WorldWideScience

Sample records for domestic waste water

  1. Domestic applications for aerospace waste and water management technologies

    Science.gov (United States)

    Disanto, F.; Murray, R. W.

    1972-01-01

    Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.

  2. Phyto-treatment of domestic waste water using artificial marshes

    Energy Technology Data Exchange (ETDEWEB)

    Vaca, Rodrigo; Sanchez, Fabian [Oleoducto de Crudos Pesados (OCP), Quito (Ecuador)

    2009-12-19

    The phyto-treatment of domestic waste water by the use of artificial marshes system consists in beds of treatment working in series, this beds are constituted basically by inverse filters of inert granular material where the nutrients are cached from the residual water. Most of the treatment is carried in roots steams and leaves of defined species of plants. The rest of the treatment is performed by anaerobic and aerobic bacteria that grow within the beds. In the proximities of the roots and the area near the bed surface, aerobic processes take place and in deepest zones, anaerobic processes take place. It is desirable that the aerobic process will be the predominant one, mainly to avoid bad odors; this is obtained with the correct selection of plants which must have dense and deep roots. The economic factor is also important for the selection of this type of treatment system, the cost of operation and maintenance is minimum compared with other type of systems. The operation cost is practically zero because it is not required provision of electrical energy for its operation; energy used is the solar energy through the photosynthesis process. The maintenance is reduced to pruning and cleaning that can be performed twice a year. The goals of this paper is to show our experiences during the construction, stabilization and operation of these systems installed in 13 OCP locations with different types of weather and explain the conclusions arrived after construction and operation; present this kind of systems as an alternative of economic wastewater treatment in terms of construction, operation and maintenance and as environment friendly treatment. (author)

  3. Water recovery and solid waste processing for aerospace and domestic applications

    Science.gov (United States)

    Murawczyk, C.

    1973-01-01

    The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.

  4. Projection and enterprises controlling in domestic waste water econom

    OpenAIRE

    Schröder Reinhard; Franz Anselm; Augustínová Edita

    2000-01-01

    The development of the cost of communal waste water disposal is widely discussed among the population, among politicians and experts. Not only the absolute amount of the charged fees are the cause of concern, but also their increase over the last few years. As part of this thesis, the PC software SloVaKon, which facilitates project and operation decision, will be designed to apply the experience gained during the building and expansion of the waste water industry in Germany´s five new federal...

  5. Domestic wastes: assault course

    International Nuclear Information System (INIS)

    In the management of domestic waste, some incoherencies persist. The tax on waste is always 20.6% instead of 5.5% for water or transport. The price of buying back electric power by Electricite de France is too low according to the appreciation of the cogeneration club. Regarding to the sell of stream to industrial, stream buyers are not always reliable, no enough guarantee are given by them to allow to cogeneration club to invest. (N.C.)

  6. Case study of the effectiveness of passive grease trap for management on domestic kitchen waste water

    Science.gov (United States)

    Nidzamuddin, M. Y.; Juffrizal, K.; Mustapha, F.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.

    2015-05-01

    Household waste, generally known as trash or garbage is mostly includes food wastes, product packaging, and other miscellaneous inorganic wastes that are coming from domestic household. Grease waste such as oil and fats can contaminate water and also clot on pipes provoking blockages. Thus, waste water from kitchen sink need a proper way of filtration. Grease trap developed in this paper is viable in trapping the grease residue. The experiments have been conducted in controlled environment and the objectives are to investigate the effectiveness of grease trap by proving the existence of retention time and the expected ratio of collected water and oil during experiment process using a prototype model.

  7. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  8. Projection and enterprises controlling in domestic waste water econom

    Directory of Open Access Journals (Sweden)

    Schröder Reinhard

    2000-03-01

    Full Text Available The development of the cost of communal waste water disposal is widely discussed among the population, among politicians and experts. Not only the absolute amount of the charged fees are the cause of concern, but also their increase over the last few years. As part of this thesis, the PC software SloVaKon, which facilitates project and operation decision, will be designed to apply the experience gained during the building and expansion of the waste water industry in Germany´s five new federal states to the conditions in the Slovak republic. For this, a comparison of both country´s topographical, technical, legal and economical conditions proved necessary.

  9. Domestic Waste: Sources, Effects, and Management

    International Nuclear Information System (INIS)

    Waste is any discarded material. Domestic wastes are those produced by individual activities. In common with other living organisms, humans discharge waste substances to the environment that in turn re-energize the endless cycle of nature. Human activities are closely associated with ambient environment (soil , water, or air) through accumulation of domestic waste. Such household hazardous waste deposit arise from the discharge of domestic activities in the form of municipal solid waste (household, commercial and public street wastes), night soil (human and animal body wastes, excreta, or excrement). In rural areas, night soil is one of several components of the refuse that pollute the land. The surface water may be also directly polluted by domestic wastes or agricultural wastes. But in urbanized areas, household wastes, bathroom and laundry are conveniently flushed away by water as domestic wastewater through sewerage system, and disposed onto land or into receiving water, or in some countries it is treated and re-discharged for domestic usage. Solid waste in the form of kitchen garbage and other household refuse is collected for landfill disposal or for re-industrialization. Many domestic waste influence indoor air quality in urban and rural areas as for example the fuel used for cooking, smoke from cooking and from smoking habits, modern building materials, insulation, fabrics and furniture, cleaning materials, solvents, pesticides, personal care products, organic material or vegetable origin and dander from domestic life

  10. Performance of and biomass characterisation in a UASB reactor treating domestic waste water at ambient temperature

    OpenAIRE

    Ruiz, I; Soto, Manuel|d(Soto Castiñeira); María C. Veiga; Ligero, P.; Vega, A.; Blázquez, R. (Ricardo)

    1998-01-01

    [Abstract] Domestic waste water from the city of A Coruña (NW Spain) was treated anaerobically in a laboratory-scale upflow anaerobic sludge blanket (UASB) digester, at 20°C, at hydraulic retention times (HRTs) of longer than 24 h, the COD and SS removal efficiencies remained practically constant and higher than 85%. When reducing the HRT from 24 to 5 h, the COD removal decreased from 85% to 53% and the SS removal from 89% to 63%. The methane recovered in the biogas ranged from 25% to 3...

  11. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  12. Anaerobe-Aerobe Submerged Biofilter Technology for Domestic Waste Water Treatment

    International Nuclear Information System (INIS)

    Water pollution in the big cities in Indonesia, especially in DKI Jakarta has shown serious problems. One of the potential sources of water pollution is domestic wastewater that is wastewater from kitchens, laundry, bathing and toilets. These problems have become more serious since the spreads of sewerage systems are still low, so that domestic, institutional and commercial wastewater cause severe water pollution in many rivers or shallow ground water. Bases on the fact that the progress of development of sewerage system is still low, it is important to develop low cost technology for individual house hold or semi communal wastewater treatment such as using anaerobic and aerobic submerged biofilter. This paper describes alternative technology for treatment of household wastewater or organic wastewater using anaerobic and aerobic submerged biofilter. Using this technology can decrease BOD, COD and Suspended Solids (SS) concentration more than 90 %. (author)

  13. Water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Appendices

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    Water and sewage treatment systems are presented with concentration on the filtration of water. Equipment is described for organic removal, solids removal, nutrient removal, inorganic removal, and disinfection of the water. Such things as aseline hardware, additional piping connections, waste disposal, and costs involved are also reported.

  14. Phytodepuration plant for the treatment of domestic waste water - realized in a hotel. La fitodepurazione degli effluenti domestici - il caso di una struttura alberghiera

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, M.

    1982-12-01

    The processes and the parameters which cause eutrophization of a water system are reported. In addition, the advantage of a phytodepuration plant with respect to conventional plants for the treatment of waste waters are listed. In this paper the phytodepuration plant for the treatment of domestic waste water is described which was by ENEA during 1980 and 1981 in collaboration with the Grand Hotel S. Michele in Cetraro (Italy). The plant utilizes the water hyacinth (Eichhornia crassipes) as a biological filter. The results so far obtained suggest the convenience of the phytodepuration system for touristic village, camping or industries which are operating during the summer time.

  15. The application of membrane Bio-Reactor for East Java Domestic waste water treatment

    Directory of Open Access Journals (Sweden)

    Aisyah E. Palupi

    2008-01-01

    Full Text Available Membrane bioreactors for wastewater treatment research have been carried out. In this system, membrane replaces the function of the sedimentation tank. Until recent time, fouling was still the main problem for membrane processes. This research has investigated the effect of MLSS concentration and back flushing on external membrane bioreactor performances such as COD and BOD reduction, and the back flushing effect for domestic wastewater treatment. Polyacrylonitril hollow fiber membrane with pore diameter 0.1-0.01 m, surface area 0.075 m2 was used in this research. This process was at HRT 5 hour, no sludge disposal, intermittent operation, and permeate exiting from membrane shell side. Optimum condition was obtained at a transmembrane pressure (TMP of 1.45 bar. Back flushing was conducted for 10 minute at 3.0 bar pressure. Effective back flushing was shown after operation at MLSS of 7500 and 10000 mg/l. The result of this research shows that COD and BOD in the domestic wastewater decreased almost 98%. MLSS and MLVSS degradations were 98.6% and 98%, respectively.

  16. Aspects of contamination produced by domestic waste landfills of receiving waters in Madrid province

    OpenAIRE

    Pastor piñeiro, Jesús; Urcelay, A; Adarve, M. J.; Hernández, A. J.; SA?NCHEZ, A.

    1993-01-01

    This study describes some aspects of the anión contení in surface waters and ground waters as well as in the soils affected by three landfills in the Province of Madrid. The anions concerned are chlorides, fluorides, sulfates, phosphates and nitrales. The pH and conductivity were also determined. These parameters may constitute abiotic indicators lo observe the alterations produced in the water and soil by the leachates from the landfills. The results show that the concentrations ...

  17. Pharmaceuticals in domestic and agricultural waste waters - problem and its solution.

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Soudek, Petr; Hudcová, T.; Syrovátka, J.; Van?k, Tomáš

    Shanghai : Tongji University, 2014, s. 523-530. [International Conference on Wetland Systems for Water Pollution Control (ICWS2014). Shanghai (CN), 12.10.2014-16.10.2014] R&D Projects: GA TA ?R TA01020573; GA ?R(CZ) GA14-22593S Institutional support: RVO:61389030 Keywords : Constructed wetland * pharmaceutical * Phragmites Subject RIV: DJ - Water Pollution ; Quality

  18. Pharmaceuticals in domestic and agricultural waste waters – problem and its solution.

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Soudek, Petr; Hudcová, T.; Syrovátka, J.; Van?k, Tomáš

    2015-01-01

    Ro?. 10, ?. 3 (2015), s. 564-572. ISSN 1751-231X R&D Projects: GA ?R(CZ) GA14-22593S; GA TA ?R TA01020573 Grant ostatní: European Regional Development Fund(XE) CZ.2.16/ 3.1.00/24014 Source of funding: O - opera?né programy Institutional support: RVO:61389030 Keywords : constructed wetland * pharmaceutical * Phragmites Subject RIV: DJ - Water Pollution ; Quality

  19. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Final report

    Science.gov (United States)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    The manner in which current and advanced technology can be applied to develop practical solutions to existing and emerging water supply and waste disposal problems is evaluated. An overview of water resource factors as they affect new community planning, and requirements imposed on residential waste treatment systems are presented. The results of equipment surveys contain information describing: commercially available devices and appliances designed to conserve water; devices and techniques for monitoring water quality and controlling back contamination; and advanced water and waste processing equipment. System concepts are developed and compared on the basis of current and projected costs. Economic evaluations are based on community populations of from 2,000 to 250,000. The most promising system concept is defined in sufficient depth to initiate detailed design.

  20. Experience on domestic waste segregation in Ghana

    OpenAIRE

    Osei Bonsu Patterson

    2013-01-01

    Pollution from domestic wastes is a major environmental challenge in Ghana and many developing countries. Most of these countries depend almost entirely on landfills for waste management, which has proved to be expensive, inefficient and unsustainable. A sustainable solution to this problem is productive use of waste such as recycling. The main challenge that may limit recycling in Ghana and some of these countries is that a chunk of the wastes are littered on the environment, and the rest is...

  1. Domestic wash water reclamation

    Science.gov (United States)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    System consists of filtration unit, reverse-osmosis module, tanks, pumps, plumbing, and various gauges, meters, and valves. After water is used in washing machine or shower, it is collected in holding tank. Water is pumped through series of five particulate filters. Pressure tank supplies processed water to commode water closet.

  2. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report summary

    Science.gov (United States)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    This study of water reclamation and waste disposal is directed toward a more efficient utilization of natural resources. From an ecological standpoint improved methods of land use, water processing equipment, and ideal population profiles are investigated. Methods are described whereby significant reduction in water usage can be achieved by the adoption of presently available and practically applied technological concepts. Allowances are made for social, natural, and economic contingencies which are likely to occur up to the year 2000.

  3. Experience on domestic waste segregation in Ghana

    Directory of Open Access Journals (Sweden)

    Osei Bonsu Patterson

    2013-06-01

    Full Text Available Pollution from domestic wastes is a major environmental challenge in Ghana and many developing countries. Most of these countries depend almost entirely on landfills for waste management, which has proved to be expensive, inefficient and unsustainable. A sustainable solution to this problem is productive use of waste such as recycling. The main challenge that may limit recycling in Ghana and some of these countries is that a chunk of the wastes are littered on the environment, and the rest is collected in bulk in the same waste bin, thereby mixing them. The cost of collecting littered wastes, or separating mixed wastes could be prohibitive, making recycling uneconomical. In order to productively utilize wastes, adequate and separate waste bins must be provided for collecting the different components of wastes. However, budgetary constraints may not allow many countries to purchase expansive waste bins for the different components of wastes. Consequently, a simple waste bin, comprising a metal frame on which polypropylene sack (pp-sack can be hanged to collect inorganic wastes has been developed by the author. The waste bin (new bin can be manufactured industrially using plastic or fabricated by local artisans at an affordable price. This document describes the new bin. Experience in collecting organic and inorganic wastes generated in a house in separate waste bins (waste segregation for the past 16 years is also highlighted.

  4. Domestic Waste Disposal Practice of Sylhet City

    OpenAIRE

    Md. Tauhid-Ur-Rahman

    2006-01-01

    This study focuses the analysis of current practices of household waste disposal, problems faced by the residents during waste disposal and their views for improvement of the waste management system. However, it has been found that traditional concepts and technologies usually adopted in waste collection is becoming insufficient and ineffective causing more than half of the generated wastes (44%) remain uncollected and disposed of locally, which results in adverse impacts like water pollution...

  5. Characterization of an Am-Be PGNAA set-up developed for in situ liquid analysis: Application to domestic waste water and industrial liquid effluents analysis

    International Nuclear Information System (INIS)

    A prompt gamma neutron activation analysis (PGNAA) set-up with an Am-Be source developed for in situ analysis of liquid samples is described. The linearity of its response was tested for chlorine and cadmium dissolved in water. Prompt gamma efficiency of the system has been determined experimentally using prompt gamma of chlorine dissolved in water and detection limits for different elements have been derived for domestic waste water. A methodology to analyze any kind of liquid is then proposed. This methodology consists mainly on using standards with water as bulk or in the case of absolute method, to use gamma efficiency determined with prompt gammas emitted by chlorine dissolved in water. To take into account the thermal neutron flux variations inside the samples, flux monitoring was carried out using a He-3 neutron detector placed at the external sample container surface. Finally, to correct for the differences in gamma attenuation, average gamma attenuations factors were calculated using MCNP5 code. This method was then checked successfully by determining cadmium in industrial phosphoric acid and our result was in good agreement with that obtained with inductively coupled plasma (ICP) method.

  6. Characterization of an Am-Be PGNAA set-up developed for in situ liquid analysis: Application to domestic waste water and industrial liquid effluents analysis

    Science.gov (United States)

    Idiri, Z.; Mazrou, H.; Amokrane, A.; Bedek, S.

    2010-01-01

    A prompt gamma neutron activation analysis (PGNAA) set-up with an Am-Be source developed for in situ analysis of liquid samples is described. The linearity of its response was tested for chlorine and cadmium dissolved in water. Prompt gamma efficiency of the system has been determined experimentally using prompt gamma of chlorine dissolved in water and detection limits for different elements have been derived for domestic waste water. A methodology to analyze any kind of liquid is then proposed. This methodology consists mainly on using standards with water as bulk or in the case of absolute method, to use gamma efficiency determined with prompt gammas emitted by chlorine dissolved in water. To take into account the thermal neutron flux variations inside the samples, flux monitoring was carried out using a He-3 neutron detector placed at the external sample container surface. Finally, to correct for the differences in gamma attenuation, average gamma attenuations factors were calculated using MCNP5 code. This method was then checked successfully by determining cadmium in industrial phosphoric acid and our result was in good agreement with that obtained with inductively coupled plasma (ICP) method.

  7. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  8. Decreased Phototoxic Effects of TiO? Nanoparticles in Consortium of Bacterial Isolates from Domestic Waste Water

    Science.gov (United States)

    Mathur, Ankita; Kumari, Jyoti; Parashar, Abhinav; T., Lavanya; Chandrasekaran, N.; Mukherjee, Amitava

    2015-01-01

    This study is aimed to explore the toxicity of TiO2 nanoparticles at low concentrations (0.25, 0.50 & 1.00 ?g/ml); on five bacterial isolates and their consortium in waste water medium both in dark and UVA conditions. To critically examine the toxic effects of nanoparticles and the response mechanism(s) offered by microbes, several aspects were monitored viz. cell viability, ROS generation, SOD activity, membrane permeability, EPS release and biofilm formation. A dose and time dependent loss in viability was observed for treated isolates and the consortium. At the highest dose, after 24h, oxidative stress was examined which conclusively showed more ROS generation & cell permeability and less SOD activity in single isolates as compared to the consortium. As a defense mechanism, EPS release was enhanced in case of the consortium against the single isolates, and was observed to be dose dependent. Similar results were noticed for biofilm formation, which substantially increased at highest dose of nanoparticle exposure. Concluding, the consortium showed more resistance against the toxic effects of the TiO2 nanoparticles compared to the individual isolates. PMID:26496250

  9. The Application of Microorganism for Swine Farm and Domestic Waste water Biodegradation and Enzyme Increasing by Radiation

    International Nuclear Information System (INIS)

    Bacillus sp. And mixed culture were carried out for biodegradation of domestic wastewater (in front of Office od Atoms for Peace) was found that 1%, 12 hours. Bacillus sp. and 1%, 12 hours. mixed culture had maximum removal efficiency in term of COD at 93.48%. Bacillus. alone could reduce COD in small amount. Gamma Radiation improvement efficiency of enzyme production of Bacillus sp. had been studied. The result indicated that Bacillus (Bs.), Bacillus pumilus megaterium (Bm) and Bacillus cereus (Bc) had no proteinase enzyme except Bm. After irradiation of 4 isolates, they all showed high proteinase increasing. The ratio of clear zone diameter to colony diameter of Bs, Bc, and Bp at 1 - 10 kGy showed more proteinase. After irradiation at 6, 2, 6 and 8 kGy, all Bs, Bc, Bm and Bp showed maximum ratio of clear zone diameter to colony diameter at 9, 9, 10 and 14 respectively. Thus irradiation of all 4 isolate effectively enhance proteinase production. But amylase could not increase; while lipase showed decreased effect in Bp, and no change in Bs. After irradiation of B13, B16, B35, B50 and B68 at 2, 6, 4, 10 and 10 kGy, the ratio of clear zone diameter to colony diameter were at 7,4 ,4, 5 and 4 respectively, Proteinase could effectively increase by radiation. According to Saccharomyces cerevisiae (Sc), proteinase increases with the ratio of clear zone diameter to colony diameter were at 11.

  10. Solid domestic wastes as a renewable resource: European experience

    Science.gov (United States)

    Fridland, V. S.; Livshits, I. M.

    2011-01-01

    Ways in which different types of solid domestic wastes, such as wastepaper, crushed glass, plastics and worn-out tires, can be efficiently included into the production, raw-material, and energy balances of the national economy are shown taking Germany and other European countries an example. Methods for recycling these solid domestic wastes and application fields of the obtained products are discussed.

  11. Bituminization process of radioactive liquid wastes by domestic bitumen

    International Nuclear Information System (INIS)

    A study has been carried out of the incorporation of intermediate level wastes in bitumen. Two kinds of wastes: a) an evaporator concentrate from a PWR (containing boric acid), b) second cycle wastes from the Purex process (containing sodium salts), were satisfactorily incorporated into a mixture of straight and blown domestic bitumen, to yield a product containing 50wt% solids. The products were stable to radiation exposure of 5'8x108 rads. Leach rates were measured in both distilled and sea water over periods up to 200 days at 50C and 250C and at both 1 atm and 8 atm pressure. Results confirmed that long term storage of the products would be satisfactory

  12. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  13. Occurrence and removal of butyltin compounds in a waste stabilisation pond of a domestic waste water treatment plant of a rural French town.

    Science.gov (United States)

    Sabah, A; Bancon-Montigny, C; Rodier, C; Marchand, P; Delpoux, S; Ijjaali, M; Tournoud, M-G

    2016-02-01

    The aim of this study was to investigate the fate and behaviour of butyltin pollutants, including monobutyltin (MBT), dibutylin (DBT), and tributyltin (TBT), in waste stabilisation ponds (WSP). The study was conducted as part of a baseline survey and included five sampling campaigns comprising bottom sludge and the water column from each pond from a typical WSP in France. Butyltins were detected in all raw wastewater and effluents, reflecting their widespread use. Our results revealed high affinity between butyltins and particulate matter and high accumulation of butyltins in the sludge taken from anaerobic ponds. The dissolved butyltins in the influent ranged from 21.5 to 28.1 ng(Sn).L(-1) and in the effluent, from 8.8 to 29.3 ng(Sn).L(-1). The butyltin concentrations in the sludge ranged from 45.1 to 164 and 3.6-8.1 ng(Sn).g(-1) respectively in the first and last ponds. Our results showed an average treatment efficiency of 71% for MBT, 47% for DBT, 55% for TBT. Laboratory sorption experiments enabled the calculation of a distribution coefficient (Kd = 75,000 L.kg-1) between TBT and particulate matter from the WSPs. The Kd explained the accumulation and persistence of the TBT in the sludge after settling of particulate matter. The continuous supply of contaminated raw wastewater and the sorption-desorption processes in the ponds led to incomplete bio- and photolytic degradation and to the persistence of butyltins in dissolved and particulate matrices throughout the survey period. It is thus recommended to use shallow ponds and to pay particular attention when sludge is used for soil amendment. PMID:26624956

  14. Application of ecological modelling to investigate the impact of domestic waste water to one natural river system in tropical area (the nhue river, outskirts of hanoi, vietnam)

    Science.gov (United States)

    Trinh Anh, D.; Bonnet, M. P.; Prieur, N.

    2003-04-01

    Water quality modelling has been employed as an effective tool to investigate the ecological situation of surface water sources. Within a researching collaboration of Vietnamese and French scientists, one portion, 40 km, of the Nhue river, outskirts of Hanoi city, northern Vietnam, has been investigated since the river has been highly impacted from anthropogenic activities and one 1-D ecological river model was formed based on the investigation. In this paper, biochemical process equations integrated with hydraulic conditions and human alterations are presented as the basis for ecological variation of this river system. Investigation showed that at the origin the river water remains untouched (nutrients are low in natural tropical water) while downstream the river is full of domestic pollutants (organic materials and nutrients). From the hydraulic, biological, chemical data and fieldwork experiments, the sensitivity analysis and parameter estimation have been carried out to verify the biochemical processes and optimise this model. Most calculations (simulation, sensitivity functions and parameter estimation) were performed with AQUASIM, a computer program designed for simulation and data analysis of 1-D river and other aquatic systems. The other supporting calculations for system analysis were implemented with IDENT based on output of a sensitivity analysis carried out with AQUASIM. The simulation results accomplished with available data indicate that the sediment exchanges and biodegradation processes emerge as the most important features that influence the water quality of the river where water is usually overloaded by domestic wastewater and where hydraulic characters are less pronounced. The model construction and simulation results have also pointed out that the river water quality has been spoiled dramatically after the main open-air sewer of the Hanoi city, the To Lich river, excesses to the Nhue. Beside, a metal speciation module was proposed to integrate with existing biochemical model in order to simulate the metal fractions in water column and metal exchange between river water and sediment.

  15. Tertiary Treated Waste water as a Promising Alternative for Potable Water for Non-Contact Domestic Use. CaseStudy:RiqqaWastewaterTreatmentPlant

    Directory of Open Access Journals (Sweden)

    Munther I. Almatouq,

    2015-06-01

    Full Text Available WatersecurityisavitalissueinaridcountrieslikeKuwait,wheredesalinatedwateristhe solesupplyoffresh water.Thispaper isacontributiontotheongoingefforts towardsrationalizationin potablewater consumption.In addition,itdiscusses therole of high-quality effluent water, from wastewater treatment plants in Kuwait, as a potential replacementfor potable water for non-contact domesticapplications as a oneway in savingin thisvaluablecommodity.

  16. Upper airway inflammation and respiratory symptoms in domestic waste collectors

    OpenAIRE

    Wouters, I.; Hilhorst, S; Kleppe, P; Doekes, G; Douwes, J.; Peretz, C; Heederik, D

    2002-01-01

    Objectives: To compare respiratory symptoms and upper airway inflammation in domestic waste collectors and controls, and to find the association between measures of upper airway inflammation on the one hand and exposure concentrations of organic dust or respiratory symptoms on the other hand.

  17. Exothermic hydrogen production system in supercritical water from biomass and usual domestic wastes with an exploitation of RuO2 catalyst

    International Nuclear Information System (INIS)

    This paper deals with a method of producing hydrogen from biomass and sewage disposals in supercritical water by use of ruthenium dioxides as a catalyst. Experiments were carried out under argon atmosphere with a batch reactor made of INCONEL625. Reaction temperatures and pressures were changed in the ranges of 400-500degC and 30-50 MPa, respectively. The gas produced was quantitatively analyzed by online gas chromatography. In conclusion, considerably high ratios of hydrogen up to 38.5% were produced from the sewage disposals. This value was even higher than the hydrogen production ratios from other biomass: 15.0% from cellulose, 14.1% from pulp, 16.0% from waste paper, and 27.0% from paper sludge. The heat balance was calculated in the present reaction system using ruthenium oxide as the catalyst in supercritical water for the reaction of naphthalene and cellulose. The result showed that the total reaction was exothermic. This is rather surprising, because most of the hydrogen forming reactions are endothermic. The present result should be due to the excess heat derived by the partial formation of carbon dioxide. (author)

  18. Concrete Production Using Technogenical, Constructional and Domestic Waste

    Directory of Open Access Journals (Sweden)

    Marija Vaičienė

    2011-04-01

    Full Text Available The article describes investigations carried out by the scientists from various countries in order to improve the physical and mechanical properties of concrete. The grained rubber of tyres, modified sawdust, crushed ceramic bricks, plastic waste and remains of glass are utilised to produce concrete mixtures. The results of research conducted by the scientists show that in the process of producing concrete we can use different types of waste to change natural aggregates and to get concrete with specific properties. Currently, waste handling and utilization are burning ecological problems. Therefore, intensive investigations are carried out in order to utilise technogenical, constructional and domestic waste for concrete mixtures. Article in Lithuanian

  19. Domestic rooftop water harvesting (DRWH- A case study

    Directory of Open Access Journals (Sweden)

    Arun Kumar Dwivedi

    2009-08-01

    Full Text Available Although water is as important for survival of human being as much as food, air etc., but hardly any attention is paid for its economical use and conservation of this precious resource. Due to indiscriminate pumping of ground water, the water table is going down abnormally and if the problem is not given a serious look, then the future generations may have to face severe crisis of water. Rains are the main source of water and if rain water is harvested, the scarcity of water can be eliminated altogether. This is an ideal solution of water problem where there is inadequate groundwater supply quantitatively and qualitatively and surface sources are either lacking or insignificant. Rain water is bacteriologically pure, free from organic matter and soft in nature. In urban areas, rain water available from rooftop of buildings, paved and unpaved areas goes waste. This water can be stored in tank and can be used directly and also indirectly by diverting to recharge the aquifers through existing GW tapping arrangements and thereafter can be utilized gainfully at the time of need. The paper aims towards the development of the framework for domestic rooftop harvesting for drinking water. The paper is based on the analysis of survey record of around 50 houses of different rooftop areas of peri-urban area of Dhule city. The estimation of the appropriate size of the water tanks & their costs required to fulfill the annual drinking water demand through DRWH from rooftop of different areas are done. A mathematical equation expressing the relationship between the required size of water tank and different rooftop areas is developed. The DRWH systems for all houses are designed considering the existing rain water outlets and cost estimation for each individual house is done. A cost model expressing the relationship between rooftop area and cost of DRWH system is developed.

  20. Quantifying the transport impacts of domestic waste collection strategies

    International Nuclear Information System (INIS)

    This paper models the effects of three different options for domestic waste collection using data from three Hampshire authorities: (i) joint working between neighbouring waste collection authorities; (ii) basing vehicles at waste disposal sites; and (iii) alternate weekly collection of residual waste and dry recyclables. A vehicle mileage savings of 3% was modelled for joint working, where existing vehicle allocations to depots were maintained, which increased to 5.9% when vehicles were re-allocated to depots optimally. Vehicle mileage was reduced by 13.5% when the collection rounds were based out of the two waste disposal sites rather than out of the existing depots, suggesting that the former could be the most effective place to keep vehicles providing that travel arrangements for the crews could be made. Alternate weekly collection was modelled to reduce vehicle mileage by around 8% and time taken by 14%, when compared with a typical scenario of weekly collection of residual and fortnightly collection of recyclable waste. These results were based on an assumption that 20% of the residual waste would be directly diverted into the dry recyclables waste stream

  1. Quantifying the transport impacts of domestic waste collection strategies.

    Science.gov (United States)

    McLeod, Fraser; Cherrett, Tom

    2008-11-01

    This paper models the effects of three different options for domestic waste collection using data from three Hampshire authorities: (i) joint working between neighbouring waste collection authorities; (ii) basing vehicles at waste disposal sites; and (iii) alternate weekly collection of residual waste and dry recyclables. A vehicle mileage savings of 3% was modelled for joint working, where existing vehicle allocations to depots were maintained, which increased to 5.9% when vehicles were re-allocated to depots optimally. Vehicle mileage was reduced by 13.5% when the collection rounds were based out of the two waste disposal sites rather than out of the existing depots, suggesting that the former could be the most effective place to keep vehicles providing that travel arrangements for the crews could be made. Alternate weekly collection was modelled to reduce vehicle mileage by around 8% and time taken by 14%, when compared with a typical scenario of weekly collection of residual and fortnightly collection of recyclable waste. These results were based on an assumption that 20% of the residual waste would be directly diverted into the dry recyclables waste stream. PMID:18083362

  2. Methanobrevibacter ruminantium as an Indicator of Domesticated-Ruminant Fecal Pollution in Surface Waters?

    OpenAIRE

    Ufnar, Jennifer A.; Shiao Y. Wang; Ufnar, David F.; Ellender, R. D.

    2007-01-01

    A PCR-based assay (Mrnif) targeting the nifH gene of Methanobrevibacter ruminantium was developed to detect fecal pollution from domesticated ruminants in environmental water samples. The assay produced the expected amplification product only when the reaction mixture contained DNA extracted from M. ruminantium culture, bovine (80%), sheep (100%), and goat (75%) feces, and water samples from a bovine waste lagoon (100%) and a creek contaminated with bovine lagoon waste (100%). The assay appea...

  3. A Benchmarking System for Domestic Water Use

    Directory of Open Access Journals (Sweden)

    Dexter V. L. Hunt

    2014-05-01

    Full Text Available The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination of the following: occupancy rates (1 to 4; roof size (12.5 m2 to 100 m2; garden size (25 m2 to 100 m2 and geographical location (North West, Midlands and South East, UK with yearly temporal effects (i.e., rainfall and temperature. Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.

  4. Treatment of waste water

    International Nuclear Information System (INIS)

    In Takasaki-JAERI, studies on the radiation treatment of waste water have been continued in several aspects, i.e. (1) refractory compounds in industrial waste water may be treated by radiation, (2) utilization of a powerful electron accelerator may improve the economics and (3) combination of radiation processing with a conventional technique may improve the efficiency. The results are reviewed on these lines in this paper, though the future application may be in the combination of all the aspects. (author)

  5. Heat Losses Evaluation for Domestic Hot Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2006-01-01

    Full Text Available In sanitary systems assembly, domestic hot water distribution supply networks represent an important weight for energetically balance.par This paper presents, in an analytical and graphical manner, the computational tools needed for domestic hot water piping system behavior characterization in different functional and structural assumptions.

  6. Domestic wash-water reclamation using an aerospace-developed water recovery subsystem

    Science.gov (United States)

    Hall, J. B., Jr.

    1973-01-01

    A prototype aerospace distillation water recovery subsystem was tested to determine its capability to recover potable water from domestic wash water. A total of 0.0994 cu m (26.25 gallons) of domestic wash water was processed over a 7-day period at an average process rate of 0.0146 cu m per day (3.85 gallons per day). The subsystem produced water that met all United States Public Health Standards for drinking water with the exception of two standards which could not be analyzed at the required sensitivity levels. Average energy consumption for this evaluation to maintain both the recovery process and microbial control in the recovered water was approximately 3366 kilowatt-hours per cubic meter (12.74 kilowatt-hours per gallon) of water recovered. This condition represents a worst case energy consumption since no attempt was made to recover heat energy in the subsystem. An ultraviolet radiation cell installed in the effluent line of the subsystem was effective in controlling coliform micro-organisms within acceptable levels for drinking water. The subsystem recovered virtually 100 percent of the available water in the waste-water process. In addition, the subsystem removed 99.6 percent and 98.3 percent of the surfactants and phosphate, respectively, from the wash water.

  7. Long-term behavior of domestic waste slags

    International Nuclear Information System (INIS)

    Vitrification is one of the envisaged solutions to face French legal requirements related to the solidification/stabilisation of some wastes. It results in glassy or crystallized aluminosilicate and calcium-rich materials which trap heavy metals notably contained by the ashes of purification residues from incineration smokes of domestic wastes. This research thesis addresses the study of the long term behaviour of such materials in order to check that toxic compounds they contain will not be released in the environment so that these materials can become common and even valorised. Four vitrified products have been studied. It appeared that their alteration mechanisms in aqueous phase are close to that of already known natural and artificial silicate materials. Alteration rates depend on material composition and structure on the one hand, and on solution temperature, pH, composition and renewal rate on the other hand. The influence of surrounding materials is also taken into account within the frame of a scenario of use in road construction. Modelling studies are also performed and it appears that the containment of toxic elements contained in vitrified products obtained from domestic waste is sustainable

  8. Reduction of the waste from domestic production of the orange

    International Nuclear Information System (INIS)

    The research subject is (reduction of the waste from domestic production of orange) we find there is a lot of wastage after harvest, because the process of packaging, loading, transportation, and store is not adequate. The purpose of this research is to solve this problem of wastage by following a number of steps after harvesting and pre-harvest process. This process is called COLD CHAIN. Cold chain is: cold store in production place, cold vehicles for transportation, cold room in the market, cold car for distribution, cold and freezer refrigerator home. After adopting the cold chain we achieved the following results: orange wastage is reduced, the orange quality improved. (Author)

  9. Inorganic chemicals in domestic water of the United Arab Emirates.

    Science.gov (United States)

    Rizk, Zeinelabidin S

    2009-02-01

    The concentration of selected inorganic chemicals was determined for 396 samples of bottled water, desalinated water, and groundwater used for drinking and domestic purposes in the United Arab Emirates (UAE). The objective of this study was to compare the concentrations of inorganic chemicals in different domestic water types used in the UAE with the World Health Organization (WHO) limits for drinking water. Results of the present study revealed a wide variation in the concentrations of major, minor, and trace inorganic chemicals in domestic water of the UAE. For example, the bottled water sold for drinking is depleted in major ions and the total dissolved solids (TDS) in some brands do not exceed 100 mg/l. On the other hand, some of the domestic water used may contain as much as 3,000 mg/l TDS, which is above the WHO recommended limit for drinking water (500-1,500 mg/l TDS). Similarly, while bottled water is almost free of trace ions and minor constituents, some natural groundwater may have concentrations higher than the WHO recommended limits for drinking water. The cause of this variation is related to the different water sources and the large number of companies producing and distributing drinking and domestic water. Moreover, it is clear that the current controls on domestic water quality in some areas, namely conformance of pH and electrical conductivity measurements with prescribed ranges of values, are currently inadequate. These two parameters are not enough to judge if water is suitable for drinking or not and some consumers may receive domestic water of uncertain quality. PMID:18266056

  10. Bonding material containing ashes after domestic waste incineration for cementation of radioactive waste

    International Nuclear Information System (INIS)

    It is known that cement minerals hydration is accompanied with heat emission. Heat of hardening influences formation of a cement compound structure and its properties. It is important to reduce the heat quantity at continuous cementation of waste and filling of compartments of a repository or containers by a cement grout. For reduction of heating, it is necessary to use cement of mineral additives (fuel ashes, slag and hydraulic silica). Properties of ashes after domestic waste incineration can be similar to ones of fly fuel ashes. However, ash after domestic waste incineration is toxic industrial waste as it contains toxic elements (As, Cd, Hg, Pb, Sb, Zn). Utilization of secondary waste (slag and ash) of combustion plants is an important environmental approach to solving cities' issues. Results of the research have shown that ashes of combustion plants can be used for radioactive waste conditioning. Co-processing of toxic and radioactive waste is ecologically and economically effective. At SIA 'Radon', experimental batches of cement compositions are used for cementation of oil containing waste. (authors)

  11. Socioeconomic differentials and availability of domestic water in South Africa

    Science.gov (United States)

    Dungumaro, Esther W.

    The past few decades has seen massive efforts to increasing provision of domestic water. However, water is still unavailable to many people most of them located in sub-Saharan Africa, South Asia and East Asia. Furthermore, availability of water varies greatly both spatially and temporary. While other people pay so dearly for domestic water others have an easy access to adequate clean water and sanitation. Accessibility and affordability of domestic water and sanitation is determined by a great variety of factors including socioeconomic status of households. The main objective of the paper is to inform on factors which need to be taken into account when coming up with projects to provide domestic water. It is more critical when the issue of water pricing comes into the equation. Water pricing has many facets, including equity, willingness to pay and affordability. In this premise, it is deemed important to understand the socioeconomic characteristics of the people before deciding on the amount of money they will have to pay for water consumption. It is argued that understanding people’s socioeconomic situation will greatly help to ensure that principles of sustainability and equity in water allocation and pricing are achieved. To do so, the paper utilized 2002 South Africa General Household Survey (GHS), to analyze socioeconomic variables and availability of domestic water. Analysis was mainly descriptive. However, logistic regression analysis was also utilized to determine the likelihood of living in a household that obtain water from a safe source. The study found that there is a strong relationship between availability of domestic water and socioeconomic conditions. Economic status, household size and to a lesser extent gender of head of household were found to be strong predictors of living in a household which obtained water from a safe source. The paper recommends that needs and priorities for interventions in water provision should take into account socioeconomic status of households.

  12. Water: Too Precious to Waste.

    Science.gov (United States)

    National Geographic World, 1983

    1983-01-01

    Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)

  13. Assessment of domestic water quality: case study, Beirut, Lebanon.

    Science.gov (United States)

    Korfali, Samira Ibrahim; Jurdi, Mey

    2007-12-01

    In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness. PMID:17380419

  14. Production of biogas from municipal solid waste with domestic sewage

    International Nuclear Information System (INIS)

    In this study, experiments were conducted to investigate the production of biogas from municipal solid waste (MSW) and domestic sewage by using anaerobic digestion process. The batch type of reactor was operated at room temperature varying from 26 to 36 deg. C with a fixed hydraulic retention time (HRT) of 25 days. The digester was operated at different organic feeding rates of 0.5, 1.0, 2.3, 2.9, 3.5 and 4.3 kg of volatile solids (VS)/m3 of digester slurry per day. Biogas generation was enhanced by the addition of domestic sewage to MSW. The maximum biogas production of 0.36 m3/kg of VS added per day occurred at the optimum organic feeding rate of 2.9 kg of VS/m3/day. The maximum reduction of total solids (TS) (87.6%), VS (88.1%) and chemical oxygen demand (COD) (89.3%) occurred at the optimum organic loading rate of 2.9 kg of VS/m3/day. The quality of biogas produced during anaerobic digestion process was 68-72%

  15. Effect of Domestic Waste Leachates on Quality Parameters of Groundwater

    OpenAIRE

    John Jiya MUSA

    2014-01-01

    Water is an elixir of life. Percolating groundwater provides a medium through which wastes particularly organics can undergo degradation into simpler substances through biochemical reactions involving dissolution, hydrolysis, oxidation and reduction processes. Ground water samples in and around dumpsite and landfills located in Kubuwa were studied to assess the effect of wastewater leachates on groundwater resources in the particular area. Groundwater samples were collected from 5 different b...

  16. The domestic wastes incinerators; Les incinerateurs d'ordures menegares: quels risques? quelles politiques?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-01

    This document presents the opinion of the Committee of Prevention and Precaution (CPP), on the domestic wastes incinerators, in the framework of the global wastes policy. The seven chapters detail and bring advices on the following topics: the elements which are going in and out of the incinerators, the technical processes, the occupational activities and the risks bound to the incinerators use, the transfer modes towards the different environmental areas, the exposure estimation, the risks of people living near the domestic wastes incinerators compared to the other concerning a cancer development, the legislation concerning the domestic wastes and the social acceptability of the incinerators. (A.L.B.)

  17. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    International Nuclear Information System (INIS)

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  18. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems.

    OpenAIRE

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.In this thesis the possibilities are presented for fixed-film post-treatment of anaerobically digested domestic sewage and water reconditioning in aquacultural water recirculation systems. Emphasis is put on ...

  19. Design package for solar domestic hot water system

    Science.gov (United States)

    1980-01-01

    The initial design of a solar domestic hot water system is considered. The system performance specification and detailed design drawings are included. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished site data acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  20. Feasibility of biomass domestic water heating: a case study

    International Nuclear Information System (INIS)

    This paper describes a feasibility study of a biomass-powered hot water heater for domestic or small-scale use. A biomass reactor was designed and built to serve individuals at a golf course in Florida. The study found small-scale biomass reactor-powered heat exchangers to be useful as retrofitted preheaters to existing home water heating systems. (Author)

  1. Domestic Hot Water Usage in Hotels; Tappvarmvattenanvaendning paa hotell

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Stefan; Werner, Sven [FVB Sverige AB, Vaesteraas (Sweden); Sandberg, Martin; Wahlstroem, Aasa [Swedish National Testing and Research Inst., Boraas (Sweden)

    2004-06-01

    Historically, design curves for domestic hot water, have been well sized and therefore also the components oversized. The Swedish district heating companies have noticed this and some companies replace large valves with customer-required valves, which give several advantages. There are several reasons why valves and heat exchangers can be customer-required and still the customers demand for hot water comfort can be fulfilled. The domestic hot water flow is composed, the taps are often short, large simultaneous taps are not very likely. Also, the dimensioning flows occur in the winter period, while the components are dimensioned for the summer case. The water pipes level off temporary temperature drops and the user seldom notices these because water with 55 deg C is not used in the tap. For residential buildings there are dimensioning recommendations on domestic hot water flow, but not for hotels. The purpose of this project has been to evaluate the domestic hot water use in relation to size and number of occupied beds. If the patterns of the chosen hotels coincide regarding to the sizes, dimensioning curves for domestic hot water use can be suggested. They can be used when hotels, or buildings with the same use pattern, are being built or restored. Measurements on 3 hotels with different sizes have been made. The hotels have 36, 52 and 158 rooms. The hotels are situated in the cities of Boraas and Kinna in Sweden. A short period of measurements from another hotel in the city of Gaevle (199 rooms) has also been included in this project. The measurements show that large hot water taps in hotels are rare and short. For the hotels, relative, cumulative relative frequencies and likely extreme values have been estimated. For residential buildings, The Swedish District Heating Association have recommendations for dimensioned domestic hot water flows. Formerly, these recommendations have been levelled so a cumulative relative frequency of 1 %, is reached, i.e. 99 % of all hot water taps are below this flow. The new recommended dimensioning curve for residential buildings involve a cumulative relative frequency of 7 %. This can not be directly transferred to hotels due to variations in number of occupied beds during the period of measurements. This project has shown that maximum domestic hot water flow not necessarily occurs when the hotel is fully occupied. Instead, it indicates likely maximum flows for the three hotels. These recommendations are for heat exchangers and primary valves dimensioning. The water pipes in the houses are included in a special dimensioning.

  2. Collection of domestic waste. Review of occupational health problems and their possible causes

    DEFF Research Database (Denmark)

    Poulsen, O M; Breum, N O; Ebbehøj, N; Hansen, Åse Marie; Ivens, U I; van Lelieveld, D; Malmros, P; Matthiasen, L; Nielsen, B H; Nielsen, E M

    During the last decade, a growing interest in recycling of domestic waste has emerged, and action plans to increase the recycling of domestic waste have been agreed by many governments. A common feature of these plans is the implementation of new systems and equipment for the collection of domestic...... reported for waste collectors in Geneva (Rufèner-Press et al., 1975) and data from the Danish Registry of Occupational Accidents and Diseases also indicate an excess risk for pulmonary problems among waste collectors compared with the total work force. Surprisingly few measurements of potentially hazardous...... gastrointestinal problems, irritation of the eye and skin, and perhaps symptoms of organic dust toxic syndrome (influenza-like symptoms, cough, muscle pains, fever, fatigue, headache) have been reported among workers collecting the biodegradable fraction of domestic waste. The few data available on exposure to bio...

  3. Distribution of coliform bacteria in waste water

    Directory of Open Access Journals (Sweden)

    Dau Lal Bohra

    2012-02-01

    Full Text Available Biological activity of water can be apparently judged by the colonization of bacteria (microbes. In order to find out the extent of pollution and the relationship between inorganic matters and microbiota, a quantitative and qualitative analysis of bacteria in various types of sewage waters, namely sewage water by the residential colonies (group I, industrial waste water (group II, sewage treatment hub (group III, unorganized collected waste water (group IV and old residential waste collection center (group V, of Bikaner city (Rajasthan, India was carried out from February, 2010 to May, 2010. Water samples were taken from surface only owing to low depth and investigated for various abiotic factors (viz. transparency, pH, carbonate, bicarbonate, total alkalinity, total hardness, salinity, chloride, calcium, magnesium, sulphate, nitrate, silica, and inorganic phosphorous and biotic factors (viz. number and diversity of bacteria. The domestic sewage water causes major water borne diseases basing upon Total Bacterial Count (TBC and coliform Count (CC. The coliform count in the present study ranged from 2.5 to 5.12 MPN/mL. Comparision of microbial population in sewage water from all different Groups was done and the higher values of TBC and CC were recorded only in Sewage treatement hub (Group III.

  4. Prototype solar domestic hot water systems

    Science.gov (United States)

    1978-01-01

    Construction of a double wall heat exchanger using soft copper tube coiled around a hot water storage tank was completed and preliminary tests were conducted. Solar transport water to tank potable water heat exchange tests were performed with a specially constructed test stand. Work was done to improve the component hardware and system design for the solar water heater. The installation of both a direct feed system and a double wall heat exchanger system provided experience and site data to enable informative decisions to be made as the solar market expands into areas where freeze protection is required.

  5. Solar domestic water heating performance test program: interim report

    Energy Technology Data Exchange (ETDEWEB)

    Auris, R.H.; Draving, W.J.

    1981-01-01

    Several solar domestic water heating systems were installed and tested to evaluate the performance characteristics and cost effectiveness of the commercially available equipment, evaluate the distributor's/contractor's readiness and expertise in the design and installation of effective solar-thermal systems, and to determine the maintenance requirements of solar domestic water heating systems and their associated costs. The systems' thermal performance and reliability are evaluated and cost effectiveness and market potential are determined. The instrumentation used in the test is briefly described. (LEW)

  6. Fibre reinforced concrete using domestic waste plastics as fibres

    Directory of Open Access Journals (Sweden)

    R. Kandasamy

    2011-03-01

    Full Text Available Fibre Reinforced Concrete (FRC is a composite material consisting of cement based matrix with an ordered or random distribution of fibre which can be Steel, Nylon, Polythene etc. The addition of steel fibre increases the properties of concrete, viz., flexural strength, impact strength and shrinkage properties to name a few. A number of papers have already been published on the use of steel fibres in concrete and a considerable amount of research has been directed towards studying the various properties of concrete as well as reinforced concrete due to the addition of steel fibres. Hence, an attempt has been made in the present investigations to study the influence of addition of polythene fibers (domestic waste plastics at a dosage of 0.5% by weight of cement. The properties studied include compressive strength and flexural strength. The studies were conducted on a M20 mix and tests have been carried out as per recommended procedures of relevant codes. The results are compared and conclusions are made.

  7. The transfer of radon from domestic water to indoor air

    International Nuclear Information System (INIS)

    Theoretical and experimental literature dealing with the release of radon from water to air is reviewed and synthesized. Primary emphasis is placed on releases from domestic water supplies to indoor air within the context of a general indoor radon problem. The widely used assumption of 1 rhoCi/L increment in indoor air per 10 000 rhoCi/L in the water supply is valid, but regional and individual variations are important

  8. Preliminary ECLSS waste water model

    Science.gov (United States)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  9. Effect of Domestic Waste Leachates on Quality Parameters of Groundwater

    Directory of Open Access Journals (Sweden)

    John Jiya MUSA

    2014-02-01

    Full Text Available Water is an elixir of life. Percolating groundwater provides a medium through which wastes particularly organics can undergo degradation into simpler substances through biochemical reactions involving dissolution, hydrolysis, oxidation and reduction processes. Ground water samples in and around dumpsite and landfills located in Kubuwa were studied to assess the effect of wastewater leachates on groundwater resources in the particular area. Groundwater samples were collected from 5 different bore-wells in and around relative distances from dumpsites. EC values ranged between 30 and 138 µS/cm, TDS ranged between 95 mg/L and 120 mg/L, SS ranged between 10 and 23 mg/L while that of the evening ranged between 11 and 15 mg/L, nitrate values ranged between 0.18 to 0.80 mg/L for the early morning samples while the late evening samples which ranged between 0.25 and 0.43 mg/L, while concentration of Sulphate in the morning water sample ranged between 168 and 213 mg/L while that of the evening ranged between 20 and 45 mg/L. The government of the Federal Republic of Nigeria should create landfills and dumpsites far away from residential homes and better still recycling plants should be put in place to recycle the various forms of waste products from homes.

  10. Solid Wastes and Water Quality.

    Science.gov (United States)

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  11. Cooling performance of R510A in domestic water purifiers

    International Nuclear Information System (INIS)

    Cooling performance of R510A is examined both numerically and experimentally in an effort to replace HFC134a in the refrigeration system of domestic water purifiers. Although the use of HFC134a is currently dominant, it is being phased out in Europe and most developed countries due to its high potential contribution to global warming. To solve this problem, cycle simulation and experimental measurements are conducted with a new refrigerant mixture of 88%RE170/12%R600a using actual domestic water purifiers. This mixture has been recently numbered and listed as R510A by ASHRAE. Test results show that, due to the small internal volume of the refrigeration system of the domestic water purifiers, system performance with R510A is greatly influenced by the amount of charge. With the optimum charge amount of 20 to 21 g, approximately 50% that of HFC134a, the energy consumption of R510A is 22.3% lower than that of HFC134a. The compressor discharge temperature of R510A is 3.7 .deg. C lower than that of HFC134a at the optimum charge. Overall, R510A, a new, long term, and environmentally safe refrigerant, is a good alternative for HFC134a. Furthermore, it requires only minor changes in the refrigeration system of the domestic water purifiers

  12. Uranium in US surface, ground, and domestic waters

    International Nuclear Information System (INIS)

    The report Uranium in US Surface, Ground, and Domestic Waters, comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  13. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  14. Uranium in US surface, ground, and domestic waters

    International Nuclear Information System (INIS)

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  15. Uranium in US surface, ground, and domestic waters. Volume 2

    International Nuclear Information System (INIS)

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  16. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up the hot-water tank from the top and the water volume heated by the auxiliary energy supply system is fitted to the hot-water consumption and consumption pattern. In periods with a large hot-water demand,...

  17. Ecological and economical importance of waste water treatment

    OpenAIRE

    Alias, Naser Ibraheem

    2011-01-01

    Water resources were one of the environmental factors which reacted with ocean, affected by climatic, geological changes, pollution phenomenon, all water in nature component suspended dissolved matter in different quantity, that waste water in every kinds as domestic, industrial, agricultural and others contains to additional pollution matter, these were byproducts of human activities, these several wasters caused water pollution, depended this pollution on degree of pollution concentration; ...

  18. Waste water treatment by flotation

    OpenAIRE

    Camelia Badulescu; Lorand Toth; Romulus Sarbu

    2005-01-01

    The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues), food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, ...

  19. Methane emissions from domestic waste management facilities in Jordan--applicability of IPCC methodology.

    Science.gov (United States)

    Abdulla, F A; al-Ghazzawi, Z D

    2000-02-01

    In this paper, methane emissions from municipal wastewater treatment plants and municipal solid waste (MSW) landfills in Jordan for 1994 have been estimated using the methodology developed by the Intergovernmental Panel on Climate Change (IPCC). For this purpose, the 14 domestic wastewater treatment plants in the country were surveyed. Generation rates and characterization of MSW components as well as dumping and landfilling practices were surveyed in order to estimate 1994 CH4 emissions from these sites. Locally available waste statistics were used in cases where those of the IPCC guidelines were not representative of Jordan's statistics. Methane emissions from domestic wastewater in Jordan were estimated at 4.66 gigagrams (Gg). Total 1994 CH4 emissions from MSW management facilities in Jordan are estimated at 371.76 Gg--351.12 Gg (94.45%) from sanitary landfills, 19.83 Gg (5.33%) from MSW open dumps, and 0.81 Gg (0.22%) from raw sewage-water dumping ponds. Uncertainties associated with these estimations are presented. PMID:10680353

  20. Green recovery of mercury from domestic and industrial waste.

    Science.gov (United States)

    da Cunha, Roselaine C; Patrício, Pamela R; Vargas, Silvia J Rodriguez; da Silva, Luis Henrique Mendes; da Silva, Maria C Hespanhol

    2016-03-01

    Recovery of mercury from effluents is fundamental for environmental preservation. A new, green method was developed for separation of mercury from effluent containing different metals. The extraction/separation of Hg(II) was studied using aqueous two-phase system (ATPS) comprising by polyethylene oxide (PEO1500) or triblock copolymers (L64 or L35), electrolyte (sodium citrate or sodium sulfate) and water in the presence or absence of chloride ions. The extraction behavior of the Hg(II) for the macromolecule-rich phase is affected by the following parameters: amount of added extractant, pH, and the nature of the electrolyte and macromolecule of the ATPS. The APTS of PEO1500+sodium citrate+H2O (pH 1.00 and 0.225molkg(-1) KCl) produced the highest Hg(II) %E=(92.3±5.2)%. Under the same conditions, excellent separation factors (1.54×10(2)-3.21×10(10)) for recovery of mercury in the presence of co-existing metals were obtained. Efficient and selective extraction of Hg(II) from domestic and industrial synthetic effluents was achieved using this ATPS. PMID:26599661

  1. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant. PMID:22214091

  2. Space, Identity and Health Risks: a study of domestic waste in Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Aderemi Suleiman Ajala

    2011-10-01

    Full Text Available Poor waste management has characterized Ibadan’s modern and historical identity.  As a consequence, residents of Ibadan (indigenes hold diverse views about the city's image, while non-indigenes label it "filthy" and "dirty".  These perceptions, spatial and cultural, are deep rooted, intertwining with the political and cultural plane of Nigerian society. A distinction between “self” and “others” is seen to mark a discourse and counter discourse in the perception of health risks associated with domestic waste in the Ibadan.  Through survey and descriptive ethnography, our paper examines the nature and extent of domestic waste in Ibadan, as a physical, community and psychological reality, where we seek to explain how generation and poor waste management  impacts on these spaces and the very mechanics of identity. Different perceptions of health risks are observed as well the vulnerability to diseases associated with domestic waste and poor hygiene, bringing into play the socioeconomic variables and residential patterns which constitute the daily reality of this city.  Our study establishes that the increase in urban population, the low economic status, the indiscriminate setting up of artisans’ shops or outlets and the overall inability of government agencies to monitor the menace of domestic waste and its attendant health risks, are central factors to the problem generically deemed one of “waste”.  

  3. Waste water. Radioactivity total determination

    International Nuclear Information System (INIS)

    Total radioactivity measurement of waste water, the method is applicable for activity higher or equal to 10-4?Ci/ml. Volatile elements, radioelements emitting low energy beta or only gamma rays are not detected

  4. Collection of domestic waste. Review of occupational health problems and their possible causes

    DEFF Research Database (Denmark)

    Poulsen, O M; Breum, N O

    1995-01-01

    During the last decade, a growing interest in recycling of domestic waste has emerged, and action plans to increase the recycling of domestic waste have been agreed by many governments. A common feature of these plans is the implementation of new systems and equipment for the collection of domestic waste which has been separated at source. However, only limited information exists on possible occupational health problems related to such new systems. Occupational accidents are very frequent among waste collectors. Based on current knowledge, it appears that the risk factors should be considered as an integrated entity, i.e. technical factors (poor accessibility to the waste, design of equipment) may act in concert with high working rate, visual fatigue due to poor illumination and perhaps muscle fatigue due to high work load. Musculoskeletal problems are also common among waste collectors. A good deal of knowledge has accumulated on mechanical load on the spine and energetic load on the cardio-pulmonary system in relation to the handling of waste bags, bins, domestic containers and large containers. However, epidemiologic studies with exposure classification based on field measurement are needed, both to further identify high risk work conditions and to provide a detailed basis for the establishment of occupational exposure limits for mechanical and energetic load particularly in relation to pulling, pushing and tilting of containers. In 1975, an excess risk for chronic bronchitis was reported for waste collectors in Geneva (Rufèner-Press et al., 1975) and data from the Danish Registry of Occupational Accidents and Diseases also indicate an excess risk for pulmonary problems among waste collectors compared with the total work force. Surprisingly few measurements of potentially hazardous airborne exposures have been performed, and the causality of work-related pulmonary problems among waste collectors is unknown. Recent studies have indicated that implementation of some new waste collection systems may result in an increased risk of occupational health problems. High incidence rates of gastrointestinal problems, irritation of the eye and skin, and perhaps symptoms of organic dust toxic syndrome (influenza-like symptoms, cough, muscle pains, fever, fatigue, headache) have been reported among workers collecting the biodegradable fraction of domestic waste. The few data available on exposure to bio-aerosols and volatile compounds have indicated that these waste collectors may be simultaneously exposed to multiple agents such as dust containing bacteria, endotoxin, mould spores, glucans, volatile organic compounds, and diesel exhaust. Several studies have reported similar health problems as well as high incidence rates of pulmonary disease among workers at plants recycling domestic waste.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. The radioactivity of domestic water and its elimination

    International Nuclear Information System (INIS)

    Most Finns rely on water distributed by waterworks or on groundwater from their own wells for their supply of domestic water. The radioactivity of these waters is usually low, and the radiation doses from drinking water are insignificant compared with the mean doses received from all other sources of radiation in Finland. High concentrations of 222Rn and also other natural radionuclides are, however, found in a small percentage of groundwater wells drilled in bedrock. Most of these wells are located in the granitic areas of southern Finland. The arithmetic mean for 222Rn in water in drilled wells is 960 Bq/l, for that in dug wells 85 Bq/l and for that from waterworks 26 Bq/l, the maximum concentrations being 77500, 3500 and 1630 Bq/l, respectively. Uranium is another radionuclide that seems to be rather soluble in Finnish groundwaters. High concentrations of uranium are, however, only found in drilled wells. (orig.)

  6. A Financial, Environmental and Social Evaluation of Domestic Water Management Options in the West Bank, Palestine:

    OpenAIRE

    Nazer, D.W.; Siebel, M.A.; van der Zaag, P.; Mimi, Z.; Gijzen, H.J.

    2010-01-01

    Water is one of the most valuable natural resources in the West Bank, Palestine. Due to its limited availability, it is a resource that needs particular protection. Although agriculture consumes most of the water (70%) in the West Bank, the domestic water supply is strategically not less important. It is the aim of this study to evaluate domestic water management options suitable for Palestinian conditions that contribute to achieving water sufficiency in the domestic water use in the house o...

  7. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  8. Patterns, structures and regulations of domestic water cycle systems in China

    Science.gov (United States)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system management efforts typically fail in China, because the approach is generally narrowly-focused and fragmented. This paper put forward a total-process control framework following the water and pollutants (or nutrients) flows along the dualistic domestic water cycle process. Five key objectives of domestic water cycle system regulation are identified including water use safety, water use equity, water saving, wastewater reduction and nutrient recycling. Comprehensive regulatory framework regarding administrative, economic, technical and social measures is recommended to promote sustainable domestic water usage and demand management. Considering the relatively low affordability in rural area, economic measures should be mainly applied in urban domestic water systems and metropolitan domestic water systems. Engineering or technological measures which are suitable to the three domestic water cycle systems are discussed respectively.

  9. Mitigating the impact of swimming pools on domestic water demand

    Scientific Electronic Library Online (English)

    L, Fisher-Jeffes; G, Gertse; NP, Armitage.

    Full Text Available South Africa is a water-scarce country where the sustainable provision of water to its citizens is one of the most significant challenges faced. A recent study in Cape Town, South Africa, investigated the impact of residential swimming pools on household water demand and found that, on average, the [...] presence of a swimming pool increased water demand by 8.85 k?/ month or 37.36%. Should cities in South Africa wish to develop in a water sensitive manner - where water is treated as a scarce resource with economic value in all its competing uses - it will be vital to understand the impact of swimming pools on residential water demand. Should there be a significant increase in water demand attributable to the presence of a swimming pool on a property, it would highlight the need to consider whether it is acceptable for properties to use municipal water to fill them or top them up - especially in water-scarce/stressed areas. This paper describes a study undertaken in the Liesbeek River catchment, Cape Town, to investigate the impact that swimming pools have on domestic water demand. The results support the contention that properties with swimming pools use significantly more water than those without. This study estimated the additional demand resulting from swimming pools at between 2.2-2.4 k?/month or 7-8% of total water demand. The data also indicate that the presence of a swimming pool correlates with a higher indoor demand. The study shows the need to reduce the impact of swimming pools. This could include: pool covers to reduce evaporation, the recycling of backwash water, the use of rainwater to top up swimming pools, water use surcharges and, finally, appropriate regulation and enforcement to prevent the use of municipal water in swimming pools - especially during droughts.

  10. Domestic Separation and Collection of Municipal Solid Waste: Opinion and Awareness of Citizens and Workers

    Directory of Open Access Journals (Sweden)

    Giovanni De Feo

    2010-05-01

    Full Text Available The state of the art on Municipal Solid Waste (MSW management is based on the domestic separation of materials produced. After domestic separation, the resident has to transfer the separated materials to the MSW manager through the hands of collection workers. It is exactly at this stage that an end-use product changes its status and property becomes waste. This paper analyzes and compares the opinions and awareness of citizens and kerbside collection workers on this subject by means of two structured questionnaires in the city of Mercato San Severino (about 22,000 people, in Southern Italy.

  11. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S.; Hafez, A.J.; El-Diwani, G.

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  12. Domestic light water reactor fuel design evolution. Volume III

    International Nuclear Information System (INIS)

    Volume III of this report examines the design evolution of domestic light water reactor fuel. The fuel of each vendor is individually described. Tables and figures detail the fuel's design parameters. A data base of this nature is required for the design of an underwater fuel disassembly and rod storage system. An assessment of fuel failure mechanisms and fuel performance is presented showing that spent fuel pool operational problems will be minimal or nonexistent. A summary and projection of spent fuel discharges, organized by reactor and fuel design type, is included to show the magnitude and composition of the spent fuel situation facing the nuclear industry

  13. Domestic and overseas development of advanced boiling water reactors

    International Nuclear Information System (INIS)

    Since Toshiba delivered the world's first advanced boiling water reactor (ABWR) to The Tokyo Electric Power Company, Inc. in 1996, we have been devoting continuous efforts to the construction and operational support of ABWR systems as major products. We are now promoting the construction of domestic and overseas ABWR systems along with the standardization of ABWRs. We are also engaged in the research and development of core technologies to support further promotion of ABWRs as a concurrent solution to the issues of global warming and energy security for individual countries. (author)

  14. Solar domestic heating water systems in Morocco: An energy analysis

    International Nuclear Information System (INIS)

    Highlights: • A forced-circulation solar water heater system for domestic use was investigated. • Six different climatic zones of Morocco were simulated. • Flat plate and evacuated tube installations were compared. • Solar fractions for the different scenarios were given. - Abstract: The aim of this study is to assess the technical feasibility of solar water heaters (SWH) under Moroccan conditions. Annual simulations in six different regions for two technologies: flat plate and evacuated tube collectors were carried out using TRANSOL program. It is found that high values of solar fraction can be reached in almost the studied regions with the preference of using evacuated tube collectors. Furthermore, the study emphasizes that the location and the climate are determinant parameters on the overall performance of solar water heating systems

  15. Plastic Recycling: A Substance Flow Analysis of the Dutch Domestic Plastic Waste Cycle

    OpenAIRE

    Boevé, N.

    2012-01-01

    To prevent or reduce the impact of packaging and packaging waste on the environment, the European Commission introduced a comprehensive legislation on packaging, including plastics. The Dutch member state responded by obligating separate collection of domestic plastic packaging waste, consisting out of Polyethylene Terephthalate (PET), High density Polyethylene (PE-HD), (Linear) Low density Polyethylene (PE-(L)LD) and Polypropylene (PP), in January 2010. The methodology of Substance Flow Anal...

  16. Experimental Analysis of Integrated System of Membrane Distillation for pure water with solar domestic hot water

    OpenAIRE

    Muhammad ASIM

    2013-01-01

    In GCC countries, especially in UAE desalination of sea water is considered to be one of the most effective and strategic alternative for satisfying the current and future demand of water for domestic purposes. The depletion of ground water aquifers, rapid industrial development and increase of urban population in UAE lead to tremendous increase in fresh water demand during past decade. Although, desalinated fresh water is supplied to the consumers by local municipalities, people in the regio...

  17. Waste water and sewage sludge

    International Nuclear Information System (INIS)

    The monitoring of waste water and sewage sludge within the framework of environmental radioactivity monitoring is based on samples taken from sewage treatment plants and from sewer systems. Its main purpose is surveillance of emissions from potential polluters, making use of the fact that most of the radioactive nuclides are discharged with the waste water, and detection is more easy with large amounts of waste water available for treatment and sampling, (enrichment of ? and ? activities and of I-131 in large volumina). Municipal sewage treatment plants need not be generally monitored for radionuclides in the sewage sludge destined for use in agriculture, as emissions of long-lived isotopes are extremely low. (orig./DG)

  18. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.

    Science.gov (United States)

    Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M

    2016-04-01

    Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in ?tting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future. PMID:26507489

  19. The estimation of radiological impact from the disposal of radionuclides with domestic and commercial wastes

    International Nuclear Information System (INIS)

    In the UK, limited quantities of radionuclides are disposed of with non-radioactive domestic and commercial wastes under the terms of Exemption Orders or Authorisations granted by the Radiochemical Inspectorate. This report presents a methodology and basis for the calculation of individual and collective doses to workers and to members of the public from such disposals. (author)

  20. The human right to water: the importance of domestic and productive water rights.

    Science.gov (United States)

    Hall, Ralph P; Van Koppen, Barbara; Van Houweling, Emily

    2014-12-01

    The United Nations (UN) Universal Declaration of Human Rights engenders important state commitments to respect, fulfill, and protect a broad range of socio-economic rights. In 2010, a milestone was reached when the UN General Assembly recognized the human right to safe and clean drinking water and sanitation. However, water plays an important role in realizing other human rights such as the right to food and livelihoods, and in realizing the Convention on the Elimination of All Forms of Discrimination against Women. These broader water-related rights have been recognized but have not yet been operationalized. This paper unravels these broader water-related rights in a more holistic interpretation of existing international human rights law. By focusing on an emerging approach to water services provision--known as 'domestic-plus' services--the paper argues how this approach operationalizes a comprehensive range of socio-economic rights in rural and peri-urban areas. Domestic-plus services provide water for domestic and productive uses around homesteads, which challenges the widespread practice in the public sector of planning and designing water infrastructure for a single-use. Evidence is presented to show that people in rural communities are already using their water supplies planned for domestic uses to support a wide range of productive activities. Domestic-plus services recognize and plan for these multiple-uses, while respecting the priority for clean and safe drinking water. The paper concludes that domestic-plus services operationalize the obligation to progressively fulfill a comprehensive range of indivisible socio-economic rights in rural and peri-urban areas. PMID:24337891

  1. Domestic water and sanitation as water security: monitoring, concepts and strategy.

    Science.gov (United States)

    Bradley, David J; Bartram, Jamie K

    2013-11-13

    Domestic water and sanitation provide examples of a situation where long-term, target-driven efforts have been launched with the objective of reducing the proportion of people who are water-insecure, most recently through the millennium development goals (MDGs) framework. Impacts of these efforts have been monitored by an increasingly evidence-based system, and plans for the next period of international policy, which are likely to aim at universal coverage with basic water and sanitation, are being currently developed. As distinct from many other domains to which the concept of water security is applied, domestic or personal water security requires a perspective that incorporates the reciprocal notions of provision and risk, as the current status of domestic water and sanitation security is dominated by deficiency This paper reviews the interaction of science and technology with policies, practice and monitoring, and explores how far domestic water can helpfully fit into the proposed concept of water security, how that is best defined, and how far the human right to water affects the situation. It is considered that they fit well together in terms both of practical planning of targets and indicators and as a conceptual framework to help development. The focus needs to be broad, to extend beyond households, to emphasize maintenance as well as construction and to increase equity of access. International and subnational monitoring need to interact, and monitoring results need to be meaningful to service providers as well as users. PMID:24080628

  2. Assessment of U.S. domestic capacity for producing reactor-grade thorium dioxide and controlling associated wastes and effluents

    International Nuclear Information System (INIS)

    Demand for reactor-grade ThO2 is likely to increase as a result of the growing interest in the application of the thorium-uranium fuel cycle to nuclear reactors. The wastes and effluents identified with the production of ThO2 from monazite sand are waste water, tailings, dust, smoke and gas, and radionuclides (primarily, 232Th and 226Ra). There are currently an estimated 1,500 short tons of crude thorium hydroxide byproduct that can be readily converted to reactor-grade ThO2. The present maximum domestic capacity for producing reactor-grade ThO2 is about 65 to 100 ton/year. The current domestic capacity for producing reactor-grade ThO2 is sufficient to sustain a thorium-uranium fuel cycle of up to 11,000 MW(e) without recycling thorium, depending on the mix of reactor types selected. This range can be increased to 28,000 MW(e) by expanding ThO2 purification capacity to match the current production rate of crude thorium byproduct. Potential constraints identified which may impact the expansion of domestic ThO2 production are (1) uncertainty in the marketplace, (2) limited available thorium for production of reactor-grade ThO2, (3) limited production capacity, and (4) mounting public concern over current levels of radioactivity detected at various points in the production process of thorium and uranium products

  3. Ground water share in supplying domestic water in Khartoum state

    International Nuclear Information System (INIS)

    In this research study of the sources of groundwater from wells and stations that rely on the national authority for urban water in the state of Khartoum, this study includes three areas, namely the Khartoum area, North Khartoum and Omdurman area. This research evaluate and identify the sources of groundwater from wells and stations and find out the productivity of wells and underground stations. The study period were identified from 2004 to 2008 during this commoners were Alabaralgeoffip Knowledge Production and stations from the water. The methods used in this study was to determine the sources of groundwater from wells and stations in the three areas with the knowledge of the percentage in each year and the total amount of water produced from wells and stations in Khartoum, North Khartoum and Omdurman it is clear from this study that the percentage of productivity in the annual increase to varying degrees in floater from 2004 to 2008 and also clear that the Omdurman area depends on groundwater wells over a maritime area of stations based on stations with more and more consumption of Khartoum and the sea. Also been identified on the tank top and bottom of the tank where the chemical properties and physical properties after the identification of these qualities and characteristics have been identified the quantity and quality of water produced from wells and stations. (Author)

  4. State of Art About water Uses and Waste water Management in Lebanon

    International Nuclear Information System (INIS)

    This paper shows the real situation about management of water and waste water in Lebanon and focuses on problems related to urban water pollution released in environment. Water and waste water infrastructures have been rebuilt since 1992. However, waste water management still remains one of the greatest challenges facing Lebanese people, since water supply projects have been given priority over wastewater projects. As a consequence of an increased demand of water by agricultural, industrial and household sectors in the last decade, waste water flows have been increased. In this paper, the existing waste water treatment plants (WWTP) operating in Lebanon are presented. Most of them are small-scale community-based ones, only two large-scale plants, constructed by the government, are currently operational. Lebanese aquatic ecosystems are suffering from the deterioration of water quality because of an insufficient treatment of waste water, which is limited mostly to pre-treatment processes. In fact, domestic and industrial effluents are mainly conducted together in the sewer pipes to the WWTP before being discharged, without adequate treatment into the rivers or directly into the Mediterranean Sea. Such discharges are threatening the coastal marine ecosystem in the Mediterranean basin. This paper aims at giving the current state of knowledge about water uses and wastewater management in Lebanon. The main conclusion drawn from this state of art is a lack of data. In fact, the available data are limited to academic research without being representative on a national scale. (author)

  5. Waste Water Disposal Design And Management IV

    International Nuclear Information System (INIS)

    This book introduces biological waste water treatment with basic theory and activated sludge process, which includes chemical reaction engineering with reaction velocity and mass balance, an effector, characteristic of water treatment effector and biological waste water disposal such as flow pattern and tracer test. This is biological theory of steady on waste water treatment, design and management.

  6. Fermentative Production of Ethanol fuel from Domestic Waste by Pichia stipitis

    Directory of Open Access Journals (Sweden)

    Modugu P

    2013-05-01

    Full Text Available Production of Ethanol fuel from the garbage/kitchen waste was carried out with the main purpose of converting the domestic waste into a useful material. The conversion of food waste or garbage by acid hydrolysis was carried out to obtain fermentable sugars, which was converted into ethanol by fermentation process using Pichia stipitis. The present study indicated that at 36 h of incubation resulted in utilization of 29 g/L of glucose with yield of 9.2 g/L ethanol. Compared to various sugars the glucose resulted in the production of ethanol.

  7. Solar domestic water heating, Villa Providence, Shediac, N. B

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, A.

    1985-03-01

    The report describes a project to provide solar water heating for Villa Providence, a nursing home in Shediac, New Brunswick, funded partially by the Conservation and Renewable Energy Demonstration program. Most of the emphasis, to date, in the field of solar heat has been applied to space heating. This had not proven to be efficient in Eastern Canada, as too many collectors are required to be practical and the five most important months of winter are lost, while in the summer months, space heating would not be required. On the other hand, solar heating of domestic hot water could be much more efficient. The system would be in operation during most of the year and would attain an efficiency of almost 90% during the summer months. The solar heating system consisted of 4,271 square feet of solar collectors mounted at a 30 degree angle; a 6,000 gallon hot water storage tank was proposed with an interconnecting system of pipes and electronic controls, double pressure pump and hydropneumatic water tank. Recommendations include selection of a local design company, which would be responsible for the complete project, and budgeting for changes to impractical design concepts. 25 figs.

  8. Simultaneous treatment of SO2 containing stack gases and waste water

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  9. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large or...

  10. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  11. Sorting and recycling of domestic waste. Review of occupational health problems and their possible causes

    DEFF Research Database (Denmark)

    Poulsen, O M; Breum, N O; Ebbehøj, N; Hansen, Åse Marie; Ivens, U I; van Lelieveld, D; Malmros, P; Matthiasen, L; Nielsen, B H; Nielsen, E M

    1995-01-01

    In order to reduce the strain on the environment from the deposition of waste in landfills and combustion at incineration plants, several governments throughout the industrialized world have planned greatly increased recycling of domestic waste by the turn of the millennium. To implement the plans......, new waste recycling facilities are to be built and the number of workers involved in waste sorting and recycling will increase steadily during the next decade. Several studies have reinforced the hypothesis that exposure to airborne microorganisms and the toxic products thereof are important factors...... causing a multitude of health problems among workers at waste sorting and recycling plants. Workers at transfer stations, landfills and incineration plants may experience an increased risk of pulmonary disorders and gastrointestinal problems. High concentrations of total airborne dust, bacteria, faecal...

  12. Willingness to Pay for Domestic Water Service Improvements in Selangor, Malaysia: A Choice Modeling Approach

    OpenAIRE

    Mohd. Rusli Yacob; Alias Radam; Zaiton Samdin

    2011-01-01

    Abstract: The tasks and responsibilities of domestic water service management in Malaysia are handled by various government agencies. Sufficient water service and resources management is required for sustainable water resources conservation. In order to realized water resource conservation, economic effectiveness of water utilization (consumers), maintenance of water quality supply (source of water supply) and efficiency in allocating water resources (agencies) ne...

  13. Domestic water and sanitation as water security: monitoring, concepts and strategy

    OpenAIRE

    David J. Bradley; Bartram, Jamie K

    2013-01-01

    Domestic water and sanitation provide examples of a situation where long-term, target-driven efforts have been launched with the objective of reducing the proportion of people who are water-insecure, most recently through the millennium development goals (MDGs) framework. Impacts of these efforts have been monitored by an increasingly evidence-based system, and plans for the next period of international policy, which are likely to aim at universal coverage with basic water and sanitation, are...

  14. Departmental plans of domestic wastes management - evaluation 2002; Plans departementaux d'elimination des dechets menager assimiles - bilan 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    The departmental plans of domestic wastes management are official documents which manage the actions needed to realize the legislative and regulation objectives concerning the domestic wastes and related wastes. A first evaluation has been realized in 1997 for 47 edited plans. In the context of the new wastes policy a new evaluation has been realized by the ADEME in 2002 for 98 plans. It provides the methodology of the study, the analysis of the plans, the sites and management of wastes, economic data, the equipment and investments. (A.L.B.)

  15. Sorting and recycling of domestic waste. Review of occupational health problems and their possible causes

    DEFF Research Database (Denmark)

    Poulsen, O M; Breum, N O

    1995-01-01

    In order to reduce the strain on the environment from the deposition of waste in landfills and combustion at incineration plants, several governments throughout the industrialized world have planned greatly increased recycling of domestic waste by the turn of the millennium. To implement the plans, new waste recycling facilities are to be built and the number of workers involved in waste sorting and recycling will increase steadily during the next decade. Several studies have reinforced the hypothesis that exposure to airborne microorganisms and the toxic products thereof are important factors causing a multitude of health problems among workers at waste sorting and recycling plants. Workers at transfer stations, landfills and incineration plants may experience an increased risk of pulmonary disorders and gastrointestinal problems. High concentrations of total airborne dust, bacteria, faecal coliform bacteria and fungal spores have been reported. The concentrations are considered to be sufficiently high to cause adverse health effects. In addition, a high incidence of lower back injuries, probably due to heavy lifting during work, has been reported among workers at landfills and incineration plants. Workers involved in manual sorting of unseparated domestic waste, as well as workers at compost plants experience more or less frequent symptoms of organic dust toxic syndrome (ODTS) (cough, chest-tightness, dyspnoea, influenza-like symptoms such as chills, fever, muscle ache, joint pain, fatigue and headache), gastrointestinal problems such as nausea and diarrhoea, irritation of the skin, eye and mucous membranes of the nose and upper airways, etc. In addition cases of severe occupational pulmonary diseases (asthma, alveolitis, bronchitis) have been reported. Manual sorting of unseparated domestic waste may be associated with exposures to large quantities of airborne bacteria and endotoxin. Several work functions in compost plants can result in very high exposure to airborne fungal spores and thermophilic actinomycetes. At plants sorting separated domestic waste, e.g. the combustible fraction of waste composed of paper, cardboard and plastics, the workers may have an increased risk of gastrointestinal symptoms and irritation of the eyes and skin. At such plants the bioaerosol exposure levels are in general low, but at some work tasks, e.g. manual sorting and work near the balers, exposure levels may occasionally be high enough to be potentially harmful. Workers handling the source-sorted paper or cardboard fraction do not appear to have an elevated risk of occupational health problems related to bioaerosol exposure, and the bioaerosol exposure is generally low.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. EnviroAtlas - Portland, ME -Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community domestic water use was calculated using local domestic water use per capita in gallons of water per day...

  17. Evaluation of a multifiltration water reclamation subsystem to reclaim domestic clothes wash water

    Science.gov (United States)

    Hall, J. B., Jr.

    1973-01-01

    An evaluation has been performed of a multifiltration water reclamation subsystem to determine its capability to recover water from domestic clothes wash water. A total of 32.89 kg (72.5 lb) of clothes were washed during eight wash cycles which used 1.4 lb of detergent, 145 gallons of hot water and 133.9 gallons of cold water. Water recovered at a weighted average process rate of 3.81 gallons per hour met the majority of the 23 requirements established for potable water by the U.S. Public Health Service. Average power consumed during this evaluation was approximately 71 watt-hours per gallon of water recovered. Filter replacement, which was required primarily for the control of micro-organisms in the recovered water averaged 4.86 filters per 100 gallons of wash water processed. The subsystem removed approximately 98 percent and virtually 100 percent of the phosphates and surfactants, respectively, from the wash water.

  18. Impact of Training Program to Rationalize Consumption of Domestic Water Usages

    OpenAIRE

    Mohammad Said Damanhouri

    2012-01-01

    Problem statement: Reducing water consumption in terms of scarcity of water in Jordan which needs to rationalize consumption of the domestic water usages by some families in Amman-Jordan. Approach: This study aimed to decrease water consumption in household usages and to involve and encouraging the pioneer students in voluntary efforts to reduce domestic water. The study sample consisted of 121 female students of Princessâ Alia University College represented 121 Jordanian families in Amman. T...

  19. Feasibility analysis of domestic solar water heating systems in Greece

    International Nuclear Information System (INIS)

    The excessive usage of fossil fuels has world-widely caused chain environmental consequences. An interesting solution to this problem is the systematic exploitation of available renewable energy sources, including solar energy. Greece is located in a major geographical region with an abundant and reliable supply of solar energy, even during the winter. In as much, one cannot disregard the significant dependency of the country on imported fuels, since almost 70% of its domestic energy consumption is covered by oil and natural gas imports. Despite the relative local sun abundance, during the last 10 years the local solar collectors market illustrates a sluggish behaviour, in comparison with the impressive numbers of sales during the 1980-1990 decade. At a first glance, such an occurrence characterizes a controversy. In an attempt to find a rational explanation of this peculiar situation, an integrated cost-benefit analysis is carried out taking into consideration the vast majority of the parameters affecting solar thermal energy production cost. The resulting numerical values are then compared with the corresponding ones coming from alternative hot-water production techniques. Accordingly, a quite extensive sensitivity analysis is carried out, in order to demonstrate the impact of the main techno-economic parameters on the fiscal behaviour of contemporary solar hot water production systems. The results obtained not only explain with sufficient accuracy the current local market situation but also demonstrate the specific actions that if realized they may boost solar collector sales in the corresponding local market. (author)

  20. Distribution of coliform bacteria in waste water

    OpenAIRE

    Dau Lal Bohra; Vikas Modasiya; Chandan Kumar Bahura

    2012-01-01

    Biological activity of water can be apparently judged by the colonization of bacteria (microbes). In order to find out the extent of pollution and the relationship between inorganic matters and microbiota, a quantitative and qualitative analysis of bacteria in various types of sewage waters, namely sewage water by the residential colonies (group I), industrial waste water (group II), sewage treatment hub (group III), unorganized collected waste water (group IV) and old residential waste colle...

  1. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  2. Design a Close Loop Cooling System for EA-P1 and Its Auxiliaries to Prevent Loss of Domestic Water

    International Nuclear Information System (INIS)

    Any one of four machines i.e. EA-P1, EA-J4, EA-J5 and EA-J6 may be used to develop vacuum in water box side of main condenser in KANUPP. As per design and operating experience, most efficient one is EA-P1. But since it consumes ample quantity of domestic water which is already very short at KANUPP (even tankers are purchased), its use is avoided. If water used for its cooling is prevented from going to waste and is recycled. EA-P1 operation may be resumed thereby improving efficiency of condenser. We made a close loop for EA-P1 in order to prevent water from going to waste. For this purpose we suggested two close loop schemes and discuss their advantages and drawbacks. Feasibility of both schemes is present in this report and efficient one is proposed for installation at KANUPP. (author)

  3. EnviroAtlas - Domestic Water Demand by 12-Digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes domestic water demand attributes which provide insight into the amount of water currently used for indoor and outdoor residential...

  4. Glucoamylase production from food waste by solid state fermentation and its evaluation in the hydrolysis of domestic food waste

    Directory of Open Access Journals (Sweden)

    Esra Uçkun Kiran

    2014-08-01

    Full Text Available In this study, food wastes such as waste bread, savory, waste cakes, cafeteria waste, fruits, vegetables and potatoes were used as sole substrate for glucoamylase production by solid state fermentation. Response surface methodology was employed to optimize the fermentation conditions for improving the production of high activity enzyme. It was found that waste cake was the best substrate for glucoamylase production. Among all the parameters studied, glucoamylase activity was significantly affected by the initial pH and incubation time. The highest glucoamylase activity of 108.47 U/gds was achieved at initial pH of 7.9, moisture content of 69.6% wt., inoculum loading of 5.2×105 cells/gram substrate (gs and incubation time of 6 d. The enzyme preparation could effectively digest 50% suspension of domestic food waste in 24 h with an almost complete saccharification using an enzyme dose of only 2U/g food waste at 60°C.

  5. Caffeine and pharmaceuticals as indicators of waste water contamination in wells

    Science.gov (United States)

    Seiler, R.L.; Zaugg, S.D.; Thomas, J.M.; Howcroft, D.L.

    1999-01-01

    The presence of caffeine or human pharmaceuticals in ground water with elevated nitrate concentrations can provide a clear, unambiguous indication that domestic waste water is a source of some of the nitrate. Water from domestic, public supply, and monitoring wells in three communities near Reno, Nevada, was sampled to test if caffeine or pharmaceuticals are common, persistent, and mobile enough in the environment that they can be detected in nitrate-contaminated ground water and, thus, can be useful indicators of recharge from domestic waste water. Results of this study indicate that these compounds can be used as indicators of recharge from domestic waste water, although their usefulness is limited because caffeine is apparently nonconservative and the presence of prescription pharmaceuticals is unpredictable. The absence of caffeine or pharmaceuticals in ground water with elevated nitrate concentrations does not demonstrate that the aquifer is free of waste water contamination. Caffeine was detected in ground water samples at concentrations up to 0.23 ??g/L. The human pharmaceuticals chlorpropamide, phensuximide, and carbamazepine also were detected in some samples.

  6. Feasibility analysis of domestic hot water systems using TRNSYS

    International Nuclear Information System (INIS)

    A study was conducted in which 17 conventional and solar-based domestic hot water (DHW) systems were simulated using the TRYNSYS simulation model, and their results were compared. According to Natural Resources Canada, DHW heating currently accounts for 25 per cent of Canadian residential energy consumption and 25 per cent of Canadian residential greenhouse gas (GHG) emissions. The objective of this simulation study was to investigate the fuel consumption of DHW systems, their GHG emissions and 30-year life cycle costs. Another aspect of the study was to model and analyze the effect of time of use (TOU) electricity pricing which was developed by the Ontario Energy Board (OEB) to provide stable and predictable electricity pricing. TOU electricity pricing also promotes energy conservation. In addition, the TOU electricity price charged per kilowatt-hour changes throughout the day to reflect the changes in cost to produce electricity at different times of the day. The Ontario government plans to equip all homes and businesses with smart meters using TOU pricing by 2010. Therefore, this study also investigated the effects of the TOU feature by optimizing its use in the effort to reduce overall energy costs and greenhouse gas (GHG) emissions. The results revealed that a DHW system with solar pre-heat and electrical back-up is the best system for energy conservation and GHG reduction. The best system in terms of 30-year life cycle cost is a high efficiency DHW system with an on demand modulating gas combo boiler with gray water heat recovery. 23 refs., 7 tabs., 8 figs

  7. Promising freeze protection alternatives in solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.E.

    1997-12-31

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  8. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project will...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies........e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...

  9. Emerging Forms of Social Action in Urban Domestic Water Supply in South Africa and Zimbabwe

    OpenAIRE

    Emmanuel Manzungu; Lewis Jonker; Egness Madaka; Zandile Naka; Ellen Sithole; Vupenyu Dzingirai

    2013-01-01

    This paper compares and contrasts emerging forms of social action in urban domestic water supply in South Africa and Zimbabwe. Both countries represent transitional societies that are facing challenges of providing clean and safe domestic water to the black majority population, which for decades was denied basic social services because of a racist ideology. In the first instance the paper assesses whether there exists a constitutional provision that guarantees the right to water. It then turn...

  10. BIOLOGICAL NITRIFICATION OF WASTE WATER

    Directory of Open Access Journals (Sweden)

    P. B. N. Lakshmi Devi

    2014-11-01

    Full Text Available Nitrification has been studied extensively as a result of its significance within the biological process and at intervals the necessity for treatment of waste water. In the last decade, the treatment of high ammonical concentration effluents has become a matter of nice interest. Many effluents will contain some hundred milligrams of nitrogen per liter (supernatants from anaerobic digestion, lechates from municipal water, etc. may have specific treatment before utilization them to the plant recycling process. Sometimes this reaction is applied by maintaining robust ammonical concentrations which have the role of inhibiting the nitrite – oxidizing population responsible for the reaction of nitrites into nitrates (final stage of nitrification. However the nitrification methods served as a very important basis for the development of today understands and mathematical models for several waste treatment processes (activated sludge process using biofilm reactors and self – purification in rivers. Often nitrogen removal from sea wastewater is problematic due to the low rate of bacteria concerned. Immobilization is an economical technique to retain slow growing organisms in continuous flow reactors. Immobilized cells can be classified into “naturally” attached cells (biofilms and “artificially” immobilized cells. The simultaneous nitrification and denitrification within the step feeding biological nitrogen removal method were investigated below different inflowing substrate and aeration flow rates. The experimental results showed that there was additionally linear relationship between simultaneous nitrification and denitrification and DO concentration below the conditions of low and high aeration rate.

  11. TREATMENT OF DOMESTIC WASTEWATER IN SHALLOW WASTE STABILIZATION PONDS FOR AGRICULTURAL IRRIGATION REUSE

    Directory of Open Access Journals (Sweden)

    Valderi Duarte Leite

    2009-12-01

    Full Text Available Waste stabilization ponds are a well established wastewater treatment system being considered by World Health Organization as one of the most appropriated technology for domestic wastewater when agricultural reuse is considered, especially in developing countries. This study was performed in a series of pilot-scale stabilization ponds, being one facultative and three maturation ponds, with depths varying from 0.44 to 0.57 m. The substrate to be treated was composed of a mixture of domestic wastewater and previously anaerobicaly treated leachate. The experimental system was monitored in two different phases, in which the hydraulic retention times were 15 (phase 1 and 10 days (phase 2. Termotolerant coliform removal efficiencies were 3.8 log10 units in both phases while organic matter (BOD5 removal was 87 and 68% for phases 1 and 2, respectively.

  12. The effect of waste water treatment on river metal concentrations: removal or enrichment?

    OpenAIRE

    Teuchies, J.; Bervoets, L.; Cox, T.J.S.; Meire, P.; Deckere, E., de

    2011-01-01

    Purpose Discharge of untreated domestic and industrial waste in many European rivers resulted in low oxygen concentrations and contamination with trace metals, often concentrated in sediments. Under these anoxic conditions, the formation of insoluble metal sulfides is known to reduce metal availability. Nowadays, implementation of waste water treatment plants results in increasing surface water oxygen concentrations. Under these conditions, sediments can be turned from a trace metal sink int...

  13. Domestic water uses: Characterization of daily cycles in the north region of Portugal

    International Nuclear Information System (INIS)

    Nowadays, there is an increasing discussion among specialists about water use efficiency and the best measures to improve it. In Portugal, there have been a few attempts to expand the implementation of in situ water reuse projects. However, there is a lack of information about indoor water uses and how they are influenced by sociodemographic characteristics. There are several studies that investigate per capita global water usage, but the partitioning of this volume per domestic device and daily cycles is yet unknown. Identified as one of the key questions in sustainable building design, the water end-use is of primary importance to the design of hydraulic networks in buildings. In order to overcome this lack, a quantitative characterization of daily water uses for each domestic device was performed, based on a weekly monitoring program in fifty-two different dwellings in the northern region of Portugal (Vila Real, Valpaços and Oporto). For forty of them, each water usage of different domestic devices of each dwelling was recorded. At the same time, the remaining twelve dwellings were also monitored in order to register the volume of water consumed in each utilization of each domestic device. This paper presents the results of this complete monitoring program, using collected data to establish indoor water use patterns for each domestic device, aiming to support a more realistic approach to residential water use. The daily cycles in the different cities, where the monitoring program was performed, are also presented, in order to evaluate possible influences of sociodemographic characteristics. - Highlights: • This paper presents a method to find out the pattern of water use in dwellings. • The number of uses per person a day, by domestic device, is presented. • The volume spent per type of use by domestic device is presented. • The daily cycles per domestic device are presented. • Sociodemographic characteristics seem to affect the daily cycles

  14. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    Science.gov (United States)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  15. Effects of a domestic well on assessed performance of a nuclear fuel waste disposal system

    International Nuclear Information System (INIS)

    The Canadian Nuclear Fuel Waste Management Program is using a probabilistic systems assessment code, SYVAC (System Variability Analysis Code), to assess long-term radiological safety of nuclear fuel waste disposal in a hypothetical vault excavated deep in plutonic rock. Initially, we employ a finite element code MOTIF (Model Of Transport In Fractured Porous Media) to simulate the convection of contaminants from the hypothetical vault, through the geosphere containing a well, to the biosphere. Then the results of this detailed research model are used to construct a simplified geosphere submodel (GEONET) for assessment using SYVAC. This paper presents (1) a domestic well as a human intrusion into the nuclear fuel waste disposal vault, (2) the method used to condense the detailed model to the simplified SYVAC geosphere submodel, and (3) results showing, for the particular geological conditions incorporated in these simulations, the consequences of the well on the risk assessment. The results from MOTIF and SYVAC indicate that, for the disposal vault and geological conditions assumed in these cases, human intrusion in the form of a domestic well must be considered in the performance assessment

  16. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    Science.gov (United States)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  17. Waste Water Disinfection Utilizing Ultraviolet Light

    OpenAIRE

    C.N. Ibeto; Mgbenka, B.O.; N.F. Oparaku

    2011-01-01

    3, NO3, NO2 and NH3 were determined using water analysis kit by Hague while the microbial analysis was carried out using the MacConkey agar plate. The UV disinfection method was found suitable for treatment of waste water. This is obvious since the treated sample of water had lower coliform count than the other waste water samples. The favourable quality of the UV disinfected water was also observed in its improved chemical properties especially ammonia and dissolved oxygen.

  18. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  19. Features of waste water quality in Zongguan water plant

    OpenAIRE

    Hadi Naba Shakir

    2008-01-01

    This paper takes waste water from Zongguan waterworks as a research object. The waste water was monitored consecutively and found that: the SS of waste water was more than 90 times of which in original water, COD was more than 30 times, and Fe was 58 times. The SS and turbidness showed no linear relation except when they were lower. The SS and Fe accord with linearity relation was better. The difference between waste water that from overhead crane at the beginning and in the end was wide. Alt...

  20. Onsite Waste Water Treatment System

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Onsite wastewater treatment systems (OWTSs have evolved from the pit privies used widely throughout history to installations capable of producing a disinfected effluent that is fit for human consumption. Although achieving such a level of effluent quality is seldom necessary, the ability of onsite systems to remove settles able solids, floatable grease and scum, nutrients, and pathogens. From wastewater discharges defines their importance in protecting human health and environmental resources. In the modern era, the typical onsite system has consisted primarily of a septic tank and a soil absorption field, also known as a subsurface wastewater infiltration system, or SWIS. In this manual, such systems are referred to as conventional systems. Septic tanks remove most settle able and floatable material and function as an anaerobic bioreactor that promotes partial digestion of retained organic matter. Septic tank effluent, which contains significant concentrations of pathogens and nutrients, has traditionally been discharged to soil, sand, or other media absorption fields (SWISs for further treatment through biological processes, adsorption, filtration, and infiltration into underlying soils. Conventional systems work well if they are installed in areas with appropriate soils and hydraulic capacities; designed to treat the incoming waste load to meet public health, ground water, and surface water performance standards; installed properly; and maintained to ensure long-term performance. These criteria, however, are often not met. Only about one-third of the land area in the United States has soils suited for conventional subsurface soil absorption fields. System densities in some areas exceed the capacity of even suitable soils to assimilate wastewater flows and retain and transform their contaminants. In addition, many systems are located too close to ground water or surface waters and others, particularly in rural areas with newly installed public water lines, are not designed to handle increasing wastewater flows.

  1. Characterization of domestic wastes incineration clinkers. Study on the possibilities of dioxines transfer in the environment; Caracterisation des machefers d'incineration d'ordures menageres. Etude sur les possibilites de transfert de dioxines vers l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Bartet, B.

    2001-07-15

    The clinkers, resulting from the domestic wastes incineration, contain dioxines. In order to evaluate the possible transfer of these pollutants in the environment, especially towards the underground water, this document brings together data on the dioxines content in clinkers from domestic wastes incineration, other combustion wastes and soils. After a comparison of the dioxines content and the emission factors, the report presents the experimental study on the transfer vectors identification. (A.L.B.)

  2. Spectrographic analysis of waste waters

    International Nuclear Information System (INIS)

    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs

  3. Waste water from dewatering of peat

    International Nuclear Information System (INIS)

    The influence of waste water from mechanical dewatering of peat was tested on two species of stream invertebrates. We compared the effects of waste water from peat without any chemical treatment, and waste water from peat where one of the following treatments of the peat had preceded dewatering; a: acidification combined with addition of the cationic polymer Zetag 78 FS40, b: addition of aluminium in combination with the anionic polymer Magnafloc E10, c: polymerisation of the peat by acidification and addition of ferrous chloride and hydrogen peroxide. Waste water from Al/Magnafloc and from the polymerisation treatments had a higher content of suspended matter and a higher oxygen demand than those of other treatments. Total metal content of the water from all treatments was higher than in water from non-treated peat. Survival and growth of nymphs of the mayfly Heptagenia fuscogrisa and the stonefly Nemoura cinerea were compared in waste water from the different treatments. In all tests, the waste water was diluted to 5% (volume) with unchlorinated tapwater and pH was between 7.0-8.0 in all treatments during the experiment. The nymphs were fed with birch leaves that had been incubated in natural stream water for one month. Under these conditions, we did not find any significant effect of waste water on either survival or growth of these two species

  4. Biological cleaning method for radioactive waste water

    International Nuclear Information System (INIS)

    Depending on the size of power plants, the waste water consisting of laundry drains and rinsing liquids from the nuclear laundry and the wash rooms within the controlled area may vary between some hundred and some thousand cubic meters. Common practice so far for water cleaning is careful filtration/sedimentation for extraction of radioactive substances, and subsequent discharge into the draining body. If radioactivity removal is insuffient, the water is evaporated for enhancing purification. The paper describes a biological method developed at the Gundremmingen reactor station. The organic matter in the waste water is removed by bacterial biodegradation, boosted by air. The time required for waste water treatment in the collecting tanks of the power plant for removal of the washing agents is approx. 10 hours, and the resulting waste water is then filtered for radioactivity removal from the water, which in the absence of detergents is much more efficient. (orig./CB)

  5. Environmental sustainability of ozonating municipal waste water

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e...... total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the WWTTs, i.e. ozonation....

  6. Environmental sustainability of waste water ozonation

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e...... whole effluent toxicity have been developed. About 15 different waste water and sludge treatment technologies (or combinations) have been assessed. This paper will present the LCA results from running the induced versus avoided impact approach on one of the WWTTs, i.e. ozonation....

  7. Emissions of PCDD/F and PCB from uncontrolled combustion of domestic waste in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Gonczi, M.; Gunnarsson, M.; Johansson, N. [Swedish Environmental Protection Agency, Stockholm (Sweden). Dept. of Environmental Assessment; Hedman, B.; Naslund, M.; Marklund, S. [Umea Univ., Umea (Sweden). Dept. of Environmental Chemistry

    2005-07-01

    Combustion-related activities are the principal source of dioxin and furan (PCDD/F) and polychlorinated biphenyl (PCB) emissions. However, municipal waste combustion is thought to have a low impact on total PCDD/F and PCB total emissions. This study investigated the impacts of uncontrolled backyard combustion of domestic waste. The aim of the study was to determine levels of unintentionally produced persistent organic pollutants (POPs) in Sweden. Nineteen combustion tests were conducted in a steel barrel, and a further 2 tests were conducted using open fires. The garden waste was comprised of wood branches, leaves, and grass. Refuse-derived fuel (RDF) consisted of municipal waste where the combustible fractions had been mechanically sorted from non-combustible waste and waste suitable for composting. PCDD/Fs and PCBs in the flue gas were iso-kinetically sampled with a cooled probe and sampling train. Emission factors were calculated from the relative amounts of carbon in fuel and in sampled emissions of carbon dioxide (CO{sub 2}), carbon monoxide (CO) and HC. Values were corrected for the loss of flue-gas in sampling. Results of the tests were comparable with other studies on uncontrolled combustion. The emissions from the open fires had relatively high levels of PCDD/Fs. It was not possible to determine the cause of significantly higher PCDD/F emissions noted during one of the combustion tests conducted in the steel barrel. It was concluded that levels of PCDD/F emissions in backyard fires are difficult to assess. 4 refs., 1 tab., 1 fig.

  8. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  9. Environmental sustainability of waste water ozonation

    OpenAIRE

    Larsen, Henrik Fred; Hansen, Peter Augusto

    2010-01-01

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e.g. pharmaceuticals, heavy metals and endocrine disrupters). As part of this work a holistic based prioritisation among technologies and optimisations have been done. Tools for this prioritisation include li...

  10. How mixing during hot water draw-offs influence the thermal performance of small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2005-01-01

    extent of mixing is increasing for increasing tank diameter. Further, calculations of the yearly thermal performance of small solar domestic hot water systems with hot water tanks with different mixing rates during hot water draw-offs were carried out. Both solar domestic hot water systems with mantle...... decreased auxiliary volume in the tanks and an increased height/diameter ratio of the tanks will increase the thermal performance of the systems. The investigations showed further, that mixing during hot water draw-offs decreases the thermal performance of solar domestic hot water systems. The mixing...... tanks and with spiral tanks were investigated. Tanks with different volumes, auxiliary volumes and height/diameter ratios were considered. The investigations showed that the thermal performance of systems with mantle tanks is higher than the thermal performance of systems with spiral tanks, and that a...

  11. Net energy analysis of domestic solar water heating installations in operation

    OpenAIRE

    HERNANDEZ Patxi; Kenny, Paul

    2012-01-01

    The potential of solar water heating systems to reduce domestic energy use is frequently acknowledged. However there are two factors that are rarely discussed when studying this technology. Firstly the real performance of the installed systems in operation, and secondly a life cycle perspective of its energy use. These two issues are reviewed in this paper, and a field study in Ireland is also presented. In the review, some studies show that measured real performance of domestic s...

  12. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  13. Domestic rooftop water harvesting (DRWH)- A case study

    OpenAIRE

    Arun Kumar Dwivedi; Sudhir Singh Bhadauria

    2009-01-01

    Although water is as important for survival of human being as much as food, air etc., but hardly any attention is paid for its economical use and conservation of this precious resource. Due to indiscriminate pumping of ground water, the water table is going down abnormally and if the problem is not given a serious look, then the future generations may have to face severe crisis of water. Rains are the main source of water and if rain water is harvested, the scarcity of water can be eliminated...

  14. Energy from waste water and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Fleckseder, H.

    1982-07-01

    It is discussed how to reduce liquid wastes from paper industry coinciding with rising of industrial process efficiency. Beyond it, the water power of the river Salzach forming the border of Austria and Bavaria could be more exploited if water quality gets better. For both aims, improving water quality and energy conservation, it is also discussed to generate power from industrial and municipal waste water by using sewage gas for fuel. The low population equivalence (ca. 300,000) of water treatment company in Salzburg does not yet promise profitable operation.

  15. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  16. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  17. Technology for sustainable development: a case study of solar domestic hot water heating in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Berbash, Y.; Chandrashekar, M.; Calamai, P. [Waterloo Univ., ON (Canada). Dept. of Systems Design Engineering

    1995-06-01

    In Ontario, potential contributions of solar domestic hot-water (SDHW) heating to air-emission mitigation have been identified. The provincial utility Ontario Hydro does not include solar heating in its current demand-side management plans because of the capital cost barrier. We present results of life-cycle cost analyses for installing a typical solar system in single-family dwellings in Toronto. For high hot-water load, the generated societal benefits make solar domestic hot-water heating an economically viable option. (author)

  18. Predicted impact of power coastdown operations on the water chemistry for two domestic boiling water reactors

    International Nuclear Information System (INIS)

    A theoretical model was adapted to evaluate the impact of power coastdown on the water chemistry of two commercial boiling water reactors (BWRs) in this work. In principle, the power density of a nuclear reactor upon a power level decrease would immediately be lowered, followed by water chemistry variations due to reduced radiolysis of water and extended coolant residence times in the core and near-core regions. It is currently a common practice for commercial BWRs to adopt hydrogen water chemistry (HWC) for corrosion mitigation. The optimal feedwater hydrogen concentration may be different after a power coastdown is implemented in a BWR. A computer code DEMACE was used in the current study to investigate the impact of various power coastdown levels on major radiolytic species concentrations and electrochemical corrosion potential (ECP) behavior of components in the primary coolant circuit of two domestic reactors operating under either normal water chemistry or HWC. Our analyses indicated that under a rated core flow rate the oxidizing species concentrations and the ECP did not vary monotonously with decreases in reactor power level at a fixed feedwater hydrogen concentration. In particular, ECP variations basically followed the patterns of hydrogen peroxide in the select regions and exhibited high values at power levels of 95% and 90% for Chinshan-1 and Kuosheng-1, respectively. (author)

  19. Numerical hydraulic modeling of urban waste water collecting systems : Working Project at Chazelles-sur-Lyon, France

    OpenAIRE

    Genty, Stanislas

    2014-01-01

    Urban waste water collecting systems are designed to convey domestic, industrial and storm water. When sizing sewer network, heavy rainfall must be considered to provide the needed hydraulic capacity for collection. Maintenance is also required in order to avoid anomalies such as inflow, infiltration and unusual polluted discharges from Combined Sewer Overflows (CSOs). Inflow and infiltration decrease the treatment yield at the Waste water Treatment Plant (WWTP) and participate in hydraulic o...

  20. Use of Industrial Waste Water for Agricultural Purpose: Pb and Cd in Vegetables in Bikaner City, India

    OpenAIRE

    Rajendra Singh; Verma, R. S.; Yogita Yadav

    2012-01-01

    Shortage of irrigation water resources is leading to the use of domestic and industrial waste water in agriculture. esp. in urban areas. Being contaminated by metals and various toxic chemicals these waste waters leads to the exposure of heavy metals and hazardous chemicals and the subsequent human health hazards through agriculture products and live stocks. Increasing cases of cancer and kidney problems is also related with this aspect. In present study human health risk assessment taken in ...

  1. The potential of Zea mays, Commelina bengelensis, Helianthus annuus and Amaranthus hybridus for phytoremediation of waste water

    OpenAIRE

    Chacha Joseph Sarima; Okong'o Eric Rang’ondi; Kimenyu Phylis Njeri; Oyaro Nathan Mayora

    2012-01-01

    Waste-water from domestic use and from industrial effluent burden the water systems with high levels of heavy metal hence there is need to remove these heavy metals so that the waste water can be recycled for use for household or irrigation. The present study has screened Zea mays (maize), Commelina bengelensis (wondering jew), Helianthus annuus (sunflower) and Amaranthus hybridus (amaranthus) for their ability to bioaccumulate Pb, Cu, Cd and Zn metals. The results obtained show that the H. a...

  2. Waste water management in radiation medicine laboratories

    International Nuclear Information System (INIS)

    A new building has been used since 1983 in the department of radiation medicine of Suzhou Medical College. Management, processing facilities, monitoring, discharge and treatment of 147Pm contaminated waste water are reported

  3. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made...... available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the findings from the past 5 years....

  4. Processing waste water in zeolite manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Barsukov, V.V.; Shumovskii, A.V.; Akopyants, T.V.

    1987-07-01

    The work reported here was aimed at developing a zero-waste technology for processing waste water with this composition. The authors performed experiments to determine the conditions required for the most nearly completely recovery of aluminum from the waste water so as to obtain a solution of practically pure sodium sulfate, for which processing schemes are already available. The waste water processing scheme includes the following: neutralization of excess caustic by acidification with aluminum sulfate to pH 7-8, filtration to remove solid contaminants and the aluminum hydroxide that has been formed, concentration of the filtrate (sodium sulfate solution) to 50-60 g/liter, evaporation of the preconcentrated sodium sulfate solution to a final concentration of 200 g/liter, and spray-drying to obtain commercial sodium sulfate.

  5. EnviroAtlas - Durham, NC - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community domestic water use was calculated using locally available water use data per capita in gallons of water per...

  6. EnviroAtlas - Tampa, FL - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use was calculated using locally available water use data per capita in gallons of water...

  7. EnviroAtlas - Fresno, CA - Domestic Water Demand per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water...

  8. EnviroAtlas - Phoenix, AZ - Domestic Water Demand per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water...

  9. EnviroAtlas - Paterson, NJ - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in the EnviroAtlas, the community level domestic water use is calculated using locally available water use data per capita in gallons of water per day...

  10. EnviroAtlas - New Bedford, MA - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  11. EnviroAtlas - Green Bay, WI - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  12. EnviroAtlas - Woodbine, IA - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  13. EnviroAtlas - New York, NY - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  14. EnviroAtlas - Milwaukee, WI - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  15. EnviroAtlas - Pittsburgh, PA - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use was calculated using locally available water use data per capita in gallons of water...

  16. EnviroAtlas - Portland, OR - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in the EnviroAtlas, the community level domestic water use is calculated using locally available water use data per capita in gallons of water per day...

  17. EnviroAtlas - Fresno, CA - Domestic Water Demand per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water...

  18. EnviroAtlas - Tampa, FL - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use was calculated using locally available water use data per capita in gallons of water...

  19. Preliminary design package for Sunspot Domestic Hot Water Heating System

    Science.gov (United States)

    1976-01-01

    The design review includes a drawing list, auto-control logic, measurement definitions, and other document pertaining to the solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control transport, auxiliary energy, and site data acquisition.

  20. Comparison of six generic solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, R.B.; Murphy, L.M.; Noreen, D.L.

    1980-04-01

    The cost effectiveness of residential solar water heating is explored by analyzing six different system types. A figure of merit (that considers both performance and cost) is calculated for each system, providing information for both researchers and industry. Thermosyphon water heaters are determined to be the most cost effective option, and their wider application is recommended once a reliable draindown technique is developed.

  1. Domestic water supply in rural Viet Nam - Between self-supply and piped schemes

    OpenAIRE

    Wegner, Antje

    2015-01-01

    This thesis analyses the dissemination of strategies for improving domestic water supply in rural Viet Nam based on statistical micro-data. Whereas practices of household water treatment are analysed on household level, the question of piped scheme coverage is decomposed into two sub-questions. While the first one refers to the availability of piped schemes on communal level (supply-side), the second one refers to the accessibility of safe water sources by rural households (demand-side).

  2. Influence of water scale on thermal flow losses of domestic appliances

    OpenAIRE

    Doberšek, Danijela; Gori?anec, Darko

    2012-01-01

    Research results of how the precipitated water scale on heaters of small domestic appliances influences the consumption of electricity are presented. It shows that the majority of water scale samples are composed of aragonite, calcite and dolomite and that those components have an extraordinary low thermal conductivity. Also, the results show that at 2 mm thick deposit, depending on the chemical composition of water scale, the thermal flow is reduced for 10% to 40%

  3. Impact of Training Program to Rationalize Consumption of Domestic Water Usages

    Directory of Open Access Journals (Sweden)

    Mohammad Said Damanhouri

    2012-01-01

    Full Text Available Problem statement: Reducing water consumption in terms of scarcity of water in Jordan which needs to rationalize consumption of the domestic water usages by some families in Amman-Jordan. Approach: This study aimed to decrease water consumption in household usages and to involve and encouraging the pioneer students in voluntary efforts to reduce domestic water. The study sample consisted of 121 female students of Princess’ Alia University College represented 121 Jordanian families in Amman. They trained to reduce flow of water and the time during usage water in kitchen; toilet; bathroom; washing cars; and to put a plastic bottle full of half liter of water in the toilet’s water tank. Economical and social variables of families were obtained from special questionnaire of this study, data were formed from previous measurements and information; the data analyzed throughout a simple statistical approach. Results: The families whom represented this study sample have positively responded for the proposed program; through reducing water consumption in domestic usages. The most important factor effects on rationalized water consumption are: Average monthly income, average family members, average of family members ages, the size of water tank of the toilet, size of shower used. Conclusion/Recommendations: The study concluded that the amount of preserved water in a bathroom may reach 25%, in kitchen 29, in toilet 10%, in washing cars 9%, of water consumption before implementation program at each of the previous sectors. The total amount of preserved water in Amman may reach to 11 million cubic meters annually. The study recommends implementing this simple program on the whole of Jordanian families as much as possible and encouraging the Jordanian citizens to use different tools, means, programs that may control water consumption and to recycle the used water as possible.""

  4. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  5. Installation and operation of the Plantwide Fire Protection Systems and related Domestic Water Supply Systems

    International Nuclear Information System (INIS)

    A safe work environment is needed to support the Savannah River Site (SRS) mission of producing special nuclear material. This Environmental Assessment (EA) assesses the potential environmental impact(s) of adding to and upgrading the Plantwide Fire Protection System and selected related portions of the Domestic Water Supply System at SRS, Aiken, South Carolina. The following objectives are expected to be met by this action: Prevent undue threat to public health and welfare from fire at SRS; prevent undue hazard to employees at SRS from fire; prevent unacceptable delay to vital DOE programs as a result of fire at SRS; keep fire related property damage at SRS to a manageable level;, and provide an upgraded supply of domestic water for the Reactor Areas. The Reactor Areas' domestic water supplies do not meet current demand capacity due to the age and condition of the 30-year old iron piping. In addition, the water quality for these supplies is not consistent with current SCDHEC requirements. Therefore, DOE proposes to upgrade this Domestic Water Supply System to meet current demand and quality levels, as well as the needs of fire protection system improvement

  6. Waste water treatment using electron beam

    International Nuclear Information System (INIS)

    The waste water treatment using electron beam is the method of oxidizing and decomposing the polluting substances in water by utilizing the activated species having high chemical reactivity arising in water by irradiation. It is suitable to the treatment of waste water which is difficult to treat by conventional water treatment techniques. It has also sterilizing effect. At present the electron accelerators of 100 kV-5 MV accelerating voltage are on the market, and their technical reliability is high, accordingly they are utilized for many fields including the heightening of heat resistance of electric cables. For water treatment, the accelerators of 1 MV or higher are necessary. The principle and the features of this process are explained. The simplest method of applying electron beam to water treatment is that by simple irradiation only. But in the case of high concentration of polluting substances in water and their complex composition, the simple irradiation requires a large dose, therefore the method of combining with other water treatment techniques for effectively utilizing electron beam has been investigated. The methods of combining with microorganism processing, coagulation and sedimentation, or ozone oxidation are described. The treatment of industrial waste water, sewage and the effluent water from garbage-filled land is explained. (Kako, I.)

  7. Organic flocculants in industrial waste water treatment

    International Nuclear Information System (INIS)

    Flocculants are used in the mechanical treatment of waste water and sludge. Since those based on natural products, such as gelatin, starch, and cellulose, did not provide the necessary dewatering effect, synthetic organic flocculants were developed. They are commercially available in various forms and, like all chemicals, have to be classified according to their potential endangering effect on water. (orig.)

  8. Waste Water Disposal Design And Management III

    International Nuclear Information System (INIS)

    This book gives descriptions of underlying chemistry, chemical conditioning, facilities, sterilization and special water treatment. It includes chemical combination and a chemical equation, molarity, normality, application of normality, chemical evaluation and law of mass action. It deals with chemical conditioning for design and management of waste water treatment.

  9. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve the...... local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  10. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  11. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  12. Solar domestic water heating performance test program - Interim report

    Science.gov (United States)

    Auris, R. H.

    Performance results from utility-installed or monitored flat plate collector systems on 13 residences are reported. The systems comprised either drain-down, i.e., emptying the water-working fluid into a reservoir in response to thermistor sensing of sufficiently low temperatures, or water/glycol mixture as freeze protection measures. Installation errors committeed by commercial solar contractors employed by the utility customers are outlined, indicating the uncertainty involved in obtaining a quality installation. Most system failures occurred with the drain-down systems, which also featured the highest system efficiencies. Redundancy in the control systems is suggested to offer significant improvements in system efficiency. The systems provided an average of 40% of the annual hot water needs, and the development of low cost materials, better system designs, low cost financing, and increased tax credits are concluded to be methods of making the systems cost effective.

  13. Water and waste water balances in power industry

    International Nuclear Information System (INIS)

    The determination of flow rate of media is a very important question in a power and heat plants. It concerns the leakage and the flow rate of the circulating water and also the quantity of waste water produced in the plants. The tracer techniques are very useful instruments for solving of these problems. The principles of the tracer techniques for balancing of the water and the waste water systems have been presented. The method of the leakage localization in the exemplary, hypothetical heating network has been also proposed. (author). 1 fig

  14. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  15. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  16. Attributes of Domestic Water Sources in a Rapidly Urbanizing State Capital in a Developing Economy

    Directory of Open Access Journals (Sweden)

    A. E. Olajuyigbe

    2010-01-01

    Full Text Available Problem statement: The efficiency and effectiveness of domestic water sources are often gauged by availability, accessibility and adequacy. This study examined various variables that could be harnessed in measuring these parameters with respect to water supply in Ado-Ekiti, Nigeria. Approach: The purpose of this study is to investigate the various attributes of domestic water sources in Ado-Ekiti, Nigeria. Three residential zones were identified in the city. They included the urban core, transitional zone and urban periphery. A sample size of 1,200 amounting to 4.0% of the total number of households in Ado-Ekiti, was chosen. Specific areas referred to as Data Delineation Areas (DDAs were identified in each zone. Based on the estimated population of each DDA, the number of households to be interviewed was estimated. In consonance with some assumptions, 600 (50.0% questionnaires were administered in the city core while 420 (35.0% and 180 (15.0% questionnaires were administered in the transitional zone and urban periphery, respectively. Subsequently, systematic sampling procedure was adopted in the choice of households to be interviewed. Some of the attributes investigated included the main source of domestic water used by household, access to improved source of water, distance from improved source to residence, average time spent to fetch from main source, average number of trips per person per day, quantity of water used per person per day and attack by water-borne diseases. Results: Households in Ado-Ekiti had access to diverse sources of domestic water including wells, boreholes, streams/rivers/springs, tanker-drawn water and rainwater. However, most households (59.8% depended on wells. Nevertheless, 84.3% had access to improved sources. Only 10.0% of these households obtained supplies from piped water while piped network is largely restricted to the city core. The research showed that distance, time, number of trips and adequacy of supplies placed limitations on access to improved source. Only 63.2% of the households in the city obtained water supplies within 1 km from their dwelling places. About 67.0% spent less than 30 min round trip to obtain water from improved sources while 61.6% made more than three (3 trips to water sources per day. Only 22.7% of the households had access to at least 40 L per person per day while 36.9% were annually afflicted with water-borne diseases such as typhoid, diarrhea and stomach ache. Conclusion: Domestic water supply system in Ado-Ekiti, Nigeria is characterized by low level of access, inadequate supplies from improved sources while these sources are usually distant away from the households.

  17. The concentration of 226Ra and 228Ra in domestic and imported bottled waters

    International Nuclear Information System (INIS)

    In the past few years, the use of commercially available bottled potable water has become very in vogue. Since many of the producers and/or distributors of these bottled waters claim that the water originated from natural mineral springs, there is a likelihood that some of these bottled waters could contain 226Ra and 228Ra in measurable quantities. This article presents the quantitative results obtained from the analyses of 11 domestic and imported brand named bottled waters sold commercially in retail stores in the northeastern United States. (author)

  18. Waste water treatment in Triglav national park

    OpenAIRE

    Peterlin, Blaž

    2012-01-01

    The thesis presents the pollution problems caused by municipal waste water in the protected area of the Triglav National Park. Although most people are not detecting the problem, the consequences of water pollution in the area are clearly visible in the mountain lakes and downstream springs. Water resources near the mountain huts and agricultural land show obvious signs of nurient overload. Non- native plant and animal species recklessly discharged into the natural environment also pose a thr...

  19. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  20. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  1. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter t...

  2. Synergistic effects of irradiation of waste water

    International Nuclear Information System (INIS)

    Theoretical considerations of the use of high level radiation in the treatment of waste water have failed to consider the effects of the hydrated electron and the potential of possible synergistic effects of combining chlorine, oxygen, and irradiation. An extensive testing program at the University Center for Pollution Research of Florida Institute of Technology over the past four years has shown that irradiation of waste water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programs have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and fecal streptococcus bacteria indicate that the synergistic effects observed for fecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the interrelationships between the various effects on the bacteria. A definite shielding factor due to the turbidity of the waste water has been shown to exist. Synergistic effects have been shown to significantly offset the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste water. (orig.)

  3. Demand side management potential of domestic water heaters and space heaters

    OpenAIRE

    Qazi, Hassan Wajahat; Flynn, Damian

    2012-01-01

    Demand side management (DSM) is a viable strategy for facilitating integration of renewable energy into power systems. The demand resource from water and space heating can be used to reduce or delay system demand peaks, and in combination with other flexible loads, reshape the aggregate demand profile and manage system ramping. In this paper, the aggregate power draw profiles for heat pump based water heating and under floor space heating systems for the Irish domestic sector have been synthe...

  4. Domestic water uses and values in Swaziland : a contigent valuation analysis

    OpenAIRE

    Farolfi, Stefano; Mabugu, R.E.; Ntshingila, S.N.

    2007-01-01

    The paper reports on the use of the contingent valuation method to study the determinants of Swazi households’ willingness to pay (WTP) for an improvement in their water quantity and quality. A sample of 374 households was surveyed and a Tobit model was applied to explain household preferences for quality and quantity of domestic water supply and derive estimates of WTP for such a service. The results confirm that household income had a positive and statistically significant impact on WTP for...

  5. EFFICIENCY OF DOMESTIC REVERSE OSMOSIS IN REMOVAL OF TRIHALOMETHANES FROM DRINKING WATER

    OpenAIRE

    S. Mazloomi ? R. Nabizadeh ? S. Nasseri ? K. Naddafi ? S. Nazmara ? A. H. Mahvi

    2009-01-01

    The reaction of disinfectants with natural organic matters existing in water lead to the formation of Disinfection By-Products. Potentially hazardous and carcinogenic characteristics of trihalomethanes (THMs) are recognized. Thus removal of THMs or its precursors are necessary for human health. The aim of this study was to study the efficiency of domestic reverse osmosis (RO) in removal of trihalomethanes from drinking water. A pilot scale of RO system with Polyamide membrane as Spiral-Wound,...

  6. Method of treating waste water

    Science.gov (United States)

    Deininger, James P. (Colorado Springs, CO); Chatfield, Linda K. (Colorado Springs, CO)

    1995-01-01

    A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  7. Waste water discharges into natural waters

    International Nuclear Information System (INIS)

    The aqueous discharges into natural waters is a very technical solution expecially for surface buoyant discharges. It is not only convenient to limit the concentration levels of the discharges, but also to improve the turbolent processes that diluite the discharge. Mostly these processes depend by some geometric parameters of the discharge and by some physical parameters of the effluent and of the receiving water body. An appropriate choice of some parameters, using also suitable mathematical models, allows to design discharges with a very high dilution; so the decreasing of the pollutant levels is improved and the environmental impact can be reduced versus a not diluted effluent. The simulations of a mathematical model, here described, prove that in some circumstances, expecially in case of discharges of fresh water into saline water bodies with a low velocity of the current, the dilution is poor; the effluent can be trapped in a narrow water surface layer where the pollutant concentrations remain high. also far away from the discharge point

  8. Chemical Industry Waste water Treatment

    International Nuclear Information System (INIS)

    Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg O2/l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg O2/l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBe) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law

  9. Pump station for radioactive waste water

    Science.gov (United States)

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  10. Water management aspects of waste waters from radioisotope establishments

    International Nuclear Information System (INIS)

    The technological, technical and legal problems are discussed of waste waters discharged from radioisotope workplaces, proceeding from data obtained in investigations carried out by the State Water Management Inspection. The problems are assessed with regard to established limits, standards and other regulations. The main causes of the detected shortcomings are analyzed. (B.S.). 8 refs

  11. The Swedish biogas potential from domestic waste products; Den svenska biogaspotentialen fraan inhemska restprodukter

    Energy Technology Data Exchange (ETDEWEB)

    Linne, Marita; Ekstrandh, Alexandra; Englesson, Rolf; Persson, Emelie (Biomil AB, Lund (Sweden)); Bjoernsson, Lovisa; Lantz, Mikael (Envirum AB, Lund (Sweden))

    2008-07-01

    The report is an inventory of raw material amounts of waste, parks- and garden waste, sewage sludge, manure and residues from industrial, agricultural and forestry in Sweden which are suitable for biogas production. The inventory has mainly been county by county in order to obtain an overview of how the raw materials are distributed across the country. For each waste category it is described how data collection, boundaries and assumptions have been made. The total biogas potential from domestic raw materials, excluding raw material from forests, is estimated to over 15.2 TWh/year, and the total biogas feasible potential 10.6 TWh/year. However, these limitations can quickly be changed by changing competition, energy prices etc. Residues from the forest represents a significant potential for future methane production. The residues from forestry and forest industry have a total energy potential of about 59 TWh methane per year. Methane production from wood performed by thermal gasification, which is used to a limited extent today. It is difficult to specify when the technology will be commercially available. The total biogas and energy potential is then of the order of 74 TWh/year, of which forest-related products account for approximately 80%. The Swedish EPA is aiming, by 2010, to have at least 35% of food waste from households, restaurants, shops and recycled by biological treatment. This report assumes that 60% of all food waste can be accessible for biogas production. This amount corresponds to approximately 760 GWh annually and represents 7% of the total biogas potential range. The total biogas potential from all food waste in Sweden amounts to 1346 GWh/year. Residues from different industries have a great potential, approximately 10% of the total biogas potential range is estimated to be from here. Crops residues and manure is a significant future potential, 10.8 TWh/year. The total feasible biogas potential in the current environment, however, is assessed to be lower, about 8 TWh/year, since manure from grazing cattle is not included and that some straw may need to be left in order not to jeopardize the soil humus content, etc. Sewage treatment plants have a long tradition of digesting sludge, since it has been a way to stabilize and reduce the amount of sewage sludge. A large part of Sweden sewage sludge is digested today, but with slightly increased amounts and by optimizing processes, more biogas is produced. Of the total feasible biogas potential for the sewage sludge is 7%. Apart from supply of raw materials, it is important to ensure the possibility of disposing of biogas and bio-fertilizers. Prerequisites for a common gas network, and proximity to productive land, is seen as advantageous

  12. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken...... into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter through society. Among the tools are input-output analysis and cradle to grave analysis, in...

  13. Application of an Integrated Heat Recovery Technology for Domestic Hot Water Supply System and Air Conditioning

    Directory of Open Access Journals (Sweden)

    Chen Yan

    2013-01-01

    Full Text Available This study is to design an integrated heat recovery and air conditioner system and to investigate the feasibility and the potential performance of this system in changing conditions. Different season conditions and operating modes are studied based on the items of one hotel. In winter, heat recovered from wastewater is used on water heating and air condition and the surplus energy of air conditioner system is used on hot water system in summer. Dynamic energy simulation was performed with a comprehensive Domestic Hot Water (DHW heating and air conditioning system composed of some components like High Temperature Heat Pump (HTHP unit, water tanks, heat exchangers and pumps.

  14. Waste water reuse pathways for processing tomato

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn

      Direct or indirect water reuse involves several aspects: contamination by faecal, inorganic and xenobiotic pollutants; high levels of suspended solids and salinity; rational use of the dissolved nutrients (particularly nitrogen). The challenge is apply new strategies and technologies which allows to use the lowest irrigation water quality without harming nor food safety neither yield and fruit or derivatives quality. The EU project SAFIR aims help farmers solve problems with low quality water and decreased access to water. New water treatment devices (prototypes) are under development to allow a safe use of waste water produced by small communities/industries (?2000 EI) or of treated water discharged in irrigation channels. Water treatment technologies are coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management.

  15. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  16. Bacteriological quality and risk assessment of the imported and domestic bottled mineral water sold in Fiji.

    Science.gov (United States)

    Zeenat, A; Hatha, A A M; Viola, L; Vipra, K

    2009-12-01

    Considering the popularity of bottled mineral water among indigenous Fijians and tourists alike, a study was carried out to determine the bacteriological quality of different bottled waters. A risk assessment was also carried out. Seventy-five samples of bottled mineral water belonging to three domestic brands and 25 samples of one imported brand were analysed for heterotrophic plate count (HPC) bacteria and faecal coliforms. HPC counts were determined at 22 degrees C and 37 degrees C using R2A medium and a membrane filtration technique was used to determine the faecal coliform (FC) load in 100 ml of water on mFC agar. Between 28 and 68% of the samples of the various domestic brands failed to meet the WHO standard of 100 colony forming units (cfu) per 100 ml at 22 degrees C and 7% of these also tested positive for faecal coliforms. All imported bottled mineral water samples were within WHO standards. A risk assessment of the HPC bacteria was carried out in terms of beta haemolytic activity and antibiotic resistance. More than 50% of the isolates showed beta haemolytic activity and were multi-drug resistant. While the overall quality of the product was generally good, there is a need to enforce stringent quality standards for the domestic bottlers to ensure the safety of consumers. PMID:19590131

  17. Impact of landfills, domestic and industrial waste on the aquifer in Raipur city and contribution of karst feature to the groundwater contaminations

    International Nuclear Information System (INIS)

    Karst features (landscapes that result from dissolution and surface drainage of carbonate terrains) are potentially a large source of water. They have distinctive features, which distinguish them from fissured and porous aquifers. These features include a general lack of permanent surface streams, existence of surface holes into which surface stream sink, presence of underground big channels and large springs etc. Karst environments are used for potable water supply as well as disposal sites for municipal, agricultural and industrial waste dumping. The peculiar geomorphologic and hydrological features of karst make them highly vulnerable for groundwater pollution. The ease with which they can be polluted make a fit case of taking protection measures in advance. Raipur is a major business, educational center as well as capital city of Chhattisgarh state in India. The city has been rapidly expanding during the last two decades, as a result of rapid industrialisation and various economic developments. Wastes generated from a wide variety of industrial, commercial, agricultural and domestic activities are dumped into pits or low - lying area around the Raipur City. The climate in the area is characterised by very hot summer and well distributed rain over four months during monsoon season. Monsoon precipitation begins from mid June and generally remains active till the end of September. The average annual precipitation is ?1250 mm. In the study area, groundwater lies in the karstified nature of geological formation and is naturally susceptible to contamination by landfills, domestic and industrial wastes. The karstification feature is exposed to the surface in Raipur city at many places. Environmental isotopes (2H, 3H, 18O and 13C) as well as chemistry of the water samples were used to identify a few places, which are prone to contamination in Raipur city. Deterioration of the groundwater quality is not alarming due to thin shale (impervious layer) cover over the limestone. (author)

  18. Electrooxidation of organics in waste water

    Science.gov (United States)

    Hitchens, G. D.; Murphy, Oliver J.; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA is currently being pursued to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space-habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water-reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of an electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel-cell technology is presented.

  19. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-07-24

    ... CFR Part 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service... related to the Section 306C Water and Waste Disposal (WWD) Loans and Grants Program, which provides water... additional priority points to the colonias that lack access to water or waste disposal systems and...

  20. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  1. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter through society. Among the tools are input-output analysis and cradle to grave analysis, in combination with compilation of identified sets of values with respect to sustainable use of resources and ultimate fate of the environment and quality of life. The role of the engineer is to make available to society as many technical options as possible - and to put these options into the proper perspective in relation to the objectives of society. (C) 1997 IAWQ. Published by Elsevier Science Ltd.

  2. Anatomical root variations in response to water deficit: wild and domesticated common bean (Phaseolus vulgaris L

    Directory of Open Access Journals (Sweden)

    Cecilia B Peña-Valdivia

    2010-01-01

    Full Text Available Root anatomical responses to water deficit are diverse and regulation of water uptake strongly depends on plant anatomy. The ancestors of common bean (Phaseolus vulgaris L. cultivars are the wild common beans. Because wild beans adapt and survive well in theon atural environment, it is hypothesized that wild common bean roots are less affected than those of domesticated beans at low substrate water potential (ψW. A wild common bean accession from Chihuahua Mexico and cv. Bayomex were studied. Seedlings with a mean root length between 3 and 4 cm were maintained for 24 h in vermiculite at ψW of -0.03 (well hydrated, -0.65, -1.48 and -2.35 MPa (partially dry. Ten anatomical characteristics of differentiation and cell division in root regions were evaluated. Thickness of epidermis and protoderm diminished similarly in wild and domesticated beans growing at low substrate ψW (between -0.65 and -2.35 MPa. At the same time, parenchymatic cell area diminished by 71 % in the domesticated variety, but by only 32 % in the wild bean at -2.35 MPa. Theon umber of cells in the cortex and the thickness of the xylem wall increased in both wild and domesticated beans at low substrate ψW;on evertheless, the effect was significantly lower in the wild bean. Theon umber of xylem vessels increased in the cultivar (up to 40 % while in the wild bean it decreased (up to 33 %. The diameter of xylem vessels and transverse root area diminished (15 and 57 %, respectively in the cultivar, but in the wild common bean wereon ot affected. Anatomical root characteristics and their modifications in both differentiation and cell division in root regions demonstrated that the wild bean reacted quite differently to substrate ψW than the domesticated common bean.

  3. Anatomical root variations in response to water deficit: wild and domesticated common bean (Phaseolus vulgaris L)

    Scientific Electronic Library Online (English)

    Cecilia B, Peña-Valdivia; Adriana B, Sánchez-Urdaneta; Joel, Meza Rangel; Juana, Juárez Muñoz; Rodolfo, García-Nava; Raquel, Celis Velázquez.

    Full Text Available Root anatomical responses to water deficit are diverse and regulation of water uptake strongly depends on plant anatomy. The ancestors of common bean (Phaseolus vulgaris L.) cultivars are the wild common beans. Because wild beans adapt and survive well in theon atural environment, it is hypothesized [...] that wild common bean roots are less affected than those of domesticated beans at low substrate water potential (?W). A wild common bean accession from Chihuahua Mexico and cv. Bayomex were studied. Seedlings with a mean root length between 3 and 4 cm were maintained for 24 h in vermiculite at ?W of -0.03 (well hydrated), -0.65, -1.48 and -2.35 MPa (partially dry). Ten anatomical characteristics of differentiation and cell division in root regions were evaluated. Thickness of epidermis and protoderm diminished similarly in wild and domesticated beans growing at low substrate ?W (between -0.65 and -2.35 MPa). At the same time, parenchymatic cell area diminished by 71 % in the domesticated variety, but by only 32 % in the wild bean at -2.35 MPa. Theon umber of cells in the cortex and the thickness of the xylem wall increased in both wild and domesticated beans at low substrate ?W;on evertheless, the effect was significantly lower in the wild bean. Theon umber of xylem vessels increased in the cultivar (up to 40 %) while in the wild bean it decreased (up to 33 %). The diameter of xylem vessels and transverse root area diminished (15 and 57 %, respectively) in the cultivar, but in the wild common bean wereon ot affected. Anatomical root characteristics and their modifications in both differentiation and cell division in root regions demonstrated that the wild bean reacted quite differently to substrate ?W than the domesticated common bean.

  4. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  5. Waste water purification with a centrifugal decanter

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, R.

    1981-02-01

    The method described is suitable for the treatment of radioactive and conventional waste effluent. It is a combination of precipitation and subsequent dewatering of sludge. The object of the treatment is to remove from the water by means of aluminium sulphate precipitation, radioactive substances, petroleum ether-extractible materials and undissolved impurities.

  6. Waste water purification with a centrifugal decanter

    International Nuclear Information System (INIS)

    The method described is suitable for the treatment of radioactive and conventional waste effluent. It is a combination of precipitation and subsequent dewatering of sludge. The object of the treatment is to remove from the water by means of aluminium sulphate precipitation, radioactive substances, petroleum ether-extractible materials and undissolved impurities. (orig.)

  7. Quantitative bacterial examination of domestic water supplies in the Lesotho Highlands: water quality, sanitation, and village health.

    OpenAIRE

    Kravitz, J. D.; Nyaphisi, M.; Mandel, R.; Petersen, E.

    1999-01-01

    Reported are the results of an examination of domestic water supplies for microbial contamination in the Lesotho Highlands, the site of a 20-year-old hydroelectric project, as part of a regional epidemiological survey of baseline health, nutritional and environmental parameters. The population's hygiene and health behaviour were also studied. A total of 72 village water sources were classified as unimproved (n = 23), semi-improved (n = 37), or improved (n = 12). Based on the estimation of tot...

  8. Waste Water Plant Operators Manual.

    Science.gov (United States)

    Washington State Coordinating Council for Occupational Education, Olympia.

    This manual for sewage treatment plant operators was prepared by a committee of operators, educators, and engineers for use as a reference text and handbook and to serve as a training manual for short course and certification programs. Sewage treatment plant operators have a responsibility in water quality control; they are the principal actors in…

  9. Hybrid PV/T solar systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Hybrid photovoltaic/thermal (PV/T) solar systems can simultaneously provide electricity and heat, achieving a higher conversion rate of the absorbed solar radiation than standard PV modules. When properly designed, PV/T systems can extract heat from PV modules, heating water or air to reduce the operating temperature of the PV modules and keep the electrical efficiency at a sufficient level. In this paper, we present TRNSYS simulation results for hybrid PV/T solar systems for domestic hot water applications both passive (thermosyphonic) and active. Prototype models made from polycrystalline silicon (pc-Si) and amorphous silicon (a-Si) PV module types combined with water heat extraction units were tested with respect to their electrical and thermal efficiencies, and their performance characteristics were evaluated. The TRNSYS simulation results are based on these PV/T systems and were performed for three locations at different latitudes, Nicosia (35 deg.), Athens (38 deg.) and Madison (43 deg.). In this study, we considered a domestic thermosyphonic system and a larger active system suitable for a block of flats or for small office buildings. The results show that a considerable amount of thermal and electrical energy is produced by the PV/T systems, and the economic viability of the systems is improved. Thus, the PVs have better chances of success especially when both electricity and hot water is required as in domestic applications

  10. Process for treating waste water containing hydrazine from power stations

    International Nuclear Information System (INIS)

    A process for treating waste water containing hydrazine from nuclear power stations is proposed, characterized by the fact that the water is taken continuously through a water decomposition cell. If the water does not have sufficient conductivity itself, a substance raising the electrical conductivity is added to the water to be treated. The electrolysis is situated in the waste water tank. (orig./RB)

  11. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  12. The Use of Solar Energy for Preparing Domestic Hot Water in a Multi-Storey Building

    Directory of Open Access Journals (Sweden)

    Giedrius Šiupšinskas

    2012-12-01

    Full Text Available The article analyses the possibilities of solar collectors used for a domestic hot water system and installed on the roofs of modernized multi-storey buildings under the existing climate conditions. A number of combinations of flat plate and vacuum solar collectors with accumulation tank systems of various sizes have been examined. Heat from the district heating system is used as an additional heat source for preparing domestic hot water. The paper compares calculation results of energy and economy regarding the combinations of flat plate and vacuum solar collectors and the size of the accumulation tank. The influence of variations in the main indicators on the final economic results has also been evaluated. Research has been supported applying EC FP7 CONCERTO program (‘‘Sustainable Zero Carbon ECO-Town Developments Improving Quality of Life across EU - ECO-Life’’ (ECO-Life Project Contract No. TREN/FP7EN/239497/”ECOLIFE”.Article in Lithuanian

  13. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 1013 cm-2 s-1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  14. Factors Affecting Domestic Water Consumption in Rural Households upon Access to Improved Water Supply: Insights from the Wei River Basin, China

    OpenAIRE

    FAN, L.; G.Liu; Wang, F.; Geissen, V.; Ritsema, C. J.

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improv...

  15. Process for treating waste water containing radioactive substances

    International Nuclear Information System (INIS)

    A process for treating waste water containing radioactive substances comprising treating the waste water by reverse osmosis in the presence of at least one organic surfactant selected from the group consisting of anionic surfactants, cationic surfactants and nonionic surfactants

  16. Waste water treatment of hydrometallurgical mill in mine No. 754

    International Nuclear Information System (INIS)

    The author briefly introduces some measures to waste water treatment of hydrometallurgical mill of Uranium Mine No. 754. It is shown in practice that making rational use of waste water is advantageous to production, reducing qcost and lightening environment pollution

  17. Domestic wastes incineration in France situation in 2000 evolution and perspectives the 31.12.2002; Incineration des dechets menagers en France situation en 2000 evolution et perspectives au 31.12.2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document presents the analysis and the conclusions of a working group, concerning the domestic wastes incineration. It presents successively the place of the domestic wastes in the wastes management approach, the regulations, the methodology and the corresponding results of an inquiry realized in 2000 and the research programs on the incineration as the Best Available Techniques, the sanitary impacts of the UIOM (domestic wastes incineration plants), the vitrification, the greenhouse effect. (A.L.B.)

  18. New test methodologies to analyse direct expansion solar assisted heat pumps for domestic hot water 

    OpenAIRE

    Facão, Jorge; Carvalho, M. J.

    2014-01-01

    Since there are not specific standards for testing direct expansion solar assisted heat pumps for domestic hot water, new testing methodologies are proposed supported by laboratory experiments. Two methodologies were developed for performance measurement: modified BIN method and long term performance prediction with a TRNSYS model validated with specific experimental conditions. The long term performance prediction is a methodology similar to the already obtained for solar thermal systems. A ...

  19. Domestic hot water consumption vs. solar thermal energy storage: the optimum size of the storage tank

    OpenAIRE

    Rodríguez Hidalgo, María del Carmen; Rodríguez Aumente, Pedro A.; Lecuona Newman, Antonio; Legrand, Mathieu; Ventas Garzón, Rubén

    2012-01-01

    Many efforts have been made in order to adequate the production of a solar thermal collector field to the consumption of domestic hot water of the inhabitants of a building. In that sense, much has been achieved in different domains: research agencies, government policies and manufacturers. However, most of the design rules of the solar plants are based on steady state models, whereas solar irradiance, consumption and thermal accumulation are inherently transient processes. As a result of thi...

  20. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    Science.gov (United States)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model integration is that it allows the investigation of the effects of different water demand management strategies to an urban population's water demand behaviour and ultimately the effects of these policies to the volume of domestic water demand and the water resources system. The proposed modelling platform is optimised to simulate the effects of water policies during the Athens drought period of 1988-1994. The calibrated modelling platform is then applied to evaluate scenarios of water supply, water demand and water demand management strategies.

  1. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  2. The micro-electrolysis technique in waste water treatment

    International Nuclear Information System (INIS)

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs

  3. Thermal performance of small solar domestic hot water systems in theory, in the laboratory and in practice

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    for poor thermal performances of systems tested in practice are given. Based on theoretical calculations the negative impact on the thermal performance, due to a large number of different parameter variations are given. Recommendations for future developments of small solar domestic hot water systems......The aim of the project is to present results of measurements and theoretical calculations for solar domestic hot water systems installed and tested in the laboratory and in practice. The solar domestic hot water systems from which results are presented are all based on small tanks. Further, reasons...

  4. Investigating the Effectiveness of Ultraviolet (UV Water Purification as Replacement of Chlorine Disinfection in Domestic Water Supply

    Directory of Open Access Journals (Sweden)

    Olaoye

    2012-08-01

    Full Text Available Domestic water supply to residential buildings through hand-dug wells has been widely accepted as a reliable substitute to government owned municipal water supply system in Nigeria. This Paper investigates theeffectiveness of Ultraviolet (UV Water Sterilizers as a suitable replacement of chlorine disinfection in the removal of microbiological contaminants in domestic water supply. Water from an established contaminated well in Ogbomoso, Nigeria, were subjected, simultaneously and in parallel, to chlorine dosing and contact withUV light, over a period of seven (7 days without pre-filtration, and additional seven (7 days with pre-filtration. Pre-filtration was accomplished by the use of a calibrated pressure filter. Effluent water samples were taken daily for the two (2 scenarios to the laboratory for physical, chemical and biological analyses. The resultsindicated that UV water purification method was more effective only when pre-filtration of raw water was introduced. With monitored prefiltration prior to ultraviolet purification, the colony count, MPN Coliform Organisms and MPN E. Coli Organisms recorded seven day-average values of 1, 0 and 0, respectively. In both scenarios, it was confirmed that UV method produced no bi-products and did not alter the taste, pH or other properties of water, in contradistiction to chlorine disinfection method

  5. Yeasts and yeast-like fungal contaminants of water used for domestic purposes in Jos, Nigeria

    Directory of Open Access Journals (Sweden)

    Grace Mebi Ayanbimpe

    2013-01-01

    Full Text Available Water used for domestic purposes is ideally required to be free from contaminants. Various contaminants have frequently affected the quality of such water. Water samples were obtained from 150 sources including 72 wells, 60 streams, 17 taps, and one borehole, randomly selected from five residential areas in Jos, Nigeria. Structured questionnaires and one-to- one interview was used to obtain information on features of location and use of facilities in each area. Eighty (53.3% water sources were contaminated, predominantly wells (70.8%. The locations (identified in code with the highest number of contaminated sources were AGO (60.0%, GBU (56.7% and FGD (56.7%. AGD and FGD also had the highest ratio of households to one water source (25:1. Eighty- two fungi were isolated, predominantly Candida tropicalis (23.2%, Candida lipolytica (10.9% and Rhodotorula sp (9.7%. Candida lipolytica was the highest (42.9% contaminant in tap water. Rhodotorula sp was found in all types of water sources sampled. Type of water source had a significant effect (P<0.05 on the presence of some fungi in the water. The residential area (Location had a significant effect on contamination of water sources by some yeasts. Water sources for domestic use in Jos are contaminated by yeasts and yeast-like fungi. Frequency of use, exposure of the facility to dirt, and contaminations of surroundings contribute to the occurrence of fungi in water sources and, by implication, the prevalence of fungal infections.

  6. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service 7 CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and... (RUS) proposes to amend the regulations pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water and waste disposal facilities and services to...

  7. Environmental sustainability of ozonating municipal waste water

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e.g. pharmaceuticals, heavy metals and endocrine disrupters). As part of this work a holistic based prioritisation among technologies and optimisations is to be done. Tools for this prioritisation include life cycle assessment (LCA) and cost/efficiency. The LCA is performed as a comparative LCA and the concept of induced impacts as compared to avoided impacts is introduced in the life cycle impact assessment (LCIA) part. Furthermore, as novel approaches, potential ecotoxicity impact from a high number of micropollutants and the potential impact from pathogens (and whole effluent toxicity) are to be included. In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the WWTTs, i.e. ozonation.

  8. Glucoamylase production from food waste by solid state fermentation and its evaluation in the hydrolysis of domestic food waste

    OpenAIRE

    Esra Uçkun Kiran; Antoine P. Trzcinski; Yu Liu

    2014-01-01

    In this study, food wastes such as waste bread, savory, waste cakes, cafeteria waste, fruits, vegetables and potatoes were used as sole substrate for glucoamylase production by solid state fermentation. Response surface methodology was employed to optimize the fermentation conditions for improving the production of high activity enzyme. It was found that waste cake was the best substrate for glucoamylase production. Among all the parameters studied, glucoamylase activity was significantly aff...

  9. Radiation purification of waste water from cyanides

    International Nuclear Information System (INIS)

    A possibility of using a radiation method for purification of waste water from cyanides of nitrile department of acrylic acid containing 15-100 mg/l CN-ions is investigated. Irradiation of samples has been executed by a source of ?-radiation Cs137. Dose rate is equal to 65 rad/s. 90% degree of cyanide decomposition is attained at the dose of 0.45 Mrad. Radiolysis of waste waters has been conducted under heating for increase of the degree of purification and decrease of absorbed radiation dose. At temperature growth up to 90 deg C complete decomposition of cyanides has been attained at the dose of 0.5 Mrad. Cyanates, carbonates and ammonium ions are shown to be formed as the main products of radiolysis

  10. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  11. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  12. Determination of Heavy Metal Levels in Various Industrial Waste Waters

    OpenAIRE

    Mustafa ?ahin Dündar; Hüseyin Altunda?; Sinem Kaygaldurak; Volkan ?ar; Aysun Acar

    2012-01-01

    Important part of the environmetal pollution consists of waste water and water pollution. The water polluted by anthropogenical, industrial, and agricultural originated sources are defined as waste waters which are the main pollution sources for reservoirs, rivers, lakes, and seas. In this work, waste waters of leather, textile, automotive side, and metal plating industries were used to determine the levels of Cu, Zn, Cr, Pb and Ni by using Flame Atomic Absorption Spectrometer. As a result, h...

  13. Quantitative Assessment of Water Use Efficiency in Urban and Domestic Buildings

    Directory of Open Access Journals (Sweden)

    Vicente Santiago-Fandiño

    2013-08-01

    Full Text Available This paper discusses the potential of water savings at property, household and urban levels, through the application of environmentally sound technologies (ESTs, as well as their quantification using the software Wise Water. Household centered measures are identified that allow for significant reduction of drinking water consumption with comparatively small effort, and without limitation of comfort. Furthermore, a method for the estimation of water recycling, for rainwater harvesting and for the utilization potential as locally available renewable freshwater is presented. Based on this study, the average drinking water consumption in urban households of industrialized countries could be reduced by approximately one third, without significant investment costs, either within the framework of new constructions or by the remodeling of water and sanitation systems in residential buildings. By using a secondary water quality, the drinking water demand could even be reduced by 50%. In the case of an area-wide application, the overall fresh water demand of cities and the exploitation of fresh water resources could be significantly reduced. Due to the comparability of the domestic water use of the investigated households, the findings are internationally transferable, for example to countries in Europe, Asia, and also the USA.

  14. Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2004-01-01

    Experimental and numerical investigations of vertical mantle heat exchangers for solar domestic hot water (SDHW) systems have been carried out. Two different inlet positions are investigated. Experiments based on typical operation conditions are carried out to investigate how the thermal stratification is affected by different positions of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the tank is analysed by CFD-simulations. Further...

  15. Theoretical and experimental evaluations of the convective and conductive heat transfers in a domestic hot-water store

    OpenAIRE

    Chauvet, L. P. J.

    1991-01-01

    The design of a water based thermal store for use in a domestic central heating system has been investigated theoretically, experimentally and numerically. The transient operation of the store during both the space heating and domestic hot-water modes of operation have been investigated separately. Heat transfer correlations in terms of Nusselt and Rayleigh numbers have been developed in order to predict the natural convection heat transfer coefficient for the outside sur...

  16. Domestic transmission routes of pathogens: the problem of in-house contamination of drinking water during storage in developing countries

    DEFF Research Database (Denmark)

    Jensen, Peter Kjaer; Ensink, Jeroen H J; Jayasinghe, Gayathri; van der Hoek, Wim; Cairncross, Sandy; Dalsgaard, Anders

    2002-01-01

    Even if drinking water of poor rural communities is obtained from a 'safe' source, it can become contaminated during storage in the house. To investigate the relative importance of this domestic domain contamination, a 5-week intervention study was conducted. Sixty-seven households in Punjab......, Pakistan, were provided with new water storage containers (pitchers): 33 received a traditional wide-necked pitcher normally used in the area and the remaining 34 households received a narrow-necked water storage pitcher, preventing direct hand contact with the water. Results showed that the domestic...... domain contamination with indicator bacteria is important only when the water source is relatively clean, i.e. contains less than 100 Escherichia coli per 100 ml of water. When the number of E. coli in the water source is above this value, interventions to prevent the domestic contamination would have a...

  17. Patterns of domestic water use in rural areas of Zimbabwe, gender roles and realities

    Science.gov (United States)

    Makoni, Fungai S.; Manase, Gift; Ndamba, Jerry

    This paper presents practical experiences into the pattern of domestic water use, benefits and the gender realities. The study was undertaken in two districts of Zimbabwe, Mt Darwin and Bikita covering a total of 16 villages. The study aimed to assess the patterns of domestic water use, benefits derived from its use among the gender groups. Methodology for participatory assessment (MPA) was used for data collection and was done in a participatory manner. Traditionally most people in Zimbabwe are subsistence farmers who rely on rain fed agriculture. Where primary water sources are available such as shallow wells, family wells, deep wells and boreholes households use the water for household water and sanitation, irrigate small family gardens as well as their livestock. The survey established that women and men usually rank uses of water differently. In the two districts it was evident that women are playing more roles in water use and it is apparent that women are most often the users, managers and guardians of household water and hygiene. Women also demonstrated their involvement in commercial use of water, using water for livestock watering (20%) as well as brick moulding (21%). These involvement in commercial use were influenced by survival economics as well as the excess and reliability of the supply. The different roles and incentives in water use of women and men was demonstrated in how they ranked the benefits of water and sanitation. Men ranked clean drinking water among others as a top priority while women ranked improved health and hygiene and reduced distance as top priority. Overall the benefits highlighted by the communities and especially women were meeting the practical needs such as better access to water and reducing their work load. The assessment demonstrated the active role of women in water sources management highlighting quality, reliability and restrictions to their use. Though the communities gave the impression that decision making in the sitting and construction of water points was equally among the gender groups, however it was evident that men have a greater role than women in public decision making.

  18. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  19. Performance of alternative refrigerant R430A on domestic water purifiers

    International Nuclear Information System (INIS)

    In this study, performance of R430A is examined numerically and experimentally in an effort to replace HFC134a used in refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in near future in most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experiments are carried out with a new refrigerant mixture of 76%R152a/24%R600a using actual water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system in water purifiers. With the optimum amount of charge of 21-22 g, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a for the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a in domestic water purifiers requiring no major change in the system.

  20. Removal of ammonia from power plant waste water

    International Nuclear Information System (INIS)

    The amount of ammonia in surface waters from power plant waste water is investigated. Several methods for the removal of ammonia from waste water are described (steam stripper, air stripper, catalytic oxidation), the performance and efficiency is tested. For each water treatment method the mass and energy balance and the efficiency are determined. (SR)

  1. Use of Industrial Waste Water for Agricultural Purpose: Pb and Cd in Vegetables in Bikaner City, India

    Directory of Open Access Journals (Sweden)

    Rajendra Singh

    2012-12-01

    Full Text Available Shortage of irrigation water resources is leading to the use of domestic and industrial waste water in agriculture. esp. in urban areas. Being contaminated by metals and various toxic chemicals these waste waters leads to the exposure of heavy metals and hazardous chemicals and the subsequent human health hazards through agriculture products and live stocks. Increasing cases of cancer and kidney problems is also related with this aspect. In present study human health risk assessment taken in concern with the respect of some heavy metals of toxicological interest.

  2. Review of Various Solutions for avoiding critical levels of Legionella Bacteria in Domestic Hot Water System

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2013-01-01

    Low temperature district heating (DH) is designed as 55/25oC for supply/return temperature to fulfill the low energy demand of future buildings. However, to secure the safety of domestic hot water, the supply temperature has to be kept around 60oC to avoid the existence of legionella, which reproduces rapidly at the temperature around 25oC- 45 oC. After several outbreaks of pheumonia and fever caused by legionella bacteria, most countries require 60 oC in the network and 50-55 oC at the faucets ...

  3. Technical comparison of domestic hot water system which used in China and Denmark

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric; Li, Hongwei; Svendsen, Svend

    2014-01-01

    Regardless of where they are in the world, people depend on a reliable and sufficient supply of domestic hot water (DHW) for daily use. Some countries, which have district heating infrastructure, combine spacing heating (SH) and DHW together, with the aim of having a smart, energy efficient and...... environmentally friendly energy-consumption system, such as Denmark and China. Nevertheless, the development of DHW networks in these two countries differs significantly. This article detailed the comparisons in technical aspect: common preparation methods of DHW through district heating was introduced in China...

  4. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  5. Actual problems of municipal cleaner?s waste waters

    OpenAIRE

    Konko¾ová Patrícia

    2000-01-01

    In paper are evaluated social and economical changes in water economy with emphasis on complex evaluation of municipal cleaner?s waste waters with respect of legislative, position of ownerskip relationskips and financial security of public experiences of water economy.

  6. Enhanced P, N and C removal from domestic wastewater using constructed wetland employing construction solid waste (CSW) as main substrate.

    Science.gov (United States)

    Yang, Y; Wang, Z M; Liu, C; Guo, X C

    2012-01-01

    Construction solid waste (CSW), an inescapable by-product of the construction and demolition process, was used as main substrate in a four-stage vertical subsurface flow constructed wetland system to improve phosphorus P removal from domestic wastewater. A 'tidal flow' operation was also employed in the treatment system. Under a hydraulic loading rate (HLR) of 0.76 m3/m2 d for 1st and 3rd stage and HLR of 0.04 m3/m2 d for 2nd and 4th stage of the constructed wetland system respectively and tidal flow operation strategy, average removal efficiencies of 99.4% for P, 95.4% for ammoniacal-nitrogen, 56.5% for total nitrogen and 84.5% for total chemical oxygen demand were achieved during the operation period. The CSW-based constructed wetland system presents excellent P removal performance. The adoption of tidal flow strategy creates the aerobic/anoxic condition intermittently in the treatment system. This can achieve better oxygen transfer and hence lead to more complete nitrification and organic matter removal and enhanced denitrification. Overall, the CSW-based tidal flow constructed wetland system holds great promise for enabling high rate removal of P, ammoniacal-nitrogen and organic matter from domestic wastewater, and transforms CSW from a waste into a useful material. PMID:22797230

  7. U.S. Biofuel Policies and Domestic Shifts in Agricultural Land Use and Water Balances

    Science.gov (United States)

    Teter, J.; Yeh, S.; Mishra, G. S.

    2014-12-01

    Policies promoting domestic biofuels production could lead to significant changes in cropping patterns. Types of direct and indirect land use change include: switching among crops (displacement), expanding cropped area (extensification), and altering water/soil management practices (e.g. irrigation, tillage) (intensification). Most studies of biofuels water use impacts calculate the water intensity of biofuels in liters of irrigated/total evapotranspired water per unit energy of biofuels. But estimates based on this approach are sensitive to assumptions (e.g. co-product allocation, system boundaries), and do not convey policy-relevant information, as highlighted by the issue of land use change. We address these shortcomings by adopting a scenario-based approach that combines economic modeling with crop-water modeling of major crops and biofuel feedstocks. This allows us to holistically compare differences in water balances across policy scenarios in an integrated economic/agricultural system. We compare high spatial resolution water balance estimates under three hypothetical policy scenarios: 1) a counterfactual no-policy scenario, 2) modified Renewable Fuels Standard mandates (M-RFS2), & 3) a national Low Carbon Fuel Standard plus a modified RFS2 scenario (LCFS+RFS2). Differences between scenarios in crop water balances (i.e. transpiration, evaporation, runoff, groundwater infiltration, & irrigation) are regional and are a function of changes in land use patterns (i.e. displacement, intensification, & extensification), plus variation in crop water-use characteristics. Cropped land area increases 6.2% and 1.6% under M-RFS2 and LCFS+RFS2 scenarios, respectively, by 2030. Both policy scenarios lead to reductions in net irrigation volumes nationally compared to the no-policy scenario, though more irrigation occurs in regions of the Midwest and West. The LCFS+RFS2 reduces net irrigation water use by 3.5 times more than M-RFS2. However, both policies drive extensification and hence greater net transpiration (i.e. economically useful water consumption), at the expense of groundwater infiltration, which recharges surface & groundwater stocks. Our study illustrates potential tradeoffs in water resource availability that might result from domestic policies promoting bioenergy.

  8. How to reduce risk of climate change: Domestic hot water production methanization and programmed timing of heaters

    International Nuclear Information System (INIS)

    This paper first identifies a significant and deleterious trend, in terms of poor energy efficiency and high carbon dioxide emissions, towards the increased use of electric water heaters for sanitary hot water production in single family units. It then points out how the use of wall mounted methane fired boilers can result in overall energy savings (overall electric power consumption for domestic hot water production is estimated to represent one- quarter of Italy's total domestic power demand), as well as air pollution abatement. The feasibility of other methods of energy conservation and pollution abatement in domestic water heating are also examined. These include the use of solar hot water heaters, computerized timers which allow users to program the operation of their heating plants, and the adoption by residential communities of methane fuelled district heating plants

  9. Pollution characterization of waste water of an industrial zone - Example of a dairy water clarification

    International Nuclear Information System (INIS)

    The objective of this study is the estimation of the polluting load generated by domestic effluents added to those of various industries in one of the most important industrial zone in Africa. Analysis of waste water showed strong and irregular pollution which is prejudicial for the aquatic receiving medium (river, sea). This pollution is confirmed among others by COD/BOD ratio which may attain the value of 1.8. Pre-treatment by coagulation floculation of waste water used in a dairy belonging to this industrial zone showed a considerable reduction of the initial pollution by a systematic decreasing of pollution parameters. Aluminium sulphates and iron chloride tested in this experience have reduced considerably all the studied parameters; the organic charge has received a very significant reduction up to 99%. The discharge of treated effluent in the surrounding river or its use for recycling aims is then possible for this industry. However, the formed sludge can be the subject of a suitable treatment for possible agricultural, avicolous valorisation or other. (author)

  10. Co-digestion of source segregated domestic food waste to improve process stability

    OpenAIRE

    Zhang, Yue; Banks, Charles J.; Heaven, Sonia

    2012-01-01

    Cattle slurry and card packaging were used to improve the operational stability of food waste digestion, with the aim of reducing digestate total ammoniacal nitrogen concentrations compared to food waste only. Use of cattle slurry could have major environmental benefits through reducing greenhouse gas emissions associated with current management practices; whilst card packaging is closely linked to food waste and could be co-collected as a source segregated material. Both options increase the...

  11. Health improvement of domestic hot tap water supply Gusev, Kaliningrad Region, Russia. Make-up water tank project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, Joergen

    1998-07-01

    This report describes the project `Health Improvement of Domestic Hot Tap Water Supply, Gusev, Kaliningrad, Russia`, which was carried out in the autumn of 1996 and financed by the Danish Environmental Protection Agency, the Danish Energy Agency and Gusev Municipality. The project proposal and application outlined the following objectives: Erection of system so that hot tap water, which is tapped directly from the district heating system, obtains an acceptable quality in health terms; Complete training and education, so that the plant can be operated and maintained by the power station`s staff and rehabilitation projects within supply of domestic water and district heating can be promoted to the greatest possible extent; Systems for heat treatment of make-up water were implemented in less than three months; The project was carried out in close Danish-Russian co-operation from the beginning of engineering to the commissioning and resulted in transfer and demonstration of know-how and technology; Information was recorded on the existing domestic water and heat supply systems as well as on the treatment of sewage, and recommendations for rehabilitation projects were made. Previously, when the temperature in the district heating system was relatively high, a heat treatment apparently took place in the district heating system. However, due to the current poor economic situation there are no means with which to buy the fuel quantities necessary to maintain the previously normal district heating temperature. In the new concept the cold make-up water is heated to >80 deg. C as required by the health authorities before it is led to the district heating return system and subsequently heated to the actual supply temperature of 50-60 deg. C. The energy consumption in the two concepts is approximately the same. A 1,000 m{sup 3} tank with heating coils was erected between the make-up water system and the district heating system. The tank should equalise the daily capacity difference between the make-up water production and consumption of make-up water. (EG)

  12. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  13. Improved waste water treatment by bio-synthesized Graphene Sand Composite.

    Science.gov (United States)

    Poornima Parvathi, V; Umadevi, M; Bhaviya Raj, R

    2015-10-01

    The photocatalytic and antibacterial properties of graphene biosynthesized from sugar and anchored on sand particles has been focused here. The morphology and composition of the synthesized Graphene Sand Composite (GSC) was investigated by means of X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDAX), Fourier Transform Infra-red Spectroscopy (FTIR) and UV-Visible spectroscopy. SEM images show wrinkly edges. This is characteristic of graphenic morphology. Three types of waste water samples namely, textile waste (TW), sugarcane industrial waste water (SW) and domestic waste water from a local purification center at Kodaikanal (KWW) were collected and treated. Adsorption experiments showed effective removal of impurities at 0.2 g of GSC. Photocatalytic activity was analyzed under visible and ultraviolet irradiation. The rate constant for TW increased to 0.0032/min for visible light irradiation from 0.0029/min under UV irradiation. SW showed similar improved activity with rate constant as 0.0023/min in visible irradiation compared to 0.0016/min under UV irradiation. For KWW enhanced activity was seen only in visible light irradiation with rate constant 0.0025/min. GSC showed an inhibition zone of 20 mm against the bacterium Escherichia coli. Results suggest development of economic and effective waste water management systems. PMID:26265599

  14. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  15. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production

    OpenAIRE

    Soha S.M. MOSTAFA; Emad A. SHALABY; Mahmoud, Ghada I

    2012-01-01

    The objective of this study was to evaluate the growth of nine species of microalgae (green and blue green microalgae) on domestic waste water samples obtained from Zenein Waste Water Treatment Plant (ZWWTP), Giza governorate, Egypt. The species were cultivated in different kind of waste water; before treatment; after sterilization; with nutrients with sterilization and with nutrients without sterilization. The experiment was conducted in triplicate and cultures were incubated at 25?1?C under...

  16. Cryptosporidium and Giardia in Humans, Domestic Animals, and Village Water Sources in Rural India.

    Science.gov (United States)

    Daniels, Miles E; Shrivastava, Arpit; Smith, Woutrina A; Sahu, Priyadarshi; Odagiri, Mitsunori; Misra, Pravas R; Panigrahi, Pinaki; Suar, Mrutyunjay; Clasen, Thomas; Jenkins, Marion W

    2015-09-01

    Cryptosporidium parvum and Giardia lamblia are zoonotic enteric protozoa of significant health concern where sanitation, hygiene, and water supplies are inadequate. We examined 85 stool samples from diarrhea patients, 111 pooled fecal samples by species across seven domestic animal types, and water from tube wells (N = 207) and ponds (N = 94) across 60 villages in coastal Odisha, India, for Cryptosporidium oocysts and Giardia cysts to measure occurrence, concentration/shedding, and environmental loading rates. Oocysts/cysts were detected in 12% of diarrhea patients. Detection ranged from 0% to 35% for Cryptosporidium and 0% to 67% for Giardia across animal hosts. Animal loading estimates indicate the greatest contributors of environmental oocysts/cysts in the study region are cattle. Ponds were contaminated with both protozoa (oocysts: 37%, cysts: 74%), as were tube wells (oocysts: 10%, cysts: 14%). Future research should address the public health concern highlighted from these findings and investigate the role of domestic animals in diarrheal disease transmission in this and similar settings. PMID:26123963

  17. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N. (Lebanon, OR); Galvan, Gloria J. (Albany, OR); Hundley, Gary L. (Corvallis, OR); Wright, John B. (Albany, OR)

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  18. Diagnosis of small capacity reverse osmosis desalination unit for domestic water

    International Nuclear Information System (INIS)

    Tunisian norm of drinking water tolerates a maximum TDS of 1.5 g/L, and the domestic water presents usually a salinity grater than 500 mg/L. In the last years, several small capacity reverse osmosis desalination prototypes have been marketed. They are used to desalinate brackish water with TDS lower than 1.5 g/L. This RO unit, tested with tap waters during four years, was diagnosed. The RO unit produces 10-15 L/Hour with a recovery rate between 25 and 40 pour cent and salt rejection in order of 90 pour cent. The salinity of the tested domestic water is located between 0.4 and 1.4 g/L. Water pretreatment is composed of three filtration operations (cartridge filter, granulate active carbon filter and 5 =m cartridge filter). Pretreated water is pumped through RO membrane with maximum pressure of 6 bars. At the 4th year, the RO unit performances were substantial decreased. Recovery rate and salt rejection fall down more than 50 and 100% respectively and the pressure drop increase from 1 to 2.1 bar The membrane regeneration allowed only the rate recovery restoration. The membrane selectivity was not improved. The membrane seems irreversibly damaged by the tap water chlorine none retained by the deficient pretreatment. An autopsy of the used RO membrane was done by different analysis techniques as SEM/EDX, AFM, XRD and FTIR spectroscopy. The analysis of membrane (proper and used) surfaces show a deposit film on the used membrane witch evaluated to environ 2 =m, it indicates a fooling phenomenon. The SEM photos show deterioration on the active layer material of the membrane witch seems attacked by the tap water chlorine. The X Rays Diffraction and FTIR show that the deposit collected on the used membrane contains organic and mineral (Gypsum, SiO2 and clays) materials. Silicates and clays can exist in tap waters and reach the RO membrane when the pretreatment micro-filter became deficient. The Gypsum presence is due only to germination on the membrane.

  19. Enhancement of natural circulation type domestic solar hot water system performance by using a wind turbine

    Science.gov (United States)

    Ramasamy, K. K.; Srinivasan, P. S. S.

    2011-08-01

    Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted. A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop. The windmill driven pump circulates the water through the collector. The system with necessary instrumentation is tested over a day. Tests on Natural Circulation System (NCS) mode and Wind Assisted System (WAS) mode are carried out during January, April, July and October, 2009. Test results of a clear day are reported. Daily average efficiency of 25-28 % during NCS mode and 33-37 % during WAS mode are obtained. With higher wind velocities, higher collector flow rates and hence higher efficiencies are obtained. In general, WAS mode provides improvements in efficiency when compared to NCS mode.

  20. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian; Franck, M.L.

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit in...... order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared. The......-efficient for private consumers already today. Furthermore, application of the micro booster heat pump in low energy houses complies with the energy consumption requirements, set by the recent Danish Building Regulations. The use of electrical heater variants would exceed this limit....

  1. EFFICIENCY OF DOMESTIC REVERSE OSMOSIS IN REMOVAL OF TRIHALOMETHANES FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    S. Mazloomi ، R. Nabizadeh ، S. Nasseri ، K. Naddafi ، S. Nazmara ، A. H. Mahvi

    2009-10-01

    Full Text Available The reaction of disinfectants with natural organic matters existing in water lead to the formation of Disinfection By-Products. Potentially hazardous and carcinogenic characteristics of trihalomethanes (THMs are recognized. Thus removal of THMs or its precursors are necessary for human health. The aim of this study was to study the efficiency of domestic reverse osmosis (RO in removal of trihalomethanes from drinking water. A pilot scale of RO system with Polyamide membrane as Spiral-Wound, Tape wrapping module was used. Feed solution was made by using of pure chloroform. The samples containing chloroform were analyzed using a gas chromatograph equipped with a flame ionization detector. By increasing the flow, the removal rate of chloroform decreased and with declining removal of EC, the removal of chloroform declined too. In this research, at the worst condition, the efficiency of the pilot scale reverse osmosis reached to 80 % removal of chloroform.

  2. Cold-Climate Solar Domestic Hot Water Systems: Cost/Benefit Analysis and Opportunities for Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Hillman, T.; Salasovich, J.

    2005-01-01

    To determine potential for reduction in the cost of saved energy (COSE) for cold-climate solar domestic hot water (SDHW) systems, COSE was computed for three types of cold climate water heating systems. For each system, a series of cost-saving measures was considered: (1) balance of systems (BOS): tank, heat exchanger, and piping-valving measures; and (2) four alternative lower-cost collectors. Given all beneficial BOS measures in place, >50% reduction of COSE was achievable only with selective polymer collectors at half today's selective collector cost. In all three system types, today's metal-glass selective collector achieved the same COSE as the hypothesized non-selective polymer collector.

  3. NATURAL WASTE WATER PURIFICATION IN CONSTRUCTED WETLAND SYSTEM

    OpenAIRE

    AGNES SULI; Molnar, T.; JUDIT PETER SZUCS; L. SALLAI

    2009-01-01

    The comprehensive enhancement of the environment is an important task in Hungary too in order to maintain and improve the life quality of both humans and other living creatures. Waste water treatment and solid waste management have become significant issues since joining the European Union. Thus it has become timely to develop or borrow an effective and attainable sewage water treatment technology adapted to Hungarian circumstances. Some prototypes of waste water treatment plants that use nat...

  4. Temperature levels in domestic hot water systems and growth of Legionella

    Energy Technology Data Exchange (ETDEWEB)

    Persson, T.; Wollerstrand, J. [Lund Institute of Technology, Department of Heat and Power Engineering, Lund (Sweden)

    2004-07-01

    In the paper is studied how Legionella develops in a domestic hot water (DHW) system at various conditions. The investigations are done through dynamic simulations and other theoretical calculations. A simple model for growth/dying of Legionella is described. It is shown that if Legionella is released in a limited part of a DHW system that, apart of this, is properly working the risk of getting large concentrations of Legionella at the taps is very small. The main reason for this is that the infected water in the return pipes will be mixed with water from other parts of the system before reaching the taps so that the concentration is decreased greatly. High concentrations of Legionella at the taps are primarily obtained if infected water flows directly to a tap without being mixed with water from other parts of the system. Such situations can for instance arise if the temperature level in the supply pipes is so low that Legionella can multiply in the biofilm in the supply pipes, if a dead end pipe supplies bacteria to a DHW riser, or if Legionella grows in a DHWC riser and the water for some reason flows in the opposite direction (towards the taps). (orig.)

  5. Pore water chemistry of domestic bentonite for the buffer of a repository: analysis of experimental data

    International Nuclear Information System (INIS)

    Experiments were conducted using synthetic ground water and domestic bentonite. Upon reaction of the bentonite and ground water, ionic concentration, ph and Eh nearly reached a steady-state within a few days. The pore water chemistry was dominated mainly by the mineralogical composition of bentonite. Analytic results showed that sodium, sulfate, and carbonate were major ions, and their concentrations increased to about 4-5 times those of original ground water. The ph increased from 8.1 to 8.9, and the Eh were between 365 mV and 375 mV. The concentration of most dissolved ions increased with increasing bentonite-to-ground water ratio. On the contrary, the ph and Eh were little affected by bentonite-to-ground water ratio. The dependence of ionic concentration upon temperature had different trends with different ions. Little change in the ph occurred up to 80 dg C, and decreased beyond the value of temperature. The Eh rather increased beyond 80 dg C on contrary to ph. (Author). 21 refs., 4 tabs., 18 figs

  6. Review of Various Solutions for avoiding critical levels of Legionella Bacteria in Domestic Hot Water System

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei

    2013-01-01

    Low temperature district heating (DH) is designed as 55/25oC for supply/return temperature to fulfill the low energy demand of future buildings. However, to secure the safety of domestic hot water, the supply temperature has to be kept around 60oC to avoid the existence of legionella, which reproduces rapidly at the temperature around 25oC- 45 oC. After several outbreaks of pheumonia and fever caused by legionella bacteria, most countries require 60 oC in the network and 50-55 oC at the faucets with periodic flush by hot water above 60 oC as disinfection solution. That makes obstacles of low temperature DH implementation. Therefore, effective solution of legionella bacteria is in urgent demand. To select optimal disinfection treatments for certain cases which are quite different in dimension or purpose of use, various methods were reviewed, including shock hyperchlorination, super heating, electric boiler, compact heat exchanger, water filter, chlorine dioxide, Monochloramine, UV sterilization, copper and silver electrodes. The implementary conditions, effect, limits as well as economic performance of them are demonstrated. For buildings with complicated networks and large volume, chemical approach is widely used, and oxidizing disinfectants have a better effect and economic performance. For buildings with DHW volume less than 3 liters, implementation of compact heat exchangers is an effective solution. By reviewing the efficacy of each method, the optimal solution for low temperature domestic hot water system is recommended by this study, which is of great use to realize low temperature DH system without any risk of legionella.

  7. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  8. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  9. Ambient radioactivity monitoring III: Waste water and sewage sludge

    International Nuclear Information System (INIS)

    Natural and man-made radionuclides in waste water and sewage sludge come from various sources as a result of the activities including radioactive materials applications in medicine, science and technology. In the 1960s, the main source contributing to radioactive contamination of waste water and sewage sludge was the fallout from atmospheric nuclear weapons tests. The fallout from the Chernobyl reactor accident dramatically increased the radioactive substances washed down into the waste water and sewage sludge and thus increased radioactivity levels in the sewage works. Monitoring activities have to take into account that the radionuclides from the waste water are accumulated in the sewage sludge. (orig.)

  10. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  11. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  12. Biology of waste water purification. 4. rev. ed.

    International Nuclear Information System (INIS)

    With the aid of biological waste water purification processes, organic and inorganic pollutants can be removed from household service water and industrial water with great efficiently, and the purified water can be led back into the natural cycle. This successful textbook and manual of biological waste water purification explains biological fundamentals and mechanisms and the technical aspects of purification processes in an easily intelligible manner. The new, revised version reflects the latest state of knowledge. (orig.)

  13. Domestic water carrying and its implications for health: a review and mixed methods pilot study in Limpopo Province, South Africa

    OpenAIRE

    Geere Jo-Anne L; Hunter Paul R; Jagals Paul

    2010-01-01

    Abstract Background Lack of access to safe water remains a significant risk factor for poor health in developing countries. There has been little research into the health effects of frequently carrying containers of water. The aims of this study were to better understand how domestic water carrying is performed, identify potential health risk factors and gain insight into the possible health effects of the task. Methods Mixed methods of data collection from six were used to explore water carr...

  14. On the Possibilities of Producing Hydrogen by High Temperature Electrolysis of Water Steam Supplied from Biomass or Waste Incineration Units

    International Nuclear Information System (INIS)

    The incineration of biomass and waste is considered to produce water steam, which then would feed the High Temperature Electrolysis (HTE) process in order to produce hydrogen. For these energy sources, in a French context, results show that water steam production cost could be in a range of 0.02 to 0.06 euros per steam kilogram. Potentially 78 million vehicles could be fed with hydrogen coming from the steam produced by the incineration of the currently non valorized biomass and domestic waste. Furthermore, for each energy source the optimized hydrogen production cost estimation has been performed, including investment and operation costs. (authors)

  15. Microbiological evaluation of bottled non-carbonated ("still") water from domestic brands in Greece.

    Science.gov (United States)

    Venieri, D; Vantarakis, A; Komninou, G; Papapetropoulou, M

    2006-03-01

    The microbiological quality of 1,527 samples of bottled non-carbonated ('still') mineral water, purchased from retail outlets and derived from 10 manufacturing companies in Greece, was investigated during the period 1995-2003. Applying the membrane filter technique, the aliquots of water samples (250 ml) were analyzed for the presence and enumeration of total coliforms, Escherichia coli, Enterococcus spp. and Pseudomonas aeruginosa. Also, aerobic bacteria were counted as Heterotrophic Plate Count (HPC) ml(-1) at 22 and 37 degrees C. Positive samples for the parameters tested varied significantly among brands with an overall percentage of 13.95% bottled water samples noncompliant with the Greek water regulation. Microorganisms isolated from the samples tested were identified as species of Pseudomonas, Aeromonas, Pasteurella, Citrobacter, Flavobacterium, Providencia and Enterococcus. The most frequent isolated microorganism during the period of the study was P. aeruginosa. Generally, bacterial load of the samples tested ranged in low levels. The purpose of the current study was to evaluate the microbiological quality of the bottled water provided by domestic brands in the Greek market during the period 1995-2003. PMID:16271413

  16. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  17. Effect of composition variations on the long-term wasteform behavior of vitrified domestic waste incineration fly-ash purification residues

    International Nuclear Information System (INIS)

    The effect of variations in the composition of fly-ash purification residue from incinerated domestic waste on the quality of the containment achieved by vitrification was investigated. Three main factors determine the long-term containment quality: the production of a vitrified wasteform, the occurrence of possible crystallization, and the key parameters of long-term alteration in aqueous media. Each of these aspects is described within a composition range defined by variations in the three major elements. (silicon, calcium and aluminum) and two groups of constituents (alkali metals and toxic elements). The silicon fraction in the fly-ash residue was found to be decisive: it is impossible to obtain a satisfactory vitrified wasteform below a given silicon concentration. Compounds with the lowest silica content also exhibited the greatest tendency to crystallize under the cooling conditions prevailing in industrial processes (the dominant crystallized phase is a melilite that occupies a significant fraction of the material and considerably modifies the alteration mechanisms). The initial alteration rate in pure water and the altered glass thickness measured in a closed system at an advanced stage of the dissolution reaction are both inversely related to the silicon concentration in the glass. Several types of long-term behavior were identified according to the composition range, the process conditions and the vitrified waste disposal scenario. Four distinct 'classes' of vitrified wasteform were defined for direct application in industrial processes. (author)

  18. Domestic and agricultural water use by rural households in the Oueme River Basin (Benin): an economic analysis using recent econometric approaches

    OpenAIRE

    Arouna, Aminou

    2009-01-01

    Improving the management of water resources as well as an efficient use of available water are particularly important to address the increasing scarcity of water and the low level of water accessibility in many developing countries. However, better water management requires an understanding of the existing pattern of water use for domestic and agricultural activities. With a view towards contributing to such knowledge, this dissertation analyzes domestic and agricultural water use by rural ho...

  19. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  20. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata.

    Science.gov (United States)

    Akinbile, Christopher O; Ogunrinde, Temitope A; Che Bt Man, Hasfalina; Aziz, Hamidi Abdul

    2016-01-01

    Two constructed wetlands, one with Azolla pinnata plant (CW1) and the other without (CW2) for treating domestic wastewaters were developed. Fifteen water parameters which include: Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), Total Phosphorus (TP), Total Nitrogen (TN), Ammoniacal Nitrogen (NH3N), Turbidity, pH, Electrical Conductivity (EC), Iron (Fe), Magnesium (Mg), Manganese (Mn), and heavy metals such as Lead (Pb) and Zinc (Zn) were analyzed using standard laboratory procedures. The experiments were conducted in two (dry and wet) seasons simultaneously. Results showed considerable reductions in all parameters and metals including Zn in CW1 compared with CW2 in the two seasons considered while Pb and Mn were not detected throughout the study. Zn concentration levels reduced significantly in both seasons just as removal efficiencies of 70.03% and 64.51% were recorded for CW1 while 35.17% and 33.45% were recorded for CW2 in both seasons. There were no significant differences in the removal efficiencies of Fe in both seasons as 99.55%, 59.09%, 88.89%, and 53.56% were recorded in CW1 and CW2 respectively. Azolla pinnata has proved effective in domestic wastewater phytoremediation studies. PMID:26121232

  1. Comparative health risks of domestic waste combustion in urban and rural Slovakia.

    Science.gov (United States)

    Krajcovicová, Jana; Eschenroeder, Alan Q

    2007-10-01

    This paper addresses the health risk incurred by two alternative waste management schemes: open burning of household waste in barrels practiced in rural Slovakia and controlled municipal waste combustion in the city of Bratislava. Using agricultural land use data and village population data we formulate three prototype villages, each representing about one-third of the rural population. The two configurations of the controlled combustion are an outdated municipal waste incinerator (MWI) and a modern waste-to-energy (WTE) plant equipped with modern air pollution control devices. These configurations actually exist(ed) in Bratislava, Slovakia at the same site, but in different time frames. The CALPUFF model provides direct exposure data and the EMERAM software (developed in this paper) computes indirect exposure. A major source of uncertainty is that of the fraction of waste burned in the open. The analysis presented here assumed 10%. At this level, the cancer risk from open burning ranges from 10 to 80 times the commonly regarded de minimus value of one in a million. This means that underthe U.S. contemporary regulatory culture, some regulatory action to control or enforce the burning ban would be expected. Cancer risks from the incinerator ranged from 7 to 371 in a million while the WTE risks were below 1 in a million. Cancer risks from open burning are higher than those of the WTE plant and at the same time affect a larger portion of concerned population. PMID:17969705

  2. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas; Grum, Morten; Madsen, Henrik

    2014-01-01

    power production. The energy-heavy processes for waste water transport and treatment could potentially provide a flexible operation with storage capabilities and be a valuable asset to a Smart Grid. In order to enable Waste Water Treatment Plants (WWTPs) as flexible prosumers in the future Smart Grid......, we must update their process control system to model based predictive control that monitors the changed flexible operation and plans ahead. The primary aim of a WWTP is to treat the incoming waste water as much as possible to ensure a sufficient effluent water quality and protect the environment of...... the recipient. The secondary aim is to treat the waste water using as little energy as possible. In the future waste water will be considered an energy resource, that contains valuable nutrients convertible to green biogas and in turn electricity and heat. In a Smart Grid consuming or producing energy...

  3. The role of domestic tap water on Acanthamoeba keratitis in non-contact lens wearers and validation of laboratory methods.

    Science.gov (United States)

    Koltas, Ismail Soner; Eroglu, Fadime; Erdem, Elif; Yagmur, Meltem; Tan?r, Ferdi

    2015-09-01

    Acanthamoeba is increasingly recognized as an important cause of keratitis in non-contact lens wearers while contact lens wear is the leading risk factor for Acanthamoeba keratitis (AK). It is unlikely that the Acanthamoeba colonization is a feature which is effective only in patient's homes with infectious keratitis since the organism has been isolated from domestic tap water. Two hundred and thirty-one (231) corneal scrapings were taken from infectious keratitis cases, and four contact lens solutions and domestic tap waters were taken from 22 out of 44 AK-diagnosed patient's homes. Microscopic examination, culture, PCR, real-time PCR and DNA sequencing analyses were used for AK-diagnosed samples. The real-time PCR was the most sensitive (100 %) one among the methods used in diagnosis of AK. The 44 (19.0 %) out of 231 corneal scrapings, 4/4 (100 %) contact lens solution and 11/22 (50 %) of domestic tap water samples were found to be positive by real-time PCR for Acanthamoeba. A. griffini (T3), A. castellanii (T4) and A. jacobsi (T15) genotypes were obtained from corneal scrapings, contact lens solutions and domestic tap water samples taken from the patient's homes diagnosed with AK. The isolation of Acanthamoeba containing 6/22 (27.3 %) A. griffini (T3), 14/22 (63.6 %) A. castellanii (T4) and 2/22 (9.1 %) A. jacobsi (T15) from the domestic tap water outlets of 22 of 44 (50 %) of patient's homes revealed that is a significant source of these organisms. A. griffini (T3) and A. jacobsi (T15) genotypes have not been determined from AK cases in Turkey previously. Thus, we conclude that Acanthamoeba keratitis is associated with exposition of patients who has ocular trauma or ocular surface disease to domestic tap water in endemic or potentially endemic countries. PMID:26017346

  4. Composting of domestic wastes: development and optimization of reactor continuous; Compostaje domestico : desarrollo y optimizacion de un reactor en continuo

    Energy Technology Data Exchange (ETDEWEB)

    Rad, C.; Gonzalez-Carcedo, S.; Revenga, J. M.; Bustillo-Nunez, J. M.; Marcos-Naveira, L. A. [Universidad de Burgos (Spain); Monje, J. C.; Bustillo-Iglesias, A.

    2002-07-01

    In this work, a mixture of the organic fraction of a domestic waste and wooden chips has been composted using an in vessel composting apparatus with forced aeration and a continuous compost collection system. After three months with a daily addition of a fixed organic charge,temperature and moisture control, five samples of compost were collected and tested in their chemical and biological characteristics. Odour production and low temperatures and moisture contents during the process,high saline concentration and the presence of pathogenic microorganisms in the final product are the main disadvantages of this experience. Although, a good C/N ratio, neutral pH and high levels of nutrients (N and P) in the compost have been achieved,the parameters controlling the process must be improved. (Author) 16 refs.

  5. Solar water heating systems feasibility for domestic requests in Tunisia: Thermal potential and economic analysis

    International Nuclear Information System (INIS)

    Highlights: • The present work studies the potential of using Domestic Solar Water Heating systems. • The payback period is between 8 and 7.5 years. • The annual savings in electrical energy is between 1316 and 1459 kW h/year. • The savings by using the solar systems is about 3969–4400.34 $. • The annual GHG emission per house is reduced by 27,800 tCO2. - Abstract: The main goal of the present work is to study the energetic and the economic potential of the deployment of Domestic Solar Water Heating systems (DSWHs) instead of using electric/gas/town gas water heaters. A case study related to Tunisian scenario was performed according to a typical Tunisian households composed of 4–5 persons. In this scenario we evaluated the performance and the life cycle perspective of the two most popular DSWHs over the recent years (i.e. DSWH with flat-plate solar collector, FPC, and DSWHs with evacuated-tube solar collector, ETC). The dynamic behavior of DSWHs according to Tunisian data weather was achieved by means of TRNSYS simulation. The Results showed that the FPC and ETC provide about 8118 and 12032 kW h/year of thermal energy. The economic potential of DSWHs in saving electricity and reducing carbon dioxide emissions was also investigated. Results showed that the annual savings in electrical energy relatively to the FPC and ETC are about 1316 and 1459 kW h/year, with a payback period of around 8 and 10 years, respectively. Based on gas/town gas water heater, the FPC and ETC save about 306 m3 and 410 m3 of gas/town gas with a payback period about 6 and 7.5 years, respectively. We found that the life cycle savings by installing the solar system instead of buying electricity to satisfy hot water needs are about $3969 (FPC) and $4400 (ETC). We establish also that the use of the DSWHs instead of installing gas/town gas water heaters save about $1518 (FPC) and $2035 (ETC). From an environmental point of view the annual GHG emission per house is reduced by 27800 tCO2

  6. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation

    International Nuclear Information System (INIS)

    Transient thermal performance behavior of a vertical storage tank of a domestic solar water heating system with a mantle heat exchanger has been investigated numerically in the discharge/consumption mode. It is assumed that the tank is initially stratified during its previous heat storing/charging operation. During the discharging period, the city cold water is fed at the bottom of the tank and hot water is extracted from its top outlet port for consumption. Meanwhile, the collector loop is assumed to be active. The conservation equations in the axis-symmetric cylindrical co-ordinate have been used and discretised by employing the finite volume method. The low Reynolds number (LRN) k - ? model is utilized for treating turbulence in the fluid. The influence of the tank Grashof number, the incoming cold fluid Reynolds number and the size of the inlet port of the heat storage tank on the transient thermal characteristics of the tank is investigated and discussed. It is found that for higher values of Grashof number, the pre-established thermal stratification is well preserved during the discharging operation mode. It is also noticed that in order to have a tank with a proper thermal performance and or have least mixing inside the tank during the consumption period, the tank inflow Reynolds number and or its inflow port diameter should be kept below certain values. In these cases, the storage tank is enabling to provide proper amount of hot water with a proper temperature for consumption purposes.

  7. Measurements of 222Rn activity concentration in domestic water sources in Penang, Northern Peninsular Malaysia

    International Nuclear Information System (INIS)

    Measurements of 222Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l-1, 0.49 to 9.72 Bq l-1 and 0.58 to 2.54 Bq l-1 in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l-1. From this data, the age-dependent associated committed effective doses due to the ingestion of 222Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from 222Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y-1, for age groups 0-1, 2-16 and >16 y, respectively. (authors)

  8. Design, Simulation, and Analysis of Domestic Solar Water Heating Systems in Phoenix, Arizona

    Science.gov (United States)

    De Fresart, Edouard Thomas

    Research was conducted to quantify the energy and cost savings of two different domestic solar water heating systems compared to an all-electric water heater for a four-person household in Phoenix, Arizona. The knowledge gained from this research will enable utilities to better align incentives and consumers to make more informed decisions prior to purchasing a solar water heater. Daily energy and temperature data were collected in a controlled, closed environment lab. Three mathematical models were designed in TRNSYS 17, a transient system simulation tool. The data from the lab were used to validate the TRNSYS models, and the TRNSYS results were used to project annual cost and energy savings for the solar water heaters. The projected energy savings for a four-person household in Phoenix, Arizona are 80% when using the SunEarthRTM system with an insulated and glazed flat-plate collector, and 49% when using the FAFCO RTM system with unglazed, non-insulated flat-plate collectors. Utilizing all available federal, state, and utility incentives, a consumer could expect to recoup his or her investment after the fifth year if purchasing a SunEarth RTM system, and after the eighth year if purchasing a FAFCO RTM system. Over the 20-year analysis period, a consumer could expect to save 2,519 with the SunEarthRTM system, and 971 with the FAFCORTM system.

  9. Experimental analysis of a domestic electric hot water storage tank. Part II: dynamic mode of operation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Uhia, Francisco J.; Sieres, Jaime [Area de aquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, Universidad e Vigo, Campus Lagoas-Marcosende No. 9, 36310 Vigo (Spain)

    2007-01-15

    In this paper, the experimental analysis of a full-scale Domestic Electric Hot Water Storage Tank (DEHWST) with a capacity of 150l is reported. The tank is equipped with three different inlets and two different outlets of practical interest. The dynamic mode of operation of the tank has been experimentally analyzed taking into account the six possible inlet-outlet port arrangements and water draw-off flow rates of 5, 10 and 15l/min. The analysis is based on the transient temperature distributions of the outlet and inlet water flow and on the transient temperature profiles of the water inside the tank measured by an appropriate data acquisition system. Performance parameters to evaluate the thermal stratification in the tank and the discharging energy and exergy efficiencies are defined and calculated from the experimental data. The characteristic performance of the tank with different inlet-outlet port configurations is analyzed and the best one is identified and proposed to use in practice. (author)

  10. A method for the treatment of waste waters

    International Nuclear Information System (INIS)

    The invention relates to a method for the cooling of waste waters. It is characterized in that it comprises the steps of introducing waste waters into a tank in communication with a basin through gate-controlled orifices, successively opening and closing the gates so as to intermitently release an adjustable amount of water stored in the tank in order to generate waves promoting the airing of waste waters and their cooling, then expelling waters downstream of the basin. The invention relates to thermal and nuclear power stations

  11. Microbiological Evaluation of Water Quality from Urban Watersheds for Domestic Water Supply Improvement

    OpenAIRE

    Graves, Alexandria K.; Murinda, Shelton E.; A. Mark Ibekwe

    2011-01-01

    Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversit...

  12. Development of a process to neutralize water-reactive wastes

    International Nuclear Information System (INIS)

    The mixed waste storage area at Los Alamos National Laboratory contains a considerable amount of lithium hydride and other water-reactive wastes. A process to neutralize these wastes by controlled hydration in an atmosphere of humid nitrogen is being developed. The kinetics of reaction of lithium hydride with water vapor has been studied at bench scale. The reaction progress can be predicted using the Unreacted Shrinking Core Model for noncatalytic solid-fluid reactions. This model will be utilized in designing of a skid-mounted treatment unit to neutralize water-reactive wastes

  13. Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2004-01-01

    Experimental and numerical investigations of vertical mantle heat exchangers for solar domestic hot water (SDHW) systems have been carried out. Two different inlet positions are investigated. Experiments based on typical operation conditions are carried out to investigate how the thermal...... stratification is affected by different positions of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the tank is analysed by CFD-simulations. Furthermore, side-by-side laboratory tests have been carried out with SDHW systems with different mantle...

  14. Submerged demineralize system processing of TMI-2 accident waste water

    International Nuclear Information System (INIS)

    Accident-generated radioactive waste at Three Mile Island Unit 2 includes a varity of high and low specific-activity waste. The high-specific-activity waste, particularly over one million gallons of contaminated water, required special processing and secondary waste handling. General public utilities and its contractors developed a zeolite-based ion-exchange system called the Submerged Demineralizer System to reduce contamination levels in the water to below allowable limits. Testing and modifications resulted in an operating system that had successfully processed waste water from the Reactor Coolant Bleed Tanks, the Reactor Building Basement, and the Reactor Coolant System as of August 1982. System design objectives were met and decontamination criteria established in 10 CFR 20 were attained. Additional wastes that could not be handled routinely were generated by another water-processing system, called EPICOR II. EPICOR II wastes are discussed. Low-specific-activity (LSA) wastes such as trash and resin-bed waste canisters are also included in handling. LSA wastes are routinely handled and shipped according to existing industry practice. Plant records are summarized to provide approximate yearly volumes and curie loadings of low-specific-activity wastes being shipped off the Island to a commercial burial site

  15. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  16. Influence of domestic hot water parameters on the energy consumption of large buildings in Senegal

    International Nuclear Information System (INIS)

    This paper investigates the effects of domestic hot water (DHW) parameters on the energy consumption of large buildings in Senegal. Three types of reference buildings have been selected and developed (residence, office and hotel), and for each of them, the standard values of the three studied parameters (distribution temperature, flow rate and heat tank losses) are defined. The DOE-2.1E building energy program has been employed for computer simulations. It has been found that if the magnitude of their positive incremental impact is considered, the DHW parameters can be classified according to the following decreasing order: 1. heat tank losses, 2. flow rate and 3. distribution temperature. Then, for each of the three types of buildings, we established a discrete series of options of electricity consumption reduction by limitation of the DHW parameters values. For further developments, these options can be employed by researchers to build an Energy Efficiency Code applicable to large buildings in West Africa

  17. Treatment of contaminated waste water by reverse osmosis membrane

    International Nuclear Information System (INIS)

    This paper present the results obtained in treatment by reverse osmosis membrane of waste waters containing radioactive elements and other dissolved heavy or rare metals. Cellulose acetate reverse osmosis membranes were used for removal and recovery uranium from mine waters, pond waters and the other waste waters from ore processing. The flux permeate and rejection for solutes presented in solution were determined. The experiments were performed at laboratory scale. The operation conditions are described

  18. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...

  19. Radiotracer investigations of industrial waste water equalizer-clarifiers

    International Nuclear Information System (INIS)

    The methodology and results of radiotracer investigations of an industrial equalizer-clarifier for waste water treatment are presented. Potassium bromide activated in nuclear reactor for sewage labelling was used. The dynamic characteristics of the tank and principal parameters of its operation were determined. The waste water flow model in apparatus was proposed. (author)

  20. Modern methods for the treatment of heavily polluted waste water

    International Nuclear Information System (INIS)

    Biological processes are playing an increasingly important role alongside physical, chemical, and thermal processes in integrated process concepts for treatment of industrial waste water. The individual processes are complementary. Biological processes are particularly important in combination with membrane processes, adsorption, or oxidation in the treatment of seepage water from waste dumps. (orig.)

  1. Fermentation of household wastes and industrial waste water; Vergaerung von haeuslichen Abfaellen und Industrieabwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, W. [Arbeitsgemeinschaft Bioenergie ' arbi' , Maschwanden (Switzerland); Engeli, H. [Probag AG, Dietikon (Switzerland); Glauser, M. [Biol-Conseils SA, Neuchatel (Switzerland); Hofer, H. [HTH-Verfahrenstechnik, Winterthur (Switzerland); Membrez, Y. [EREP SA, Aclens (Switzerland); Meylan, J.-H. [Lausanne (Switzerland); Schwitzguebel, J.-P. [Swiss Federal Institute of Technology (EPFL), Genie biologique, Lausanne (Switzerland)

    1993-07-01

    This comprehensive brochure reviews various technologies for the environment-friendly treatment of organic wastes and residues. The principles of anaerobic digestion are discussed. Authorities, planners and engineers concerned with waste treatment are provided with an overview of current technology in the organic wastes area. The brochure emphasises the importance of fermentation processes in waste treatment, discusses the legal pre-requisites for biogas production, lists the biological and process-oriented fundamentals of fermentation and examines the energy potential of biogenic wastes and waste water. Further, details are given on the treatment of both industrial waste water and solid organic wastes and, finally, the economics of fermentation is examined. Useful data is presented in table form and the various processes described are illustrated by schematics and flow diagrams. An appendix lists suggestions for further reading on the subject.

  2. Microbiological Evaluation of Water Quality from Urban Watersheds for Domestic Water Supply Improvement

    Directory of Open Access Journals (Sweden)

    Alexandria K. Graves

    2011-11-01

    Full Text Available Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversity, and antimicrobial resistance of pathogenic Escherichia coli isolates from low flowing river water and sediment with inputs from different sources before water is discharged into ground water and to compare microbial contamination in water and sediment at different sampling sites. Water and sediment samples were collected from 19 locations throughout the watershed for the isolation of pathogenic E. coli. Heterotrophic plate counts and E. coli were also determined after running tertiary treated water through two tanks containing aquifer sand material. Presumptive pathogenic E. coli isolates were obtained and characterized for virulent factors and antimicrobial resistance. None of the isolates was confirmed as Shiga toxin E. coli (STEC, but as others, such as enterotoxigenic E. coli (ETEC. Pulsed field gel electrophoresis (PFGE was used to show the diversity E. coli populations from different sources throughout the watershed. Seventy six percent of the isolates from urban sources exhibited resistance to more than one antimicrobial agent. A subsequent filtration experiment after water has gone through filtration tanks containing aquifer sand material showed that there was a 1 to 2 log reduction in E. coli in aquifer sand tank. Our data showed multiple strains of E. coli without virulence attributes, but with high distribution of resistant phenotypes. Therefore, the occurrence of E. coli with multiple resistances in the environment is a matter of great concern due to possible transfer of resistant genes from nonpathogenic to pathogenic strains that may result in increased duration and severity of morbidity.

  3. The determinants of domestic water demand. Empirical evidence from Emilia-Romagna municipal data

    International Nuclear Information System (INIS)

    This paper presents empirical evidence on the determinants of water demand for domestic use in one Italian region, the Emilia Romagna, by using municipal data. Two main stems in urban/domestic demand analysis cab be found in the empirical literature. The first deals with the estimation of price or income demand elasticities in the short and the long run. The price demand elasticities can be used for water demand managements purpose while the income price elasticities can be useful in the forecasting process of the water requirements. The second one deals with the estimate of customer willingness to pay increasing in water service quality in holistic sense or concerning single characteristics of the service: safety, flavour, continuity, appearance, pollution rate and cost. The aim of the analysis in this case the elicitation of the direct use, indirect use and non-use values associated to the water resource consumption, by means of direct or indirect techniques. In this paper we focused the analysis in the first stem of the empirical literature in which a cross section data set is required. The paper explores the topic problems of the estimating process whit the analysis of the empirical literature (with particular regard to investigations that use municipal data) and with the analysis of the econometric problems related to the demand estimate. The theoretical model for the water demand analysis is also presented and discussed. Two datasets have been implemented: one with 125 municipalities and four years, the other with 40 municipalities and eleven years. Both the databases bring together municipal water consumption and tariffs data provided by local water utilities and other municipal data (inhabitants, surface, household, income, etc.) stemming from official sources. The econometric analysis is based on both fixed effects, performing better than random effects models, and dynamic panel models. The estimated coefficient of the tariff variable arises always significant and with negative sign: the water demand price elasticity is negative with a value between -0.88 and -1.11, but not significantly different from one, considering the different specifications. The results for the income variable are quite different: in the basic model specification the estimated coefficient is positive and significant while the introduction of the other socio-economic variables change the significance level and sometimes the sign. This applied study is an important starting point for the Italian environment, which lacks structured integrated datasets and consequently reliable estimates on elasticities concerning micro-economic oriented water demand studies. However, further analyses with more municipalities and more years have to be carried out to generalise and made results more robust, since the estimation of price elasticity and the investigation on the determinants of water demand is necessary information for both private and private-public management of water resources

  4. Using thermal plasma for treatment of solid domestic and industrial waste

    International Nuclear Information System (INIS)

    The review of the current SDW and toxic waste treatment [1-3] shows the tendency to the use of higher temperatures in the reaction zone and the tendency to application of multistep processes (e.g., the generation of synthesis-gas followed by burning for heating or its utilization as a chemical component). These methods include an ecologically friendly electric plasma technology of waste treatment (with Tpl ? 5000 deg. C). This method allows extensive decomposition of all compositions into simple substances. It is capable of transferring all inorganic components into liquid slag and of obtain the synthesis-gas with a heat capacity of 10-13 MJ/m3

  5. A decade of successful domestic sea transports of radioactive waste in Sweden 1982-1992

    International Nuclear Information System (INIS)

    Today the transports of radioactive waste in Sweden are done on routine basis without any negative publicity. An important contribution to this fact is probably the very good performance of the transport system and the receiving facilities. Since the start of operation of the transport system no accidents have occurred. Almost 1600 tonnes of spent fuel and 10,000 m3 of radioactive waste have been transported. The capacity and availability of the ship and of the transport system as a whole is large enough to cover all needs for transports of radioactive material in Sweden, at least up to the turn of this century. (J.P.N.)

  6. Sources of Phthalates and Nonylphenoles in Municipal Waste Water

    DEFF Research Database (Denmark)

    Vikelsøe, J.; Thomsen, M.; Johansen, E.

    estimate the contribution from all of these sources to the waste water as well as the role of long-range air transport. Two local rivers were analysed for comparison. Finally, waste water inlet from the local water treatment plant, where the sources converge at a single point, were analysed. A mass balance...... for each source was calculated in relation to the total mass flow into the waste water plant, making it possible to evaluate the absolute and relative importance of each type of source. The sources investigated accounted for about 12% of the influx of DEHP, the predominating phthalate, to the waste......The overall aim of the present study is to identify and evaluate the importance of sources of nonylphenoles and phthalates in waste water in a local environment. The investigations were carried out in a Danish local community, Roskilde city and surroundings. Nonylphenoles and phthalates were...

  7. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60Co and 137Cs isotopes and the 90Sr-90Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  8. Effect of color removal agent on textiles waste water

    International Nuclear Information System (INIS)

    The effect of color removal agent (CRA) on textile waste water has been studied. The aim of this work is to determine the optimum condition for CRA to react on the textile waste water and to see the effect of CRA on waste water with different Chemical Oxygen Demand. 8 ml CRA was used to treat 800 mls of sample with various COD ranging between 2500 mg/ l-500 mg/ l. The results showed that CRA totally remove the colour of textile waste water at pH ranging from 6 to 8. At an optimum condition CRA works efficiently on waste water with COD 2300 mg/ l for reduction of suspended solid and turbidity. It also observed, sludge accumulation was depended on COD concentration. Color removal curves for different initial COD concentration also obtained. (author)

  9. Discussing simply waste water treatment in building green mine

    International Nuclear Information System (INIS)

    Analysis simplfy it is important and necessary that uran ore enterprise build the green mine .According to focusing on waste water treatment in building green mine of some uran ore enterprise,analysis the problem in treating mine water, technics waste water, tailings water before remoulding the system of waster water treatment, evaluate the advanced technics, satisfy ability, steady effect, reach the mark of discharge. According to the experimental unit of building the green mine,some uran ore enterprise make the waster water reaching the mark of discharge after remoulding the system of waster water treatment.It provides valuable experienceto uran ore enterprise in building green mine. (authors)

  10. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared. The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR/year) and the lowest operation (320 EUR/year) expenditures. Electric heater-based concepts consume 5-14 times more electricity, which leads to relatively high annual operation costs (530-970 EUR/year); while investment costs are lower (326-76 EUR/year). The suggested DHW heat pump-based system is cost-efficient for private consumers already today. Furthermore, application of the micro booster heat pump in low energy houses complies with the energy consumption requirements, set by the recent Danish Building Regulations. The use of electrical heater variants would exceed this limit.

  11. The reuse of scrap and decontamination waste water from decommissioning

    International Nuclear Information System (INIS)

    Huge amount of radioactive scrap with low activity will be generated from reactor decommissioning; the decontamination is concentrated in the surface layer of the scrap. The decontaminated substance can be removed by high pressure water jet to appear the base metal and to reuse the metal. Big amount of radioactive waste water will be generated by this decontamination technology; the radioactive of the waste water is mainly caused by the solid particle from decontamination. To remove the solid particle as clean as possible, the waste water can be reused. Different possible technology to remove the solid particle from the water had been investigated, such as the gravity deposit separation, the filtration and the centrifugal separation etc. The centrifugal separation technology is selected; it includes the hydraulic vortex, the centrifugal filtration and the centrifugal deposit. After the cost benefit analysis at last the centrifugal deposit used butterfly type separator is selected. To reuse the waste water the fresh water consumption and the cost for waste water treatment can be reduced. To reuse the radioactive scrap and the waste water from decommissioning will minimize the radioactive waste. (authors)

  12. Irradiation as an alternative for disinfection of domestic waste in the Canadian Arctic

    International Nuclear Information System (INIS)

    This study evaluated the technical and economic feasibility of various methods for disinfecting wastewater in the Canadian Arctic with specific reference to gamma radiation. More conventional disinfection practices, such as chlorination, chlorination-dechlorination, and ozonation were compared to gamma radiation along with ultraviolet irradiation and lime disinfection. The quality of lagoon effluent, highly diluted (weak) sewage, holding tank wastes and honey-bag wastes, which are the typical waste types found in northern communities, was established from data available in the literature. Further literature reviews were undertaken to establish a data base for design and effectiveness of disinfection systems operated in cold climates. Capital and operating costs for all technically feasible disinfection process alternates were estimated based on historical cost data adjusted to 1977 for the construction and instalation of similar systems in the north. The costs of equipment, chemicals, fuel and electrical power were obtained from suppliers. The environmental impact of each of the disinfection processes was reviewed with emphasis on gamma irradiation. Safety and health aspects were also considered. The study concluded that gamma irradiation was capable of providing safe, reliable disinfection for concentrated honey-bag and holding wastes. Pilot-scale testing was recommended prior to construction of full-scale disinfection facilities. For lagoon effluents and weak sewage, gamma irradiation was not cost competitive with other alternates; rather chlorination-dechlorination was found to be the most cost-effective and environmentally acceptable alternative

  13. The Human Right to Water: The Importance of Domestic and Productive Water Rights

    OpenAIRE

    Ralph P. Hall; Van Koppen, Barbara; Van Houweling, Emily

    2013-01-01

    The United Nations (UN) Universal Declaration of Human Rights engenders important state commitments to respect, fulfill, and protect a broad range of socio-economic rights. In 2010, a milestone was reached when the UN General Assembly recognized the human right to safe and clean drinking water and sanitation. However, water plays an important role in realizing other human rights such as the right to food and livelihoods, and in realizing the Convention on the Elimination of All Forms of Discr...

  14. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e...... total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  15. Survey and analysis of the domestic technology level for the concept development of high level waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Sun; Kim, Byung Su; Song, Jae Hyok [Seoul National University, Seoul (Korea); Park, Kwang Hon; Hwang, Ju Ho; Park, Sung Hyun; Lee, Jae Min [Kyunghee University, Seoul (Korea); Han, Joung Sang; Kim, Ku Young [Yonsei University, Seoul (Korea); Lee, Jae Ki; Chang, Jae Kwon [Hangyang University, Seoul (Korea)

    1998-09-01

    The objectives of this study are the analysis of the status of HLW disposal technology and the investigation of the domestic technology level. The study has taken two years to complete with the participation of forty five researchers. The study was mainly carried out through means of literature surveys, collection of related data, visits to research institutes, and meetings with experts in the specific fields. During the first year of this project, the International Symposium on the Concept Development of the High Level Waste Disposal System was held in Taejon, Korea in October, 1997. Eight highly professed foreign experts whose fields of expertise projected to the area of high level waste disposal were invited to the symposium. This study is composed of four major areas; disposal system design/construction, engineered barrier characterization, geologic environment evaluation and performance assessment and total safety. A technical tree scheme of HLW disposal has been illustrated according to the investigation and an analysis for each technical area. For each detailed technology, research projects, performing organization/method and techniques that are to be secured in the order of priority are proposed, but the suggestions are merely at a superfluous level of propositional idea due to the reduction of the budget in the second year. The detailed programs on HLW disposal are greatly affected by governmental HLW disposal policy and in this study, the primary decisions to be made in each level of HLW disposal enterprise and a rough scheme are proposed. (author). 20 refs., 97 figs., 33 tabs.

  16. BIOREMEDIATION OF SEWAGE WASTE WATERS BY THE PHOTOTROPHIC BACTERIAL CONSORTIUM ISOLATED FROM SEWAGE WATER

    OpenAIRE

    Ramchander Merugu; V.Namratha; Nagaraju Devanuri

    2015-01-01

    Microbial based treatments are more economical, ecofriendly and sustainable alternative for waste treatment to existing chemical or physical treatment methods. The metabolic rate of microorganisms effect pH, BOD, COD, DO, concentration of suspended solids present in waste waters. Phototrophic consortium from sewage water was used in the present study to remediate sewage water. Treatment with bacteria caused a significant decrease in some of the parameters tested for waste water. Remediation o...

  17. Microbiological treatment of oil mill waste waters

    Directory of Open Access Journals (Sweden)

    Ranalli, A.

    1992-02-01

    Full Text Available Experiments of the biological treatment of the oil mill waste waters, deriving from continuous system, have been carried out with selected mutant ferments, adapted to rather forced toxic conditions. The commercial microbio formulations SNKD, LLMO and PSBIO have been utilized; the last two are liquid suspensions, constituted by living micro-organisms that, in contrast to those frozen or lyophilized, do not need be revitalized before their use and became completely active in short time. The experiments with the SNKD biological preparation were carried out both on filtered oil mill outflows (type A with an initial COD of approximately 43 g/l and on waste water dephenolized by Caro-acid (type B with a COD equal to 30 g/l. The experiments with LLMO and PSBIO complexes were conduced both on oil mill outflows filtered and diluted (ratio 1:0.5 with an initial COD equal to 44 g/l (type C, and on waste water that were filtered and preventatively subjected to a cryogenic treatment (type D, with an initial COD of approximately 22 g/l. The residual COD with the microbio formulation SNKD, was about 15 g/l (type A and 5 g/l (type B; with the PSBIO It was about 7 g/l (type C and 1.5 g/l (type D; with the microbio formulation LLMO it resulted in 6 g/l (type C and 1.3 g/l (type D.

    Han sido efectuadas pruebas de tratamiento biológico de alpechines, provenientes de sistemas continuos, con fermentos seleccionados adaptados a condiciones de toxicidad muy elevadas. Han sido utilizadas las formulaciones microbianas SNKD, LLMO y PSBIO; las dos últimas son suspensiones líquidas, constituidas por microorganismos vivos, los cuales a diferencia de los liofilizados o congelados, no deben ser revitalizados antes del uso; estos tienen una fase «lag» más breve y entran antes en completa actividad. Las pruebas con la preparación biológica SNKD han sido efectuadas en los alpechines filtrados (tipo A con DQO inicial alrededor de 43 g/l, y también con alpechín filtrado «defenolado» con ácido de Caro (H2SO5 (tipo B, con DCX igual a 30 g/l; los complexos LLMO y PSBIO se utilizan en alpechines provenientes de la elaboración de otras variedades de aceitunas, filtradas y diluidas en la relación 1:0,5 (tipo C con DQO inicial igual a 44 g/l, y también en alpechín filtrado y sometido previamente a criotratamiento (tipo D, con DQO inicial de 22 g/l aproximadamente. La DQO residual, con la formulación microbiana SNKD, ha resultado igual a 15 g/l (Tipo A y a 5 g/l (tipo B, con el PSBIO a 7 g/l (tipo C y a 1,5 g/l (tipo D; con la formulación microbiana LLMO a 6 g/l (tipo C y a 1,3 g/l (tipo D.

  18. Generation of Domestic Solid Waste in Tikrit City and The Effects of Family Size and Incomes Level on the Rate of Generation

    Directory of Open Access Journals (Sweden)

    Waleed M. Al Abed Raba

    2013-04-01

    Full Text Available     This research included collection and analysis of (2800 samples from four different neighborhoods in Tikrit over the seasons of the year to cover seasonal changes in the generation rate of domestic solid waste. The generation rate of domestic solid waste is (0.460 kg / person / day. The results also showed that summer season is the most season that produced solid waste (0.487 kg / person / day. While winter is the lowest season (0.422 kg / person / day. The results indicated that Friday and Saturday are the most producing days (0.629 , 0.557 kg / person / days, respectively. The results showed the impact of rural character of Aalam region in reducing the rate of generation of domestic solid waste as the rate of generation of the neighborhoods of the four studied areas was (0.460 kg / person / day. SPSS program using has been adopted as a method of statistical analysis to study the effect of family size and income level have on the generation rate in the city, where the results showed that family size adversely affects the generation rate of solid waste, also the lowest generation rate was recorded for families with high income level.                                                                                                                                  

  19. Water and waste water reclamation in a 21st century space colony

    Science.gov (United States)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  20. Smart solar domestic hot water systems. Development and test; Intelligente solvarmeanlaeg. Udvikling og afproevning

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, E.; Knudsen, S.; Furbo, S.; Vejen, N.K.

    2001-07-01

    The purpose of the project described in this report is to develop and test smart solar domestic hot water systems (SDHW systems) where the energy supply from the auxiliary energy supply system is controlled in a flexible way fitted to the hot water consumption in such a way, that the SDHW systems are suitable for large as well as small hot water demands. In a smart SDHW system the auxiliary energy supply system is controlled in a smart way. The auxiliary energy supply system heats up the water in the hot water tank from the top and only the hot water volume needed by the consumers is heated. Further the water is heated immediately before tapping. The control system includes a number of temperature sensors which cover the temperatures in the auxiliary heated volume. Based on these temperatures the energy content in the hot water tank is calculated. Only water heated to a temperature above 50 deg. C contributes to the total energy content in the hot water tank. Furhter the control system includes a timer that only allows the auxiliary energy supply system to be active in certain time periods and only if the energy content in the hot water tank is lower than wanted. In this way the water in the tank is heated immediately before the expected time of tapping and only the hot water volume needed is heated. The report is divided into five main sections. The sections deals with: Developing and testing storage tanks, laboratory test of SDHW systems based on some of the developed storage tanks, validation of simulation programs for smart solar heating systems, optimisation of system design and control strategy and measurements on two smart SDHW systems installed in single family houses. In all the developed hot water tanks, attempt is made to heat the water in the tank from the top of the tank and not as in traditional tanks where the water is heated from the lowest level of the auxiliary energy supply system, normally a helix or a electrical heating element placed in the tank. It is very important that the water is heated from the top of the tank because only in this way, the size of the auxiliary volume can be controlled, which makes the SDHW system suitable for large as well as small hot water demands. The gain experience in one part of the project is immediately implemented in the following parts of the project. Therefore the design of some of the SDHW systems has been changed during the project. The expected advantages by using smart SDHW systems are: Reduced auxiliary energy use compared to the auxiliary energy use in a similar traditional SDHW system; Reduced heat loss compared to the heat loss in a similar traditional SDHW system; Really good thermal stratification and due to that, and the way the tank is heated, a higher collector performance; Reduced domestic water volume in the tank compared to traditional SDHW systems and therefore a reduced risk of legionella. Based on the results in the project it can be concluded that: A smart SDHW system has a lower auxiliary energy consumption than a similar traditional SDHW system; A smart SDHW system has a reduced heat loss from the hot water tank compared to the tank heat loss for a similar traditional SDHW system because the top of the hot water tank is not constantly heated to a high temperature level; It is possible to build up a good thermal stratification both for large and for small auxiliary heated volumes where the water is heated from the top of the tank; The simulation programs, which are developed in the project, are suitable as tools for system design and analysis for smart SDHW systems; A consumer that buys a smart SDHW system must be willing to take action part in the control of the system, because the thermal performance of the system strongly depends on the correct control parameters. (au)

  1. Treatment of Oily Waste Water Emulsions from Metallurgical Industries Using Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2006-01-01

    Full Text Available Emulsion waste water is one of the important industrial wastewaters, which results from the various manufacturing industries including the metal manufacturing and its processing. Wastewater treatment technologies utilizing flocculation and electrolysis have been used but these technologies have not been very helpful in resolving the problems in view of process consistency and economic merit. Aiming to mitigate the environmental hazard that these waste emulsions represent, a study was carried to investigate the microwave methods to destabilise water/oil emulsions without the addition of any destabilizing chemical agent. The experimental work consisted on breaking the simplest of the emulsions in terms of content, in order to obtain preliminary data that can help to extend the method to manage actual waste material. The samples consisted in water/oil emulsions waste (spent cutting oil, which was obtained from local metal industries. The sample emulsions underwent a domestic microwave radiating process at several exposure times. Certain factors, such as aromatic components and sodium hydroxide content and total heat exposure time proved to be the factors that more strongly affect the results. Within the category of paraffinic oils, light oils allow for quicker water separation than heavy oils. Also oils with higher aromatic content have higher viscosity, which makes the separation of water more difficult. It was observed in this study that emulsions added with acid up to a final concentration of 0.48 M, the separation efficiency and demulsification rate increased with increasing acid concentration. Hence microwave irradiation is an economical and rapid method for oil separation from oily waste water. Although this study was carried out on a lab scale basis, the process can scale up to a large industrial scale system. By using the microwave radiation, an aqueous phase recovery that ranged from 65 to 90% was obtained, which is a significant outcome that reveals the study of this technique needs to be taken further

  2. 77 FR 6548 - Environmental Impact Statement for the Implementation of Energy, Water, and Solid Waste...

    Science.gov (United States)

    2012-02-08

    ...Implementation of Energy, Water, and Solid Waste Sustainability Initiatives at Fort...implementation of the Energy, Water, and Solid Waste Initiatives at Fort Bliss. These...implement energy, water, and solid waste technologies at Fort Bliss in...

  3. Materials flow through the household and reduction in domestic solid waste

    Energy Technology Data Exchange (ETDEWEB)

    1975-05-01

    Energy conservation programs are usually designed to reduce the waste associated with direct energy use for example, heating and lighting levels, and use of appliances. But householders can also influence energy consumption in other sectors. Their buying and consuming habits will affect the energy involved in extraction, production, transportation, use and disposal of commodities. Their attitudes and behavior will affect their neighbours' efforts at reducing materials throughput. Therefore, the household must be an important target in any effort to alter energy use patterns throughout society. The purpose of this study was to determine whether practical programs could be developed to reduce materials flows through the hosuehold. Since solid waste output is a very reliable measure of these flows, the question was posed from the perspective of reducing the generation of residential solid waste. In this context particular attention was given to the range of possible actions open to the householder himself. It would have been unrealistic, however, to ignore environmental design and other legislative options. The study is divided into three parts. The first attempts to identify those actions by the householder which will have the greatest effect in reducing the total environmental impact (including energy use) of the materials moving through the household. The second deals with the problem of persuading people to engage in these actions. The final part combines promising strategies with significant actions. The result is a series of program options which are assessed with respect to four criteria: potential significance for residential solid waste reduction, chances of success, ease of implementation, and costs. 15 refs., 7 figs., 3 tabs.

  4. Deactivation of waste waters in the Czechoslovak Uranium Industry

    International Nuclear Information System (INIS)

    Deactivation techniques are described used for the treatment of waste waters from uranium mines and uranium chemical treatment plants. With treatment plant waters this is done either by precipitation of radium with barium sulfate or using multistage evaporating units. Mine waste waters are deactivated by sorption on ion exchangers; strongly basic anion exchangers, mostly Wofatit SBW, Varion AP or Ostion AU are used for uranium, while the strongly acidic Ostion KS is used for radium. (Z.M.)

  5. Waste water reutilization in the leather industry using membrane technology

    OpenAIRE

    Roig, Joan; Font Vallès, Joaquim; Marginet, Xavier; Jorba, M.; Ollé Otero, Lluís; Bacardit Dalmases, Anna; Puig Vidal, Rita

    2009-01-01

    This paper documents a technical feasibility study opf tannery wasterwater which was reclaimed (treated) and reutilized in tannery leather making processes. The studied waste water was processed in the waste water treatment plant owned by Igualada tanners (IDR), in Spain. The objectives included reduction of city fresh water consumption by the tanners of this city. A pilot plant using membrane technology, determined to be the most appropiate technology in this case, was installed at the IDR w...

  6. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  7. High performance in low-flow solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  8. Investigation of a low flow solar heating system for space heating and domestic hot water supply for Aidt Miljø A/S

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1997-01-01

    A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....

  9. Investigation of a solar heating system for space heating and domestic hot water supply for Sol&Træ A.m.b.a

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility.......A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility....

  10. Waste water heat recovery appliance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, H.D.; Armstrong, P.R.; Chapin, F.A.W.

    1983-11-21

    An efficient convective waste heat recovery heat exchanger was designed and tested. The prototype appliance was designed for use in laundromats and other small commercial operations which use large amounts of hot water. Information on general characteristics of the coin-op laundry business, energy use in laundromats, energy saving resources already in use, and the potential market for energy saving devices in laundromats was collected through a literature search and interviews with local laundromat operators in Fort Collins, Colorado. A brief survey of time-use patterns in two local laundromats was conducted. The results were used, with additional information from interviews with owners, as the basis for the statistical model developed. Mathematical models for the advanced and conventional types were developed and the resulting computer program listed. Computer simulations were made using a variety of parameters; for example, different load profiles, hold-up volumes, wall resistances, and wall areas. The computer simulation results are discussed with regard to the overall conclusions. Various materials were explored for use in fabricating the appliance. Resistance to corrosion, workability, and overall suitability for laundromat installations were considered for each material.

  11. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    Science.gov (United States)

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. PMID:26822473

  12. Assessing domestic water use habits for more effective water awareness campaigns during drought periods: a case study in Alicante, eastern Spain

    Science.gov (United States)

    March, H.; Hernández, M.; Saurí, D.

    2015-05-01

    The design of water awareness campaigns could benefit from knowledge of the specific characteristics of domestic water use and the factors that may influence certain water consumption habits. This paper investigates water use in 450 households in 10 municipalities of drought-prone Alicante (Spain). We aim to increase knowledge about existing domestic water behaviors and therefore help to improve the design and implementation of future water awareness campaigns and even to consolidate reductions in water use after drought periods. The survey suggests that awareness campaigns should revise their scope and their channels of diffusion on a regular basis. In a more specific way, for the Alicante case we propose policy-oriented recommendations on the scope of action for further reductions.

  13. A generic method for projecting and valuing domestic water uses, application to the Mediterranean basin at the 2050 horizon.

    Science.gov (United States)

    Neverre, Noémie; Dumas, Patrice

    2014-05-01

    The aim is to be able to assess future domestic water demands in a region with heterogeneous levels of economic development. This work offers an original combination of a quantitative projection of demands (similar to WaterGAP methodology) and an estimation of the marginal benefit of water. This method is applicable to different levels of economic development and usable for large-scale hydroeconomic modelling. The global method consists in building demand functions taking into account the impact of both the price of water and the level of equipment, proxied by economic development, on domestic water demand. Our basis is a 3-blocks inverse demand function: the first block consists of essential water requirements for food and hygiene; the second block matches intermediate needs; and the last block corresponds to additional water consumption, such as outdoor uses, which are the least valued. The volume of the first block is fixed to match recommended basic water requirements from the literature, but we assume that the volume limits of blocks 2 and 3 depend on the level of household equipment and therefore evolve with the level of GDP per capita (structural change), with a saturation. For blocks 1 and 2 we determine the value of water from elasticity, price and quantity data from the literature, using the point-extension method. For block 3, we use a hypothetical zero-cost demand and maximal demand with actual water costs to linearly interpolate the inverse demand function. These functions are calibrated on the 24 countries part of the Mediterranean basin using data from SIMEDD, and are used for the projection and valuation of domestic water demands at the 2050 horizon. They enable to project total water demand, and also the respective shares of the different categories of demand (basic demand, intermediate demand and additional uses). These projections are performed under different combined scenarios of population, GDP and water costs.

  14. Experimental study on electrodialysis treatment of simulated waste water from radioactive waste incineration system

    International Nuclear Information System (INIS)

    Radioactive waste incineration facility produces low-level radioactive waste water in operation. While in treatment process, however, the Cl- existed in the waste water corrodes the evaporation equipment, and the HCO3- as well exerts negative impacts on the ion exchange process for radioactive nuclides. As for this problem, a special electrodialysis system and technical process was developed. Some experiments were carried out, including the NaCl solution direct desalination and cycle desalination experiment, the anionic selection experiment, and the desalination experiment to the simulated. Results showed that the process of electrodialysis treatment met limits on the treatment of technical waste water in terms of the concentration of nonradioactive components in desalted water, and the water balance requirement on the concentration of concentration water. (authors)

  15. The COOLSUN triple-technology approach to reach high solar fractions for space heating, space cooling and domestic hot water

    OpenAIRE

    Facão, Jorge; Lobato, António; Baldo, Catherine

    2013-01-01

    Within the framework of the COOLSUN project a triple-technology approach to reach high solar fractions for space heating, space cooling and domestic hot water preparation is being developed. The three core components are a thermo fluid with a low environmental impact and a boiling point above 200 °C, a high efficient adsorption chiller, and an advanced controller. System simulations modelling the transient behaviour of the entire application, i.e. building, hot water preparation and space hea...

  16. Radioactive waste disposal of water containing waste using urea-formaldehyde resin

    International Nuclear Information System (INIS)

    A method of disposing of wet radioactive waste materials such as those generated in the water used to cool atomic reactors, comprises combining the waste material with a hydrophilic resin in proportions sufficient to provide a solid mass of the resin with the radioactive waste component distributed within. In its preferred form, the waste material is concentrated by separating water from the radioactive portions thereof by methods such as evaporation, taking up the waste components with an ion exchange resin and separating the resin from the bulk of the water, or by the addition of flocculating agents or the like and filtering. The preferred hydrophilic resinous material is a conventional ureaformaldehyde dispersion, which is partially polymerized and capable of taking up water and fully polymerizing upon the addition of an acidic curing agent. The method also contemplates adding a substantially waterproof resinous material to the surface of the solid block, or enclosing it in a waterproof container, or both

  17. Microbiological and technical aspects of anaerobic waste water purification

    International Nuclear Information System (INIS)

    Anaerobic waste water purification is likely to be another example of how innovations can result from the joint use of biological and technical concepts. No matter how far the optimization of oxygen input with aerobic waste water purification advances it will still be the less a real competitor for anaerobic techniques the more polluted the waste water is. The principle of carrier fixation to avoid their washing out, too, has often been observed in nature with sessile microorganisms. With highly polluted water, anaerobic purification does not only work at no expenditure of energy but it can also make excess energy available for use in other processes. Another important argument for anaerobic methods of waste water purification is probably the clearly reduced production of excess sludge. (orig.)

  18. Method for the treatment of waste water with sludge granules:

    OpenAIRE

    van Loosdrecht, M C; De Kreuk, M.K.

    2004-01-01

    The invention relates to a method for the treatment of waste water comprising an organic nutrient. According to the invention, the waste water is in a first step fed to sludge granules, after the supply of the waste water to be treated the sludge granules are fluidised in the presence of an oxygen-comprising gas, and in a third step, the sludge granules are allowed to settle in a settling step. This makes it possible to effectively remove not only organic nutrients but optionally also nitroge...

  19. Isolation and molecular characterization of Acanthamoeba genotypes in recreational and domestic water sources from Jamaica, West Indies.

    Science.gov (United States)

    Todd, Cheridah D; Reyes-Batlle, María; Piñero, José E; Martínez-Carretero, Enrique; Valladares, Basilio; Streete, Don; Lorenzo-Morales, Jacob; Lindo, John F

    2015-09-01

    Free living amoebae (FLA) are amphizoic protozoa that are ubiquitous in nature. Infection with FLA may result in neurological, ocular and skin infections. Exposure to Acanthamoeba occurs frequently through water contact and knowledge of the presence of the organisms in water sources is important in understanding transmission dynamics. The distribution of Acanthamoeba was studied in recreational and domestic water samples collected from across Jamaica. Morphological assessment and polymerase chain reaction revealed Acanthamoeba spp. isolates in 50.6% (42/83) and 17.3% (14/81) of recreational and domestic water, respectively. Sequencing of the DF3 region of the 18S rDNA resulted in the identification of genotypes T3, T4, T5, T10 and T11 corresponding to Acanthamoeba spp: A. griffini, A. triangularis, A. lenticulata, A. culbertsoni and A. hatchetti. Moreover, T4 was the most frequently isolated genotype in both recreational and domestic water. Thermotolerance and osmotolerance assays indicated that most isolates were potentially pathogenic. This is the first report of T3 and T10 genotypes in the Caribbean and the first report of these Acanthamoeba spp. in Jamaican waters. The study shows that there is potential risk of infection to contact wearers who practise poor lens care. Further, Acanthamoeba should be considered as a cause of neurological infections in Jamaica. PMID:26322776

  20. Status of domestic wastewater management in relation to drinking-water supply in two states of India.

    Science.gov (United States)

    Pandey, R A; Kaul, S N

    2000-01-01

    In India, supply of drinking water, treatment and disposal of domestic wastewater including faecal matter are managed by local bodies. The existing status of water supply, characteristics of domestic wastewater, modes of collection, treatment and disposal system for sewage and faecal matter in 82 municipalities and 4 municipal corporations were assessed in the States of Bihar and West Bengal in India. Domestic wastewater in the municipal areas is collected and discharged through open kachha (earthen), pucca (cement-concrete) and natural drains and discharged into water courses or disposed on land. Scavenger carriage system for night soil disposal is in-vogue at several places in the surveyed States. Open defecation by the inhabitants in some of the municipalities also occurs. The existing methods of collection, treatment and disposal of sewage impairs the water quality of different water sources. Techno-economically viable remedial measures for providing basic amenities, namely safe drinking-water supply and proper sanitation to the communities of these two States of India are suggested and discussed. PMID:10842846

  1. Analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The object of this study was dynamic modeling, simulation and optimum design of solar DHW (domestic hot water) systems, with respect to different whether conditions, and accurate dynamic behaviour of the heat load. Special attention was paid to systems with thermosyphon and drain-back design. The solar radiation in Beijing (China) and in Denmark are analyzed both by theoretical calculations and the analysis of long-term measurements. Based on the weather data from the Beijing Meteorological Station during the period of 1981-1993, a Beijing Test Reference Year has been formulated by means of statistical analysis. A brief introduction about the Danish Test Reference Year and the Design Reference Year is also presented. In order to investigate the heat loss as a part of the total heat load, dynamic models for distribution networks have been developed, and simulations have been carried out for typically designed distribution networks of the circulation type. The influence of operation parameters such as the tank outlet temperature, the hot-water load and the load pattern, on the heat loss from the distribution networks in presented. It was found that the tank outlet temperature has a significant influence on the heat loss from a circulation type of distribution network, while the hot-water load and the load pattern have no obvious effect. Dynamic models of drain-back tanks, both as a separated tank and combined with a mantle tank, have been developed and presented. Models of the other basic components commonly used in solar DHW systems, such as flat-plate collectors, connection pipes, storage tanks with a heat exchanger spiral, and controllers, are also described. (LN) 66 refs.

  2. A study on migration of contaminants and effect on the groundwater system at the Gemencheh domestic waste disposal site, Negeri Sembilan using integrated nuclear, geophysical and hydrogeochemical methods

    International Nuclear Information System (INIS)

    The domestic waste disposal site at Gemencheh, Negeri Sembilan has been in operation since 1981. Integration of three methods namely nuclear, geophysical and hydrogeochemical were used to study the migration and effects of contaminants on the groundwater system at this particular site. Nuclear method was used to determine groundwater system flow velocity that delineates the migration pattern of contaminant species in the groundwater system at the study area. The groundwater flow velocity is found to be heterogeneous and depend on hydraulic conductivity caused by soil permeability except in the low-lying downstream area where the flow velocity is found to be low and constant at 2.0 x 10-6 ms-1. However, the flow velocity increases to as high as 17.8 x 10-5 ms-1 during rainy season due to the influence of weather on hydraulic gradient. Weather condition also influences the flow direction, whereby during draught season, the groundwater flow direction at the middle of the study site moves from an area of high topography to the northeast and southeast of low topography areas. On the other hand, at the downstream the groundwater flows partially towards northeast and southeast whereas flow direction at the upstream is towards the east. A similar pattern was observed during rainy season in both upstream and downstream of the study site but at the middle, the flow is basically towards south-east with a side flow to the north-east and east direction. Geophysical method comprising geo electrical-imaging and electromagnetic transient techniques was used to determine the extent, depth and distribution of contamination in the groundwater system. This method shows that the most seriously contaminated areas at the middle and the downstream regions of the study site within the shallow depth of 3-6 metres. The distribution of the contaminants in groundwater is not widespread but confined within the study site only. Finally, hydrogeochemical method was used to determine the species concentration, rate and extent of contamination. This method shows that the species of chlorides, nitrates, iron, manganese, lead, mercury, sodium, potassium, calcium, magnesium, sulphates, chromium and cadmium originating from the leachate of domestic waste had contaminated the middle and the downstream regions of the study site. The concentration of these species is tens of times higher than the limits of the Drinking Water Quality 1984 as stipulated by the World Health Organisation except for ferum that had reached a value of 700 times higher. It can be concluded that the domestic waste dumped at the Gemencheh disposal site has seriously contaminated the groundwater. This work also shows that the integration of the three methods is useful because it was possible to compile a lot of data and information which were complete, detailed and extensive as well as able to provide a clear picture of the contaminants species, migration and distribution pattern of contamination as well as impact to groundwater quality at the study site. (author)

  3. Process for decontamination of radioactively contaminated waste water

    International Nuclear Information System (INIS)

    The waste water from the nuclear medical stations are separated from coarse dispersed materials in a precipitation container and are made acid to reach a pH value greater than 9.5. Next, there is precipitation or absorption. Waste air produced is cleaned by means of filters. (DG)

  4. Electrochemical purification of waste water with metal hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Milovanovic-Nicolic, J.

    1981-01-01

    The possibilities and main advantages of electrochemical methods of purifying waste waters are examined. Particularly mentioned is the method of electrocoagulation, consisting in saturating waste solutions by metal hydroxides being formed at the anode by the dissolving of Fe, Al, and other metals. The compactness of the equipment and the ease of automation of the process appear as the advantages of this method.

  5. CHARACTERIZATION AND RECYCLING OF WASTE WATER FROM GUAYULE LATEX EXTRACTION

    Science.gov (United States)

    Guayule commercialization for latex production to be used in medical products and other applications is now a reality. Currently, waste water following latex extraction is discharged into evaporation ponds. As commercialization reaches full scale, the liquid waste stream from latex extraction will b...

  6. Pacific Northwest National Laboratory Reuses Water to Reduce Waste

    International Nuclear Information System (INIS)

    By reducing a hazardous waste stream, the Pacific Northwest National Laboratory is avoiding almost $100K in expenses annually. Hazardous waste water that previously was costly to dispose of is now being reused, thanks to a closed-loop system of pumps, settling tanks, and filters.

  7. Delevopment and use of a model for incinerators of oil spills and domestic waste

    International Nuclear Information System (INIS)

    Experiments in flow models have been used to study various problems concerning incineration of contaminated matter. The basic philosophies are: (1) The fixed bed of burning material in most cases acts as a pyrolyzer, and combustion is completed in the space above the bed. (2) Regardless of existing knowledge of the mechanisms for formation of various air pollutants, the task of the incinerator is to maintain certain conditions regarding the distribution of temperature, residence, time, and concentration of oxidizing agents. The consequence of this is that many problems can be solved in an efficient and cost effective way using experiments in cold and hot models. Similarity criteria and experimental methods are discussed and illustrated by two case studies: finding remedies against fouling problems in an existing incinerating plant for municipal waste, and development of a mobile incinerator for oil-contaminated solid matter

  8. BIOREMEDIATION OF SLAUGHTER HOUSE WASTE WATER BY RHODOBACTER SP. GSKRLMBKU-02

    OpenAIRE

    Kadari Rajyalaxmi; Ramchander Merugu; S. Girisham; SM Reddy

    2015-01-01

    Biological treatment of waste waters is a sustainable alternative for waste treatment to existing treatment methods. Microbial metabolism effects pH, BOD, COD, DO and concentration of suspended solids present in slaughter house waste water. Rhodobacter sp. GSKRLMBKU-02 from paper mill waste water was used in the present study to remediate slaughter house waste water. Treatment with this bacterium caused a significant decrease in some of the parameters tested for waste water. Remediation of sl...

  9. ADVERSE IMPACTS OF WASTE WATER TREATMENT ­ A CASE STUDY

    Science.gov (United States)

    Industrial metal plating processes coat materials with metals, such as chromium, copper and nickel. After the plating process, excess metals are rinsed off and the rinse water is collected and then treated to remove metals prior to discharge of the rinse water into rivers. This waste water is typica...

  10. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1993-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  11. Actual problems of municipal cleaner?s waste waters

    Directory of Open Access Journals (Sweden)

    Konko¾ová Patrícia

    2000-03-01

    Full Text Available In paper are evaluated social and economical changes in water economy with emphasis on complex evaluation of municipal cleaner?s waste waters with respect of legislative, position of ownerskip relationskips and financial security of public experiences of water economy.

  12. Low-Cost Solar Domestic Hot Water Systems for Mild Climates

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

    2005-01-01

    In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

  13. A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain

    Directory of Open Access Journals (Sweden)

    Alberto Gutierrez-Escolar

    2014-10-01

    Full Text Available Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studied DHW consumption with data from 10 apartments in the same building during 18 months. As a result of the study, we updated one chosen methodology, adapting it to the current situation. One of the challenges to improve efficiency of DHW use is that most of people are not aware of how it is consumed in their homes. To help this information to reach consumers, we developed a website to allow users to estimate the final electrical energy needed for DHW. The site uses three estimation methodologies and chooses the best fit based on information given by the users. Finally, the application provides users with recommendations and tips to reduce their DHW consumption while still maintaining the desired comfort level.

  14. Testing and analysis of load-side immersed heat exchangers for solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, R.B.; Bingham, C.E.

    1987-10-01

    This report describes work to determine the performance of load-side heat exchangers for use in residential solar domestic hot water systems. We measured the performance of four heat exchangers: a smooth coil and a finned coil having heat transfer areas of 2.5 m/sup 2/ (26 ft/sup 2/) and those having areas of 1.7 m/sup 2/ (19 ft/sup 2/). A numerical model using the thermal network program MITAS was constructed, and results were compared to the experimental results. Research showed a smooth coil with only 70% of the surface area of a finned coil performed better than the finned coil. Also, load-side heat exchangers can maintain and enhance stratification in storage tanks, permitting the use of control strategies that take advantage of stratified storage tanks to increase system performance. The analytical model, which agreed reasonably well with the experimental results, was used to vary heat exchanger flow rate and area and initial tank temperature for both a smooth- and a finned-coil heat exchanger. Increasing the heat exchanger flow rate and area results in higher heat transfer rates but not necessarily optimal performance. Lower initial tank temperatures resulted in reduced tank stratification. The smooth heat exchanger outperformed the finned heat exchanger with the same outside surface area. 15 refs., 37 figs., 9 tabs.

  15. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  16. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    International Nuclear Information System (INIS)

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design and optimize its products comparing their systems against a reference system under identical test conditions and secondly, by the consumers in order to select the most suitable system. The resulting experimental data for a particular thermosiphon system is presented and discussed. (author)

  17. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Pilatowsky, I. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco, s/n, Colonia Centro, 62580 Temixco, Morelos (Mexico); Ruiz, V. [Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n, Isla de la Cartuja, 41092 Sevilla, Espana (Spain)

    2008-07-15

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design and optimize its products comparing their systems against a reference system under identical test conditions and secondly, by the consumers in order to select the most suitable system. The resulting experimental data for a particular thermosiphon system is presented and discussed. (author)

  18. Region 9 NPDES Outfalls 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  19. Region 9 NPDES Outfalls 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  20. NATURAL WASTE WATER PURIFICATION IN CONSTRUCTED WETLAND SYSTEM

    Directory of Open Access Journals (Sweden)

    AGNES SULI

    2009-05-01

    Full Text Available The comprehensive enhancement of the environment is an important task in Hungary too in order to maintain and improve the life quality of both humans and other living creatures. Waste water treatment and solid waste management have become significant issues since joining the European Union. Thus it has become timely to develop or borrow an effective and attainable sewage water treatment technology adapted to Hungarian circumstances. Some prototypes of waste water treatment plants that use natural or constructed wetlands (reed beds mainly have already been established in Hungary as experiments or everyday function. In Hódmezövásárhely (HU a demonstration site has built that shows different types of treatment systems based on plants. Present paper introduces environment friendly waste water treatment technologies and the principles of their establishment and function.

  1. Process for decontamination of radioactively contaminated waste water

    International Nuclear Information System (INIS)

    The waste water with solid particles, excreta, finely dispersed and dissolved materials from nuclear medicine therapy and diagnosis (radioiodine) is subjected to mechanical/biological cleaning and then precipitation, flocculation or adsorption. Very fine filters retain the eddied contents. (DG)

  2. Region 9 NPDES Outfalls - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  3. Region 9 NPDES Outfalls - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  4. Waste management in light-water reactors

    International Nuclear Information System (INIS)

    The most important objectives of concentrate and solid waste treatment are reduction of the waste to the smallest volume, radioactive exposure of the personnel of the power plants and outside for operation, handling and transportation, protection against migration of the concentrated radioactive substances after final disposal and observance of shipping requirements, national laws and ministerial waste storage regulations. A variety of technologies is available for the realization of these objectives. Important parameters for the selection and design of concentrate and solid waste treatment processes are waste type, quantity, activity, means for immobilization and the achievable reduction factors. The most important technologies for the treatment of liquid concentrates, combustible and non-combustible solid waste are available for example: In-Drum-Drying, Borate-Solidification (PWR), Drum Drier, Residue Filter Drying, Bituminization, Solidification with cement, Incineration, Shredding, Compacting etc. and of course combinations of the various mentioned procedures which result in the best possible waste disposal for the entire power plant. (orig./RW)

  5. Discharge and Treatment of Waste Water in Denmark

    DEFF Research Database (Denmark)

    Larsen, Torben

    This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has a...... population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 1992, the maximum average concentrations allowed for municipal waste water discharges to receiving...... waters will be; 15 mg/1 for BOD5, 8 mg/1 for total nitrogen, and 1.5 mg/1 for total phosphorus. These general requirements cover all types of receiving waters, but regional authorities have, in a number of cases, fixed lower values for sensitive areas....

  6. Procedure and device for decontaminating radioactive waste waters

    International Nuclear Information System (INIS)

    The decontamination of waste water containing short-lived radioactive materials, e.g. faecal waste water from hospitals with nuclear-medicine departments, takes place via decay plants. It is proposed that flow channeling of such plants should be arranged so that multiple mixing is carried out. This prevents single parts 'shooting through' too quickly and not dwelling for long enough. Turbulence can be achieved by blowing in air. A plant giving good results is described. (UWI)

  7. Tertiary Treatment for Textile Waste Water-A Review

    Directory of Open Access Journals (Sweden)

    Manali Desai*1, Mehali Mehta2

    2014-03-01

    Full Text Available Tertiary treatment is the Industrial waste water treatment process which removes stubborn contaminants that have not been removed in secondary treatment. Effluent becomes even cleaner by Tertiary treatment through the use of stronger and more advanced treatment systems. The present work is an attempt to review all possible tertiary treatment methods for removal of dyestuff from textile effluent. Conventional method for treatment of textile effluent has own certain limitations that can be well overcome by tertiary waste water treatment.

  8. Optimal control of a waste water cleaning plant

    OpenAIRE

    Ellina V Grigorieva; Evgenii N Khailov

    2010-01-01

    In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste w...

  9. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, ?-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated ...

  10. Simultaneous Waste Water Purification via Photocatalysis and Seed Germination

    OpenAIRE

    Sadhana A. Sawant; Ajinkya Nene; Somani, Savita P.; Shreeniwas K. Omanwar; Somani, Prakash R.

    2013-01-01

    Preliminary results of our study related to simultaneous waste water purification by photocatalytic degradation of organic impurity (Methylene Blue dye) and its effects on seed germination are presented here. It is interesting and important to know that complete degradation of the dye occurs within 2 hours and does not adversely affect the seed germination process. It is concluded that waste water purification by photocatalysis and seed germination (agriculture) can be carried out simultaneou...

  11. The integration of solar power plants for domestic water services in buildings; Integracion de calderas y calentadores individuales en las instalaciones de ACS con energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J. V.; Garcia, R.; Lopez de Subijana, R.; Casado, J. M.

    2004-07-01

    The integration of solar power plants for domestic water services in buildings with individual heating and domestic water facilities has some problems which must be solved by the manufacturers of boilers and individual heaters; the most important is the water temperature in the entrance to the individual equipment because of solar heating. Therefore, we must care about materials in boilers and heaters, and temperature control systems of domestic water production. We analyse the technical conditions which appear in these equipment in the usual schemes: Centralized accumulation, distributed accumulation, serial heating, etc., and propose some elements which can be integrated in these facilities to obtain a better operation. (Author)

  12. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Soha S.M. MOSTAFA

    2012-02-01

    Full Text Available The objective of this study was to evaluate the growth of nine species of microalgae (green and blue green microalgae on domestic waste water samples obtained from Zenein Waste Water Treatment Plant (ZWWTP, Giza governorate, Egypt. The species were cultivated in different kind of waste water; before treatment; after sterilization; with nutrients with sterilization and with nutrients without sterilization. The experiment was conducted in triplicate and cultures were incubated at 25?1?C under continuous shaking (150 rpm and illumination (2000 Lux for 15 days. pH, electric conductivity (EC, optical density (OD , dry weight (DW, were done at the time of incubation and at the end of experiment, in addition to determine the percentage of lipid and biodiesel. The data revealed that, domestic waste water with nutrient media (T3 was promising for cultivation of five algal species when compared with conventional media, Moreover, domestic waste water after sterilization (T2 was selected media for cultivation of Oscillatoria sp and Phormedium sp. However, T1 media (waste water without treatment was the promising media for cultivation of Nostoc humifusum. The biodiesel produced from algal species cultivated in waste water media ranged from 3.8 to 11.80% when compared with the conventional method (3.90 to 12.52%. The results of this study suggest that growing algae in nutrient rich media offers a new option of applying algal process in ZWWTP to mange the nutrient load for growth and valuable biodiesel feedstock production.

  13. Development of a household waste treatment subsystem, volume 1. [with water conservation features

    Science.gov (United States)

    Gresko, T. M.; Murray, R. W.

    1973-01-01

    The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.

  14. BIBRA trademark - the biological treatment of radioactive waste water

    International Nuclear Information System (INIS)

    BIBRA trademark, is the new bio-technological method developed in Gundremmingen for treating radioactive waste water, using bacteria in a process analogous to the long-established principle of communal sewage treatment plants. The method exploits the behaviour of the micro-organisms found there, to establish optimum adaptation of their population for decomposing the typical pollutants found in this washing water. This procedure is particularly suitable for nuclear engineering plants, because in such plants the waste water composition changes little so that the bacteria can achieve optimum adaptation to this waste water. The organic ingredients of the washing media are decomposed by introducing air. The advantage of the procedure is not only the significant reduction of the amount of waste material, but also enhanced efficiency of the cleaning process. The decontamination factor in Gundremmingen improved from a factor of 5 to a factor of 20. The waste water is clear and free from suspended materials. A further decisive advantage is the elimination of organic substances in relation to conditioning of evaporator concentrates for final disposal storage. The process entails only slight conversion costs - in Gundremmingen only DM 35 000 were required for converting the four washing water containers. The authors state that the savings amount to DM 250 000 per year. The conditioning process is suitable for boiling water plants already utilising centrifuge technology, as well as for plants which exclusively evaporate their washing water. (orig.)

  15. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    Science.gov (United States)

    Ismail, Samir Abd-elmonem A.; Ali, Rehab Farouk M.

    2015-06-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ≤ 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44-0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel.

  16. Synergistic effects of irradiation of waste-water

    International Nuclear Information System (INIS)

    Water is an absolute necessity for all forms of animal and plant life. As man's requirements for water increase, the need for better methods of purification also increase. Technology has been slow to develop new methods of water treatment for the direct utilization of waste-water. Many new construction projects are at a standstill because waste-water treatment methods have not been developed to handle adequately the ever-increasing flow of sewage. Theoretical considerations of the use of high-level radiation in the treatment of waste-water have failed to consider the effects of the hydrated electron, and the potential of the possible synergistic effects of combining chlorine, oxygen and irradiation. An extensive testing programme at the University Center for Pollution Research of the Florida Institute of Technology over the past four years has shown that irradiation of waste-water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programmes have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and faecal streptococcus bacteria indicate that the synergistic effects observed for faecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the relationships between the various effects on the bacteria. A definite shielding factor from the turbidity of the waste-water has been shown to exist. Synergistic effects have been shown to offset significantly the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste-water. (author)

  17. Waste disposal from the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    Alternative nuclear fuel cycles for support of light water reactors are described and wastes containing naturally occurring or artificially produced radioactivity reviewed. General principles and objectives in radioactive waste management are outlined, and methods for their practical application to fuel cycle wastes discussed. The paper concentrates upon management of wastes from upgrading processes of uranium hexafluoride manufacture and uranium enrichment, and, to a lesser extent, nuclear power reactor wastes. Some estimates of radiological dose commitments and health effects from nuclear power and fuel cycle wastes have been made for US conditions. These indicate that the major part of the radiological dose arises from uranium mining and milling, operation of nuclear reactors, and spent fuel reprocessing. However, the total dose from the fuel cycle is estimated to be only a small fraction of that from natural background radiation

  18. Waste Feed Delivery Raw Water and Potable Water and Compressed Air Capacity Evaluation

    International Nuclear Information System (INIS)

    This study evaluated the ability of the Raw Water, Potable Water, and Compressed Air systems to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the system

  19. Improving the process of preparing waste water at Kamennolozhskiy UPPN

    Energy Technology Data Exchange (ETDEWEB)

    Abashev, R.G.

    1982-01-01

    The main reasons are examined for low efficient operation of treatment works at the Kamennolozhskiy UPPN and efficient ways to improve quality of waste water by introducing separate collection and preparation of individual types of water, organization of preliminary discharge at the main structures and pinpointing the duration of settling. The process of settling was studied on waste water under field conditions using sampling from a strictly defined level of the settling tank in definite time intervals and analysis of samples for the content of mechanical admixtures and petroleum products. The duration of settling in the reservoir was corrected according to the curve for the dependence of the contaminant content in the waste water on the duration of settling. It was indicated that introduction of recommendations guarantees quality of water of the required condition for injection into productive beds to maintain bed pressure.

  20. 226Ra adsorption on active coals from waste waters

    International Nuclear Information System (INIS)

    During the mining and extraction of uranium, the principle means of protection measurement is to prevent uranium and its products diffusing into the environment. The main carriers of radioactive elements in the environment are air and water. Therefore, reduction of the pollution at a uranium mine can be achieved by the treatment of waste waters contaminated with 226Ra Radium contaminated waste waters represent a major biological risk. This paper presents the results of the study of the sorption of 226Ra on active coal mechanisme and the influence of the physical and chemical characteristics of fluid. The 226Ra removal from the residue pond water at the uranium ore processing plant was studied using eight types of indigenous active coals. The experimental results for each type of active coal and their effect on removal of 226Ra from waste waters are presented in this paper. (author)

  1. Determination of Heavy Metal Levels in Various Industrial Waste Waters

    Directory of Open Access Journals (Sweden)

    Mustafa ?ahin Dündar

    2012-06-01

    Full Text Available Important part of the environmetal pollution consists of waste water and water pollution. The water polluted by anthropogenical, industrial, and agricultural originated sources are defined as waste waters which are the main pollution sources for reservoirs, rivers, lakes, and seas. In this work, waste waters of leather, textile, automotive side, and metal plating industries were used to determine the levels of Cu, Zn, Cr, Pb and Ni by using Flame Atomic Absorption Spectrometer. As a result, highest mean levels of copper in supernatants of plating and textile industries were observed as 377,18 ng ml-1, respectively 103 ng ml-1 lead and 963,6 ng ml-1 nickel in plating industry, 1068,2 ng ml-1 zinc and 14557,1 ng ml-1 chromium in plating and leather industries were determined.

  2. Investigations on the treatment of waste waters from pig breeding

    Energy Technology Data Exchange (ETDEWEB)

    Cute, E.; Mambet, E.; Juriari, E.; Murgoci, C.

    1967-01-01

    The introduction of intensive methods of pig breeding has caused changes in the characteristics, particularly the strength, of the piggeries waste waters; analytical data are tabulated for waste waters from 3 pig-breeding farms and 1 large pig-breeding combine in Romania. At older piggeries, waste waters are treated by sedimentation and sludge digestion in Imhoff tanks. In more recent establishments, treatment comprises primary sedimentation followed by storage of the settled waste waters in ponds to be used for irrigation, and separate digestion of sludge in open tanks. Experiments showed that precautions are necessary to prevent blocking of the sewerage system by easily-settleable material before reaching the sedimentation tanks; sedimentation is more efficient in horizontal sedimentation tanks than in the older Imhoff tanks; biological treatment is possible without addition of nutrients, but the waste waters must be diluted; and digestion requires a longer period than that for sewage sludge, difficulties being caused by the presence of coarse suspended particles of waste feeding stuffs.

  3. Waste Water Treatment And Data Book Of Method Of Water Quality Analysis

    International Nuclear Information System (INIS)

    This book indicates the method of water quality analysis and waste water treatment with collecting water quality data of advanced country and WHO, which introduces poisonous substance in industrial waste water such as heavy metal, ammonia, chlorine ion, PCB, chloroform, residual chlorine and manganese, reports about influence of those materials on human health, lists on method of analysis the poisonous substance, research way like working order and precautions on treatment and method of chemical process and use.

  4. On-site treatment of waste water in Baotou waste repository by neutralization and precipitation

    International Nuclear Information System (INIS)

    This paper introduces the method and results of waste water treatment in Baotou waste repository. NaOH (10 mol/L) is used to neutralize and precipitate the radioactive material in waste water, supernatant is siphoned to a higher place to be evaporated naturally. Results of lab's experiment and on-site operation show: decontamination ratios of the process are 99.35% and 96.17% for gross ? and gross ?, respectively. No contamination was found on the site where supernatant was evaporated

  5. Final report of the Toronto residential solar domestic hot water initiative : a technology demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.M. [Energy Action Council of Toronto, Toronto, ON (Canada)

    2001-06-30

    A joint project between Natural Resources Canada and the Energy Action Council of Toronto (EnerACT) was launched in May 2000 in which 26 solar domestic hot water DHW heaters were successfully installed in residential homes in Toronto to raise the profile of solar DHW systems and to build a foundation for future work that would create momentum in the solar DHW heater markets. The first phase of the project offered homeowners a 50 per cent discount on the total installed cost of the system. The second phase offered a 25 per cent discount on the total cost. Birkholm Heating, a Toronto-based mechanical contractor was the solar installer for the project. EnerACT engaged solar manufacturers in Canada in a tender process with the objective of delivering the most technically efficient and economically feasible system possible to the participants of the project. ThermoDynamics Ltd. was chosen as the project supplier after an extensive review of the responses. One of the outcomes of the project was the conclusion that solar DHW systems can only be installed by skilled workers, and that more solar installers must be trained and be available if the solar market in Toronto is to grow. It was also determined that a consistent and strong guiding hand from government and non-government sectors is needed to advance the solar DHW market. Changes in policy and regulations are also needed to encourage renewable energy technologies. Until the system costs can be permanently reduced, however, only those consumers who are environmentally inclined or those with higher disposable incomes will likely opt for the units. 3 tabs.

  6. Waste water reuse pathways for processing tomato

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann; Andersen, M; Schweitzer, A; Steiner, M; Sandei, L; Gola, S; Dalsgaard, A; Forslund, A; Klopmann, W; Solimando, D

    to use the lowest irrigation water quality without harming nor food safety neither yield and fruit or derivatives quality. The EU project SAFIR aims help farmers solve problems with low quality water and decreased access to water. New water treatment devices (prototypes) are under development to...

  7. Efficiency Research on Meat Industry Waste Water Treatment Applying the Method of Dissolved Air Flotation

    Directory of Open Access Journals (Sweden)

    Valentinas Gerasimovas

    2012-01-01

    Full Text Available To protect environment from industrial pollution, strict requirements for waste water treatment are imposed. The purpose of research is to establish an optimal ratio of saturated liquid and meat industry waste water. Research included JCC “Traidenis” waste water treatment system installed in JSC “BHJ Baltic”. Investigations into treated waste water indicated that an optimal ratio of waste water and saturated liquid was 2/1 under duration time of 8 minutes. Efficient waste water treatment made 86% and the ratio of waste water and saturated liquid was 2/1.Article in Lithuanian

  8. [The behavier of Pseudomonas aeruginosa in surface water, cooling water and waste water (author's transl)].

    Science.gov (United States)

    Botzenhart, K; Wolf, R; Thofern, E

    1975-09-01

    This is a report on the occurrence and numerical behaviour of Ps. aeruginosa in natural waters with and without waste water contamination, in dams, cooling water circulations and cooling water discharge, in clarification plant and supplementary laboratory tests. The results show that Ps. aeruginosa may occur in the natural flora of open waters, but only following the introduction of human sewage. In the main, a more or less rapid reduction in the number of Ps. aeruginosa to low levels occurs, but periods of several days to several weeks must be allowed for this. In the presence of large quantities of nutrient, multiplication of Ps. aeruginosa in natural waters cannot be excluded. It certainly appears in technical systems such as cooling water circuits and filter plants. Presumably Ps. aeruginosa also multiplies in waste water, whereas in the biological aerobic clarification process a reduction occurs. The effect of a higher temperature on the survival or multiplication of Ps. aeruginosa could not be confirmed by laboratory experiments. PMID:811012

  9. Improving Water Supply Systems for Domestic Uses in Urban Togo: The Case of a Suburb in Lomé

    Directory of Open Access Journals (Sweden)

    Taisha Venort

    2012-02-01

    Full Text Available The rapid urbanization facing developing countries is increasing pressure on public institutions to provide adequate supplies of clean water to populations. In most developing countries, the general public is not involved in strategies and policies regarding enhancement, conservation, and management of water supply systems. To assist governments and decision makers in providing potable water to meet the increasing demand due to the rapid urbanization, this study sought to characterize existing water supply systems and obtain public opinion for identifying a community water supply system model for households in a residential neighborhood in Lomé, Togo. Existing water supply systems in the study area consist of bucket-drawn water wells, mini water tower systems, rainwater harvesting, and public piped water. Daily domestic water consumption in the study area compared well with findings on water uses per capita from Sub-Saharan Africa, but was well below daily water usage in developed nations. Based on the surveys, participants thought highly of a large scale community water tower and expressed interest in maintaining it. Even though people rely on water sources deemed convenient for drinking, they also reported limited confidence in the quality of these sources.

  10. Phenols biodegradation in waste waters from petroleum industry

    International Nuclear Information System (INIS)

    Practical methods to isolate, adapt and propagate phenol biodegradation microorganisms were established. Fifteen different microorganism group were obtained, capable of eliminating phenol contained in production water, sour water and waste water from Barrancabermeja's Refinery (Colombia), and dehydration water from heavy oil-in-water emulsions. Elimination efficiencies higher than 95% in periods of time shorter than 24 hour were achieved at laboratory and pilot plant scales. A continuos system using this technology was successfully implemented in April 1994, for the treatment of waste water from Colombia's biggest refinery. Existing stabilizing pools were converted into bioreactors capable of handling water flow rates between 16.000 to 32.000 m3/d. Efficiencies close to 95% have obtained under controlled acidity, aeration and flow rate conditions. This technology is being implemented in other Ecopetrol refineries and production fields

  11. Treatment of radioactive waste water by flocculation method, (1)

    International Nuclear Information System (INIS)

    Coagulation property of particle on the treatment of radioactive waste water by floculation method is varied with its electrical potential and mixing condition. The surface state of the particle is influenced by contents of coexistent materials in the waste water and added materials at the treatment process. In the case of using ferric hydroxide as coagulant, assuming the ions which decide the potential of the particle surface are Fe(OH)2+ and Fe(OH)4-, calculated values of the potential agree with zeta-potential of ferric hydroxide particle which is formed from FeCl4 and NaOH in demineralized water. When Na2CO3 is in the waste water as coexistent materials, anion HCO3- adsorbs on the particle surface in connection with pH variation and thus the surface charge is being minus. If Ca2+ ion is present in the waste water, the surface charge plus. ABS acts as single molecule anion at low concentration, but it forms micell at high concentration and influences zeta-potential of the particle. The potential of the particle is correlated to the coprecipitation rate of 90Sr in the waste water. (auth.)

  12. Household demand for energy, water and the collection of waste. A microeconometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Linderhof, V.G.M.

    2001-05-17

    This thesis focuses on the effectiveness and efficiency of economic incentives with respect to the household demand for energy, water and the collection of household waste. In particular, we are primarily interested in the price and income responses of households with respect to the energy and water consumption as well as the household waste production. Chapter 2 reviews the historical trends of the natural gas, electricity and water consumption and their determinants - in particular prices - in the Netherlands. The historical perspective covers the period 1950 - 1990. The development of prices has several aspects such as nominal versus real prices, pricing schedules and the price per unit of consumer durable services.' In addition, we present the penetration rates of household appliances. Furthermore, we review the development in household waste collection and taxes paid by households for the collection of household waste. Finally, we make a small side step and evaluate car ownership and usage. Chapter 3 analyzes two issues with respect to consumer durables: first, we analyze the effect of energy and water use on the purchase price of domestic appliances empirically, and secondly, we analyze the effect of subsidies on high-efficiency versions on the consumer decision and consequently on the penetration rate theoretically. As to the first issue, we estimate hedonic regressions equations for purchase prices, energy use and water use with data on four domestic appliances. As to the second issue, the purchase of an appliance has implications for future consumption. Therefore, the purchase decision is analyzed with an intertemporal choice model including the time preference of consumers measured by subjective discount rates. We build a general framework in which a consumer can choose between a low-efficiency version and a high-efficiency version. The latter version requires less energy, produces similar services, and has a higher purchase price; see Kooreman and Steerneman (1998). The model describes the consumer decision and in addition it generates a penetration rate. The government is assumed to maximize the penetration rate by providing a subsidy which affects the consumer decision and consequently the penetration rate. Two subsidy regimes - a continuous subsidy and an instantaneous subsidy - are analyzed and compared on the basis of the penetration rate. We also consider the introduction of an energy tax to finance the subsidy. Chapter 4 analyses the price and income effects of the household demand for energy and water conditional on the durable stock. We estimate reduced- from demand equations with a pooled sample of the Netherlands Consumer Expenditure Surveys (DBO) 1978 - 1994. This approach is similar to Baker et al. (1989) and Booii et al. (1992). In the case of the demand for electricity we explicitly include the consumer choice between a single electricity rate and a two-part electricity rate. As a result, the demand for electricity is described by a switching regression model which is estimated with the Heckman's two-step estimation procedure. We calculate price and income elasticities for different types of households. Since we have a sample of pooled cross-sections, we can only analyze short-run effects assuming that the consumer durable stock is fixed. Chapter 5 analyzes the effectiveness of a particular pricing regime: weight- based pricing in the collection of household waste. With a panel data set of households in the Dutch municipality Oostzaan we estimate reduced-form demand equations for household waste collection following the work of Fullerton and Kinnaman (1996). We extend their work in three ways. First, we distinguish two types of waste which axe collected at the curb, compostable waste and non-recyclable waste. Secondly, since we use panel data, the specifications include household-specific fixed effects absorbing unobserved heterogenous effects. Finally, since we observe households up to 42 points in time, we include a lagged dependent variable in the specification to determine, in addi

  13. Assessing Waste Water Treatment Plant Effluent for Thyroid Hormone Disruption

    Science.gov (United States)

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two assa...

  14. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    Science.gov (United States)

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  15. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  16. Optimal control of a waste water cleaning plant

    Directory of Open Access Journals (Sweden)

    Ellina V. Grigorieva

    2010-09-01

    Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  17. Improvement in, or relating to, waste-waters

    International Nuclear Information System (INIS)

    The invention relates to a method for eliminating impurities consisting of fluorides, ammonia and uranium traces from waste waters. That method eliminates fluorides through precipitating alkaline earth fluoride, ammonia through evaporation and the excess alkaline earth metal through passing over an ion exchange resin. The water resulting from such a treatment contains but uranium traces and is suitable for re-cycling. The method can be applied to the treatment of waste waters resulting from the preparation of ammonium di-uranate from uranium hexafluoride

  18. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... importance of the different life cycle stages and the individual impact categories in the total impact from the waste water treatment, and the degree to which micropollutants, pathogens and whole effluent toxicity have been included in earlier studies. The results show that more than 30 different WWTT (and...... even more treatment trains/scenarios) have already been the subject of more or less detailed LCAs. All life cycle stages may be important and all impact categories (except stratospheric ozone depletion) typically included in LCAs may show significance depending on the actual scenario. Potential impacts...

  19. The potential of Zea mays, Commelina bengelensis, Helianthus annuus and Amaranthus hybridus for phytoremediation of waste water

    Directory of Open Access Journals (Sweden)

    Chacha Joseph Sarima

    2012-12-01

    Full Text Available Waste-water from domestic use and from industrial effluent burden the water systems with high levels of heavy metal hence there is need to remove these heavy metals so that the waste water can be recycled for use for household or irrigation. The present study has screened Zea mays (maize, Commelina bengelensis (wondering jew, Helianthus annuus (sunflower and Amaranthus hybridus (amaranthus for their ability to bioaccumulate Pb, Cu, Cd and Zn metals. The results obtained show that the H. annuus and C. bengelensis plant have promising potential for removal of Pb, Cu and Cd from wastewater though their ability to remove Zn from contaminated solutions is not much different from that of Z. mays and A. hybridus.

  20. Dioxin-like potencies and extractable organohalogens (EOX) in medical, municipal and domestic waste incinerator ashes in Japan.

    Science.gov (United States)

    Matsui, Mitsuaki; Kashima, Yuji; Kawano, Masahide; Matsuda, Muneaki; Ambe, Kazunori; Wakimoto, Tadaaki; Doi, Rikuo

    2003-12-01

    Ash samples collected from medical, municipal and small-scale domestic incinerators in Japan were tested for dioxin-like activity using bioassay technique (ethoxyresorufin-O-deethylase: EROD assay) and for extractable organohalogens (EOX) using instrumental neutron activation analysis in order to estimate potential toxicity and responsible chemicals in those samples. Crude extracts and fractions cleaned-up for dioxin analysis from the samples were used for the analysis. The ranges of dioxins in the ashes were between 2.23 and 12.29 ng TEQ/g (dry weight). Relative potency ranges estimated by EROD assay in the medical incinerator ashes were 3.8-17.6 times higher than the results of conventional chemical analysis. EOX analysis suggested that ash samples contained plenty of organochlorine compounds apart from chlorinated dioxins. In addition, medical waste incinerator ashes were considered to have relatively higher amount of organoiodine compounds. In the cleaned-up fractions, bioassay potency ranges were lower than those in the crude extracts. However, some samples still exhibited higher potency than expected from chemical analysis. Though some polycyclic aromatic hydrocarbons were found in the fractions, the amounts were relatively low (0.39-10.56 ng/g). The results imply that some bioactive organohalogens that cannot be detected in the conventional chemical analysis might have potential for dioxin-like toxicity, and contribute to higher bioassay activities. The combination of the chemical analysis with the bioassay and EOX provides rough figure of dioxin-like toxicity and suggests types of organohalogen compounds that should be identified as a part of dioxin analysis for control emission from an incineration plant. PMID:14505720

  1. A Study of Waste Water Treatment of Microbiological Laboratories of Hospitals by Electrolyzed Oxidized Water

    OpenAIRE

    Fiza Sarwar; Aroos Munir; Ilyas Ahmed Faridi

    2011-01-01

    Hospital liquid infectious waste is one of the most important aspects of water contamination. The presentinvestigation was undertaken to evolve a cost effective alternate method of waste water treatment by usingOxidized Water as a disinfectant for hospital effluents. Liquid infectious waste coming from diagnosticlaboratories of hospitals (Urine, Blood and Mix of both) was treated with electrolyzed Oxidized Water. Differentv/v ratios (95:5, 85:15, 75:25, 50:50 and 25:75) of Sample to Electroly...

  2. How much water is enough? Domestic metered water consumption and free basic water volumes: the case of Eastwood, Pietermaritzburg

    Scientific Electronic Library Online (English)

    JA, Smith.

    2010-10-01

    Full Text Available This article is based on an in-depth case study of urban water services to poor households in the community of Eastwood, Pietermaritzburg, in the province of KwaZulu-Natal, South Africa, for the period 2005-2007. The article adopts a mixedmethodological approach. Despite government progress in deliv [...] ering water infrastructure post-1994, ability to pay for the service limited access. The free basic water policy, initiated by national Government in 2001, sought to provide all citizens, but particularly the poor, with a basic supply of free water. The concessions were envisaged to improve public health, gender and equity, affordability, and as an instrument of post-apartheid redress and poverty alleviation. Once free basic water (FBW) was declared a new imperative for local government the debate on exactly how much was enough, why 6 kl was chosen, the structure of the offering and broader state intentions opened up. This article positions the FBW offering within the prevailing international discourse on 'need' calculation. Through the exploration of actual water consumption patterns of urban poor households, the ideological assumptions and 'scientific' calculations underpinning this discourse were found to have ignored the fluidness of use as well as the value of water beyond mere physiological need. In this regard, access to FBW was conditioned on a small household size and further predicated the modification of normal water activities and lifestyle and carried a disproportionate social cost. The free basic volume of 6 kl was found to have no resonance with actual water volumes consumed by the majority of Eastwood households.

  3. Impact on a utility, utility customers and the environment of an ensemble of solar domestic hot water systems

    International Nuclear Information System (INIS)

    The benefits of the installation of a large number of solar domestic hot water (SDHW) systems are identified and quantified. The benefits of SDHW systems include reduced energy use, reduced electrical demand, and reduced pollution. The avoided emissions, capacity contribution, energy and demand savings were evaluated using the power generation schedules, emissions data and annual hourly load profiles from a Wisconsin utility. It is shown that each six square meter solar water heater system can save annually: 3,560 kWh of energy, 0.66 kW of peak demand, and over four tons of pollution

  4. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  5. Water recovery using waste heat from coal fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  6. Vitrification treatability studies of actual waste water treatment sludges

    International Nuclear Information System (INIS)

    Treatability studies have been conducted at the laboratory-scale to evaluate vitrification of waste water sludges at the Oak Ridge Reservation (ORR). These studies are being conducted jointly by Westinghouse Savannah River Technology Center (SRTC) and Oak Ridge National Laboratory (ORNL). These studies include testing with surrogate waste formulations at both the laboratory-scale and pilot-scale, and testing with actual waste at the laboratory-scale, pilot-scale, and field-scale. ORR was chosen as the host site for the field-scale demonstration. The Y12 West End Treatment Facility (WETF) waste water treatment sludges, which are RCRA F-listed wastes, were chosen as the candidate waste stream for the first field-scale demonstration. The laboratory-scale ''proof-of-principle'' demonstrations reported in this study and the pilot-scale studies planned for FY95 on the WETF sludge will provide needed operating parameters for the planned field-scale demonstration. These laboratory-scale ''proof-of-principle'' and pilot-scale studies also provide needed data for the evaluation of the feasibility of vitrification as a stabilization option for a variety of wastes which do not currently meet RCRA/LDR (Resource Conservation and Recovery Act/Land Disposal Restrictions) requirements for storage/disposal and/or those for which treatment capacity does not presently exist

  7. Methods for chemical analysis of water and wastes

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    This manual provides test procedures approved for the monitoring of water supplies, waste discharges, and ambient waters, under the Safe Drinking Water Act, the National Pollutant Discharge Elimination System, and Ambient Monitoring Requirements of Section 106 and 208 of Public Law 92-500. The test methods have been selected to meet the needs of federal legislation and to provide guidance to laboratories engaged in the protection of human health and the aquatic environment.

  8. Germination of grass seeds with recycling waste water

    OpenAIRE

    Florez Garcia, Mercedes; Carbonell Padrino, Maria Victoria; Martinez Ramirez, Elvira; Amaya Garcia de la Escosura, Jose Manuel; Delgado Arroyo, Maria del Mar

    2008-01-01

    This study was designed to determine the effects of residual water irrigation on the rate and percentage of germination of grass seeds. Germination tests were carried out to compare the seeds irrigated with recycling waste water with seeds irrigated with distilled water. Test with Festuca arundinacea Sch. and Agrostis tenuis L. seeds was performed under laboratory conditions. Parameters used to evaluate germination were: number of germinated seeds (Gmax), mean germination time (MGT), the time...

  9. Electrochemical methods of analysis of natural and waste waters

    International Nuclear Information System (INIS)

    Principles and modern analysis techniques of natural and waste waters using electrochemical methods are systematized. Methods for water sampling and their preparation for the analysis are considered. Techniques for determining individual elements (Cd, W, U, Zr, In, I etc.) in waters as well as multi-element analysis techniques are given Element detection limits and determination errors for these techniques are given and interfering impurities are marked

  10. Tritiated waste water fixation of solid materials

    International Nuclear Information System (INIS)

    The exchange kinetics between tritiated and distilled water (THO/H2O) from various zeolites, natural and synthetic analcimes, saturated with THO are reported. Kinetic parameters for the diffusion process are calculated from experimental data. Tritiated water releases from the zeolites saturated with THO into distilled water is given for various temperatures and times. Ferric, zinc, cobalt and sodium zeolites are investigated. Results indicated that cobalt zeolite and synthetic analcime release rates of THO are superior to the other zeolites tested

  11. Electrolytic separation of tars and oils from waste water

    Energy Technology Data Exchange (ETDEWEB)

    Filonenko, Yu.Ya.; Konev, N.L.; Rzhavichev, S.P.; Myachin, G.V.; Sobolev, S.Ya.; Kuznetsov, V.Ya.; Ivantsov, V.A.

    1991-08-01

    Discusses the feasibility of separating oils and tars from coking waste-water using electrocoagulation. Soluble electrodes made of St3 steel were used. Waste water was treated by flotation (by hydrogen bubbles evolving from a cathode) as well as coagulation (by ions of iron Fe{sup 2+}) formed during catalytic dissolution of an anode. Efficiency of oil and tar separation from waste water using electrocoagulation was tested under laboratory conditions: voltage 15 V, current 62.2. A, current density 1,666.7 A/m{sup 2}, four 11x11 cm electrodes situated at intervals of 3 mm, volume of an electrolyzer 4.42 l, electrolysis time 15 s, output 1.0 m{sup 3}/h. Energy consumption was 1.25 kWxh/m{sup 3}. 3 refs.

  12. Radioactivity monitoring of waste water from isotope laboratories

    International Nuclear Information System (INIS)

    Due to the fact that radionuclide concentration measured in samples taken from the local sewage system do not yield information on any possible offense against section 46, sub-section (4) of the Radiation Protection Ordinance, the procedure should be modified so as to provide for frequent sampling of waste water at the site of isotope-handling institutes or laboratories, and for comparative measurements to be made. For efficient radioactivity monitoring in sewage treatment works receiving waste water from a large number of potential polluters, continuous sampling at various stages of the treatment process is suggested, together with recurrent single-nuclide analyses. These may be supplemented by sewage sludge analyses, as the radionuclides are accumulated in the sewage sludge. Various means of efficient waste water monitoring are explained by some examples. (orig./HP)

  13. Ecotoxicity of waste water from industrial fires fighting

    Science.gov (United States)

    Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.

    2012-04-01

    As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.

  14. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  15. Radiation disinfection of domestic and industrial sewages to use them in circulating water supply

    International Nuclear Information System (INIS)

    Results of investigations into radiation method of treatment of biochemically purified and domestic sewages of Gajsk mining and dressing works are presented. It is shown that irradiation of sewages makes it possible to desinfect and purify them from organic and biogenic substances. The high degree of purification is at absorbed doses of approximately 3x10-2 Gy

  16. Heavy metals in the waste and in the water discharge area of municipal solid waste

    Directory of Open Access Journals (Sweden)

    Luiz Ermindo Cavallet

    2013-12-01

    Full Text Available The county of Paranaguá discards 80 tons of municipal solid waste (MSW daily in the Embocuí landfill without proper treatment. The present study aimed to evaluate the concentration of arsenic (As, cadmium (Cd, chromium (Cr, lead (Pb and mercury (Hg in the dump area and to compare it with reference values for soil and water quality stipulated by CETESB (2005. The methodology of the study involved the collection of waste samples (organic waste mixed with soil from a depth of 1 m deep at 12 points of the dump, and the collection of water samples from a depth of 3 m at 3 points in the deposited waste. Extraction of heavy metals in the water samples was performed according to the USEPA (1999 method and analysis followed ICP-OES (Inductively Coupled Plasma - Atomic Emission Spectrometry. Analysis of the solid waste samples showed the following concentrations: (mg kg -1: As < 10; Cd < 1; Cr = 26; Pb = 52; e Hg = 0.2. The water samples showed the following concentrations: (mg L- 1: As < 5; Cd < 5; Cr =29 e Pb = 10. The amounts of heavy metals in samples of tailings and water from the landfill area fall below the values considered to create a risk of contamination.

  17. Toxicity of waste water from uranium ore mining and processing

    International Nuclear Information System (INIS)

    Some results are given of the observations made of waste waters from uranium ore mining and processing. Cu, Fe, Pb, Al, Ni, Ba, Zn, NH3 were found in decontaminated waste waters discharged into surface waters in concentrations toxic for various species of aquatic organisms. The maximum permissible concentration or uranium for surface waters in Czechoslovakia is 0.1 mg/l which practically excludes toxic effects on aquatic organisms. The radiation effects of uranium in such concentrations are negligible. The concentration was also studied of 226Ra and 210Po which in association with natural radionuclides in the water may accumulate radiation doses dangerous for aquatic organisms. This value was determined for both radioisotopes at 0.5 Bq/l. The obtained results are discussed against data published in foreign literature. (Z.M.)

  18. Monitoring the waste water of LEP

    CERN Document Server

    Rühl, I

    1999-01-01

    Along the LEP sites CERN is discharging water of differing quality and varying amounts into the local rivers. This wastewater is not only process water from different cooling circuits but also water that infiltrates into the LEP tunnel. The quality of the discharged wastewater has to conform to the local environmental legislation of our Host States and therefore has to be monitored constantly. The most difficult aspect regarding the wastewater concerns LEP Point 8 owing to an infiltration of crude oil (petroleum), which is naturally contained in the soil along octant 7-8 of the LEP tunnel. This paper will give a short summary of the modifications made to the oil/water separation unit at LEP Point 8. The aim was to obtain a satisfactory oil/water separation and to install a monitoring system for a permanent measurement of the amount of hydrocarbons in the wastewater.

  19. Use of some natural and waste materials for waste water treatment.

    Science.gov (United States)

    Ahsan, S; Kaneco, S; Ohta, K; Mizuno, T; Kani, K

    2001-10-01

    A fundamental study was conducted to assess removal and filtration capacity of waste and natural indigenous materials as treatment mediums e.g., shell, limestone, waste paper mixed with refuse concrete, refuse cement, also processed nitrolite, charcoal-bio and charcoal. Under room temperature condition removal of phosphoric, nitric and ammonium-ions, filtration of suspended substance (SS) together with removal of COD in waste water was investigated. Influence of particle size effect for all treatment mediums except for waste paper was pursued. Significant improvement of waste water quality with respect to SS, phosphoric ions and decrease in COD is possible by treating with these filtration mediums. With specific reference to some treatment mediums NO3-N and NH4-N showed reasonable improvement in quality, although generally removal effect was not very significant. Efficacy of treatment was dependent on the particle size of treatment mediums in general, however, nitrolite for NH4--N, charcoal-A for SS and COD, refuse cement mixed with waste paper for PO4 ion removal showed insignificant variability on the particle size effect. Results of this fundamental study demonstrate effectiveness and feasibility for applied application of these proposed waste and naturally available treatment ingredients at lower cost. PMID:11561637

  20. Heavy metals in the waste and in the water discharge area of municipal solid waste

    OpenAIRE

    Luiz Ermindo Cavallet; Sebastião Garcia de Carvalho; Paulo Fortes Neto

    2013-01-01

    The county of Paranaguá discards 80 tons of municipal solid waste (MSW) daily in the Embocuí landfill without proper treatment. The present study aimed to evaluate the concentration of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) in the dump area and to compare it with reference values for soil and water quality stipulated by CETESB (2005). The methodology of the study involved the collection of waste samples (organic waste mixed with soil) from a depth of 1 m deep at...

  1. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  2. Treatment of low level waste water by reverse osmosis

    International Nuclear Information System (INIS)

    A Study on the removal of certain radioactive elements Such as 141Ce, 51Cr 134Cu, 106Ru and 131I by Reverse Osmosis and the effect of surface activity agent on property of membrance are described in this paper. RO model is carried out to examine the treatment of actual reactor waste water and radioactive laundry waste water. The removal efficiency of total ? is 98%. Three preprocessing (cloth pocket filtrator, hivefiltrator and zone) and membrane cleaning methods (acid, ozone and spongeball) are also investigated

  3. Viruses and ionizing radiation in respect to waste water treatment

    International Nuclear Information System (INIS)

    After a short survey of viruses and the diseases they can cause in man the effects of ionizing radiation on viruses are discussed. Ionizing radiation inactivates viruses by direct and indirect effects, and it is well established that the radiosensitive target is the nucleic acid. Factors affecting the radiosensitivity are temperature and suspending medium. The possible influence of oxygen on viral radiosensitization remains unclear. For the effective application of radiation treatment on waste waters information is required concerning the concentration of viruses in waste waters in order that treatment doses may be determined. (orig.)

  4. Army Reserve Expands Net Zero Energy, Water, Waste

    Energy Technology Data Exchange (ETDEWEB)

    Solana, Amy E.

    2015-04-14

    In 2012, the Army initiated a Net Zero (NZ) program to establish NZ energy, water, and/or waste goals at installations across the U.S. In 2013, the U.S. Army Reserve expanded this program to cover all three categories at different types of Reserve Centers (RCs) across 5 regions. Projects identified at 10 pilot sites resulted in an average savings potential from recommended measures of 90% for energy, 60% for water, and 83% for waste. This article provides results of these efforts.

  5. STUDY ON WASTE WATER TREATMENT PLANTS

    OpenAIRE

    Mariana DUMITRU

    2015-01-01

    Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power ...

  6. Waste water shows traces of radioactive substances

    International Nuclear Information System (INIS)

    Sludge at sewage treatment plants has been found to contain radioactive substances originating in hospitals, nuclear weapon tests, the Chernobyl accident, the Finnish nuclear power plants and natural sources. Radioactive substances also enter sewers together with excretions after patients have left the hospital. Hospitals used to let the excretions of patients receiving the iodine 131 treatment into the sewer system only after the activity of the excretions had decreased. Today, excretions can be led into the sewer directly. Calculations have shown that hospital staff receive higher radiation doses when the waste is collected than sewage treatment plant staff receive when the radioactive iodine is led directly into the sewer

  7. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2?S/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are significantly reduced. In this paper salient feature of LTE desalination plant, its applications and advantages are discussed. (author)

  8. Assessment of Shallow Ground Water Quality of Pindiga Gombe Area, Yola Area, NE, Nigeria for Irrigation and Domestic Purposes

    Directory of Open Access Journals (Sweden)

    G.I. Obiefuna

    2011-03-01

    Full Text Available The aim of this study is to assess the shallow groundwater quality of Pindiga Gombe area for irrigation and domestic purposes. Fifteen water samples collected from wells tapping shallow aquifer was used. The water samples were analyzed for major cations: Na+, Ca2+, K+ and anions: C-, HCO3-1, SO4 2- and NO3-. The important constituents that influence the water quality for irrigation such as Electrical Conductivity (EC, Total Dissolved Solids (TDS, Sodium Adsorption Ratio (SAR, Magnesium Adsorption Ratio (MAR, Permeability Index (PI, Kellys Ratio (KR, and Residual Sodium Bicarbonate (RSBC were assessed and compared with standard limits. The values of total dissolved solids (<166 mg/L, electrical conductivity (<0.249 ds/m, soluble sodium percentage (2.60 to 38.40%, permeability index (0.19 to 7.40%, magnesium adsorption ratio (37.34 to 66.50%, kellys ratio (0.0004 to 0.029 meq/L, residual sodium bicarbonate (0.35 to 3.02 meq/L and sodium adsorption ratio (0 to 0.035 were found to be within the safe limits and thus largely suitable for irrigation purposes. The groundwater will thus neither cause salinity hazards nor have an adverse effect on the soil properties of the study area. Furthermore, the water samples also fall within the recommended limits and are found suitable for domestic purposes.

  9. An index directly indicates land-based pollutant load contributions of domestic wastewater to the water pollution and its application.

    Science.gov (United States)

    Tsuzuki, Yoshiaki

    2006-11-01

    As indices directly indicate land-based pollutant load contributions to public water pollution, pollutant load per capita flowing into the water body (PLCwb) for the drainage areas of inner city rivers in Chiba City, Chiba Prefecture, Japan, was analyzed. It was reaffirmed that PLCwb was different by the drainage area. For example, the biochemical oxygen demand (BOD) load per capita flowing into the water body (PLCwb-BOD) was calculated as 0.83 g BOD person(-1) day(-1) for population served with wastewater treatment plant (WWTP). In regards to the three types of on-site domestic wastewater treatment methods in Japan: 0.4-2.1 g BOD person(-1) day(-1) for combined jokaso (CJ), 4.5-21 g BOD person(-1) day(-1) for simple jokaso (SJ) and 4.3-19 g BOD person(-1) day(-1) for night soil treatment (NST). In regards to nutrient parameters of the three on-site treatment methods, population weighted average of PLCwb was [corrected] almost the same, however, relatively small PLCwb was [corrected] observed for CJ and SJ comparing to that for NST expecially in the drainage areas with smaller reaching ratios. [corrected] Environmental accounting housekeeping (EAH) books for domestic wastewater were prepared based on the analysis results as the application of the indices. EAH books are effective tools for water pollution mitigation in public water bodies. The results of the preliminary correlation analysis of the indices showed that high-efficiency treatment methods including WWTP, agriculture village wastewater treatment facility (AVETF) and CJ are effective in reducing pollutant load flowing into the water body, and that PLCwb have second-order equation relationships with population density of the drainage area. Judging from these characteristics and the analytical results of this study, PLCwb may be useful as an index for demonstrating the benefit of wastewater treatment in reduction of water pollution in the water body. PMID:16916535

  10. An advective diffusion process on hot wasted water discharged to a depression angle direction into water

    International Nuclear Information System (INIS)

    Effect of change in wasted water from nuclear or fossil fuel power plants discharging direction from horizontal one to depression angle one on an advective diffusion process of hot wasted water was investigated. As a result, it could be confirmed that an effect of depression angle jet discharge on water temperature reduction and so forth could be applied present experimental equation on horizontal discharging by a coordinate transformation of various factors with discharging water angle. And, a judgement equation to obtain a limiting area of hot wasted water affecting with bed surface was obtained by using distance from the lowest point of jet to the sea bed, inner diameter of discharging pipe, and field number for parameters, to elucidate its effectiveness. Furthermore, a diagram to estimate an effect of depression angle discharging water in the area on water temperature reduction and so forth was also proposed. (G.K.)

  11. Combination gas producing and waste-water disposal well

    Science.gov (United States)

    Malinchak, Raymond M. (McKeesport, PA)

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  12. Wash water waste pretreatment system study

    Science.gov (United States)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  13. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    DEFF Research Database (Denmark)

    Brand, Marek

    2014-01-01

    District heating (DH) systems supplied by renewable energy sources are one of the main solutions for achieving a fossil-free heating sector in Denmark by 2035. To reach this goal, the medium temperature DH used until now needs to transform to a new concept reflecting the requirement for lower heat loss from DH networks required by the reduced heating demand of low-energy and refurbished buildings combined with the lower supply temperatures required by using renewable heat sources. Both these needs meet in the recently developed concept of low-temperature DH designed with supply/return temperatures as low as 50°C/25°C and highly insulated pipes with reduced inner diameter. With this design, the heat loss from the DH networks can be reduced to one quarter of the value for traditional DH designed and operated for temperatures of 80°C/40°C. However, such low temperatures bring challenges for domestic hot water (DHW) and space heating (SH) systems, from the perspective of both DH customers and the DH company. The aim of this work was therefore to identify, evaluate and suggest solutions. The first part of the research focused on the feasibility of supplying DHW with no increased risk of Legionella and on the performance of low-temperature DH substations. The Danish Standard DS 439 for DHW requires that DHW should be delivered in reasonable time, without unwanted changes in desired temperatures (comfort) and without increased risk of bacterial growth (hygiene). While the comfort requirements set the minimum DHW temperature to 45°C, the hygiene requirements set it to 60°C, which is simply not reachable for low-temperature DH. However, the German DHW standard DVGW 551 makes no requirement about minimum DHW temperature if the overall DHW volume is below 3L. This rule was adopted as a cornerstone for the research and for the whole low-temperature DH concept in general, so the minimum DHW temperature is defined by a requirement for 45°C at the kitchen tap.   The performance of a low-temperature DH substation with instantaneous DHW preparation was evaluated based on the results from laboratory measurements supplemented with results from the verified numerical model developed in MATLAB-Simulink. The laboratory measurements showed that the low-temperature substation can heat the required flow of DHW to 47°C with 50°C DH water while keeping the return temperature as low as 20°C. The results of numerical simulations considering the influence of the DH network, represented by a 10 m long service pipe connection for the substation equipped with an external bypass with a set-point temperature of 35°C, showed that the time needed to produce 40°C DHW was 11 s with and 15 s without the external bypass, respectively. DS 439 suggests 10 s as the reasonable waiting time for DHW, so a low-temperature DH substation based on the instantaneous principle of DHW preparation should be equipped with bypass solution keeping the service pipe warm and reducing the waiting time. Traditional bypass solutions simply redirect the bypassed water back tothe DH network without additional cooling, but bypassed water can instead be redirected to floor heating in the bathroom to be further cooled and thus reduce heat loss from the DH network while improving comfort for occupants and still ensure fast DHW preparation. Various solutions for the redirection and control of bypass flow were developed and their detailed performance tested on the example of a low-energy single-family house modelled in building energy performance simulation tool IDA-ICE 4.22. The effect on the DH network was simulated with the commercial program Termis on a case study of 40 single-family houses supplied by low-temperature DH. In comparison to the reference case with a traditional external bypass, the proposed solution resulted in average cooling of bypassed water by 7.5°C, reducing the heat loss from DH network during non-heating period by 13% and increasing the average floor temperature by 0.6-2.2°C without causing overheating. The price for heating the bathroom floor durin

  14. Uranium microbial treatment in waste water

    International Nuclear Information System (INIS)

    Heavy metals and uranium treatment and stabilization methods include microbial activities. Up to now the most successful biological treatment processes were bio sorption and precipitation, other processes such as connection to specific macromolecules, are used to control radioactive wastes containing uranium from mines and industrial plants. In a research project, gram - negative bacteria, called MGF - 48, were obtained from soils contaminated with lead in the south of Tehran, and their uranium absorption and storage capacities were examined. Preliminary results show that these microorganisms absorb uranium from solutions, form microbial flocks and settle. Uranium absorption rate increased linearly with concentration up to a maximum of 174 mg uranium/g dry weight cells. In comparison with other known uranium absorbing bacteria, MGF - 48 with 17.4% uranium dry mass are in the third place. Uranium can be eliminated from cells using chemical methods, therefore, cells can be reused. Research on effects of environmental parameters on absorption rate continues. (Author)

  15. Novel high effective waste water equalization tank

    International Nuclear Information System (INIS)

    The new solution of the circle shape wastewater equalization tank for petrochemical industry with pointwise sewage inlet and its discharge by system of two immersed perforated pipes on the circumference of the tank was proposed. The tank simultaneously realizes averaging of waste flow rate, chemical composition of sewage and discharge of sediment from bottom of tank and organic phase from liquid surface. The radiotracer examination of the tank flow dynamic in Mazovian Petrochemical Factory, Plock, was carried out. The 60% reduction of COD and 90% reduction of total sediment contents were obtained. The 20% rate of zone of flow stagnation in scraper region was located. The significant averaging of flow rate in the tank was observed. (author). 4 refs, 3 figs, 1 tab

  16. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter

    2014-01-01

    Denmark's political ambitions of a fossil fuel free energy system by 2050 calls for more renewable energy sources such as wind and solar. These green energy resources fluctuate and the transition to a green energy system requires a Smart Grid with flexible consumers that balance the fluctuating power production. The energy-heavy processes for waste water transport and treatment could potentially provide a flexible operation with storage capabilities and be a valuable asset to a Smart Grid. In order to enable Waste Water Treatment Plants (WWTPs) as flexible prosumers in the future Smart Grid, we must update their process control system to model based predictive control that monitors the changed flexible operation and plans ahead. The primary aim of a WWTP is to treat the incoming waste water as much as possible to ensure a sufficient effluent water quality and protect the environment of the recipient. The secondary aim is to treat the waste water using as little energy as possible. In the future waste water will be considered an energy resource, that contains valuable nutrients convertible to green biogas and in turn electricity and heat. In a Smart Grid consuming or producing energy at the right time is key to both lower plant electricity costs and actively help to balance the energy system. Predictions of the WWTP and sewer system operation could help a model based controller to adapt power consumption and production according to the energy system flexibility needs; incentivized through energy markets and prices. We are in the process of upgrading the current control system to prepare a flexible operation and Smart Grid market integration. The prototype system will be tested online at a plant in Denmark, that in the current market could save up to 300.000 DKK/year in electricity costs. The solution is based on existing available online plant sensors and is expected to be part of Krüger’s advanced process control software STAR control® already used at plants worldwide.

  17. N-SINK - reduction of waste water nitrogen load

    Science.gov (United States)

    Aalto, Sanni; Tiirola, Marja; Arvola, Lauri; Huotari, Jussi; Tulonen, Tiina; Rissanen, Antti; Nykänen, Hannu

    2014-05-01

    Protection of the Baltic Sea from eutrophication is one of the key topics in the European Union environmental policy. One of the main anthropogenic sources of nitrogen (N) loading into Baltic Sea are waste water treatment plants, which are currently capable in removing only 40-70% of N. European commission has obliged Finland and other Baltic states to reduce nitrate load, which would require high monetary investments on nitrate removal processes in treatment plants. In addition, forced denitrification in treatment plants would increase emissions of strong greenhouse gas N2O. In this project (LIFE12 FI/ENV/597 N-SINK) we will develop and demonstrate a novel economically feasible method for nitrogen removal using applied ecosystem services. As sediment is known to have enormous capacity to reduce nitrate to nitrogen gas through denitrification, we predict that spatial optimization of the waste water discharge would be an efficient way to reduce nitrate-based load in aquatic systems. A new sediment filtration approach, which will increase both the area and time that nitrified waste water will be in contact with the reducing microbes of the sediment, is tested. Compared to the currently implemented practice, where purified waste water is discharged though one-point outlet system, we expect that sediment filtration system will result in more efficient denitrification and decreased N load to aquatic system. We will conduct three full-scale demonstrations in the receiving water bodies of waste water treatment plants in Southern and Central Finland. The ecosystem effects of sediment filtration system will be monitored. Using the most advanced stable isotope techniques will allow us accurately measure denitrification and unfavoured DNRA (reduction of nitrite to ammonium) activity.

  18. 78 FR 64905 - Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk

    Science.gov (United States)

    2013-10-30

    ...all regions where shale gas extraction waste water may be transported...Conditionally Permitted Shale Gas Extraction Waste Water in Bulk...barge to transport shale gas extraction waste water (SGEWW) in bulk...involves the injection of water, sand, and chemical...

  19. Measures for waste water management from recovery processing of Zhushanxia uranium deposit

    International Nuclear Information System (INIS)

    Measures for waste water management from recovery processing of Zhushanxia uranium deposit of Wengyuan Mine is analyzed, which include improving process flow, recycling process water used in uranium mill as much as possible and choosing a suitable disposing system. All these can decrease the amount of waste water, and also reduce costs of disposing waste water and harm to environment

  20. Characterization of domestic gray water from point source to determine the potential for urban residential reuse: a short review

    Science.gov (United States)

    Edwin, Golda A.; Gopalsamy, Poyyamoli; Muthu, Nandhivarman

    2014-03-01

    This study aims to discern the domestic gray water (GW) sources that is least polluting, at the urban households of India, by examining the GW characteristics, comparing with literature data, reuse standards and suitable treatment technologies. In view of this, the quantitative and qualitative characteristics of domestic GW originating from bath, wash basin, laundry and kitchen sources are determined and compared with established standards for reuse requirements. Quality of different gray water sources is characterized with respect to the physical, chemical, biological, nutrient, ground element and heavy metal properties. The pollutant loads indicate that the diversion techniques are not suitable for household application and, therefore, treatment is necessary prior to storage and reuse. It is observed that the total volume of GW generated exceeds the reuse requirement for suggested reuse such as for flushing and gardening/irrigation. In spite of generating less volume, the kitchen source is found to be the major contributor for most of the pollutant load and, therefore, not recommended to be considered for treatment. It is concluded that treatment of GW from bathroom source alone is sufficient to meet the onsite reuse requirements and thereby significantly reduce the potable water consumption by 28.5 %. Constructed wetland systems and constructed soil filters are suggested as suitable treatment alternatives owing to its ability to treat highly variable pollutant load with lower operational and maintenance cost, which is more practical for tropical and developing countries.

  1. Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

  2. Impact of Solid Waste Disposal on Ground Water Quality in Different Disposal Site at Jaipur, India

    OpenAIRE

    Rahul Nandwana

    2014-01-01

    This research paper here to present to examine the adverse effect of dumping of solid waste at disposal site on ground water quality at various disposal site at Jaipur city, India. This effect on ground water causes due to the unsystematic or unscientific dumping of solid waste. The water, which already presents in the waste, generates with the biodegradable waste or due to the infiltration of water by rainfall. This water which generates or occurs due to that process pours in...

  3. Isotopic Investigation of the Origin of Nitrate of Waters Outflowing from a Waste Deposit Site Near Scuol (Lower Engadine, South Eastern Switzerland)

    International Nuclear Information System (INIS)

    Near the village of Scuol in the Lower Engadine Valley (South Eastern Switzerland) Sot Ruinas, a waste disposal site for domestic and construction refuse, has been in use since the 1960s. It is situated in the vicinity of the Inn River. Over the last years enhanced concentrations of ammonia were found in the outflow of this waste site. But the observed elevated ammonia concentrations could also be a result of natural origin, by inflows of mineral water as observed in the mineral springs of the area. These springs could have acquired their high ammonia content by water-rock interaction with adjacent ultramafic rocks. The isotope analyses were oriented towards the hydrogen, nitrogen and oxygen isotopes on the ammonia, nitrate and nitrogen molecules. The effect of the waste on the outflowing water downstream could be proved by isotope ratios based on chemical processes of the nitrogen cycle and an influence of natural spring water was excluded. (author)

  4. Relative potential hazards of radioactive waste in various water systems

    International Nuclear Information System (INIS)

    The potential hazard to man arising from the hypothetical release of radioactive spent fuel waste into various water systems has been evaluated. Radionuclide transport and human exposure were simulated for six water systems: a large Northwestern river, a small Northeastern river, a small Northwestern river, a large Central Region river, a lake with no outflow in an arid region, and an aquifer discharging directly into an ocean

  5. An Analysis of the Waste Water Treatment Operator Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  6. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  7. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...

  8. Antioxidative properties of some phototropic microalgae grown in waste water

    DEFF Research Database (Denmark)

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Peter

    for the screening and selection of the species. In this study,the potential antioxidant activities of 12 micro algal sample from Chlorella., Spirulina., Euglena, Scenedesmus and Haematococcus species grown in waste water in Kalundborg micro algal facilities were evaluated using three antioxidant...

  9. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Science.gov (United States)

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  10. Synthesis of hydroxytyrosyl alkyl ethers from olive oil waste waters

    OpenAIRE

    Espartero Sánchez, José Luis; Madrona, Andrés; Pereira Cano, Gema; Mateos, Raquel; Rodríguez, Guillermo; Trujillo, Mariana; Fernández Bolaños, Juan

    2009-01-01

    The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  11. Synthesis of hydroxytyrosyl alkyl ethers from olive oil waste waters.

    Science.gov (United States)

    Madrona, Andrés; Pereira-Caro, Gema; Mateos, Raquel; Rodríguez, Guillermo; Trujillo, Mariana; Fernández-Bolaños, Juan; Espartero, José L

    2009-01-01

    The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol. PMID:19471196

  12. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    Directory of Open Access Journals (Sweden)

    Juan Fernández-Bolaños

    2009-05-01

    Full Text Available The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  13. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    OpenAIRE

    Juan Fernández-Bolaños; Mariana Trujillo; Guillermo Rodríguez; Raquel Mateos; Gema Pereira-Caro; Andrés Madrona; Espartero, José L.

    2009-01-01

    The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  14. CYANIDE REMOVAL FROM COKE MAKING AND BLAST FURNACE WASTE WATERS

    Science.gov (United States)

    The report gives results of a study to determine the feasibility of removing cyanide from coke making and blast furnace waste waters by ion flotation or column precipitate flotation of iron ferrocyanides. Ion flotation was reasonably effective on ferricyanide, but not on cyanide ...

  15. Attenuation of Chromium toxicity in mine waste water using water hyacinth

    Directory of Open Access Journals (Sweden)

    Mohanty M.

    2011-12-01

    Full Text Available The mine waste water at South Kaliapani chromite mining area of Orissa (India showed high levels of toxic hexavalent chromium (Cr+6. Cr+6 contaminated mine waste water poses potential threats for biotic community in the vicinity. The current field based phytoremediation study is an in situ approach for attenuation of Cr+6 from mine waste water using water hyacinth (Eichhornia crassipes weeds by rhizofiltration method. The weeds significantly reduced (up to 54% toxic concentrations of Cr+6 from contaminated mine waste water when passed through succeeding water hyacinth ponds. The reduction of toxic chromium level varied with the plant age and passage distance of waste water. Chromium phytoaccumulation and Bio-Concentration Factor (BCF was maximum at growing stage of plant i.e. 75 days old plant. High BCF (10,924 and Transportation Index (32.09 for water hyacinth indicated that the weeds can be used as a tool of phytoremediation to combat the problem of in situ Cr contamination in mining areas.

  16. A Good Solution for Household Based on Fast Waste Water Blockage Detection

    OpenAIRE

    Mohammad A. Omardin; Ahmed N. Abdalla; Mohd H. Suid; Noraziah Ahmad

    2010-01-01

    Problem statement: The waste pipes from the wash basin are always flow in with several waste form kitchen preparation. Due to time consideration the pipe may comes through blockage and need blockage maintenance. Approach: This study presented an invention for early warning blockage detection for a kitchen waste water drain pipe. The waste water pipe some be connected through vertical pipe runs which are usually embedded in the wall. The Fast Waste Water Blockage Detection (FWABET) is to creat...

  17. Provision of safe domestic water for the promotion and protection of public health: a case study of the city of Beirut, Lebanon.

    Science.gov (United States)

    Korfali, Samira Ibrahim; Jurdi, Mey

    2009-04-01

    Securing adequate safe drinking water and proper sanitation is a major challenge facing the developing world. The "Water for Life Decade" emphasizes the importance of upgrading national water quality and sanitation services. This study assessed the domestic water profile in the city of Beirut. Samples were collected from three types of household water sources (municipality, private wells, and vended water bottles) and assessed for their physiochemical and microbiological profile. At the same time, a cross-sectional survey assessing water consumption patterns and the prevalence of water-borne diseases was conducted. The results showed a deficient water quality profile in all three water sources. The measured physiochemical and bacteriological parameters reflected the high frequency of water-borne diseases. Action to secure a safe domestic water supply is essential. The plan should guarantee the protection of water sources, ensure sufficient treatment of domestic water and upgrade the national program for potable water quality control. Periodic quality monitoring and legislating the chaotic water-vending sector are indispensable. Additionally, the deterioration of private well sources by sea and wastewater infiltration necessitates the enforcement of legislation associated with the use and management of private wells. Consumer awareness and active contributions to promote and protect public health are important. PMID:18958397

  18. Performance characterization of water recovery and water quality from chemical/organic waste products

    Science.gov (United States)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  19. Lessons Learned for Construction and Waste Water Management at Radioactive Waste Closure Site

    International Nuclear Information System (INIS)

    Environmental remediation of three different radioactive waste closure sites each required exhaustive characterization and evaluation of sampling and analytical information in resolving regulatory and technical issues that impact cleanup activities. One of the many regulatory and technical issues shared by all three and impacting the cleanup activities is the compliant management and discharge of waste waters generated and resulting from the remediation activities. Multiple options were available for each closure site in resolving waste water management challenges depending upon the base regulatory framework defined for the cleanup or closure of the site. These options are typically regulated by the federal Clean Water Act (CWA), with exemptions available under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA) or Memorandum of Understanding (MOU) between regulatory agencies. In general, all parties must demonstrate equivalent compliance when concerns related to the protection of the general public and the environment. As such, all options for management of waste water resulting from closure activities must demonstrate compliance to or equivalent actions under the CWA. The CWA provides for the National Pollution Discharge Elimination System (NPDES) that is typically maintained by individual states through permitting process to generators, public utilities, and more recently, construction sites. Of the three sites, different compliance strategies were employed for each. The approach for the Columbus Closure Project (CCP) was to initiate full scale compliance to the Ohio EPA General Construction Permit No. OHC000002. The CCP provided Notice of Intent (NOI) to the Ohio EPA to discharge under the general permit according to the regulator approved Storm Water Pollution Prevention Plan. For the second site, the Li Tungsten Superfund Site in Glen Cove, New York, the option was to manage and discharge waste water under a due diligence process to New York State General Permit No. GP-02-01. For the third site, the Middlesex Sampling Plant in Middlesex, New Jersey, the options was to manage and discharge waste water to the Publicly Owned Treatment Works (POTW). Each option has resulted in a safe, cost-effective, and compliant approach to managing discharging waste waters from the site closure activities. (authors)

  20. Integrated photocatalytic waste water recycling in textile finishing

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, C.; Boettcher, J.; Funken, K.H.; Monnerie, N.; Oliveira, L. de; Schaefer, R. [German Aerospace Center, Inst. of Technical Thermodynamics - Solar Research, Cologne (Germany); Mueller, H. [Carl Albani Gardinenfabrik GmbH and Co., Augsburg (Germany); Schaefer, T.; Schulz, S.; Stummer, R. [Enviro Tex GmbH, Augsburg (Germany)

    2003-07-01

    In the BMBF-funded PhoRTex project DLR, carl albani gardinenfabrik GmbH and Co., and EnviroTex GmbH have developed and tested a photocatalytic pilot plant for the treatment and integrated recycling of process waste water in textile finishing. The PhoRTex pilot plant comprises a 4 kW UV-lamp to treat up to 500 L waste water batches. The advanced photo-oxidation process is based on the photo-fenton reaction where iron ions act as photocatalysts producing OH-radicals under irradiation. The pilot plant works in a bypass to washing, bleaching, and conventional water treatment devices as Carl Albani Gardinenfabrik in Augsburg, Germany. In extensive tests, it has been shown that the non-biodegradable contaminants being present in the water fractions can be degraded very efficiently. The tests at laboratory scale as well as at pilot plant scale have shown that the technology is able to treat waste waters of textile finishing processes very efficiently. The degradation of a broad variety of contaminants showed that the technology might be transferable to many other textile finishing processes. (orig.)

  1. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  2. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  3. A possible case of caprine-associated malignant catarrhal fever in a domestic water buffalo (Bubalus bubalis in Switzerland

    Directory of Open Access Journals (Sweden)

    Dettwiler Martina

    2011-12-01

    Full Text Available Abstract Background Malignant catarrhal fever (MCF is a fatal herpesvirus infection, affecting various wild and domestic ruminants all over the world. Water buffaloes were reported to be particularly susceptible for the ovine herpesvirus-2 (OvHV-2 causing the sheep-associated form of MCF (SA-MCF. This report describes the first case of possibly caprine-associated malignant catarrhal fever symptoms in a domestic water buffalo in Switzerland. Case presentation The buffalo cow presented with persistent fever, dyspnoea, nasal bleeding and haematuria. Despite symptomatic therapy, the buffalo died and was submitted to post mortem examination. Major findings were an abomasal ulceration, a mild haemorrhagic cystitis and multifocal haemorrhages on the epicardium and on serosal and mucosal surfaces. Eyes and oral cavity were not affected. Histopathology revealed a mild to moderate lymphohistiocytic vasculitis limited to the brain and the urinary bladder. Although these findings are typical for MCF, OvHV-2 DNA was not detected in peripheral blood lymphocytes or in paraffin-embedded brain, using an OvHV-2 specific real time PCR. With the aid of a panherpesvirus PCR, a caprine herpesvirus-2 (CpHV-2 sequence could be amplified from both samples. Conclusions To our knowledge, this is the first report of malignant catarrhal fever in the subfamily Bovinae, where the presence of CpHV-2 could be demonstrated. The etiological context has yet to be evaluated.

  4. Engineered photocatalysts for detoxification of waste water

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, S.A.; Prairie, M.R.; Shelnutt, J.A. [Sandia National Lab., Albuquerque, NM (United States); Khan, S.U.M. [Duquesne Univ., Pittsburgh, PA (United States). Dept. of Chemistry and Biochemistry] [and others

    1996-12-01

    This report describes progress on the development of engineered photocatalysts for the detoxification of water polluted with toxic organic compounds and heavy metals. We examined a range of different oxide supports (titania, alumina, magnesia and manganese dioxide) for tin uroporphyrin and investigated the efficacy of a few different porphyrins. A water-soluble octaacetic-acid-tetraphenylporphyrin and its derivatives have been synthesized and characterized in an attempt to design a porphyrin catalyst with a larger binding pocket. We have also investigated photocatalytic processes on both single crystal and powder forms of semiconducting SiC with an ultimate goal of developing a dual-semiconductor system combining TiO{sub 2} and SiC. Mathematical modeling was also performed to identify parameters that can improve the efficiency of SiC-based photocatalytic systems. Although the conceptual TiO{sub 2}/SiC photodiode shows some promises for photoreduction processes, SiC itself was found to be an inefficient photocatalyst when combined with TiO{sub 2}. Alternative semiconductors with bandgap and band potentials similar to SiC should be tested in the future for further development and a practical utilization of the dual photodiode concept.

  5. The Future of Water in African Cities : Why Waste Water?

    OpenAIRE

    Jacobsen, Michael; Webster, Michael; Vairavamoorthy, Kalanithy

    2012-01-01

    The overall goal of this book is to change the way urban policy makers think about urban water management, planning, and project design in Africa. African cities are growing quickly, and their current water management systems cannot keep up with growing demand. It will take a concerted effort on the part of decision makers across sectors and institutions to find a way to provide sustainabl...

  6. Volume of baseline data on radioactivity in drinking water, ground water, waste water, sewage sludge, residues and wastes of the annual report 1988 'Environmental radioactivity and radiation exposure'

    International Nuclear Information System (INIS)

    This WaBoLu volume is a shortened version of the annual report by the Federal Ministry of the Environment, Nature Protection and Reactor Safety 'Environmental radioactivity and radiation exposure' and gives an overview of the data on radioactivity in drinking water, ground water, waste water, sewage sludge, residues and wastes, compiled for the area of the Federal Republic of Germany in 1988 by the Institute of Water, Soil and Air Hygiene (WaBoLu) of the Federal Health Office. (BBR) With 22 figs., 15 tabs

  7. Method of draining water through a solid waste site without leaching

    Science.gov (United States)

    Treat, Russell L. (Richland, WA); Gee, Glendon W. (Richland, WA); Whyatt, Greg A. (Richland, WA)

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  8. Treatment of a simulated mixed waste with supercritical water oxidation

    International Nuclear Information System (INIS)

    This report describes a series of tests using supercritical water oxidation (SCWO) to process cutting oil containing a simulated radionuclide. The goal of the tests was to evaluate the technology's ability to process a highly chlorinated waste representative of many mixed waste streams generated in the US DOE complex. The testing was conducted with a bench-scale SCWO system developed by the Modell Development Corp. Significant test objectives included process optimization for adequate destruction efficiency, tracking the radionuclide simulant and certain metals in the effluent streams, and assessment of reactor material degradation resulting from processing a highly chlorinated waste. Test results have been summarized from lab. analysis of the liquid effluent, and of the solid effluent, and witness wire data for corrosion and deposition evaluation

  9. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Science.gov (United States)

    2010-07-01

    ... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a... Industrial User is discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota and is... average daily loading from the Participating Industrial Users to the Owatonna Waste Water...

  10. 78 FR 64905 - Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk

    Science.gov (United States)

    2013-10-30

    ... Waste Water in Bulk AGENCY: Coast Guard, DHS. ACTION: Notice of availability and request for comments... shale gas extraction waste water in bulk via barge, and invites public comment. The policy letter... endorsement or letter allowing the barge to transport shale gas extraction waste water in bulk. The...

  11. Removal of actinides from dilute waste waters using polymer filtration

    International Nuclear Information System (INIS)

    More stringent US Department of Energy discharge regulations for waste waters containing radionuclides (30 pCi/L total alpha) require the development of new processes to meet the new discharge limits for actinide metal ions, particularly americium and plutonium, while minimizing waste. We have been investigating a new technology, polymer filtration, that has the potential for effectively meeting these new limits. Traditional technology uses basic iron precipitation which produces large amounts of waste sludge. The new technology is based on using water-soluble chelating polymers with ultrafiltration for physical separation. The actinide metal ions are selectively bound to the polymer and can not pass through the membrane. Small molecules and nonbinding metals pass through the membrane. Advantages of polymer filtration technology compared to ion, exchange include rapid kinetics because the binding is occurring in a homogenous solution and no mechanical strength requirement on the polymer. We will present our results on the systematic development of a new class of water-soluble chelating polymers and their binding ability from dilute acid to near neutral waters

  12. Immobilization of waste-water residues by embedding into concrete

    International Nuclear Information System (INIS)

    Low-level radioactive waste water is concentrated by evaporation. The concentrate is further evaporated to dryness by means of a rotary drum drier. The dry solid is immobilized with cement. From the drum drier solid/cement/water-mixture samples are taken. After a period of 28 days the leach rate of Cs, Sr and Co and the compressive strength of the specimens are determined. The leach rate can be described by diffusion during a starting period of about 7 to 14 days. After about 300 to 550 days, depending on the composition of the specimen and the isotope, the leach rate becomes constant. The leach rate increases with increasing dry solid/cement ratio. Other waste components (e.g. sulphate) can increase the leach rate appreciably. The influence of sulphate can be overcome by addition of Ca(OH)2 and/or reduction of the dry solid/cement ratio. The compressive strength of the specimens is of the order of about 15 N/mm2 with a minimum of about 6.4 N/mm2 and a maximum of about 25 N/mm2. It increases with decreasing water/cement ratio and dry solid/cement ratio. As expected, the leach rate decreases with increasing compressive strength. However, this correlation is relatively weak because of the influence of many factors on the properties of the immobilized waste form and the limited amount of data from leaching experiments. Based on these results the formula for the conditioning of drum drier solid has been optimized as regards volume reduction and quality of the waste form as follows: 22% drum drier solid; 54% cement; 24% water. This corresponds to a dry solid/cement ratio of 0.40 and a water/cement ratio of 0.44. (author)

  13. Employing Interim Water Management Barriers at Waste Disposal Area

    International Nuclear Information System (INIS)

    The West Valley Demonstration Project Act (the Act) of 1980 authorized the U.S. Department of Energy (DOE) to lead a high-level radioactive waste management demonstration project at the site of the former spent fuel reprocessing plant in West Valley, New York. The site is owned by the State of New York, through the New York State Energy Research and Development Authority (NYSERDA). West Valley Environmental Services LLC (WVES) and its predecessor company, West Valley Nuclear Services Company (WVNSCO), have been the prime contractors at the site since the beginning of the Project. One of the primary missions of the Act - demonstrating solidification techniques which can be used for preparing high-level liquid waste for disposal - was completed in 2002. Since that time, wide-scale decontamination and dismantlement activities to prepare for Project completion were begun and continue through present-day operations. Current site activities are focused on preparing and shipping Project wastes off-site for disposal, reducing the site's footprint by removing unneeded facilities, and managing the site in a safe configuration while a Draft Site Decommissioning Environmental Impact Statement is being prepared to evaluate alternatives for site closure and/or long-term stewardship. Remaining site facilities include the former nuclear fuel reprocessing facility building, an associated underground waste tank farm, and a 7-acre area that contains an inactive radioactive waste landfill. Major objectives for safe management of those facilities include protecting employees, the public, and the environment while reducing management costs and risks associated with those facilities. In 2007, DOE began preparations to install water control barriers to prevent clean ground and surface water from coming in contact with buried waste in the inactive Nuclear Regulatory Commission- licensed Disposal Area (NDA). Field work was initiated and completed in 2008. This paper discusses the history of the NDA, the rationale and construction experience in installing these barriers, and the expected results. (authors)

  14. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  15. Artificial sweeteners as waste water markers in a shallow unconfined aquifer

    Science.gov (United States)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2013-04-01

    One key factor in groundwater quality management is the knowledge of flow paths and recharge. In coupled ground- and surface water systems the understanding of infiltration processes is therefore of paramount importance. Recent studies show that artificial sweeteners - which are used as sugar substitutes in food and beverages - are suitable tracers for domestic wastewater in the aquatic environment. As most rivers receive sewage discharges, artificial sweeteners might be used for tracking surface waters in groundwater. In this study artificial sweeteners are used in combination with conventional tracers (inert anions Cl-, SO42-, stable water isotopes δ18O, δ2H) to identify river water infiltration and the influence of waste water on a shallow unconfined aquifer used for drinking water production. The investigation area is situated in a mesoscale alpine head water catchment. The alluvial aquifer consists of quaternary gravel deposits and is characterized by high hydraulic permeability (kfmax 5 x 10-2 ms-1), high flow velocities (vmax 250 md-1) and a considerable productivity (2,5 m3s-1). A losing stream follows the aquifer in close proximity and is susceptible to infiltrate substantial volumes of water into the alluvial sediments. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners (Acesulfam ACE, Sucralose SUC, Saccharin SAC and Cyclamat CYC) at the investigated site. The local sewage treatment plant was identified as point source of artificial sweeteners in the river water, with ACE concentrations up to 0,6 μgL-1. ACE concentrations in groundwater where approximately of one order of magnitude lower: ACE was present in 33 out of 40 sampled groundwater wells with concentrations up to 0,07 μgL-1, thus indicating considerable influence of sewage water loaded surface water throughout the aquifer. Elevated concentrations of ACE and SAC in single observation wells denote other sources of locally limited contamination. Also, the temporal variability of sweeteners in surface water and the drinking water production well is compared with other tracers. ACE, Cl-and SO42- exhibit similar patterns in the river water. However, this behaviour cannot be observed in the production well, where ACE concentrations are varying compared to Cl- and SO42-.This suggests that the production well does receive groundwater being infiltrated prior to the sewage water treatment plant. Time series analysis of 18O, δ2H will give more insight in travel times and the location of infiltration zones.

  16. The influence of waste water on the water quality in Zemplínska írava

    OpenAIRE

    Búgel Milan

    1999-01-01

    The water quality in the Zemplínska Šírava water reservoir directly depends on the water quality in Laborec river. This is mainly in -fluenced by waste water discharged from point sources of pollution (public canalization) and waste water from area sources of pollution. In the contribution, the water quality data in 6 river and 4 water reservoir profiles are presented for the period of 1993 - 1997.

  17. Integrated water and waste management system for future spacecraft

    Science.gov (United States)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  18. Selected aspects of the feasibility of utilizing mine waste water

    Energy Technology Data Exchange (ETDEWEB)

    Majko, A.; Sawicki, J. (Poltegor Instytut, Wroclaw (Poland))

    1991-01-01

    Discusses waste water discharge and mine drainage, drainage water properties and feasibility of mine water utilization from Polish underground and surface mines. Total volume of waste water discharged from coal mines in 1985-1987 is analyzed: from underground coal mines 372 million m[sup 3] (of it 350 million m[sup 3] in Upper Silesia, 19 million m[sup 3] in Lower Silesia and 2.6 million m[sup 3] in the Lublin basin), and 374.6 million m[sup 3] from brown coal surface mines (of it 183.6 million m[sup 3] in Belchatow, 68.33 million m[sup 3] in Adamow, 100 million m[sup 3] in Konin, 21 million m[sup 3] in Turow and 1.3 million m[sup 3] in Sieniawa). Drainage water from deep draining wells with a permissible content of mineral matter and bacteria could be used as drinking water. 7 refs.

  19. Impact of Animal Waste Application on Runoff Water Quality in Field Experimental Plots

    OpenAIRE

    Paul B. Tchounwou; William E. Owens; Hill, Dagne D.

    2005-01-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this...

  20. An improved area-based guideline for domestic water demand estimation in South Africa

    Scientific Electronic Library Online (English)

    HJ, van Zyl; AA, Ilemobade; JE, van Zyl.

    2008-03-01

    Full Text Available Increased infrastructural development and potable water consumption have highlighted the importance of accurate water-demand estimates for effective municipal water services infrastructure planning and design. In the light of evolving water consumption trends, the current guideline for municipal wat [...] er demand estimation, published in 1983, needs to be revised. This study investigated, using regression analyses, the combined effect of various socio-economic and climatic parameters on municipal water consumption with the objective of determining the dominant influencing parameters and suggesting a new guideline for water-demand estimation. To this end, an initial database comprising more than 2.5 x10(6) metered water consumption records extracted from 48 municipal treasury databases, which are located within 5 out of the 7 South African water regions was analysed. Each of the 48 municipal treasury databases spanned a period of at least 12 months. The final amalgamated database, after rigorous cleaning and filtering, comprised 1 091 685 consumption records. Single variable and stepwise multiple variable regression analyses were utilised. Results show that stand area, stand value and geographical location are the dominant parameters influencing municipal water consumption, with stand area and stand value positively correlated to water consumption. In suggesting a new municipal water-demand estimation guideline, these three parameters were considered. Stand value, however, fell away as a reliable parameter for estimating water consumption because of the inconsistent basis for predicting stand values due to the constant fluctuations in the value of property, and municipal valuations that often become outdated. Inland and coastal geographical locations exhibited different consumption patterns, with coastal stands of the same stand area and stand value consistently consuming less water than inland stands. These should therefore be treated separately in any design guideline. Stand area then became the best parameter on which to base water-demand estimations. A single guideline curve is therefore proposed which gives various confidence limits for estimating water demand in South Africa, based on stand area.