of vibration generated by sound injection. First, we measure the drag force exerted on a wire moving in the bulk. We show that when the driving vibration energy is increased, the effective rheology changes drastically: going from a non-linear dynamical friction behavior - weakly increasing with the velocity- up to a linear force-velocity regime. We present a simple heuristic model to account for ...

  3. Rheological Behavior of Schizophyllan in Fermentation System

    Singhal, Rekha S; Kumar, Maushmi S.

    2011-01-01

    Schizophyllan is a neutral extracellular polysaccharide produced by the fungus Schizophyllum commune, consisting of a 1,3--D-linked backbone of glucose residues with 1,6--D-glucosyl side groups. The polysaccharide rheological properties have been studied in the fermentation aqueous media over the time period of 168 h. The rheology of the schizophyllan produced by Schizophyllum commune NRCM isolated during the 168 h fermentation is also studied by determining the consistency index, K and flow ...

  4. Investigation of interfacial rheology & foam stability.

    Yaklin, Melissa A.; Cote, Raymond O.; Grillet, Anne Mary; Walker, Lynn M. (Carnegie Mellon University, Pittsburg, PA); Koehler, Timothy P.; Reichert, Matthew D.; Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-05-01

    The rheology at gas-liquid interfaces strongly influences the stability and dynamics of foams and emulsions. Several experimental techniques are employed to characterize the rheology at liquid-gas interfaces with an emphasis on the non-Newtonian behavior of surfactant-laden interfaces. The focus is to relate the interfacial rheology to the foamability and foam stability of various aqueous systems. An interfacial stress rheometer (ISR) is used to measure the steady and dynamic rheology by applying an external magnetic field to actuate a magnetic needle suspended at the interface. Results are compared with those from a double wall ring attachment to a rotational rheometer (TA Instruments AR-G2). Micro-interfacial rheology (MIR) is also performed using optical tweezers to manipulate suspended microparticle probes at the interface to investigate the steady and dynamic rheology. Additionally, a surface dilatational rheometer (SDR) is used to periodically oscillate the volume of a pendant drop or buoyant bubble. Applying the Young-Laplace equation to the drop shape, a time-dependent surface tension can be calculated and used to determine the effective dilatational viscosity of an interface. Using the ISR, double wall ring, SDR, and MIR, a wide range of sensitivity in surface forces (fN to nN) can be explored as each experimental method has different sensitivities. Measurements will be compared to foam stability.

  5. The Deflocculation of Kaolin Suspensions – the Effect of Various Electrolytes

    Pěnkavová, Věra

    2013-01-01

    The deflocculation effect of conventional additives to kaolin suspensions is evaluated from the results standard rheological measurements. Several widely used electrolytes (NaOH, Na2CO3, Na2SiO3, SHMP = sodium hexametaphosphate, and CMC = sodium salts of carboxymethylcellulose) have been tested. The optimal concentrations of these deffloculants, in respect to reaching the maximum reduction of initial suspension viscosity, are found. The stability of deflocculated kaolin suspensions against...

  6. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    Wen, Yu Ho

    2014-07-08

    Above a critical surface chemistry-dependent particle loading associated with nanoscale interparticle spacing, ligand-ligand interactions-both electrostatic and steric-come into play and govern the structure and dynamics of charged oligomer-functionalized nanoparticle suspensions. We report in particular on the structure, ion transport, and rheology of suspensions of nanoparticle salts created by cofunctionalization of silica particles with tethered sulfonate salts and oligomers. Dispersion of the hairy ionic particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through counterion size (i.e., Li+, Na+, and K+) and dielectric properties of the dispersing medium. Analysis of small-angle X-ray scattering (SAXS) structure factors and the mechanical modulus shows that when the interparticle spacing approaches nanometer dimensions, weakly entangled anchored ligands experience strong and long-lived topological constraints analogous to those normally found in well-entangled polymeric fluids. This finding provides insight into the molecular origins of the surprisingly similar rubbery plateau moduli observed in hairy nanoparticle suspensions and entangled polymers of the same chemistry as the tethered ligands. Additionally, we find that a time-composition superposition (TCS) principle exists for the suspensions, which can be used to substantially extend the observation time over which dynamics are observed in jammed, soft glassy suspensions. Application of TCS reveals dynamical similarities between the suspensions and entangled solutions of linear polymer chains; i.e., a hairy particle trapped in a cage appears to exhibit analogous dynamics to a long polymer chain confined to a tube. © 2014 American Chemical Society.

  7. Rheology of welding: Field constraints

    Russell, K.; Quane, S.

    2003-04-01

    Pyroclastic deposits emplaced at high temperature and having sufficient thickness become welded via sintering, compaction and flattening of hot glassy particles. The welding process is attended by pronounced changes in the physical properties of the deposit and welding intensity can be tracked by measuring the density, porosity, fabric or strength of samples. Ultimately, the intensity of welding reflects the aggregate effects of load and residence time at temperatures above the glass transition temperature (Tg). This results in welding intensity varying with stratigraphic depth; vertical sections through welded ignimbrite deposits commonly show maximum (e.g., density) or minimum (porosity) values in physical properties in the lower half (30--40% above the base) of the unit. Here we explore the extent to which these data, serving as proxies for strain, can be used constrain the rheological properties of the pyroclastic deposit during the welding process. Our data include measurements of density, porosity, fabric and rock strength as a function of stratigraphic position for 4 sections through the Bandelier tuff, New Mexico. These profiles record changes in physical properties and, thus, map the cumulative strain associated with welding as a function of depth (load). We have used simple conductive heat transfer models to estimate cooling curves for each sample. Essentially, these curves provide the residence time within the "welding window" for each sample. The curves are dependent on sample position, thickness of ignimbrite, emplacement temperature and the glass transition temperature of the material. The unknowns in the problem are a number of physical constants in a generalized power-law relationship between strain-rate (?') and stress (?) for steady-state creep at constant load: ?' = A ?^n e[-Q/R T]. Specifically, we adopt an inverse-model approach whereby the observations on the natural material are used to constrain the pre-exponential constant (A), stress factor (n) and the activation energy (Q) governing the compaction and welding of the ignimbrite. The inversion of the natural dataset for these parameters provides us with a constitutive relationship for the rheology of pyroclastic material as a function of temperature, load and strain rate and can be used to investigate generalities concerning: a) the mechanisms of welding, b) the timescales of welding, or d) the distributions of welding in pyroclastic deposits.

  8. The rheology of structured materials

    Sun, Ning

    2000-10-01

    In this work, the rheological properties of structured materials are studied via both theoretical (continuum mechanics and molecular theory) and experimental approaches. Through continuum mechanics, a structural model, involving shear-induced structural breakdown and buildup, is extended to model biofluids. In particular, we study the cases of steady shear flow, hysteresis, yield stress, small amplitude oscillatory flow as well as non-linear viscoelasticity. Model predictions are successfully compared with experimental data on complex materials such as blood and a penicillin suspension. Next, modifications are introduced into the network model. A new formulation involving non-affine motion is proposed and its applications are presented. The major improvement is that a finite elongational viscosity is predicted for finite elongational rate, contrary to infinite elongational viscosities existing at some elongational rates predicted by most previous network models. Comparisons with experimental data on shear viscosity, primary normal stress coefficient and elongational viscosity are given, in terms of the same set of model parameters. Model predictions for the stress growth are also shown. The model is successfully tested with data on a polyisobutylene solution (S1), on a polystyrene solution and on a poly-alpha-methylstyrene solution. A further extension of the network model is related to the prediction of the stress jump phenomenon which is defined as the instantaneous gain or loss of stress on startup or cessation of a deformation. It is not predicted by most existing models. In this work, the internal viscosity idea used in the dumbbell model is incorporated into the transient network model. Via appropriate approximations, a closed form constitutive equation, which predicts a stress jump, is obtained. Successful comparisons with the available stress jump measurements are given. In addition, the model yields good quantitative predictions of the standard steady, transient and dynamic material functions, for xanthan solutions and for polyacrylamide solutions. The experimental part on the rheology of structured systems involves yield stress measurement of aqueous TiO2 pigment suspensions (40, 50, 60 and 70 wt.%), using (i) extrapolations, (ii) vane creep testing and stress ramp measurements and (iii) a modified plate technique. The data obtained via the techniques mentioned earlier are critically evaluated. It is established that the perforated plate technique removes the wall slip effect at the plate surface and provides a fast and easy way to evaluate yield stress.

  9. Polymer electrolytes for a rechargeable li-Ion battery

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L. [Technochem Co., Greensboro, NC (United States); Lee, H.S.; Xiang, C.L.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States)

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  10. Toughness of membranes applied in polymer electrolyte fuel cells

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  11. Comportamento reolgico de suspenses aquosas de cromito de lantnio / Rheological behaviour of lanthanum chromite aqueous suspension

    L. F. G., Setz; I., Santacruz; M. T., Colomer; R., Moreno; S. R. H., Mello-Castanho.

    2011-06-01

    Full Text Available O cromito de lantnio (LaCrO3) o material mais estudado para a produo de interconectores para clulas a combustvel de xido slido (SOFC). Devido a complexidade das microestruturas e geometrias das SOFCs, freqentemente so necessrias, tcnicas de processamento coloidal, os quais tm recebido [...] maior ateno nos ltimos anos por permitirem a obteno de partes complexas com microestrutura controlada e reprodutveis. Nos ltimos anos, muito esforo tem sido direcionado ao processamento dos eletrlitos e eletrodos, mas aos componentes como o interconector, pouca ateno tem sido dada. Este artigo apresenta o estudo reolgico e de conformao em moldes de gesso do cromito de lantnio para a produo de interconectores para SOFCs. A composio La0,80Sr0,20Cr0,92Co0,08O3, obtida por reao de combusto, foi utilizada. As suspenses aquosas foram preparadas com contedo de slidos variando de 8 a 17,5% vol. utilizando-se, poliacrilato de amnia (PAA) como polieletrlito/dispersante e hidrxido de tetrametilamnio (HTMA) como provedor de alcalinidade. A influncia da concentrao dos aditivos e o tempo em moinho de bolas foram estudados. Os resultados indicam que o tempo 24 h de homogeneizao em moinho de bolas, com 3% e 1%, em massa, de PAA e HTMA respectivamente, proporcionam as melhores condies para colagem em moldes de gesso, sendo possvel obter peas aps sinterizao com densidades relativas elevadas. Abstract in english Lanthanum chromite (LaCrO3) is the most studied material for SOFC's interconnectors' production. The complexity of microstructures and geometries of SOFC devices often requires the use of colloidal processing techniques, which have received increased attention in the last years for obtaining complex [...] parts with controlled microstructure and high reliability. Much effort has been devoted to the processing of electrodes and electrolytes but the other layers, such as that of interconnecting material, have received scarce attention. This paper deals with the rheology and casting behaviour of lanthanum chromite based materials to produce interconnectors for SOFCs. A powder with the composition La0.80Sr0.20Cr0.92Co0.08O3 was obtained by combustion synthesis. Aqueous suspensions were prepared to solids loading ranging from 8 to 17.5 vol.%, using ammonium polyacrylate (PAA) as polyelectrolyte/dispersant and tetramethylammonium hydroxide (TMAH) to assure basic pH. The influence of the additives concentrations and suspension ball milling time were studied. Suspensions prepared with 24 h ball milling, with 3 wt.% and 1 wt.%, of PAA and TMAH respectively, yielded the best conditions for successful slip casting, leading to relatively dense sintered materials.

  12. Morphological and Rheological Characterization of Gold Nanoparticles Synthesized Using Pluronic P103 as Soft Template

    Nancy Tepale; Fernández-Escamilla, Victor V. A.; Carlos Álvarez; Eric Flores-Aquino; González-Coronel, Valeria J.; Daniel Cruz; Manuel Sánchez-Cantú

    2016-01-01

    The synthesis of gold nanoparticles (Au-NPs), using Pluronic® P103 as soft template to design tuned hybrid gold/P103 nanomaterials, is reported here. The effect of the concentration of P103 and the synthesis temperature on the growth, size, and morphology of Au-NPs were studied. The rheological properties of these hybrid nanomaterials at different measured temperatures were studied as well. By increasing the concentration of P103, the micelles progressively grew due to an increase in the numb...

  13. Conductance of strong electrolytes

    An introduction to the theory of strong electrolytes is presented. The derivation of Onsager's limiting law is presented and five empirical and theoretical conductance equations are given. These are compared with measurements by Chiu and Fouss on KCl and NaCl. APL programs for computing the conductivity from the different equations are listed

  14. Fault rheology beyond frictional melting.

    Lavalle, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B

    2015-07-28

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics. PMID:26124123

  15. Rheological porperties of simulated vitrification feeds

    Radioactive waste will be immobilized in borosilicate glass at the Savannah River Site inside a remotely operated vitrification facility. In-process, on-line rheological measurements are preferred in a plant operating environment. Experiments were conducted to determine the rheological properties of a vitrification feed simulant to ensure compatibility with process equipment and determine the best data system for slurry characterization. Rheological feed properties were measured using a concentric cylinder rheometer and compared to theoretical models. Above shear rates of 200 sec-1, the appearance of the flow curves indicated inertial forces were significant and the analysis was hindered by variable gap sizes caused by particle deposition on the outer cylinder surface. Samples with varying weight percents of insoluble solids were analyzed to determine the variation in rheological properties with solids concentration. The consistency was found to be temperature dependent, but the yield stress was found to be relatively insensitive to temperatures between 25 and 50 C. These correlations were used to guide the operation of the dewatering process. The target solids concentration of the feed was set at 41 wt% insoluble solids to raise the yield stress of the slurry to about 100 dynes/cm2. This alleviated foaming of the material caused by entrainment of air within the processing equipment and the slurry was successfully vitrified. A combination of concentric cylinder rheometers and tube rheometers provides the best data system for characterizing the rheology of a vitrification slurry

  16. Initial rheological description of high performance concretes

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  17. Dilational surface rheology of polymer solutions

    Noskov, B. A.; Bykov, A. G.

    2015-06-01

    The review concerns main achievements in dilational rheology of polymer adsorption films at the gas/liquid interfaces reported in the last fifteen years. The theoretical foundations of methods of surface rheology and the key results obtained in studies of solutions of amphiphilic nonionic polymers, polyelectrolytes, proteins and their complexes with low-molecular-mass surfactants are discussed. Interest in the surface dilational rheology is mainly caused by a small number of available experimental methods for investigation of the surface of liquids, by the fact that traditional methods of measurement of the surface tension that are widely used in studies of solutions of low-molecular-mass surfactants provide little information when applied to polymer solutions owing to very slow establishment of equilibrium as well as by weak dependence of the surface tension on the polymer concentration. Progress in the surface rheology is driven by the recent studies of the stability of foams and emulsions that demonstrated a key role of the dilational surface rheological properties in the dynamics of liquid-phase disperse systems. The bibliography includes 191 references.

  18. Gel polymer electrolytes for batteries

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  19. Rheological properties of alumina injection feedstocks

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10 Pa.s at low shear rates, indicating its unsuitability for injection molding.

  20. Rheological Characterization Of Nano-Composite Hydrogels

    Lombardi, Jack

    Engineered Polymer hydrogels and hydrogels from Bio macromolecules have visco-elastic properties that can be measured using Oscillatory Shear Rheology. Manipulation and measurement of physical properties in gels including F-127 Pluronic Block Co-Polymer and Poly(N-isopropylacrylamide)-Clay are shown through OSR by addition of salts, clays and glucose at physiological levels. Rheological analysis of f-127 illustrates changes in G' reduction with phase transition temperature. Measurements also indicate physical changes due to the aforementioned additives vary as a function of the gel physical and chemical structure. In particular, non-enzymatic glycation is shown to change the modulus of elasticity in both of the gels tested. Rheological analysis is also interpreted to produce a reduction In gel mesh size in the PNIPA -clay gels due to a possible co-solvency between phases of varying degrees of hydration.

  1. Coprecipitation synthesis and characterization of La0.8Sr0.2Ga(0.8-x)Mg0.2Co(x)O2.8 for intermediate temperature solid oxide fuel cell electrolytes.

    Lee, Jin Goo; Yoon, Hyon Hee

    2012-01-01

    La0.8Sr0.2Ga(0.8-x)Mg0.2CO(x)O2.8 (LSGMC) electrolyte powders containing different amount of Co (0 < or = x < or = 0.15) were prepared by ammonium carbonate coprecipitation method. The precursors, the calcined powders, and the sintered pellets were characterized by thermogravimetry/differential thermal analysis, X-ray diffractometry, scanning electron microscopy, and an impedance analyzer. The thermal decomposition of the LSGMC precursors was completed at around 900 degrees C with the total weight loss of approximately 35%. The LSGMC samples sintered at 1350 degrees C consisted of the pure perovskite structure. The ionic conductivity was significantly improved by Co doping for the Ga-site of the La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM) electrolytes. The ionic conductivity of LSGMC (x = 0.1) exhibited the highest values of 1.6 x 10(-1) S cm(-1) at 700 degrees C with an activation energy for the oxide-ion conduction of 0.29 eV. The results of this study indicated that the Co-doped LSGM electrolytes had excellent properties for use as an electrolyte in an IT-SOFC and the ammonium carbonate coprecipitation process could be employed as the efficient method for the preparation of the Co-doped LSGM electrolytes. PMID:22524055

  2. Rheological study of chitosan in solution

    Chitosan is an abundant biopolymer with remarkable physicochemical and biological properties, usually employed in a wide range of applications. It acts as a cationic polyelectrolyte in aqueous acid solutions, leading to unique characteristics. In this work, chitosan was characterized by 1H NMR and its rheological behavior were studied as function of chitosan sample, shear rate, polymer concentration, ionic strength, time and temperature. In order to calculate rheological parameters and to understand the macromolecular dynamic in solution, the Otswald-de Waele model was fitted. (author)

  3. Effects of Astaxanthin on Human Blood Rheology

    Miyawaki, Hiromi; Takahashi, Jiro; Tsukahara, Hiroki; Takehara, Isao

    2008-01-01

    Effects of astaxanthin (AX) derived from H. pluvialis on human blood rheology were investigated in 20 adult men with a single-blind method. The experimental group was 57.5 ± 9.8 years of age and the placebo group was 50.8 ± 13.1 years of age. A blood rheology test that measures whole blood transit time was conducted using heparinized blood of the volunteers by a MC-FAN apparatus (microchannel array flow analyzer). After administration of AX 6 mg/day for 10 days, the values of the experimental...

  4. Nanoporous hybrid electrolytes

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  5. Relations between rheological and textural characteristics of dressings

    Štern, Petr; Pokorný, J.

    Guimaraes : Portuguese Society of Rheology, 2003. s. 22. [Annual European Rheology Conference /1./. 11.09.2003-13.09.2003, Guimaraes] R&D Projects: GA AV ČR IAA2060902 Institutional research plan: CEZ:AV0Z2060917 Keywords : rheology * texture * dressings Subject RIV: BK - Fluid Dynamics

  6. Electrolyte Concentrates Treat Dehydration

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  7. Aprotic gel polymer electrolytes

    Vondrák, Jiří; Sedlaříková, M.; Krejza, O.

    Brno : University of Technology Brno, 2008, s. 71-72. ISBN 978-80-214-3659-6. [International Conference Advanced Batteries and Accumulators /9./. Brno (CZ), 29.06.2008-03.07.2008] R&D Projects: GA ČR(CZ) GA104/06/1471; GA AV ČR(CZ) KJB208130604 Institutional research plan: CEZ:AV0Z40320502 Keywords : gel polymer electrolytes Subject RIV: CA - Inorganic Chemistry

  8. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition; Etude du comportement rheologique de melanges argiles - polymeres. Effets de l'ajout de polymeres

    Benchabane, A

    2006-11-15

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  9. Rheological characterization of media containing Penicillium chrysogenum

    Pedersen, Annemarie Gade; Bundgaard-Nielsen, Mikael; Nielsen, Jens; Villadsen, John; Hassager, Ole

    1993-01-01

    Samples from fed-batch fermentations of Penicillium chrysogenum on complex medium are rheologically characterized. The behavior is well described by a power law model for which the parameters are estimates. Furthermore, two types of model media are characterized and compared with the real ferment...

  10. Introduction to rheology and application to geophysics

    Ancey, C.

    2001-01-01

    This chapter sums up knowledge in rheology through explanation of problems bound to geophysics. / Ce chapitre fait le point sur les connaissances en rhéologie à travers l'explication de problèmes en relation avec la géophysique.

  11. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Aurelia Ionescu

    2011-12-01

    Full Text Available Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the storage and loss moduli in oscillatory frequency conditions (0.1-10 Hz at 20C. Moreover, thermally induced gelation of the chickpea proteins (16, 24 and 36% was studied at pH 7.0 and 4.5 in the temperature range 50 to 100oC and salt concentration ranging from 0 to 1 M. Gelling behaviour was quantified by means of dynamic rheological measurements. Gels formation was preceded by the decrease of storage modulus and loss moduli, coupled with the increase of the phase angle (delta. The beginning of thermal gelation was influenced by protein concentration, pH and salt level. In all studied cases, storage modulus increased rapidly in the temperature range 70-90C. All rheological parameters measured at 90C were significantly higher at pH 4.5 compared to pH 7.0.

  12. Rheological properties of defense waste slurries

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  13. Rheological and textural properties of cosmetic emulsions

    Morávková, Tereza; Štern, Petr

    2011-01-01

    Roč. 21, č. 3 (2011), s. 35200. ISSN 1430-6395 Institutional research plan: CEZ:AV0Z20600510 Keywords : cosmetic emulsion s * rheology * texture * sensory analysis * psychorheology Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2011

  14. The rheological properties of different GNPs

    Abdelhalim Mohamed Anwar K

    2012-01-01

    Full Text Available Abstract Background Rheological analysis can be employed as a sensitive tool in predicting the physical properties of gold nanoparticles (GNPs. Understanding the rheological properties of GNPs can help to develop a better therapeutic cancer product, since these physical properties often link material formulation and processing stages with the ultimate end use. The rheological properties of GNPs have not been previously documented. The present study attempted to characterize the rheological properties of different sizes of GNPs at: 1 fixed temperature and wide range of shear rates; 2 varied temperature and fixed shear rate. Methods 10, 20 and 50 nm GNPs was used in this study. Several rheological parameters of GNPs such as viscosity, torque%, shear stress and shear rate were evaluated using Brookfield LVDV-III Programmable rheometer supplied with temperature bath and controlled by a computer. To measure fluid properties (viscosity as function of shear rate, e.g., to determine whether the flow is Newtonian or non-Newtonian flow behaviour, and viscoelasticity (viscosity as function of temperature, rheological parameters were firstly measured at starting temperature of 37°C and wide range of shear rates from 375 to 1875 s-1, and secondly at a gradual increase of temperature from 37 to 42°C and fixed shear rate of 1875 s-1. Results The 10, 20 and 50 nm GNPs showed mean size of 9.45 ± 1.33 nm, 20.18 ± 1.80 nm, and 50 nm GNPs, respectively. The 10 and 20 nm GNPs showed spherical morphology while 50 nm GNPs showed hexagonal morphology using the transmission electron microscope (TEM. The relation between viscosity (cp and shear rate (s-1 for 10, 20 and 50 nm GNPs at a temperature of 37°C showed non-Newtonian behaviour. Although the relationship between SS (dyne/cm2 and SR (s-1 for 10, 20 and 50 nm GNPs was linearly related however their fluid properties showed non-Newtonian behaviour. Conclusions The torque%, viscosity (cp and SS (dyne/cm2 of all GNP sizes decreased with increasing the temperature and with decreasing the GNP size (for each fixed temperature value. For each shear rate value, the viscosity of all GNPs decreased with decreasing the GNP size. This study demonstrates that the physical, dimensional and morphological changes of GNPs have effective influence on their rheological properties. To understand and categorize the role of GNPs in drug delivery and cancer therapy, GNPs of varying size, number of particles, shape and surface should be taken into consideration. Moreover, further additional in vivo studies after administration of GNPs in rats should be performed to support this hypothesis.

  15. Surface shear rheology of saponin adsorption layers.

    Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Edward; Stoyanov, Simeon D

    2012-08-21

    Saponins are a wide class of natural surfactants, with molecules containing a rigid hydrophobic group (triterpenoid or steroid), connected via glycoside bonds to hydrophilic oligosaccharide chains. These surfactants are very good foam stabiliziers and emulsifiers, and show a range of nontrivial biological activities. The molecular mechanisms behind these unusual properties are unknown, and, therefore, the saponins have attracted significant research interest in recent years. In our previous study (Stanimirova et al. Langmuir 2011, 27, 12486-12498), we showed that the triterpenoid saponins extracted from Quillaja saponaria plant (Quillaja saponins) formed adsorption layers with unusually high surface dilatational elasticity, 280 ± 30 mN/m. In this Article, we study the shear rheological properties of the adsorption layers of Quillaja saponins. In addition, we study the surface shear rheological properties of Yucca saponins, which are of steroid type. The experimental results show that the adsorption layers of Yucca saponins exhibit purely viscous rheological response, even at the lowest shear stress applied, whereas the adsorption layers of Quillaja saponins behave like a viscoelastic two-dimensional body. For Quillaja saponins, a single master curve describes the data for the viscoelastic creep compliance versus deformation time, up to a certain critical value of the applied shear stress. Above this value, the layer compliance increases, and the adsorption layers eventually transform into viscous ones. The experimental creep-recovery curves for the viscoelastic layers are fitted very well by compound Voigt rheological model. The obtained results are discussed from the viewpoint of the layer structure and the possible molecular mechanisms, governing the rheological response of the saponin adsorption layers. PMID:22830458

  16. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various thermopl......A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes. With the...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  17. Ceramic electrolyte coating and methods

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  18. Electrolytic oxide reduction system

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F

    2015-04-28

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).

  19. Electrolytic titanium production

    Ginatta, M.; Berruti, R.; Orsello, G.; Semeraro, G.; Nidola, G. [GTT, Ginatta Torino Titanium (Italy)

    1992-12-31

    The Ginatta electrolytic plant was specifically designed and constructed for the production of titanium. Development stages that led to the construction of the electrowinning plant were reviewed. Electrochemical concepts and engineering criteria were outlined. Continuous steady state production of titanium crystals from the extraction compartments are obtained by supplying tetrachloride to the dissolution compartment. The cell electrodes are supplied with direct current from standard rectifiers. The equipment and the molten salt cells are operated by an aqueous tank house. The design is cost effective on an industrial scale because of significantly lower capital and operating costs. 13 refs., 5 figs.

  20. An electrolyte CPA equation of state for mixed solvent electrolytes

    Maribo-Mogensen, Bjørn; Thomsen, Kaj; Kontogeorgis, Georgios M.

    2015-01-01

    predictive capabilities could be improved through the development of an electrolyte equation of state. In this work, the Cubic Plus Association (CPA) Equation of State is extended to handle mixtures containing electrolytes by including the electrostatic contributions from the Debye-Hückel and Born terms...

  1. Role of Yield Stress in Magma Rheology

    Kurokawa, A.; Di Giuseppe, E.; Davaille, A.; Kurita, K.

    2012-04-01

    Magmas are essentially multiphase material composed of solid crystals, gaseous bubbles and silicate liquids. They exhibit various types of drastic change in rheology with variation of mutual volumetric fractions of the components. The nature of this variable rheology is a key factor in controlling dynamics of flowing magma through a conduit. Particularly the existence of yield stress in flowing magma is expected to control the wall friction and formation of density waves. As the volumetric fraction of solid phase increases yield stress emerges above the critical fraction. Several previous studies have been conducted to clarify this critical value of magmatic fluid both in numerical simulations and laboratory experiments ([Lejeune and Pascal, 1995], [Saar and Manga 2001], [Ishibashi and Sato 2010]). The obtained values range from 13.3 to 40 vol%, which display wide variation and associated change in rheology has not been clarified well. In this presentation we report physical mechanism of emergence of yield stress in suspension as well as the associated change in the rheology based on laboratory experiments using analog material. We utilized thermogel aqueous suspension as an analog material of multiphase magma. Thermogel, which is a commercial name for poly(N-isopropyl acrylamide) (PNIPAM) undergoes volumetric phase change at the temperature around 35C:below this temperature the gel phase absorbs water and swells while below this it expels water and its volume shrinks. Because of this the volumetric fraction of gel phase systematically changes with temperature and the concentration of gel powder. The viscosity measured at lower stress drastically decreases across this phase change with increasing temperature while the viscosity at higher stress does not exhibit large change across the transition. We have performed a series of rheological measurements focusing on the emergence of yield stress on this aqueous suspension. Since the definition of yield stress is not well defined in the suspension rheology we tested three types of measurement in determination of yield stress. Two methods utilized cone-plate geometry performing creep test (stress controlled) and variable shear rate test and one utilized narrow-gap concentric cylinder geometry with variable shear rate. Herschel-Bulckley model can be successfully applied to variable shear-rate tests to determine yield stress. Creep test and H-B model give almost identical yield stress, for instance 455Pa at 2.5wt%. At the gel volume fraction of 50% yield stress emerges and it increases with the increase of the concentration of gel powder. This critical value roughly corresponds to the random loose packing fraction while the viscosity begins to increase at lower fraction.

  2. Electrolytes - Technology review

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted

  3. Electrolytic pretreatment of urine

    1977-01-01

    Electrolysis has been under evaluation for several years as a process to pretreat urine for ultimate recovery of potable water in manned spacecraft applications. The conclusions that were drawn from this investigation are the following: (1) A platinum alloy containing 10 percent rhodium has been shown to be an effective, corrosion-resistant anode material for the electrolytic pretreatment of urine. Black platinum has been found to be suitable as a cathode material. (2) The mechanism of the reactions occurring during the electrolysis of urine is two-stage: (a) a total Kjeldahl nitrogen and total organic carbon (TOC) removal in the first stage is the result of electrochemical oxidation of urea to CO2, H2O, and ammonia followed by chloride interaction to produce N2 from ammonia, (b) after the urea has been essentially removed and the chloride ions have no more ammonia to interact with, the chloride ions start to oxidize to higher valence states, thus producing perchlorates. (3) Formation of perchlorates can be suppressed by high/low current operation, elevated temperature, and pH adjustment. (4) UV-radiation showed promise in assisting electrolytic TOC removal in beaker tests, but was not substantiated in limited single cell testing. This may have been due to non-optimum configurations of the single cell test rig and the light source.

  4. Rheology dynamics of aggregating colloidal suspensions.

    Mohtaschemi, Mikael; Puisto, Antti; Illa, Xavier; Alava, Mikko J

    2014-05-01

    We study a colloidal model based on population balances in the context of complex fluid rheology. Two typical particle microstructure kinetics, orthokinetic, collisions due to shear, and perikinetic, collisions due to Brownian motion, are found to appear at continuum as different flow behaviors - those having monotonic and non-monotonic flow curves, respectively. Solving the colloidal model together with the 1D Stokes equation for laminar, incompressible flow with Couette boundary conditions, allows bridging the gap between the rheological experiments and the microstructural modeling. The analysis of such a model reveals that orthokinetic particle suspensions have a uniquely defined, continuous steady state shear profile, whereas suspensions in which also perikinetic collisions are present, the steady state can be shear banded and non-unique. Thus, the shear banded configurations at a steady state are found to depend on the initial conditions and the collision kinetics of the system. At high shear rates all the studied cases show continuous shear profiles. PMID:24695455

  5. Shear thickening, frictionless and frictional rheologies

    Mari, Romain; Morris, Jeffrey F; Denn, Morton M

    2014-01-01

    Particles suspended in a Newtonian fluid raise the viscosity and also generally give rise to a shear-rate dependent rheology. In particular, pronounced shear thickening is observed at large solid volume fractions. In a recent article (R. Seto, R. Mari, J. F. Morris, and M. M. Denn., Phys. Rev. Lett., 111:218301, 2013) we have considered the minimum set of components to reproduce the experimentally observed shear thickening behavior, including Discontinuous Shear Thickening (DST). We have found frictional contact forces to be essential, and were able to reproduce the experimental behavior by a simulation including this physical ingredient. In the present article, we thoroughly investigate the effect of friction and express it in the framework of the jamming transition. The viscosity divergence at the jamming transition has been a well known phenomenon in suspension rheology, as reflected in many empirical laws for the viscosity. Friction can affect this divergence, and in particular the jamming packing fractio...

  6. Electrolytes for rechargeable lithium batteries

    There is growing interest in high specific energy lithium rechargeable batteries with improved discharge/charge cycles. Some of the promising battery systems under development are Li/CoO2, Li/V2O5 and Li/MnO2. A major factor that controls the specific performance of these batteries is the electrolyte. Recent advances made in the liquid electrolyte area for lithium high energy cathode systems are reviewed. Experimental work on the processing of solid thin film polymer electrolytes using plasticizers such as polyethylene glycol dimethoxy ether (PEGDME) and the properties such as conductivity and differential scanning calorimetry of polymer film electrolytes are presented. The advantages and the disadvantages of polymer thin film electrolytes are discussed

  7. Rheological evaluation of pretreated cladding removal waste

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  8. Frequency Dependent Rheology of Vesicular Rhyolite

    Bagdassarov, Nikolai; Dingwell, Donald B

    1993-01-01

    Frequency dependent rheology of magmas may result from the presence of inclusions (bubbles, crystals) in the melt and/or from viscoelastic behavior of the melt itself. With the addition of deformable inclusions to a melt possessing viscoelastic properties one might expect changes in the relaxation spectrum of the shear stresses of the material (e.g., broadening of the relaxation spectrum) resulting from the viscously deformable geometry of the second phase. We have begun to investigate the ef...

  9. A rheological investigation of vesicular rhyolite

    Bagdassarov, Nikolai; Dingwell, Donald B

    1992-01-01

    The rheology of vesiculating rhyolitic systems exerts a strong control on the transport of silicic magmas in the subvolcanic to volcanic environments. We present here an investigation of vesiculating and vesiculated rhyolites using dilatometric methods. This study examines the effect of vesicle content on the viscosity of a natural supercooled rhyolitic liquid with 0–70% vesicles. The experimental samples of rhyolitic glass are derived from fusion of a natural obsidian from Little Glass B...

  10. Rheological and Sensory Properties of Salad Dressings

    Štern, Petr; Morávková, T.; Šedivá, A.; Panovská, Z.; Pokorný, J.

    Bratislava : Slovak society of chemical engineering, 2008. s. 189-189. ISBN 978-80-227-2903-1. [International Conference of SSCHE /35./. 26.05.2008-30.05.2008, Tatranské Matliare] R&D Projects: GA AV ČR IAA2060404 Institutional research plan: CEZ:AV0Z20600510 Keywords : psychorheology * food dressing * rheological analysis * sensory analysis Subject RIV: BK - Fluid Dynamics

  11. A spectral measure estimation problem in rheology

    Gzyl, Henryk; ter Horst, Enrique; Molina, German

    2015-09-01

    In this paper we consider an inverse problem appearing in rheology, consisting of determining a spectral measure over the set of relaxation times, that yields an observed collection of loss and storage moduli. Mathematically speaking, the problem consists of solving a system of Fredholm equations. To solve it, we propose an extended version of the maximum entropy method in the mean which is flexible enough to incorporate potential measurement errors.

  12. Magneto-Rheological Damper - An Experimental Study

    Lozoya-Santos, Jorge De-Jesus; Morales-Menéndez, Rubén; Ramirez-Mendoza, Ricardo,; Tudon-Martınez, Juan,; Sename, Olivier; Dugard, Luc

    2012-01-01

    A Magneto-Rheological (MR) damper is evaluated under exhaustive experimental scenarios, generating a complete database. The obtained database includes classical tests and new proposals emphasizing the frequency contents. It also includes the impact of the electric current fluctuations. The variety of the performed experiments allows to study the MR damper force dynamics. A brief description of the damper behavior and a categorization of experiments based on driving conditions and target appli...

  13. Rheology of fresh concretes with recycled aggregates

    Faleschini, Flora; Jiménez Fernández, Cristian Gonzalo; Barra Bizinotto, Marilda; Aponte Hernández, Diego Fernando; Vázquez Ramonich, Enric; Pellegrino, Carlo

    2014-01-01

    The most frequently used measure of rheology is the slump test, which evaluates workability. Since this value is often operator-sensitive, a more quantitative estimate can be derived in terms of fundamental physical quantities, such as plastic viscosity and yield stress. The higher heterogeneity in terms of experimental slump measure occurs when recycled aggregate concrete (RAC) is tested. In this work, 16 recycled mixes were analysed with two aggregates proportioning methods and results were...

  14. PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF AVOCADO OILS

    Tamara de Souza Jorge

    2015-08-01

    Full Text Available Avocado oil is rich in bioactive compounds, which can improve human health by acting as an antioxidant. It may be extracted from different varieties of avocado, such as Margarida and Hass varieties, each of them with particular characteristics. Aiming to evaluate the differences between them, avocado fruits and pulps from these were analyzed according to their physicochemical characteristics. After extracted, the oils had their bioactive characteristics studied and rheological behavior determined through a rotational rheometer. They were then compared to commercial avocado oil. The fruits of Margarida variety had greater size, higher weight (664.51 g, and higher pulp yield (72.19% than Hass variety, which showed higher lipid content (65.29 g/100 g dry basis. The commercial oil showed less primary oxidative degradation, whereas Margarida variety had a lower level of secondary degradation products as well as a higher content of bioactive compounds, such as phytosterols (999.60 mg/kg and tocopherols (36.73 mg/kg. The rheological behaviors of both oils were appropriately described through Newton model, with R2 > 0.999 for all temperatures. By an Arrhenius type equation, it was verified that Hass's rheological parameters are more influenced by temperature than Margarida and commercial oil, presenting activation energy of 33.6 kJ/mol.

  15. Ageing and Rheology in Soft Materials

    Fielding, S M; Cates, M E

    1999-01-01

    We study theoretically the role of ageing in the rheology of soft materials. We define several generalized rheological response functions suited to ageing samples (in which time translation invariance is lost). These are then used to study ageing effects within a simple scalar model (the "soft glassy rheology" or SGR model) whose constitutive equations relate shear stress to shear strain among a set of elastic elements, with distributed yield thresholds, undergoing activated dynamics governed by a "noise temperature", $x$. (Between yields, each element follows affinely the applied shear.) For $1

  16. Rheological and boundary effects on microswimmers

    Montenegro-Johnson, Thomas; Loghin, Daniel; Smith, David

    2013-11-01

    Two important environmental factors impacting cell motility are the rheological properties of the surrounding fluid and the presence of boundaries. In this talk we will present simulations that explore the relationship between microswimmer, fluid rheology and boundary features, with a particular emphasis on the example of human sperm. Human sperm must navigate the labyrinthine structure of human fallopian tubes, actively bending their flagella in order to propel themselves through physiological mucus. Sperm trajectories are greatly affected by boundaries, scattering over features such as steps and ripples. We present simulations of scattering sperm-like swimmers in confined geometries, comparing these results to experiments of swimmers in microchannels. The rheological properties of mucus also affect sperms' ability to penetrate. Using the method of femlets, a new finite element technique entailing an immersed force representation of the swimmer with a body-fitted mesh, we present novel physical mechanisms through which shear-thinning, an important property of physiological mucus affects microscopic swimmers. In particular, we show that these effects are sensitive to the swimming stroke employed, and present example reciprocal swimmers that violate Purcell's Scallop Theorem.

  17. Physical and chemical characteristics of electrolytes based on lithium bis(oxalate)borate for lithium batteries

    The physical-chemical properties of lithium bis(oxalate)borate (LiBOB) synthesized by solid phase synthesis and the electrolytes based on it have been investigated. The experiments showed that the electrolytes based on LiBOB have high electrochemical stability and conductivity in a wide temperature range. It has been demonstrated that the LiBOB addition has a promising use in lithium and lithium-ion power sources.

  18. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries

    Li, Yangxing; Yerian, Jeffrey A.; Khan, Saad A.; Fedkiw, Peter S. [Department of Chemical & amp; Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905 (United States)

    2006-10-27

    Electrochemical and rheological properties are reported of composite polymer electrolytes (CPEs) consisting of dual-functionalized fumed silica with methacrylate and octyl groups+low-molecular weight poly(ethylene glycol) dimethyl ether (PEGdm)+lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, lithium imide)+butyl methacrylate (BMA). The role of butyl methacrylate, which aids in formation of a crosslinked network by tethering adjacent fumed silica particles, on rheology and electrochemistry is examined together with the effects of fumed silica surface group, fumed silica weight percent, salt concentration, and solvent molecular weight. Chemical crosslinking of the fumed silica with 20% BMA shows a substantial increase in the elastic modulus of the system and a transition from a liquid-like/flocculated state to an elastic network. In contrast, no change in lithium transference number and only a modest decrease (factor of 2) on conductivity of the CPE are observed, indicating that a crosslinked silica network has minimal effect on the mechanism of ionic transport. These trends suggest that the chemical crosslinks occur on a microscopic scale, as opposed to a molecular scale, between adjacent silica particles and therefore do not impede the segmental mobility of the PEGdm. The relative proportion of the methacrylate and octyl groups on the silica surface displays a nominal effect on both rheology and conductivity following crosslinking although the pre-cure rheology is a function of the surface groups. Chemical crosslinked nanocomposite polymer electrolytes offer significant higher elastic modulus and yield stress than the physical nanocomposite counterpart with a small/negligible penalty of transport properties. The crosslinked CPEs exhibit good interfacial stability with lithium metal at open circuit, however, they perform poorly in cycling of lithium-lithium cells. (author)

  19. Photopolymerized Electrolytes For Electrochromic Devices

    Cogan, Stuart; Rauh, R. David

    1994-01-01

    Thin ion-conducting electrolyte films for use in electrochromic devices now fabricated relatively easily and quickly with any of class of improved formulations containing ultraviolet-polymerizable components. Formulations are liquids in their monomeric forms and self-supporting, transparent solids in their polymeric forms. Thin solid electrolytes form quickly and easily between electrode-bearing substrates. Film thus polymerized acts not only as solid electrolyte but also as glue holding laminate together: feature simplifies fabrication by reducing need for sealants and additional mechanical supports.

  20. Electrolytic preparation of molybdenum oxides

    Dependence of molybdenum oxides electrolytic deposition from ammonium molybdate solutions on current density at different temperatures (20-80 Deg C) and solution concentrations is studied. Analysis of kinetic curves and volt-ampere characteristics of cathode process permitted ascertaining the most preferable conditions for molybdenum oxides electrolytic deposition on substrates made of stainless steel: ammonium molybdate aqueous solution saturated at 20 Deg C, current cathode density is 10-30 mA/cm2, electrolyte temperature is 75-90 Deg C

  1. Cyclic Macromolecules: Dynamics and Nonlinear Rheology, Final Report DOE Award # DE-FG02-05ER46218, Texas Tech University

    McKenna, Gregory B.; Grubbs, Robert H.; Kornfield, Julia A.

    2012-04-25

    The work described in the present report had the original goal to produce large, entangled, ring polymers that were uncontaminated by linear chains and to characterize by rheological methods the dynamics of these rings. While the work fell short of this specific goal, the outcomes of the research performed under support from this grant provided novel macromolecular synthesis methods, new separation methods for ring and linear chains, and novel rheological data on bottle brush polymers, wedge polymers and dendron-based ring molecules. The grant funded a total of 8 archival manuscripts and one patent, all of which are attached to the present report.

  2. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    Agrawal, Akanksha

    2015-01-01

    © 2015 The Royal Society of Chemistry. We report on the physical properties of lithium-ion conducting nanoparticle-polymer hybrid electrolytes created by dispersing bidisperse mixtures of polyethylene glycol (PEG)-functionalized silica nanoparticles in an aprotic liquid host. At high particle contents, we find that the ionic conductivity is a non-monotonic function of the fraction of larger particles xL in the mixtures, and that for the nearly symmetric case xL ≈ 0.5 (i.e. equal volume fraction of small and large particles), the room temperature ionic conductivity is nearly ten-times larger than in similar nanoparticle hybrid electrolytes comprised of the pure small (xL ≈ 0) or large (xL ≈ 1) particle components. Complementary trends are seen in the activation energy for ion migration and effective tortuosity of the electrolytes, which both exhibit minima near xL ≈ 0.5. Characterization of the electrolytes by dynamic rheology reveals that the maximum conductivity coincides with a distinct transition in soft glassy properties from a jammed to partially jammed and back to jammed state, as the fraction of large particles is increased from 0 to 1. This finding implies that the conductivity enhancement arises from purely entropic loss of correlation between nanoparticle centers arising from particle size dispersity. As a consequence of these physics, it is now possible to create hybrid electrolytes with MPa elastic moduli and mS cm-1 ionic conductivity levels at room temperature using common aprotic liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room temperature ionic conductivity and mechanical properties.

  3. Doping electrolyte by charged nanoparticles

    Shao, Linbo; Zheng, Mingxin; Wang, Wei

    2015-03-01

    Ions in electrolytes have been proposed to resemble carriers in solid semiconductors over decades. Recently, nanofluidic devices have been demonstrated to phenomenologically mimic semiconductor devices by modulating ion concentrations near the interface of electrolytes and solids. However, the link between the ion transportation in nanofluidics and the solid semiconductor is still missing. This letter proposes an electrolyte doping scheme by introducing charged nanoparticles as dopers, which holds potential in modulating ion concentration in a bulk sense. These nanoparticles show a strong modulation of ion concentrations, and thus bridge the ion transportation in nanofluidics with the well-established semiconductor physics. Ionic diodes based on the present electrolyte doping picture are theoretically and experimentally demonstrated. The current-voltage characteristics are scrutinized by the depletion approximation.

  4. Composite solid polymer electrolyte membranes

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  5. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Chuanping Li

    2004-12-19

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the {sup 17}O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles' surfaces in the aqueous suspension. The viscosity of the suspension increases dramatically when the solid volume fraction exceeds 30 vol.%. The overlap of physically adsorbed water layers at this level causes the sharp increase in viscosity. Fructose molecules can weaken the interactions between the particle surfaces and water molecules, as a consequence, they release some bound water layers from the surfaces to the bulk medium. It is believed that fraction of the water that is bound by the solid surface is reduced hence becoming available for flow. The oxygen-17 relaxation time decreased with the increase of particle volume fractions in the suspension. Fructose addition increased the overall water mobility in the suspension. Only part of the alumina particle surfaces was covered with fructose molecules. This adsorption of fructose molecules on the particle surfaces increased the pH of the suspension with a concomitant decrease in {zeta}-potential of the alumina nanoparticles. The interactions between the nanometric alumina particles in water to a large extent can be explained by the DLVO theory. However, the interactions between particles in fructose solutions cannot be well described by the DLVO theory. The interaction forces (magnitude and range) as well as adhesive force and surface tension between nanometric alumina particles were decreased with the fructose concentration.

  6. Solid polymer electrolyte lithium batteries

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  7. Electrolytes for lithium ion batteries

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  8. Phase equilibria in electrolyte systems

    Pinho, Simão

    2000-01-01

    The main objectives of this work are the study of solid-liquid equilibrium of salts in pure and mixed solvents, and of biomolecules, such as amino acids and peptides, in water. The correlation and prediction of properties for mixtures containing charged electric species, the electrolytes, is of great relevance for the chemical industry. A brief discussion about the whole interest of this work and the need of concentrating efforts to develop accurate models for electrolyte systems is ini...

  9. High cation transport polymer electrolyte

    Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL); Klingler, Robert J. (Westmont, IL)

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  10. Ionic thermopower of composite electrolytes

    Vennekamp, Martin; Janek, Jrgen

    1999-01-01

    The ionic thermopower of solid electrolyte composites which are composed of a solid electrolyte and an electrically insulating inert phase is analyzed. For a stoichiometric model system AX with Frenkel disorder in the cation sublattice we derive formal relations within a lattice point defect model for the change in ionic thermopower on dispersing the second phase. It is shown that thermopower measurements may provide information on the defect concentrations in the space charge regions surroun...

  11. Rheology of Three-Phase Magmas

    Pistone, M.; Caricchi, L.; Ulmer, P.; Reusser, E.; Marone, F.; Burlini, L.

    2012-04-01

    Luigi Burlini was a conscious supervisor, a brilliant teacher and a dear friend. He instilled in me optimism and passion for research. His scientific eclecticism to combine several disciplines and methodologies to challenge and solve science issues has enhanced my approach of analysis and observation. His "simple" curiosity to test new scientific pathways and truly know the validity of own proposals represents my primary inspiration to continue the academic career. He was the far-seeing and carpe diem man at the same time; from this I learnt to live intensively day by day without forgetting what will be next. The work I will present is dedicated to him. We present experimental results from a study mainly aiming to constrain the dependence of rheology of three-phase magmas (ranging from dilute suspensions to crystal mushes) on the viscosity of the suspending silicate melt, on the relative contents of crystals and bubbles and on the interactions occurring between the three phases during deformation. Hydrous haplogranitic magmas containing variable amounts of quartz crystals (between 24 and 65 vol%), and fixed bubble volume (9-12 vol% CO2-rich bubbles) were deformed in simple shear with a Paterson-type rock deformation apparatus at high temperature (823-1023 K) and high pressure (200 MPa), in strain-rate stepping (510-5 s-1 - 410-3 s-1) from low to high deformation rate. The rheological results suggest that three-phase suspensions are characterized by strain rate-dependent rheology (non-Newtonian behavior). Two kinds of non-Newtonian behaviors were observed: shear thinning (decrease of viscosity with increasing strain rate) and shear thickening (increase of viscosity with increasing strain rate). Microstructural observations suggest that: shear thinning dominantly occurs in crystal-rich magmas (55-65 vol% crystals) because of crystal size reduction and shear localization; shear thickening prevails in dilute suspensions (24-44 vol% crystals) due to outgassing promoted by bubble coalescence.

  12. Ionic liquids as electrolytes

    Galinski, Maciej; Lewandowski, Andrzej; Stepniak, Izabela [Faculty of Chemical Technology, Poznan University of Technology, PL-60 965 Poznan (Poland)

    2006-08-15

    Salts having a low melting point are liquid at room temperature, or even below, and form a new class of liquids usually called room temperature ionic liquids (RTIL). Information about RTILs can be found in the literature with such key words as: room temperature molten salt, low-temperature molten salt, ambient-temperature molten salt, liquid organic salt or simply ionic liquid. Their physicochemical properties are the same as high temperature ionic liquids, but the practical aspects of their maintenance or handling are different enough to merit a distinction. The class of ionic liquids, based on tetraalkylammonium cation and chloroaluminate anion, has been extensively studied since late 1970s of the XX century, following the works of Osteryoung. Systematic research on the application of chloroaluminate ionic liquids as solvents was performed in 1980s. However, ionic liquids based on aluminium halides are moisture sensitive. During the last decade an increasing number of new ionic liquids have been prepared and used as solvents. The general aim of this paper was to review the physical and chemical properties of RTILs from the point of view of their possible application as electrolytes in electrochemical processes and devices. The following points are discussed: melting and freezing, conductivity, viscosity, temperature dependence of conductivity, transport and transference numbers, electrochemical stability, possible application in aluminium electroplating, lithium batteries and in electrochemical capacitors. (author)

  13. Ionic liquids as electrolytes

    Salts having a low melting point are liquid at room temperature, or even below, and form a new class of liquids usually called room temperature ionic liquids (RTIL). Information about RTILs can be found in the literature with such key words as: room temperature molten salt, low-temperature molten salt, ambient-temperature molten salt, liquid organic salt or simply ionic liquid. Their physicochemical properties are the same as high temperature ionic liquids, but the practical aspects of their maintenance or handling are different enough to merit a distinction. The class of ionic liquids, based on tetraalkylammonium cation and chloroaluminate anion, has been extensively studied since late 1970s of the XX century, following the works of Osteryoung. Systematic research on the application of chloroaluminate ionic liquids as solvents was performed in 1980s. However, ionic liquids based on aluminium halides are moisture sensitive. During the last decade an increasing number of new ionic liquids have been prepared and used as solvents. The general aim of this paper was to review the physical and chemical properties of RTILs from the point of view of their possible application as electrolytes in electrochemical processes and devices. The following points are discussed: melting and freezing, conductivity, viscosity, temperature dependence of conductivity, transport and transference numbers, electrochemical stability, possible application in aluminium electroplating, lithium batteries and in electrochemical capacitors

  14. Polymer electrolyte fuel cells

    Gottesfeld, S.

    The recent increase in attention to polymer electrolyte fuel cells (PEFC's) is the result of significant technical advances in this technology and the initiation of some projects for the demonstration of complete PEFC-based power system in a bus or in a passenger car. A PEFC powered vehicle has the potential for zero emission, high energy conversion efficiency and extended range compared to present day battery powered EV's. This paper describes recent achievements in R&D on PEFC's. The major thrust areas have been: (1) demonstration of membrane/electrode assemblies with stable high performance in life tests lasting 4000 hours, employing ultra-low Pt loadings corresponding to only 1/2 oz of Pt for the complete power source of a passenger car; (2) effective remedies for the high sensitivity of the Pt electrocatalyst to impurities in the fuel feed stream; and (3) comprehensive evaluation of the physicochemical properties of membrane and electrodes in the PEFC, clarifying the water management issues and enabling effective codes and diagnostics for this fuel cell.

  15. Rheology of the sickle cell disorders.

    Stuart, J; Johnson, C S

    1987-09-01

    The sickling process causes secondary changes in cell shape, size, cation and water content, and membrane structure that contribute to the impairment of intrinsic cell deformability (Figure 2). This rheological defect is partially compensated by a low haematocrit, which moderates the rise in whole-blood viscosity, and by a rise in cardiac output which increases capillary flow velocity (Berger and King, 1982). A delicate balance exists between these mechanisms and any local disturbance of this balance by pathological changes in factors extrinsic to the sickle cell (Figure 2) can precipitate vaso-occlusion. There is still considerable controversy over the site (arteriolar, capillary, or venular) of vaso-occlusion, the type of sickle cell (reversibly sickled or irreversibly sickled) that is primarily involved, and the relative importance of extra-erythrocytic precipitating factors such as stasis, hypoxia, hyperosmolality, acidosis, alteration in temperature, acute-phase rise in plasma proteins and leukocytes, prothrombotic changes in coagulation factors and platelets, and adhesion of blood cells to vascular endothelium (Figure 2). A low-grade hypercoagulable state has been described in patients with SS (Leichtman and Brewer, 1978; Richardson et al, 1979) which may be related to the procoagulant effect of the shift of phosphatidyl serine to the outer lipid bilayer of the sickle cell (Chiu et al, 1981; Franck et al, 1985). Platelets appear to accumulate at sites of vaso-occlusion (Siegel et al, 1985) and their migration to the vessel wall may be enhanced by the presence of poorly deformable erythrocytes (Aarts et al, 1984). Endothelial cell damage in the arterial or venous circulation may also contribute (Klug et al, 1982). Thus vaso-occlusion appears to result from a complex interaction between blood cells, plasma proteins and endothelium and any one of several precipitating factors may disturb the fragile steady state and cause a painful crisis. The study of sickle cells by rheological methods has considerable potential for investigating the pathophysiology of vaso-occlusive episodes in the SCD and for monitoring, both in vitro and ex vivo, the efficacy of antisickling compounds. Because of the multiple intrinsic and extrinsic factors that contribute to the rheological defect, it is not yet known which of these should be the primary target for an antisickling agent. In-vitro rheological studies in which different metabolic stresses can be applied to intact sickle cells in the presence of a putative antisickling drug should help to answer this question.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3327564

  16. Cavitation rheology of the eye lens

    Cui, Jun; Lee, Cheol Hee; Delbos, Aline; McManus, Jennifer J.; Crosby, Alfred J.

    2011-01-01

    The anisotropic mechanical properties of bovine eye lenses were measured using cavitation rheology over a range of length scales. The technique involves inducing a cavity at the tip of a syringe needle in different regions of the lens. Effective Young’s moduli of the nucleus and cortex of the lens were determined, as approximately 11.8 and 0.8 kPa, respectively, on macroscopic length scales. We also measured the mechanical properties of the lens on the length scale of a single cel...

  17. Hydrodynamics and Rheology of Active Liquid Crystals

    Cui, Zhenlu

    2012-02-01

    Active liquid crystals such as swimming bacteria, active gels and assemblies of motors and filaments are active complex fluids. Such systems differ from their passive counterparts in that particles absorb energy and generate motion. They are interesting from a more fundamental perspective as their dynamic phenomenons are both physically fascinating and potentially of great biological significance. In this talk, I will present a continuum model for active liquid crystals and analyze the behavior of a suspension subjected to a weak Poiseuille flow. Hydrodynamics, stability and rheology will also be discussed.

  18. Magneto-rheological defects and failures: A review

    Wahid, SA; Ismail, I.; Aid, S.; Rahim, MSA

    2016-02-01

    Magneto-rheological fluid is the colloidal suspension of micron sized magnetic particles in a carrier fluid where defects and failures occur at many circumstances. This paper presents a review on defects and failures of magneto-rheological fluid in engineering applications. The most significant defect is hard cake which developed due to re-dispersion difficulties of remnant particles magnetization, leaving the magneto-rheological fluid ineffective. Clumping effect on the other hand is a separation of carrier fluid from the magnetic particles when magneto-rheological fluid is being exposed to higher magnetic field for an extended period of time. As clumping occurred, it leads to Fluid Particle Separation (FPS) which is believed altering the strength distribution of magneto-rheological fluid and therefore reducing the squeezing force. Another significant failure is magnetic particles oxidation of the magneto-rheological fluid. This paper also will discuss on stability problems which is the most challenged issue in magneto-rheological fluid technology. With the comprehensive review in this paper, researcher can design materials of magneto-rheological fluid for better properties.

  19. Rheological behavior of superplastic nanocrystalline and amorphous materials

    Demonstrating structural superplasticity as compared with crystallized metallic melts and amorphous materials, rheological behavior of metallic and ceramic materials is analyzed. The rheological state of the materials varies from tough to tough-plastic one. Superplasticity at high deformation rates and low values of shear viscosity being peculiar to the materials is considered as enough prospecting for development of new metal forming processes

  20. Rheological analysis of stabilized cerium-gadolinium oxide (CGO) dispersions

    Marani, Debora; Hjelm, Johan; Wandel, Marie

    2014-01-01

    The objective of the present work is to generate general rheological criteria to investigate high solid loading dispersions suitable for the shaping of homogeneous ceramic bodies. Systematic analysis of the rheological properties of moderately low specific surface area (SSA) Ce0.9Gd0.1O3-δ (CGO10...

  1. Hectorite-based nanocomposite electrolytes for lithium-ion batteries

    Riley, Michael William

    Hectorite clay is presented in this work as a promising component for electrolytes for lithium-ion batteries. This negatively-charged, plate-shaped (250 nm diameter by 1 nm thickness) clay has exchangeable cations for which lithium may be substituted. When properly dispersed in high-dielectric solvents such as the carbonates (ethylene carbonate and propylene carbonate) typically used in lithium-ion cells, a shear-thinning physical gel is created possessing a good conductivity (as high as 2 x 10-4 S/cm at room temperature has been measured) with near unity lithium-ion transference numbers. As a result, hectorite-based electrolytes could drastically reduce concentration polarization and present an inherently safer electrolyte as toxic salts such as LiPF6 that are typically used could be eliminated. Hectorite clay dispersions in aqueous and non-aqueous (1:1 (v:v) ethylene carbonate: poly(ethylene)glycol dimethyl ether 250 MW) solvents have been studied using rheology (dynamic and steady) and conductivity. The aqueous dispersions show a highly-exfoliated microstructure (fractal dimension, Df ? 1.6) created primarily through electrostatic repulsive forces which recovers after shear deformation by reorientation of the clay platelets. The non-aqueous dispersions form gel structures with a much higher degree of aggregation (Df ? 2.5), and recovery after shear deformation appears to be an aggregation controlled process as well. TEM imaging of non-aqueous clay dispersions shows the clay to be uniformly distributed, with the platelets existing in aggregates of 3 to 5 layers. Use of the hectorite-based electrolytes in lithium-ion cells requires electrodes that contain a single-ion conductor in the typically porous structures. Cathodes based on LiCoO2 that contain various lithium-conducting species (lithium hectorite, lithium LaponiteRTM, and lithium-exchanged NAFIONRTM) have been studied. AC impedance spectroscopy was used to probe the cells and equivalent circuits were used to model the physical processes that occur. Cathodes containing 4 wt. % lithium hectorite + 3 wt. lithium-exchanged NAFIONRTM + 3 wt. % carbon black exhibit capacities approximately 90 mAh/g LiCoO2. These hectorite-based electrolytes and clay-containing cathodes are potentially attractive for use in single-ion conducting lithium-ion batteries designed for high-discharge applications.

  2. Melt rheology and its applications in the plastics industry

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  3. Dynamics and Rheology of Soft Colloidal Glasses

    Wen, Yu Ho

    2015-01-20

    © 2015 American Chemical Society. The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad frequency range 10-13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy nanoparticles leading to increased intercenter distances is demonstrated to enable continuous mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical approaches proposed to extend the rheological map of soft glassy materials, i.e., time-strain superposition (TSS) and strain-rate frequency superposition (SRFS), TCS yields a LVE master curve that satis fies the Kramers-Kronig relations which interrelate the dynamic moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data further support the general validity of the TCS concept for soft glassy materials.

  4. Vortex jamming in superconductors and granular rheology

    We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i.e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress versus shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as exotic fragile vortex matter: it behaves as a superconductor (vortex glass) in one direction, whereas it is a normal conductor (vortex liquid) in the other direction even at zero temperature. Furthermore, we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields-the rheology of soft materials and superconductivity.

  5. Rheology of a sonofluidized granular packing.

    Caballero-Robledo, G A; Clément, E

    2009-12-01

    We report experimental measurements on the rheology of a dry granular material under a weak level of vibration generated by sound injection. First, we measure the drag force exerted on a wire moving in the bulk. We show that when the driving vibration energy is increased, the effective rheology changes drastically: going from a non-linear dynamical friction behavior --weakly increasing with the velocity-- up to a linear force-velocity regime. We present a simple heuristic model to account for the vanishing of the stress dynamical threshold at a finite vibration intensity and the onset of a linear force-velocity behavior. Second, we measure the drag force on spherical intruders when the dragging velocity, the vibration energy, and the diameters are varied. We evidence a so-called "geometrical hardening" effect for smaller-size intruders and a logarithmic hardening effect for the velocity dependence. We show that this last effect is only weakly dependent on the vibration intensity. PMID:19998051

  6. Rheology of asphaltene-toluene/water interfaces.

    Sztukowski, Danuta M; Yarranton, Harvey W

    2005-12-01

    The stability of water-in-crude oil emulsions is frequently attributed to a rigid asphaltene film at the water/oil interface. The rheological properties of these films and their relationship to emulsion stability are ill defined. In this study, the interfacial tension, elastic modulus, and viscous modulus were measured using a drop shape analyzer for model oils consisting of asphaltenes dissolved in toluene for concentrations varying from 0.002 to 20 kg/m(3). The effects of oscillation frequency, asphaltene concentration, and interface aging time were examined. The films exhibited viscoelastic behavior. The total modulus increased as the interface aged at all asphaltene concentrations. An attempt was made to model the rheology for the full range of asphaltene concentration. The instantaneous elasticity was modeled with a surface equation of state (SEOS), and the elastic and viscous moduli, with the Lucassen-van den Tempel (LVDT) model. It was found that only the early-time data could be modeled using the SEOS-LVDT approach; that is, the instantaneous, elastic, and viscous moduli of interfaces aged for at most 10 minutes. At longer interface aging times, the SEOS-LVDT approach was invalid, likely because of irreversible adsorption of asphaltenes on the interface and the formation of a network structure. PMID:16316096

  7. Improving feed slurry rheology by colloidal techniques

    Pacific Northwest Laboratory (PSN) has investigated three colloidal techniques in the laboratory to improve the sedimentation and flowability of Hanford simulated (nonradioactive) current acid waste (CAW) melter feed slurry: polymer-induced bridging flocculation; manipulating glass former (raw SiO2 or frit) particle size; and alteration of nitric acid content. All three methods proved successful in improving the rheology of the simulated CAW feed. This initially had exhibited nearly worst-case flow and clogging properties, but was transformed into a flowable, resuspendable (nonclogging) feed. While each has advantages and disadvantages, the following three specific alternatives proved successful: addition of a polyelectrolyte in 2000 ppM concentration to feed slurry; substitution of a 49 wt % SiO2 colloidal suspension (approx. 10-micron particle size) for the -325 mesh (less than or equal to 44-micron particle size) raw-chemical SiO2; and increase of nitric acid content from the reference 1.06 M to optimum 1.35 M. The first method, polymer-induced bridging flocculation, results in a high sediment volume, nonclogging CAW feed. The second method, involving the use of colloidal silica particles results in a nonsedimenting feed that when left unagitated forms a gel. The third method, increase in feed acidity, results in a highly resuspendable (nonclogging) melter feed. Further research is therefore required to determine which of the three alternatives is the preferred method of achieving rheological control of CAW melter feeds

  8. Rheological changes in irradiated chicken eggs

    Ferreira, Lucia F. S.; Del Mastro, Nelida L

    1998-06-01

    Pathogenic bacteria may cause foodborne illnesses. Humans may introduce pathogens into foods during production, processing, distribution and or preparation. Some of these microorganisms are able to survive conventional preservation treatments. Heat pasteurization, which is a well established and satisfactory means of decontamination/disinfection of liquid foods, cannot efficiently achieve a similar objective for solid foods. Extensive work carried out worldwide has shown that irradiation is efficient in eradicating foodborne pathogens like Salmonella spp. that can contaminate poultry products. In this work Co-60 gamma irradiation was applied to samples of industrial powder white, yolk and whole egg at doses between 0 and 25 kGy. Samples were rehydrated and the viscosity measured in a Brookfield viscosimeter, model DV III at 5, 15 and 25 degree sign C. The rheological behaviour among the various kinds of samples were markedly different. Irradiation with doses up to 5 kGy, known to reduced bacterial contamination to non-detectable levels, showed almost no variation of viscosity of irradiated egg white samples. On the other hand, whole or yolk egg samples showed some changes in rheological properties depending on the dose level, showing the predominance of whether polimerization or degradation as a result of the irradiation. Additionally, irradiation of yolk egg powder reduced yolk color as a function of the irradiation exposure implemented. The importance of these results are discussed in terms of possible industrial applications.

  9. Rheological characterization of Poloxamer 407 nimesulide gels

    M. N. Freitas

    2009-01-01

    Full Text Available The thermal gelling property of Poloxamer 407- nimesulide gels was characterized by rheological studies. Nimesulide, a local anti-inflammatory and anesthetic drug used for the treatment of acute and chronic pain, has a short duration of action and a long-acting single-dose injection would be of clinical importance. Thus a poloxamer 407 gel applied intramuscularly could prolong the release and action of nimesulide. In this study, aqueous gels with nimesulide, containing three different concentrations of Poloxamer 407, were prepared. Viscosity measurements were performed by rheologial studies to obtain the optimal sol-gel transition temperature . Poloxamer 407 gels are pseudoplastic and viscoelastic materials, which have an elastic modulus (G', characteristic of the solid, and a viscous modulus (G'', characteristic of the liquid material. Moreover, being pseudoplastic gels, when they are deformed by shearing, their viscosity decreases. Increase of the polymer concentration increased the viscosity of the gels, which could affect the releasing process of nimesulide. Furthermore, the presence of nimesulide led to a lowering of the sol-gel transition temperature. Keywords: Poloxamer 407 gels; nimesulide; rheological characterization; viscosity; sol-gel transition temperature.

  10. Shear rheology of a cell monolayer

    Fernandez, Pablo [Experimentalphysik I, Physikalisches Institut, Universitaet Bayreuth, D-95440 Bayreuth (Germany); Heymann, Lutz [Technische Mechanik und Stroemungsmechanik, Universitaet Bayreuth, D-95440 Bayreuth (Germany); Ott, Albrecht [Experimentalphysik I, Physikalisches Institut, Universitaet Bayreuth, D-95440 Bayreuth (Germany); Aksel, Nuri [Technische Mechanik und Stroemungsmechanik, Universitaet Bayreuth, D-95440 Bayreuth (Germany); Pullarkat, Pramod A [Experimentalphysik I, Physikalisches Institut, Universitaet Bayreuth, D-95440 Bayreuth (Germany)

    2007-11-15

    We report a systematic investigation of the mechanical properties of fibroblast cells using a novel cell monolayer rheology (CMR) technique. The new technique provides quantitative rheological parameters averaged over {approx}10{sup 6} cells making the experiments highly reproducible. Using this method, we are able to explore a broad range of cell responses not accessible using other present day techniques. We perform harmonic oscillation experiments and step shear or step stress experiments to reveal different viscoelastic regimes. The evolution of the live cells under externally imposed cyclic loading and unloading is also studied. Remarkably, the initially nonlinear response becomes linear at long timescales as well as at large amplitudes. Within the explored rates, nonlinear behaviour is only revealed by the effect of a nonzero average stress on the response to small, fast deformations. When the cell cytoskeletal crosslinks are made permanent using a fixing agent, the large amplitude linear response disappears and the cells exhibit a stress stiffening response instead. This result shows that the dynamic nature of the cross-links and/or filaments is responsible for the linear stress-strain response seen under large deformations. We rule out the involvement of myosin motors in this using the inhibitor drug blebbistatin. These experiments provide a broad framework for understanding the mechanical responses of the cortical actin cytoskeleton of fibroblasts to different imposed mechanical stimuli.

  11. Rheological Behavior of Schizophyllan in Fermentation System

    Rekha S. Singhal

    2011-01-01

    Full Text Available Schizophyllan is a neutral extracellular polysaccharide produced by the fungus Schizophyllum commune, consisting of a 1,3--D-linked backbone of glucose residues with 1,6--D-glucosyl side groups. The polysaccharide rheological properties have been studied in the fermentation aqueous media over the time period of 168 h. The rheology of the schizophyllan produced by Schizophyllum commune NRCM isolated during the 168 h fermentation is also studied by determining the consistency index, K and flow behavior index, n of the fermentation broth and isolated schizophyllan samples. For measurement of intrinsic viscosity, [?], the viscosity was determined at 25C, at low polymer concentration and at low shear rate range. Schizophyllan biopolymer dispersion obeyed Power Law Model. Fermentation broth showed Newtonian behavior up to 96 h of fermentation time, beyond which the flow behavior was pseudoplastic. The molecular weight of schizophyllan was found to be 5.54 x105 Daltons after 168 h fermentation using Mark-Houwink relation.

  12. Rheological changes in irradiated chicken eggs

    Pathogenic bacteria may cause foodborne illnesses. Humans may introduce pathogens into foods during production, processing, distribution and or preparation. Some of these microorganisms are able to survive conventional preservation treatments. Heat pasteurization, which is a well established and satisfactory means of decontamination/disinfection of liquid foods, cannot efficiently achieve a similar objective for solid foods. Extensive work carried out worldwide has shown that irradiation is efficient in eradicating foodborne pathogens like Salmonella spp. that can contaminate poultry products. In this work Co-60 gamma irradiation was applied to samples of industrial powder white, yolk and whole egg at doses between 0 and 25 kGy. Samples were rehydrated and the viscosity measured in a Brookfield viscosimeter, model DV III at 5, 15 and 25 degree sign C. The rheological behaviour among the various kinds of samples were markedly different. Irradiation with doses up to 5 kGy, known to reduced bacterial contamination to non-detectable levels, showed almost no variation of viscosity of irradiated egg white samples. On the other hand, whole or yolk egg samples showed some changes in rheological properties depending on the dose level, showing the predominance of whether polimerization or degradation as a result of the irradiation. Additionally, irradiation of yolk egg powder reduced yolk color as a function of the irradiation exposure implemented. The importance of these results are discussed in terms of possible industrial applications

  13. Development of Alternative Rheological Measurements for DWPF Slurry Samples

    Rheological measurements are used to evaluate the fluid dynamic behavior of Defense Waste Processing Facility, DWPF, slurry samples. Measurements are currently made on non-radioactive simulant slurries using two state-of-the-art rheometers located at the Aiken County Technical Laboratory, ACTL. Measurements are made on plant samples using a rheometer in the Savannah River National Laboratory, SRNL, Shielded Cells facility. Low activity simulants or plant samples can be analyzed using a rheometer located in a radioactive hood in SRNL. Variations in the rheology of SB2 simulants impacted the interpretation of results obtained in a number of related studies. A separate rheological study was initiated with the following four goals: (1) Document the variations seen in the simulant slurries, both by a review of recent data, and by a search for similar samples for further study. (2) Attempt to explain the variations in rheological behavior, or, failing that, reduce the number of possible causes. In particular, to empirically check for rheometer-related variations. (3) Exploit the additional capabilities of the rheometers by developing new measurement methods to study the simulant rheological properties in new ways. (4) Formalize the rheological measurement process for DWPF-related samples into a series of protocols. This report focuses on the third and fourth goals. The emphasis of this report is on the development and formalization of rheological measurement methods used to characterize DWPF slurry samples. The organization is by rheological measurement method. Progress on the first two goals was documented in a concurrent technical report, Koopman (2005). That report focused on the types and possible causes of unusual rheological behavior in simulant slurry samples. It was organized by the sample being studied. The experimental portion of this study was performed in the period of March to April 2004. A general rheology protocol for routine DWPF slurry samples, Koopman (2004b), was drafted in addition to the companion technical report to this document

  14. Development of Alternative Rheological Measurements for DWPF Slurry Samples (U)

    Koopman, D. c.

    2005-09-01

    Rheological measurements are used to evaluate the fluid dynamic behavior of Defense Waste Processing Facility, DWPF, slurry samples. Measurements are currently made on non-radioactive simulant slurries using two state-of-the-art rheometers located at the Aiken County Technical Laboratory, ACTL. Measurements are made on plant samples using a rheometer in the Savannah River National Laboratory, SRNL, Shielded Cells facility. Low activity simulants or plant samples can be analyzed using a rheometer located in a radioactive hood in SRNL. Variations in the rheology of SB2 simulants impacted the interpretation of results obtained in a number of related studies. A separate rheological study was initiated with the following four goals: (1) Document the variations seen in the simulant slurries, both by a review of recent data, and by a search for similar samples for further study. (2) Attempt to explain the variations in rheological behavior, or, failing that, reduce the number of possible causes. In particular, to empirically check for rheometer-related variations. (3) Exploit the additional capabilities of the rheometers by developing new measurement methods to study the simulant rheological properties in new ways. (4) Formalize the rheological measurement process for DWPF-related samples into a series of protocols. This report focuses on the third and fourth goals. The emphasis of this report is on the development and formalization of rheological measurement methods used to characterize DWPF slurry samples. The organization is by rheological measurement method. Progress on the first two goals was documented in a concurrent technical report, Koopman (2005). That report focused on the types and possible causes of unusual rheological behavior in simulant slurry samples. It was organized by the sample being studied. The experimental portion of this study was performed in the period of March to April 2004. A general rheology protocol for routine DWPF slurry samples, Koopman (2004b), was drafted in addition to the companion technical report to this document.

  15. Review Of Rheology Modifiers For Hanford Waste

    Pareizs, J. M.

    2013-09-30

    As part of Savannah River National Laboratory (SRNL)'s strategic development scope for the Department of Energy - Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste feed acceptance and product qualification scope, the SRNL has been requested to recommend candidate rheology modifiers to be evaluated to adjust slurry properties in the Hanford Tank Farm. SRNL has performed extensive testing of rheology modifiers for use with Defense Waste Processing Facility (DWPF) simulated melter feed - a high undissolved solids (UDS) mixture of simulated Savannah River Site (SRS) Tank Farm sludge, nitric and formic acids, and glass frit. A much smaller set of evaluations with Hanford simulated waste have also been completed. This report summarizes past work and recommends modifiers for further evaluation with Hanford simulated wastes followed by verification with actual waste samples. Based on the review of available data, a few compounds/systems appear to hold the most promise. For all types of evaluated simulated wastes (caustic Handford tank waste and DWPF processing samples with pH ranging from slightly acidic to slightly caustic), polyacrylic acid had positive impacts on rheology. Citric acid also showed improvement in yield stress on a wide variety of samples. It is recommended that both polyacrylic acid and citric acid be further evaluated as rheology modifiers for Hanford waste. These materials are weak organic acids with the following potential issues: The acidic nature of the modifiers may impact waste pH, if added in very large doses. If pH is significantly reduced by the modifier addition, dissolution of UDS and increased corrosion of tanks, piping, pumps, and other process equipment could occur. Smaller shifts in pH could reduce aluminum solubility, which would be expected to increase the yield stress of the sludge. Therefore, it is expected that use of an acidic modifier would be limited to concentrations that do not appreciably change the pH of the waste; Organics are typically reductants and could impact glass REDOX if not accounted for in the reductant addition calculations; Stability of the modifiers in a caustic, radioactive environment is not known, but some of the modifiers tested were specifically designed to withstand caustic conditions; These acids will add to the total organic carbon content of the wastes. Radiolytic decomposition of the acids could result in organic and hydrogen gas generation. These potential impacts must be addressed in future studies with simulants representative of real waste and finally with tests using actual waste based on the rheology differences seen between SRS simulants and actual waste. The only non-organic modifier evaluated was sodium metasilicate. Further evaluation of this modifier is recommended if a reducing modifier is a concern.

  16. Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems

    Plucktaveesak, Nopparat

    The fundamental understanding of polyelectrolytes in aqueous solutions is an important branch of polymer research. In this work, the rheological properties of polyelectrolytes and polyelectrolyte/surfactant systems are studied. Various synthetic poly electrolytes are chosen with varied hydrophobicity. We discuss the effects of adding various surfactants to aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)- b-polyethylene oxide)-g-poly(acrylic acid) (PEO-PPO-PAA) in the first chapter. Thermogelation in aqueous solutions of PEO-PPO-PAA is due to micellization caused by aggregation of poly(propylene oxide) (PPO) blocks resulting from temperature-induced dehydration of PPO. When nonionic surfactants with hydrophilic-lipophilic balance (HLB) parameter exceeding 11 or Cn alkylsulfates; n-octyl (C8), n-decyl (C 10) and n-dodecyl (C12) sulfates are added, the gelation threshold temperature (Tgel) of 1.0wt% PEO-PPO-PAA in aqueous solutions increases. In contrast, when nonionic surfactants with HLB below 11 are added, the gelation temperature decreases. On the other hand, alkylsulfates with n = 16 or 18 and poly(ethylene oxide) (PEO) do not affect the Tgel. The results imply that both hydrophobicity and tail length of the added surfactant play important roles in the interaction of PEO-PPO-PAA micelles and the surfactant. In the second chapter, the solution behavior of alternating copolymers of maleic acid and hydrophobic monomer is studied. The alternating structure of monomers with two-carboxylic groups and hydrophobic monomers make these copolymers unique. Under appropriate conditions, these carboxylic groups dissociate leaving charges on the chain. The potentiometric titrations of copolymer solutions with added CaCl2 reveal two distinct dissociation processes corresponding to the dissociation of the two adjacent carboxylic acids. The viscosity data as a function of polymer concentration of poly(isobutylene-alt-sodium maleate), poly(styrene-alt-sodium maleate) and poly(diisobutylene- alt-sodium maleate) show the polyelectrolyte behavior as predicted. However, the viscosity as a function of concentration of sodium maleate based copolymers with 1-alkenes; 1-octene (C8), 1-decene (C10), 1-dodecene (C12) and 1-hexene (C14) exhibit an abnormal scaling power, which might be caused by aggregation of the alkene tails to form micelles. In the last chapter, we report the rheological properties of aqueous solutions of poly(acrylic acid) and oppositely charged surfactant, dodecyl trimethylammonium bromide (C12TAB). The solution viscosity decreases as surfactant is added, partly because the polyelectrolyte wraps around the surface of the spherical surfactant micelles, shortening the effective chain length. The effects of polymer molecular weight, polymer concentration, and polymer charge have been studied with no added salt. The results are compared with the predictions of a simple model based on the scaling theory for the viscosity of dilute and unentangled semidilute polyelectrolyte solutions in good solvent. This model takes into account two effects of added surfactant. The effective chain length of the polyelectrolyte is shortened when a significant fraction of the chain wraps around micelles. Another effect is the change of solution ionic strength resulting from surfactant addition that further lowers the viscosity. The parameters used in this model are independently determined, allowing the model to make a quantitative prediction of solution viscosity with no adjustable parameters. The model is also applied to predict the decrease in viscosity of various polyelectrolyte/oppositely charged surfactant systems reported in literature. The results are in good agreement with experimental data, proving that our model applies to all polyelectrolytes mixed with oppositely charged surfactants that form spherical micelles.

  17. Anion exchange polymer electrolytes

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  18. Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites.

    Joseph, R; McGregor, W J; Martyn, M T; Tanner, K E; Coates, P D

    2002-11-01

    The commercial success of hydroxyapatite (HA) filled polyethylene composite has generated growing interest in improving the processability of the composite. A number of synthetic procedures and post synthesis heat treatment of HA has lead to the availability of powders with widely varying morphological features. This paper addresses the effect of morphological features of HA on the rheology and processability of an injection-moulding grade HA-HDPE composite. The results showed that low surface area HA filled composite exhibited better injection processing characteristics through improved rheological responses. The effect of reducing the surface area of the filler is to require less polyethylene to wet the filler and allows more polyethylene to be involved in the flow processes. These changes reduced the temperatures and pressures required for successful processing. PMID:12194532

  19. Rheological properties of cupuassu and cocoa fats

    Gioielli, L. A.

    2004-06-01

    Full Text Available Cocoa butter is an important ingredient in chocolate formulation as it dictates the main properties (texture, sensation in the mouth, and gloss. In the food industry, the texture of fat-containing products strongly depends on the macroscopic properties of the fat network formed within the finished product. Cupuassu ( Theobroma grandiflorum , Sterculiaceae is an Amazonian native fruit and the seeds can be used to derive a cocoa butter like product. In general, these fats are similar to those of cocoa, although they are different in some physical properties. The objective of this study was to analyze several properties of the cupuassu fat and cocoa butter (crystal formation at 25 ° C, rheological properties, and fatty acid composition and mixtures between the two fats (rheological properties, in order to understand the behavior of these fats for their use in chocolate products. Fat flow was described using common rheological models ( Newton , Power Law, Casson and Bingham plastic.La manteca de cacao es un ingrediente muy importante en la formulación de chocolates y es responsable de la mayor parte de sus propiedades (textura, palatibilidad y brillo. En la industria de alimentos, la textura de productos que contienen grasa depende enormemente de las propiedades macroscópicas de la red cristalina de la grasa en el producto final. El cupuaçu es una fruta nativa de la región amazónica y sus semillas pueden ser usadas para obtener una grasa semejante a la manteca de cacao. En general, esta grasa es similar a la manteca de cacao, pero difiere en algunas de sus propiedades fisicas . El objetivo de este estudio fue analizar algunas propiedades de la grasa de cupuaçu y de la manteca de cacao (formación de cristales a 25 °C, propiedades reológicas y composición en ácidos grasos y de algunas mezclas entre las dos grasas (propiedades reológicas, a fin de conocer el comportamiento de estas grasas para ser usadas en productos de la industria del chocolate. El flujo de la grasa se ha descrito utilizando modelos reológicos comunes (Newton, ley de la potencia, Casson y plástico de Bingham.

  20. High elastic modulus polymer electrolytes

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  1. Acoustic Modeling of a 3-Layered Panel Incorporating Electro-Rheological/ Magneto-Rheological (EMR) Fluids

    Nader Mohammadi

    2014-01-01

    Applications or Magneto-Rheological (MR) fluids as typical smart materials have been widely investigated over the past decades (since their introduction in 40’s). The special applications of these materials as a means of noise suppression are not yet investigated. Constrained Layer Damping (CLD) sheets can be realized by incorporating EMR (ER/MR) materials. In this way, This notion has been introduced for semi-active vibration control problems.teristics of these composite sheets enab...

  2. Structure and compatibility of a magnesium electrolyte with a sulphur cathode.

    Kim, Hee Soo; Arthur, Timothy S; Allred, Gary D; Zajicek, Jaroslav; Newman, John G; Rodnyansky, Alexander E; Oliver, Allen G; Boggess, William C; Muldoon, John

    2011-01-01

    Magnesium metal is an ideal rechargeable battery anode material because of its high volumetric energy density, high negative reduction potential and natural abundance. Coupling Mg with high capacity, low-cost cathode materials such as electrophilic sulphur is only possible with a non-nucleophilic electrolyte. Here we show how the crystallization of the electrochemically active species formed from the reaction between hexamethyldisilazide magnesium chloride and aluminum trichloride enables the synthesis of a non-nucleophilic electrolyte. Furthermore, crystallization was essential in the identification of the electroactive species, [Mg(2)(μ-Cl)(3)·6THF](+), and vital to improvements in the voltage stability and coulombic efficiency of the electrolyte. X-ray photoelectron spectroscopy analysis of the sulphur electrode confirmed that the electrochemical conversion between sulphur and magnesium sulfide can be successfully performed using this electrolyte. PMID:21829189

  3. Influence of the type of electrolyte on the morphological and crystallographic characteristics of lead powder particles

    Nikolić Nebojša D.

    2013-01-01

    Full Text Available Lead electrodeposition processes from the basic (nitrate and complex (acetate electrolytes were mutually compared by the scanning electron microscopic and the X-ray diffraction analysis of the produced powder particles. The shape of dendritic particles strongly depended on the type of electrolyte. The dendrites composed of stalk and weakly developed primary branches (the primary type were predominantly formed from the basic electrolyte. The ramified dendrites composed of stalk and of both primary and secondary branches (the secondary type were mainly formed from the complex electrolyte. In the both type of powder particles Pb crystallites were predominantly oriented in the (111 plane. Formation of powder particles of the different shape with the strong (111 preferred orientation was discussed and explained by the consideration of the general characteristics of the growth of a crystal in the electrocrystallization processes. [Projekat Ministarstva nauke Republike Srbije, br. 172046: Electrochemical synthesis and characterization of nanostructured functional materials for application in new technologies

  4. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    Kim, Yu Seung [Los Alamos National Laboratory; Lee, Kwan Soo [Los Alamos National Laboratory; Jeong, Myung - Hwan [GIST, KOREA; Lee, Jae - Suk [GIST, KOREA

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  5. Development of magneto-rheological fluid composites with rigidification characteristics

    Magnetic and magneto-rheological materials have been widely used in many engineering applications. The smart magnetic materials addressed in this study consist of magnetically activated composites made from a core layer of a carrier-material-like fabric, sponge and silicone in combination with small magnetizable ferrous particles suspended in a magneto-rheological fluid. Composite materials that contain magnetic and magneto-rheological ingredients are presently becoming very popular in shape and structure control solutions in a variety of engineering applications. The magneto-rheological response in smart materials allows for the real-time adaptation of material properties. Adequately designed magneto-rheological or magnetic composites are required to perform under different load conditions and provide some rigidification in a sample or a structure. Three different composites are developed in this study including: magneto-rheological fabric composites (MR/FC), magnetic elastomers (M-elastomers) and magneto-rheological sponge composites (MR/SC). The experimental set-up, including custom-made hardware, software and data acquisition system, is designed to conduct experiments used to quantify the material response in shear, tension and compression. The experimental results show a close correlation between the amount of magneto-rheological material present in the specimen and the final displacements in the samples. The resistance to the shear, compressive or tensile forces increases in the samples with the higher concentration of ferrous particles when subjected to a magnetic field. An increased intensity of the magnetic field allows for a stronger magneto-rheological effect and more stable formation of the ferrous chains inside the composites

  6. Supercapacitor behavior of ?-MnMoO4 nanorods on different electrolytes

    Graphical abstract: SEM image of ?-MnMoO4 nanorods on FTO substrate. Highlights: ? Synthesis of ?-MnMoO4 nanorods by spin coating method. ? First study on the effect of electrolyte on the pseudocapacitance behavior. ? ?-MnMoO4 nanorods exhibit maximum specific capacitance of 998 F/g. ? At higher scan rates p-TSA electrolyte exhibits superior capacitive behavior. -- Abstract: ?-MnMoO4 nanorods were prepared on conducting glass substrate via solgel spin coating method at the optimum doping level. The effect of electrolyte on the pseudocapacitance behavior of the ?-MnMoO4 nanorods was studied using para toluene sulfonic acid (p-TSA), sulfuric acid (H2SO4) and hydrochloric acid (HCl) as electrolytes. X-ray diffraction analysis reveals the formation of ?-MnMoO4 in monoclinic phase. FTIR spectra contain vibrational bands associated with Mo=O, MO and MoOMo bonds. SEM image reveals the formation of nanorods. Supercapacitor behavior has been studied using cyclic voltammetry (CV) analysis. ?-MnMoO4 nanorods exhibit maximum specific capacitance of 998 F/g at a scan rate of 5 mV/s in H2SO4 electrolyte while a specific capacitance of 784 F/g and 530 F/g have been obtained using p-TSA and HCl electrolytes, respectively. At higher scan rates p-TSA electrolyte exhibits superior capacitive behavior than H2SO4.

  7. The Rheological Property of Potato Starch Adhesives

    Junjun Liu

    2014-02-01

    Full Text Available The main goal of this study was to use potato starch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly potato starch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of potato starch adhesives decreased with the increasing of temperature; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared within potato starch adhesives which was pseudo-plastic fluids. Potato starch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  8. Rheological effects on friction in elastohydrodynamic lubrication

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    An analytical and experimental investigation is presented of the friction in a rolling and sliding elastohydrodynamic lubricated contact. The rheological behavior of the lubricant is described in terms of two viscoelastic models. These models represent the separate effects of non-Newtonian behavior and the transient response of the fluid. A unified description of the non-Newtonian shear rate dependence of the viscosity is presented as a new hyperbolic liquid model. The transient response of viscosity, following the rapid pressure rise encountered in the contact, is described by a compressional viscoelastic model of the volume response of a liquid to an applied pressure step. The resulting momentum and energy equations are solved by an iterative numerical technique, and a friction coefficient is calculated. The experimental study was performed, with two synthetic paraffinic lubricants, to verify the friction predictions of the analysis. The values of friction coefficient from theory and experiment are in close agreement.

  9. Nanoparticles in Polymers: Assembly, Rheology and Properties

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  10. Rheology of irradiated honey from Parana region

    Viscosity characteristics can be governed by the molecular chain length of sugars present in the honey. Honey is essentially a mixture of sugar and water. When a physical treatment, as gamma radiation, is applied to food, some changes on its viscosity may occur. Viscosity is one of the important properties of honey and depends on water and sugar quantities. The objective of this work was to verify the rheological behavior of irradiated honey from Parana region in comparison to the unirradiated one. Each rheogram was measured at different shear rates that was increased to a certain value then immediately decreased to the starting point ('up and down curves'). These measurements were made for control and irradiated samples (5 and 10 kGy) in different temperatures (30 deg. C, 35 deg. C and 40 deg. C). The curves constructed with shear stress against shear rate presented linearity. Honey, irradiated and control, showed a Newtonian behavior and gamma radiation did not affect it

  11. Metamorphic probing of subduction dynamics and rheology

    Agard, Philippe

    2015-04-01

    Understanding subduction dynamics and rheology, and particularly the role of fluids and deformation, strongly relies on integrated tectonic, petrological and geochemical studies able to retrieve from our most direct and reliable natural probes (i.e., preserved metamorphic assemblages) their pressure-temperature-time (P-T-t) evolution. I first provide two examples of such integrated studies that allow tracking rock trajectories and exhumation dynamics in subduction zones -- thanks to the considerable progress made over the last ten years on estimating P-T-t conditions. The Oman example shows how EPMA mapping and the detailed study of local, low-temperature equilibria help constrain the behaviour and dynamics of upper crustal units during continental subduction, demonstrating the importance of slicing, accretion at depths of ~30 km and short-lived tectonic expulsion. In the Western Alps, the extensive coverage of field exposures by means of the Raman Spectrometry of carbonaceous matter and by dedicated pseudosection modelling allows to identify the existence of tens of km long, fairly continuous slices of downgoing slab exhumed from similar eclogitic depths (~80 km), and to assess the role of the overall fluid content in enabling their exhumation/preservation. I then illustrate how metamorphic rocks can provide ideal probes (though still partly to be improved) to address key, large-scale tectonic processes and not 'simply' histories, and do stress the importance of adequate field-based data acquisition. Three examples (and present-day limitations) are reviewed here: (1) The regional-scale exhumation of blueschists from the downdip end of the seismogenic zone across thousands of kilometers along the Neotethys (at ~1-1.5 GPa, 350°C) is a major geodynamic event providing insights into changes in interplate mechanical coupling and subduction dynamics. (2) Eclogite breccias recently reported in the Monviso area (W. Alps) allow constraining short-term processes involving seismogenesis, fluid migration (and its duration), fluid fluxes and will help improve our general understanding of the earthquake 'factory' (at ~2.6 GPa, 550°C). (3) Amphibolite to granulite-facies metamorphic soles (i.e., ~500m thick tectonic slices welded to the base of ophiolites) provide specific insights into the rheology of nascent subduction, as their accretion is restricted to a transient, optimal P-T-t window (at 1±0.2 GPa, 750-850°C, after < 1-2 My) during which fluid release and infiltration lead to similar effective rheology on both sides of the plate interface (i.e., downgoing crust and mantle wedge). This transient though universal episode maximizes interplate mechanical coupling and ultimately promotes the detachment of the sole from the sinking slab. For all three examples above, one should emphasize the need for a better assessment of the P-T stability of (the complex solid solutions of) amphiboles, which would represent a major breakthrough for our further understanding of subduction dynamics and rheology.

  12. Rheology and lubricity of hyaluronic acid

    Liang, Jing; Krause, Wendy E.

    2007-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan) is an important component in synovial fluid (i.e., the fluid that lubricates our freely moving joints). Its presence results in highly viscoelastic solutions. In comparison to healthy synovial fluid, diseased fluid has a reduced viscosity and loss of lubricity. In osteoarthritis the reduction in viscosity results from a decline in both the molecular weight and concentration of HA. In our investigation, we attempt to correlate the rheological properties of HA solutions to changes in lubrication and wear. A nanoindenter will be used to evaluate the coefficient of friction and wear properties between the nanoindenter tip and ultrahigh molecular weight polyethylene in both the presence and absence of a thin film of HA solution.

  13. Dimorphic magnetorheological fluid with improved rheological properties

    Jiang Wanquan, E-mail: jiangwq@ustc.edu.cn [Department of Chemistry, University of Science and Technology of China (USTC), Hefei 230026 (China); Zhang Yanli [Department of Chemistry, University of Science and Technology of China (USTC), Hefei 230026 (China); Xuan Shouhu; Guo Chaoyang [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, USTC, Hefei 230027 (China); Gong Xinglong, E-mail: gongxl@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, USTC, Hefei 230027 (China)

    2011-12-15

    A type of dimorphic magnetorheological (MR) fluid was prepared by adding wire-like iron nanostructures into the conventional carbonyl iron based MR fluid. The Fe nanowires were synthesized through reducing Fe{sup 2+} ion with excessive sodium borohydride in aqueous solution. The rheological behaviors of the dimorphic MR fluids were measured with a rotational rheometer and the sedimentation properties were also studied in this work. It was found that the Fe wires additives can greatly enhance the stress strength of the dimorphic MR fluids comparing with the conventional MR fluids. The sedimentation of the dimorphic MR fluids was also mitigated greatly. - Highlights: > Dimorphic MR fluids with enhanced MR effect were prepared. > Fe nanowires and spherical carbonyl iron particles show a synergistic effect on improving the performance of MR fluid. > Sedimentations of the dimorphic MR fluids were mitigated greatly.

  14. Dimorphic magnetorheological fluid with improved rheological properties

    A type of dimorphic magnetorheological (MR) fluid was prepared by adding wire-like iron nanostructures into the conventional carbonyl iron based MR fluid. The Fe nanowires were synthesized through reducing Fe2+ ion with excessive sodium borohydride in aqueous solution. The rheological behaviors of the dimorphic MR fluids were measured with a rotational rheometer and the sedimentation properties were also studied in this work. It was found that the Fe wires additives can greatly enhance the stress strength of the dimorphic MR fluids comparing with the conventional MR fluids. The sedimentation of the dimorphic MR fluids was also mitigated greatly. - Highlights: → Dimorphic MR fluids with enhanced MR effect were prepared. → Fe nanowires and spherical carbonyl iron particles show a synergistic effect on improving the performance of MR fluid. → Sedimentations of the dimorphic MR fluids were mitigated greatly.

  15. Rheology of Vimentin Intermediate Filament Networks

    Wu, Huayin

    2012-02-01

    A cell's ability to function is highly dependent on its structure and material properties - its capacity to withstand and respond to forces in its environment. The cytoskeleton, which largely determines the cellular mechanical properties, is comprised of biopolymer networks, including filamentous actin, microtubules, and intermediate filaments (IF). Intermediate filaments are much less studied than actin and microtubules. They are much more varied and specialized as well, and have been suggested as being an important platform in mechanotransduction processes in cells. It is thought that they can withstand very high strains and exhibit strain stiffening behavior. We are characterizing vimentin, a type III IF that is found in all vertebrate cells, using rheological techniques. Vimentin elasticity increases upon addition of multivalent cations, which act like molecular crosslinkers. By varying the concentration of cations, we can extract valuable information about how the networks assemble and function.

  16. Erythrocyte dynamics in flow affects blood rheology

    Normal blood consists of highly deformable particles (red blood cells, RBC, or erythrocytes) suspended in a Newtonian fluid (blood plasma). As a rough physical model of erythrocytes, giant unilamellar vesicles (GUV) are successfully used to probe their membrane properties. In shear flows vesicles and red blood cells show rich variety of dynamical behaviours influencing the rheological properties of their suspensions. Here, we focus on new experimental aspects of the problem in the case, when a combination of an oscillatory shear rate and a basic constant shear rate is applied to suspensions. Experimental examples with concentrated RBC suspensions are presented together with a discussion on the importance of the superposition of a constant shear flow to the pure oscillation, which is usually used to extract the viscoelastic properties of a complex fluid.

  17. Rheological and microstructural properties of Irradiated starch

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  18. Thermoelectricity in confined liquid electrolytes

    Dietzel, Mathias

    2015-01-01

    The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which -for narrow channels- may cause thermo-voltages larger in magnitude than for the classical Soret equilibrium.

  19. Rheological characterization of Alaska heavy oils

    Akeredolu, Babajide

    Heavy crude oil reserves from the North Slope of Alaska are highly viscous, biodegraded oils that make standard oil production methods ineffective. A matrix of 18 mixtures with varying sand and water contents encompass the properties likely to be seen during production, especially cold production methods. Physical properties of the Alaska heavy oils were studied by viscosity measurements, including small amplitude shear tests and flow tests in a temperature range of -10°C to 60°C. The viscosity was observed to decrease with increasing temperature and displayed shear thinning. The activation energy of viscosity as a function of temperature ranged between 67 kJ/mol and 92 kJ/mol, similar to other heavy oils. Sand content alters the viscosity by up to 370% and non-monotonically while the water content changes viscosity by 53% or less. Also, a high pressure rheology apparatus was constructed to measure viscosity of Alaska heavy oil saturated with methane at pressures from 15 psi to 1800 psi and shear rates from 0.1 s-1 to 500 s-1. Viscosity of Alaska heavy oil is pressure dependent showing an order of magnitude decrease at a pressure of 1500 psi. Viscosity had a minimum value of 0.11 Pa-s and a maximum value of 590 Pa-s at 60°C/1810 psi and 0°C/15 psi, respectively. These rheological properties contribute to the overall objective of the project which is to advance seismic monitoring, using chemical and physical characterization of core samples in combination with stimulated production experiments, to optimize the recovery of heavy oils from Alaskan deposits.

  20. Rheological properties of carbon mixes using a capillary rheometer. IV

    Bhatia, G.

    1976-01-01

    The capillary rheometer has been used to determine the rheological properties of various carbon mixes consisting of petroleum coke as filler and coal tar pitch as binder. It has been shown that the carbon mixes containing various proportions of binder behave rheologically as Bingham material with yield stress and plastic viscosity. When binder level exceeds a certain optimum level, plastic viscosity shows a steep fall from 20 x 10/sup 5/ to 2 x 10/sup 5/ P (poises), while yield stress does not show much variation. A comparatively better rheological behavior is observed with capillary rheometer than that with parallel plate viscometer.

  1. Gel electrolyte for lithium-ion batteries

    The electrochemical performance of gel electrolytes based on crosslinked poly[ethyleneoxide-co-2-(2-methoxyethyoxy)ethyl glycidyl ether-co-allyl glycidyl ether] was investigated using graphite/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2 lithium-ion cells. It was found that the conductivity of the crosslinked gel electrolytes was as high as 5.9 mS/cm at room temperature, which is very similar to that of the conventional organic carbonate liquid electrolytes. Moreover, the capacity retention of lithium-ion cells comprising gel electrolytes was also similar to that of cells with conventional electrolytes. Despite of the high conductivity of the gel electrolytes, the rate capability of lithium-ion cells comprising gel electrolytes is inferior to that of the conventional cells. The difference was believed to be caused by the poor wettability of gel electrolytes on the electrode surfaces

  2. Polymer Electrolytes for Lithium/Sulfur Batteries

    The Nam Long Doan; Denise Gosselink; Yongguang Zhang; Mikhail Sadhu; Ho-Jae Cheang; Pu Chen; Yan Zhao

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  3. Efficient Electrolytes for Lithium–Sulfur Batteries

    Angulakshmi, Natarajan; Stephan, Arul Manuel

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polyme...

  4. LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS

    Keqin Huang

    2003-04-30

    A thorough literature survey on low-temperature electrolyte and electrode materials for SOFC is given in this report. Thermodynamic stability of selected electrolyte and its chemical compatibility with cathode substrate were evaluated. Preliminary electrochemical characterizations were conducted on symmetrical cells consisting of the selected electrolyte and various electrode materials. Feasibility of plasma spraying new electrolyte material thin-film on cathode substrate was explored.

  5. Non aqueous electrochemical cell and electrolyte

    Prater, K. B.; Connolly, J. F.; Thrash, R. J.

    1985-05-28

    Disclosed is an ambient temperature, rechargeable non-aqueous electrochemical cell having an active metal anode of the second kind, a cathode depolarizer, positive electrode current collector and an electrolyte comprising a solvent, a supporting electrolyte salt, and an active metal salt. Also disclosed is an electrolyte for non-aqueous active metal cells.

  6. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    S. Chaoui

    2015-07-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (f/fg-1n, where fg captures the strength of particle interaction and n the microstructure. The scaling variable (fp/fpc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G data suggesting that along lines of constant (f/fg-1 these gels are rheologically identical.

  7. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    S. CHAOUI

    2012-12-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (/g-1n, where g captures the strength of particle interaction and n the microstructure.The scaling variable (p/pc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (/g-1 these gels are rheologically identical.

  8. Rheological behavior of asphaltite-modified bituminous binders

    THEMELI, Andrea; Chailleux, Emmanuel; FARCAS, Fabienne; Chazallon, Cyrille; DUCHEZ, Jean-Louis

    2013-01-01

    This work focuses on the rheological properties of asphaltite-modified bituminous binders. The natural asphaltite, employed to modify a petroleum-derived-bitumen, is mined in Albania. At a first time, penetration,ring ball temperature and rheological properties of both asphaltite and pure petroleum bitumen are determined. Then, the petroleum bitumen is mixed with 5, 10 and 15% of natural bitumen and the penetration and ring ball temperature of the blends are assessed. In addition to this, rhe...

  9. Correlation between electrical and rheological measurements on sewage sludge

    Dieudé-Fauvel, E.; Baudez, J.C.; COUSSOT, P; Damme, H. Van

    2007-01-01

    In order to improve sewage sludge characterization for both dewatering and agricultural spreading, we have studied their electrical and rheological properties. On the one hand, electrical measurements give a picture of the microstructure of the material (charges, particles mobility), whereas on the other hand, rheological experiments describe its macrostructure (consistency). The interactions of the matter are the link between them. Our results showed that sludge becomes more conductive when ...

  10. Design and application of magneto-rheological fluid

    Olabi, Abdul-Ghani; Grunwald, Artur

    2007-01-01

    Magneto-Rheological Fluid (MRF) technology is an old “newcomers” coming to the market at high speed. Various industries including the automotive industry are full of potential MRF applications. Magneto-Rheological Fluid technology has been successfully employed already in various low and high volume applications. A structure based on MRF might be the next generation in design for products where power density, accuracy and dynamic performance are the key features. Additionally, for product...

  11. Rheology and texture of doughs: applications on wheat and corn

    Eduardo Rodrguez Sandoval

    2010-04-01

    Full Text Available A dough made of maylacceou materials shows a viscoelastic behavior, its macroestructural behavior depends on processing conditions, its constitutents and the interaction among them. Studies on dough rheology and texture are useful and important for applications that include ingredient specifications, quality control, product design and adaptation of new processing technologies. This work is a review of rheological and textural principles, testing methods and characteristics of wheat and com doughs.

  12. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices

    Fatimi, Ahmed; Tassin, Jean-Franois; Quillard, Sophie; Axelos, Monique; Weiss, Pierre

    2008-01-01

    This paper describes the rheological properties of silated hydroxypropylmethylcellulose (HPMC-Si) used in biomaterials domain as a three-dimensional synthetic matrix for tissue engineering. The HPMC-Si is an HPMC grafted with 3-glycidoxypropyltrimethoxysilane (GPTMS). HPMC and HPMC-Si were studied. It is shown that although silanization reduces the hydrodynamic volume in dilute solution, it does not affect significantly the rheological behavior of the concentrated solutions. The HPMC-Si visco...

  13. Dynamics and electro-rheology of sheared immiscible fluid mixtures

    Sakaue, Takahiro; Shitara, Kyohei; Ohta, Takao

    2014-01-01

    We analyze the electro-rheological effect in immiscible fluid mixtures with dielectric mismatch. By taking the electric field effect into account, which couples to the dynamics of domain morphology under flow, we propose a set of electro-rheological constitutive equations valid under the condition where the relative magnitude of the flow field is stronger than that of the electric field. Through the comparison with recent experiment, we point out a unique dynamical stress response inherent in...

  14. Rheology of carboxymethyl cellulose solutions treated with cellulases

    Lee, J. M.; Heitmann, J. A.; Pawlak, J. J.

    2007-01-01

    The effect of cellulase treatments on the rheology of carboxymethyl cellulose (CMC) solutions was studied using a rotational viscometer. The rheological behaviors of CMC solutions of different molecular mass and degrees of substitution where studied as a function of time after various treatments. These solutions were subjected to active and heat-denatured cellulase, a cationic polyelectrolyte (C-PAM), as well as different shear rates. A complex protein-polymer interaction was observed, lea...

  15. Modelling the linear viscoelastic rheological properties of bituminous binders

    Md. Yusoff, Nur Izzi

    2012-01-01

    Rheology involves the study and evaluation of the flow and permanent deformation of time-and temperature-dependent materials, such as bitumen, that are stressed through the application of a force. The fundamental rheological properties of bituminous materials including bitumen are normally measured using a dynamic shear rheometer (DSR), from low to high temperatures. DSR is a powerful tool to measure elastic, viscoelastic and viscous properties of binders over a wide range of temperatures and...

  16. Rheological properties of whey proteins concentrate before and

    Zoran Herceg; Vesna Lelas; Suzana Rimac

    2001-01-01

    Hydrocolloids are long-chain polymers, used in food production at small quantities (from 0,05 to 5 %) to achieve appropriate rheological properties, prevent syneresis, increase the viscosity and stability of foodstuffs and for crystallization process control. The aim of this work was to investigate the influence of tribomechanical micronization of powdered whey protein concentrate on the rheological properties of whey proteins model systems as well as the influence of severalcarboxymethylcell...

  17. Synthesis of anodic titania nanotubes in Na{sub 2}SO{sub 4}/NaF electrolyte: A comparison between anodization time and specimens with biomaterial based approaches

    Balakrishnan, M., E-mail: blkrish88@gmail.com [Department of Metallurgical Engineering, PSG College of Technology, Coimbatore 641 004 (India); Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Narayanan, R. [Department of Metallurgical Engineering, PSG College of Technology, Coimbatore 641 004 (India); Department of Mechanical Engineering, Saveetha School of Engineering, Chennai 602 105 (India)

    2013-07-01

    Surface modification of commercially pure titanium (cp-Ti) has been carried out by electrochemical anodic oxidation at constant voltage for different time periods (0.5, 1, 2 and 4.5 h). Currents developed during the anodization indicate that the nanotubes are formed due to the competition of titania formation and dissolution under the assistance of electric field. Topologies of the anodized titanium change remarkably with time of oxidation. The morphology of the as-prepared nanotubes was characterized by scanning electron microscopy and atomic force microscopy while the chemistry and crystallinity were characterized by energy-dispersive X-ray spectroscopy and X-ray diffraction respectively. The as-anodized oxide was of amorphous but transformed to anatase and/or rutile crystal structure upon annealing for 3 h at 600 °C. The anatase structure showed excellent apatite-forming ability and produced a compact apatite layer covering the surface completely upon treatment in simulated body fluid (SBF) solution for 30 h. Corrosion of anodized titanium samples was studied in a SBF solution using open circuit potential, polarization and electrochemical impedance measurements and compared with that of non-oxidized titanium. Among these samples, titanium anodized for 4.5 h exhibited superior corrosion properties. - Highlights: • We synthesized TiO{sub 2} nanotubes by anodization in Na{sub 2}SO{sub 4}/NaF electrolyte. • Topologies of the anodized titanium change remarkably with oxidation time. • We studied surface morphologies of TiO{sub 2} nanotubes. • TiO{sub 2} nanotubes show superior corrosion resistance.

  18. Highly Active Electrolytes for Rechargeable Mg Batteries Based on [Mg2(?-Cl)2]2+ Cation Complex in Dimethoxyethane

    Cheng, Yingwen; Stolley, Ryan M.; Han, Kee Sung; Shao, Yuyan; Arey, Bruce W.; Washton, Nancy M.; Mueller, Karl T.; Helm, Monte L.; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2015-01-01

    Highly active electrolytes based on a novel [Mg2(?-Cl)2]2+ cation complex for reversible Mg deposition were developed and analyzed in this work. These electrolytes were formulated in dimethoxyethane through dehalodimerization of non-nucleophilic MgCl2 by reacting with either Mg salts (such as Mg(TFSI)2, TFSI= bis(trifluoromethane)sulfonylimide) or Lewis acid salts (such as AlEtCl2 or AlCl3). The cation complex was identified for the first time as [Mg2(?-Cl)2(DME)4]2+ (DME=dimethoxyethane) and its molecular structure was characterized by single crystal X-ray diffraction, Raman spectroscopy and NMR. The electrolyte synthesis process was studied and rational approaches for formulating highly active electrolytes were proposed. Through control of the anions, electrolytes with efficiency close to 100%, wide electrochemical window (up to 3.5V) and high ionic conductivity (> 6 mS/cm) were obtained. The electrolyte synthesis and understandings developed in this work could bring significant opportunities for rational formulation of electrolytes with the general formula [Mg2(?-Cl)2(DME)4][anion]x for practical Mg batteries.

  19. THERMOPHYSICAL AND RHEOLOGIC PROPERTIES OF BIOOIL SAMPLES

    Monika Bozikova

    2013-09-01

    Full Text Available This article deals with thermal properties of selected biooils Plahyd S biooil No1 and Plahyd N biooil No2 and rheologic properties of rapeseed oil. Plahyd S is a synthetic, rapidly biodegradable fluid which is based on sustainable raw materials. It is exceptionally suitable for applications in mobile and stationary hydraulic systems. Plahyd N is multigrade hydraulic oil based on rapeseed oil used in agricultural and construction machinery. For thermal parameters measurements was used Hot wire method. The experiment is based on measuring of the temperature rise vs. time evaluation of an electrically heated wire embedded in the tested material. The thermal conductivity is derived from the resulting change in temperature over a known time interval. Dependency of material resistance against the probe rotation was used at measurement of rheologic properties with instrument viscometer Anton Paar DV 3P. For two samples of biooils Plahyd N and Plahyd S were determined basic thermophysical parameters thermal conductivity, thermal diffusivity and volume specific heat. For each biooil samples were made two series of measurements. In the first series were measured thermal conductivity and thermal diffusivity at constant room temperature 20 C. Every thermophysical parameter was measured 10 times for each sample. The results were statistically processed. For biooil No1 thermal conductivity was 0.325 W*m 1 .K1 , it was higher value than we obtained for biooil No2 0.224 W*m 1 .K 1 . The similar results were obtained for thermal diffusivity of biooil No1 2.140.10 7 m 2 *s 1 and biooil No2 2.604.10 7 m 2* s 1 . For samples with constant temperature were calculated basic statistical characteristics as standard deviation for biooil No1 0.056 W*m 1*K 1 and biooil No2 0.054 W*m 1*K 1; probable error of the arithmetic average for biooil No 1 0.012 W*m 1*K 1 and biooil No 2 0.005 W*m 1*K 1, relative probable error in for biooil No1 3.69 per cent and biooil No2 2.23. The same statistical characteristics were calculated for thermal diffusivity. In the second series of measurements were measured relations of thermal conductivity and thermal diffusivity to the temperature in temperature range 20 29 C. From results was evident that all measured dependencies are nonlinear. For both thermophysical parameters were obtained polynomial functions of the second degree described by the polynomial coefficients. Type of function was selected according to statistical evaluation based on the coefficient of determination for every thermophysical parameter graphical dependency. In temperature dependency of rapeseed oil dynamic viscosity was used decreasing exponential function, which is in accordance with Arrhenius equation. The results obtained by the implementation of thermophysical and rheologic measurements on samples of biooils could be compared with the values presented in the literature.

  20. Electrolytes for high-energy lithium batteries

    Schaefer, Jennifer L.; Lu, Yingying; Moganty, Surya S.; Agarwal, Praveen; Jayaprakash, N.; Archer, Lynden A.

    2012-06-01

    From aqueous liquid electrolytes for lithium-air cells to ionic liquid electrolytes that permit continuous, high-rate cycling of secondary batteries comprising metallic lithium anodes, we show that many of the key impediments to progress in developing next-generation batteries with high specific energies can be overcome with cleaver designs of the electrolyte. When these designs are coupled with as cleverly engineered electrode configurations that control chemical interactions between the electrolyte and electrode or by simple additives-based schemes for manipulating physical contact between the electrolyte and electrode, we further show that rechargeable battery configurations can be facilely designed to achieve desirable safety, energy density and cycling performance.

  1. The field-dependent rheological properties of magnetorheological fluids featuring plate-like iron particles

    Choi, Seung-Bok; Shah, Kruti

    2014-10-01

    This study is concerned with an investigation of the plate-like iron particles based MR suspensions under the application of magnetic fields to ascertain the influence of particle size in the rheological performance. A novel synthesis route to prepare magnetorheological fluid (MRF) using two different sizes of plate-like iron particles is described in detail. Two different kinds of MRF are then prepared and their rheological properties are presented and discussed extensively. Steady shear flow and small amplitude dynamic oscillatory measurements are carried out in the presence of magnetic field. This experimental study reveals and highlights the importance of exploiting some parameters such as magnetic field strength, effect of particle size, magneto-viscous and visco-elastic properties of the suspending fluid. The magnetization of the fluids is also performed to explain the effect of particle size in the magnetic field which is directly correlated with the yield stress. In the absence of magnetic field, the properties of fluid are isotropic and upon the application of magnetic field the magnetized particles form a strong-chain like structures in the field direction which promotes the appearance of yield stress. This material is known as smart material whose properties amend from liquid to solid immediately after applying the magnetic field. It is found from this work that the large size particle based MRF exhibits high yield stress and strong chain structuration under the applying magnetic field.

  2. Characteristics analysis of electrolytic tritium separation using solid polymer electrolyte

    The characteristics of electrolytic tritium separation using solid polymer electrode were analyzed. H-T separation factor (SFHT) and D-T separation factor (SFDT) were calculated from equilibrium constant of the hydrogen isotope exchange reaction between water and diatomic hydride and from two-phase distribution theory for isotopes. The calculated SFHT and SFDT were well agreed with the experimental values. The theory used in this study will available to select optimum cathode materials. (author)

  3. Electrolyte Additives for Phosphoric Acid Fuel Cells

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.; Berg, Rolf W.; Bjerrum, Niels

    1993-01-01

    Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen...... fuel-cell performance with the modified electrolytes. Specific conductivity measurements of some of the modified phosphoric acid electrolytes are reported. At a given temperature, the conductivity of the C4F9SO3K-modified electrolyte decreases with an increasing amount of the additive; the conductivity...... of the remains at the same value as the conductivity of the pure phosphoric acid. At a given composition, the conductivity of any modified electrolyte increases with temperature. We conclude that the improved cell performance for modified electrolytes is not due to any increase in conductivity....

  4. Fluctuation theorems and work relations for single polymer rheology

    Latinwo, Folarin Babajide

    Synthetic and biological polymeric materials are ubiquitous in nature and modern technology. The emergent properties afforded by these materials allows for wide a array of applications as found in adhesives, coatings, and synthetic polymers for plastics. Importantly, the molecular properties of polymeric systems ultimately determine their bulk macroscopic response and behavior in equilibrium and highly nonequilibrium conditions. As a result, the field of single polymer rheology can play a key role in establishing a molecular level understanding of polymeric systems by investigating the dynamics of single chains. Single polymer rheology is now a well-established approach to study polymer dynamics from experimental and computational perspectives. In general, this approach allows for the determination of molecular subpopulations, relaxation, and polymer chain dynamics in a wide variety of flows. Despite recent progress, current methods in single polymer rheology do not allow for the determination of equilibrium and nonequilibrium thermodynamic properties of polymeric systems. Moreover, it is challenging to connect backbone dynamics to key macroscopic rheological phenomena. In this context, the impact of single polymer rheology has remained limited for the past two decades. In this thesis, we address these challenges by developing and applying fluctuation theorems and nonequilibrium work relations to the field of single polymer rheology. The discovery of thermodynamic identities known as nonequilibrium work relations (NWRs) and fluctuation theorems (FTs) has catalyzed recent advances in statistical mechanics. In general, work relations provide an unprecedented route to extract fundamental materials properties of equilibrium and nonequilibrium systems. Furthermore, these identities have uncovered a broad range of unexpected and remarkable thermodynamic phenomena, including molecular level violations to the second law of thermodynamics. In the context of rheology and fluid mechanics, thermodynamics plays a key role in the understanding and design of a wide array of processes, including flow-induced phase separation and crystallization. As a result, there is a strong need for new methods to analyze the dynamics of complex fluids. In this thesis, we apply the Jarzynski/Hatano/Sasa equality and Crooks fluctuation theorem to determine equilibrium and nonequilibrium properties of polymer solutions in fluid flow. In particular, we use a combination of single molecule polymer experiments and computer simulations to probe the application of these NWRs to polymer dynamics in shear and extensional flows. Using this approach, we determine the equilibrium linear and nonlinear elasticity, the nonequilibrium free energies, and entropies of flowing polymer solutions. Interestingly, we also find that fundamental thermodynamic quantities are related to well known rheological functions such as the longest polymer relaxation time, viscosity, and stress. Overall, NWRs appear to provide a simple and distinct framework that connects thermodynamics and rheology, and this work opens new directions in an emerging field known as "thermo-rheology".

  5. Investigation of electrolyte wetting in lithium ion batteries: Effects of electrode pore structures and solution

    Sheng, Yangping

    Beside natural source energy carriers such as petroleum, coal and natural gas, the lithium ion battery is a promising man-made energy carrier for the future. This is a similar process evolved from horse-powered era to engine driven age. There are still a lot of challenges ahead like low energy density, low rate performance, aging problems, high cost and safety etc. In lithium ion batteries, investigation about manufacturing process is as important as the development of material. The manufacturing of lithium ion battery, including production process (slurry making, coating, drying etc.), and post-production (slitting, calendering etc.) is also complicated and critical to the overall performance of the battery. It includes matching the capacity of anode and cathode materials, trial-and-error investigation of thickness, porosity, active material and additive loading, detailed microscopic models to understand, optimize, and design these systems by changing one or a few parameters at a time. In the manufacturing, one of the most important principles is to ensure good wetting properties between porous solid electrodes and liquid electrolyte. Besides the material surface properties, it is the process of electrolyte transporting to fill the pores in the electrode after injection is less noticed in academic, where only 2-3 drops of electrolyte are needed for lab coin cell level. In industry, the importance of electrolyte transport is well known and it is considered as part of electrolyte wetting (or initial wetting in some situations). In consideration of practical usage term, electrolyte wetting is adopted to use in this dissertation for electrolyte transporting process, although the surface chemistry about wetting is not covered. An in-depth investigation about electrolyte wetting is still missing, although it has significant effects in manufacturing. The electrolyte wetting is determined by properties of electrolyte and electrode microstructure. Currently, only viscosity and surface tension of electrolyte is used to reflect performance of electrolyte wetting. There are very few reports about quantitative measurement about electrolyte wetting. Moreover, there are only simple qualitative observations, good, poor, and fair, were reported on the wettability of microporous separators. Therefore, development of a quantitative analysis method is critical to help understand the mechanism of how electrolyte wetting is affected by material properties and manufacturing processes. In this dissertation, a quantitative test method is developed to analyze the electrolyte wetting performance. Wetting rate, measured by wetting balance method, is used to quantitatively measure the speed of electrolyte wetting. The feasibility of the wetting rate is demonstrated by repeated test of wetting rate between electrolytes and electrodes. Various electrolytes from single solvents to complicated industrial level electrolytes are measured with baseline electrodes. Electrodes with different composition, active materials and manufacturing process, separator sheets with different materials and additives are also measured with baseline electrolyte. The wetting behaviors for different materials and manufacturing processes could be used to help improve the optimization of production process. It is very necessary to reveal the mechanism underlying electrolyte wetting, especially the effects of electrode pore microstructure. The Electrodes, which are composed of active material, binder and carbon black, are formed by production process (rheological processing, coating, drying), and post-production process (calendaring and slicing etc.). The pore structure is also complicated by the broad size range of pores from nanometer to tens micrometer. In this dissertation, a pore network concept, as revealed in the MIP test (mercury intrusion porosimetry), is employed to characterize the electrode pore structure. It is composed by the random pore cavity and connected part of pores, which are further described by the percentage of total pore volume and the threshold and critical pore diameter. The effect of calendering process on electrolyte wetting, as a demonstration for typical post-production process, has been revealed by the wetting balance analysis. A quantitative analysis of the pore structure under the pore network concept is used to investigate the evolution of pore structure with the increase of calendering force. Based on the pore structure, the hypothesis of combined effects of capillary and converging-diverging flow in electrolyte wetting is proposed to understand the mechanism. A further demonstration of the effect of production process by adding excessive carbon black is accomplished. The hypothesis is valid to explain the electrolyte wetting behavior with increasing amount of carbon black. The pore structure differences between electrodes with various amount of carbon black are shown by the scanning electron microscope.

  6. The rheology of adhesive hard sphere dispersions

    Woutersen, A. T. J. M.; de Kruif, C. G.

    1991-04-01

    The influence of an attractive interparticle potential on the rheology of a sterically stabilized silica dispersion was investigated. Using a marginal solvent, there was an effective attraction between the particles which depended on the temperature. Three experiments in which different properties of the dispersion were probed showed that a square well model can be used to describe the temperature dependence of the pair potential. The turbidity of a dilute dispersion was measured as a function of the volume fraction and the temperature. Using dynamic light scattering techniques, the effect of the strength of the interparticle attraction on the diffusion coefficient was investigated. Furthermore, the steady shear viscosity was measured as a function of the volume fraction and the temperature. A microscopic theory for the low shear viscosity of a semidilute dispersion of adhesive hard spheres was successfully used to determine the interaction parameters. Viscosity measurement on dense suspensions showed that while the system is still in the one-phase state, temporal aggregates are formed by the interparticle forces which are disrupted by both shear and Brownian motion of the particles. The shear thinning behavior of a concentrated dispersion of adhesive hard spheres scales in a dimensionless shear stress. This group is the ratio of the forces, arising from the shear and the interparticle potential.

  7. Rheological studies of polysaccharides for skin scaffolds.

    Almeida, Nalinda; Mueller, Anja; Hirschi, Stanley; Rakesh, Leela

    2014-05-01

    Polysaccharide hydrogels are good candidates for skin scaffolds because of their inherent biocompatibility and water transport properties. In the current study, hydrogels were made from a mixture of four polysaccharides: xanthan gum, konjac gum, iota-carrageenan, and kappa-carrageenan. Gel formation, strength, and structure of these polysaccharides were studied using rheological and thermal techniques. All gel samples studied were strong gels at all times because of the gradual water loss. However, after 12 h of storage, elastic (G') and loss (G'') moduli of hydrogel mixture containing all the ingredients is of one to two orders of magnitude greater than that of mixtures not containing either xanthan gum or iota-carrageenan, which confirmed the varied levels of gel strength. This is mainly due to the rate of water loss in each of these mixtures, resulting in gels of varying structures and dynamic moduli over a period of time. Iota-carrageenan and xanthan gum differ in their effect on gel strength and stability in combination with konjac gum and kappa-carrageenan. PMID:23703897

  8. Biodegradable compounds: Rheological, mechanical and thermal properties

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  9. Rheological properties of asphalts with particulate additives

    Shashidhar, N. [EBA Engineering, Baltimore, MD (United States); Chollar, B.H. [Federal Highway Administration, McLean, VA (United States)

    1996-12-31

    The Superpave asphalt binder specifications are performance-based specifications for purchasing asphalt binders for the construction of roads. This means that the asphalt is characterized by fundamental material (rheological) properties that relate to the distress modes of the pavements. The distress modes addressed are primarily rutting, fatigue cracking and low temperature cracking. For example, G*/sin({delta}) is designed to predict the rutting potential of pavements, where G* is the magnitude of the complex shear modulus and 6 is the phase angle. The binder for a road that is situated in a certain climatic zone requires the binder to have a minimum G*/sin({delta}) of 2200 Pa at the highest consecutive 7-day average pavement temperature the road had experienced. Implicit in such a performance based specification is that the fundamental property, G*/sin({delta}), of the binder correlates with rutting potential of the pavement regardless of the nature of the binder. In other words, the specification is transparent to the fact that the binder can simply be an asphalt, or an asphalt modified by polymers, particulates and other materials that can form a two-phase mixture. This paper discusses the asphalt-particulate system.

  10. Influence of Fat Content on Chocolate Rheology

    Gabriele, D.; Migliori, M.; Baldino, N.; de Cindio, B.

    2008-07-01

    Molten chocolate is a suspension having properties strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Even though chocolate rheology is extensively studied, mainly viscosity at high temperature was determined and no information on amount and type of fat crystals can be detected in these conditions. However chocolate texture and stability is strongly affected by the presence of specific crystals. In this work a different approach, based on creep test, was proposed to characterize chocolate samples at typical process temperatures (approximately 30 °C). The analysis of compliance, as time function, at short times enable to evaluate a material "elasticity" related to the solid-like behavior of the material and given by the differential area between the Newtonian and the experimental compliance. Moreover a specific time dependent elasticity was defined as the ratio between the differential area, in a time range, and total area. Chocolate samples having a different fat content were prepared and they were conditioned directly on rheometer plate by applying two different controlled cooling rate; therefore creep were performed by applying a low stress to ensure material linear behavior. Experimental data were analyzed by the proposed method and specific elasticity was related to single crystal properties. It was found that fat crystal amount and properties depend in different way on fat content and cooling rate; moreover creep proved to be able to detect even small differences among tested samples.

  11. Soft particles at fluid interfaces: wetting, structure, and rheology

    Isa, Lucio

    Most of our current knowledge concerning the behavior of colloidal particles at fluid interfaces is limited to model spherical, hard and uniform objects. Introducing additional complexity, in terms of shape, composition or surface chemistry or by introducing particle softness, opens up a vast range of possibilities to address new fundamental and applied questions in soft matter systems at fluid interfaces. In this talk I will focus on the role of particle softness, taking the case of core-shell microgels as a paradigmatic example. Microgels are highly swollen and cross-linked hydrogel particles that, in parallel with their practical applications, e.g. for emulsion stabilization and surface patterning, are increasingly used as model systems to capture fundamental properties of bulk materials. Most microgel particles develop a core-shell morphology during synthesis, with a more cross-linked core surrounded by a corona of loosely linked and dangling polymer chains. I will first discuss the difference between the wetting of a hard spherical colloid and a core-shell microgel at an oil-water interface, pinpointing the interplay between adsorption at the interface and particle deformation. I will then move on to discuss the interplay between particle morphology and the microstructure and rheological properties of the interface. In particular, I will demonstrate that synchronizing the compression of a core-shell microgel-laden fluid interface with the deposition of the interfacial monolayer makes it possible to transfer the 2D phase diagram of the particles onto a solid substrate, where different positions correspond to different values of the surface pressure and the specific area. Using atomic force microscopy, we analyzed the microstructure of the monolayer and discovered a phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases correspond to shell-shell or core-core inter-particle contacts, respectively, where with increasing surface pressure the former mechanically fail enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore extended our analysis to measure the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer; the interfaces always show a strong elastic response, with a dip in the elastic modulus in correspondence of the melting of the shell-shell phase, followed by a steep increase upon formation of a percolating network of the core-core contacts. The presented results highlight the complex interplay between the wetting and deformation of individual soft particles at fluid interfaces and the overall interface microstructure and mechanics. They show strong connections to fundamental studies on phase transitions in two-dimensional systems and pave the way for novel nanoscale surface patterning routes. The author acknowledges financial support from the Swiss National Science Foundation Grant PP00P2-144646/1.

  12. Influence of a mineral water on the rheological characteristics of reconstituted infant formulas and diluted cows' milk.

    Rottoli, A; Decarlis, S; Giannì, M L; Giovannini, M

    1997-01-01

    A bottled spring water with a low mineral content was compared with tap water in the reconstitution and/or dilution of five different infant formulas and cows' milk. The osmolality, buffering power and renal solute load potential of the formulas reconstituted with the bottled water were all significantly lower than when tap water was used (P water was used to dilute cows' milk, the morphology of milk casein precipitates (after addition of rennet) was finer and more dispersed than when tap water was used. For formula reconstitution and milk dilution, a benefit, in terms of solute/electrolyte balance, appears to be conferred on infants by the improved rheological characteristics of modified milks reconstituted or diluted with this bottled mineral water. PMID:9364290

  13. Aliovalently-Doped Garnets for Li Battery Solid State Electrolytes

    Schwanz, Derek K.; Marinero, Ernesto E.

    2015-03-01

    We report on a new family of fast ionic conductivity electrolytes based on the garnet LiLaZrO. Partial substitution of Zr by aliovalent atomic species through solid state solution synthesis results in ionic conductivities 2 orders of magnitude larger than the tetragonal phase of LiLaZrO and comparable to that of its cubic phase. The synthesis temperature is 400C lower than that required for the cubic stabilization of LiLaZrO. Ongoing impovements on microstructure and film density as well as optimization of the garnet stoichiometry are expected to yield ionic conductivities surpassing the highest values reported to-date on cubic doped LiLaZrMO (Ta, Al, W, Nb)

  14. Cerium ion conducting solid electrolyte

    Hasegawa, Yasunori; Imanaka, Nobuhito; Adachi, Gin-ya

    2003-02-01

    A cerium ion conducting solid electrolyte, (Ce xZr 1- x) 4/4- xNb(PO 4) 3, was successfully realized with the NASICON-type structure which possesses a three-dimensional network, especially suitable for bulky ion migration. The cerium ion conductivity exceeds approximately one order of magnitude in comparison to that of the rare-earth ion conducting R2(WO 4) 3 and R1/3Zr 2(PO 4) 3 ( R=Sc, Y, Eu-Lu) series and the value is in the range between typical oxide anion conductors of yttria stabilized zirconia (YSZ) and calcia stabilized zirconia (CSZ). Since cerium ion has been demonstrated to be another migrating ion species in solid electrolyte field, a promising application for various functional materials is greatly expected.

  15. Anion Solvation in Carbonate Electrolytes

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  16. Electrolytic precipitation of ammonium diuranate

    Continuous precipitation of ammonium diuranate from a solution of uranyl sulphate and ammonium sulphate in the cathode compartment of an electrolytic cell has been investigated. It is found that the rate of precipitation and the settling rate of the precipitate can be correlated with the current consumed per unit volume of catholyte solution. The weight fraction of uranium in the dried solid product appears to be constant over the range of operating conditions used

  17. Electrical controlled rheology of a suspension of weakly conducting particles in dielectric liquid

    Guegan, Q; Foulc, J N; Tillement, O; Guegan, Quentin

    2006-01-01

    The properties of suspensions of fine particles in dielectric liquid (electrorheological fluids) subjected to an electric field lead to a drastic change of the apparent viscosity of the fluid. For high applied fields (~ 3-5 kV/mm) the suspension congeals to a solid gel (particles fibrillate span the electrode gap) having a finite yield stress. For moderate fields the viscosity of the suspension is continuously controlled by the electric field strength. We have roposed that in DC voltage the field distribution in the solid (particles) and liquid phases of the suspension and so the attractive induced forces between particles and the yield stress of the suspension are controlled by the conductivities of the both materials. In this paper we report investigation and results obtained with nanoelectrorheological suspensions: synthesis of coated nanoparticles (size ~ 50 to 600 nm, materials Gd2O3:Tb, SiOx...), preparation of ER fluids (nanoparticles mixed in silicone oil), electrical and rheological characterization ...

  18. Effect of hydrotropic salt on the assembly transitions and rheological responses of cationic gemini surfactant solutions.

    Lu, Ting; Huang, Jianbin; Li, Zihui; Jia, Shikai; Fu, Honglan

    2008-03-13

    Cationic gemini surfactant dimethylene-1,2-bis(dodecyldiethylammonium bromide), referred to as C12C2C12(Et), was synthesized. The effect of sodium salicylate (NaSal) on the assembly formation and transition of this cationic gemini surfactant solution was studied. Addition of NaSal induced rich aggregate morphologies in the C12C2C12(Et) system. The microstructures and rheological responses resulting from the addition of NaSal were studied systematically to explore the interaction between gemini surfactants and hydrotropic salts. The rich aggregation behavior can be attributed to the special molecular structure of the gemini surfactant and the appropriate interaction between the surfactant and NaSal. The study of gemini surfactant and hydrotropic salt interaction brings promise for applications in materials synthesis as soft templates. PMID:18275179

  19. Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

    Highlights: Synthesis of a dimeric ionic liquid. Gel polymer electrolytes providing uniform lithium deposit pathway. An amphipathic ionic liquid locates at the interface between an electrolyte-rich phase and a polymer matrix in a gel polymer electrolyte. The presence of PDMITFSI ionic liquid leads to the suppression of dendritic lithium formation on a lithium metal electrode. - Abstract: A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1'-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

  20. Influence of rheology and tectonic loading on postseismic creep

    Montési, L. G.

    2003-12-01

    Postseismic creep, as observed by GPS, indicates probably transient deformation of the lower crust or upper mantle triggered by earthquake-induced stress perturbations. In these regions, deformation can be localized on a frictional surface or on a ductile shear zone. These two hypotheses imply specific rheologies and therefore time dependence of postseismic creep. Hence, postseismic creep may constitute a probe into the rheology of aseismic regions of the lithosphere. I derive an analytical general relaxation law for a power law rheology which can be used to model postseismic creep in the absence of reloading of the proposed shear zone. The stress exponent, n, is diagnostic of the deformation mechanism. The rheology appropriate for frictional sliding produces a relaxation law similar to the power law case in the limit 1/n=0. GPS data following several earthquakes are adequately modeled using the generalized relaxation law. However, for at least three examples (1997 Kronotsky, 1999 Izmit, and 2001 Peru earthquakes), the inferred stress exponent is negative. Rather than the shear zone rheology, these negative exponents indicate that reloading of the shear zone by tectonic forces is important. Numerical simulations of postseismic deformation with non-negligible reloading produces curves that are well fit by the generalized relaxation laws with negative stress exponent, although the actual stress exponent of the rheology is positive. Although this prevents rheology from being well constrained by the studied GPS records, it is clear that reloading is important in the postseismic time interval. In other words, the stress perturbation induced by earthquake is not much larger than the ambient stress field.

  1. Rheological behavior of hydroxyapatite and PSZ mixed slurries; Hydroxyapatite/zirconia kei kongo slurry no rheology

    Yamada, Y.; Watanabe, R. [Tohoku Univ., Sendai (Japan). Graduate School; Iijima, H. [West Japan Railway Co., Ishikawa (Japan)

    1998-03-15

    Hydroxyapatite (HAp) is a kind of material excellent in affinity, while its strength is insufficient when it is used separately an implant material. Consequently, it is attempted to prepare a complex thereof with partially stabilized zirconia (PSZ) or the like that is a kind of bio-inactive but innocuous material having high strength and high tenacity. In this study, the rheological behavior of the individual HAp and PSZ, and the rheological behavior of HAp/PSZ mixed slurry are investigated as a fundamental research for the preparation of HAp/PSZ functionally graded materials. Each of HAp and PSZ has a different optimum dispersant concentration, and this value is not effected by a binder. The dispersion property of HAp/PSz mixed slurry works independently without being effected by the interactions between components, and its value depends on an effective surface area of powdery particles. Accordingly, the optimum dispersant concentration of the mixed slurry changes linearly with the volume ratio of PSZ. 14 refs., 8 figs.

  2. Electrochemical and rheological behaviour of a fluid zinc paste; Comportement electrochimique et rheologique d`une pate de zinc fluide

    Sajot, N.

    1997-12-04

    Zinc is a performing anodic material in numerous types of batteries. The anode of alkaline cells is typically a suspension of metallic powder in a gelled potassium hydroxide electrolyte, called zinc paste. We process such a homogeneous, fluid and stable paste, we study its physical electrochemical and rheological properties. Electrical power delivered during galvano-static electrolysis is about a few tens of mW.cm{sup -2} for anodic overvoltages inferior to 200 mV until the complete oxidation of the metal, 10 oxidation-reduction cycles are realised on paste samples of few mm width. In other respects, the product has a Bingham-type flow behavior, of critical shearing stress close to 200 Pa, and plastic viscosity about Pa.s, valid from 0,1 s{sup -1} shear rate. Zinc paste circulates in a slim rectangular section channel. Movement is ensured by a peristaltic pump placed on a cylindrical flexible tube. The paste transit between rectangular and circular sections is made through a profiled mechanical piece called a fish tail, without draft edge or roughness. An electrolytic separator and a current collector form the walls of the parallelopipedal channel, thus an electrolysis cell is framed. We record electrical and rheological characteristics of 2 oxidation-reduction cycles, during which the paste continues to flow and remains conductive. Established performances on the elementary cell allow to make up an air-zinc circulating paste battery for an electrical vehicle: the hydraulic recharge of a 100 l anodic paste tank is made in a few minutes, corresponding to a 300 km autonomy. (author) 87 refs.

  3. Influence of electrolytes and membranes on cell operation for syn-gas production

    Eric J. Dufek; Tedd E. Lister; Michael E. McIlwain

    2012-02-01

    The impact of membrane type and electrolyte composition for the electrochemical generation of synthesis gas (CO + H2) using a Ag gas diffusion electrode are presented. Changing from a cation exchange membrane to an anion exchange membrane (AEM) extended the cell operational time at low Ecell values (up to 4x) without impacting product composition. The use of KOH as the catholyte decreased the Ecell and resulted in a minimum electrolyte cost reduction of 39%. The prime factor in determining operational time at low Ecell values was the ability to maintain a sufficiently high anolyte pH.

  4. Bioadhesive, rheological, lubricant and other aspects of an oral gel formulation intended for the treatment of xerostomia.

    Kelly, H M; Deasy, P B; Busquet, M; Torrance, A A

    2004-07-01

    Xerostomia is commonly known as 'dry mouth' and is characterised by a reduction or loss in salivary production. A bioadhesive gel for its localised treatment was formulated to help enhance the residence time of the product, based on the polymer Carbopol 974P. The bioadhesion of various formulations was evaluated on different mucosal substrates, as simulations of the oral mucosa of xerostomic patients. Depending on the type of model substrate used, the mechanism of bioadhesion could alter. When the rheology of various formulations was examined, changes in bioadhesion were more easily interpreted, as the presence of other excipients caused an alteration in the rheological profile, with a change from a fully expanded and partially cross-linked system to an entangled system. Improving the lubricity of the product was considered important, with optimum incorporation of vegetable oil causing a desirable lowering of the observed friction of the product. The final complex formulation developed also contained salivary levels of electrolytes to help remineralisation of teeth, fluoride to prevent caries, zinc to enhance taste sensation, triclosan as the main anti-microbial/anti-inflammatory agent and non-cariogenic sweeteners with lemon flavour to increase the palatability of the product while stimulating any residual salivary function. PMID:15196643

  5. Rheological evolution of a Mediterranean subduction complex

    Behr, Whitney Maria; Platt, John Paul

    2013-09-01

    We use field and microstructural observations, coupled to previously published P-T-time histories, to track the rheological evolution of an intracontinental subduction complex exposed in the Betic Cordillera in the western Mediterranean region. The body of rock we focus on, known as the Nevado-Filabride Complex (NFC), was originally part of the upper crust of the Iberian margin. It was subducted into hot asthenospheric mantle, then exhumed back toward the surface in two stages: an early stage of fast exhumation along the top of the subducting slab in a subduction channel, and a late stage of slower exhumation resulting from capture by a low-angle detachment fault rooted at the brittle-ductile transition. Each stage of deformation in the NFC was punctuated by changes in the dominant deformation mechanism. Deformation during initial subduction of the complex was accommodated by pressure-solution creep in the presence of a fluid phase - the grain sizes, stress magnitudes, and estimated strain rates for this stage are most consistent with a thin-film model for pressure solution in which the diffusion length scale is controlled by the grain size. During the early stages of exhumation within the subduction channel, deformation transitioned from pressure solution to dislocation creep due to increases in temperature, which resulted in increases in both water fugacity and grain size, each of which favor the dislocation creep mechanism. Differential stress magnitudes for this stage were ˜10 MPa, and are consistent with simple models of buoyancy-driven channel flow. With continuing subduction-channel exhumation, deformation remained within the dislocation creep field because sequestration of free water into hydrous, retrogressive minerals suppressed the pressure-solution mechanism. Differential stresses progressively increased to ˜100 MPa near the mouth of the channel during cooling as the rocks moved into mid-crustal levels. During the final, core-complex stage of exhumation, deformation was progressively concentrated into a narrow zone of highly localized strain beneath a mid-crustal detachment fault. Localization was promoted by a transition from dislocation creep to dislocation-creep-accommodated grain boundary sliding at temperatures of ˜350-380 °C, grain sizes of ˜4 μm and differential stress magnitudes of ˜200 MPa. Peak differential stress magnitudes of ˜200 MPa recorded just below the brittle-ductile transition are consistent with Byerlee's law in the upper crust assuming a vertical maximum principal stress and near-hydrostatic pore fluid pressures. Overall, the distribution of stress with temperature, coupled to independent constraints on strain rate from field observations and geochronology, indicate that the naturally calibrated Hirth et al. (2001) flow law for wet quartzite accurately predicts the rheological behavior of mid-crustal rocks deforming by dislocation creep.

  6. 2012 SRNL-EM VANE RHEOLOGY RESULTS

    Hansen, E.; Marzolf, A.; Hera, K.

    2012-08-31

    The vane method has been shown to be an effective tool in measuring the yield stress of both settled and mixed slurries in laboratory bench scale conditions in supporting assessments of both actual and simulant waste slurries. The vane has also been used to characterize dry powders and granular solids, the effect of non-cohesive solids with interstitial fluids and used as a guide to determine if slip is present in the geometries typically used to perform rheological flow curve measurements. The vane has been extensively characterized for measuring the shear strength in soils in both field and laboratory studies. The objectives for this task are: Fabricate vane instrument; Bench top testing to further characterize the effect of cohesive, non-cohesive, and blends of cohesive/non-cohesive simple simulants; Data from measurement of homogenized and settled bed of Kaolin sludge and assessment of the technology. In this document, the assessment using bench scale measurements of non-cohesive materials (beads) and cohesive materials (kaolin) is discussed. The non-cohesive materials include various size beads and the vane was assessed for depth and deaeration (or packing) via tapping measurements. For the cohesive (or non-Newtonian) materials, flow curves and yield stress measurements are performed using the vane and this data is compared to the traditional concentric cylinder flow curve measurement. Finally, a large scale vane was designed, fabricated, and tested with the cohesive (or non-Newtonian) materials to determine how a larger vane performs in measuring the yield stress and flow curve of settled cohesive solids.

  7. Micro and macro rheology of planar tissues.

    Lokshin, Olga; Lanir, Yoram

    2009-06-01

    Tissues are intrinsically non-linear, anisotropic, viscoelastic, and undergo a process of mechanical adaptation (preconditioning). Previous constitutive laws considered one or two of these response aspects, often resulting in inadequate fit to data. Here we developed a general constitutive formulation encompassing the entire set of features. To exemplify this novel approach, constitutive equation for the skin was developed by stochastic incorporation of the fibers' orientation and undulation distributions. Predictions were contrasted with biaxial data of rabbit skin. The significance of each micro-feature was examined by sensitivity analysis. The results show that micro-structure based rheological characterization provides reliable representation under multiple biaxial protocols. Parametric investigation points to the essential roles of the fibers' orientation distributions (elastin and collagen) and waviness (collagen), their respective stress-strain relationship, and their viscoelasticity and preconditioning adaptation. The effect of ground substance is small but significant for model-to-data fit. Although the collagen is two order of magnitude stiffer, the contribution of elastin is predominant at low strains, and still significant (up to 20%) at high strains at which collagen carries the major load. The results are consistent with collagen preconditioning steming from stretch induced increase in the reference length, while in elastin it is the Mullins effect (strain softening). The most important impact of the study is that for the first time the entire scope of multi-axial tissue properties are unified in a single constitutive formulation. The potential implications are on the procedures of tissues characterization and on the design and analysis of artificial tissue scaffolds. PMID:19324407

  8. Rheological properties of confined thin films

    Shearing of monolayer and bilayer monatomic films confined between planar solid surfaces (walls) is simulated by a Monte Carlo technique in the isostress-isostrain ensemble, where temperature, number of film atoms, and applied normal stress are state variables. The walls consist of individual atoms that are identical with the film atoms and are fixed in the fcc (face centered cubic) (100) configuration. The lattice constant l of the walls is varied so that the walls are either commensurate with the (solid) film at fixed nominal lattice constant lf (i.e., l/lf=1) or homogeneously compressed (l/lff>1). Such rheological properties as shear stress Tzx and modulus are correlated with molecular structure of the layers, as reflected in translational and orientational correlation functions. If the walls are properly aligned in transverse directions, then the layers exhibit a high degree of fcc order. As such ordered films are subjected to a shear strain (by reversibly moving the walls out of alignment), they respond initially as an elastic solid: at small strains, Tzx depends linearly on the strain. As the shear strain increases, the response becomes highly nonlinear: Tzx rises to a maximum (yield point) and then decays monotonically to zero, where the maximum misalignment of the walls occurs. The correlation functions indicate that the films are not necessarily solid, even when the walls are in proper alignment. The results suggest that the principal mechanism by which disordered nonsolid films are able to resist shearing is ''pinning'': the film atoms are trapped in effective cages formed by their near neighbors and the mutual attraction of the walls for the caged atoms pins them together

  9. Coating Of Model Rheological Fluids In Microchannels

    Koelling, Kurt; Boehm, Michael

    2008-07-01

    Researchers have strived to understand and quantify the dynamics within the myriad micro/nano-devices proposed and developed within the last decade. Concepts such as fluid flow, mass transfer, molecule manipulation, and reaction kinetics must be understood in order to intelligently design and operate these devices. In addition to general engineering principles, intelligent design should also focus on material properties (e.g. density, viscosity, conductivity). One key property, viscosity, will play a large part of any fluidic device, including biomedical devices, because the fluids used will, most likely, be non-Newtonian and therefore highly dependent upon the shear rate. Be it a biomedical or macromolecule separation device, or simply the processing of polymeric material, select model polymers and simple flow schemes can be used to investigate the dynamics within micro-devices. Here, we present results for the processing of Newtonian and non-Newtonian polymeric fluids in micro-channels during two-phase penetrating flow. The system investigated is a circular capillary 100 microns in diameter, which is pre-filled with a polymeric liquid. The polymeric liquid is either of Newtonian viscosity, or the same liquid with dispersed high molecular weight polystyrene, which exhibits viscoelastic behavior. A second, immiscible phase, silicone oil of low Newtonian viscosity, is pumped into the system and subsequently cores the polymeric liquid. The dynamics of bubble flow (e.g. bubble velocity and bubble shape) as well as the influence of rheology on coating will be investigated. By studying these model systems, we will learn how complex fluids behave on progressively smaller size scales.

  10. Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus

    Wang, Xiang, E-mail: 11229036@zju.edu.cn; Su, Heng, E-mail: shtdyso@163.com; Lv, Weiyang, E-mail: 3090103369@zju.edu.cn; Du, Miao, E-mail: dumiao@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Zheng, Qiang, E-mail: zhengqiang@zju.edu.cn [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-01-15

    The functions and structures of biological mucus are closely linked to rheology. In this article, the skin mucus of loach (Misgurnus anguillicaudatus) was proved to be a weak hydrogel susceptible to shear rate, time, and history, exhibiting: (i) Two-region breakdown of its gel structure during oscillatory strain sweep; (ii) rate-dependent thickening followed by three-region thinning with increased shear rate, and straight thinning with decreased shear rate; and (iii) time-dependent rheopexy at low shear rates, and thixotropy at high shear rates. An interesting correlation between the shear rate- and time-dependent rheological behaviors was also revealed, i.e., the rheopexy-thixotropy transition coincided with the first-second shear thinning region transition. Apart from rheology, a structure of colloidal network was observed in loach skin mucus using transmission electron microscopy. The complex rheology was speculated to result from inter- and intracolloid structural alterations. The unique rheology associated with the colloidal network structure, which has never been previously reported in vertebrate mucus, may play a key role in the functions (e.g., flow, reannealing, lubrication, and barrier) of the mucus.

  11. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  12. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2015-03-01

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  13. Polymer gel electrolytes for lithium batteries

    The data on the most promising polymer gel electrolytes for lithium batteries published in the past decade are surveyed and described systematically. Gel electrolytes with matrices of polyethylene oxide, poly(vinylidene fluoride) and its copolymer with hexafluoropropylene, poly(methyl methacrylate), polyacrylonitrile, poly(vinyl chloride) and polyacrylates are discussed. A special section is devoted to gel electrolytes with ionic liquids as the solvents. The bibliography includes 160 references.

  14. Electrolytic cell. [For separating anolyte and catholyte

    Bullock, J.S.; Hale, B.D.

    1984-09-14

    An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

  15. Solid electrolytes general principles, characterization, materials, applications

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  16. Chemical modification of electrolytes for lithium batteries

    Modern approaches to modifying chemically electrolytes for lithium batteries are analysed with the aim of optimising the charge-transfer processes in liquid-phase and solid (polymeric) media. The main regularities of transport properties of lithium electrolyte solutions containing complex (encapsulated) ions in aprotic solvents and polymers are discussed. The prospects for the development of electrolytic solvosystems with the chain (ionotropic) mechanism of conduction with respect to lithium ions are outlined. The bibliography includes 126 references.

  17. Polymeric electrolytes based on hydrosilyation reactions

    Kerr, John Borland; Wang, Shanger; Hou, Jun; Sloop, Steven Edward; Han, Yong Bong; Liu, Gao

    2006-09-05

    New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.

  18. Novel Electrolytes for Lithium Ion Batteries

    Lucht, Brett L

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  19. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours to weeks. The unusual shape of the slurry flow curves was not an artifact of the rheometric measurement. Adjusting the user-specified parameters in the rheometer measurement jobs can alter the shape of the flow curve of these time dependent samples, but this was not causing the unusual behavior. Variations in the measurement parameters caused the time dependence of a given slurry to manifest at different rates. The premise of the controlled shear rate flow curve measurement is that the dynamic response of the sample to a change in shear rate is nearly instantaneous. When this is the case, the data can be fitted to a time independent rheological equation, such as the Bingham plastic model. In those cases where this does not happen, interpretation of the data is difficult. Fitting time dependent data to time independent rheological equations, such as the Bingham plastic model, is also not appropriate.

  20. Molecular rheological analysis on binary blends of perfluoropolyether lubricants

    Seung Chung, Pil; Hari Vemuri, Sesha; Park, Sejoon; Jhon, Myung S.

    2014-05-01

    The molecular rheology of PFPE becomes critically important in designing optimal lubricants that control the friction/wear and air-bearing by tuning elastic or viscous shear/elongation deformations, which affect the performance and reliability of the hard disk drive. In this paper, we examine the rheological responses of nano blended PFPEs including storage (elastic) and loss (viscous) moduli (G' and G″), by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. By introducing binary blend of nonfunctional and functional PFPEs, we control the degree of liquid/solid-like behavior using the rheology as a complementary tool for design criteria by tuning molecular conformation and diffusion with nano blend ratio.

  1. Nonlinear rheology of entangled polymers at turning point.

    Wang, Shi-Qing

    2015-02-28

    Thanks to extensive observations of strain localization upon startup or after stepwise shear, a conceptual framework for nonlinear rheology of entangled polymers appears to have emerged that has led to discovery of many new phenomena, which were not previously predicted by the standard tube model. On the other hand, the published theoretical and experimental attempts to test the limits of the tube model have largely demonstrated that the most experimental data appear consistent with the tube-model based theoretical calculations. Therefore, the field of nonlinear rheology of entangled polymers is at a turning point and is thus a rather crucial area in which further examinations are needed. In particular, more molecular dynamics simulations are needed to delineate the detailed molecular mechanisms for the various nonlinear rheological phenomena. PMID:25606850

  2. Rheological and microbiological study of flour treated by irradiation

    the aim this work is to study the effectiveness of radio treatment and its effect on the conservation of flour and their various parameters (physico-chemical and rheological). The flour has been treated with different doses (0, 0.75, 1.5 and 3 kGy), physico-chemical, rheological, microbiological and sensory analyses were made.The results show that the irradiation as a treatment for decontamination gave a highly effective. Indeed, a dose of 1.5 kGy allows a total destruction of yeasts and molds. Thus, from the point of view physico-chemical, increasing the dose of radiation causes a change in physical and chemical properties and rheological of flour. for the characteristics of bread, increasing the dose of radiation affects the quality of bread. (Author). 38 refs

  3. Rheological behaviour of suspensions of bubbles in yield stress fluids

    Ducloué, Lucie; Goyon, Julie; Chateau, Xavier; Ovarlez, Guillaume

    2014-01-01

    The rheological properties of suspensions of bubbles in yield stress fluids are investigated through experiments on model systems made of monodisperse bubbles dispersed in concentrated emulsions. Thanks to this highly tunable system, the bubble size and the rheological properties of the suspending yield stress fluid are varied over a wide range. We show that the macroscopic response under shear of the suspensions depends on the gas volume fraction and the bubble stiffness in the suspending fluid. This relative stiffness can be quantified through capillary numbers comparing the capillary pressure to stress scales associated with the rheological properties of the suspending fluid. We demonstrate that those capillary numbers govern the decrease of the elastic and loss moduli, the absence of variation of the yield stress and the increase of the consistency with the gas volume fraction, for the investigated range of capillary numbers. Micro-mechanical estimates are consistent with the experimental data and provide...

  4. Handbook of Aqueous Electrolyte Thermodynamics Theory & Application

    Zemaitis, Joseph F; Rafal, Marshall

    1986-01-01

    Expertise in electrolyte systems has become increasingly important in traditional CPI operations, as well as in oil/gas exploration and production. This book is the source for predicting electrolyte systems behavior, an indispensable "do-it-yourself" guide, with a blueprint for formulating predictive mathematical electrolyte models, recommended tabular values to use in these models, and annotated bibliographies. The final chapter is a general recipe for formulating complete predictive models for electrolytes, along with a series of worked illustrative examples. It can serve as a usef

  5. [FTIR investigation of new polymer solid electrolytes].

    Yang, Shu-ting; Chen, Hong-jun; Dong, Hong-yu; Jia, Jun-hua; Cao, Zhao-xia

    2004-04-01

    The conductivity of the porous polymer solid electrolyte blended with PVDF and PMMA, which was made by a micro-wave hot-cross-linking method, reached 2.05 x 10(-3) S x cm(-1) at room temperature. The polymer solid electrolyte was analyzed and investigated by FTIR. The results show that the PVDF, PMMA and LiClO4 in the polymer solid electrolyte were not simply blended, but certain kind of effect existed which was strengthened only when the polymer solid electrolyte came into being. PMID:15766150

  6. Structure and rheology of nanoparticle–polymer suspensions

    Srivastava, Samanvaya

    2012-01-01

    Structure and rheology of oligomer-tethered nanoparticles suspended in low molecular weight polymeric host are investigated at various particle sizes and loadings. Strong curvature effects introduced by the small size of the nanoparticle cores are found to be important for understanding both the phase stability and rheology of the materials. Small angle X-ray scattering (SAXS) and transmission electron microscopy measurements indicate that PEG-SiO 2/PEG suspensions are more stable against phase separation and aggregation than expected from theory for interacting brushes. SAXS and rheology measurements also reveal that at high particle loadings, the stabilizing oligomer brush is significantly compressed and produces jamming in the suspensions. The jamming transition is accompanied by what appears to be a unique evolution in the transient suspension rheology, along with large increments in the zero-shear, Newtonian viscosity. The linear and nonlinear flow responses of the jammed suspensions are discussed in the framework of the Soft Glassy Rheology (SGR) model, which is shown to predict many features that are consistent with experimental observations, including a two-step relaxation following flow cessation and a facile method for determining the shear-thinning coefficient from linear viscoelastic measurements. Finally, we show that the small sizes of the particles have a significant effect on inter-particle interactions and rheology, leading to stronger deviations from expectations based on planar brushes and hard-sphere suspension theories. In particular, we find that in the high volume fraction limit, tethered nanoparticles interact in their host polymer through short-range forces, which are more analogous to those between soft particles than between spherical polymer brushes. © 2012 The Royal Society of Chemistry.

  7. Study of the geopolymer restructuration by impulse rheology

    The aim of the study is to describe the evolution of the microstructure during the setting process of the geo-polymer using an original rheological method named Optimal Fourier Rheology (OFR). The alkali activation of meta-kaolin enables physicochemical transformation from a fresh paste to a hard meso-porous matrix. Classically, oscillatory rheology technique provides viscoelastic moduli spectrum and enables to determine rheological comportment of the material under investigation. However the duration to perform a complete spectrum (more than 2.5 h) makes useless this technique in the case of changing material. The OFR technique decreases the measurement duration under 10 minutes and enables to perform several snapshots of the evolving rheological behaviour. Contrary to monochromatic iterations, here the applied stress takes the form of a chirp function which contains the full usable bandwidth. Interpretations of spectrums provide efficient access to structural evolution along the setting. Results show that the number of oligomers increases into the solution due to the dissolution of the meta-kaolin leading to a constant increase of the viscoelastic parameters until the gradual appearance of the percolating networks. The gelling time was rigorously assessed by using the Winter and Chambon criterion. A fractal percolating network is formed inside the material after a reaction time depending on the formulation parameters; corresponding fractal dimensions were established. After the gel point, the viscoelastic moduli grow rapidly until geo-polymers reach a classic viscoelastic state. Structural unit size were determined using moduli curves crossover and equalled to 2.1 nm in the case of Na geo-polymer; this value fits extremely well with value previously obtained by SAXS. Finally, the elasticity becomes constant in a large frequency range and the viscous parameter strongly decreases which means that the solid porous network is under formation. In conclusion, this rheological approach gives an efficient tool to accurate the mechanisms occurring during the geo-polymerization. (authors)

  8. Polymer-electrolyte water electrolysis

    Kato, Moritaka [NKK Design and Engineering Corp., Yokohama (Japan); Maezawa, Shouji; Sato, Kouichi [Sanyo Corp., Osaka (Japan)

    1998-04-01

    The electricity for the electrolyzer is supplied by a variable electricity supply unit that simulates actual outputs of both series and parallel combinations of solar cells exposed to various solar intensities. An amorphous-silicon solar cell is used as a sensor for the unit. The operation was continued for more than 600 days without trouble. The case of direct connection of the solar cell and polymer electrolyte (PE) water electrolyzer is simulated: the test results show that more than 95% of the peak electricity power of the solar battery can be utilized for the electrolyzer over various solar radiation conditions. (author)

  9. Rheological Measurement of Waxy Crude Oil under Controlled Stress Rheometer: Determination of the Setting Parameters

    T.B. Petrus; J. Azuraien

    2014-01-01

    Rheological measurements are essential in transporting crude oil, especially for waxy crude oil. A lot of rheological measurements have been conducted to determine various rheological properties of crude oil including the viscosity, yield strength, Wax Appearance Temperature (WAT), Wax Disappearance Temperature (WDT), storage modulus and loss modulus, amongst others, by using a controlled stress rheometer. However, a standard procedure to determine the correct parameters for rheological measu...

  10. Seismic velocity, attenuation and rheology of the upper mantle

    Anderson, D. L.; Minster, J. B.

    1980-01-01

    Seismic and rheological properties of the upper mantle in the vicinity of the low-velocity zone are expressed in terms of relaxation by dislocation glide. Dislocation bowing in the glide plane explains seismic velocities and attenuation. Climbing at higher stresses for longer periods of time give the observed viscosity, and explain the low velocity and high temperature attenuation found at seismic frequencies. Due to differing parameters, separate terms for thermal, seismic and rheological lithospheres are proposed. All three lithospheres, however, are related and are functions of temperature, and must be specified by parameters such as period, stress, and stress duration.

  11. Phenomenological rheology. An introduction. Phaenomenologische Rheologie. Eine Einfuehrung

    Giesekus, H. (Dortmund Univ. (Germany). Fachbereich Chemietechnik)

    1994-01-01

    In twelve chapters, this book covers kinematic, dynamic, and thermodynamic fundamentals, deformation dimensions and deformation kinematics and, as a central subject, the rheological mass laws. These are specialized for elastic matter, viscous fluids and viscoelastic matter, and the linear theory of viscoelastic behavior as a bridge to structural rheology is presented in a novel form. In conclusion, deformation and flow problems are covered in selected examples which have been realized either in measurement arrangements of rheometry or in processing methods and include normal stress and secondary flow effects as well as flow instabilities. (orig./AKF)

  12. Rheological Transition of Sheared Frictionless Disks with Rotational Motion

    Olsson, Peter; Teitel, Steve

    We consider the massive Durian bubble model for sheared bidisperse disks, but modified so as to include the rotational motion of particles due to dissipative collisional torques. In such a model, particles possess a viscous tangential dissipation, though no elastic tangential friction. As the packing fraction is increased, we find a discontinuous transition from Bagnoldian to Newtonian rheology, at a packing fraction that lies below the jamming transition. At this transition we find a region of coexisting shear bands of Bagnoldian and Newtonian rheology, and suggestions of discontinuous shear thickening upon increasing the shear strain rate. This work has been supported by NSF Grant No. DMR-1205800.

  13. Field-responsive smart composite particle suspension: materials and rheology

    Zhang, Wen Ling; Liu, Ying Dan; Choi, Hyoung Jin

    2012-09-01

    Both electrorheological (ER) and magnetorheological (MR) fluids are known to be smart materials which can be rapidly and reversibly transformed from a fluid-like to a solid-like state within milliseconds by showing dramatic and tunable changes in their rheological properties under external electrical or magnetic field strength, respectively. Here, among various smart composite particles studied, recently developed core-shell structured polystyrene/graphene oxide composite based ER material as well as the dual-step functionally coated carbonyl iron composite based MR material are briefly reviewed along with their rheological characteristics under external fields.

  14. Rheological Study of Mutarotation of Fructose in Anhydrous State

    Wang, Yangyang [ORNL; Wlodarczyk, Patryk [Institute ofNon-Ferrous Metals, Sowinskiego Gliwice, POLAND; Sokolov, Alexei P [ORNL; Paluch, Marian W [ORNL

    2013-01-01

    Rheological measurement was employed to study the mutarotation of D-fructose in anhydrous state. By monitoring the evolution of shear viscosity with time, rate constants for mutarotation were estimated, and two different stages of this reaction were identified. One of the mutarotation stages is rapid and has a low activation energy, whereas the other is much slower and has a much higher activation energy. Possible conversions corresponding to these two phases are discussed. This work demonstrates that, in addition to the routine techniques such polarimetry and gas liquid chromatography, rheological measurement can be used as an alternative method to continuously monitor the mutarotation of sugars.

  15. Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels

    Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam

    2015-03-01

    The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.

  16. Effects of polyethyleneimine adsorption on rheology of bentonite suspensions

    A Alemdar; N Öztekin; F B Erim; Ö I Ece; N Güngör

    2005-06-01

    The influence of the cationic polymer, polyethyleneimine polymer (PEI) on the flow behaviour of bentonite suspensions (2%, w/w), was studied. XRD, zeta potential and adsorption studies were done together with rheological measurements. The addition of PEI at concentration ranges of 10-5–4.5 g/l and their rheological properties and stability of bentonite suspensions were studied. The adsorption rates for the bentonite suspensions are very fast. The XRD results showed that the PEG molecules did not intercalate into the layers of the clay.

  17. The Rheology of Acoustically Fluidized Sand

    Conrad, J. W.; Melosh, J.

    2013-12-01

    The collapse of large craters and the formation of central peaks and peak rings is well modeled by numerical computer codes that incorporate the acoustic fluidization mechanism to temporarily allow the fluid-like flow of rock debris immediately after crater excavation. Furthermore, long runout landslides require a similar mechanism to explain their almost frictionless movement, which is probably also a consequence of their granular composition coupled with internal vibrations. Many different investigators have now confirmed the ability of vibrations to fluidize granular materials. Yet it still remains to fully describe the rheology of vibrated sand as a function of stress, frequency and amplitude of the vibrations in the sand itself. We constructed a rotational viscometer to quantitatively investigate the relation between the stress and strain rate in a horizontal bed of strongly vibrated sand. In addition to the macroscopic stain rate, the amplitude and frequency of the vibrations produced by a pair of pneumatic vibrators were also measured with the aid of miniaturized piezoelectric accelerometers (B&K 4393) whose output was recorded on a digital storage oscilloscope. The initial gathering of the experimental data was difficult due to granular memory, but by having the sand compacted vibrationally for 8 minutes before each run the scatter of data was reduced and we were able to obtain consistent results. Nevertheless, our major source of uncertainty was variations in strain rate from run to run. We find that vibrated sand flows like a highly non-Newtonian fluid, in which the shear strain rate is proportional to stress to a power much greater than one, where the precise power depends on the amplitude and frequency of the applied vibrations. Rapid flow occurs at stresses less than half of the static yield stress (that is, the yield stress when no vibration is applied) when strong vibrations are present. For a Newtonian fluid, such as water, the relation between strain rate and stress is linear. In our experiments we found that the shear strain rate is proportional to shear stress raised to the powers 5.9 and 8.4 at frequencies of 8.5 kHz and 7.4 kHz and increasing amplitude of vibration, respectively. This demonstrates that vibrated sand behaves as a strongly nonlinear pseudo-plastic material that, like glacier ice, can also be approximated as a Bingham material with a rate-dependent yield stress. The flow of acoustically fluidized granular materials provides a reasonable explanation of crater collapse, long runout landslides, and other events involving large masses of granular material.

  18. Flow Birefringence in Polymer Melt Rheology.

    Subramanian, Ramesh Mani

    Optical techniques that are sensitive to structural changes induced by a flow field applied to polymers during processing have been used to study the fundamental relationships between applied deformation, mechanical stresses, and flow -induced molecular orientation. But most of the work done so far has used opto-mechanical techniques (i.e. mechanical measurement of stress and deformation, and optical measurement of flow-induced molecular orientation). This thesis reports the development and application of non-intrusive, opto-electronic techniques for rheo-optical studies on a 300 Pa.s polydimethylsiloxane (PDMS) melt flowing through a 5.00 cm wide converging wedge cell at room temperature. The two techniques used as tools of rheological characterization in the present study are laser doppler anemometry (LDA) to compute strain rate from local velocity measurements, and flow birefringence (double refraction) for measurement of the anisotropic refractive index tensor which, for flexible polymer solutions and melts, provides information the state of stress in the material via the stress-optical law. Birefringence measurements in extensional flow up to a pressure drop of 689 kPa across the converging wedge cell indicated that stress tensor and polarizability or anisotropic refractive index tensor were linearly related for the polymer over a range of strain rate that extended well into the non-Newtonian region. Along the cell centerline, the extensional flow behaviour of the polymer was studied via birefringence measurements in the linear stress-optical region, and it was found to be extension-thinning in nature. Assuming no boundary layer error, the optical techniques used in the present study provide a valuable test for constitutive relations between stress and deformation in the polymer by comparing predicted orientation angles with experimental measurements in combined shear and extension flows. The two constitutive equations tested were the Power-law model and the Goddard-Miller model (a quasilinear-corotational model). For a two-dimensional converging wedge flow, the orientation angles computed using a two-term version of the Goddard-Miller model with a single Maxwell-type relaxation time constant of 0.009 sec and a zero-shear rate viscosity of 300 Pa.s offered good agreement with experimental measurements at pressure drops of 276 and 483 kPa across the flow cell. Based on this analysis, a stress-optical coefficient of 1.475 times 10^{{-}10} rm m^2/N was obtained for PDMS and compares quite favourably with that reported in literature by Wales (1.35times 10^{{-}10 } rm m^2/N) and Liberman (0.909times 10^{{-}10 }rm m^2/N) at the same temperature.

  19. Introducing Students to Rheological Classification of Foods, Cosmetics, and Pharmaceutical Excipients Using Common Viscous Materials

    Faustino, Ce´lia; Bettencourt, Ana F.; Alfaia, Anto´nio; Pinheiro, Lídia

    2015-01-01

    Rheological measurements are very important tools for the characterization of the flow and deformation of a material, as well as for optimization of the rheological parameters. The application and acceptance of pharmaceutical formulations, cosmetics, and foodstuffs depends upon their rheological characteristics, such as texture, consistency, or…

  20. Synthesis and characterization of low cost magnetorheological (MR) fluids

    Sukhwani, V. K.; Hirani, H.

    2007-04-01

    Magnetorheological fluids have great potential for engineering applications due to their variable rheological behavior. These fluids find applications in dampers, brakes, shock absorbers, and engine mounts. However their relatively high cost (approximately US600 per liter) limits their wide usage. Most commonly used magnetic material "Carbonyl iron" cost more than 90% of the MR fluid cost. Therefore for commercial viability of these fluids there is need of alternative economical magnetic material. In the present work synthesis of MR fluid has been attempted with objective to produce low cost MR fluid with high sedimentation stability and greater yield stress. In order to reduce the cost, economical electrolytic Iron powder (US 10 per Kg) has been used. Iron powder of relatively larger size (300 Mesh) has been ball milled to reduce their size to few microns (1 to 10 microns). Three different compositions have been prepared and compared for MR effect produced and stability. All have same base fluid (Synthetic oil) and same magnetic phase i.e. Iron particles but they have different additives. First preparation involves organic additives Polydimethylsiloxane (PDMS) and Stearic acid. Other two preparations involve use of two environmental friendly low-priced green additives guar gum (US 2 per Kg) and xanthan gum (US 12 per Kg) respectively. Magnetic properties of Iron particles have been measured by Vibrating Sample Magnetometer (VSM). Morphology of Iron particles and additives guar gum and xanthan gum has been examined by Scanning Electron Microscopy (SEM) and Particles Size Distribution (PSD) has been determined using Particle size analyzer. Microscopic images of particles, MH plots and stability of synthesized MR fluids have been reported. The prepared low cost MR fluids showed promising performance and can be effectively used for engineering applications demanding controllability in operations.

  1. Plasma electrolytic oxidation of AMCs

    Morgenstern, R.; Sieber, M.; Lampke, T.

    2016-03-01

    Aluminum Matrix Composites (AMCs) consisting of high-strength alloys and ceramic reinforcement phases exhibit a high potential for security relevant lightweight components due to their high specific mechanical properties. However, their application as tribologically stressed components is limited because of their susceptibility against fatigue wear and delamination wear. Oxide ceramic protective coatings produced by plasma electrolytic oxidation (PEO) can solve these problems and extend the possible applications of AMCs. The substrate material was powder metallurgically processed using alloy EN AW 2017 and SiC or Al2O3 particles. The influence of material properties like particle type, size and volume fraction on coating characteristics is clarified within this work. An alkaline silicate electrolyte was used to produce PEO coatings with technically relevant thicknesses under bipolar-pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The particle type proved to have the most significant effect on the coating properties. Whereas compactness and thickness are not deteriorated by the incorporation of thermodynamically stable alumina particles, the decomposition of silica particles during the PEO processes causes an increase of the porosity. The higher silica particle content decreases also the coating thickness and hardness, which leads in particular to reduction of the wear resistance of the PEO coatings. Finally, different approaches for the reduction of the coating porosity of silica reinforced AMCs are discussed.

  2. Plasma electrolytic oxidation of metals

    Stojadinović Stevan

    2013-01-01

    Full Text Available In this lecture results of the investigation of plasma electrolytic oxidation (PEO process on some metals (aluminum, titanium, tantalum, magnesium, and zirconium were presented. Whole process involves anodizing metals above the dielectric breakdown voltage where numerous micro-discharges are generated continuously over the coating surface. For the characterization of PEO process optical emission spectroscopy and real-time imaging were used. These investigations enabled the determination of electron temperature, electron number density, spatial density of micro-discharges, the active surface covered by micro-discharges, and dimensional distribution of micro-discharges at various stages of PEO process. Special attention was focused on the results of the study of the morphology, chemical, and phase composition of oxide layers obtained by PEO process on aluminum, tantalum, and titanium in electrolytes containing tungsten. Physicochemical methodes: atomic force microscopy (AFM, scanning electron microscopy (SEM-EDS, x-ray diffraction (XRD, x-ray photoelectron spectroscopy (XPS, and Raman spectroscopy served as tools for examining obtained oxide coatings. Also, the application of the obtained oxide coatings, especially the application of TiO2/WO3 coatings in photocatalysis, were discussed.

  3. High-performance electrolyte in the presence of dextrose and its derivatives for aluminum electrolytic capacitors

    Tsai, Ming-Liao; Lu, Yi-Fang; Do, Jing-Shan

    Dextrose and its derivatives (e.g. glucose, gluconic acid and gluconic lactone) are added to modify the characteristics of electrolytes used in aluminum electrolytic capacitors. The results show that the conductivity and sparking voltage of the electrolytes are severely affected by the concentration of dextrose gluconic acid and gluconic lactone. In addition, the pH of the electrolyte is only slightly affected by the quantity of gluconic acid and gluconic lactone. The capacitance, dissipation factor, and leakage current of capacitors impregnated with the electrolytes prepared in this work are periodically measured under storage conditions and loading at 105 °C.

  4. Solid composite electrolytes for lithium batteries

    Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  5. F4U production by electrolytic reduction

    As a part of the nuclear fuel cycle program developed at the Spanish Atomic Energy Commission it has been studied the electrolytic reduction of U-VI to U-IV. The effect of the materials, electrolyte concentration, pH, current density, cell size and laboratory scale production is studied. The Pilot Plant and the production data are also described. (Author) 18 refs

  6. The buffer effect in neutral electrolyte supercapacitors

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to...

  7. Multicomponent equations of state for electrolytes

    Lin, Yi; Thomsen, Kaj; Hemptinne, Jean-Charles de

    2007-01-01

    Four equations of state have been implemented and evaluated for multicomponent electrolyte solutions at 298.15 K and 1 bar. The equations contain terms accounting for short-range and long-range interactions in electrolyte solutions. Short range interactions are described by one of the three equat...

  8. Multi component equations of state for electrolytes

    Lin, Yi; Thomsen, Kaj; de Hemptinne, Jean-Charles

    2007-01-01

    Four equations of state have been implemented and evaluated for multi component electrolyte solutions at 298.15K and 1 bar. The equations contain terms accounting for short-range and long-range interactions in electrolyte solutions. Short range interactions are described by one of the three equat...

  9. Gel electrolyte for lithium-ion batteries

    Chen Zonghai [Chemical Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Zhang, L.Z.; West, R. [Organosilicon Research Center, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (United States); Amine, K. [Chemical Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: amine@cmt.anl.gov

    2008-03-10

    The electrochemical performance of gel electrolytes based on crosslinked poly[ethyleneoxide-co-2-(2-methoxyethyoxy)ethyl glycidyl ether-co-allyl glycidyl ether] was investigated using graphite/Li{sub 1.1}[Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3}]{sub 0.9}O{sub 2} lithium-ion cells. It was found that the conductivity of the crosslinked gel electrolytes was as high as 5.9 mS/cm at room temperature, which is very similar to that of the conventional organic carbonate liquid electrolytes. Moreover, the capacity retention of lithium-ion cells comprising gel electrolytes was also similar to that of cells with conventional electrolytes. Despite of the high conductivity of the gel electrolytes, the rate capability of lithium-ion cells comprising gel electrolytes is inferior to that of the conventional cells. The difference was believed to be caused by the poor wettability of gel electrolytes on the electrode surfaces.

  10. Gel electrolyte for lithium-ion batteries

    Chen, Zonghai; Amine, K. [Chemical Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Zhang, L.Z.; West, R. [Organosilicon Research Center, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (United States)

    2008-03-10

    The electrochemical performance of gel electrolytes based on crosslinked poly[ethyleneoxide-co-2-(2-methoxyethyoxy)ethyl glycidyl ether-co-allyl glycidyl ether] was investigated using graphite/Li{sub 1.1}[Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3}]{sub 0.9}O{sub 2} lithium-ion cells. It was found that the conductivity of the crosslinked gel electrolytes was as high as 5.9 mS/cm at room temperature, which is very similar to that of the conventional organic carbonate liquid electrolytes. Moreover, the capacity retention of lithium-ion cells comprising gel electrolytes was also similar to that of cells with conventional electrolytes. Despite of the high conductivity of the gel electrolytes, the rate capability of lithium-ion cells comprising gel electrolytes is inferior to that of the conventional cells. The difference was believed to be caused by the poor wettability of gel electrolytes on the electrode surfaces. (author)

  11. ThO2-based solid electrolyte

    A ThO2-based fixed electrolyte contains 0.1 to 25 mol% of at least one of yttrium and magnesium oxides and 5 to 40 mol% of one of alkali earth and lanthanide oxides. The electrolyte not only has a high ion oxygen conductivity but also lower sintering interval. (J.P.)

  12. Antiferromagnetic FeMn alloys electrodeposited from chloride-based electrolytes.

    Ruiz-Gómez, Sandra; Ranchal, Rocío; Abuín, Manuel; Aragón, Ana María; Velasco, Víctor; Marín, Pilar; Mascaraque, Arantzazu; Pérez, Lucas

    2016-03-01

    The capability of synthesizing Fe-based antiferromagnetic metal alloys would fuel the use of electrodeposition in the design of new magnetic devices such as high-aspect-ratio spin valves or new nanostructured hard magnetic composites. Here we report the synthesis of high quality antiferromagnetic FeMn alloys electrodeposited from chloride-based electrolytes. We have found that in order to grow homogeneous FeMn films it is necessary to incorporate a large concentration of NH4Cl as an additive in the electrolyte. The study of the structure and magnetic properties shows that films with composition close to Fe50Mn50 are homogeneous antiferromagnetic alloys. We have established a parameter window for the synthesis of FeMn alloys that show antiferromagnetism at room temperature. PMID:26925594

  13. Production of ceramic layers on aluminum alloys by plasma electrolytic oxidation in alkaline silicate electrolytes

    Lugovskoy, Alex; Zinigrad, Michael; Kossenko, Aleksey; Kazanski, Barbara

    2013-01-01

    Plasma electrolytic oxidation (PEO) of aluminum alloy 5052 in alkaline-silicate electrolytes having different SiO2/Na2O ratios (silicate indexes) was studied. For all the electrolytes 20-90 ?m thick technological layer was obtained; composition, structure and properties of the oxidized layer were studied. For each sample, the oxidized layer consists of a denser internal and looser external sublayer. While for n = 1 electrolytes the oxidized layer is mainly formed by several kinds of alumina, the principal constituent of the oxidized layer for n = 3 electrolytes is mullite. Measurements of microhardness evidenced that it is apparently not influenced by the kind of silicate (n = 1 or n = 3) and by its concentration in the electrolyte. Electrolytes with silicate index n = 3 ensure better corrosion protection than those with n = 1. Corrosion protection parameters are significantly better for all PEO oxidized samples than for the untreated Al5052 alloy.

  14. Dense granular flow rheology in turbulent bedload transport

    Maurin, Raphael; Frey, Philippe

    2016-01-01

    The local granular rheology is investigated numerically in idealised turbulent bedload transport configurations. Using a coupled fluid-discrete element model, the stress tensor is computed as a function of the depth for a series of simulations varying the Shields number, the specific density and the particle diameter. The results are analyzed in the framework of the $\\mu(I)$ rheology and exhibit a collapse of both the shear to normal stress ratio and the solid volume fraction over a wide range of inertial numbers. The effect of the interstitial fluid on the granular rheology is shown to be negligible, supporting recent work suggesting the absence of a clear transition between the free-fall and the turbulent regime. In addition, the data collapse is observed up to unexpectedly high inertial numbers $I\\sim2$, challenging the existing conceptions and parametrization of the $\\mu(I)$ rheology. Focusing upon bedload transport modelling, the results are pragmatically analyzed in the $\\mu(I)$ framework in order to pr...

  15. Thermal state, rheology and seismicity in the pannonian basin, Hungary

    Bodri, Bertalan

    1996-07-01

    On the basis of data on crustal structure and terrestrial heat flow, a 3-D geothermal model for the lithosphere in the Pannonian basin, Hungary, has been calculated. This model, together with information on crustal composition, laboratory data on rock friction, and certain assumptions about fluid conditions and strain-rate levels within the lithosphere, has been used to construct a rheological model of the area. The results obtained show a layered rheological structure where an aseismic part of the crust is "sandwiched" between an upper and a lower seismogenic crustal layers. According to the proposed rheological model, seismic activity in the upper crust may be expected down to depths of 10-12 km, which is confirmed well by the observed depth distribution of seismicity. The model also predicts a lower crustal seismogenic layer down to 20-22 km. Because of infrequent occurrences of deep earthquakes and/or a generally small number of reliable hypocenter depth determinations in the study area, this seismogenic zone is less constrained by observations. The depth of the different rheologic horizons within the crust is governed mainly by thermal conditions. The lower boundary of both seismogenic layers appears isothermal. Brittle-ductile transition in the upper crust coincides with the ~200 °C isotherm, while in the lower crust it coincides with the ~ 375 °C isotherm. The lowermost crust and the upper mantle beneath Hungary show ductile behavior, thus the possibility of siesmic activity at these horizons can be excluded.

  16. Rheological properties of chitosan solutions filled with chitin nanofibrils

    Mikešová, Jana; Tishchenko, Galina; Morganti, P.

    Pisa : University of Pisa, Department of Civil and Industrial Engineering, 2013, s. 44-45. [Workshop Green Chemistry and Nanotechnologies in Polymer Chemistry /4./. Pisa (IT), 04.09.2013-06.09.2013] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : chitosan solution * chitin nanofibrils * rheology Subject RIV: CD - Macromolecular Chemistry

  17. Rheological study of chitosan acetate solutions containing chitin nanofibrils

    Mikešová, Jana; Hašek, Jindřich; Tishchenko, Galina; Morganti, P.

    2014-01-01

    Roč. 112, 4 November (2014), s. 753-757. ISSN 0144-8617 EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 Keywords : rheology * chitosan solutions * chitin nanofibrils Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.074, year: 2014

  18. Using Modeling to Design new Rheology Modifiers for Paints

    Ginzburg, Valeriy

    2013-03-01

    Since their invention in 1970-s, hydrophobically ethoxylated urethanes (HEUR) have been actively used as rheology modifiers for paints. Thermodynamic and rheological behavior of HEUR molecules in aqueous solutions is now very well understood and is based on the concept of transient network (TN), where the association of hydrophobic groups into networks of flower micelles causes viscosity to increase dramatically as function of polymer concentration. The behavior of complex mixtures containing water, HEUR, and latex (``binder'') particles, however, is understood less well, even though it has utmost importance in the paint formulation design. In this talk, we discuss how the adsorption of HEUR chains onto latex particles results in formation of complex viscoelastic networks with temporary bridges between particles. We then utilize Self-Consistent Field Theory (SCFT) model to compute effective adsorption isotherms (thickener-on-latex) and develop a rheological theory describing steady-shear viscosity of such mixtures. The model is able to qualitatively describe many important features of the water/latex/HEUR mixtures, such as strong shear thinning. The proposed approach could potentially lead to the design of new HEUR structures with improved rheological performance. This work was supported by Dow Chemical Company

  19. Rheological behaviour, filmability and mechanical properties of biodegradable polymer films

    Ceraulo, M.; Mistretta, M. C.; La Mantia, F. P.; Botta, L.

    2014-05-01

    The rheological properties in shear flow and non isothermal elongational flow of two biodegradable polymers, belonging to two different classes of materials, have been measured and compared with those of a film blowing grade high density polyethylene in order to assess the filmability of these polymers. The mechanical properties of isotropic and anisotropic samples have been also reported.

  20. Rheological Characterization of Sludge Coming from a Wastewater Treatment Plant

    Daniel Novarino

    2010-01-01

    Full Text Available Problem statement: The aim of this study was that of studying the rheology of sewage sludge using two different rheological test protocols taken from literature and comparing them in order to evaluate which useful information are given from every protocol. Approach: Two different protocols have been used taking particularly into account the problems connected to sludge heterogeneous composition and to the interaction between solid-solid and solid-water particles in order to completely understand the rheological behavior of this suspension; moreover, the consequences of particular effects connected to test geometry and conditions have been considered. Two fundamental parameters have been modified in the samples: The total solids content and the polyelectrolyte addition. Sludge with 3 and 5% of total solids have been investigated, with or without polyelectrolyte using also microscope analysis to understand the effect of polyelectrolyte on the sludge. Results: As expected, it was noticed that sludge viscosity grows up increasing the total solids content and with the presence of polyelectrolyte. The effect of polyelectrolyte is that of separating the liquid-phase from the solid-phase of the sludge giving a more space-heterogeneous suspension with higher viscosity and higher non-Newtonian behavior. Conclusion: This study proved that combining two different protocols of analysis can be useful to furnish important and complementary information on sludge rheology especially when some parameters change from sample to sample. Moreover, in order to have good and consistent results, it is necessary to use particular attention on samples pretreatments.

  1. Rheological properties of silica suspensions in aqueous cellulose derivatives solutions

    Ryo, Y.; Kawaguchi, M.

    1992-05-01

    The rheological properties of the silica suspensions in aqueous solutions of hydroxypropylmethylcellulose (HPMC) were investigated in terms of the shear stress and storage and loss moduli (G' and G`) as a function of silica content, HPMC concentration, and HPMC molecular weight by using a coaxial cylinder rheometer.

  2. Rheological and Sensory Characteristics of Yoghurt-Modified Mayonnaise

    Štern, Petr; Pokorný, J.; Šedivá, A.; Panovská, Z.

    2008-01-01

    Roč. 26, č. 3 (2008), s. 190-198. ISSN 1212-1800 R&D Projects: GA AV ČR IAA2060404 Institutional research plan: CEZ:AV0Z20600510 Keywords : mayonnaise * rheology * sensory analysis * texture * yoghurt Subject RIV: BK - Fluid Dynamics Impact factor: 0.472, year: 2008

  3. Rheology of stabilized cerium-gadolinium oxide (CGO) colloidal system

    Marani, Debora; Hjelm, Johan; Wandel, Marie

    Achievement of stable dispersion with high solid loadings and low viscosity is crucial issue in ceramic films processing. In this work, systematic analysis of the rheological properties of CGO colloidal suspension was performed. The study aimed to define methods for evaluating fully stabilized co...

  4. Pasting and rheological properties of quinoa-oat composites

    Quinoa (Chenopodium, quinoa) flour, known for its essential amino acids, was composited with oat products containing ß-glucan known for lowering blood cholesterol and preventing heart disease. Quinoa-oat composites were developed and evaluated for their pasting and rheological properties by a Rapid ...

  5. Monitoring structural and rheologic properties of petroleum-based solutions

    Kasperskii, B.V.; Chistyakov, B.Y.; Krut, V.V.; Pen' kov, A.I.; Shishkov, S.N.; Vakhrushev, L.P.

    1981-01-01

    Investigation results are presented of the effect of products of interaction of carboxylic acid and polyethylene-polyamines on the structural and rheologic properties of petroleum-based muds. Also shown is the possibility of lowering viscosity and static shear stress of lime-bituminous solutions by use of indicated additives in the amount of up to 0.5 of percent by volume.

  6. Rheological properties of nanofiltered Athabasca bitumen and Maya crude oil

    Hasan, M.D.A.; Fulem, Michal; Bazyleva, A.; Shaw, J.M.

    2009-01-01

    Roč. 23, - (2009), s. 5012-5021. ISSN 0887-0624 Institutional research plan: CEZ:AV0Z10100521 Keywords : viscosity * rheology * Athabasca bitumen * Maya crude oil * phase behavior * asphaltenes * nanofiltration Subject RIV: JJ - Other Materials Impact factor: 2.319, year: 2009

  7. Bitumen and heavy oil rheological properties: reconciliation with viscosity measurements

    Bazyleva, A.B.; Hasan, M.D.A.; Fulem, Michal; Becerra, M.; Shaw, J.M.

    2010-01-01

    Roč. 55, č. 3 (2010), s. 1389-1397. ISSN 0021-9568 Institutional research plan: CEZ:AV0Z10100521 Keywords : Athabasca bitumen * Maya crude oil * rheological properties * viscosity measurements Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.089, year: 2010

  8. Organic electrolytes for sodium batteries

    Vestergaard, B.

    1993-04-01

    The aim was to develop new electrolyte mixtures. 1-methyl-3-ethyl-imidazolium chloride (MEICI) mixed with aluminum chloride was the standard of reference. The new electrolytes should be utilized with sodium in room temperature batteries. Several triazolium chloride derivates were prepared, including 1-ethyl-4-methyl-1,2,4-triazolium chloride, 1,4-dimethyl-1,2,4-triazolium chloride, 1,2-dimethyl-1,2,3-triazolium chloride and 1-methyl-3-paramethoxy,benzyl-1,2,3-triazolium chloride. Other nitrogen containing ring systems like 1,2-dimethyl-pyrazolium chloride, 3-methyl-thiazolium chloride and MEICl were synthesized. An attempt to prepare 1,4-dimethyl-tetrazolium chloride was successful. Recrystallization procedures and the melting point or decomposition temperature for the salt are also described. AlCl{sub 3} was added to the organic chloride salts and the reactions reported. Conductivity of 14dm124tcl:AlCl{sub 3} and the 1m3pmb123tcl:AlCl{sub 3} is compared with the MEICl:AlCl{sub 3} system. Conductivities of the pure salts 14dm124tcl, 1e4m124tcl and 3mtzcl are listed. Voltammograms of < 3 mole % of 14dm124tcl in NaCl:AlCl{sub 3} melts at 160-170 deg. C indicated that 14dm124tcl acted as a reversible anode in these melts. Results of AC-impedance measurements of sodium in basic MEICl:AlCl{sub 3} melts are reported as internal cell resistance versus time. The resistance must be considered too big for battery applications (> 20000{Omega} after 1 hour). Results of AC-impedance measurements of Neosepta{sup R} an- or cation exchange membranes are given. Battery experiments with Na/Nasicon/FeCl{sub 3}:MEICl:AlCl{sub 3}/Mo showed a reduction of Fe{sup 3+} to Fe{sup 2+} by the electrolyte. 100% utilization of the formed Fe{sup 2+} cathodic capacity was possible. (AB) (142 refs.).

  9. Organic electrolytes for sodium batteries

    Vestergaard, B.

    1993-04-01

    The aim was to develop new electrolyte mixtures. 1-methyl-3-ethyl-imidazolium chloride (MEICI) mixed with aluminum chloride was the standard of reference. The new electrolytes should be utilized with sodium in room temperature batteries. Several triazolium chloride derivates were prepared, including 1-ethyl-4-methyl-1,2,4-triazolium chloride, 1,4-dimethyl-1,2,4-triazolium chloride, 1,2-dimethyl-1,2,3-triazolium chloride and 1-methyl-3-paramethoxy,benzyl-1,2,3-triazolium chloride. Other nitrogen containing ring systems like 1,2-dimethyl-pyrazolium chloride, 3-methyl-thiazolium chloride and MEICl were synthesized. An attempt to prepare 1,4-dimethyl-tetrazolium chloride was successful. Recrystallization procedures and the melting point or decomposition temperature for the salt are also described. AlCl[sub 3] was added to the organic chloride salts and the reactions reported. Conductivity of 14dm124tcl:AlCl[sub 3] and the 1m3pmb123tcl:AlCl[sub 3] is compared with the MEICl:AlCl[sub 3] system. Conductivities of the pure salts 14dm124tcl, 1e4m124tcl and 3mtzcl are listed. Voltammograms of < 3 mole % of 14dm124tcl in NaCl:AlCl[sub 3] melts at 160-170 deg. C indicated that 14dm124tcl acted as a reversible anode in these melts. Results of AC-impedance measurements of sodium in basic MEICl:AlCl[sub 3] melts are reported as internal cell resistance versus time. The resistance must be considered too big for battery applications (> 20000[Omega] after 1 hour). Results of AC-impedance measurements of Neosepta[sup R] an- or cation exchange membranes are given. Battery experiments with Na/Nasicon/FeCl[sub 3]:MEICl:AlCl[sub 3]/Mo showed a reduction of Fe[sup 3+] to Fe[sup 2+] by the electrolyte. 100% utilization of the formed Fe[sup 2+] cathodic capacity was possible. (AB) (142 refs.).

  10. Solid polymer electrolyte from phosphorylated chitosan

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10−6 S/cm up to 6.01 × 10−4 S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10−3 S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications

  11. Solid polymer electrolyte from phosphorylated chitosan

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  12. Rheology of bauxite-based low-cement shotcreting castables

    Zhou, Xianxin

    Continuous research efforts on castable technology since two decades have lead to the transformation of placement mode from vibrating to self-flow to pumping and shotcreting. Shotcreting (an installation process of self-flow castables by combining pumping and shooting), as a high efficient installation technique, has demanded castable composition with specific characteristics in terms of rheology. Though, the understanding on self-low castable technology is appreciable, the state-of-art on shotcreting has not yet been revealed and the literature on this area is scarce. This demands an in-depth research on this particular subject. The goal of the current investigation is to develop a predictive method of shotcreting castable with good pumpability and self-flowability through rheological approach and to validate the approach through shotcreting trial. A bauxite-based low-cement self-flow castable has been chosen for this purpose. Basically, three test methods have been adopted to fulfill the stated purpose: flow table test, viscometer and a new rheometer. A rheometer has been used to measure the rheological behavior of chosen castables. Through this, two rheological constants are obtained which are used to predict the pumpability of chosen system. This approach has overcome the drawback of measuring rheology of fine matrix portion only to predict the castable behaviors. Fine matrix rheology has also been evaluated using viscometer for comparison purpose. The relationship between viscometer and rheometer measurement are analysed. To support the results of rheometer and viscometer, conductivity measurement on fine matrix portion, exothermic profile measurement on castable mix, mechanical and physical properties measurements after drying and the appearance of castable green bodies are also carried out. The whole work is divided into four stages. In stage I, all raw materials used in this work, including bauxites, cements, microsilicas, reactive aluminas, have been characterized for chemical composition and particle size distribution. In stage II, the influence of different variables such as particle size distribution, dispersant, cement, microsilica, reactive alumina, water addition and aging time on the rheology of low-cement castables has been studied. (Abstract shortened by UMI.)

  13. Study and development of a hydrogen/oxygen fuel cell in solid polymer electrolyte technology

    Mosdale, R.

    1992-10-29

    The hydrogen/oxygen fuel cell appears today as the best candidate to the replacing of the internal combustion engine for automobile traction. This system uses the non explosive electrochemical recombination of hydrogen and oxygen. It is a clean generator whom only reactive product is water. This thesis shows a theoretical study of this system, the synthesis of different kinds of used electrodes and finally an analysis of water movements in polymer electrolyte by different original technologies. 70 refs., 73 figs., 15 tabs.

  14. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates. However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  15. Integrated system for design and analysis of industrial processes with electrolyte system

    Takano, Kiyoteru; Gani, Rafiqul

    An algorithm for design and analysis of crystallization processes with electrolyte systems is presented. This algorithm consists of a thermodynamic part, a synthesis part and a design part. The three parts are integrated through a simulation engine. The main features of the algorithm is the use of...... thermodynamic insights not only to generate process alternatives but also to obtain good initial estimates for the simulation engine and for visualization of process synthesis/design. The main steps of the algorithm are highlighted through a case study involving an industrial crystallization process....

  16. Semi-active sliding mode control of vehicle suspension with magneto-rheological damper

    Zhang, Hailong; Wang, Enrong; Zhang, Ning; Min, Fuhong; Subash, Rakheja; Su, Chunyi

    2015-01-01

    The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity ( F- v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.

  17. Rheological Investigation on the Effect of Shear and Time Dependent Behavior of Waxy Crude Oil

    Japper-Jaafar A.

    2014-07-01

    Full Text Available Rheological measurements are essential in transporting crude oil, especially for waxy crude oil. Several rheological measurements have been conducted to determine various rheological properties of waxy crude oil including the viscosity, yield strength, wax appearance temperature (WAT, wax disappearance temperature (WDT, storage modulus and loss modulus, amongst others, by using controlled stress rheometers. However, a procedure to determine the correct parameters for rheological measurements is still unavailable in the literature. The paper aims to investigate the effect of shear and time dependent behaviours of waxy crude oil during rheological measurements. It is expected that the preliminary work could lead toward a proper rheological measurement guideline for reliable rheological measurement of waxy crude oil.

  18. Review Of Rheology Models For Hanford Waste Blending

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 μm diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 μm in diameter. The following are recommendations for the Hanford tank farms: Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations; Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction; Collect and characterize samples during the waste feed qualification process for each campaign; o From single source tanks that feed the qualification tanks; o Blends from the qualification tanks; Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation experience). As experience is gained, the use of blending models that have been validated with real waste may become useful to predict future blends; Obtain more data measurements to check the validity of unknown coefficients for a given blending equation.

  19. Solid polymer electrolytes based on alternating copolymers of vinyl ethers with methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate

    Graphical abstract: - Highlights: • Synthesis of alternating copolymers of vinyl ethers and vinylene carbonate. • Preparation of polymer electrolytes based on the alternating copolymers with LiTFSI. • Structure-property relationship for alternating copolymers-based electrolytes. • Interfacial stability between polymer electrolytes with lithium metal electrode. - Abstract: Alternating copolymers (poly(1a-g-alt-VC)) of vinyl ethers with various methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate (VC) were prepared, and the thermal and electrochemical properties of their polymer electrolytes with LiTFSI and interfacial stability between the polymer electrolyte and Li metal electrode were investigated. Tg's increased linearly with salt contents, and decreased with an increase in the chain length of methoxy oligo(ethyleneoxy)ethyl groups in the vinyl ethers at constant salt concentration. The slopes of Tg vs. [Li]/[O] were identical, independent of the polymer structure. The ionic conductivities of the polymer electrolytes increased with increasing the side-chain ethyleneoxy (EO) unit length of the vinyl ether unit in the alternating copolymers, and also their temperature dependences became relatively smaller in the polymer electrolytes having longer EO units in the vinyl ethers. The highest ionic conductivity, 1.2 × 10−4 S/cm at 30 °C, was obtained in the alternating copolymer with a side-chain EO unit length of 23.5 in the vinyl ether unit. Ion transport coupled with the segmental motion of the polymer is dominant in these polymer electrolytes. Interfacial resistance increased gradually with contact time, indicative of the formation of passivation films on the Li metal electrode. These polymer electrolytes are thermally stable and have large electrochemical windows of use

  20. Zirconium dioxide nanofilled poly(vinylidene fluoride-hexafluoropropylene) complexed with lithium trifluoromethanesulfonate as composite polymer electrolyte for electrochromic devices

    Highlights: • Successful synthesis of electrolyte by blending PVdF-HFP, ZrO2 and LiCF3SO3. • ZrO2 increased electrolyte conductivity by two orders of magnitude. • ZrO2 doubled bulk mechanical strength of electrolyte in terms of Young’s modulus. • Electrolytes gave a optimum optical transmittance of 52.6%. - Abstract: Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) polymer electrolyte containing zirconium dioxide nanocrystals (ZrO2-NC) and lithium trifluoromethanesulfonate (LiCF3SO3) has been synthesized using the conventional solution casting method. The addition of ZrO2-NC into the polymeric substrate gave remarkable properties in terms of the electrolyte’s ionic conductivity as well as its bulk mechanical strength. The enhanced amorphicity of the polymeric substrate due to ZrO2 and the nanofiller’s high dielectric constant make an excellent combination to increase the ionic conductivity (above 10−4 S cm−1). Increasing the nanofiller content raises the ionic conductivity of the electrolyte by two orders of magnitude of which the optimum is 2.65 × 10−4 S cm−1 at 13.04 wt% ZrO2-NC loading. Also, the Young’s modulus, an indicator of electrolyte’s mechanical stability, dramatically increased to 207 MPa upon loading 13.04 wt% ZrO2-NC. Using UV–vis spectroscopy, the electrolytes with 13.04% ZrO2-NC scanned from 200–800 nm wavelengths exhibited a maximum optical transmittance of 52.6% at 10 μm film thickness. The enhanced conductivity, high mechanical strength and reasonable optical transmittance shown by our composite polymer electrolyte make an excellent electrolyte for future energy saving smart windows such as electrochromic devices

  1. Comparative study of polymer matrices for gelled electrolytes of lithium batteries; Etude comparative de matrices polymeres pour electrolytes gelifies de batteries au lithium

    Du Pasquier, A.; Sarrazin, C.; Fauvarque, J.F. [CNAM, 75 - Paris (France); Andrieu, X. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    A solid electrolyte for lithium batteries requires several properties: a good ionic conductivity of about 10{sup -3} S/cm at 298 deg. K, a high cationic transport number (greater than 0.5), a redox stability window higher than 4.5 V, a good stability of the interface with the lithium electrode, and a sufficient mechanical stability. The family of gelled or hybrid electrolytes seems to meet all these requirements. Thus, a systematic study of the gelling of an ethylene carbonate and lithium bistrifluorosulfonimide (LiTFSI) based electrolyte has been carried out. The polymers used for gel or pseudo-gel synthesis are POE, PMMA and PAN which represent 3 different cases of interaction with the electrolyte. All the properties mentioned above have been studied according to the nature of the polymer and to the concentration of lithium salt, showing the advantages and drawbacks of each polymer. The possibility of using some of these gels in lithium-ion batteries has been tested by lithium intercalation tests in UF2 graphite at the C/10 regime and by the cycling of LiCoO{sub 2}/UF{sub 2} batteries at the C/5 regime. Interesting performances have been obtained on Li/PPy batteries which can operate at the 7.5 C regime. (J.S.)

  2. Kinetics of isothermal crystallization in isotactic polypropylene monitored with rheology and Fourier-transform rheology

    Linear and Fourier-transform rheology were used to study the influence of the oscillatory shear amplitude, ?0, on the isothermal crystallization at 140 deg. C of three commercial isotactic polypropylenes. The development of the crystallization was monitored through the time dependence of the dynamic storage modulus, G'(t), and the normalized intensity of the third harmonic of the stress waveform, I3 (t), a quantification of the degree of nonlinearity under oscillatory shear conditions. A change in the exponent, n, of the power law describing growth, according to Gnorm '(t) ? tn, was observed at t ? 4 h. For t 3 (t). Below ?0 0.05, these results were independent of the applied strain amplitude. Above ?0 = 0.05, failure of the polypropylene in the parallel plate geometry due to stress build-up was often observed in the late stages of crystallization. This was accompanied by a sharp decrease of G'(t), and a simultaneous sharp increase of I3 (t). Additionally, the presence of even harmonics in the spectrum was observed after failure. Notably, a plateau of I3 (t) at least 1 h before actual failure indicating a greater sensitivity to its onset than that of G'(t)

  3. Synthesis and characterization of partially fluorinated poly(acryl) ionomers for polymer electrolyte membrane fuel cells and ESR-spectroscopic investigation of the radically induced degradation of model compounds; Synthese und Charakterisierung teilfluorierter Poly(acryl)-Ionomere als Polymerelektrolytmembranen fuer Brennstoffzellen und ESR-spektroskopische Untersuchung der radikalinduzierten Degradation von Modellverbindungen

    Schoenberger, Frank

    2008-07-09

    In the first part of this work different strategies for the design of sulfonated partially fluorinated poly(aryl)s are developed and synthetically realized. The applied concept is that partially fluorinated poly(aryl)s are distinguished from the nonfluorinated ones by an enhanced acidity. Moreover they possess higher bond dissociation energies of both the C-F bonds and any adjacent C-H bonds which should be associated with a gain in radical stability and thus in chemical and thermal stability. In order to investigate the influence of the chemical structure of (partially fluorinated) monomeric building blocks, homo-polymers with different structural units (with aromatic C-F bonds, C(CF3)2-bridged and/or CF3-substituted phenylene rings) are synthesized by polycondensation and structurally characterized (elemental analysis, NMR spectroscopy, gel permeation chromatography). Established organic reactions, such as the Balz-Schiemann reaction, Suzuki reaction and Ullmann's biaryl synthesis, are applied for the synthesis of the specific monomers. After sulfonation of the homo-polymers (ionically crosslinked) membranes are prepared and characterized in terms of suitability as polymer electrolyte membrane in fuel cells (ion-exchange capacity, proton conductivity, thermal and chemical stability, water uptake, dimensional change). Both the chemical nature of the monomers and their constitution in the ionomer are important for the properties of the resulting membranes. Therefore microphase-separated multiblock-co-ionomers based on hydrophilic (sulfonated) and hydrophobic (partially fluorinated) telechelic macromonomers are prepared and characterized. Both the influence of the block length and the chemical nature of the used monomers on the membrane properties are comparatively investigated. On the basis of the findings gained in this part of the work, the advantages and disadvantages of partially fluorinated ionomer membranes are analyzed and discussed. The second part of this work deals with the EPR-spectroscopic investigation of radically induced degradation reactions of model compounds which represent structural units of poly(aryl) ionomers prepared in the first part of this work. These model compounds are exposed to hydroxyl and hydroperoxyl radicals in a flow cell, which are generated directly by photolysis of hydrogen peroxide in the cavity of an ESR spectrometer. By using this experimental setup different parameters (such as concentration of hydroxyl radicals, monomer concentration, flow rate, and pH value) are varied systematically and their influences in terms of the observed product formation of the aromatic model compounds with the hydroxyl radicals are estimated. Conclusions in terms of possible radical reactions of the poly(aryl) ionomer can be drawn from these investigations and information of avoidable structural features (e.g. type of the end groups of the ionomers) and avoidable conditions (e.g. inhomogeneities of pH values in the membrane) are obtained. (orig.)

  4. Rheological Studies of PMMA–PVC Based Polymer Blend Electrolytes with LiTFSI as Doping Salt

    Liew, Chiam–Wen; Durairaj, R.; Ramesh, S.

    2014-01-01

    In this research, two systems are studied. In the first system, the ratio of poly (methyl methacrylate) (PMMA) and poly (vinyl chloride) (PVC) is varied, whereas in the second system, the composition of PMMA–PVC polymer blends is varied with dopant salt, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) with a fixed ratio of 70 wt% of PMMA to 30 wt% of PVC. Oscillation tests such as amplitude sweep and frequency sweep are discussed in order to study the viscoelastic properties of samples. Elastic properties are much higher than viscous properties within the range in the amplitude sweep and oscillatory shear sweep studies. The crossover of and is absent. Linear viscoelastic (LVE) range was further determined in order to perform the frequency sweep. However, the absence of viscous behavior in the frequency sweep indicates the solid-like characteristic within the frequency regime. The viscosity of all samples is found to decrease as shear rate increases. PMID:25051241

  5. Rheological Studies of PMMA–PVC Based Polymer Blend Electrolytes with LiTFSI as Doping Salt

    Liew, Chiam–Wen; Durairaj, R.; Ramesh, S

    2014-01-01

    In this research, two systems are studied. In the first system, the ratio of poly (methyl methacrylate) (PMMA) and poly (vinyl chloride) (PVC) is varied, whereas in the second system, the composition of PMMA–PVC polymer blends is varied with dopant salt, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) with a fixed ratio of 70 wt% of PMMA to 30 wt% of PVC. Oscillation tests such as amplitude sweep and frequency sweep are discussed in order to study the viscoelastic properties of samples....

  6. Electrolytic orthoborate salts for lithium batteries

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  7. Electrolytic recovery of nickel from dilute solutions

    Electrolytic recovery of metals from dilute solutions using vertical electrodes is limited due to low current density and mass transfer rate. Therefore, a rotating tubular bed reactor with extended cathode surface areas was developed to improve mass transfer. In this study, nickel solutions from industrial Watts baths were used for the electrolytic recovery of nickel. The results showed that this process reduces the nickel concentrations to low levels with an optimum deposition rate. Electrolyte treatment followed by an ion-exchange process can further reduce the nickel content, even below the ppm level

  8. Reserve, flowing electrolyte, high rate lithium battery

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  9. Rheology of lava flows on Mercury: an experimental study

    Sehlke, A.; Whittington, A. G.

    2014-12-01

    The morphology of lava flows is controlled by the physical properties of the lava and its effusion rates, as well as environmental influences such as surface medium, slope and ambient temperature and pressure conditions. The important rheological properties of lavas include viscosity (η) and yield strength (σy), strongly dependent on temperature (T), composition (X), crystal fraction (φc) and vesicularity (φb). The crystal fraction typically increases as temperature decreases, and also influences the residual liquid composition. The rheological behavior of multi-phase lava flows is expressed as different flow morphologies, for example basalt flows transition from smooth pahoehoe to blocky `a`a at higher viscosities and/or strain rates. We have previously quantified the rheological conditions of this transition for Hawaiian basalts, but lavas on Mercury are very different in composition and expected crystallization history. Here we determine experimentally the temperature and rheological conditions of the pahoehoe-`a`a transition for two likely Mercury lava compositions using concentric cylinder viscometry. We detect first crystals at 1302 ºC for an enstatite basalt and 1317 ºC for a basaltic komatiite composition representative of the northern volcanic plains (NVP). In both cases, we observe a transition from Newtonian to pseudo-plastic response at crystal fractions > 10 vol%. Between 30 to 40 vol%, a yield strength (τ0) around 26±6 and 110±6 Pa develops, classifying the two-phase suspensions as Herschel-Bulkley fluids. The measured increase in apparent viscosity (ηapp) ranges from 10 Pa s to 104 Pa s. This change in rheological properties occurs only in a temperature range up to 100 ºC below the liquidus. By analogy with the rheological conditions of the pahoehoe-`a`a transition for Hawaiian basalts, we can relate the data for Mercury to lava flow surface morphology as shown in Figure 1, where the onset of the transition threshold zone (TTZ) for the enstatite basalt composition is around 1270 ˚C and 1300 ºC for the NVP composition. This is 70 ºC to 100 ºC higher than for Kilauea basalt. These data may allow emplacement temperatures and/or rates to be determined from remote sensing observations of the surface morphology of different volcanic fields on Mercury.

  10. Electrolytic Synthesis of Benzoic Anhydride from Benzoic Acid

    Takahashi, Takeshige; KAMADA, Mitsushi; タカハシ, タケシゲ; カマダ, ミツシ; 高橋, 武重; 鎌田, 三司

    1982-01-01

    Electrolysis of benzoic acid was investigated by means of controlled current operation in acetonitrile with platinum disk electrodes. Benzoic anhydride was obtained from an anolyte at 20-30% of current efficiency as one electron reaction. At the same time, acetamide and hydrogen perchlorate were obtained from the anolyte, and triethylamine was obtained from the catholyte. The yield of acetamide was nearly equal to benzoic anhydride. On the other hand, the yield of triethylamine ap...

  11. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications

    Solid-state polymer-silicate nanocomposite electrolytes based on an amorphous polymer poly[(oxyethylene)8 methacrylate], POEM, and lithium montmorillonite clay were fabricated and characterized to investigate the feasibility of their use as 'salt-free' electrolytes in lithium polymer batteries. X-ray scattering and transmission electron microscopy studies indicate the formation of an intercalated morphology in the nanocomposites due to favorable interactions between the polymer matrix and the clay. The morphology of the nanocomposite is intricately linked to the amount of silicate in the system. At low clay contents, dynamic rheological testing verifies that silicate incorporation enhances the mechanical properties of POEM, while impedance spectroscopy shows an improvement in electrical properties. With clay content ≥15 wt.%, mechanical properties are further improved but the formation of an apparent superlattice structure correlates with a loss in the electrical properties of the nanocomposite. The use of suitably modified clays in nanocomposites with high clay contents eliminates this superstructure formation, yielding materials with enhanced performance

  12. Electrolytic tiltmeters inside magnetic fields: Some observations

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths

  13. Electrolytic silver ion cell sterilizes water supply

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  14. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  15. Rheological characterization of petrolatum using a controlled stress rheometer.

    Pandey, Preetanshu; Ewing, Gary D

    2008-02-01

    The current study focuses on characterizing the rheological characteristics of different petrolatum grades using a controlled stress rheometer. Both steady-state flow and dynamic oscillatory tests were conducted on the petrolatums. The thermorheological scans were found to be the most informative and reproducible for this study. Significant differences in the structure were observed between the petrolatum grades. The structural differences were found to be most significant in the temperature range 25-35 degrees C. The findings from this study will help in identifying the critical parameters (for e.g., temperature, mixing) during the processing and handling of such materials, which can have a direct impact on the product rheology and performance. PMID:18302034

  16. Rheological Influence of Synthetic Zeolite on Cement Pastes

    Baldino, N.; Gabriele, D.; Frontera, P.; Crea, F.; de Cindio, B.

    2008-07-01

    Self Compacting Concrete (SCC) is characterized by specific and particular mechanical properties, often due to the addition of components, able to modify the paste rheology. Concrete properties are strongly affected by characteristics of the fresh cement paste that is the continuous phase dispersing larger aggregates. Therefore, aiming to characterize mechanical properties of final concrete is relevant to know rheological properties of the base cement paste. In this work cement pastes for SCC were prepared by using, as additive, synthetic zeolite 5A in different amounts and they were analyzed by small amplitude oscillations. Experimental results have shown a relationship between dynamic moduli and zeolite content, identifying a proper level of zeolite addition. Moreover samples containing traditional fine additives, such as silica fume and limestone, were prepared and experimental data were compared to those obtained by using zeolite. It was found that zeolite seems to give better properties to cement paste than other additives can do.

  17. Rheological characterization of chicory root (Cichorium intybus L. inulin solution

    J. T. C. L. Toneli

    2008-09-01

    Full Text Available Inulin is a polysaccharide frequently used as a sugar or fat replacer in the food industry, which offers the advantage of a functional effect similar to those of dietary fibers. By cooling or freezing an inulin concentrated solution, a more concentrated solution precipitates as a paste-like substance, while the liquid phase forms a diluted solution. In this work, the effect of storage temperature of inulin concentrated solution as well as temperature on the rheological behavior of liquid and precipitated phases obtained from a process of phase separation were evaluated. The precipitated phase of inulin was evaluated under two conditions: pure and formulated with encapsulating agents. It was observed that a reduction in storage temperature resulted in a higher inulin precipitation, which produced higher apparent viscosity values for the precipitated phase. All the samples analyzed had a shear-thinning rheological behavior.

  18. Rheological and thermal properties of PP-based WPC

    Mazzanti, V.; Mollica, F.; El Kissi, N.

    2014-05-01

    Wood Plastic Composite (WPC) has attracted great interest in outdoor building products for the reduced cost and the possibility of using recycled materials. Nevertheless the material shows two problems: the large viscosity due to the presence of high concentrations of filler and the degradation of cellulose during processing The aim of this work was to investigate the rheological and thermal properties of WPC. The material used for the experiments was a commercial PP-based WPC compound, with different concentrations of natural fibers (30, 50, 70% wt.). The thermal properties were studied to check for degradation of natural fibers during the subsequent rheological tests. Analyzing the storage and loss moduli and the complex viscosity curves obtained using a parallel plate rheometer it was possible to observe some features related to the viscoelastic nature of the composite.

  19. Low-temperature plastic rheology of olivine determined by nanoindentation

    Kranjc, Kelly; Rouse, Zachary; Flores, Katharine M.; Skemer, Philip

    2016-01-01

    Low-temperature plasticity is a deformation mechanism that occurs mainly at high stress and low temperatures and may be important in the shallow lithosphere, at the tips of cracks, and in laboratory experiments. Previous studies investigating the low-temperature plasticity of the mineral olivine have exhibited wide variability in their extrapolations to the athermal flow strength or Peierls stress. To better constrain the rheology of olivine, nanoindentation tests were performed on samples in the temperature range of 0-175C. The indentation properties were converted to uniaxial properties using a finite element-based method. The data were fit to a standard flow law for low-temperature plasticity, and Peierls stresses between 5.32 and 6.45 GPa were obtained. These results provide increased confidence in the extrapolation of high-pressure and high-temperature laboratory experiments to low-temperature conditions and illustrate the applicability of nanoindentation methods to the study of mineral rheology.

  20. The Rheological Properties of the Biopolymers in Synovial Fluid

    Krause, Wendy E.; Klossner, Rebecca R.; Wetsch, Julie; Oates, Katherine M. N.; Colby, Ralph H.

    2005-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan), its interactions with anti-inflammatory drugs and other biopolymers, and its role in synovial fluid are being studied. We are investigating the rheological properties of sodium hyaluronate (NaHA) solutions and an experimental model of synovial fluid (comprised of NaHA, and the plasma proteins albumin and γ-globulins). Steady shear measurements on bovine synovial fluid and the synovial fluid model indicate that the fluids are highly viscoeleastic and rheopectic (stress increases with time under steady shear). In addition, the influence of anti-inflammatory agents on these solutions is being explored. Initial results indicate that D-penicillamine and hydroxychloroquine affect the rheology of the synovial fluid model and its components. The potential implications of these results will be discussed.

  1. Estimate of Hanford Waste Rheology and Settling Behavior

    Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.; Mahoney, Lenna A.; Hall, Mark N.; Thomson, Scott L.; Smith, Gary Lynn; Johnson, Michael E.; Meacham, Joseph E.; Knight, Mark A.; Thien, Michael G.; Davis, Jim J.; Onishi, Yasuo

    2007-10-26

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory (PNNL), Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford waste analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted.

  2. Rheological studies of aqueous stabilised nano-zirconia particle suspensions

    Asad Ullah, Khan; Anwar Ul, Haq; Nasir, Mahmood; Zulfiqar, Ali.

    2012-02-01

    Full Text Available In the present investigation aqueous suspensions of nano- and colloidal range particles are stabilised by changing the ambient pH. Rheology is used to establish the stability of the suspensions and it is found that the rheology of the suspensions is strongly dependent on the pH values. The viscosity [...] is highest close to the iso-electric point of the powders. At the iso-electric point the net surface charge on the powder particles is zero and is the cause of the high viscosity. Away from the iso-electric point, the particles are charged, giving rise to a double layer phenomenon and causing the reduction in viscosity. It is also found that increasing the solid contents of the suspensions reduces the pH region of low viscosity.

  3. Rheology and TIC/TOC results of ORNL tank samples

    Pareizs, J. M.; Hansen, E. K.

    2013-04-26

    The Savannah River National Laboratory (SRNL)) was requested by Oak Ridge National Laboratory (ORNL) to perform total inorganic carbon (TIC), total organic carbon (TOC), and rheological measurements for several Oak Ridge tank samples. As received slurry samples were diluted and submitted to SRNL-Analytical for TIC and TOC analyses. Settled solids yield stress (also known as settled shear strength) of the as received settled sludge samples were determined using the vane method and these measurements were obtained 24 hours after the samples were allowed to settled undisturbed. Rheological or flow properties (Bingham Plastic viscosity and Bingham Plastic yield stress) were determined from flow curves of the homogenized or well mixed samples. Other targeted total suspended solids (TSS) concentrations samples were also analyzed for flow properties and these samples were obtained by diluting the as-received sample with de-ionized (DI) water.

  4. Study and rheological characterization of various bone ash porcelain formulations

    The bone ash porcelain is a widely accepted product on the market because their qualities such as high strength and whiteness, to differ from common table porcelains. Its traditional formulation comes from an English recipe, consisting of 25% of kaolin, 25% of feldspar and 50% of bovine bone ash. In some studies, this proportion is adapted to regional conditions, optimizing the formulation according to the raw materials available. In this study, the rheological behavior of bone porcelain suspensions, in which the flux feldspar is partially substituted by an alternative flux (espudomenio, wollastonite and glass). The results show that the rheological behavior of porcelain is affected by the size, shape, surface area and particle size distribution of particles in suspension

  5. Microstructure and rheology of microfibril-polymer networks.

    Veen, Sandra J; Versluis, Peter; Kuijk, Anke; Velikov, Krassimir P

    2015-12-14

    By using an adsorbing polymer in combination with mechanical de-agglomeration, the microstructure and rheological properties of networks of microfibrils could be controlled. By the addition of sodium carboxymethyl cellulose during de-agglomeration of networks of bacterial cellulose, the microstructure could be changed from an inhomogeneous network with bundles of microfibrils and voids to a more homogeneous spread and alignment of the particles. As a result the macroscopic rheological properties were altered. Although still elastic and gel-like in nature, the elasticity and viscous behavior of the network as a function of microfibril concentration is altered. The microstructure is thus changed by changing the surface properties of the building blocks leading to a direct influence on the materials macroscopic behavior. PMID:26434637

  6. Time-dependent rheological behaviour of bacterial cellulose hydrogel.

    Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V

    2016-01-01

    This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy. PMID:26478298

  7. Simulation and rheological analysis of Hanford Tank 241-SY-101

    Rheological characterization and small scale simulation of Hanford Tank 241-SY-101 has been initiated to aid in the remediation efforts for the Department of Energy Hanford Site. The study has been initiated in response to growing concerns about the potential flammability hazard pertaining to the periodic release of up to 10,000 cubic feet of hydrogen, nitrous oxide, nitrogen, and ammonia gases. Various stimulants emulating the radioactive waste stored in this tank have been used to ascertain the rheological parameters of the waste, simulate the ongoing processes of gas generation and release phenomenon inside the tank, and determine the feasibility of jet mixing to achieve a controlled release of the gas mixture

  8. Different Applications of Rheological Techniques in Studies of Physical Gels

    Hvidt, Søren

    . The gel properties are dominated by repulsive interactions between micelles, and oscillatory measurements allow a determination of the repulsive potential between micelles. Oscillatory bulk modulus measurements have been used to determine the dynamics of unimer-micelle motions. The strain properties....... Rheological techniques are used extensively in studies of physical gels and gelation. In the lecture some of the common techniques used in studies of gels will be addressed. Small amplitude oscillatory measurements are the most common type of measurement performed, and such measurements allow a determination...... modulus, respectively, are particularly useful for investigating slow motions in gels and long-time properties. An example of how these different techniques have been used to investigate the rheological properties of sputum [4] will be discussed. The results demonstrate that sputum is a viscoelastic...

  9. The Rheology of the Earth in the Intermediate Time Range

    A. E. SCHEIDEGGER

    1970-06-01

    Full Text Available The evidence bearing upon the rheology of the " tectonically
    significant layers" of the Earth (" tectonosphere " in the intermediate
    time range (4 hours to 15000 years is analyzed. This evidence is
    based upon observations of rock-behavior in the laboratory, of seismic
    aftershock sequences, of Earth tides and of the decay of the Chandler wobble.
    It is shown that of the rheological models (Maxwell-material, Kelvin-material,
    and logarithmically creeping material advocated in the literature, only that
    based on logarithmic creep does not contradict any of the observational
    evidence available to date. In addition, a strength limit may be present.

  10. Investigations of rheological properties of diclofenac sodium gel preparation

    Firuza Maksudova

    2013-04-01

    Full Text Available It is well-known that the majority of non-steroidal anti-inflammatory drugs (NSAIDs are ulcerogenic. Gel or ointment preparations of NSAIDs are free from this side-effect, which is a prerequisite for the increase of aforementioned forms of NSAIDs. A major quality indicator of gels and ointments are rheological properties. Along with determining the quality of preparation, they influence manufacturing, expiration date and terms of storage. This article demonstrates the results of investigation of rheological indices of 3% gel preparation of diclofenac sodium such as plasticity, structural viscosity, and thixotropy. Obtained results confirm that the developed gel preparation has thixotropy, plasticity and is classified as a Bingham system.

  11. Scaling of plate-tectonic convection with pseudoplastic rheology

    Korenaga, Jun

    2010-01-01

    The scaling of plate-tectonic convection is investigated by simulating thermal convection with pseudoplastic rheology and strongly temperature-dependent viscosity. The effect of mantle melting is also explored with additional depth-dependent viscosity. Heat-flow scaling can be constructed with only two parameters, the internal Rayleigh number and the lithospheric viscosity contrast, the latter of which is determined entirely by rheological properties. The critical viscosity contrast for the transition between plate-tectonic and stagnant-lid convection is found to be proportional to the square root of the internal Rayleigh number. The relation between mantle temperature and surface heat flux on Earth is discussed on the basis of these scaling laws, and the inverse relationship between them, as previously suggested from the consideration of global energy balance, is confirmed by this fully dynamic approach. In the presence of surface water to reduce the effective friction coefficient, the operation of plate tec...

  12. Electrodeposition of cadmium from aqueous fluoborate electrolytes

    A new method of electroplating cadmium on high-strength steel from aqueous fluoborate electrolytes has been developed at Argonne National Laboratory. The cadmium coatings are fine grained, coherent, and strongly adherent to the substrate. With this method, a high-rate electrodeposition is achieved in an electrolyte flow cell using an optimized pulse-nucleation step followed by deposit growth under a DC or pulsed current. This method result in minimal hydrogen codeposition during plating, which can lead to steel embrittlement

  13. Production of electrolyte membranes for ZEBRA batteries

    Mercadelli, Elisa; Capiani, Claudio; Sanson, Alessandra

    2012-01-01

    ZEBRA batteries (Zero Emission Battery Research Activities), are one of the possible solutions to electrical storage for stationary applications due to their high energy and power density. These systems are based on nickel-sodium chloride cells operating at high temperatures (about 270-350?C), and that rely on a ceramic ?"-alumina tube or planar membrane as solid electrolyte. The ceramic process needed to produce the electrolytic compartment has a key role to enhance and adapt the batter...

  14. Magnesium removal in the electrolytic zinc industry

    Booster, J.L.

    2003-01-01

    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum) or expensive. Therefore, an alternative process route is explored in which magnesium is removed from zinc electrolyte by selective precipitation of magnesium fluoride (sellaite). As standard applica...

  15. Block-Copolymer Lithium Battery Electrolytes

    Eitouni, Hany

    2011-03-01

    With high energy density at low cost, Li ion has become the most prevalent portable rechargeable battery chemistry in the world. As demand for smaller and lighter batteries grows, the energy density limitation of Li ion batteries presents a significant hurdle. Pushing the existing Li ion platform to higher energy densities compromises lifetime and safety, and these have emerged as the most pressing challenges in today's industry. The weakest link in terms of safety and stability of Li ion batteries is the organic liquid electrolyte that facilitates ionic transport between the electrodes. The continuous electrochemical degradation of the electrolyte at the electrodes causes poor cycle life of the batteries, and in some cases, runaway reactions that lead to explosions. Dry polymer electrolytes coupled to Li metal anodes had been considered a high energy alternative to liquid-based systems, as the solid-solid interface promised to alleviate the stability problems of the liquid electrolyte. However, repeated cycling of Li metal anodes leads to dendrite formation, reducing battery life and compromising safety. Recent theoretical work indicates that dendrite growth can be stopped if the shear modulus of current polymer electrolytes can be increased by three orders of magnitude without a significant decrease in ionic conductivity. Thus, the mechanical properties of polymer electrolytes are particularly important in rechargeable solid-state lithium batteries. Because ion transport in polymers is coupled to the motion of the molecules that are solvating the ions, the presence of mobile molecules is essential to allow for a conductive medium. However, the same mobility of molecules is detrimental to the polymer's structural integrity. There is, thus, a clear need to develop methodologies for decoupling the conductive and mechanical properties of polymer electrolytes. Electrolytes comprised of self-assembled block-copolymer nanostructures overcome this principal constraint.

  16. Electrolyte Additives for Phosphoric Acid Fuel Cells

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.; Berg, Rolf W.; Bjerrum, Niels

    1993-01-01

    Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen reduction rate. Among useful additives we found potassium perfluorohexanesulfonate (C6F13SO3K), potassium nonafluorobutanesulfonate (C4F9SO3K), perfluorotributylamine [(C4F9)3N], and polymethylsiloxanes [(-...

  17. Modeling of nematic electrolyte and nonlinear electroosmosis

    Calderer, M. Carme; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J.

    2016-01-01

    We derive a mathematical model of a nematic electrolyte based on the Leslie-Ericksen theory of liquid crystal flow. Our goal is to investigate the nonlinear electrokinetic effects that occur because the nematic matrix is anisotropic, in particular, transport of ions in a direction perpendicular to the electric field as well as quadratic dependence of the induced flow velocity on the electric field. The latter effect makes it possible to generate sustained flows in the nematic electrolyte that...

  18. Elements with an organic electrolyte

    Toyeguti, K.; Indeima, T.

    1983-04-21

    The element contains an anode of light metal and a cathode of CuO which forms a solid solution with Cr203. The optimal chromium to copper ratio is 5 to 95. The mixture of CuCo3 and C4203 powders is cured for 3 hours at 100C in air and then the temperature is increased to 900C and they are cured for an additional three hours. The produced powder is pressed into a nickel grid and cured for three hours at 900C. With a theoretical capacity of the electrode of 1.0 amperehours (2.3 amperehours per cubic centimeter), the utilization factor of the active mass in the case of a 200 ohm load is 32 percent and with a loading of 2 kiloohms, 87 percent. Electrically conducting additives and a binder may be introduced into the electrode. The element with the acquired electrodes and an anhydrous liquid electrolyte made of gamma-butyrolactone which contains 1 mole per liter of LiBF4 has a discharge voltage of approximately 1.25 volts for 50 seconds with a 200 ohm load and of 1,000 hours with a 2 kiloohm load.

  19. Rheological characterization of bitumen modified with waste nitrile rubber (NBR)

    SOUDANI, Khedoudja; Cerezo, Véronique; HADDADI, Smaïl

    2016-01-01

    This paper presents the results of a laboratory experimental study which evaluates the characteristics of modified road bitumen with waste nitrile rubber (NBR) from shoe sole at high in service temperature. After a characterization of waste nitrile rubber, different blends were processed by varying the waste NBR content and time mixing. The characteristics associated with the manufacture namely viscosity at 135°C and storage stability were assessed. The rheological characteristics were measur...

  20. Investigating snow rheology with a large-scale coaxial rheometer

    Bacher, M; Naam, M.; Faug, T.; Bellot, H.; Ousset, F.

    2007-01-01

    Different models are applied to simulate snow avalanches. A big challenge of these simulations is the appropriate calculation of dynamic flow parameters from the starting zone till the deposit area. With our experiments we want to investigate the rheology of snow constricted to particular conditions: a flow with low speed and high flow depth. These characteristics can often be observed in the deposit area of dense snow avalanches. The employed experimental device is a rheometer that was fi...

  1. Prevention of Peritoneal Adhesions Using Polymeric Rheological Blends

    Hoare, Todd; Yeo, Yoon; Bellas, Evangelia; Bruggeman, Joost P.; Kohane, Daniel S.

    2013-01-01

    The effectiveness of rheological blends of high molecular weight hyaluronic acid (HA) and low molecular weight hydroxypropyl methylcellulose (HPMC) in the prevention of peritoneal adhesions post-surgery is demonstrated. The physical mixture of the two carbohydrates increased the dwell time in the peritoneum while significantly improving the injectability of the polymer compared to hyaluronic acid alone. HA-HPMC treatment decreased the total adhesion area by ~70% relative to a saline control o...

  2. Determination of rheological properties using hybrid optimisation method

    B. Foder; K. Sołek

    2012-01-01

    Purpose: of this paper is description of special software developed for identification of parameters values of rheological models used by ProCAST package for simulation of state of stress in the solidifying castings.Design/methodology/approach: The PyTensionTest uses a hybrid optimization algorithm. This algorithm includes the stochastic method which searches the starting point for direct search optimization method. The identification of parameters values is based on measurement results obtai...

  3. Rheological characterization of borate crosslinked fluids using oscillatory measurements

    Edy, I Ketut Oscar

    2010-01-01

    Fracturing fluid has a very important role in hydraulic fracturing treatment. Viscosity of hydraulic fracturing fluid affects transporting, suspending, and deposition of proppant, as well as flow back after treatment. It should also be capable to develop the necessary fracture width to accept proppants or to allow deep acid penetration. Compatibility with formation fluids and material has to be taken into account (Guo et al. 2007). Rheology of the fracturing fluid is fundamenta...

  4. The rheological and fracture properties of Gouda cheese.

    Luyten, J.M.J.G.

    1988-01-01

    The rheological and fracture behaviour of Gouda cheese was studied. Methods for determining these properties of visco-elastic materials are described. Application of the theory of fracture mechanics, after modification and expansion, to visco-elastic materials with a low or no yield stress is discussed. For such materials, of which Gouda cheese is an example, the flow properties greatly affect the fracture behaviour.From the effect of variation in composition (fat, water, NaCl and Ca content,...

  5. Microstructure and Rheology near an Attractive Colloidal Glass Transition

    Microstructure and rheological properties of a thermally reversible short-ranged attractive colloidal system are studied in the vicinity of the attractive glass transition line. At high volume fractions, the static structure factor changes very little but the low frequency shear moduli varies over several orders of magnitude across the transition. From the frequency dependence of shear moduli, fluid-attractive glass and repulsive glass-attractive glass transitions are identified

  6. Dark chocolate's compositional effects revealed by oscillatory rheology

    KASPER, van der Vaart; DEPYPERE, Frédéric; De Graef, Veerle; SCHALL, Peter; ABDOULAYE, Fall; Bonn, Daniel; Dewettinck, Koen

    2013-01-01

    In this study, two types of oscillatory shear rheology are applied on dark chocolate with varying volume fraction, particle size distribution, and soy lecithin concentration. The first, a conventional strain sweep, allows for the separation of the elastic and viscous properties during the yielding. The second, a constant strain rate sweep, where the strain rate amplitude is fixed as the frequency is varied, is analyzed to obtain Lissajous curves, dissipated energy, and higher order nonlinear ...

  7. Rheological behaviour of wormlike micelles : effect of salt content

    Candau, S.; Khatory, A.; Lequeux, F.; Kern, F.

    1993-01-01

    We study the effect of salt content on the rheological properties of wormlike micelles formed from hexadecyltrimethylammonium bromide (CTAB) in presence of potassium bromide (KBr) and of cetylpyridinium chlorate (CPClO3) in presence of sodium chlorate (ClO3Na). Upon increasing the salt concentration, at fixed surfactant concentration, we observe for both systems a maximum of the zero-shear viscosity ?0. For salt concentrations less than that corresponding to the maximum of [MATH], the variati...

  8. Rheology of Defatted Ultrafiltration-Diafiltration Soy Proteins

    Mila P. Hojilla-Evangelista; Abdellatif A. Mohamed; Jingyuan Xu; David J. Sessa

    2008-01-01

    The linear and non-linear rheological properties of defatted soy proteins produced by ultrafiltration-diafiltration were investigated at three temperatures. Five concentrations ranging from 10 to 30% of the defatted Ultrafiltered-Diafiltered (UD) soy proteins were prepared. The properties of defatted UD soy proteins depended on concentration and temperature. At 10%, defatted UD soy proteins exhibited almost viscous fluid behavior. When concentration increased or temperature decreased, t...

  9. Evaluation for rheological constitutive relations, using the indentation technique

    Fang, Lei

    1992-01-01

    A simple experimental method of determining the rheological constitutive relations is proposed. The method relies upon an analysis of the frictionless contact of a rigid spherical indenter and the rheological materials. The proposal addresses problems in two fields: rheological constitutive models and contact mechanics. It attempts to evaluate the rheological constitutive relations using an indentation technique. A systematic, optimization-based material parameter/function indentation model is proposed. The identification algorithm is based on a modified Marquardt-Levenberg method. A new integral constitutive equation for viscoelastic materials is derived. The derivation is carried out so that a damage function is included in the model in a relatively convenient form. Inclusion of damage effects makes this constitutive equation considerably more general than the widely accepted K-BKZ integral model. The single-step and double-step stress relaxation indentation experiments on asphalt materials were performed. The K-BKZ, Wagner, and nonlinear Volterra models were evaluated. It is demonstrated that the new integral constitutive model shows a very good agreement with the experimental data. The idea of damage function is introduced not only to have a better fit of data, but the damage (or irreversibility) is observed experimentally. Also, the creep indentation tests on composites were presented. A multiaxial theory of creep deformation for particle-strengthened metal matrix composites (Zhu-Weng Theory) was evaluated. The goal of the proposed research is to develop the indentation technique for use in basic mechanical studies. From the indentation test, material response is measured. The data are used in conjunction with the material parameter identification model to optimally back calculate the constitutive relations.

  10. Rheological properties of hydroxypropylmethyl cellulose/sodium dodecylsulfate mixtures

    Katona Jaroslav M.; Njaradi Sandra ?.; Sovilj Verica J.; Petrovi? Lidija B.; Mar?eta Brankica B.; Milanovi? Jadranka L.

    2014-01-01

    Rheological properties of mixtures of hydroxypropylmethyl cellulose (HPMC), a nonionic associative cellulose ether, and sodium dodecylsulfate (SDS), an anionic surfactant, were investigated by viscosity measurements performed at different shear rates (0.1-6000 s-1). HPMC/SDS mixtures containing different concentrations of SDS (CSDS=0.00-3.50 % w/w) and HPMC concentrations which corresponded to the overlap parameter c/c*=3, 6, and 12 were prepared. All HPMC/SDS mixtures were found to be ...

  11. Rheology and flocculation of polymer-modified microfibrillated cellulose suspensions

    Karppinen, Anni

    2014-01-01

    In this thesis, the rheology and flocculation of microfibrillated cellulose (MFC) suspensionswas modified using different cationic and anionic polymers and surface modification. For this purpose, MFC suspensions were studied simultaneously with a dynamic rotational rheometer and two imaging methods. The flocculation tendency of the suspensions was mainly evaluated using photographing through a transparent rheometer cup, and for some suspensions, optical coherence tomography (OCT), which gives...

  12. Rheological properties of sheared vesicle and cell suspensions

    Lamura, A.; Gompper, G.

    2014-01-01

    Numerical simulations of vesicle suspensions are performed in two dimensions to study their dynamical and rheological properties. An hybrid method is adopted, which combines a mesoscopic approach for the solvent with a curvature-elasticity model for the membrane. Shear flow is induced by two counter-sliding parallel walls, which generate a linear flow profile. The flow behavior is studied for various vesicle concentrations and viscosity ratios between the internal and the external fluid. Both...

  13. Rheology of ABS and binary of organo clay nanocomposites

    nanocomposites of poly(acrylonitrile-butadiene-styrene) and organically modified montmorillonite clays by melt intercalation on a co-rotating twin-screw extruder were prepared and characterized. It was studied the effects of screw torque and a binary mixture of organically modified montmorillonites on the intercalation/exfoliation of organoclays in the polymer matrix, characterized by X-ray diffraction morphological analyses and by capillary and parallel plates rheological analyses. (author)

  14. Effect of Fluoropolymer Antidripping Agent on Rheological Behavior of LLDPE

    Obr, Aleš; Zatloukal, Martin

    2011-07-01

    In this work, high molecular weight polytetrafluoroethylene based antidripping agent was blended with Ziegler-Natta based LLDPE in different concentrations. Rheological characterization was consequently performed for all the blends and the obtained results were compared with the pure LLDPE. It has been found that high molecular weight PTFE based melt modifier MM 5935 EF significantly enhancing the shear viscosity/elasticity and especially the extensional viscosity of the LLDPE melt.

  15. Study of the rheological behavior of chocolate and margarine [abstract

    Debaste, F.; Haut, B; Liégeois, S.; Hospied, E.; Fonoll, JR.; Bécu, M.

    2010-01-01

    In the food industry, the production process is often established in an empirical way, according to rules of good practice. These methods present gaps, in particular at the level of the production regularity. To model and optimize the processes, it is highly useful to determine the physico-chemical properties of the product. In this work, chocolate and margarine are studied, both aiming direct industrial application but also aiming a general enhancement of rheological mechanism understanding....

  16. Rheological evaluation of simulated neutralized current acid waste

    A byproduct of the Purex process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste, is chemically neutralized and stored in double shell tanks on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant on the Hanford Site. Rheological and transport properties of NCAW slurry were evaluated. First, researchers conducted lab rheological evaluations of simulated NCAW. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. The NCAW in the tank will either be retrieved as is, i.e., no change in the concentration presently in the tank, or will be slightly concentrated before retrieval. Sluicing may be required to retrieve the solids. Three concentrations of simulated NCAW were evaluated that would simulate the different retrieval options: NCAW in the concentration that is presently in the tank; a slightly concentrated NCAW, called NCAW5.5; and equal parts of NCAW settled solids and water (simulating the sluicing stage), called NCAW1:1. The physical and rheological properties of three samples of each concentration at 25 and 1000C were evaluated in the laboratory. The properties displayed by NCAW and NCAW5.5 at 25 and 1000C allowed it to be classified as a pseudoplastic non-Newtonian fluid. NCAW1:1 at 25 and 1000C displayed properties of a yield-pseudoplastic non-Newtonian fluid. The classical non-Newtonian models for pseudoplastic and yield-pseudoplastic fluids were used with the laboratory data to predict the full-scale pump-pipe network parameters

  17. The role of surface rheology in liquid film formation

    Scheid, Benoît; Delacotte, Jérôme; Dollet, Benjamin; Rio, Emmanuelle; Restagno, Frédéric; van Nierop, Ernst E.A.; Cantat, Isabelle; Langevin, Dominique; Stone, Howard H. A.

    2010-01-01

    The role of surface rheology in fundamental fluid dynamical systems, such as liquid coating flows and soap film formation, is poorly understood. We investigate the role of surface viscosity in the classical film-coating problem. We propose a theoretical model that predicts film thickening based on a purely surface-viscous theory. The theory is supported by a set of new experimental data that demonstrates slight thickening even at very high surfactant concentrations for which Marangoni effects...

  18. Rheology of colloidal gas aphrons (MICROFOAMS) made from different surfactants

    Zhao, Jiafei; Pillai, Saurabh; Pilon, Laurent

    2009-01-01

    This paper extends our previous study on microfoam rheology made from non-ionic (Tween 20) surfactants to ionic surfactants. Anionic (sodium dodecyl sulfate) and cationic (cetyl trimethylammonium bromide) surfactants were used to generate microfoams by stirring an aqueous surfactant solution at high speed in a baffled beaker. Pipe flow experiments were performed in cylindrical stainless steel pipe 1.5 mm in diameter under adiabatic and fully developed laminar flow conditions. The porosity, bu...

  19. Microbiological and rheological studies on Portuguese kefir grains

    Pintado, Manuela E.; Silva, J. A. Lopes da; Fernandes, Paulo B.; Malcata, F. xavier; Hogg, Tim A

    1996-01-01

    The native bacteria and yeasts present in Portuguese kefir grains stored under four distinct sets of environmental conditions have been isolated and identified on the basis of morphology and biochemical tests. The microbial population of the kefir grains as a whole has been characterized in terms of rates of biomass production and formation of lactic acid and ethanol. The rheological properties of the purified polysaccharide (kefiran) produced by the microflora of the grains and accumulate...

  20. Rheological evaluation of simulated neutralized current acid waste - transuranics

    At the Hanford Plutonium and Uranium Extraction Plant (PUREX), in Richland, Washington, plutonium and uranium products are recovered from irradiated fuel by a solvent extraction process. A byproduct of this process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste (CAW), is chemically neutralized and stored in double shell tanks (DSTs) on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant located nearby. In B-Plant, the transuranic (TRU) elements in NCAW are separated from the non-TRU elements. The majority of the TRU elements in NCAW are in the solids. Therefore, the primary processing operation is to separate the NCAW solids (NCAW-TRU) from the NCAW liquid. These two waste streams will be pumped to suitable holding tanks before being further processed for permanent disposal. To ensure that the retrieval and transportation of NCAW and NCAW-TRU are successful, researchers at Pacific Northwest Laboratory (PNL) evaluated the rheological and transport properties of the slurries. This evaluation had two phases. First, researchers conducted laboratory rheological evaluations of simulated NCAW and NCAW-TRU. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. This scale-up procedure has already been successfully used to predict the critical transport properties of a slurry (Neutralized Cladding Removal Waste) with rheological properties similar to those displayed by NCAW and NCAW-TRU

  1. Rheological behavior of castor oil mixed with different pyromellitic esters

    Boran Sorina; Tamas Andra

    2014-01-01

    The paper presents the rheological behavior study of castor oil mixed with different pyromellitic esters. The pyromellitic tetraesters used were obtained through the esterification of pyromellitic anhydride with a special alcohol of a complex alkyl-aryl structure (2-phenoxy-ethanol) in conjunction with a linear aliphatic alcohol with variable length (n-butanol, n-decanol). The influence of pyromellitic esters’ structure and concentration was determined, as ...

  2. Rheological Properties Of Some Surfactant-Based Fracturing Fluids

    Andra Tamas

    2014-02-01

    Full Text Available The paper presents the rheological behavior study of some cationic surfactant-based aqueous solutions that can be used as fracturing fluids. It was followed the influence of salt type and concentration, as well as that of temperature by setting the dependence between the shear stress ? and the shear rate ? ? . The analysis of dependence between ? and ? ? demonstrates that all the studied solutions have non-Newtonian behavior with flow behavior index smaller than 1.

  3. Rheology and wear of crosslinked UHMWPE for total joint replacements

    Horák, Zdeněk; Mikešová, Jana; Šlouf, Miroslav; Fencl, J.

    Madrid : Facultad de Medicina , Universidad Autónoma de Madrid, 2007. s. 23. [UHMWPE International Meeting /3./ "Polyethylene in total joint replacement systems: Concerns and solutions". 14.09.2007-15.09.2007, Madrid] R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : UHMWPE * total joint replacements * rheology Subject RIV: CD - Macromolecular Chemistry

  4. Charge regulation at semiconductor-electrolyte interfaces.

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. PMID:25595623

  5. Boron clusters as highly stable magnesium-battery electrolytes.

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W

    2014-03-17

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electrolytes is very high. PMID:24519845

  6. Rheology of cellulose nanofibrils in the presence of surfactants.

    Quennouz, Nawal; Hashmi, Sara M; Choi, Hong Sung; Kim, Jin Woong; Osuji, Chinedum O

    2015-12-16

    Cellulose nanofibrils (CNFs) present unique opportunities for rheology modification in complex fluids. Here we systematically consider the effect of ionic and non-ionic surfactants on the rheology of dilute CNF suspensions. Neat suspensions are transparent yield-stress fluids which display strong shear thinning and power-law dependence of modulus on concentration, G' ? c(2.1). Surfactant addition below a critical mass concentration cc produces an increase in the gel modulus with retention of optical clarity. Larger than critical concentrations induce significant fibril aggregation leading to the loss of suspension stability and optical clarity, and to aggregate sedimentation. The critical concentration was the lowest for a cationic surfactant (DTAB), cc ? 0.08%, while suspension stability was retained for non-ionic surfactants (Pluronic F68, TX100) at concentrations up to 8%. The anionic surfactant SDS led to a loss of stability at cc ? 1.6% whereas suspension stability was not compromised by anionic SLES up to 8%. Dynamic light scattering data are consistent with a scenario in which gel formation is driven by micelle-nanofibril bridging mediated by associative interactions of ethoxylated surfactant headgroups with the cellulose fibrils. This may explain the strong difference between the properties of SDS and SLES-modified suspensions. These results have implications for the use of CNFs as a rheology modifier in surfactant-containing systems. PMID:26466557

  7. Characterization of long-chain branching effects in linear rheology

    Thimm, W B; Roths, T; Trinkle, S; Honerkamp, J; Thimm, Wolfgang; Friedrich, Christian; Roths, Tobias; Trinkle, Stefan; Honerkamp, Josef

    2000-01-01

    This is the last part of a series of five articles published in Journal of Rheology (Maier et al. (1998), Thimm et al. (1999a), Thimm et al. (2000a), Thimm et al. (2000c)) in which progress on the determination of binary molecular weight distributions from rheological data has been reported. In this article is discussed in how far the developed methods can also be used to characterize long-chain branching effects. Monomodal samples which contain long-chain branches will show two relaxation processes in the rheological examination, which are converted to two peaks in a corresponding molecular weight distribution. But these samples will show only one peak in a molecular weight distribution determined by a size-exclusion chromatography examination. This difference can be used to characterize long-chain branched materials as will be explained in this article. The usefulness of this method is demonstrated by examining polymers, which contain definite long-chain branches specified from the way, they were made.

  8. Rheological study of polypropylene irradiated with polyfunctional monomers

    Otaguro, H.; Rogero, S.O.; Yoshiga, A.; Lima, L.F.C.P.; Parra, D.F. [IPEN/CNEN - Instituto de Pesquisas Energeticas e Nucleares, Av. Professor Lineu Prestes, 2242, CEP 05508-000 - Cidade Universitaria, Sao Paulo, SP (Brazil); Artel, B.W.H. [EMBRARAD - Empresa Brasileira de Radiacoes Ltda, Av. Cruzada Bandeirante, 269, CEP 06705-140 - Cotia (Brazil); Lugao, A.B. [IPEN/CNEN - Instituto de Pesquisas Energeticas e Nucleares, Av. Professor Lineu Prestes, 2242, CEP 05508-000 - Cidade Universitaria, Sao Paulo, SP (Brazil)], E-mail: ablugao@ipen.br

    2007-12-15

    The aim of this paper is to investigate the rheological properties of polypropylene (PP) modified by ionization radiation (gamma rays) in the presence of two different monomers. The samples were mixed in a twin-screw extruder with ethylene glycol dimethacrylate (EGDMA) or trimethylolpropane trimethacrylate (TMPTMA) with concentration in the range of 0.5-5.0 mmol. After that, they were irradiated with 20 kGy dose of gamma radiation. The structural modification of polypropylene was analyzed in the melt state by measuring melt flow rate (MFR), {eta}* (complex viscosity) and G' (storage modulus) in the angular frequency range of 10{sup -1} to 3 x 10{sup 2} rad s{sup -1}. From the oscillatory rheology data, one could obtain the values of {eta}{sub 0} (zero shear viscosity) that would be related to the molar mass. All results were discussed with respect to the crosslinking and degradation process that occur in the post-reactor treatment to produce controlled rheology polypropylene. The resulting polymeric materials were submitted the cytotoxicity in vitro test by neutral red uptake methodology with NCTC L 929 cell line from American Type Culture Collection bank. All modified PP samples presented no cytotoxicity.

  9. Rheological study of polypropylene irradiated with polyfunctional monomers

    The aim of this paper is to investigate the rheological properties of polypropylene (PP) modified by ionization radiation (gamma rays) in the presence of two different monomers. The samples were mixed in a twin-screw extruder with ethylene glycol dimethacrylate (EGDMA) or trimethylolpropane trimethacrylate (TMPTMA) with concentration in the range of 0.5-5.0 mmol. After that, they were irradiated with 20 kGy dose of gamma radiation. The structural modification of polypropylene was analyzed in the melt state by measuring melt flow rate (MFR), η* (complex viscosity) and G' (storage modulus) in the angular frequency range of 10-1 to 3 x 102 rad s-1. From the oscillatory rheology data, one could obtain the values of η0 (zero shear viscosity) that would be related to the molar mass. All results were discussed with respect to the crosslinking and degradation process that occur in the post-reactor treatment to produce controlled rheology polypropylene. The resulting polymeric materials were submitted the cytotoxicity in vitro test by neutral red uptake methodology with NCTC L 929 cell line from American Type Culture Collection bank. All modified PP samples presented no cytotoxicity

  10. Rheological study of ?-irradiated rare earth oxide based ferrofluids

    The present work reports on the optical and rheological properties of unexposed and gamma irradiated rare earth (RE) oxide nanoparticle- based ferrofluids (FF). The ferrofluids were produced by dispersing surfactant coated terbium doped gadolinium oxide (Tb:Gd2O3) nanoparticles in ethanol medium and later on subjected to energetic gamma radiation (1.25 MeV) at select doses (97Gy, 2.635 kGy). The synthesized nanoparticles are of ?9 nm size as predicted from transmission electron microscopy (TEM). The nanoparticle system exhibits cubic crystal structure as evident from X-ray diffraction (XRD) study. The photoluminescence (PL) measurement reveals creation of defect states when FFs are subjected to gamma irradiation. Tb related transition could also be visualized from the PL measurements. Rheology measurements show unusual shear thinning behavior of the ferrofluids. The flow behavior of all the samples can be correlated with the biexponential decay curve fitting which reveals that decay phenomenon is governed by two independent mechanism: fast and slow events. The variation of the decay parameter with irradiation dose is attributed to defect formation, role impurity ion (Tb) and weakening of inter nanoparticle bonding. Tb incorporation might have created a energy state which may lead to the variation of rheological behavior. (author)

  11. Rheology of Sodium Caseinate Stabilized Oil-in-Water Emulsions

    Dickinson; Golding

    1997-07-01

    We report on shear rheological measurements at 30°C of fine oil-in-water emulsions (volume-surface average diameter tetradecane as the dispersed phase (10, 35, or 45 vol%). Strong sensitivity of rheological behavior to total protein concentration was indicated by both steady-state viscometry and small-deformation oscillatory experiments. The behavior can be classified into three types, depending on the protein/oil ratio. (1) Emulsions containing insufficient protein for (near-) saturation protein surface coverage develop a time-dependent increase in low-stress apparent viscosity and associated shear-thinning behavior; this can be attributed to bridging flocculation. (2) Emulsions having full protein surface coverage but relatively little excess unadsorbed protein in the continuous phase are stable Newtonian liquids. (3) Emulsions containing a substantial excess of unadsorbed sodium caseinate exhibit considerable pseudoplasticity which can be attributed to depletion flocculation. Taken as a whole, the time-dependent rheological properties for this set of emulsions as a function of protein content and oil volume fraction are largely consistent with our previous results on the creaming stability and the particle gel microstructure for these same emulsion systems. In particular, the reversible flocculation of emulsion samples of high protein content is readily explicable in terms of depletion flocculation of droplets by unadsorbed protein existing in the form of approximately spherical caseinate submicelles. PMID:9241217

  12. Aging and nonlinear rheology of thermoreversible colloidal gels

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  13. Dielectric and rheological properties of polyaniline organic dispersions

    Bohli, N.; Belhadj Mohamed, A.; Vignras-Lefbvre, V.; Miane, J.-L.

    2009-05-01

    This paper reports the examination of the evolution of polyaniline-organic solvent interactions in the temperature range of 294-353 K. For this purpose, rheological and dielectric investigations have been undertaken for dispersions of plast-doped polyaniline in two different solvents (dichloroacetic acid and formic acid/dichloroacetic acid mixture). Dielectric permittivity has been investigated using the open ended coaxial line method in the frequency range of [100 MHz, 10 GHz]. Dielectric loss spectra of both dispersions showed a relaxation peak which was well fitted by Havriliak-Negami function. The relaxation was attributed to a Maxwell Wagner Sillars relaxation within polyaniline clusters. The difference found between relaxation parameters of the pure solvent and polyaniline dispersions was attributed to the solvent/polyaniline interactions. The relaxation time relative to the PANI/DCAA dispersion followed an Arrhenius law. While a Vogel-Fulcher-Tammann law was found for the relaxation time of PANI/DCAA-FA dispersion. Above a certain temperature, 318 K for PANI/DCAA and 313 K for PANI/DCAA-FA, the rheological parameters of the dispersions changed, thus indicating a morphological change of polyaniline in the dispersion. In the same range of temperature, ? and ? relaxation parameters undergo significant changes. Those changes in dielectric and rheological parameters seem to be related to a structural change occurring in the polyaniline organic dispersion systems while increasing temperature. An interesting correlation between permittivity and viscosity was obtained.

  14. Rheological behaviour of self-compacting micro-concrete

    Burak Felekoğlu

    2014-12-01

    The rheological behaviour of Self-Compacting Micro-Concrete (SCMC) mixtures has been investigated within the scope of this paper. Rheological measurements have been performed using a novel rheometer equipped with a ball measuring system. Three SCMC mixtures with the same water/cement (W/C) ratios (0.44 by weight) and cement/limestone powder (1/1 by weight) with different High Range Water Reducing Admixtures (HRWRA) contents (1, 1.2 and 1.4% by weight of cement) have been tested. For comparison purpose, three conventional cement paste mixtures with varying W/C ratios (0.30, 0.325 and 0.35) were also prepared. Flow parameters such as yield value and plastic viscosity have been measured along with shear thickening or thinning behaviour. Furthermore, thixotropic behaviour of the various mixtures have been measured using hysteresis areas. Finally, advanced rheological properties of micro-concretes and cement pastes have been compared and discussed. While cement pastes investigated in this study possessed high yield values (34–217 Pa) and very low viscosities (5–19 Pa.s), comparatively high viscosities (17–45 Pa.s) and low yield values (0–47 Pa) have been obtained from SCMCs. The high viscosity of micro-concretes improves the solid holding capacity of this composite. According to flow curve analysis, cement paste mixtures and SCMCs exhibited shear thinning and shear thickening characteristics, respectively.

  15. Mud Rheology and Wave Dissipation on a Shallow Muddy Shelf

    Su, S.; Sheremet, A.; Kaihatu, J. M.; Allison, M. A.

    2008-12-01

    Wave dissipation characteristics are studied based on field measurements collected on Atchafalaya Shelf, Louisiana, USA, in Spring 2008. During energetic storms, large swells liquefy the bed, resuspend the mobilized sediment, and produce wave-supported fluid-mud layers which last for the duration of the storm. As the bed sediment is reworked, wave dissipation rate increases rapidly, reducing swell energy by an average of 30-40% over about 4 km. Surprisingly, the largest net dissipation rates (up to 60% energy decrease over 4 km) are observed in the wake of the storm, when the water column is nearly clear of sediment and no fluid- mud layers are detected. The analysis of the vertical structure of wave phase suggests an increased role of bottom sediment rheology; direct observations (bed sampling) indicate that at this stage the bed is typically in an under-consolidated state, better described by non-Newtonian (e.g., visco-elastic) approximations. We employ numerical inversion techniques based on nonlinear three-wave interaction models to study the rheological properties of the bed sediment, and understand the importance of non-Newtonial rheology for wave dissipation processes.

  16. Rheological Behavior of Dense Assemblies of Granular Materials

    Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.

  17. Rheological properties of kaolin and chemically simulated waste

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature

  18. The effect of temperature on rheological properties of endodontic sealers

    Rai, Roshni U.; Singbal, Kiran P.; Parekh, Vaishali

    2016-01-01

    Aim: The purpose of this study was to investigate temperature-dependent rheological properties of three endodontic sealers MTA Fillapex (Angelus, Brazil), AH Plus (Dentsply, Germany), and EndoREZ (Ultradent, USA). Materials and Methods: Five samples of each group of endodontic sealers (n = 30) were freshly mixed and placed on the plate of a rheometer (MCR 301, AntonPaar, Physica) and examined at 25°C and 37°C temperature, respectively. Rheological properties of the sealers were calculated according to the loss modulus (G″), storage modulus (G′), loss factor (Tan δ), and complex viscosity (η*) using dynamic oscillatory shear tests. Results: Statistical analysis (Wilcoxon signed-rank test) demonstrated that MTA Fillapex exhibited higher loss modulus (G″ > G′) and a crossover region. AH Plus and EndoREZ had a higher storage modulus (G′ > G″) at both temperatures. Loss factor (Tan δ) of MTA Fillapex was the highest compared to AH Plus, followed by EndoREZ. With a temperature change from 25°C to 37°C, MTA Fillapex exhibited a decrease while AH Plus exhibited an increase and, EndoREZ exhibited the least change, in complex viscosity (η*). Conclusions: EndoREZ exhibited better rheological properties compared to the other two test sealers. PMID:27099414

  19. Hanford Waste Physical and Rheological Properties: Data and Gaps - 12078

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant (WTP). These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed. (authors)

  20. The Rheology and Processing of Renewable Resource Polymers

    Conrad, Jason D.; Harrison, Graham M.

    2008-07-01

    Bio-based polymers offer an alternative to conventional fossil fuel-based materials, in particular for commodity applications such as single-use products. In this work, we report on the rheology and processing of two bio-based polymers, namely poly-hydroxyalkanoate (PHA) copolymers and poly-lactic acid (PLA), and their blends. These materials are derived from renewable resources, and can degrade under the appropriate conditions. The rheology is investigated in shear, elongation, and transient modes. Of particular importance is the degradation of these materials at typical processing conditions, and the impact of polymer architecture on the extensional properties. Using results from these rheological investigations, appropriate thermal and flow conditions are employed in a DSM Xplore microcompounder, with the cast film attachment, to produce films of PHA copolymers blended with PLA. The resultant films are characterized, as a function of both material composition and processing history, using DSC, WAXD, tensile testing, and SEM, to investigate the effect of varying PHA content on the final properties.