WorldWideScience

Sample records for domestic waste water

  1. Domestic applications for aerospace waste and water management technologies

    Science.gov (United States)

    Disanto, F.; Murray, R. W.

    1972-01-01

    Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.

  2. Phyto-treatment of domestic waste water using artificial marshes

    Energy Technology Data Exchange (ETDEWEB)

    Vaca, Rodrigo; Sanchez, Fabian [Oleoducto de Crudos Pesados (OCP), Quito (Ecuador)

    2009-12-19

    The phyto-treatment of domestic waste water by the use of artificial marshes system consists in beds of treatment working in series, this beds are constituted basically by inverse filters of inert granular material where the nutrients are cached from the residual water. Most of the treatment is carried in roots steams and leaves of defined species of plants. The rest of the treatment is performed by anaerobic and aerobic bacteria that grow within the beds. In the proximities of the roots and the area near the bed surface, aerobic processes take place and in deepest zones, anaerobic processes take place. It is desirable that the aerobic process will be the predominant one, mainly to avoid bad odors; this is obtained with the correct selection of plants which must have dense and deep roots. The economic factor is also important for the selection of this type of treatment system, the cost of operation and maintenance is minimum compared with other type of systems. The operation cost is practically zero because it is not required provision of electrical energy for its operation; energy used is the solar energy through the photosynthesis process. The maintenance is reduced to pruning and cleaning that can be performed twice a year. The goals of this paper is to show our experiences during the construction, stabilization and operation of these systems installed in 13 OCP locations with different types of weather and explain the conclusions arrived after construction and operation; present this kind of systems as an alternative of economic wastewater treatment in terms of construction, operation and maintenance and as environment friendly treatment. (author)

  3. Water recovery and solid waste processing for aerospace and domestic applications

    Science.gov (United States)

    Murawczyk, C.

    1973-01-01

    The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.

  4. Case study of the effectiveness of passive grease trap for management on domestic kitchen waste water

    Science.gov (United States)

    Nidzamuddin, M. Y.; Juffrizal, K.; Mustapha, F.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.

    2015-05-01

    Household waste, generally known as trash or garbage is mostly includes food wastes, product packaging, and other miscellaneous inorganic wastes that are coming from domestic household. Grease waste such as oil and fats can contaminate water and also clot on pipes provoking blockages. Thus, waste water from kitchen sink need a proper way of filtration. Grease trap developed in this paper is viable in trapping the grease residue. The experiments have been conducted in controlled environment and the objectives are to investigate the effectiveness of grease trap by proving the existence of retention time and the expected ratio of collected water and oil during experiment process using a prototype model.

  5. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  6. Domestic Waste: Sources, Effects, and Management

    International Nuclear Information System (INIS)

    Waste is any discarded material. Domestic wastes are those produced by individual activities. In common with other living organisms, humans discharge waste substances to the environment that in turn re-energize the endless cycle of nature. Human activities are closely associated with ambient environment (soil , water, or air) through accumulation of domestic waste. Such household hazardous waste deposit arise from the discharge of domestic activities in the form of municipal solid waste (household, commercial and public street wastes), night soil (human and animal body wastes, excreta, or excrement). In rural areas, night soil is one of several components of the refuse that pollute the land. The surface water may be also directly polluted by domestic wastes or agricultural wastes. But in urbanized areas, household wastes, bathroom and laundry are conveniently flushed away by water as domestic wastewater through sewerage system, and disposed onto land or into receiving water, or in some countries it is treated and re-discharged for domestic usage. Solid waste in the form of kitchen garbage and other household refuse is collected for landfill disposal or for re-industrialization. Many domestic waste influence indoor air quality in urban and rural areas as for example the fuel used for cooking, smoke from cooking and from smoking habits, modern building materials, insulation, fabrics and furniture, cleaning materials, solvents, pesticides, personal care products, organic material or vegetable origin and dander from domestic life

  7. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  8. Anaerobe-Aerobe Submerged Biofilter Technology for Domestic Waste Water Treatment

    International Nuclear Information System (INIS)

    Water pollution in the big cities in Indonesia, especially in DKI Jakarta has shown serious problems. One of the potential sources of water pollution is domestic wastewater that is wastewater from kitchens, laundry, bathing and toilets. These problems have become more serious since the spreads of sewerage systems are still low, so that domestic, institutional and commercial wastewater cause severe water pollution in many rivers or shallow ground water. Bases on the fact that the progress of development of sewerage system is still low, it is important to develop low cost technology for individual house hold or semi communal wastewater treatment such as using anaerobic and aerobic submerged biofilter. This paper describes alternative technology for treatment of household wastewater or organic wastewater using anaerobic and aerobic submerged biofilter. Using this technology can decrease BOD, COD and Suspended Solids (SS) concentration more than 90 %. (author)

  9. Water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Appendices

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    Water and sewage treatment systems are presented with concentration on the filtration of water. Equipment is described for organic removal, solids removal, nutrient removal, inorganic removal, and disinfection of the water. Such things as aseline hardware, additional piping connections, waste disposal, and costs involved are also reported.

  10. Phytodepuration plant for the treatment of domestic waste water - realized in a hotel. La fitodepurazione degli effluenti domestici - il caso di una struttura alberghiera

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, M.

    1982-12-01

    The processes and the parameters which cause eutrophization of a water system are reported. In addition, the advantage of a phytodepuration plant with respect to conventional plants for the treatment of waste waters are listed. In this paper the phytodepuration plant for the treatment of domestic waste water is described which was by ENEA during 1980 and 1981 in collaboration with the Grand Hotel S. Michele in Cetraro (Italy). The plant utilizes the water hyacinth (Eichhornia crassipes) as a biological filter. The results so far obtained suggest the convenience of the phytodepuration system for touristic village, camping or industries which are operating during the summer time.

  11. The cost benefit and efficiency of waste water treatment using domestic ponds—the ultimate solution in Southern Africa

    Science.gov (United States)

    Ntengwe, F. W.

    Wastewater treatment has become a challenge to most countries in Southern Africa because of the fluctuating economies that have been hit by high levels of debts. The treatment of domestic wastewater using ponds, if carefully utilized, as has been observed in most countries in the world, is the most cost effective means of handling wastewaters. When compared to the conventional use of treatment plants, the ponds have been observed to be the ultimate solution for the countries in Southern Africa especially those that are classified as Highly Indebted Poor Countries (HIPC) because of little or no operating costs associated with the treatment. The study conducted on Kitwe Waste Water Treatment Ponds to evaluate the cost benefit and efficiencies has revealed low levels of operating cost and high removal efficiencies of oxygen demanding wastes (BOD removal of 86% and TSS removal of 75%), pH values ranged from 7 to 8 indicating an increasing alkalinity from facultative to maturation ponds while other parameters such as nitrates, phosphates and temperature were found to be within acceptable levels thereby releasing effluent that makes the environment sustainable. The overall social benefit was found to be much higher than the operating costs.

  12. The application of membrane Bio-Reactor for East Java Domestic waste water treatment

    Directory of Open Access Journals (Sweden)

    Aisyah E. Palupi

    2008-01-01

    Full Text Available Membrane bioreactors for wastewater treatment research have been carried out. In this system, membrane replaces the function of the sedimentation tank. Until recent time, fouling was still the main problem for membrane processes. This research has investigated the effect of MLSS concentration and back flushing on external membrane bioreactor performances such as COD and BOD reduction, and the back flushing effect for domestic wastewater treatment. Polyacrylonitril hollow fiber membrane with pore diameter 0.1-0.01 m, surface area 0.075 m2 was used in this research. This process was at HRT 5 hour, no sludge disposal, intermittent operation, and permeate exiting from membrane shell side. Optimum condition was obtained at a transmembrane pressure (TMP of 1.45 bar. Back flushing was conducted for 10 minute at 3.0 bar pressure. Effective back flushing was shown after operation at MLSS of 7500 and 10000 mg/l. The result of this research shows that COD and BOD in the domestic wastewater decreased almost 98%. MLSS and MLVSS degradations were 98.6% and 98%, respectively.

  13. Aspects of contamination produced by domestic waste landfills of receiving waters in Madrid province

    OpenAIRE

    Pastor piñeiro, Jesús; Urcelay, A; Adarve, M. J.; Hernández, A. J.; SA?NCHEZ, A.

    1993-01-01

    This study describes some aspects of the anión contení in surface waters and ground waters as well as in the soils affected by three landfills in the Province of Madrid. The anions concerned are chlorides, fluorides, sulfates, phosphates and nitrales. The pH and conductivity were also determined. These parameters may constitute abiotic indicators lo observe the alterations produced in the water and soil by the leachates from the landfills. The results show that the concentrations ...

  14. Pharmaceuticals in domestic and agricultural waste waters - problem and its solution.

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Soudek, Petr; Hudcová, T.; Syrovátka, J.; Van?k, Tomáš

    Shanghai : Tongji University, 2014, s. 523-530. [International Conference on Wetland Systems for Water Pollution Control (ICWS2014). Shanghai (CN), 12.10.2014-16.10.2014] R&D Projects: GA TA ?R TA01020573; GA ?R(CZ) GA14-22593S Institutional support: RVO:61389030 Keywords : Constructed wetland * pharmaceutical * Phragmites Subject RIV: DJ - Water Pollution ; Quality

  15. Pharmaceuticals in domestic and agricultural waste waters – problem and its solution.

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Soudek, Petr; Hudcová, T.; Syrovátka, J.; Van?k, Tomáš

    2015-01-01

    Ro?. 10, ?. 3 (2015), s. 564-572. ISSN 1751-231X R&D Projects: GA ?R(CZ) GA14-22593S; GA TA ?R TA01020573 Grant ostatní: European Regional Development Fund(XE) CZ.2.16/ 3.1.00/24014 Source of funding: O - opera?né programy Institutional support: RVO:61389030 Keywords : constructed wetland * pharmaceutical * Phragmites Subject RIV: DJ - Water Pollution ; Quality

  16. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Final report

    Science.gov (United States)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    The manner in which current and advanced technology can be applied to develop practical solutions to existing and emerging water supply and waste disposal problems is evaluated. An overview of water resource factors as they affect new community planning, and requirements imposed on residential waste treatment systems are presented. The results of equipment surveys contain information describing: commercially available devices and appliances designed to conserve water; devices and techniques for monitoring water quality and controlling back contamination; and advanced water and waste processing equipment. System concepts are developed and compared on the basis of current and projected costs. Economic evaluations are based on community populations of from 2,000 to 250,000. The most promising system concept is defined in sufficient depth to initiate detailed design.

  17. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report summary

    Science.gov (United States)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    This study of water reclamation and waste disposal is directed toward a more efficient utilization of natural resources. From an ecological standpoint improved methods of land use, water processing equipment, and ideal population profiles are investigated. Methods are described whereby significant reduction in water usage can be achieved by the adoption of presently available and practically applied technological concepts. Allowances are made for social, natural, and economic contingencies which are likely to occur up to the year 2000.

  18. Experience on domestic waste segregation in Ghana

    Directory of Open Access Journals (Sweden)

    Osei Bonsu Patterson

    2013-06-01

    Full Text Available Pollution from domestic wastes is a major environmental challenge in Ghana and many developing countries. Most of these countries depend almost entirely on landfills for waste management, which has proved to be expensive, inefficient and unsustainable. A sustainable solution to this problem is productive use of waste such as recycling. The main challenge that may limit recycling in Ghana and some of these countries is that a chunk of the wastes are littered on the environment, and the rest is collected in bulk in the same waste bin, thereby mixing them. The cost of collecting littered wastes, or separating mixed wastes could be prohibitive, making recycling uneconomical. In order to productively utilize wastes, adequate and separate waste bins must be provided for collecting the different components of wastes. However, budgetary constraints may not allow many countries to purchase expansive waste bins for the different components of wastes. Consequently, a simple waste bin, comprising a metal frame on which polypropylene sack (pp-sack can be hanged to collect inorganic wastes has been developed by the author. The waste bin (new bin can be manufactured industrially using plastic or fabricated by local artisans at an affordable price. This document describes the new bin. Experience in collecting organic and inorganic wastes generated in a house in separate waste bins (waste segregation for the past 16 years is also highlighted.

  19. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  20. Domestic Waste Disposal Practice of Sylhet City

    OpenAIRE

    Md. Tauhid-Ur-Rahman

    2006-01-01

    This study focuses the analysis of current practices of household waste disposal, problems faced by the residents during waste disposal and their views for improvement of the waste management system. However, it has been found that traditional concepts and technologies usually adopted in waste collection is becoming insufficient and ineffective causing more than half of the generated wastes (44%) remain uncollected and disposed of locally, which results in adverse impacts like water pollution...

  1. Characterization of an Am-Be PGNAA set-up developed for in situ liquid analysis: Application to domestic waste water and industrial liquid effluents analysis

    Science.gov (United States)

    Idiri, Z.; Mazrou, H.; Amokrane, A.; Bedek, S.

    2010-01-01

    A prompt gamma neutron activation analysis (PGNAA) set-up with an Am-Be source developed for in situ analysis of liquid samples is described. The linearity of its response was tested for chlorine and cadmium dissolved in water. Prompt gamma efficiency of the system has been determined experimentally using prompt gamma of chlorine dissolved in water and detection limits for different elements have been derived for domestic waste water. A methodology to analyze any kind of liquid is then proposed. This methodology consists mainly on using standards with water as bulk or in the case of absolute method, to use gamma efficiency determined with prompt gammas emitted by chlorine dissolved in water. To take into account the thermal neutron flux variations inside the samples, flux monitoring was carried out using a He-3 neutron detector placed at the external sample container surface. Finally, to correct for the differences in gamma attenuation, average gamma attenuations factors were calculated using MCNP5 code. This method was then checked successfully by determining cadmium in industrial phosphoric acid and our result was in good agreement with that obtained with inductively coupled plasma (ICP) method.

  2. Decreased Phototoxic Effects of TiO? Nanoparticles in Consortium of Bacterial Isolates from Domestic Waste Water

    Science.gov (United States)

    Mathur, Ankita; Kumari, Jyoti; Parashar, Abhinav; T., Lavanya; Chandrasekaran, N.; Mukherjee, Amitava

    2015-01-01

    This study is aimed to explore the toxicity of TiO2 nanoparticles at low concentrations (0.25, 0.50 & 1.00 ?g/ml); on five bacterial isolates and their consortium in waste water medium both in dark and UVA conditions. To critically examine the toxic effects of nanoparticles and the response mechanism(s) offered by microbes, several aspects were monitored viz. cell viability, ROS generation, SOD activity, membrane permeability, EPS release and biofilm formation. A dose and time dependent loss in viability was observed for treated isolates and the consortium. At the highest dose, after 24h, oxidative stress was examined which conclusively showed more ROS generation & cell permeability and less SOD activity in single isolates as compared to the consortium. As a defense mechanism, EPS release was enhanced in case of the consortium against the single isolates, and was observed to be dose dependent. Similar results were noticed for biofilm formation, which substantially increased at highest dose of nanoparticle exposure. Concluding, the consortium showed more resistance against the toxic effects of the TiO2 nanoparticles compared to the individual isolates. PMID:26496250

  3. Domestic and international nuclear waste management

    International Nuclear Information System (INIS)

    Passage of the Nuclear Waste Policy Act in 1982, and subsequent 1987 amendments, allowed Congress to establish the plan to manage the nation's spent nuclear fuel and other high-level radioactive waste. The principal elements in the waste management system include waste acceptance, storage, disposal, and transportation. Interim storage of spent fuel is proposed to be in Monitored Retrievable Storage facility. Studies are being implemented for research and design of multipurpose canisters which will be used for the storage, transport, and disposal of spent nuclear fuel. The potential repository site for permanent disposal is located at Yucca Mountain, Nevada. Site characterization activities are currently being conducted. Underground construction has started for the Exploratory Studies Facility; surface based activities are currently under way. Factors considered in this phase include environmental concerns, geologic parameters, public safety, local economic impacts and ease and cost of constructing and operating the facility. The United States is involved in cooperative studies with other countries regarding fundamental aspects of radioactive waste storage and disposal systems for high-level waste. Most emphasize assessment of long-term performance of permanent geologic repositories for spent nuclear fuel and high level waste. By participating in international activities, the United States has been involved in transfer of technological developments and information exchange. Most of the countries which produce electricity with nuclear power plants plan to dispose of the spent fuel within their own countries. The permanent disposal of high level waste for most countries will be in deep geological repositories. This paper will provide the status of the U.S. program in the storage and disposal of its nuclear waste. Strategies for addressing nuclear waste management in the domestic program will be compared to those of foreign countries. 6 refs

  4. The Application of Microorganism for Swine Farm and Domestic Waste water Biodegradation and Enzyme Increasing by Radiation

    International Nuclear Information System (INIS)

    Bacillus sp. And mixed culture were carried out for biodegradation of domestic wastewater (in front of Office od Atoms for Peace) was found that 1%, 12 hours. Bacillus sp. and 1%, 12 hours. mixed culture had maximum removal efficiency in term of COD at 93.48%. Bacillus. alone could reduce COD in small amount. Gamma Radiation improvement efficiency of enzyme production of Bacillus sp. had been studied. The result indicated that Bacillus (Bs.), Bacillus pumilus megaterium (Bm) and Bacillus cereus (Bc) had no proteinase enzyme except Bm. After irradiation of 4 isolates, they all showed high proteinase increasing. The ratio of clear zone diameter to colony diameter of Bs, Bc, and Bp at 1 - 10 kGy showed more proteinase. After irradiation at 6, 2, 6 and 8 kGy, all Bs, Bc, Bm and Bp showed maximum ratio of clear zone diameter to colony diameter at 9, 9, 10 and 14 respectively. Thus irradiation of all 4 isolate effectively enhance proteinase production. But amylase could not increase; while lipase showed decreased effect in Bp, and no change in Bs. After irradiation of B13, B16, B35, B50 and B68 at 2, 6, 4, 10 and 10 kGy, the ratio of clear zone diameter to colony diameter were at 7,4 ,4, 5 and 4 respectively, Proteinase could effectively increase by radiation. According to Saccharomyces cerevisiae (Sc), proteinase increases with the ratio of clear zone diameter to colony diameter were at 11.

  5. Bituminization process of radioactive liquid wastes by domestic bitumen

    International Nuclear Information System (INIS)

    A study has been carried out of the incorporation of intermediate level wastes in bitumen. Two kinds of wastes: a) an evaporator concentrate from a PWR (containing boric acid), b) second cycle wastes from the Purex process (containing sodium salts), were satisfactorily incorporated into a mixture of straight and blown domestic bitumen, to yield a product containing 50wt% solids. The products were stable to radiation exposure of 5'8x108 rads. Leach rates were measured in both distilled and sea water over periods up to 200 days at 50C and 250C and at both 1 atm and 8 atm pressure. Results confirmed that long term storage of the products would be satisfactory

  6. Solid domestic wastes as a renewable resource: European experience

    Science.gov (United States)

    Fridland, V. S.; Livshits, I. M.

    2011-01-01

    Ways in which different types of solid domestic wastes, such as wastepaper, crushed glass, plastics and worn-out tires, can be efficiently included into the production, raw-material, and energy balances of the national economy are shown taking Germany and other European countries an example. Methods for recycling these solid domestic wastes and application fields of the obtained products are discussed.

  7. Occurrence and removal of butyltin compounds in a waste stabilisation pond of a domestic waste water treatment plant of a rural French town.

    Science.gov (United States)

    Sabah, A; Bancon-Montigny, C; Rodier, C; Marchand, P; Delpoux, S; Ijjaali, M; Tournoud, M-G

    2016-02-01

    The aim of this study was to investigate the fate and behaviour of butyltin pollutants, including monobutyltin (MBT), dibutylin (DBT), and tributyltin (TBT), in waste stabilisation ponds (WSP). The study was conducted as part of a baseline survey and included five sampling campaigns comprising bottom sludge and the water column from each pond from a typical WSP in France. Butyltins were detected in all raw wastewater and effluents, reflecting their widespread use. Our results revealed high affinity between butyltins and particulate matter and high accumulation of butyltins in the sludge taken from anaerobic ponds. The dissolved butyltins in the influent ranged from 21.5 to 28.1 ng(Sn).L(-1) and in the effluent, from 8.8 to 29.3 ng(Sn).L(-1). The butyltin concentrations in the sludge ranged from 45.1 to 164 and 3.6-8.1 ng(Sn).g(-1) respectively in the first and last ponds. Our results showed an average treatment efficiency of 71% for MBT, 47% for DBT, 55% for TBT. Laboratory sorption experiments enabled the calculation of a distribution coefficient (Kd = 75,000 L.kg-1) between TBT and particulate matter from the WSPs. The Kd explained the accumulation and persistence of the TBT in the sludge after settling of particulate matter. The continuous supply of contaminated raw wastewater and the sorption-desorption processes in the ponds led to incomplete bio- and photolytic degradation and to the persistence of butyltins in dissolved and particulate matrices throughout the survey period. It is thus recommended to use shallow ponds and to pay particular attention when sludge is used for soil amendment. PMID:26624956

  8. Application of ecological modelling to investigate the impact of domestic waste water to one natural river system in tropical area (the nhue river, outskirts of hanoi, vietnam)

    Science.gov (United States)

    Trinh Anh, D.; Bonnet, M. P.; Prieur, N.

    2003-04-01

    Water quality modelling has been employed as an effective tool to investigate the ecological situation of surface water sources. Within a researching collaboration of Vietnamese and French scientists, one portion, 40 km, of the Nhue river, outskirts of Hanoi city, northern Vietnam, has been investigated since the river has been highly impacted from anthropogenic activities and one 1-D ecological river model was formed based on the investigation. In this paper, biochemical process equations integrated with hydraulic conditions and human alterations are presented as the basis for ecological variation of this river system. Investigation showed that at the origin the river water remains untouched (nutrients are low in natural tropical water) while downstream the river is full of domestic pollutants (organic materials and nutrients). From the hydraulic, biological, chemical data and fieldwork experiments, the sensitivity analysis and parameter estimation have been carried out to verify the biochemical processes and optimise this model. Most calculations (simulation, sensitivity functions and parameter estimation) were performed with AQUASIM, a computer program designed for simulation and data analysis of 1-D river and other aquatic systems. The other supporting calculations for system analysis were implemented with IDENT based on output of a sensitivity analysis carried out with AQUASIM. The simulation results accomplished with available data indicate that the sediment exchanges and biodegradation processes emerge as the most important features that influence the water quality of the river where water is usually overloaded by domestic wastewater and where hydraulic characters are less pronounced. The model construction and simulation results have also pointed out that the river water quality has been spoiled dramatically after the main open-air sewer of the Hanoi city, the To Lich river, excesses to the Nhue. Beside, a metal speciation module was proposed to integrate with existing biochemical model in order to simulate the metal fractions in water column and metal exchange between river water and sediment.

  9. Tertiary Treated Waste water as a Promising Alternative for Potable Water for Non-Contact Domestic Use. CaseStudy:RiqqaWastewaterTreatmentPlant

    Directory of Open Access Journals (Sweden)

    Munther I. Almatouq,

    2015-06-01

    Full Text Available WatersecurityisavitalissueinaridcountrieslikeKuwait,wheredesalinatedwateristhe solesupplyoffresh water.Thispaper isacontributiontotheongoingefforts towardsrationalizationin potablewater consumption.In addition,itdiscusses therole of high-quality effluent water, from wastewater treatment plants in Kuwait, as a potential replacementfor potable water for non-contact domesticapplications as a oneway in savingin thisvaluablecommodity.

  10. Concrete Production Using Technogenical, Constructional and Domestic Waste

    Directory of Open Access Journals (Sweden)

    Marija Vai?ien?

    2011-04-01

    Full Text Available The article describes investigations carried out by the scientists from various countries in order to improve the physical and mechanical properties of concrete. The grained rubber of tyres, modified sawdust, crushed ceramic bricks, plastic waste and remains of glass are utilised to produce concrete mixtures. The results of research conducted by the scientists show that in the process of producing concrete we can use different types of waste to change natural aggregates and to get concrete with specific properties. Currently, waste handling and utilization are burning ecological problems. Therefore, intensive investigations are carried out in order to utilise technogenical, constructional and domestic waste for concrete mixtures. Article in Lithuanian

  11. Upper airway inflammation and respiratory symptoms in domestic waste collectors

    OpenAIRE

    Wouters, I.; Hilhorst, S; Kleppe, P; Doekes, G; Douwes, J.; Peretz, C; Heederik, D

    2002-01-01

    Objectives: To compare respiratory symptoms and upper airway inflammation in domestic waste collectors and controls, and to find the association between measures of upper airway inflammation on the one hand and exposure concentrations of organic dust or respiratory symptoms on the other hand.

  12. Methanobrevibacter ruminantium as an Indicator of Domesticated-Ruminant Fecal Pollution in Surface Waters?

    OpenAIRE

    Ufnar, Jennifer A.; Shiao Y. Wang; Ufnar, David F.; Ellender, R. D.

    2007-01-01

    A PCR-based assay (Mrnif) targeting the nifH gene of Methanobrevibacter ruminantium was developed to detect fecal pollution from domesticated ruminants in environmental water samples. The assay produced the expected amplification product only when the reaction mixture contained DNA extracted from M. ruminantium culture, bovine (80%), sheep (100%), and goat (75%) feces, and water samples from a bovine waste lagoon (100%) and a creek contaminated with bovine lagoon waste (100%). The assay appea...

  13. Domestic rooftop water harvesting (DRWH- A case study

    Directory of Open Access Journals (Sweden)

    Arun Kumar Dwivedi

    2009-08-01

    Full Text Available Although water is as important for survival of human being as much as food, air etc., but hardly any attention is paid for its economical use and conservation of this precious resource. Due to indiscriminate pumping of ground water, the water table is going down abnormally and if the problem is not given a serious look, then the future generations may have to face severe crisis of water. Rains are the main source of water and if rain water is harvested, the scarcity of water can be eliminated altogether. This is an ideal solution of water problem where there is inadequate groundwater supply quantitatively and qualitatively and surface sources are either lacking or insignificant. Rain water is bacteriologically pure, free from organic matter and soft in nature. In urban areas, rain water available from rooftop of buildings, paved and unpaved areas goes waste. This water can be stored in tank and can be used directly and also indirectly by diverting to recharge the aquifers through existing GW tapping arrangements and thereafter can be utilized gainfully at the time of need. The paper aims towards the development of the framework for domestic rooftop harvesting for drinking water. The paper is based on the analysis of survey record of around 50 houses of different rooftop areas of peri-urban area of Dhule city. The estimation of the appropriate size of the water tanks & their costs required to fulfill the annual drinking water demand through DRWH from rooftop of different areas are done. A mathematical equation expressing the relationship between the required size of water tank and different rooftop areas is developed. The DRWH systems for all houses are designed considering the existing rain water outlets and cost estimation for each individual house is done. A cost model expressing the relationship between rooftop area and cost of DRWH system is developed.

  14. Accounting for Water Insecurity in Modeling Domestic Water Demand

    Science.gov (United States)

    Galaitsis, S. E.; Huber-lee, A. T.; Vogel, R. M.; Naumova, E.

    2013-12-01

    Water demand management uses price elasticity estimates to predict consumer demand in relation to water pricing changes, but studies have shown that many additional factors effect water consumption. Development scholars document the need for water security, however, much of the water security literature focuses on broad policies which can influence water demand. Previous domestic water demand studies have not considered how water security can affect a population's consumption behavior. This study is the first to model the influence of water insecurity on water demand. A subjective indicator scale measuring water insecurity among consumers in the Palestinian West Bank is developed and included as a variable to explore how perceptions of control, or lack thereof, impact consumption behavior and resulting estimates of price elasticity. A multivariate regression model demonstrates the significance of a water insecurity variable for data sets encompassing disparate water access. When accounting for insecurity, the R-squaed value improves and the marginal price a household is willing to pay becomes a significant predictor for the household quantity consumption. The model denotes that, with all other variables held equal, a household will buy more water when the users are more water insecure. Though the reasons behind this trend require further study, the findings suggest broad policy implications by demonstrating that water distribution practices in scarcity conditions can promote consumer welfare and efficient water use.

  15. A Benchmarking System for Domestic Water Use

    Directory of Open Access Journals (Sweden)

    Dexter V. L. Hunt

    2014-05-01

    Full Text Available The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination of the following: occupancy rates (1 to 4; roof size (12.5 m2 to 100 m2; garden size (25 m2 to 100 m2 and geographical location (North West, Midlands and South East, UK with yearly temporal effects (i.e., rainfall and temperature. Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.

  16. Heat Losses Evaluation for Domestic Hot Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2006-01-01

    Full Text Available In sanitary systems assembly, domestic hot water distribution supply networks represent an important weight for energetically balance.par This paper presents, in an analytical and graphical manner, the computational tools needed for domestic hot water piping system behavior characterization in different functional and structural assumptions.

  17. Heat Losses Evaluation for Domestic Hot Water Distribution Systems

    OpenAIRE

    Theodor Mateescu; Radu Hudi?teanu

    2006-01-01

    In sanitary systems assembly, domestic hot water distribution supply networks represent an important weight for energetically balance.par This paper presents, in an analytical and graphical manner, the computational tools needed for domestic hot water piping system behavior characterization in different functional and structural assumptions.

  18. Water: Too Precious to Waste.

    Science.gov (United States)

    National Geographic World, 1983

    1983-01-01

    Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)

  19. Collection of domestic waste. Review of occupational health problems and their possible causes

    DEFF Research Database (Denmark)

    Poulsen, O M; Breum, N O; Ebbehøj, N; Hansen, Åse Marie; Ivens, U I; van Lelieveld, D; Malmros, P; Matthiasen, L; Nielsen, B H; Nielsen, E M

    1995-01-01

    During the last decade, a growing interest in recycling of domestic waste has emerged, and action plans to increase the recycling of domestic waste have been agreed by many governments. A common feature of these plans is the implementation of new systems and equipment for the collection of domestic waste which has been separated at source. However, only limited information exists on possible occupational health problems related to such new systems. Occupational accidents are very frequent among ...

  20. Reduction of the waste from domestic production of the orange

    International Nuclear Information System (INIS)

    The research subject is (reduction of the waste from domestic production of orange) we find there is a lot of wastage after harvest, because the process of packaging, loading, transportation, and store is not adequate. The purpose of this research is to solve this problem of wastage by following a number of steps after harvesting and pre-harvest process. This process is called COLD CHAIN. Cold chain is: cold store in production place, cold vehicles for transportation, cold room in the market, cold car for distribution, cold and freezer refrigerator home. After adopting the cold chain we achieved the following results: orange wastage is reduced, the orange quality improved. (Author)

  1. Bonding material containing ashes after domestic waste incineration for cementation of radioactive waste

    International Nuclear Information System (INIS)

    It is known that cement minerals hydration is accompanied with heat emission. Heat of hardening influences formation of a cement compound structure and its properties. It is important to reduce the heat quantity at continuous cementation of waste and filling of compartments of a repository or containers by a cement grout. For reduction of heating, it is necessary to use cement of mineral additives (fuel ashes, slag and hydraulic silica). Properties of ashes after domestic waste incineration can be similar to ones of fly fuel ashes. However, ash after domestic waste incineration is toxic industrial waste as it contains toxic elements (As, Cd, Hg, Pb, Sb, Zn). Utilization of secondary waste (slag and ash) of combustion plants is an important environmental approach to solving cities' issues. Results of the research have shown that ashes of combustion plants can be used for radioactive waste conditioning. Co-processing of toxic and radioactive waste is ecologically and economically effective. At SIA 'Radon', experimental batches of cement compositions are used for cementation of oil containing waste. (authors)

  2. Inorganic chemicals in domestic water of the United Arab Emirates.

    Science.gov (United States)

    Rizk, Zeinelabidin S

    2009-02-01

    The concentration of selected inorganic chemicals was determined for 396 samples of bottled water, desalinated water, and groundwater used for drinking and domestic purposes in the United Arab Emirates (UAE). The objective of this study was to compare the concentrations of inorganic chemicals in different domestic water types used in the UAE with the World Health Organization (WHO) limits for drinking water. Results of the present study revealed a wide variation in the concentrations of major, minor, and trace inorganic chemicals in domestic water of the UAE. For example, the bottled water sold for drinking is depleted in major ions and the total dissolved solids (TDS) in some brands do not exceed 100 mg/l. On the other hand, some of the domestic water used may contain as much as 3,000 mg/l TDS, which is above the WHO recommended limit for drinking water (500-1,500 mg/l TDS). Similarly, while bottled water is almost free of trace ions and minor constituents, some natural groundwater may have concentrations higher than the WHO recommended limits for drinking water. The cause of this variation is related to the different water sources and the large number of companies producing and distributing drinking and domestic water. Moreover, it is clear that the current controls on domestic water quality in some areas, namely conformance of pH and electrical conductivity measurements with prescribed ranges of values, are currently inadequate. These two parameters are not enough to judge if water is suitable for drinking or not and some consumers may receive domestic water of uncertain quality. PMID:18266056

  3. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems.

    OpenAIRE

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.In this thesis the possibilities are presented for fixed-film post-treatment of anaerobically digested domestic sewage and water reconditioning in aquacultural water recirculation systems. Emphasis is put on ...

  4. Waste water treatment by flotation

    OpenAIRE

    Camelia Badulescu; Lorand Toth; Romulus Sarbu

    2005-01-01

    The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues), food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, ...

  5. Socioeconomic differentials and availability of domestic water in South Africa

    Science.gov (United States)

    Dungumaro, Esther W.

    The past few decades has seen massive efforts to increasing provision of domestic water. However, water is still unavailable to many people most of them located in sub-Saharan Africa, South Asia and East Asia. Furthermore, availability of water varies greatly both spatially and temporary. While other people pay so dearly for domestic water others have an easy access to adequate clean water and sanitation. Accessibility and affordability of domestic water and sanitation is determined by a great variety of factors including socioeconomic status of households. The main objective of the paper is to inform on factors which need to be taken into account when coming up with projects to provide domestic water. It is more critical when the issue of water pricing comes into the equation. Water pricing has many facets, including equity, willingness to pay and affordability. In this premise, it is deemed important to understand the socioeconomic characteristics of the people before deciding on the amount of money they will have to pay for water consumption. It is argued that understanding people’s socioeconomic situation will greatly help to ensure that principles of sustainability and equity in water allocation and pricing are achieved. To do so, the paper utilized 2002 South Africa General Household Survey (GHS), to analyze socioeconomic variables and availability of domestic water. Analysis was mainly descriptive. However, logistic regression analysis was also utilized to determine the likelihood of living in a household that obtain water from a safe source. The study found that there is a strong relationship between availability of domestic water and socioeconomic conditions. Economic status, household size and to a lesser extent gender of head of household were found to be strong predictors of living in a household which obtained water from a safe source. The paper recommends that needs and priorities for interventions in water provision should take into account socioeconomic status of households.

  6. The domestic wastes incinerators; Les incinerateurs d'ordures menegares: quels risques? quelles politiques?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-01

    This document presents the opinion of the Committee of Prevention and Precaution (CPP), on the domestic wastes incinerators, in the framework of the global wastes policy. The seven chapters detail and bring advices on the following topics: the elements which are going in and out of the incinerators, the technical processes, the occupational activities and the risks bound to the incinerators use, the transfer modes towards the different environmental areas, the exposure estimation, the risks of people living near the domestic wastes incinerators compared to the other concerning a cancer development, the legislation concerning the domestic wastes and the social acceptability of the incinerators. (A.L.B.)

  7. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    International Nuclear Information System (INIS)

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  8. Preliminary ECLSS waste water model

    Science.gov (United States)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  9. Solid Wastes and Water Quality.

    Science.gov (United States)

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  10. Ecological and economical importance of waste water treatment

    OpenAIRE

    Alias, Naser Ibraheem

    2011-01-01

    Water resources were one of the environmental factors which reacted with ocean, affected by climatic, geological changes, pollution phenomenon, all water in nature component suspended dissolved matter in different quantity, that waste water in every kinds as domestic, industrial, agricultural and others contains to additional pollution matter, these were byproducts of human activities, these several wasters caused water pollution, depended this pollution on degree of pollution concentration; ...

  11. Design package for solar domestic hot water system

    Science.gov (United States)

    1980-01-01

    The initial design of a solar domestic hot water system is considered. The system performance specification and detailed design drawings are included. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished site data acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  12. Feasibility of biomass domestic water heating: a case study

    International Nuclear Information System (INIS)

    This paper describes a feasibility study of a biomass-powered hot water heater for domestic or small-scale use. A biomass reactor was designed and built to serve individuals at a golf course in Florida. The study found small-scale biomass reactor-powered heat exchangers to be useful as retrofitted preheaters to existing home water heating systems. (Author)

  13. Domestic Hot Water Usage in Hotels; Tappvarmvattenanvaendning paa hotell

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Stefan; Werner, Sven [FVB Sverige AB, Vaesteraas (Sweden); Sandberg, Martin; Wahlstroem, Aasa [Swedish National Testing and Research Inst., Boraas (Sweden)

    2004-06-01

    Historically, design curves for domestic hot water, have been well sized and therefore also the components oversized. The Swedish district heating companies have noticed this and some companies replace large valves with customer-required valves, which give several advantages. There are several reasons why valves and heat exchangers can be customer-required and still the customers demand for hot water comfort can be fulfilled. The domestic hot water flow is composed, the taps are often short, large simultaneous taps are not very likely. Also, the dimensioning flows occur in the winter period, while the components are dimensioned for the summer case. The water pipes level off temporary temperature drops and the user seldom notices these because water with 55 deg C is not used in the tap. For residential buildings there are dimensioning recommendations on domestic hot water flow, but not for hotels. The purpose of this project has been to evaluate the domestic hot water use in relation to size and number of occupied beds. If the patterns of the chosen hotels coincide regarding to the sizes, dimensioning curves for domestic hot water use can be suggested. They can be used when hotels, or buildings with the same use pattern, are being built or restored. Measurements on 3 hotels with different sizes have been made. The hotels have 36, 52 and 158 rooms. The hotels are situated in the cities of Boraas and Kinna in Sweden. A short period of measurements from another hotel in the city of Gaevle (199 rooms) has also been included in this project. The measurements show that large hot water taps in hotels are rare and short. For the hotels, relative, cumulative relative frequencies and likely extreme values have been estimated. For residential buildings, The Swedish District Heating Association have recommendations for dimensioned domestic hot water flows. Formerly, these recommendations have been levelled so a cumulative relative frequency of 1 %, is reached, i.e. 99 % of all hot water taps are below this flow. The new recommended dimensioning curve for residential buildings involve a cumulative relative frequency of 7 %. This can not be directly transferred to hotels due to variations in number of occupied beds during the period of measurements. This project has shown that maximum domestic hot water flow not necessarily occurs when the hotel is fully occupied. Instead, it indicates likely maximum flows for the three hotels. These recommendations are for heat exchangers and primary valves dimensioning. The water pipes in the houses are included in a special dimensioning.

  14. Fibre reinforced concrete using domestic waste plastics as fibres

    Directory of Open Access Journals (Sweden)

    R. Kandasamy

    2011-03-01

    Full Text Available Fibre Reinforced Concrete (FRC is a composite material consisting of cement based matrix with an ordered or random distribution of fibre which can be Steel, Nylon, Polythene etc. The addition of steel fibre increases the properties of concrete, viz., flexural strength, impact strength and shrinkage properties to name a few. A number of papers have already been published on the use of steel fibres in concrete and a considerable amount of research has been directed towards studying the various properties of concrete as well as reinforced concrete due to the addition of steel fibres. Hence, an attempt has been made in the present investigations to study the influence of addition of polythene fibers (domestic waste plastics at a dosage of 0.5% by weight of cement. The properties studied include compressive strength and flexural strength. The studies were conducted on a M20 mix and tests have been carried out as per recommended procedures of relevant codes. The results are compared and conclusions are made.

  15. The transfer of radon from domestic water to indoor air

    International Nuclear Information System (INIS)

    Theoretical and experimental literature dealing with the release of radon from water to air is reviewed and synthesized. Primary emphasis is placed on releases from domestic water supplies to indoor air within the context of a general indoor radon problem. The widely used assumption of 1 rhoCi/L increment in indoor air per 10 000 rhoCi/L in the water supply is valid, but regional and individual variations are important

  16. Effect of Domestic Waste Leachates on Quality Parameters of Groundwater

    Directory of Open Access Journals (Sweden)

    John Jiya MUSA

    2014-02-01

    Full Text Available Water is an elixir of life. Percolating groundwater provides a medium through which wastes particularly organics can undergo degradation into simpler substances through biochemical reactions involving dissolution, hydrolysis, oxidation and reduction processes. Ground water samples in and around dumpsite and landfills located in Kubuwa were studied to assess the effect of wastewater leachates on groundwater resources in the particular area. Groundwater samples were collected from 5 different bore-wells in and around relative distances from dumpsites. EC values ranged between 30 and 138 µS/cm, TDS ranged between 95 mg/L and 120 mg/L, SS ranged between 10 and 23 mg/L while that of the evening ranged between 11 and 15 mg/L, nitrate values ranged between 0.18 to 0.80 mg/L for the early morning samples while the late evening samples which ranged between 0.25 and 0.43 mg/L, while concentration of Sulphate in the morning water sample ranged between 168 and 213 mg/L while that of the evening ranged between 20 and 45 mg/L. The government of the Federal Republic of Nigeria should create landfills and dumpsites far away from residential homes and better still recycling plants should be put in place to recycle the various forms of waste products from homes.

  17. Prototype solar domestic hot water systems

    Science.gov (United States)

    1978-01-01

    Construction of a double wall heat exchanger using soft copper tube coiled around a hot water storage tank was completed and preliminary tests were conducted. Solar transport water to tank potable water heat exchange tests were performed with a specially constructed test stand. Work was done to improve the component hardware and system design for the solar water heater. The installation of both a direct feed system and a double wall heat exchanger system provided experience and site data to enable informative decisions to be made as the solar market expands into areas where freeze protection is required.

  18. Sorting and recycling of domestic waste. Review of occupational health problems and their possible causes

    DEFF Research Database (Denmark)

    Poulsen, O M; Breum, N O; Ebbehøj, N; Hansen, Åse Marie; Ivens, U I; van Lelieveld, D; Malmros, P; Matthiasen, L; Nielsen, B H; Nielsen, E M

    1995-01-01

    In order to reduce the strain on the environment from the deposition of waste in landfills and combustion at incineration plants, several governments throughout the industrialized world have planned greatly increased recycling of domestic waste by the turn of the millennium. To implement the plans, new waste recycling facilities are to be built and the number of workers involved in waste sorting and recycling will increase steadily during the next decade. Several studies have reinforced the hypo...

  19. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up the hot-water tank from the top and the water volume heated by the auxiliary energy supply system is fitted to the hot-water consumption and consumption pattern. In periods with a large hot-water demand,...

  20. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  1. Cooling performance of R510A in domestic water purifiers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Jung; Lee, Yo Han; Jung, Dong Soo [Inha University, Incheon (Korea, Republic of)

    2010-04-15

    Cooling performance of R510A is examined both numerically and experimentally in an effort to replace HFC134a in the refrigeration system of domestic water purifiers. Although the use of HFC134a is currently dominant, it is being phased out in Europe and most developed countries due to its high potential contribution to global warming. To solve this problem, cycle simulation and experimental measurements are conducted with a new refrigerant mixture of 88%RE170/12%R600a using actual domestic water purifiers. This mixture has been recently numbered and listed as R510A by ASHRAE. Test results show that, due to the small internal volume of the refrigeration system of the domestic water purifiers, system performance with R510A is greatly influenced by the amount of charge. With the optimum charge amount of 20 to 21 g, approximately 50% that of HFC134a, the energy consumption of R510A is 22.3% lower than that of HFC134a. The compressor discharge temperature of R510A is 3.7 .deg. C lower than that of HFC134a at the optimum charge. Overall, R510A, a new, long term, and environmentally safe refrigerant, is a good alternative for HFC134a. Furthermore, it requires only minor changes in the refrigeration system of the domestic water purifiers

  2. Waste water. Radioactivity total determination

    International Nuclear Information System (INIS)

    Total radioactivity measurement of waste water, the method is applicable for activity higher or equal to 10-4?Ci/ml. Volatile elements, radioelements emitting low energy beta or only gamma rays are not detected

  3. Radiation treatment of waste water

    International Nuclear Information System (INIS)

    Indiscriminate decomposition of organics in oxygenated waste water to carbon dioxide and water can be attained by strong active species produced by water radiolysis. The G-values of decomposition, COD reduction, and TOC reduction range from 1 to 3. The radiation treatment of thousands of tons of waste water now can be done daily by use of a high-power electron accelerator. While reduction of radiation energy for waste-water treatment is still the key to the technology, the combination of radiation treatment with a conventional water-treatment process, such as activated sludge treatment, co-precipitation, and ozonation, is effective for the purpose and is able to remove non-degradable organics by a conventional process alone. The present paper describes the achievement in JAERI along these lines and indicates that economics and technology are no longer a prohibiting factor of radiation processing, but a balancing factor to the advantage of new processing. (author)

  4. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  5. Space, Identity and Health Risks: a study of domestic waste in Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Aderemi Suleiman Ajala

    2011-10-01

    Full Text Available Poor waste management has characterized Ibadan’s modern and historical identity.  As a consequence, residents of Ibadan (indigenes hold diverse views about the city's image, while non-indigenes label it "filthy" and "dirty".  These perceptions, spatial and cultural, are deep rooted, intertwining with the political and cultural plane of Nigerian society. A distinction between “self” and “others” is seen to mark a discourse and counter discourse in the perception of health risks associated with domestic waste in the Ibadan.  Through survey and descriptive ethnography, our paper examines the nature and extent of domestic waste in Ibadan, as a physical, community and psychological reality, where we seek to explain how generation and poor waste management  impacts on these spaces and the very mechanics of identity. Different perceptions of health risks are observed as well the vulnerability to diseases associated with domestic waste and poor hygiene, bringing into play the socioeconomic variables and residential patterns which constitute the daily reality of this city.  Our study establishes that the increase in urban population, the low economic status, the indiscriminate setting up of artisans’ shops or outlets and the overall inability of government agencies to monitor the menace of domestic waste and its attendant health risks, are central factors to the problem generically deemed one of “waste”.  

  6. Collection of domestic waste. Review of occupational health problems and their possible causes

    DEFF Research Database (Denmark)

    Poulsen, O M; Breum, N O

    1995-01-01

    During the last decade, a growing interest in recycling of domestic waste has emerged, and action plans to increase the recycling of domestic waste have been agreed by many governments. A common feature of these plans is the implementation of new systems and equipment for the collection of domestic waste which has been separated at source. However, only limited information exists on possible occupational health problems related to such new systems. Occupational accidents are very frequent among waste collectors. Based on current knowledge, it appears that the risk factors should be considered as an integrated entity, i.e. technical factors (poor accessibility to the waste, design of equipment) may act in concert with high working rate, visual fatigue due to poor illumination and perhaps muscle fatigue due to high work load. Musculoskeletal problems are also common among waste collectors. A good deal of knowledge has accumulated on mechanical load on the spine and energetic load on the cardio-pulmonary system in relation to the handling of waste bags, bins, domestic containers and large containers. However, epidemiologic studies with exposure classification based on field measurement are needed, both to further identify high risk work conditions and to provide a detailed basis for the establishment of occupational exposure limits for mechanical and energetic load particularly in relation to pulling, pushing and tilting of containers. In 1975, an excess risk for chronic bronchitis was reported for waste collectors in Geneva (Rufèner-Press et al., 1975) and data from the Danish Registry of Occupational Accidents and Diseases also indicate an excess risk for pulmonary problems among waste collectors compared with the total work force. Surprisingly few measurements of potentially hazardous airborne exposures have been performed, and the causality of work-related pulmonary problems among waste collectors is unknown. Recent studies have indicated that implementation of some new waste collection systems may result in an increased risk of occupational health problems. High incidence rates of gastrointestinal problems, irritation of the eye and skin, and perhaps symptoms of organic dust toxic syndrome (influenza-like symptoms, cough, muscle pains, fever, fatigue, headache) have been reported among workers collecting the biodegradable fraction of domestic waste. The few data available on exposure to bio-aerosols and volatile compounds have indicated that these waste collectors may be simultaneously exposed to multiple agents such as dust containing bacteria, endotoxin, mould spores, glucans, volatile organic compounds, and diesel exhaust. Several studies have reported similar health problems as well as high incidence rates of pulmonary disease among workers at plants recycling domestic waste.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. A Financial, Environmental and Social Evaluation of Domestic Water Management Options in the West Bank, Palestine:

    OpenAIRE

    Nazer, D.W.; Siebel, M.A.; Zaag, P., van der; Mimi, Z.; Gijzen, H.J.

    2010-01-01

    Water is one of the most valuable natural resources in the West Bank, Palestine. Due to its limited availability, it is a resource that needs particular protection. Although agriculture consumes most of the water (70%) in the West Bank, the domestic water supply is strategically not less important. It is the aim of this study to evaluate domestic water management options suitable for Palestinian conditions that contribute to achieving water sufficiency in the domestic water use in the house o...

  8. Patterns, structures and regulations of domestic water cycle systems in China

    Science.gov (United States)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system management efforts typically fail in China, because the approach is generally narrowly-focused and fragmented. This paper put forward a total-process control framework following the water and pollutants (or nutrients) flows along the dualistic domestic water cycle process. Five key objectives of domestic water cycle system regulation are identified including water use safety, water use equity, water saving, wastewater reduction and nutrient recycling. Comprehensive regulatory framework regarding administrative, economic, technical and social measures is recommended to promote sustainable domestic water usage and demand management. Considering the relatively low affordability in rural area, economic measures should be mainly applied in urban domestic water systems and metropolitan domestic water systems. Engineering or technological measures which are suitable to the three domestic water cycle systems are discussed respectively.

  9. Waste water and sewage sludge

    International Nuclear Information System (INIS)

    The monitoring of waste water and sewage sludge within the framework of environmental radioactivity monitoring is based on samples taken from sewage treatment plants and from sewer systems. Its main purpose is surveillance of emissions from potential polluters, making use of the fact that most of the radioactive nuclides are discharged with the waste water, and detection is more easy with large amounts of waste water available for treatment and sampling, (enrichment of ? and ? activities and of I-131 in large volumina). Municipal sewage treatment plants need not be generally monitored for radionuclides in the sewage sludge destined for use in agriculture, as emissions of long-lived isotopes are extremely low. (orig./DG)

  10. SMUD`s Solar Domestic Hot Water Program

    Energy Technology Data Exchange (ETDEWEB)

    Murley, C.S.; Osborn, D.E. [Sacramento Municipal Utility District, CA (United States)

    1995-10-01

    The Sacramento Municipal Utility District (SMUD) has recently completed the 3rd year of its aggressive Solar Domestic Hot Water (SDHW) Program, part of the authors efforts to reduce the peak demand and energy impacts of electric water heating. Over 2,800 new residential SDHW systems have been installed since May, 1992 with about 1,000 installations in 1994. Cumulative energy savings of 36 M kWh and 5 MW in summer capacity savings have been acquired to date. The utility`s goal has been 12,500 systems by the year 2000, a 34% market penetration.

  11. Domestic Separation and Collection of Municipal Solid Waste: Opinion and Awareness of Citizens and Workers

    Directory of Open Access Journals (Sweden)

    Giovanni De Feo

    2010-05-01

    Full Text Available The state of the art on Municipal Solid Waste (MSW management is based on the domestic separation of materials produced. After domestic separation, the resident has to transfer the separated materials to the MSW manager through the hands of collection workers. It is exactly at this stage that an end-use product changes its status and property becomes waste. This paper analyzes and compares the opinions and awareness of citizens and kerbside collection workers on this subject by means of two structured questionnaires in the city of Mercato San Severino (about 22,000 people, in Southern Italy.

  12. Domestic hot water storage: Balancing thermal and sanitary performance

    International Nuclear Information System (INIS)

    Thermal stratification within hot water tanks maximises the availability of stored energy and facilitates optimal use of both conventional and renewable energy sources. However, stratified tanks are also associated with the proliferation of pathogenic bacteria, such as Legionella, due to the hospitable temperatures that arise during operation. Sanitary measures, aimed at homogenising the temperature distribution throughout the tank, have been proposed; such measures reduce the effective energy storage capability that is otherwise available. Here we quantify the conflict that arises between thermodynamic performance and bacterial sterilisation within 10 real world systems. Whilst perfect stratification enhances the recovery of hot water and reduces heat losses, water samples revealed significant bacterial growth attributable to stratification (P<0.01). Temperature measurements indicated that users were exposed to potentially unsanitary water as a result. De-stratifying a system to sterilise bacteria led to a 19% reduction in effective hot water storage capability. Increasing the tank size to compensate for this loss would lead to an 11% increase in energy consumed through standing heat losses. Policymakers, seeking to utilise hot water tanks as demand response assets, should consider monitoring and control systems that prevent exposures to unsanitary hot water. - Highlights: • Domestic hot water tanks are a potential demand side asset for power networks. • A preference for bacterial growth in stratified hot water tanks has been observed. • Temperatures in base of electric hot water tanks hospitable to Legionella. • Potential exposures to unsanitary water observed. • De-stratifying a tank to sterilise leads to reduced energy storage capability

  13. Waste Water Disposal Design And Management IV

    International Nuclear Information System (INIS)

    This book introduces biological waste water treatment with basic theory and activated sludge process, which includes chemical reaction engineering with reaction velocity and mass balance, an effector, characteristic of water treatment effector and biological waste water disposal such as flow pattern and tracer test. This is biological theory of steady on waste water treatment, design and management.

  14. Mitigating the impact of swimming pools on domestic water demand

    Scientific Electronic Library Online (English)

    L, Fisher-Jeffes; G, Gertse; NP, Armitage.

    Full Text Available South Africa is a water-scarce country where the sustainable provision of water to its citizens is one of the most significant challenges faced. A recent study in Cape Town, South Africa, investigated the impact of residential swimming pools on household water demand and found that, on average, the [...] presence of a swimming pool increased water demand by 8.85 k?/ month or 37.36%. Should cities in South Africa wish to develop in a water sensitive manner - where water is treated as a scarce resource with economic value in all its competing uses - it will be vital to understand the impact of swimming pools on residential water demand. Should there be a significant increase in water demand attributable to the presence of a swimming pool on a property, it would highlight the need to consider whether it is acceptable for properties to use municipal water to fill them or top them up - especially in water-scarce/stressed areas. This paper describes a study undertaken in the Liesbeek River catchment, Cape Town, to investigate the impact that swimming pools have on domestic water demand. The results support the contention that properties with swimming pools use significantly more water than those without. This study estimated the additional demand resulting from swimming pools at between 2.2-2.4 k?/month or 7-8% of total water demand. The data also indicate that the presence of a swimming pool correlates with a higher indoor demand. The study shows the need to reduce the impact of swimming pools. This could include: pool covers to reduce evaporation, the recycling of backwash water, the use of rainwater to top up swimming pools, water use surcharges and, finally, appropriate regulation and enforcement to prevent the use of municipal water in swimming pools - especially during droughts.

  15. Simultaneous treatment of SO2 containing stack gases and waste water

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D. (inventors)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  16. Experimental Analysis of Integrated System of Membrane Distillation for pure water with solar domestic hot water

    OpenAIRE

    Muhammad ASIM

    2013-01-01

    In GCC countries, especially in UAE desalination of sea water is considered to be one of the most effective and strategic alternative for satisfying the current and future demand of water for domestic purposes. The depletion of ground water aquifers, rapid industrial development and increase of urban population in UAE lead to tremendous increase in fresh water demand during past decade. Although, desalinated fresh water is supplied to the consumers by local municipalities, people in the regio...

  17. The estimation of radiological impact from the disposal of radionuclides with domestic and commercial wastes

    International Nuclear Information System (INIS)

    In the UK, limited quantities of radionuclides are disposed of with non-radioactive domestic and commercial wastes under the terms of Exemption Orders or Authorisations granted by the Radiochemical Inspectorate. This report presents a methodology and basis for the calculation of individual and collective doses to workers and to members of the public from such disposals. (author)

  18. Assessment of U.S. domestic capacity for producing reactor-grade thorium dioxide and controlling associated wastes and effluents

    International Nuclear Information System (INIS)

    Demand for reactor-grade ThO2 is likely to increase as a result of the growing interest in the application of the thorium-uranium fuel cycle to nuclear reactors. The wastes and effluents identified with the production of ThO2 from monazite sand are waste water, tailings, dust, smoke and gas, and radionuclides (primarily, 232Th and 226Ra). There are currently an estimated 1,500 short tons of crude thorium hydroxide byproduct that can be readily converted to reactor-grade ThO2. The present maximum domestic capacity for producing reactor-grade ThO2 is about 65 to 100 ton/year. The current domestic capacity for producing reactor-grade ThO2 is sufficient to sustain a thorium-uranium fuel cycle of up to 11,000 MW(e) without recycling thorium, depending on the mix of reactor types selected. This range can be increased to 28,000 MW(e) by expanding ThO2 purification capacity to match the current production rate of crude thorium byproduct. Potential constraints identified which may impact the expansion of domestic ThO2 production are (1) uncertainty in the marketplace, (2) limited available thorium for production of reactor-grade ThO2, (3) limited production capacity, and (4) mounting public concern over current levels of radioactivity detected at various points in the production process of thorium and uranium products

  19. Domestic water and sanitation as water security: monitoring, concepts and strategy.

    Science.gov (United States)

    Bradley, David J; Bartram, Jamie K

    2013-11-13

    Domestic water and sanitation provide examples of a situation where long-term, target-driven efforts have been launched with the objective of reducing the proportion of people who are water-insecure, most recently through the millennium development goals (MDGs) framework. Impacts of these efforts have been monitored by an increasingly evidence-based system, and plans for the next period of international policy, which are likely to aim at universal coverage with basic water and sanitation, are being currently developed. As distinct from many other domains to which the concept of water security is applied, domestic or personal water security requires a perspective that incorporates the reciprocal notions of provision and risk, as the current status of domestic water and sanitation security is dominated by deficiency This paper reviews the interaction of science and technology with policies, practice and monitoring, and explores how far domestic water can helpfully fit into the proposed concept of water security, how that is best defined, and how far the human right to water affects the situation. It is considered that they fit well together in terms both of practical planning of targets and indicators and as a conceptual framework to help development. The focus needs to be broad, to extend beyond households, to emphasize maintenance as well as construction and to increase equity of access. International and subnational monitoring need to interact, and monitoring results need to be meaningful to service providers as well as users. PMID:24080628

  20. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  1. Fermentative Production of Ethanol fuel from Domestic Waste by Pichia stipitis

    Directory of Open Access Journals (Sweden)

    Modugu P

    2013-05-01

    Full Text Available Production of Ethanol fuel from the garbage/kitchen waste was carried out with the main purpose of converting the domestic waste into a useful material. The conversion of food waste or garbage by acid hydrolysis was carried out to obtain fermentable sugars, which was converted into ethanol by fermentation process using Pichia stipitis. The present study indicated that at 36 h of incubation resulted in utilization of 29 g/L of glucose with yield of 9.2 g/L ethanol. Compared to various sugars the glucose resulted in the production of ethanol.

  2. Distribution of coliform bacteria in waste water

    OpenAIRE

    Chandan Kumar Bahura; Dau Lal Bohra; Vikas Modasiya

    2012-01-01

    Biological activity of water can be apparently judged by the colonization of bacteria (microbes). In order to find out the extent of pollution and the relationship between inorganic matters and microbiota, a quantitative and qualitative analysis of bacteria in various types of sewage waters, namely sewage water by the residential colonies (group I), industrial waste water (group II), sewage treatment hub (group III), unorganized collected waste water (group IV) and old residential waste colle...

  3. Willingness to Pay for Domestic Water Service Improvements in Selangor, Malaysia: A Choice Modeling Approach

    OpenAIRE

    Mohd. Rusli Yacob; Alias Radam; Zaiton Samdin

    2011-01-01

    Abstract: The tasks and responsibilities of domestic water service management in Malaysia are handled by various government agencies. Sufficient water service and resources management is required for sustainable water resources conservation. In order to realized water resource conservation, economic effectiveness of water utilization (consumers), maintenance of water quality supply (source of water supply) and efficiency in allocating water resources (agencies) ne...

  4. Ground water share in supplying domestic water in Khartoum state

    International Nuclear Information System (INIS)

    In this research study of the sources of groundwater from wells and stations that rely on the national authority for urban water in the state of Khartoum, this study includes three areas, namely the Khartoum area, North Khartoum and Omdurman area. This research evaluate and identify the sources of groundwater from wells and stations and find out the productivity of wells and underground stations. The study period were identified from 2004 to 2008 during this commoners were Alabaralgeoffip Knowledge Production and stations from the water. The methods used in this study was to determine the sources of groundwater from wells and stations in the three areas with the knowledge of the percentage in each year and the total amount of water produced from wells and stations in Khartoum, North Khartoum and Omdurman it is clear from this study that the percentage of productivity in the annual increase to varying degrees in floater from 2004 to 2008 and also clear that the Omdurman area depends on groundwater wells over a maritime area of stations based on stations with more and more consumption of Khartoum and the sea. Also been identified on the tank top and bottom of the tank where the chemical properties and physical properties after the identification of these qualities and characteristics have been identified the quantity and quality of water produced from wells and stations. (Author)

  5. Caffeine and pharmaceuticals as indicators of waste water contamination in wells

    Science.gov (United States)

    Seiler, R.L.; Zaugg, S.D.; Thomas, J.M.; Howcroft, D.L.

    1999-01-01

    The presence of caffeine or human pharmaceuticals in ground water with elevated nitrate concentrations can provide a clear, unambiguous indication that domestic waste water is a source of some of the nitrate. Water from domestic, public supply, and monitoring wells in three communities near Reno, Nevada, was sampled to test if caffeine or pharmaceuticals are common, persistent, and mobile enough in the environment that they can be detected in nitrate-contaminated ground water and, thus, can be useful indicators of recharge from domestic waste water. Results of this study indicate that these compounds can be used as indicators of recharge from domestic waste water, although their usefulness is limited because caffeine is apparently nonconservative and the presence of prescription pharmaceuticals is unpredictable. The absence of caffeine or pharmaceuticals in ground water with elevated nitrate concentrations does not demonstrate that the aquifer is free of waste water contamination. Caffeine was detected in ground water samples at concentrations up to 0.23 ??g/L. The human pharmaceuticals chlorpropamide, phensuximide, and carbamazepine also were detected in some samples.

  6. Departmental plans of domestic wastes management - evaluation 2002; Plans departementaux d'elimination des dechets menager assimiles - bilan 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    The departmental plans of domestic wastes management are official documents which manage the actions needed to realize the legislative and regulation objectives concerning the domestic wastes and related wastes. A first evaluation has been realized in 1997 for 47 edited plans. In the context of the new wastes policy a new evaluation has been realized by the ADEME in 2002 for 98 plans. It provides the methodology of the study, the analysis of the plans, the sites and management of wastes, economic data, the equipment and investments. (A.L.B.)

  7. Solar domestic water heating, Villa Providence, Shediac, N. B

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, A.

    1985-03-01

    The report describes a project to provide solar water heating for Villa Providence, a nursing home in Shediac, New Brunswick, funded partially by the Conservation and Renewable Energy Demonstration program. Most of the emphasis, to date, in the field of solar heat has been applied to space heating. This had not proven to be efficient in Eastern Canada, as too many collectors are required to be practical and the five most important months of winter are lost, while in the summer months, space heating would not be required. On the other hand, solar heating of domestic hot water could be much more efficient. The system would be in operation during most of the year and would attain an efficiency of almost 90% during the summer months. The solar heating system consisted of 4,271 square feet of solar collectors mounted at a 30 degree angle; a 6,000 gallon hot water storage tank was proposed with an interconnecting system of pipes and electronic controls, double pressure pump and hydropneumatic water tank. Recommendations include selection of a local design company, which would be responsible for the complete project, and budgeting for changes to impractical design concepts. 25 figs.

  8. Domestic water and sanitation as water security: monitoring, concepts and strategy

    OpenAIRE

    David J. Bradley; Bartram, Jamie K

    2013-01-01

    Domestic water and sanitation provide examples of a situation where long-term, target-driven efforts have been launched with the objective of reducing the proportion of people who are water-insecure, most recently through the millennium development goals (MDGs) framework. Impacts of these efforts have been monitored by an increasingly evidence-based system, and plans for the next period of international policy, which are likely to aim at universal coverage with basic water and sanitation, are...

  9. Sorting and recycling of domestic waste. Review of occupational health problems and their possible causes

    DEFF Research Database (Denmark)

    Poulsen, O M; Breum, N O

    1995-01-01

    In order to reduce the strain on the environment from the deposition of waste in landfills and combustion at incineration plants, several governments throughout the industrialized world have planned greatly increased recycling of domestic waste by the turn of the millennium. To implement the plans, new waste recycling facilities are to be built and the number of workers involved in waste sorting and recycling will increase steadily during the next decade. Several studies have reinforced the hypothesis that exposure to airborne microorganisms and the toxic products thereof are important factors causing a multitude of health problems among workers at waste sorting and recycling plants. Workers at transfer stations, landfills and incineration plants may experience an increased risk of pulmonary disorders and gastrointestinal problems. High concentrations of total airborne dust, bacteria, faecal coliform bacteria and fungal spores have been reported. The concentrations are considered to be sufficiently high to cause adverse health effects. In addition, a high incidence of lower back injuries, probably due to heavy lifting during work, has been reported among workers at landfills and incineration plants. Workers involved in manual sorting of unseparated domestic waste, as well as workers at compost plants experience more or less frequent symptoms of organic dust toxic syndrome (ODTS) (cough, chest-tightness, dyspnoea, influenza-like symptoms such as chills, fever, muscle ache, joint pain, fatigue and headache), gastrointestinal problems such as nausea and diarrhoea, irritation of the skin, eye and mucous membranes of the nose and upper airways, etc. In addition cases of severe occupational pulmonary diseases (asthma, alveolitis, bronchitis) have been reported. Manual sorting of unseparated domestic waste may be associated with exposures to large quantities of airborne bacteria and endotoxin. Several work functions in compost plants can result in very high exposure to airborne fungal spores and thermophilic actinomycetes. At plants sorting separated domestic waste, e.g. the combustible fraction of waste composed of paper, cardboard and plastics, the workers may have an increased risk of gastrointestinal symptoms and irritation of the eyes and skin. At such plants the bioaerosol exposure levels are in general low, but at some work tasks, e.g. manual sorting and work near the balers, exposure levels may occasionally be high enough to be potentially harmful. Workers handling the source-sorted paper or cardboard fraction do not appear to have an elevated risk of occupational health problems related to bioaerosol exposure, and the bioaerosol exposure is generally low.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. EnviroAtlas - Portland, ME -Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community domestic water use was calculated using local domestic water use per capita in gallons of water per day...

  11. Design a Close Loop Cooling System for EA-P1 and Its Auxiliaries to Prevent Loss of Domestic Water

    International Nuclear Information System (INIS)

    Any one of four machines i.e. EA-P1, EA-J4, EA-J5 and EA-J6 may be used to develop vacuum in water box side of main condenser in KANUPP. As per design and operating experience, most efficient one is EA-P1. But since it consumes ample quantity of domestic water which is already very short at KANUPP (even tankers are purchased), its use is avoided. If water used for its cooling is prevented from going to waste and is recycled. EA-P1 operation may be resumed thereby improving efficiency of condenser. We made a close loop for EA-P1 in order to prevent water from going to waste. For this purpose we suggested two close loop schemes and discuss their advantages and drawbacks. Feasibility of both schemes is present in this report and efficient one is proposed for installation at KANUPP. (author)

  12. Glucoamylase production from food waste by solid state fermentation and its evaluation in the hydrolysis of domestic food waste

    Directory of Open Access Journals (Sweden)

    Esra Uçkun Kiran

    2014-08-01

    Full Text Available In this study, food wastes such as waste bread, savory, waste cakes, cafeteria waste, fruits, vegetables and potatoes were used as sole substrate for glucoamylase production by solid state fermentation. Response surface methodology was employed to optimize the fermentation conditions for improving the production of high activity enzyme. It was found that waste cake was the best substrate for glucoamylase production. Among all the parameters studied, glucoamylase activity was significantly affected by the initial pH and incubation time. The highest glucoamylase activity of 108.47 U/gds was achieved at initial pH of 7.9, moisture content of 69.6% wt., inoculum loading of 5.2×105 cells/gram substrate (gs and incubation time of 6 d. The enzyme preparation could effectively digest 50% suspension of domestic food waste in 24 h with an almost complete saccharification using an enzyme dose of only 2U/g food waste at 60°C.

  13. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  14. EnviroAtlas - Domestic Water Demand by 12-Digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes domestic water demand attributes which provide insight into the amount of water currently used for indoor and outdoor residential...

  15. Feasibility analysis of domestic solar water heating systems in Greece

    International Nuclear Information System (INIS)

    The excessive usage of fossil fuels has world-widely caused chain environmental consequences. An interesting solution to this problem is the systematic exploitation of available renewable energy sources, including solar energy. Greece is located in a major geographical region with an abundant and reliable supply of solar energy, even during the winter. In as much, one cannot disregard the significant dependency of the country on imported fuels, since almost 70% of its domestic energy consumption is covered by oil and natural gas imports. Despite the relative local sun abundance, during the last 10 years the local solar collectors market illustrates a sluggish behaviour, in comparison with the impressive numbers of sales during the 1980-1990 decade. At a first glance, such an occurrence characterizes a controversy. In an attempt to find a rational explanation of this peculiar situation, an integrated cost-benefit analysis is carried out taking into consideration the vast majority of the parameters affecting solar thermal energy production cost. The resulting numerical values are then compared with the corresponding ones coming from alternative hot-water production techniques. Accordingly, a quite extensive sensitivity analysis is carried out, in order to demonstrate the impact of the main techno-economic parameters on the fiscal behaviour of contemporary solar hot water production systems. The results obtained not only explain with sufficient accuracy the current local market situation but also demonstrate the specific actions that if realized they may boost solar collector sales in the corresponding local market. (author)

  16. Waste Water Disinfection Utilizing Ultraviolet Light

    OpenAIRE

    C.N. Ibeto; B.O. Mgbenka; N.F. Oparaku

    2011-01-01

    3, NO3, NO2 and NH3 were determined using water analysis kit by Hague while the microbial analysis was carried out using the MacConkey agar plate. The UV disinfection method was found suitable for treatment of waste water. This is obvious since the treated sample of water had lower coliform count than the other waste water samples. The favourable quality of the UV disinfected water was also observed in its improved chemical properties especially ammonia and dissolved oxygen.

  17. BIOLOGICAL NITRIFICATION OF WASTE WATER

    Directory of Open Access Journals (Sweden)

    P. B. N. Lakshmi Devi

    2014-11-01

    Full Text Available Nitrification has been studied extensively as a result of its significance within the biological process and at intervals the necessity for treatment of waste water. In the last decade, the treatment of high ammonical concentration effluents has become a matter of nice interest. Many effluents will contain some hundred milligrams of nitrogen per liter (supernatants from anaerobic digestion, lechates from municipal water, etc. may have specific treatment before utilization them to the plant recycling process. Sometimes this reaction is applied by maintaining robust ammonical concentrations which have the role of inhibiting the nitrite – oxidizing population responsible for the reaction of nitrites into nitrates (final stage of nitrification. However the nitrification methods served as a very important basis for the development of today understands and mathematical models for several waste treatment processes (activated sludge process using biofilm reactors and self – purification in rivers. Often nitrogen removal from sea wastewater is problematic due to the low rate of bacteria concerned. Immobilization is an economical technique to retain slow growing organisms in continuous flow reactors. Immobilized cells can be classified into “naturally” attached cells (biofilms and “artificially” immobilized cells. The simultaneous nitrification and denitrification within the step feeding biological nitrogen removal method were investigated below different inflowing substrate and aeration flow rates. The experimental results showed that there was additionally linear relationship between simultaneous nitrification and denitrification and DO concentration below the conditions of low and high aeration rate.

  18. Investigating the Effectiveness of Ultraviolet (UV) Water Purification as Replacement of Chlorine Disinfection in Domestic Water Supply

    OpenAIRE

    Olaoye; Adedayo Ayodele; Adegbola; Rebecca Adepate

    2012-01-01

    Domestic water supply to residential buildings through hand-dug wells has been widely accepted as a reliable substitute to government owned municipal water supply system in Nigeria. This Paper investigates theeffectiveness of Ultraviolet (UV) Water Sterilizers as a suitable replacement of chlorine disinfection in the removal of microbiological contaminants in domestic water supply. Water from an established contaminated well in Ogbomoso, Nigeria, were subjected, simultaneously and in parallel...

  19. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  20. Features of waste water quality in Zongguan water plant

    OpenAIRE

    Hadi Naba Shakir

    2008-01-01

    This paper takes waste water from Zongguan waterworks as a research object. The waste water was monitored consecutively and found that: the SS of waste water was more than 90 times of which in original water, COD was more than 30 times, and Fe was 58 times. The SS and turbidness showed no linear relation except when they were lower. The SS and Fe accord with linearity relation was better. The difference between waste water that from overhead crane at the beginning and in the end was wide. Alt...

  1. Characterization of domestic wastes incineration clinkers. Study on the possibilities of dioxines transfer in the environment; Caracterisation des machefers d'incineration d'ordures menageres. Etude sur les possibilites de transfert de dioxines vers l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Bartet, B.

    2001-07-15

    The clinkers, resulting from the domestic wastes incineration, contain dioxines. In order to evaluate the possible transfer of these pollutants in the environment, especially towards the underground water, this document brings together data on the dioxines content in clinkers from domestic wastes incineration, other combustion wastes and soils. After a comparison of the dioxines content and the emission factors, the report presents the experimental study on the transfer vectors identification. (A.L.B.)

  2. Onsite Waste Water Treatment System

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Onsite wastewater treatment systems (OWTSs have evolved from the pit privies used widely throughout history to installations capable of producing a disinfected effluent that is fit for human consumption. Although achieving such a level of effluent quality is seldom necessary, the ability of onsite systems to remove settles able solids, floatable grease and scum, nutrients, and pathogens. From wastewater discharges defines their importance in protecting human health and environmental resources. In the modern era, the typical onsite system has consisted primarily of a septic tank and a soil absorption field, also known as a subsurface wastewater infiltration system, or SWIS. In this manual, such systems are referred to as conventional systems. Septic tanks remove most settle able and floatable material and function as an anaerobic bioreactor that promotes partial digestion of retained organic matter. Septic tank effluent, which contains significant concentrations of pathogens and nutrients, has traditionally been discharged to soil, sand, or other media absorption fields (SWISs for further treatment through biological processes, adsorption, filtration, and infiltration into underlying soils. Conventional systems work well if they are installed in areas with appropriate soils and hydraulic capacities; designed to treat the incoming waste load to meet public health, ground water, and surface water performance standards; installed properly; and maintained to ensure long-term performance. These criteria, however, are often not met. Only about one-third of the land area in the United States has soils suited for conventional subsurface soil absorption fields. System densities in some areas exceed the capacity of even suitable soils to assimilate wastewater flows and retain and transform their contaminants. In addition, many systems are located too close to ground water or surface waters and others, particularly in rural areas with newly installed public water lines, are not designed to handle increasing wastewater flows.

  3. Waste water from dewatering of peat

    International Nuclear Information System (INIS)

    The influence of waste water from mechanical dewatering of peat was tested on two species of stream invertebrates. We compared the effects of waste water from peat without any chemical treatment, and waste water from peat where one of the following treatments of the peat had preceded dewatering; a: acidification combined with addition of the cationic polymer Zetag 78 FS40, b: addition of aluminium in combination with the anionic polymer Magnafloc E10, c: polymerisation of the peat by acidification and addition of ferrous chloride and hydrogen peroxide. Waste water from Al/Magnafloc and from the polymerisation treatments had a higher content of suspended matter and a higher oxygen demand than those of other treatments. Total metal content of the water from all treatments was higher than in water from non-treated peat. Survival and growth of nymphs of the mayfly Heptagenia fuscogrisa and the stonefly Nemoura cinerea were compared in waste water from the different treatments. In all tests, the waste water was diluted to 5% (volume) with unchlorinated tapwater and pH was between 7.0-8.0 in all treatments during the experiment. The nymphs were fed with birch leaves that had been incubated in natural stream water for one month. Under these conditions, we did not find any significant effect of waste water on either survival or growth of these two species

  4. Spectrographic analysis of waste waters

    International Nuclear Information System (INIS)

    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs

  5. Promising freeze protection alternatives in solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.E.

    1997-12-31

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  6. Feasibility analysis of domestic hot water systems using TRNSYS

    International Nuclear Information System (INIS)

    A study was conducted in which 17 conventional and solar-based domestic hot water (DHW) systems were simulated using the TRYNSYS simulation model, and their results were compared. According to Natural Resources Canada, DHW heating currently accounts for 25 per cent of Canadian residential energy consumption and 25 per cent of Canadian residential greenhouse gas (GHG) emissions. The objective of this simulation study was to investigate the fuel consumption of DHW systems, their GHG emissions and 30-year life cycle costs. Another aspect of the study was to model and analyze the effect of time of use (TOU) electricity pricing which was developed by the Ontario Energy Board (OEB) to provide stable and predictable electricity pricing. TOU electricity pricing also promotes energy conservation. In addition, the TOU electricity price charged per kilowatt-hour changes throughout the day to reflect the changes in cost to produce electricity at different times of the day. The Ontario government plans to equip all homes and businesses with smart meters using TOU pricing by 2010. Therefore, this study also investigated the effects of the TOU feature by optimizing its use in the effort to reduce overall energy costs and greenhouse gas (GHG) emissions. The results revealed that a DHW system with solar pre-heat and electrical back-up is the best system for energy conservation and GHG reduction. The best system in terms of 30-year life cycle cost is a high efficiency DHW system with an on demand modulating gas combo boiler with gray water heat recovery. 23 refs., 7 tabs., 8 figs

  7. TREATMENT OF DOMESTIC WASTEWATER IN SHALLOW WASTE STABILIZATION PONDS FOR AGRICULTURAL IRRIGATION REUSE

    Directory of Open Access Journals (Sweden)

    Valderi Duarte Leite

    2009-12-01

    Full Text Available Waste stabilization ponds are a well established wastewater treatment system being considered by World Health Organization as one of the most appropriated technology for domestic wastewater when agricultural reuse is considered, especially in developing countries. This study was performed in a series of pilot-scale stabilization ponds, being one facultative and three maturation ponds, with depths varying from 0.44 to 0.57 m. The substrate to be treated was composed of a mixture of domestic wastewater and previously anaerobicaly treated leachate. The experimental system was monitored in two different phases, in which the hydraulic retention times were 15 (phase 1 and 10 days (phase 2. Termotolerant coliform removal efficiencies were 3.8 log10 units in both phases while organic matter (BOD5 removal was 87 and 68% for phases 1 and 2, respectively.

  8. Emerging Forms of Social Action in Urban Domestic Water Supply in South Africa and Zimbabwe

    OpenAIRE

    Emmanuel Manzungu; Lewis Jonker; Egness Madaka; Zandile Naka; Ellen Sithole; Vupenyu Dzingirai

    2013-01-01

    This paper compares and contrasts emerging forms of social action in urban domestic water supply in South Africa and Zimbabwe. Both countries represent transitional societies that are facing challenges of providing clean and safe domestic water to the black majority population, which for decades was denied basic social services because of a racist ideology. In the first instance the paper assesses whether there exists a constitutional provision that guarantees the right to water. It then turn...

  9. Effects of a domestic well on assessed performance of a nuclear fuel waste disposal system

    International Nuclear Information System (INIS)

    The Canadian Nuclear Fuel Waste Management Program is using a probabilistic systems assessment code, SYVAC (System Variability Analysis Code), to assess long-term radiological safety of nuclear fuel waste disposal in a hypothetical vault excavated deep in plutonic rock. Initially, we employ a finite element code MOTIF (Model Of Transport In Fractured Porous Media) to simulate the convection of contaminants from the hypothetical vault, through the geosphere containing a well, to the biosphere. Then the results of this detailed research model are used to construct a simplified geosphere submodel (GEONET) for assessment using SYVAC. This paper presents (1) a domestic well as a human intrusion into the nuclear fuel waste disposal vault, (2) the method used to condense the detailed model to the simplified SYVAC geosphere submodel, and (3) results showing, for the particular geological conditions incorporated in these simulations, the consequences of the well on the risk assessment. The results from MOTIF and SYVAC indicate that, for the disposal vault and geological conditions assumed in these cases, human intrusion in the form of a domestic well must be considered in the performance assessment

  10. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    Science.gov (United States)

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  11. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  12. The estimation of radiological impact from the disposal of radionuclides with domestic and commercial wastes

    International Nuclear Information System (INIS)

    In the UK, limited quantities of radionuclides are disposed of with non-radioactive domestic and commercial wastes under the terms of Exemption Orders or Authorisations granted by HMIP (Radioactive Substances). This paper presents a methodology and basis for the calculation of individual and collective doses to workers and to members of the public from such disposals. The results of the analysis of the Radioactive Substances (Smoke Detectors) Exemption Order 1980 is included. The paper also describes the implementation of the methodology on a microcomputer. (author)

  13. Environmental sustainability of waste water ozonation

    OpenAIRE

    Larsen, Henrik Fred; Hansen, Peter Augusto

    2010-01-01

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e.g. pharmaceuticals, heavy metals and endocrine disrupters). As part of this work a holistic based prioritisation among technologies and optimisations have been done. Tools for this prioritisation include li...

  14. Environmental sustainability of waste water ozonation

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    2010-01-01

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e.g. pharmaceuticals, heavy metals and endocrine disrupters). As part of this work a holistic based prioritisation among technologies and optimisations have been done. Tools for this prioritisation include life ...

  15. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    2008-01-01

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project will develop and implement a methodology to compare and prioritize these technologies and optimizations based on a holistic approach. This will be achieved through the use of life cycle assessment (LCA) along...

  16. Environmental sustainability of ozonating municipal waste water

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    2009-01-01

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e.g. pharmaceuticals, heavy metals and endocrine disrupters). As part of this work a holistic based prioritisation among technologies and optimisations is to be done. Tools for this prioritisation include life c...

  17. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  18. Numerical hydraulic modeling of urban waste water collecting systems : Working Project at Chazelles-sur-Lyon, France

    OpenAIRE

    Genty, Stanislas

    2014-01-01

    Urban waste water collecting systems are designed to convey domestic, industrial and storm water. When sizing sewer network, heavy rainfall must be considered to provide the needed hydraulic capacity for collection. Maintenance is also required in order to avoid anomalies such as inflow, infiltration and unusual polluted discharges from Combined Sewer Overflows (CSOs). Inflow and infiltration decrease the treatment yield at the Waste water Treatment Plant (WWTP) and participate in hydraulic o...

  19. Use of Industrial Waste Water for Agricultural Purpose: Pb and Cd in Vegetables in Bikaner City, India

    OpenAIRE

    Rajendra Singh; Verma, R. S.; Yogita Yadav

    2012-01-01

    Shortage of irrigation water resources is leading to the use of domestic and industrial waste water in agriculture. esp. in urban areas. Being contaminated by metals and various toxic chemicals these waste waters leads to the exposure of heavy metals and hazardous chemicals and the subsequent human health hazards through agriculture products and live stocks. Increasing cases of cancer and kidney problems is also related with this aspect. In present study human health risk assessment taken in ...

  20. The potential of Zea mays, Commelina bengelensis, Helianthus annuus and Amaranthus hybridus for phytoremediation of waste water

    OpenAIRE

    Chacha Joseph Sarima; Okong'o Eric Rang’ondi; Kimenyu Phylis Njeri; Oyaro Nathan Mayora

    2012-01-01

    Waste-water from domestic use and from industrial effluent burden the water systems with high levels of heavy metal hence there is need to remove these heavy metals so that the waste water can be recycled for use for household or irrigation. The present study has screened Zea mays (maize), Commelina bengelensis (wondering jew), Helianthus annuus (sunflower) and Amaranthus hybridus (amaranthus) for their ability to bioaccumulate Pb, Cu, Cd and Zn metals. The results obtained show that the H. a...

  1. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2005-01-01

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the...

  2. Waste Water Disinfection Utilizing Ultraviolet Light

    Directory of Open Access Journals (Sweden)

    C.N. Ibeto

    2011-01-01

    Full Text Available 3, NO3, NO2 and NH3 were determined using water analysis kit by Hague while the microbial analysis was carried out using the MacConkey agar plate. The UV disinfection method was found suitable for treatment of waste water. This is obvious since the treated sample of water had lower coliform count than the other waste water samples. The favourable quality of the UV disinfected water was also observed in its improved chemical properties especially ammonia and dissolved oxygen.

  3. Emissions of PCDD/F and PCB from uncontrolled combustion of domestic waste in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Gonczi, M.; Gunnarsson, M.; Johansson, N. [Swedish Environmental Protection Agency, Stockholm (Sweden). Dept. of Environmental Assessment; Hedman, B.; Naslund, M.; Marklund, S. [Umea Univ., Umea (Sweden). Dept. of Environmental Chemistry

    2005-07-01

    Combustion-related activities are the principal source of dioxin and furan (PCDD/F) and polychlorinated biphenyl (PCB) emissions. However, municipal waste combustion is thought to have a low impact on total PCDD/F and PCB total emissions. This study investigated the impacts of uncontrolled backyard combustion of domestic waste. The aim of the study was to determine levels of unintentionally produced persistent organic pollutants (POPs) in Sweden. Nineteen combustion tests were conducted in a steel barrel, and a further 2 tests were conducted using open fires. The garden waste was comprised of wood branches, leaves, and grass. Refuse-derived fuel (RDF) consisted of municipal waste where the combustible fractions had been mechanically sorted from non-combustible waste and waste suitable for composting. PCDD/Fs and PCBs in the flue gas were iso-kinetically sampled with a cooled probe and sampling train. Emission factors were calculated from the relative amounts of carbon in fuel and in sampled emissions of carbon dioxide (CO{sub 2}), carbon monoxide (CO) and HC. Values were corrected for the loss of flue-gas in sampling. Results of the tests were comparable with other studies on uncontrolled combustion. The emissions from the open fires had relatively high levels of PCDD/Fs. It was not possible to determine the cause of significantly higher PCDD/F emissions noted during one of the combustion tests conducted in the steel barrel. It was concluded that levels of PCDD/F emissions in backyard fires are difficult to assess. 4 refs., 1 tab., 1 fig.

  4. Water and waste water management Generation Victoria - Latrobe Valley

    International Nuclear Information System (INIS)

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled 'SECV Latrobe Valley Water and Wastewater Management Strategy'. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs

  5. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content b...

  6. Waste water treatment using electron beam

    International Nuclear Information System (INIS)

    The waste water treatment using electron beam is the method of oxidizing and decomposing the polluting substances in water by utilizing the activated species having high chemical reactivity arising in water by irradiation. It is suitable to the treatment of waste water which is difficult to treat by conventional water treatment techniques. It has also sterilizing effect. At present the electron accelerators of 100 kV-5 MV accelerating voltage are on the market, and their technical reliability is high, accordingly they are utilized for many fields including the heightening of heat resistance of electric cables. For water treatment, the accelerators of 1 MV or higher are necessary. The principle and the features of this process are explained. The simplest method of applying electron beam to water treatment is that by simple irradiation only. But in the case of high concentration of polluting substances in water and their complex composition, the simple irradiation requires a large dose, therefore the method of combining with other water treatment techniques for effectively utilizing electron beam has been investigated. The methods of combining with microorganism processing, coagulation and sedimentation, or ozone oxidation are described. The treatment of industrial waste water, sewage and the effluent water from garbage-filled land is explained. (Kako, I.)

  7. Organic flocculants in industrial waste water treatment

    International Nuclear Information System (INIS)

    Flocculants are used in the mechanical treatment of waste water and sludge. Since those based on natural products, such as gelatin, starch, and cellulose, did not provide the necessary dewatering effect, synthetic organic flocculants were developed. They are commercially available in various forms and, like all chemicals, have to be classified according to their potential endangering effect on water. (orig.)

  8. Waste Water Disposal Design And Management III

    International Nuclear Information System (INIS)

    This book gives descriptions of underlying chemistry, chemical conditioning, facilities, sterilization and special water treatment. It includes chemical combination and a chemical equation, molarity, normality, application of normality, chemical evaluation and law of mass action. It deals with chemical conditioning for design and management of waste water treatment.

  9. Technology for sustainable development: a case study of solar domestic hot water heating in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Berbash, Y.; Chandrashekar, M.; Calamai, P. [Waterloo Univ., ON (Canada). Dept. of Systems Design Engineering

    1995-06-01

    In Ontario, potential contributions of solar domestic hot-water (SDHW) heating to air-emission mitigation have been identified. The provincial utility Ontario Hydro does not include solar heating in its current demand-side management plans because of the capital cost barrier. We present results of life-cycle cost analyses for installing a typical solar system in single-family dwellings in Toronto. For high hot-water load, the generated societal benefits make solar domestic hot-water heating an economically viable option. (author)

  10. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  11. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  12. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  13. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  14. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants an...

  15. How mixing during hot water draw-offs influence the thermal performance of small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2005-01-01

    CFD calculations on the mixing during hot water draw-offs in vertical hot water tanks with different diameters have been carried out. The calculations, which were carried out with the same cold water inlet design, showed that the extent of mixing is strongly influenced by the tank diameter. The extent of mixing is increasing for increasing tank diameter. Further, calculations of the yearly thermal performance of small solar domestic hot water systems with hot water tanks with different mixing ra...

  16. Predicted impact of power coastdown operations on the water chemistry for two domestic boiling water reactors

    International Nuclear Information System (INIS)

    A theoretical model was adapted to evaluate the impact of power coastdown on the water chemistry of two commercial boiling water reactors (BWRs) in this work. In principle, the power density of a nuclear reactor upon a power level decrease would immediately be lowered, followed by water chemistry variations due to reduced radiolysis of water and extended coolant residence times in the core and near-core regions. It is currently a common practice for commercial BWRs to adopt hydrogen water chemistry (HWC) for corrosion mitigation. The optimal feedwater hydrogen concentration may be different after a power coastdown is implemented in a BWR. A computer code DEMACE was used in the current study to investigate the impact of various power coastdown levels on major radiolytic species concentrations and electrochemical corrosion potential (ECP) behavior of components in the primary coolant circuit of two domestic reactors operating under either normal water chemistry or HWC. Our analyses indicated that under a rated core flow rate the oxidizing species concentrations and the ECP did not vary monotonously with decreases in reactor power level at a fixed feedwater hydrogen concentration. In particular, ECP variations basically followed the patterns of hydrogen peroxide in the select regions and exhibited high values at power levels of 95% and 90% for Chinshan-1 and Kuosheng-1, respectively. (author)

  17. Waste water treatment in Triglav national park

    OpenAIRE

    Peterlin, Blaž

    2012-01-01

    The thesis presents the pollution problems caused by municipal waste water in the protected area of the Triglav National Park. Although most people are not detecting the problem, the consequences of water pollution in the area are clearly visible in the mountain lakes and downstream springs. Water resources near the mountain huts and agricultural land show obvious signs of nurient overload. Non- native plant and animal species recklessly discharged into the natural environment also pose a thr...

  18. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  19. EnviroAtlas - Durham, NC - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community domestic water use was calculated using locally available water use data per capita in gallons of water per...

  20. EnviroAtlas - Woodbine, IA - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  1. EnviroAtlas - Milwaukee, WI - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  2. EnviroAtlas - Portland, OR - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in the EnviroAtlas, the community level domestic water use is calculated using locally available water use data per capita in gallons of water per day...

  3. EnviroAtlas - Phoenix, AZ - Domestic Water Demand per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water...

  4. EnviroAtlas - Paterson, NJ - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in the EnviroAtlas, the community level domestic water use is calculated using locally available water use data per capita in gallons of water per day...

  5. EnviroAtlas - Pittsburgh, PA - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use was calculated using locally available water use data per capita in gallons of water...

  6. EnviroAtlas - Green Bay, WI - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  7. EnviroAtlas - Tampa, FL - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use was calculated using locally available water use data per capita in gallons of water...

  8. EnviroAtlas - Fresno, CA - Domestic Water Demand per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, community level domestic water demand is calculated using locally available water use data per capita in gallons of water...

  9. EnviroAtlas - New Bedford, MA - Domestic Water Use per Day by U.S. Census Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — As included in this EnviroAtlas dataset, the community level domestic water use is calculated using locally available water use data per capita in gallons of water...

  10. Synergistic effects of irradiation of waste water

    International Nuclear Information System (INIS)

    Theoretical considerations of the use of high level radiation in the treatment of waste water have failed to consider the effects of the hydrated electron and the potential of possible synergistic effects of combining chlorine, oxygen, and irradiation. An extensive testing program at the University Center for Pollution Research of Florida Institute of Technology over the past four years has shown that irradiation of waste water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programs have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and fecal streptococcus bacteria indicate that the synergistic effects observed for fecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the interrelationships between the various effects on the bacteria. A definite shielding factor due to the turbidity of the waste water has been shown to exist. Synergistic effects have been shown to significantly offset the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste water. (orig.)

  11. Mathematical Model for Detection of Leakage in Domestic Water Supply Systems by Reading Consumption from an Analogue Water Meter

    OpenAIRE

    Gal Oren; Nerya Y. Stroh

    2013-01-01

    In this article we introduce the principles to detect leakage using a mathematical model based on machine learning and domestic water consumption monitoring in real time. The model uses data which is measured from a water meter, analyzes the water consumption, and uses two criteria simultaneously: deviation from the average consumption, and comparison of steady water consumptions over a period of time. Simulation of the model on a regular household consumer was implemented on Antileaks – devi...

  12. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter Technical University of Denmark,

    2005-01-01

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the findings from the past 5 years.

  13. Efficiency Evaluation of Heat Exchanger Based Domestic Solar Water Heater - A Review.

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Dehariya

    2013-10-01

    Full Text Available In this paper an attempt has been made to review the literature of performance improving techniques for solar water heater. In view of energy crisis, the application of solar energy in the form of solar water heater is most useful for domestic, commercial and industrial purpose but it is found that the application of its limited due to its demerits. Hence attempt to be made to find out the demerits of solar water heater and improve its performance so that it becomes more popular in domestic, commercial, as well as in industrial applications. The main objective of this research paper is to present the current status and future aspects of Solar water heater in the world by comprehensively reviewing various solar water heater related studies. This review paper shows comprehensive review and researches on solar water heater by various researchers of the world

  14. Pump station for radioactive waste water

    Science.gov (United States)

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  15. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter t...

  16. Influence of water scale on thermal flow losses of domestic appliances

    OpenAIRE

    Doberšek, Danijela; Gori?anec, Darko

    2012-01-01

    Research results of how the precipitated water scale on heaters of small domestic appliances influences the consumption of electricity are presented. It shows that the majority of water scale samples are composed of aragonite, calcite and dolomite and that those components have an extraordinary low thermal conductivity. Also, the results show that at 2 mm thick deposit, depending on the chemical composition of water scale, the thermal flow is reduced for 10% to 40%

  17. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-07-24

    ... CFR Part 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service... related to the Section 306C Water and Waste Disposal (WWD) Loans and Grants Program, which provides water... additional priority points to the colonias that lack access to water or waste disposal systems and...

  18. Method of treating waste water

    Science.gov (United States)

    Deininger, James P. (Colorado Springs, CO); Chatfield, Linda K. (Colorado Springs, CO)

    1995-01-01

    A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  19. Impact of Training Program to Rationalize Consumption of Domestic Water Usages

    Directory of Open Access Journals (Sweden)

    Mohammad Said Damanhouri

    2012-01-01

    Full Text Available Problem statement: Reducing water consumption in terms of scarcity of water in Jordan which needs to rationalize consumption of the domestic water usages by some families in Amman-Jordan. Approach: This study aimed to decrease water consumption in household usages and to involve and encouraging the pioneer students in voluntary efforts to reduce domestic water. The study sample consisted of 121 female students of Princessâ?? Alia University College represented 121 Jordanian families in Amman. They trained to reduce flow of water and the time during usage water in kitchen; toilet; bathroom; washing cars; and to put a plastic bottle full of half liter of water in the toiletâ??s water tank. Economical and social variables of families were obtained from special questionnaire of this study, data were formed from previous measurements and information; the data analyzed throughout a simple statistical approach. Results: The families whom represented this study sample have positively responded for the proposed program; through reducing water consumption in domestic usages. The most important factor effects on rationalized water consumption are: Average monthly income, average family members, average of family members ages, the size of water tank of the toilet, size of shower used. Conclusion/Recommendations: The study concluded that the amount of preserved water in a bathroom may reach 25%, in kitchen 29, in toilet 10%, in washing cars 9%, of water consumption before implementation program at each of the previous sectors. The total amount of preserved water in Amman may reach to 11 million cubic meters annually. The study recommends implementing this simple program on the whole of Jordanian families as much as possible and encouraging the Jordanian citizens to use different tools, means, programs that may control water consumption and to recycle the used water as possible.""

  20. Waste water reuse pathways for processing tomato

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn

      Direct or indirect water reuse involves several aspects: contamination by faecal, inorganic and xenobiotic pollutants; high levels of suspended solids and salinity; rational use of the dissolved nutrients (particularly nitrogen). The challenge is apply new strategies and technologies which allows to use the lowest irrigation water quality without harming nor food safety neither yield and fruit or derivatives quality. The EU project SAFIR aims help farmers solve problems with low quality water and decreased access to water. New water treatment devices (prototypes) are under development to allow a safe use of waste water produced by small communities/industries (?2000 EI) or of treated water discharged in irrigation channels. Water treatment technologies are coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management.

  1. Waste water discharges into natural waters

    International Nuclear Information System (INIS)

    The aqueous discharges into natural waters is a very technical solution expecially for surface buoyant discharges. It is not only convenient to limit the concentration levels of the discharges, but also to improve the turbolent processes that diluite the discharge. Mostly these processes depend by some geometric parameters of the discharge and by some physical parameters of the effluent and of the receiving water body. An appropriate choice of some parameters, using also suitable mathematical models, allows to design discharges with a very high dilution; so the decreasing of the pollutant levels is improved and the environmental impact can be reduced versus a not diluted effluent. The simulations of a mathematical model, here described, prove that in some circumstances, expecially in case of discharges of fresh water into saline water bodies with a low velocity of the current, the dilution is poor; the effluent can be trapped in a narrow water surface layer where the pollutant concentrations remain high. also far away from the discharge point

  2. Chemical Industry Waste water Treatment

    International Nuclear Information System (INIS)

    Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg O2/l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg O2/l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBe) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law

  3. Installation and operation of the Plantwide Fire Protection Systems and related Domestic Water Supply Systems

    International Nuclear Information System (INIS)

    A safe work environment is needed to support the Savannah River Site (SRS) mission of producing special nuclear material. This Environmental Assessment (EA) assesses the potential environmental impact(s) of adding to and upgrading the Plantwide Fire Protection System and selected related portions of the Domestic Water Supply System at SRS, Aiken, South Carolina. The following objectives are expected to be met by this action: Prevent undue threat to public health and welfare from fire at SRS; prevent undue hazard to employees at SRS from fire; prevent unacceptable delay to vital DOE programs as a result of fire at SRS; keep fire related property damage at SRS to a manageable level;, and provide an upgraded supply of domestic water for the Reactor Areas. The Reactor Areas' domestic water supplies do not meet current demand capacity due to the age and condition of the 30-year old iron piping. In addition, the water quality for these supplies is not consistent with current SCDHEC requirements. Therefore, DOE proposes to upgrade this Domestic Water Supply System to meet current demand and quality levels, as well as the needs of fire protection system improvement

  4. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  5. Preliminary design package for Sunspot Domestic Hot Water Heating System

    Science.gov (United States)

    1976-01-01

    The design review includes a drawing list, auto-control logic, measurement definitions, and other document pertaining to the solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control transport, auxiliary energy, and site data acquisition.

  6. Electrooxidation of organics in waste water

    Science.gov (United States)

    Hitchens, G. D.; Murphy, Oliver J.; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA is currently being pursued to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space-habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water-reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of an electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel-cell technology is presented.

  7. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  8. Surgical hand scrub: Lots of water wasted

    OpenAIRE

    Ahmed A.

    2007-01-01

    Background : Surgical hand scrub (SHS) is an important antisepsis measure before participating in surgical operation. It reduces the risk of microbial contamination of the surgical wound by skin flora. SHS is usually performed in a scrub sink with taps that have hand operated handles. During the scrub process large volume of water is wasted. The aim of this study was to determine the volume of water used during SHS in comparison to the actual volume necessary. Method : Unknown to them variou...

  9. Process for treating waste water containing hydrazine from power stations

    International Nuclear Information System (INIS)

    A process for treating waste water containing hydrazine from nuclear power stations is proposed, characterized by the fact that the water is taken continuously through a water decomposition cell. If the water does not have sufficient conductivity itself, a substance raising the electrical conductivity is added to the water to be treated. The electrolysis is situated in the waste water tank. (orig./RB)

  10. Attributes of Domestic Water Sources in a Rapidly Urbanizing State Capital in a Developing Economy

    Directory of Open Access Journals (Sweden)

    A. E. Olajuyigbe

    2010-01-01

    Full Text Available Problem statement: The efficiency and effectiveness of domestic water sources are often gauged by availability, accessibility and adequacy. This study examined various variables that could be harnessed in measuring these parameters with respect to water supply in Ado-Ekiti, Nigeria. Approach: The purpose of this study is to investigate the various attributes of domestic water sources in Ado-Ekiti, Nigeria. Three residential zones were identified in the city. They included the urban core, transitional zone and urban periphery. A sample size of 1,200 amounting to 4.0% of the total number of households in Ado-Ekiti, was chosen. Specific areas referred to as Data Delineation Areas (DDAs were identified in each zone. Based on the estimated population of each DDA, the number of households to be interviewed was estimated. In consonance with some assumptions, 600 (50.0% questionnaires were administered in the city core while 420 (35.0% and 180 (15.0% questionnaires were administered in the transitional zone and urban periphery, respectively. Subsequently, systematic sampling procedure was adopted in the choice of households to be interviewed. Some of the attributes investigated included the main source of domestic water used by household, access to improved source of water, distance from improved source to residence, average time spent to fetch from main source, average number of trips per person per day, quantity of water used per person per day and attack by water-borne diseases. Results: Households in Ado-Ekiti had access to diverse sources of domestic water including wells, boreholes, streams/rivers/springs, tanker-drawn water and rainwater. However, most households (59.8% depended on wells. Nevertheless, 84.3% had access to improved sources. Only 10.0% of these households obtained supplies from piped water while piped network is largely restricted to the city core. The research showed that distance, time, number of trips and adequacy of supplies placed limitations on access to improved source. Only 63.2% of the households in the city obtained water supplies within 1 km from their dwelling places. About 67.0% spent less than 30 min round trip to obtain water from improved sources while 61.6% made more than three (3 trips to water sources per day. Only 22.7% of the households had access to at least 40 L per person per day while 36.9% were annually afflicted with water-borne diseases such as typhoid, diarrhea and stomach ache. Conclusion: Domestic water supply system in Ado-Ekiti, Nigeria is characterized by low level of access, inadequate supplies from improved sources while these sources are usually distant away from the households.

  11. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  12. The concentration of 226Ra and 228Ra in domestic and imported bottled waters

    International Nuclear Information System (INIS)

    In the past few years, the use of commercially available bottled potable water has become very in vogue. Since many of the producers and/or distributors of these bottled waters claim that the water originated from natural mineral springs, there is a likelihood that some of these bottled waters could contain 226Ra and 228Ra in measurable quantities. This article presents the quantitative results obtained from the analyses of 11 domestic and imported brand named bottled waters sold commercially in retail stores in the northeastern United States. (author)

  13. NORTH PORTAL - DOMESTIC COLD WATER CALCULATION - CHANGE HOUSE FACILITY No.5008

    International Nuclear Information System (INIS)

    The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (Section 4.4.1) and US Department of Energy Order 6430.1A-1540 (Section 4.4.2)

  14. Process for treating waste water containing radioactive substances

    International Nuclear Information System (INIS)

    A process for treating waste water containing radioactive substances comprising treating the waste water by reverse osmosis in the presence of at least one organic surfactant selected from the group consisting of anionic surfactants, cationic surfactants and nonionic surfactants

  15. Process and device for removing radio-active waste water

    International Nuclear Information System (INIS)

    The waste water is treated by one or several evaporation processes, chemical precipitation or filtering. The waste water treated in this way is then evaporated in a dry cooling tower of a PWR or gas cooled high temperature reactor. (DG)

  16. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  17. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter through society. Among the tools are input-output analysis and cradle to grave analysis, in combination with compilation of identified sets of values with respect to sustainable use of resources and ultimate fate of the environment and quality of life. The role of the engineer is to make available to society as many technical options as possible - and to put these options into the proper perspective in relation to the objectives of society. (C) 1997 IAWQ. Published by Elsevier Science Ltd.

  18. The micro-electrolysis technique in waste water treatment

    International Nuclear Information System (INIS)

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs

  19. Solar domestic water heating performance test program - Interim report

    Science.gov (United States)

    Auris, R. H.

    Performance results from utility-installed or monitored flat plate collector systems on 13 residences are reported. The systems comprised either drain-down, i.e., emptying the water-working fluid into a reservoir in response to thermistor sensing of sufficiently low temperatures, or water/glycol mixture as freeze protection measures. Installation errors committeed by commercial solar contractors employed by the utility customers are outlined, indicating the uncertainty involved in obtaining a quality installation. Most system failures occurred with the drain-down systems, which also featured the highest system efficiencies. Redundancy in the control systems is suggested to offer significant improvements in system efficiency. The systems provided an average of 40% of the annual hot water needs, and the development of low cost materials, better system designs, low cost financing, and increased tax credits are concluded to be methods of making the systems cost effective.

  20. Impact of landfills, domestic and industrial waste on the aquifer in Raipur city and contribution of karst feature to the groundwater contaminations

    International Nuclear Information System (INIS)

    Karst features (landscapes that result from dissolution and surface drainage of carbonate terrains) are potentially a large source of water. They have distinctive features, which distinguish them from fissured and porous aquifers. These features include a general lack of permanent surface streams, existence of surface holes into which surface stream sink, presence of underground big channels and large springs etc. Karst environments are used for potable water supply as well as disposal sites for municipal, agricultural and industrial waste dumping. The peculiar geomorphologic and hydrological features of karst make them highly vulnerable for groundwater pollution. The ease with which they can be polluted make a fit case of taking protection measures in advance. Raipur is a major business, educational center as well as capital city of Chhattisgarh state in India. The city has been rapidly expanding during the last two decades, as a result of rapid industrialisation and various economic developments. Wastes generated from a wide variety of industrial, commercial, agricultural and domestic activities are dumped into pits or low - lying area around the Raipur City. The climate in the area is characterised by very hot summer and well distributed rain over four months during monsoon season. Monsoon precipitation begins from mid June and generally remains active till the end of September. The average annual precipitation is ?1250 mm. In the study area, groundwater lies in the karstified nature of geological formation and is naturally susceptible to contamination by landfills, domestic and industrial wastes. The karstification feature is exposed to the surface in Raipur city at many places. Environmental isotopes (2H, 3H, 18O and 13C) as well as chemistry of the water samples were used to identify a few places, which are prone to contamination in Raipur city. Deterioration of the groundwater quality is not alarming due to thin shale (impervious layer) cover over the limestone. (author)

  1. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 1013 cm-2 s-1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  2. Demand side management potential of domestic water heaters and space heaters

    OpenAIRE

    Qazi, Hassan Wajahat; Flynn, Damian

    2012-01-01

    Demand side management (DSM) is a viable strategy for facilitating integration of renewable energy into power systems. The demand resource from water and space heating can be used to reduce or delay system demand peaks, and in combination with other flexible loads, reshape the aggregate demand profile and manage system ramping. In this paper, the aggregate power draw profiles for heat pump based water heating and under floor space heating systems for the Irish domestic sector have been synthe...

  3. EFFICIENCY OF DOMESTIC REVERSE OSMOSIS IN REMOVAL OF TRIHALOMETHANES FROM DRINKING WATER

    OpenAIRE

    S. Mazloomi ? R. Nabizadeh ? S. Nasseri ? K. Naddafi ? S. Nazmara ? A. H. Mahvi

    2009-01-01

    The reaction of disinfectants with natural organic matters existing in water lead to the formation of Disinfection By-Products. Potentially hazardous and carcinogenic characteristics of trihalomethanes (THMs) are recognized. Thus removal of THMs or its precursors are necessary for human health. The aim of this study was to study the efficiency of domestic reverse osmosis (RO) in removal of trihalomethanes from drinking water. A pilot scale of RO system with Polyamide membrane as Spiral-Wound,...

  4. Domestic water uses and values in Swaziland : a contigent valuation analysis

    OpenAIRE

    Farolfi, Stefano; Mabugu, R.E.; Ntshingila, S.N.

    2007-01-01

    The paper reports on the use of the contingent valuation method to study the determinants of Swazi households’ willingness to pay (WTP) for an improvement in their water quantity and quality. A sample of 374 households was surveyed and a Tobit model was applied to explain household preferences for quality and quantity of domestic water supply and derive estimates of WTP for such a service. The results confirm that household income had a positive and statistically significant impact on WTP for...

  5. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service 7 CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and... (RUS) proposes to amend the regulations pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water and waste disposal facilities and services to...

  6. Mineralogical Evidence of Galvanic Corrosion in Domestic, Drinking Water Pipes

    Science.gov (United States)

    Drinking water distribution system (DWDS) piping contains numerous examples of galvanically-coupled metals (e.g., soldered copper pipe joints, copper-lead pipes joined during partial replacements of lead service lines). The possible role of galvanic corrosion in the release of l...

  7. Application of an Integrated Heat Recovery Technology for Domestic Hot Water Supply System and Air Conditioning

    Directory of Open Access Journals (Sweden)

    Chen Yan

    2013-01-01

    Full Text Available This study is to design an integrated heat recovery and air conditioner system and to investigate the feasibility and the potential performance of this system in changing conditions. Different season conditions and operating modes are studied based on the items of one hotel. In winter, heat recovered from wastewater is used on water heating and air condition and the surplus energy of air conditioner system is used on hot water system in summer. Dynamic energy simulation was performed with a comprehensive Domestic Hot Water (DHW heating and air conditioning system composed of some components like High Temperature Heat Pump (HTHP unit, water tanks, heat exchangers and pumps.

  8. Environmental sustainability of waste water ozonation

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e.g. pharmaceuticals, heavy metals and endocrine disrupters). As part of this work a holistic based prioritisation among technologies and optimisations have been done. Tools for this prioritisation include life cycle assessment (LCA) and cost/efficiency. The LCA is performed as a comparative LCA and the concept of induced impacts as compared to avoided impacts is introduced in the life cycle impact assessment (LCIA) part. A relatively high number of micropollutants, especially pharmaceuticals, have been included. Furthermore, as novel approaches, preliminary methodologies for impact categories on pathogens and whole effluent toxicity have been developed. About 15 different waste water and sludge treatment technologies (or combinations) have been assessed. This paper will present the LCA results from running the induced versus avoided impact approach on one of the WWTTs, i.e. ozonation.

  9. Environmental sustainability of ozonating municipal waste water

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e.g. pharmaceuticals, heavy metals and endocrine disrupters). As part of this work a holistic based prioritisation among technologies and optimisations is to be done. Tools for this prioritisation include life cycle assessment (LCA) and cost/efficiency. The LCA is performed as a comparative LCA and the concept of induced impacts as compared to avoided impacts is introduced in the life cycle impact assessment (LCIA) part. Furthermore, as novel approaches, potential ecotoxicity impact from a high number of micropollutants and the potential impact from pathogens (and whole effluent toxicity) are to be included. In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the WWTTs, i.e. ozonation.

  10. Bacteriological quality and risk assessment of the imported and domestic bottled mineral water sold in Fiji.

    Science.gov (United States)

    Zeenat, A; Hatha, A A M; Viola, L; Vipra, K

    2009-12-01

    Considering the popularity of bottled mineral water among indigenous Fijians and tourists alike, a study was carried out to determine the bacteriological quality of different bottled waters. A risk assessment was also carried out. Seventy-five samples of bottled mineral water belonging to three domestic brands and 25 samples of one imported brand were analysed for heterotrophic plate count (HPC) bacteria and faecal coliforms. HPC counts were determined at 22 degrees C and 37 degrees C using R2A medium and a membrane filtration technique was used to determine the faecal coliform (FC) load in 100 ml of water on mFC agar. Between 28 and 68% of the samples of the various domestic brands failed to meet the WHO standard of 100 colony forming units (cfu) per 100 ml at 22 degrees C and 7% of these also tested positive for faecal coliforms. All imported bottled mineral water samples were within WHO standards. A risk assessment of the HPC bacteria was carried out in terms of beta haemolytic activity and antibiotic resistance. More than 50% of the isolates showed beta haemolytic activity and were multi-drug resistant. While the overall quality of the product was generally good, there is a need to enforce stringent quality standards for the domestic bottlers to ensure the safety of consumers. PMID:19590131

  11. Domestic wastes incineration in France situation in 2000 evolution and perspectives the 31.12.2002; Incineration des dechets menagers en France situation en 2000 evolution et perspectives au 31.12.2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document presents the analysis and the conclusions of a working group, concerning the domestic wastes incineration. It presents successively the place of the domestic wastes in the wastes management approach, the regulations, the methodology and the corresponding results of an inquiry realized in 2000 and the research programs on the incineration as the Best Available Techniques, the sanitary impacts of the UIOM (domestic wastes incineration plants), the vitrification, the greenhouse effect. (A.L.B.)

  12. Semipilot Waste Water Treatment by Photocatalysis.

    Czech Academy of Sciences Publication Activity Database

    Morozová, Magdalena; Spá?ilová, Lucie; Maléterová, Ywetta; Šolcová, Olga

    - : -, 2014, P.31. ISBN N. [Pannonian Symposium on Catalysis /12./. T?eš? (CZ), 16.09.2014-20.09.2014] R&D Projects: GA TA ?R TA01020804; GA TA ?R TA03010548 Institutional support: RVO:67985858 Keywords : verification * waste water * degradation Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://pannonia2014.icpf.cas.cz/wp-content/uploads/2014/09/abstrakty_final.pdf

  13. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  14. Anatomical root variations in response to water deficit: wild and domesticated common bean (Phaseolus vulgaris L)

    Scientific Electronic Library Online (English)

    Cecilia B, Peña-Valdivia; Adriana B, Sánchez-Urdaneta; Joel, Meza Rangel; Juana, Juárez Muñoz; Rodolfo, García-Nava; Raquel, Celis Velázquez.

    Full Text Available Root anatomical responses to water deficit are diverse and regulation of water uptake strongly depends on plant anatomy. The ancestors of common bean (Phaseolus vulgaris L.) cultivars are the wild common beans. Because wild beans adapt and survive well in theon atural environment, it is hypothesized [...] that wild common bean roots are less affected than those of domesticated beans at low substrate water potential (?W). A wild common bean accession from Chihuahua Mexico and cv. Bayomex were studied. Seedlings with a mean root length between 3 and 4 cm were maintained for 24 h in vermiculite at ?W of -0.03 (well hydrated), -0.65, -1.48 and -2.35 MPa (partially dry). Ten anatomical characteristics of differentiation and cell division in root regions were evaluated. Thickness of epidermis and protoderm diminished similarly in wild and domesticated beans growing at low substrate ?W (between -0.65 and -2.35 MPa). At the same time, parenchymatic cell area diminished by 71 % in the domesticated variety, but by only 32 % in the wild bean at -2.35 MPa. Theon umber of cells in the cortex and the thickness of the xylem wall increased in both wild and domesticated beans at low substrate ?W;on evertheless, the effect was significantly lower in the wild bean. Theon umber of xylem vessels increased in the cultivar (up to 40 %) while in the wild bean it decreased (up to 33 %). The diameter of xylem vessels and transverse root area diminished (15 and 57 %, respectively) in the cultivar, but in the wild common bean wereon ot affected. Anatomical root characteristics and their modifications in both differentiation and cell division in root regions demonstrated that the wild bean reacted quite differently to substrate ?W than the domesticated common bean.

  15. Factors Affecting Domestic Water Consumption in Rural Households upon Access to Improved Water Supply: Insights from the Wei River Basin, China

    OpenAIRE

    Fan, L; Liu, G.; F. Wang; Geissen, V.; Ritsema, C.J.

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improv...

  16. Hybrid PV/T solar systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Hybrid photovoltaic/thermal (PV/T) solar systems can simultaneously provide electricity and heat, achieving a higher conversion rate of the absorbed solar radiation than standard PV modules. When properly designed, PV/T systems can extract heat from PV modules, heating water or air to reduce the operating temperature of the PV modules and keep the electrical efficiency at a sufficient level. In this paper, we present TRNSYS simulation results for hybrid PV/T solar systems for domestic hot water applications both passive (thermosyphonic) and active. Prototype models made from polycrystalline silicon (pc-Si) and amorphous silicon (a-Si) PV module types combined with water heat extraction units were tested with respect to their electrical and thermal efficiencies, and their performance characteristics were evaluated. The TRNSYS simulation results are based on these PV/T systems and were performed for three locations at different latitudes, Nicosia (35 deg.), Athens (38 deg.) and Madison (43 deg.). In this study, we considered a domestic thermosyphonic system and a larger active system suitable for a block of flats or for small office buildings. The results show that a considerable amount of thermal and electrical energy is produced by the PV/T systems, and the economic viability of the systems is improved. Thus, the PVs have better chances of success especially when both electricity and hot water is required as in domestic applications

  17. Photosynthetic membranes. Part 75. Photocatalytic membrane modules for drinking water purification in domestic and community appliances

    OpenAIRE

    BELLOBONO, IGNAZIO RENATO

    2005-01-01

    In the present paper, the performance of a pilot plant for domestic use was investigated, able to operate continuously, and in which tap water was fed (inorg. carbon IC: 81.6 ? 0.5 ppm; total org. carbon TOC content: 1.52 ? 0.02 ppm). This plant produced 130 L/d of purified water. The tap water was first subjected to a prefiltration by a membrane microfiltration unit, followed by filtration through a membrane immobilizing activated carbon, then through a reverse osmosis membrane, at a trans...

  18. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    Science.gov (United States)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model integration is that it allows the investigation of the effects of different water demand management strategies to an urban population's water demand behaviour and ultimately the effects of these policies to the volume of domestic water demand and the water resources system. The proposed modelling platform is optimised to simulate the effects of water policies during the Athens drought period of 1988-1994. The calibrated modelling platform is then applied to evaluate scenarios of water supply, water demand and water demand management strategies.

  19. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  20. Use of Industrial Waste Water for Agricultural Purpose: Pb and Cd in Vegetables in Bikaner City, India

    Directory of Open Access Journals (Sweden)

    Rajendra Singh

    2012-12-01

    Full Text Available Shortage of irrigation water resources is leading to the use of domestic and industrial waste water in agriculture. esp. in urban areas. Being contaminated by metals and various toxic chemicals these waste waters leads to the exposure of heavy metals and hazardous chemicals and the subsequent human health hazards through agriculture products and live stocks. Increasing cases of cancer and kidney problems is also related with this aspect. In present study human health risk assessment taken in concern with the respect of some heavy metals of toxicological interest.

  1. Domestic hot water consumption vs. solar thermal energy storage: the optimum size of the storage tank

    OpenAIRE

    Rodríguez Hidalgo, María del Carmen; Rodríguez Aumente, Pedro A.; Lecuona Newman, Antonio; Legrand, Mathieu; Ventas Garzón, Rubén

    2012-01-01

    Many efforts have been made in order to adequate the production of a solar thermal collector field to the consumption of domestic hot water of the inhabitants of a building. In that sense, much has been achieved in different domains: research agencies, government policies and manufacturers. However, most of the design rules of the solar plants are based on steady state models, whereas solar irradiance, consumption and thermal accumulation are inherently transient processes. As a result of thi...

  2. Technical comparison of domestic hot water system which used in China and Denmark

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric; Li, Hongwei; Svendsen, Svend

    2014-01-01

    Regardless of where they are in the world, people depend on a reliable and sufficient supply of domestic hot water (DHW) for daily use. Some countries, which have district heating infrastructure, combine spacing heating (SH) and DHW together, with the aim of having a smart, energy efficient and environmentally friendly energy-consumption system, such as Denmark and China. Nevertheless, the development of DHW networks in these two countries differs significantly. This article detailed the compari...

  3. A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain

    OpenAIRE

    Alberto Gutierrez-Escolar; Ana Castillo-Martinez; Jose M. Gomez-Pulido; Jose-Maria Gutierrez-Martinez; Zlatko Stapic

    2014-01-01

    Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW) represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studie...

  4. Investigating the Effectiveness of Ultraviolet (UV Water Purification as Replacement of Chlorine Disinfection in Domestic Water Supply

    Directory of Open Access Journals (Sweden)

    Olaoye

    2012-08-01

    Full Text Available Domestic water supply to residential buildings through hand-dug wells has been widely accepted as a reliable substitute to government owned municipal water supply system in Nigeria. This Paper investigates theeffectiveness of Ultraviolet (UV Water Sterilizers as a suitable replacement of chlorine disinfection in the removal of microbiological contaminants in domestic water supply. Water from an established contaminated well in Ogbomoso, Nigeria, were subjected, simultaneously and in parallel, to chlorine dosing and contact withUV light, over a period of seven (7 days without pre-filtration, and additional seven (7 days with pre-filtration. Pre-filtration was accomplished by the use of a calibrated pressure filter. Effluent water samples were taken daily for the two (2 scenarios to the laboratory for physical, chemical and biological analyses. The resultsindicated that UV water purification method was more effective only when pre-filtration of raw water was introduced. With monitored prefiltration prior to ultraviolet purification, the colony count, MPN Coliform Organisms and MPN E. Coli Organisms recorded seven day-average values of 1, 0 and 0, respectively. In both scenarios, it was confirmed that UV method produced no bi-products and did not alter the taste, pH or other properties of water, in contradistiction to chlorine disinfection method

  5. Yeasts and yeast-like fungal contaminants of water used for domestic purposes in Jos, Nigeria

    Directory of Open Access Journals (Sweden)

    Grace Mebi Ayanbimpe

    2013-01-01

    Full Text Available Water used for domestic purposes is ideally required to be free from contaminants. Various contaminants have frequently affected the quality of such water. Water samples were obtained from 150 sources including 72 wells, 60 streams, 17 taps, and one borehole, randomly selected from five residential areas in Jos, Nigeria. Structured questionnaires and one-to- one interview was used to obtain information on features of location and use of facilities in each area. Eighty (53.3% water sources were contaminated, predominantly wells (70.8%. The locations (identified in code with the highest number of contaminated sources were AGO (60.0%, GBU (56.7% and FGD (56.7%. AGD and FGD also had the highest ratio of households to one water source (25:1. Eighty- two fungi were isolated, predominantly Candida tropicalis (23.2%, Candida lipolytica (10.9% and Rhodotorula sp (9.7%. Candida lipolytica was the highest (42.9% contaminant in tap water. Rhodotorula sp was found in all types of water sources sampled. Type of water source had a significant effect (P<0.05 on the presence of some fungi in the water. The residential area (Location had a significant effect on contamination of water sources by some yeasts. Water sources for domestic use in Jos are contaminated by yeasts and yeast-like fungi. Frequency of use, exposure of the facility to dirt, and contaminations of surroundings contribute to the occurrence of fungi in water sources and, by implication, the prevalence of fungal infections.

  6. Actual problems of municipal cleaner?s waste waters

    OpenAIRE

    Konko¾ová Patrícia

    2000-01-01

    In paper are evaluated social and economical changes in water economy with emphasis on complex evaluation of municipal cleaner?s waste waters with respect of legislative, position of ownerskip relationskips and financial security of public experiences of water economy.

  7. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  8. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian; Franck, M.L.

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. E...

  9. Investigation on Kombiterm GE Domestic Hot Water Tank. : Performance Measurements and Calculations.

    DEFF Research Database (Denmark)

    Heller, Alfred; Heuer, Andreas Walter

    1996-01-01

    Investigation of a hot water tank with a high heat exchanger spiral with a small pipe diameter in the upper part of the heat exchanger spiral and a large pipe diameter in the lower part of the heat exchanger spiral in cooperation with Kãhler&Breum Beholder- og Maskinfabrik K/S. First preprint of project resulting in final "Sagsrapport": Andreas Heuer, "High Spiral Heat Exchanger in Domestic Hot Water Tanks.", SR-9711, 1997, ISSN 1396-402X.Andreas Heuer, "User Manual for Simulation Program GETANK", SR-9712, 1997, ISSN1396-402X.

  10. Improved waste water treatment by bio-synthesized Graphene Sand Composite.

    Science.gov (United States)

    Poornima Parvathi, V; Umadevi, M; Bhaviya Raj, R

    2015-10-01

    The photocatalytic and antibacterial properties of graphene biosynthesized from sugar and anchored on sand particles has been focused here. The morphology and composition of the synthesized Graphene Sand Composite (GSC) was investigated by means of X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDAX), Fourier Transform Infra-red Spectroscopy (FTIR) and UV-Visible spectroscopy. SEM images show wrinkly edges. This is characteristic of graphenic morphology. Three types of waste water samples namely, textile waste (TW), sugarcane industrial waste water (SW) and domestic waste water from a local purification center at Kodaikanal (KWW) were collected and treated. Adsorption experiments showed effective removal of impurities at 0.2 g of GSC. Photocatalytic activity was analyzed under visible and ultraviolet irradiation. The rate constant for TW increased to 0.0032/min for visible light irradiation from 0.0029/min under UV irradiation. SW showed similar improved activity with rate constant as 0.0023/min in visible irradiation compared to 0.0016/min under UV irradiation. For KWW enhanced activity was seen only in visible light irradiation with rate constant 0.0025/min. GSC showed an inhibition zone of 20 mm against the bacterium Escherichia coli. Results suggest development of economic and effective waste water management systems. PMID:26265599

  11. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  12. Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2004-01-01

    Experimental and numerical investigations of vertical mantle heat exchangers for solar domestic hot water (SDHW) systems have been carried out. Two different inlet positions are investigated. Experiments based on typical operation conditions are carried out to investigate how the thermal stratification is affected by different positions of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the tank is analysed by CFD-simulations. Further...

  13. Thermal performance of small solar domestic hot water systems in theory, in the laboratory and in practice

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to present results of measurements and theoretical calculations for solar domestic hot water systems installed and tested in the laboratory and in practice. The solar domestic hot water systems from which results are presented are all based on small tanks. Further, reasons for poor thermal performances of systems tested in practice are given. Based on theoretical calculations the negative impact on the thermal performance, due to a large number of different parameter va...

  14. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N. (Lebanon, OR); Galvan, Gloria J. (Albany, OR); Hundley, Gary L. (Corvallis, OR); Wright, John B. (Albany, OR)

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  15. Exergetic optimisation of a PEM fuel cell for domestic hot water heater

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, M.H.; Ehyaei, M.A. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Abbassi, A. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2005-07-01

    Fuel cells are an emerging technology in distributed generation. Their benefits include their small size and the fact that their capital costs are relatively insensitive to scale. They also have very low noise levels, low emissions and higher efficiencies than conventional power plants, particularly when used in combined heat and power systems. This study examined the energy and exergy analyses of a domestic hot water heater with energy supplied from a fuel cell. In particular, a 5 kW polymer electrolyte membrane (PEM) fuel cell including burner, steam reformer and water heat for domestic applications was considered. The basic structure of the PEM fuel cell was described. The fuel cell was cooled with cold water passing through the cooling channel. The water was then warmed up and used for domestic water heating. Outlet steam of the fuel cell was fed to the reformer to increase the efficiency. The performance of the integrated device was optimized by exergy analysis based on the second law of thermodynamics. The study also examined the effect of burner, fuel cell temperature and stoichiometric air fuel ratio. Pressure loss in the fuel cell and the heat transfer of the cooling channels were also considered but not the pressure loss in the burner or the reformer. It was shown that in order to minimize entropy generation, the fuel cell temperature should be increased in order to minimize PEM fuel cell temperature. In addition, the burner and reformer temperature should be decreased to 900 K and the and stoichiometric air fuel ratio should be decreased to as close to 2 as possible. The optimum pressure for the system is 200 kPa. 16 refs., 1 tab., 10 figs.

  16. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  17. NATURAL WASTE WATER PURIFICATION IN CONSTRUCTED WETLAND SYSTEM

    OpenAIRE

    AGNES SULI; Molnar, T; JUDIT PETER SZUCS; L. SALLAI

    2009-01-01

    The comprehensive enhancement of the environment is an important task in Hungary too in order to maintain and improve the life quality of both humans and other living creatures. Waste water treatment and solid waste management have become significant issues since joining the European Union. Thus it has become timely to develop or borrow an effective and attainable sewage water treatment technology adapted to Hungarian circumstances. Some prototypes of waste water treatment plants that use nat...

  18. Patterns of domestic water use in rural areas of Zimbabwe, gender roles and realities

    Science.gov (United States)

    Makoni, Fungai S.; Manase, Gift; Ndamba, Jerry

    This paper presents practical experiences into the pattern of domestic water use, benefits and the gender realities. The study was undertaken in two districts of Zimbabwe, Mt Darwin and Bikita covering a total of 16 villages. The study aimed to assess the patterns of domestic water use, benefits derived from its use among the gender groups. Methodology for participatory assessment (MPA) was used for data collection and was done in a participatory manner. Traditionally most people in Zimbabwe are subsistence farmers who rely on rain fed agriculture. Where primary water sources are available such as shallow wells, family wells, deep wells and boreholes households use the water for household water and sanitation, irrigate small family gardens as well as their livestock. The survey established that women and men usually rank uses of water differently. In the two districts it was evident that women are playing more roles in water use and it is apparent that women are most often the users, managers and guardians of household water and hygiene. Women also demonstrated their involvement in commercial use of water, using water for livestock watering (20%) as well as brick moulding (21%). These involvement in commercial use were influenced by survival economics as well as the excess and reliability of the supply. The different roles and incentives in water use of women and men was demonstrated in how they ranked the benefits of water and sanitation. Men ranked clean drinking water among others as a top priority while women ranked improved health and hygiene and reduced distance as top priority. Overall the benefits highlighted by the communities and especially women were meeting the practical needs such as better access to water and reducing their work load. The assessment demonstrated the active role of women in water sources management highlighting quality, reliability and restrictions to their use. Though the communities gave the impression that decision making in the sitting and construction of water points was equally among the gender groups, however it was evident that men have a greater role than women in public decision making.

  19. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production

    OpenAIRE

    Soha S.M. MOSTAFA; Emad A. SHALABY; Mahmoud, Ghada I

    2012-01-01

    The objective of this study was to evaluate the growth of nine species of microalgae (green and blue green microalgae) on domestic waste water samples obtained from Zenein Waste Water Treatment Plant (ZWWTP), Giza governorate, Egypt. The species were cultivated in different kind of waste water; before treatment; after sterilization; with nutrients with sterilization and with nutrients without sterilization. The experiment was conducted in triplicate and cultures were incubated at 25?1?C under...

  20. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  1. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  2. Ambient radioactivity monitoring III: Waste water and sewage sludge

    International Nuclear Information System (INIS)

    Natural and man-made radionuclides in waste water and sewage sludge come from various sources as a result of the activities including radioactive materials applications in medicine, science and technology. In the 1960s, the main source contributing to radioactive contamination of waste water and sewage sludge was the fallout from atmospheric nuclear weapons tests. The fallout from the Chernobyl reactor accident dramatically increased the radioactive substances washed down into the waste water and sewage sludge and thus increased radioactivity levels in the sewage works. Monitoring activities have to take into account that the radionuclides from the waste water are accumulated in the sewage sludge. (orig.)

  3. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  4. Assessing domestic water use habits for more effective water awareness campaigns during drought periods: a case study in Alicante, Eastern Spain

    Directory of Open Access Journals (Sweden)

    H. March

    2014-11-01

    Full Text Available The design of water awareness campaigns could benefit from knowledge on the specific characteristics of domestic water use and of the factors that may influence certain water consumption habits. This paper investigates water use in 450 households of 10 municipalities of drought prone Alicante (Spain with the objective of increasing knowledge about existing domestic water behavior and therefore help to improve the design and implementation of future water awareness campaigns. The survey results indicate that users already follow many of the conservation practices mentioned in messages. Moreover, campaigns need to take into account the differences in water use and habits derived from differences in urban models (concentrated or disperse.

  5. Biology of waste water purification. 4. rev. ed.

    International Nuclear Information System (INIS)

    With the aid of biological waste water purification processes, organic and inorganic pollutants can be removed from household service water and industrial water with great efficiently, and the purified water can be led back into the natural cycle. This successful textbook and manual of biological waste water purification explains biological fundamentals and mechanisms and the technical aspects of purification processes in an easily intelligible manner. The new, revised version reflects the latest state of knowledge. (orig.)

  6. Performance of alternative refrigerant R430A on domestic water purifiers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki-Jung; Jung, Dongsoo [Dept. of Mechanical Engineering, Inha Univ., Incheon 402-751 (Korea)

    2009-12-15

    In this study, performance of R430A is examined numerically and experimentally in an effort to replace HFC134a used in refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in near future in most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experiments are carried out with a new refrigerant mixture of 76%R152a/24%R600a using actual water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system in water purifiers. With the optimum amount of charge of 21-22 g, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a for the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a in domestic water purifiers requiring no major change in the system. (author)

  7. On the Possibilities of Producing Hydrogen by High Temperature Electrolysis of Water Steam Supplied from Biomass or Waste Incineration Units

    International Nuclear Information System (INIS)

    The incineration of biomass and waste is considered to produce water steam, which then would feed the High Temperature Electrolysis (HTE) process in order to produce hydrogen. For these energy sources, in a French context, results show that water steam production cost could be in a range of 0.02 to 0.06 euros per steam kilogram. Potentially 78 million vehicles could be fed with hydrogen coming from the steam produced by the incineration of the currently non valorized biomass and domestic waste. Furthermore, for each energy source the optimized hydrogen production cost estimation has been performed, including investment and operation costs. (authors)

  8. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  9. Enhanced P, N and C removal from domestic wastewater using constructed wetland employing construction solid waste (CSW) as main substrate.

    Science.gov (United States)

    Yang, Y; Wang, Z M; Liu, C; Guo, X C

    2012-01-01

    Construction solid waste (CSW), an inescapable by-product of the construction and demolition process, was used as main substrate in a four-stage vertical subsurface flow constructed wetland system to improve phosphorus P removal from domestic wastewater. A 'tidal flow' operation was also employed in the treatment system. Under a hydraulic loading rate (HLR) of 0.76 m3/m2 d for 1st and 3rd stage and HLR of 0.04 m3/m2 d for 2nd and 4th stage of the constructed wetland system respectively and tidal flow operation strategy, average removal efficiencies of 99.4% for P, 95.4% for ammoniacal-nitrogen, 56.5% for total nitrogen and 84.5% for total chemical oxygen demand were achieved during the operation period. The CSW-based constructed wetland system presents excellent P removal performance. The adoption of tidal flow strategy creates the aerobic/anoxic condition intermittently in the treatment system. This can achieve better oxygen transfer and hence lead to more complete nitrification and organic matter removal and enhanced denitrification. Overall, the CSW-based tidal flow constructed wetland system holds great promise for enabling high rate removal of P, ammoniacal-nitrogen and organic matter from domestic wastewater, and transforms CSW from a waste into a useful material. PMID:22797230

  10. How to reduce risk of climate change: Domestic hot water production methanization and programmed timing of heaters

    International Nuclear Information System (INIS)

    This paper first identifies a significant and deleterious trend, in terms of poor energy efficiency and high carbon dioxide emissions, towards the increased use of electric water heaters for sanitary hot water production in single family units. It then points out how the use of wall mounted methane fired boilers can result in overall energy savings (overall electric power consumption for domestic hot water production is estimated to represent one- quarter of Italy's total domestic power demand), as well as air pollution abatement. The feasibility of other methods of energy conservation and pollution abatement in domestic water heating are also examined. These include the use of solar hot water heaters, computerized timers which allow users to program the operation of their heating plants, and the adoption by residential communities of methane fuelled district heating plants

  11. Review of Various Solutions for avoiding critical levels of Legionella Bacteria in Domestic Hot Water System

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2013-01-01

    Low temperature district heating (DH) is designed as 55/25oC for supply/return temperature to fulfill the low energy demand of future buildings. However, to secure the safety of domestic hot water, the supply temperature has to be kept around 60oC to avoid the existence of legionella, which reproduces rapidly at the temperature around 25oC- 45 oC. After several outbreaks of pheumonia and fever caused by legionella bacteria, most countries require 60 oC in the network and 50-55 oC at the faucets ...

  12. A method for the treatment of waste waters

    International Nuclear Information System (INIS)

    The invention relates to a method for the cooling of waste waters. It is characterized in that it comprises the steps of introducing waste waters into a tank in communication with a basin through gate-controlled orifices, successively opening and closing the gates so as to intermitently release an adjustable amount of water stored in the tank in order to generate waves promoting the airing of waste waters and their cooling, then expelling waters downstream of the basin. The invention relates to thermal and nuclear power stations

  13. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  14. U.S. Biofuel Policies and Domestic Shifts in Agricultural Land Use and Water Balances

    Science.gov (United States)

    Teter, J.; Yeh, S.; Mishra, G. S.

    2014-12-01

    Policies promoting domestic biofuels production could lead to significant changes in cropping patterns. Types of direct and indirect land use change include: switching among crops (displacement), expanding cropped area (extensification), and altering water/soil management practices (e.g. irrigation, tillage) (intensification). Most studies of biofuels water use impacts calculate the water intensity of biofuels in liters of irrigated/total evapotranspired water per unit energy of biofuels. But estimates based on this approach are sensitive to assumptions (e.g. co-product allocation, system boundaries), and do not convey policy-relevant information, as highlighted by the issue of land use change. We address these shortcomings by adopting a scenario-based approach that combines economic modeling with crop-water modeling of major crops and biofuel feedstocks. This allows us to holistically compare differences in water balances across policy scenarios in an integrated economic/agricultural system. We compare high spatial resolution water balance estimates under three hypothetical policy scenarios: 1) a counterfactual no-policy scenario, 2) modified Renewable Fuels Standard mandates (M-RFS2), & 3) a national Low Carbon Fuel Standard plus a modified RFS2 scenario (LCFS+RFS2). Differences between scenarios in crop water balances (i.e. transpiration, evaporation, runoff, groundwater infiltration, & irrigation) are regional and are a function of changes in land use patterns (i.e. displacement, intensification, & extensification), plus variation in crop water-use characteristics. Cropped land area increases 6.2% and 1.6% under M-RFS2 and LCFS+RFS2 scenarios, respectively, by 2030. Both policy scenarios lead to reductions in net irrigation volumes nationally compared to the no-policy scenario, though more irrigation occurs in regions of the Midwest and West. The LCFS+RFS2 reduces net irrigation water use by 3.5 times more than M-RFS2. However, both policies drive extensification and hence greater net transpiration (i.e. economically useful water consumption), at the expense of groundwater infiltration, which recharges surface & groundwater stocks. Our study illustrates potential tradeoffs in water resource availability that might result from domestic policies promoting bioenergy.

  15. Treatment of contaminated waste water by reverse osmosis membrane

    International Nuclear Information System (INIS)

    This paper present the results obtained in treatment by reverse osmosis membrane of waste waters containing radioactive elements and other dissolved heavy or rare metals. Cellulose acetate reverse osmosis membranes were used for removal and recovery uranium from mine waters, pond waters and the other waste waters from ore processing. The flux permeate and rejection for solutes presented in solution were determined. The experiments were performed at laboratory scale. The operation conditions are described

  16. Co-digestion of source segregated domestic food waste to improve process stability

    OpenAIRE

    Zhang, Yue; Banks, Charles J.; Heaven, Sonia

    2012-01-01

    Cattle slurry and card packaging were used to improve the operational stability of food waste digestion, with the aim of reducing digestate total ammoniacal nitrogen concentrations compared to food waste only. Use of cattle slurry could have major environmental benefits through reducing greenhouse gas emissions associated with current management practices; whilst card packaging is closely linked to food waste and could be co-collected as a source segregated material. Both options increase the...

  17. Fermentation of household wastes and industrial waste water; Vergaerung von haeuslichen Abfaellen und Industrieabwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, W. [Arbeitsgemeinschaft Bioenergie ' arbi' , Maschwanden (Switzerland); Engeli, H. [Probag AG, Dietikon (Switzerland); Glauser, M. [Biol-Conseils SA, Neuchatel (Switzerland); Hofer, H. [HTH-Verfahrenstechnik, Winterthur (Switzerland); Membrez, Y. [EREP SA, Aclens (Switzerland); Meylan, J.-H. [Lausanne (Switzerland); Schwitzguebel, J.-P. [Swiss Federal Institute of Technology (EPFL), Genie biologique, Lausanne (Switzerland)

    1993-07-01

    This comprehensive brochure reviews various technologies for the environment-friendly treatment of organic wastes and residues. The principles of anaerobic digestion are discussed. Authorities, planners and engineers concerned with waste treatment are provided with an overview of current technology in the organic wastes area. The brochure emphasises the importance of fermentation processes in waste treatment, discusses the legal pre-requisites for biogas production, lists the biological and process-oriented fundamentals of fermentation and examines the energy potential of biogenic wastes and waste water. Further, details are given on the treatment of both industrial waste water and solid organic wastes and, finally, the economics of fermentation is examined. Useful data is presented in table form and the various processes described are illustrated by schematics and flow diagrams. An appendix lists suggestions for further reading on the subject.

  18. The influence of waste water on the water quality in Zemplínska ?írava

    OpenAIRE

    Búgel Milan

    1999-01-01

    The water quality in the Zemplínska Šírava water reservoir directly depends on the water quality in Laborec river. This is mainly in -fluenced by waste water discharged from point sources of pollution (public canalization) and waste water from area sources of pollution. In the contribution, the water quality data in 6 river and 4 water reservoir profiles are presented for the period of 1993 - 1997.

  19. The reuse of scrap and decontamination waste water from decommissioning

    International Nuclear Information System (INIS)

    Huge amount of radioactive scrap with low activity will be generated from reactor decommissioning; the decontamination is concentrated in the surface layer of the scrap. The decontaminated substance can be removed by high pressure water jet to appear the base metal and to reuse the metal. Big amount of radioactive waste water will be generated by this decontamination technology; the radioactive of the waste water is mainly caused by the solid particle from decontamination. To remove the solid particle as clean as possible, the waste water can be reused. Different possible technology to remove the solid particle from the water had been investigated, such as the gravity deposit separation, the filtration and the centrifugal separation etc. The centrifugal separation technology is selected; it includes the hydraulic vortex, the centrifugal filtration and the centrifugal deposit. After the cost benefit analysis at last the centrifugal deposit used butterfly type separator is selected. To reuse the waste water the fresh water consumption and the cost for waste water treatment can be reduced. To reuse the radioactive scrap and the waste water from decommissioning will minimize the radioactive waste. (authors)

  20. Diagnosis of small capacity reverse osmosis desalination unit for domestic water

    International Nuclear Information System (INIS)

    Tunisian norm of drinking water tolerates a maximum TDS of 1.5 g/L, and the domestic water presents usually a salinity grater than 500 mg/L. In the last years, several small capacity reverse osmosis desalination prototypes have been marketed. They are used to desalinate brackish water with TDS lower than 1.5 g/L. This RO unit, tested with tap waters during four years, was diagnosed. The RO unit produces 10-15 L/Hour with a recovery rate between 25 and 40 pour cent and salt rejection in order of 90 pour cent. The salinity of the tested domestic water is located between 0.4 and 1.4 g/L. Water pretreatment is composed of three filtration operations (cartridge filter, granulate active carbon filter and 5 =m cartridge filter). Pretreated water is pumped through RO membrane with maximum pressure of 6 bars. At the 4th year, the RO unit performances were substantial decreased. Recovery rate and salt rejection fall down more than 50 and 100% respectively and the pressure drop increase from 1 to 2.1 bar The membrane regeneration allowed only the rate recovery restoration. The membrane selectivity was not improved. The membrane seems irreversibly damaged by the tap water chlorine none retained by the deficient pretreatment. An autopsy of the used RO membrane was done by different analysis techniques as SEM/EDX, AFM, XRD and FTIR spectroscopy. The analysis of membrane (proper and used) surfaces show a deposit film on the used membrane witch evaluated to environ 2 =m, it indicates a fooling phenomenon. The SEM photos show deterioration on the active layer material of the membrane witch seems attacked by the tap water chlorine. The X Rays Diffraction and FTIR show that the deposit collected on the used membrane contains organic and mineral (Gypsum, SiO2 and clays) materials. Silicates and clays can exist in tap waters and reach the RO membrane when the pretreatment micro-filter became deficient. The Gypsum presence is due only to germination on the membrane.

  1. Domestic hot water services meet customer expectations; Amelioration du confort en matiere d`eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    Em, V. [Gaz de France (GDF), 75 - Paris (France). Dirt. de Recherche

    1999-09-01

    Every year, households need more hot water. In fact, domestic hot water is becoming an essential part of residential and family comfort; a fact which presupposes that, on the one hand, customer expectations are known to manufacturers of natural gas-fueled domestic hot water equipment, and, on the other, that these can be met, using the tools and services enabling product improvement. To achieve this, R and D at Gaz de France works with manufacturers in study programs designed to develop new products. (author)

  2. Domestic hot water services meet customer expectations. Amelioration du confort en matiere d'eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    Em, V. (Gaz de France (GDF), 75 - Paris (France). Dirt. de Recherche)

    1999-01-01

    Every year, households need more hot water. In fact, domestic hot water is becoming an essential part of residential and family comfort; a fact which presupposes that, on the one hand, customer expectations are known to manufacturers of natural gas-fueled domestic hot water equipment, and, on the other, that these can be met, using the tools and services enabling product improvement. To achieve this, R and D at Gaz de France works with manufacturers in study programs designed to develop new products. (author)

  3. Effect of composition variations on the long-term wasteform behavior of vitrified domestic waste incineration fly-ash purification residues

    International Nuclear Information System (INIS)

    The effect of variations in the composition of fly-ash purification residue from incinerated domestic waste on the quality of the containment achieved by vitrification was investigated. Three main factors determine the long-term containment quality: the production of a vitrified wasteform, the occurrence of possible crystallization, and the key parameters of long-term alteration in aqueous media. Each of these aspects is described within a composition range defined by variations in the three major elements. (silicon, calcium and aluminum) and two groups of constituents (alkali metals and toxic elements). The silicon fraction in the fly-ash residue was found to be decisive: it is impossible to obtain a satisfactory vitrified wasteform below a given silicon concentration. Compounds with the lowest silica content also exhibited the greatest tendency to crystallize under the cooling conditions prevailing in industrial processes (the dominant crystallized phase is a melilite that occupies a significant fraction of the material and considerably modifies the alteration mechanisms). The initial alteration rate in pure water and the altered glass thickness measured in a closed system at an advanced stage of the dissolution reaction are both inversely related to the silicon concentration in the glass. Several types of long-term behavior were identified according to the composition range, the process conditions and the vitrified waste disposal scenario. Four distinct 'classes' of vitrified wasteform were defined for direct application in industrial processes. (author)

  4. Cryptosporidium and Giardia in Humans, Domestic Animals, and Village Water Sources in Rural India.

    Science.gov (United States)

    Daniels, Miles E; Shrivastava, Arpit; Smith, Woutrina A; Sahu, Priyadarshi; Odagiri, Mitsunori; Misra, Pravas R; Panigrahi, Pinaki; Suar, Mrutyunjay; Clasen, Thomas; Jenkins, Marion W

    2015-09-01

    Cryptosporidium parvum and Giardia lamblia are zoonotic enteric protozoa of significant health concern where sanitation, hygiene, and water supplies are inadequate. We examined 85 stool samples from diarrhea patients, 111 pooled fecal samples by species across seven domestic animal types, and water from tube wells (N = 207) and ponds (N = 94) across 60 villages in coastal Odisha, India, for Cryptosporidium oocysts and Giardia cysts to measure occurrence, concentration/shedding, and environmental loading rates. Oocysts/cysts were detected in 12% of diarrhea patients. Detection ranged from 0% to 35% for Cryptosporidium and 0% to 67% for Giardia across animal hosts. Animal loading estimates indicate the greatest contributors of environmental oocysts/cysts in the study region are cattle. Ponds were contaminated with both protozoa (oocysts: 37%, cysts: 74%), as were tube wells (oocysts: 10%, cysts: 14%). Future research should address the public health concern highlighted from these findings and investigate the role of domestic animals in diarrheal disease transmission in this and similar settings. PMID:26123963

  5. Cryptosporidium and Giardia in Humans, Domestic Animals, and Village Water Sources in Rural India

    Science.gov (United States)

    Daniels, Miles E.; Shrivastava, Arpit; Smith, Woutrina A.; Sahu, Priyadarshi; Odagiri, Mitsunori; Misra, Pravas R.; Panigrahi, Pinaki; Suar, Mrutyunjay; Clasen, Thomas; Jenkins, Marion W.

    2015-01-01

    Cryptosporidium parvum and Giardia lamblia are zoonotic enteric protozoa of significant health concern where sanitation, hygiene, and water supplies are inadequate. We examined 85 stool samples from diarrhea patients, 111 pooled fecal samples by species across seven domestic animal types, and water from tube wells (N = 207) and ponds (N = 94) across 60 villages in coastal Odisha, India, for Cryptosporidium oocysts and Giardia cysts to measure occurrence, concentration/shedding, and environmental loading rates. Oocysts/cysts were detected in 12% of diarrhea patients. Detection ranged from 0% to 35% for Cryptosporidium and 0% to 67% for Giardia across animal hosts. Animal loading estimates indicate the greatest contributors of environmental oocysts/cysts in the study region are cattle. Ponds were contaminated with both protozoa (oocysts: 37%, cysts: 74%), as were tube wells (oocysts: 10%, cysts: 14%). Future research should address the public health concern highlighted from these findings and investigate the role of domestic animals in diarrheal disease transmission in this and similar settings. PMID:26123963

  6. 77 FR 6548 - Environmental Impact Statement for the Implementation of Energy, Water, and Solid Waste...

    Science.gov (United States)

    2012-02-08

    ...Implementation of Energy, Water, and Solid Waste Sustainability Initiatives at Fort...implementation of the Energy, Water, and Solid Waste Initiatives at Fort Bliss. These...implement energy, water, and solid waste technologies at Fort Bliss in...

  7. Domestic and agricultural water use by rural households in the Oueme River Basin (Benin): an economic analysis using recent econometric approaches

    OpenAIRE

    Arouna, Aminou

    2009-01-01

    Improving the management of water resources as well as an efficient use of available water are particularly important to address the increasing scarcity of water and the low level of water accessibility in many developing countries. However, better water management requires an understanding of the existing pattern of water use for domestic and agricultural activities. With a view towards contributing to such knowledge, this dissertation analyzes domestic and agricultural water use by rural ho...

  8. Domestic water carrying and its implications for health: a review and mixed methods pilot study in Limpopo Province, South Africa

    OpenAIRE

    Geere Jo-Anne L; Hunter Paul R; Jagals Paul

    2010-01-01

    Abstract Background Lack of access to safe water remains a significant risk factor for poor health in developing countries. There has been little research into the health effects of frequently carrying containers of water. The aims of this study were to better understand how domestic water carrying is performed, identify potential health risk factors and gain insight into the possible health effects of the task. Methods Mixed methods of data collection from six were used to explore water carr...

  9. Cold-Climate Solar Domestic Hot Water Systems: Cost/Benefit Analysis and Opportunities for Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Hillman, T.; Salasovich, J.

    2005-01-01

    To determine potential for reduction in the cost of saved energy (COSE) for cold-climate solar domestic hot water (SDHW) systems, COSE was computed for three types of cold climate water heating systems. For each system, a series of cost-saving measures was considered: (1) balance of systems (BOS): tank, heat exchanger, and piping-valving measures; and (2) four alternative lower-cost collectors. Given all beneficial BOS measures in place, >50% reduction of COSE was achievable only with selective polymer collectors at half today's selective collector cost. In all three system types, today's metal-glass selective collector achieved the same COSE as the hypothesized non-selective polymer collector.

  10. EFFICIENCY OF DOMESTIC REVERSE OSMOSIS IN REMOVAL OF TRIHALOMETHANES FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    S. Mazloomi ? R. Nabizadeh ? S. Nasseri ? K. Naddafi ? S. Nazmara ? A. H. Mahvi

    2009-10-01

    Full Text Available The reaction of disinfectants with natural organic matters existing in water lead to the formation of Disinfection By-Products. Potentially hazardous and carcinogenic characteristics of trihalomethanes (THMs are recognized. Thus removal of THMs or its precursors are necessary for human health. The aim of this study was to study the efficiency of domestic reverse osmosis (RO in removal of trihalomethanes from drinking water. A pilot scale of RO system with Polyamide membrane as Spiral-Wound, Tape wrapping module was used. Feed solution was made by using of pure chloroform. The samples containing chloroform were analyzed using a gas chromatograph equipped with a flame ionization detector. By increasing the flow, the removal rate of chloroform decreased and with declining removal of EC, the removal of chloroform declined too. In this research, at the worst condition, the efficiency of the pilot scale reverse osmosis reached to 80 % removal of chloroform.

  11. Water and waste water reclamation in a 21st century space colony

    Science.gov (United States)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  12. Treatment of Oily Waste Water Emulsions from Metallurgical Industries Using Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2006-01-01

    Full Text Available Emulsion waste water is one of the important industrial wastewaters, which results from the various manufacturing industries including the metal manufacturing and its processing. Wastewater treatment technologies utilizing flocculation and electrolysis have been used but these technologies have not been very helpful in resolving the problems in view of process consistency and economic merit. Aiming to mitigate the environmental hazard that these waste emulsions represent, a study was carried to investigate the microwave methods to destabilise water/oil emulsions without the addition of any destabilizing chemical agent. The experimental work consisted on breaking the simplest of the emulsions in terms of content, in order to obtain preliminary data that can help to extend the method to manage actual waste material. The samples consisted in water/oil emulsions waste (spent cutting oil, which was obtained from local metal industries. The sample emulsions underwent a domestic microwave radiating process at several exposure times. Certain factors, such as aromatic components and sodium hydroxide content and total heat exposure time proved to be the factors that more strongly affect the results. Within the category of paraffinic oils, light oils allow for quicker water separation than heavy oils. Also oils with higher aromatic content have higher viscosity, which makes the separation of water more difficult. It was observed in this study that emulsions added with acid up to a final concentration of 0.48 M, the separation efficiency and demulsification rate increased with increasing acid concentration. Hence microwave irradiation is an economical and rapid method for oil separation from oily waste water. Although this study was carried out on a lab scale basis, the process can scale up to a large industrial scale system. By using the microwave radiation, an aqueous phase recovery that ranged from 65 to 90% was obtained, which is a significant outcome that reveals the study of this technique needs to be taken further

  13. Review of Various Solutions for avoiding critical levels of Legionella Bacteria in Domestic Hot Water System

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei

    2013-01-01

    Low temperature district heating (DH) is designed as 55/25oC for supply/return temperature to fulfill the low energy demand of future buildings. However, to secure the safety of domestic hot water, the supply temperature has to be kept around 60oC to avoid the existence of legionella, which reproduces rapidly at the temperature around 25oC- 45 oC. After several outbreaks of pheumonia and fever caused by legionella bacteria, most countries require 60 oC in the network and 50-55 oC at the faucets with periodic flush by hot water above 60 oC as disinfection solution. That makes obstacles of low temperature DH implementation. Therefore, effective solution of legionella bacteria is in urgent demand. To select optimal disinfection treatments for certain cases which are quite different in dimension or purpose of use, various methods were reviewed, including shock hyperchlorination, super heating, electric boiler, compact heat exchanger, water filter, chlorine dioxide, Monochloramine, UV sterilization, copper and silver electrodes. The implementary conditions, effect, limits as well as economic performance of them are demonstrated. For buildings with complicated networks and large volume, chemical approach is widely used, and oxidizing disinfectants have a better effect and economic performance. For buildings with DHW volume less than 3 liters, implementation of compact heat exchangers is an effective solution. By reviewing the efficacy of each method, the optimal solution for low temperature domestic hot water system is recommended by this study, which is of great use to realize low temperature DH system without any risk of legionella.

  14. Deactivation of waste waters in the Czechoslovak Uranium Industry

    International Nuclear Information System (INIS)

    Deactivation techniques are described used for the treatment of waste waters from uranium mines and uranium chemical treatment plants. With treatment plant waters this is done either by precipitation of radium with barium sulfate or using multistage evaporating units. Mine waste waters are deactivated by sorption on ion exchangers; strongly basic anion exchangers, mostly Wofatit SBW, Varion AP or Ostion AU are used for uranium, while the strongly acidic Ostion KS is used for radium. (Z.M.)

  15. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    2008-01-01

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life cycle impact assessment methods on pathogens, whole effluent toxicity and micropollutants will be developed within the project. As part of this work a review of more than 20 previous LCA studies on WWTT...

  16. Discharge and Treatment of Waste Water in Denmark

    DEFF Research Database (Denmark)

    Larsen, Torben

    1990-01-01

    This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 199...

  17. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    2009-01-01

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e.g. pharmaceuticals, heavy metals and endocrine disrupters). As part of this work a holistic based prioritisation among technologies and optimisations is to be done. Tools for this prioritisation include life c...

  18. Microbiological evaluation of bottled non-carbonated ("still") water from domestic brands in Greece.

    Science.gov (United States)

    Venieri, D; Vantarakis, A; Komninou, G; Papapetropoulou, M

    2006-03-01

    The microbiological quality of 1,527 samples of bottled non-carbonated ('still') mineral water, purchased from retail outlets and derived from 10 manufacturing companies in Greece, was investigated during the period 1995-2003. Applying the membrane filter technique, the aliquots of water samples (250 ml) were analyzed for the presence and enumeration of total coliforms, Escherichia coli, Enterococcus spp. and Pseudomonas aeruginosa. Also, aerobic bacteria were counted as Heterotrophic Plate Count (HPC) ml(-1) at 22 and 37 degrees C. Positive samples for the parameters tested varied significantly among brands with an overall percentage of 13.95% bottled water samples noncompliant with the Greek water regulation. Microorganisms isolated from the samples tested were identified as species of Pseudomonas, Aeromonas, Pasteurella, Citrobacter, Flavobacterium, Providencia and Enterococcus. The most frequent isolated microorganism during the period of the study was P. aeruginosa. Generally, bacterial load of the samples tested ranged in low levels. The purpose of the current study was to evaluate the microbiological quality of the bottled water provided by domestic brands in the Greek market during the period 1995-2003. PMID:16271413

  19. Experimental study on electrodialysis treatment of simulated waste water from radioactive waste incineration system

    International Nuclear Information System (INIS)

    Radioactive waste incineration facility produces low-level radioactive waste water in operation. While in treatment process, however, the Cl- existed in the waste water corrodes the evaporation equipment, and the HCO3- as well exerts negative impacts on the ion exchange process for radioactive nuclides. As for this problem, a special electrodialysis system and technical process was developed. Some experiments were carried out, including the NaCl solution direct desalination and cycle desalination experiment, the anionic selection experiment, and the desalination experiment to the simulated. Results showed that the process of electrodialysis treatment met limits on the treatment of technical waste water in terms of the concentration of nonradioactive components in desalted water, and the water balance requirement on the concentration of concentration water. (authors)

  20. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata.

    Science.gov (United States)

    Akinbile, Christopher O; Ogunrinde, Temitope A; Che Bt Man, Hasfalina; Aziz, Hamidi Abdul

    2016-01-01

    Two constructed wetlands, one with Azolla pinnata plant (CW1) and the other without (CW2) for treating domestic wastewaters were developed. Fifteen water parameters which include: Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), Total Phosphorus (TP), Total Nitrogen (TN), Ammoniacal Nitrogen (NH3N), Turbidity, pH, Electrical Conductivity (EC), Iron (Fe), Magnesium (Mg), Manganese (Mn), and heavy metals such as Lead (Pb) and Zinc (Zn) were analyzed using standard laboratory procedures. The experiments were conducted in two (dry and wet) seasons simultaneously. Results showed considerable reductions in all parameters and metals including Zn in CW1 compared with CW2 in the two seasons considered while Pb and Mn were not detected throughout the study. Zn concentration levels reduced significantly in both seasons just as removal efficiencies of 70.03% and 64.51% were recorded for CW1 while 35.17% and 33.45% were recorded for CW2 in both seasons. There were no significant differences in the removal efficiencies of Fe in both seasons as 99.55%, 59.09%, 88.89%, and 53.56% were recorded in CW1 and CW2 respectively. Azolla pinnata has proved effective in domestic wastewater phytoremediation studies. PMID:26121232

  1. Microbiological and technical aspects of anaerobic waste water purification

    International Nuclear Information System (INIS)

    Anaerobic waste water purification is likely to be another example of how innovations can result from the joint use of biological and technical concepts. No matter how far the optimization of oxygen input with aerobic waste water purification advances it will still be the less a real competitor for anaerobic techniques the more polluted the waste water is. The principle of carrier fixation to avoid their washing out, too, has often been observed in nature with sessile microorganisms. With highly polluted water, anaerobic purification does not only work at no expenditure of energy but it can also make excess energy available for use in other processes. Another important argument for anaerobic methods of waste water purification is probably the clearly reduced production of excess sludge. (orig.)

  2. Method for the treatment of waste water with sludge granules:

    OpenAIRE

    van Loosdrecht, M C; De Kreuk, M.K.

    2004-01-01

    The invention relates to a method for the treatment of waste water comprising an organic nutrient. According to the invention, the waste water is in a first step fed to sludge granules, after the supply of the waste water to be treated the sludge granules are fluidised in the presence of an oxygen-comprising gas, and in a third step, the sludge granules are allowed to settle in a settling step. This makes it possible to effectively remove not only organic nutrients but optionally also nitroge...

  3. Design, Simulation, and Analysis of Domestic Solar Water Heating Systems in Phoenix, Arizona

    Science.gov (United States)

    De Fresart, Edouard Thomas

    Research was conducted to quantify the energy and cost savings of two different domestic solar water heating systems compared to an all-electric water heater for a four-person household in Phoenix, Arizona. The knowledge gained from this research will enable utilities to better align incentives and consumers to make more informed decisions prior to purchasing a solar water heater. Daily energy and temperature data were collected in a controlled, closed environment lab. Three mathematical models were designed in TRNSYS 17, a transient system simulation tool. The data from the lab were used to validate the TRNSYS models, and the TRNSYS results were used to project annual cost and energy savings for the solar water heaters. The projected energy savings for a four-person household in Phoenix, Arizona are 80% when using the SunEarthRTM system with an insulated and glazed flat-plate collector, and 49% when using the FAFCO RTM system with unglazed, non-insulated flat-plate collectors. Utilizing all available federal, state, and utility incentives, a consumer could expect to recoup his or her investment after the fifth year if purchasing a SunEarth RTM system, and after the eighth year if purchasing a FAFCO RTM system. Over the 20-year analysis period, a consumer could expect to save 2,519 with the SunEarthRTM system, and 971 with the FAFCORTM system.

  4. Experimental analysis of a domestic electric hot water storage tank. Part II: dynamic mode of operation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Uhia, Francisco J.; Sieres, Jaime [Area de aquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, Universidad e Vigo, Campus Lagoas-Marcosende No. 9, 36310 Vigo (Spain)

    2007-01-15

    In this paper, the experimental analysis of a full-scale Domestic Electric Hot Water Storage Tank (DEHWST) with a capacity of 150l is reported. The tank is equipped with three different inlets and two different outlets of practical interest. The dynamic mode of operation of the tank has been experimentally analyzed taking into account the six possible inlet-outlet port arrangements and water draw-off flow rates of 5, 10 and 15l/min. The analysis is based on the transient temperature distributions of the outlet and inlet water flow and on the transient temperature profiles of the water inside the tank measured by an appropriate data acquisition system. Performance parameters to evaluate the thermal stratification in the tank and the discharging energy and exergy efficiencies are defined and calculated from the experimental data. The characteristic performance of the tank with different inlet-outlet port configurations is analyzed and the best one is identified and proposed to use in practice. (author)

  5. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation

    International Nuclear Information System (INIS)

    Transient thermal performance behavior of a vertical storage tank of a domestic solar water heating system with a mantle heat exchanger has been investigated numerically in the discharge/consumption mode. It is assumed that the tank is initially stratified during its previous heat storing/charging operation. During the discharging period, the city cold water is fed at the bottom of the tank and hot water is extracted from its top outlet port for consumption. Meanwhile, the collector loop is assumed to be active. The conservation equations in the axis-symmetric cylindrical co-ordinate have been used and discretised by employing the finite volume method. The low Reynolds number (LRN) k - ? model is utilized for treating turbulence in the fluid. The influence of the tank Grashof number, the incoming cold fluid Reynolds number and the size of the inlet port of the heat storage tank on the transient thermal characteristics of the tank is investigated and discussed. It is found that for higher values of Grashof number, the pre-established thermal stratification is well preserved during the discharging operation mode. It is also noticed that in order to have a tank with a proper thermal performance and or have least mixing inside the tank during the consumption period, the tank inflow Reynolds number and or its inflow port diameter should be kept below certain values. In these cases, the storage tank is enabling to provide proper amount of hot water with a proper temperature for consumption purposes.

  6. Solar water heating systems feasibility for domestic requests in Tunisia: Thermal potential and economic analysis

    International Nuclear Information System (INIS)

    Highlights: • The present work studies the potential of using Domestic Solar Water Heating systems. • The payback period is between 8 and 7.5 years. • The annual savings in electrical energy is between 1316 and 1459 kW h/year. • The savings by using the solar systems is about 3969–4400.34 $. • The annual GHG emission per house is reduced by 27,800 tCO2. - Abstract: The main goal of the present work is to study the energetic and the economic potential of the deployment of Domestic Solar Water Heating systems (DSWHs) instead of using electric/gas/town gas water heaters. A case study related to Tunisian scenario was performed according to a typical Tunisian households composed of 4–5 persons. In this scenario we evaluated the performance and the life cycle perspective of the two most popular DSWHs over the recent years (i.e. DSWH with flat-plate solar collector, FPC, and DSWHs with evacuated-tube solar collector, ETC). The dynamic behavior of DSWHs according to Tunisian data weather was achieved by means of TRNSYS simulation. The Results showed that the FPC and ETC provide about 8118 and 12032 kW h/year of thermal energy. The economic potential of DSWHs in saving electricity and reducing carbon dioxide emissions was also investigated. Results showed that the annual savings in electrical energy relatively to the FPC and ETC are about 1316 and 1459 kW h/year, with a payback period of around 8 and 10 years, respectively. Based on gas/town gas water heater, the FPC and ETC save about 306 m3 and 410 m3 of gas/town gas with a payback period about 6 and 7.5 years, respectively. We found that the life cycle savings by installing the solar system instead of buying electricity to satisfy hot water needs are about $3969 (FPC) and $4400 (ETC). We establish also that the use of the DSWHs instead of installing gas/town gas water heaters save about $1518 (FPC) and $2035 (ETC). From an environmental point of view the annual GHG emission per house is reduced by 27800 tCO2

  7. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials.

    Science.gov (United States)

    Moritz, Miriam M; Flemming, Hans-Curt; Wingender, Jost

    2010-06-01

    Drinking water biofilms were grown on coupons of plumbing materials, including ethylene-propylene-diene-monomer (EPDM) rubber, silane cross-linked polyethylene (PE-X b), electron-ray cross-linked PE (PE-X c) and copper under constant flow-through of cold tap water. After 14 days, the biofilms were spiked with Pseudomonas aeruginosa, Legionella pneumophila and Enterobacter nimipressuralis (10(6) cells/mL each). The test bacteria were environmental isolates from contamination events in drinking water systems. After static incubation for 24 h, water flow was resumed and continued for 4 weeks. Total cell count and heterotrophic plate count (HPC) of biofilms were monitored, and P. aeruginosa, L. pneumophila and E. nimipressuralis were quantified, using standard culture-based methods or culture-independent fluorescence in situ hybridization (FISH). After 14 days total cell counts and HPC values were highest on EPDM followed by the plastic materials and copper. P. aeruginosa and L. pneumophila became incorporated into drinking water biofilms and were capable to persist in biofilms on EPDM and PE-X materials for several weeks, while copper biofilms were colonized only by L. pneumophila in low culturable numbers. E. nimipressuralis was not detected in any of the biofilms. Application of the FISH method often yielded orders of magnitude higher levels of P. aeruginosa and L. pneumophila than culture methods. These observations indicate that drinking water biofilms grown under cold water conditions on domestic plumbing materials, especially EPDM and PE-X in the present study, can be a reservoir for P. aeruginosa and L. pneumophila that persist in these habitats mostly in a viable but non-culturable state. PMID:20556878

  8. Domestic transmission routes of pathogens: the problem of in-house contamination of drinking water during storage in developing countries

    DEFF Research Database (Denmark)

    Jensen, Peter Kjaer; Ensink, Jeroen H J; Jayasinghe, Gayathri; van der Hoek, Wim; Cairncross, Sandy; Dalsgaard, Anders

    2002-01-01

    Even if drinking water of poor rural communities is obtained from a 'safe' source, it can become contaminated during storage in the house. To investigate the relative importance of this domestic domain contamination, a 5-week intervention study was conducted. Sixty-seven households in Punjab, Pakistan, were provided with new water storage containers (pitchers): 33 received a traditional wide-necked pitcher normally used in the area and the remaining 34 households received a narrow-necked water s...

  9. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  10. Process for decontamination of radioactively contaminated waste water

    International Nuclear Information System (INIS)

    The waste water from the nuclear medical stations are separated from coarse dispersed materials in a precipitation container and are made acid to reach a pH value greater than 9.5. Next, there is precipitation or absorption. Waste air produced is cleaned by means of filters. (DG)

  11. Electrochemical purification of waste water with metal hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Milovanovic-Nicolic, J.

    1981-01-01

    The possibilities and main advantages of electrochemical methods of purifying waste waters are examined. Particularly mentioned is the method of electrocoagulation, consisting in saturating waste solutions by metal hydroxides being formed at the anode by the dissolving of Fe, Al, and other metals. The compactness of the equipment and the ease of automation of the process appear as the advantages of this method.

  12. CHARACTERIZATION AND RECYCLING OF WASTE WATER FROM GUAYULE LATEX EXTRACTION

    Science.gov (United States)

    Guayule commercialization for latex production to be used in medical products and other applications is now a reality. Currently, waste water following latex extraction is discharged into evaporation ponds. As commercialization reaches full scale, the liquid waste stream from latex extraction will b...

  13. The determinants of domestic water demand. Empirical evidence from Emilia-Romagna municipal data

    International Nuclear Information System (INIS)

    This paper presents empirical evidence on the determinants of water demand for domestic use in one Italian region, the Emilia Romagna, by using municipal data. Two main stems in urban/domestic demand analysis cab be found in the empirical literature. The first deals with the estimation of price or income demand elasticities in the short and the long run. The price demand elasticities can be used for water demand managements purpose while the income price elasticities can be useful in the forecasting process of the water requirements. The second one deals with the estimate of customer willingness to pay increasing in water service quality in holistic sense or concerning single characteristics of the service: safety, flavour, continuity, appearance, pollution rate and cost. The aim of the analysis in this case the elicitation of the direct use, indirect use and non-use values associated to the water resource consumption, by means of direct or indirect techniques. In this paper we focused the analysis in the first stem of the empirical literature in which a cross section data set is required. The paper explores the topic problems of the estimating process whit the analysis of the empirical literature (with particular regard to investigations that use municipal data) and with the analysis of the econometric problems related to the demand estimate. The theoretical model for the water demand analysis is also presented and discussed. Two datasets have been implemented: one with 125 municipalities and four years, the other with 40 municipalities and eleven years. Both the databases bring together municipal water consumption and tariffs data provided by local water utilities and other municipal data (inhabitants, surface, household, income, etc.) stemming from official sources. The econometric analysis is based on both fixed effects, performing better than random effects models, and dynamic panel models. The estimated coefficient of the tariff variable arises always significant and with negative sign: the water demand price elasticity is negative with a value between -0.88 and -1.11, but not significantly different from one, considering the different specifications. The results for the income variable are quite different: in the basic model specification the estimated coefficient is positive and significant while the introduction of the other socio-economic variables change the significance level and sometimes the sign. This applied study is an important starting point for the Italian environment, which lacks structured integrated datasets and consequently reliable estimates on elasticities concerning micro-economic oriented water demand studies. However, further analyses with more municipalities and more years have to be carried out to generalise and made results more robust, since the estimation of price elasticity and the investigation on the determinants of water demand is necessary information for both private and private-public management of water resources

  14. Generation of Domestic Solid Waste in Tikrit City and The Effects of Family Size and Incomes Level on the Rate of Generation

    Directory of Open Access Journals (Sweden)

    Waleed M. Al Abed Raba

    2013-04-01

    Full Text Available     This research included collection and analysis of (2800 samples from four different neighborhoods in Tikrit over the seasons of the year to cover seasonal changes in the generation rate of domestic solid waste. The generation rate of domestic solid waste is (0.460 kg / person / day. The results also showed that summer season is the most season that produced solid waste (0.487 kg / person / day. While winter is the lowest season (0.422 kg / person / day. The results indicated that Friday and Saturday are the most producing days (0.629 , 0.557 kg / person / days, respectively. The results showed the impact of rural character of Aalam region in reducing the rate of generation of domestic solid waste as the rate of generation of the neighborhoods of the four studied areas was (0.460 kg / person / day. SPSS program using has been adopted as a method of statistical analysis to study the effect of family size and income level have on the generation rate in the city, where the results showed that family size adversely affects the generation rate of solid waste, also the lowest generation rate was recorded for families with high income level.                                                                                                                                  

  15. ADVERSE IMPACTS OF WASTE WATER TREATMENT ­ A CASE STUDY

    Science.gov (United States)

    Industrial metal plating processes coat materials with metals, such as chromium, copper and nickel. After the plating process, excess metals are rinsed off and the rinse water is collected and then treated to remove metals prior to discharge of the rinse water into rivers. This waste water is typica...

  16. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1993-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  17. Actual problems of municipal cleaner?s waste waters

    Directory of Open Access Journals (Sweden)

    Konko¾ová Patrícia

    2000-03-01

    Full Text Available In paper are evaluated social and economical changes in water economy with emphasis on complex evaluation of municipal cleaner?s waste waters with respect of legislative, position of ownerskip relationskips and financial security of public experiences of water economy.

  18. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  19. Survey and analysis of the domestic technology level for the concept development of high level waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Sun; Kim, Byung Su; Song, Jae Hyok [Seoul National University, Seoul (Korea); Park, Kwang Hon; Hwang, Ju Ho; Park, Sung Hyun; Lee, Jae Min [Kyunghee University, Seoul (Korea); Han, Joung Sang; Kim, Ku Young [Yonsei University, Seoul (Korea); Lee, Jae Ki; Chang, Jae Kwon [Hangyang University, Seoul (Korea)

    1998-09-01

    The objectives of this study are the analysis of the status of HLW disposal technology and the investigation of the domestic technology level. The study has taken two years to complete with the participation of forty five researchers. The study was mainly carried out through means of literature surveys, collection of related data, visits to research institutes, and meetings with experts in the specific fields. During the first year of this project, the International Symposium on the Concept Development of the High Level Waste Disposal System was held in Taejon, Korea in October, 1997. Eight highly professed foreign experts whose fields of expertise projected to the area of high level waste disposal were invited to the symposium. This study is composed of four major areas; disposal system design/construction, engineered barrier characterization, geologic environment evaluation and performance assessment and total safety. A technical tree scheme of HLW disposal has been illustrated according to the investigation and an analysis for each technical area. For each detailed technology, research projects, performing organization/method and techniques that are to be secured in the order of priority are proposed, but the suggestions are merely at a superfluous level of propositional idea due to the reduction of the budget in the second year. The detailed programs on HLW disposal are greatly affected by governmental HLW disposal policy and in this study, the primary decisions to be made in each level of HLW disposal enterprise and a rough scheme are proposed. (author). 20 refs., 97 figs., 33 tabs.

  20. Irradiation as an alternative for disinfection of domestic waste in the Canadian Arctic

    International Nuclear Information System (INIS)

    This study evaluated the technical and economic feasibility of various methods for disinfecting wastewater in the Canadian Arctic with specific reference to gamma radiation. More conventional disinfection practices, such as chlorination, chlorination-dechlorination, and ozonation were compared to gamma radiation along with ultraviolet irradiation and lime disinfection. The quality of lagoon effluent, highly diluted (weak) sewage, holding tank wastes and honey-bag wastes, which are the typical waste types found in northern communities, was established from data available in the literature. Further literature reviews were undertaken to establish a data base for design and effectiveness of disinfection systems operated in cold climates. Capital and operating costs for all technically feasible disinfection process alternates were estimated based on historical cost data adjusted to 1977 for the construction and instalation of similar systems in the north. The costs of equipment, chemicals, fuel and electrical power were obtained from suppliers. The environmental impact of each of the disinfection processes was reviewed with emphasis on gamma irradiation. Safety and health aspects were also considered. The study concluded that gamma irradiation was capable of providing safe, reliable disinfection for concentrated honey-bag and holding wastes. Pilot-scale testing was recommended prior to construction of full-scale disinfection facilities. For lagoon effluents and weak sewage, gamma irradiation was not cost competitive with other alternates; rather chlorination-dechlorination was found to be the most cost-effective and environmentally acceptable alternative

  1. NATURAL WASTE WATER PURIFICATION IN CONSTRUCTED WETLAND SYSTEM

    Directory of Open Access Journals (Sweden)

    AGNES SULI

    2009-05-01

    Full Text Available The comprehensive enhancement of the environment is an important task in Hungary too in order to maintain and improve the life quality of both humans and other living creatures. Waste water treatment and solid waste management have become significant issues since joining the European Union. Thus it has become timely to develop or borrow an effective and attainable sewage water treatment technology adapted to Hungarian circumstances. Some prototypes of waste water treatment plants that use natural or constructed wetlands (reed beds mainly have already been established in Hungary as experiments or everyday function. In Hódmezövásárhely (HU a demonstration site has built that shows different types of treatment systems based on plants. Present paper introduces environment friendly waste water treatment technologies and the principles of their establishment and function.

  2. Process for decontamination of radioactively contaminated waste water

    International Nuclear Information System (INIS)

    The waste water with solid particles, excreta, finely dispersed and dissolved materials from nuclear medicine therapy and diagnosis (radioiodine) is subjected to mechanical/biological cleaning and then precipitation, flocculation or adsorption. Very fine filters retain the eddied contents. (DG)

  3. Region 9 NPDES Outfalls - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  4. Region 9 NPDES Outfalls 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  5. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared. The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR/year) and the lowest operation (320 EUR/year) expenditures. Electric heater-based concepts consume 5-14 times more electricity, which leads to relatively high annual operation costs (530-970 EUR/year); while investment costs are lower (326-76 EUR/year). The suggested DHW heat pump-based system is cost-efficient for private consumers already today. Furthermore, application of the micro booster heat pump in low energy houses complies with the energy consumption requirements, set by the recent Danish Building Regulations. The use of electrical heater variants would exceed this limit.

  6. Optimal control of a waste water cleaning plant

    OpenAIRE

    Ellina V. Grigorieva; Evgenii N Khailov

    2010-01-01

    In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste w...

  7. Procedure and device for decontaminating radioactive waste waters

    International Nuclear Information System (INIS)

    The decontamination of waste water containing short-lived radioactive materials, e.g. faecal waste water from hospitals with nuclear-medicine departments, takes place via decay plants. It is proposed that flow channeling of such plants should be arranged so that multiple mixing is carried out. This prevents single parts 'shooting through' too quickly and not dwelling for long enough. Turbulence can be achieved by blowing in air. A plant giving good results is described. (UWI)

  8. Simultaneous Waste Water Purification via Photocatalysis and Seed Germination

    OpenAIRE

    Sadhana A. Sawant; Ajinkya Nene; Somani, Savita P.; Shreeniwas K. Omanwar; Somani, Prakash R.

    2013-01-01

    Preliminary results of our study related to simultaneous waste water purification by photocatalytic degradation of organic impurity (Methylene Blue dye) and its effects on seed germination are presented here. It is interesting and important to know that complete degradation of the dye occurs within 2 hours and does not adversely affect the seed germination process. It is concluded that waste water purification by photocatalysis and seed germination (agriculture) can be carried out simultaneou...

  9. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, ?-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated ...

  10. Sources of Phthalates and Nonylphenoles in Municipal Waste Water

    DEFF Research Database (Denmark)

    Vikelsøe, J.; Thomsen, M.; Johansen, E.

    1998-01-01

    The overall aim of the present study is to identify and evaluate the importance of sources of nonylphenoles and phthalates in waste water in a local environment. The investigations were carried out in a Danish local community, Roskilde city and surroundings. Nonylphenoles and phthalates were analysed in the waste water from different institutions and industries thought to be potential sources. These were: car wash centers, a hospital, a kindergarten, an adhesive industry and a industrial laundry...

  11. Development of a household waste treatment subsystem, volume 1. [with water conservation features

    Science.gov (United States)

    Gresko, T. M.; Murray, R. W.

    1973-01-01

    The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.

  12. The Human Right to Water: The Importance of Domestic and Productive Water Rights

    OpenAIRE

    Ralph P. Hall; Van Koppen, Barbara; Van Houweling, Emily

    2013-01-01

    The United Nations (UN) Universal Declaration of Human Rights engenders important state commitments to respect, fulfill, and protect a broad range of socio-economic rights. In 2010, a milestone was reached when the UN General Assembly recognized the human right to safe and clean drinking water and sanitation. However, water plays an important role in realizing other human rights such as the right to food and livelihoods, and in realizing the Convention on the Elimination of All Forms of Discr...

  13. BIBRA trademark - the biological treatment of radioactive waste water

    International Nuclear Information System (INIS)

    BIBRA trademark, is the new bio-technological method developed in Gundremmingen for treating radioactive waste water, using bacteria in a process analogous to the long-established principle of communal sewage treatment plants. The method exploits the behaviour of the micro-organisms found there, to establish optimum adaptation of their population for decomposing the typical pollutants found in this washing water. This procedure is particularly suitable for nuclear engineering plants, because in such plants the waste water composition changes little so that the bacteria can achieve optimum adaptation to this waste water. The organic ingredients of the washing media are decomposed by introducing air. The advantage of the procedure is not only the significant reduction of the amount of waste material, but also enhanced efficiency of the cleaning process. The decontamination factor in Gundremmingen improved from a factor of 5 to a factor of 20. The waste water is clear and free from suspended materials. A further decisive advantage is the elimination of organic substances in relation to conditioning of evaporator concentrates for final disposal storage. The process entails only slight conversion costs - in Gundremmingen only DM 35 000 were required for converting the four washing water containers. The authors state that the savings amount to DM 250 000 per year. The conditioning process is suitable for boiling water plants already utilising centrifuge technology, as well as for plants which exclusively evaporate their washing water. (orig.)

  14. Synergistic effects of irradiation of waste-water

    International Nuclear Information System (INIS)

    Water is an absolute necessity for all forms of animal and plant life. As man's requirements for water increase, the need for better methods of purification also increase. Technology has been slow to develop new methods of water treatment for the direct utilization of waste-water. Many new construction projects are at a standstill because waste-water treatment methods have not been developed to handle adequately the ever-increasing flow of sewage. Theoretical considerations of the use of high-level radiation in the treatment of waste-water have failed to consider the effects of the hydrated electron, and the potential of the possible synergistic effects of combining chlorine, oxygen and irradiation. An extensive testing programme at the University Center for Pollution Research of the Florida Institute of Technology over the past four years has shown that irradiation of waste-water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programmes have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and faecal streptococcus bacteria indicate that the synergistic effects observed for faecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the relationships between the various effects on the bacteria. A definite shielding factor from the turbidity of the waste-water has been shown to exist. Synergistic effects have been shown to offset significantly the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste-water. (author)

  15. Smart solar domestic hot water systems. Development and test; Intelligente solvarmeanlaeg. Udvikling og afproevning

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, E.; Knudsen, S.; Furbo, S.; Vejen, N.K.

    2001-07-01

    The purpose of the project described in this report is to develop and test smart solar domestic hot water systems (SDHW systems) where the energy supply from the auxiliary energy supply system is controlled in a flexible way fitted to the hot water consumption in such a way, that the SDHW systems are suitable for large as well as small hot water demands. In a smart SDHW system the auxiliary energy supply system is controlled in a smart way. The auxiliary energy supply system heats up the water in the hot water tank from the top and only the hot water volume needed by the consumers is heated. Further the water is heated immediately before tapping. The control system includes a number of temperature sensors which cover the temperatures in the auxiliary heated volume. Based on these temperatures the energy content in the hot water tank is calculated. Only water heated to a temperature above 50 deg. C contributes to the total energy content in the hot water tank. Furhter the control system includes a timer that only allows the auxiliary energy supply system to be active in certain time periods and only if the energy content in the hot water tank is lower than wanted. In this way the water in the tank is heated immediately before the expected time of tapping and only the hot water volume needed is heated. The report is divided into five main sections. The sections deals with: Developing and testing storage tanks, laboratory test of SDHW systems based on some of the developed storage tanks, validation of simulation programs for smart solar heating systems, optimisation of system design and control strategy and measurements on two smart SDHW systems installed in single family houses. In all the developed hot water tanks, attempt is made to heat the water in the tank from the top of the tank and not as in traditional tanks where the water is heated from the lowest level of the auxiliary energy supply system, normally a helix or a electrical heating element placed in the tank. It is very important that the water is heated from the top of the tank because only in this way, the size of the auxiliary volume can be controlled, which makes the SDHW system suitable for large as well as small hot water demands. The gain experience in one part of the project is immediately implemented in the following parts of the project. Therefore the design of some of the SDHW systems has been changed during the project. The expected advantages by using smart SDHW systems are: Reduced auxiliary energy use compared to the auxiliary energy use in a similar traditional SDHW system; Reduced heat loss compared to the heat loss in a similar traditional SDHW system; Really good thermal stratification and due to that, and the way the tank is heated, a higher collector performance; Reduced domestic water volume in the tank compared to traditional SDHW systems and therefore a reduced risk of legionella. Based on the results in the project it can be concluded that: A smart SDHW system has a lower auxiliary energy consumption than a similar traditional SDHW system; A smart SDHW system has a reduced heat loss from the hot water tank compared to the tank heat loss for a similar traditional SDHW system because the top of the hot water tank is not constantly heated to a high temperature level; It is possible to build up a good thermal stratification both for large and for small auxiliary heated volumes where the water is heated from the top of the tank; The simulation programs, which are developed in the project, are suitable as tools for system design and analysis for smart SDHW systems; A consumer that buys a smart SDHW system must be willing to take action part in the control of the system, because the thermal performance of the system strongly depends on the correct control parameters. (au)

  16. Assessing domestic water use habits for more effective water awareness campaigns during drought periods: a case study in Alicante, eastern Spain

    Science.gov (United States)

    March, H.; Hernández, M.; Saurí, D.

    2015-05-01

    The design of water awareness campaigns could benefit from knowledge of the specific characteristics of domestic water use and the factors that may influence certain water consumption habits. This paper investigates water use in 450 households in 10 municipalities of drought-prone Alicante (Spain). We aim to increase knowledge about existing domestic water behaviors and therefore help to improve the design and implementation of future water awareness campaigns and even to consolidate reductions in water use after drought periods. The survey suggests that awareness campaigns should revise their scope and their channels of diffusion on a regular basis. In a more specific way, for the Alicante case we propose policy-oriented recommendations on the scope of action for further reductions.

  17. Waste disposal from the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    Alternative nuclear fuel cycles for support of light water reactors are described and wastes containing naturally occurring or artificially produced radioactivity reviewed. General principles and objectives in radioactive waste management are outlined, and methods for their practical application to fuel cycle wastes discussed. The paper concentrates upon management of wastes from upgrading processes of uranium hexafluoride manufacture and uranium enrichment, and, to a lesser extent, nuclear power reactor wastes. Some estimates of radiological dose commitments and health effects from nuclear power and fuel cycle wastes have been made for US conditions. These indicate that the major part of the radiological dose arises from uranium mining and milling, operation of nuclear reactors, and spent fuel reprocessing. However, the total dose from the fuel cycle is estimated to be only a small fraction of that from natural background radiation

  18. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Soha S.M. MOSTAFA

    2012-02-01

    Full Text Available The objective of this study was to evaluate the growth of nine species of microalgae (green and blue green microalgae on domestic waste water samples obtained from Zenein Waste Water Treatment Plant (ZWWTP, Giza governorate, Egypt. The species were cultivated in different kind of waste water; before treatment; after sterilization; with nutrients with sterilization and with nutrients without sterilization. The experiment was conducted in triplicate and cultures were incubated at 25?1?C under continuous shaking (150 rpm and illumination (2000 Lux for 15 days. pH, electric conductivity (EC, optical density (OD , dry weight (DW, were done at the time of incubation and at the end of experiment, in addition to determine the percentage of lipid and biodiesel. The data revealed that, domestic waste water with nutrient media (T3 was promising for cultivation of five algal species when compared with conventional media, Moreover, domestic waste water after sterilization (T2 was selected media for cultivation of Oscillatoria sp and Phormedium sp. However, T1 media (waste water without treatment was the promising media for cultivation of Nostoc humifusum. The biodiesel produced from algal species cultivated in waste water media ranged from 3.8 to 11.80% when compared with the conventional method (3.90 to 12.52%. The results of this study suggest that growing algae in nutrient rich media offers a new option of applying algal process in ZWWTP to mange the nutrient load for growth and valuable biodiesel feedstock production.

  19. Waste Feed Delivery Raw Water and Potable Water and Compressed Air Capacity Evaluation

    International Nuclear Information System (INIS)

    This study evaluated the ability of the Raw Water, Potable Water, and Compressed Air systems to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the system

  20. Exergetic optimisation of a PEM fuel cell for domestic hot water heater. Paper no. IGEC-1-022

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, M.H. [Sharif Univ. of Technology, Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of); Abbassi, A. [Amirkabir Univ. of Technology, Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of)]. E-mail: abbassi@aut.ac.ir; Ehyaei, M.A. [Sharif Univ. of Technology, Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of)

    2005-07-01

    In this paper, a 5kW PEM fuel cell including burner, steam reformer and water heater for domestic application has been considered. Water is used for cooling of fuel cell. Cold water is passed through cooling channel, warmed up and used for domestic water heating. To increase the efficiency, outlet steam of fuel cell is fed to reformer. The performance of the system is optimized by exergy analysis based on the second law of thermodynamics. Also, the effect of burner, fuel cell temperature and stoichiometric air fuel ratio are investigated. In this analysis, pressure loss in fuel cell and heat transfer of cooling channel are taken into account whereas, pressure loss in burner and reformer are neglected. Results show, to minimize the entropy generation, fuel cell temperature must be increased to maximize PEM fuel cell temperature which can be applied (373K). Also, burner, reformer temperature and stoichiometric air fuel ratio must be decreased to 900 K and {lambda}=2. (author)

  1. A generic method for projecting and valuing domestic water uses, application to the Mediterranean basin at the 2050 horizon.

    Science.gov (United States)

    Neverre, Noémie; Dumas, Patrice

    2014-05-01

    The aim is to be able to assess future domestic water demands in a region with heterogeneous levels of economic development. This work offers an original combination of a quantitative projection of demands (similar to WaterGAP methodology) and an estimation of the marginal benefit of water. This method is applicable to different levels of economic development and usable for large-scale hydroeconomic modelling. The global method consists in building demand functions taking into account the impact of both the price of water and the level of equipment, proxied by economic development, on domestic water demand. Our basis is a 3-blocks inverse demand function: the first block consists of essential water requirements for food and hygiene; the second block matches intermediate needs; and the last block corresponds to additional water consumption, such as outdoor uses, which are the least valued. The volume of the first block is fixed to match recommended basic water requirements from the literature, but we assume that the volume limits of blocks 2 and 3 depend on the level of household equipment and therefore evolve with the level of GDP per capita (structural change), with a saturation. For blocks 1 and 2 we determine the value of water from elasticity, price and quantity data from the literature, using the point-extension method. For block 3, we use a hypothetical zero-cost demand and maximal demand with actual water costs to linearly interpolate the inverse demand function. These functions are calibrated on the 24 countries part of the Mediterranean basin using data from SIMEDD, and are used for the projection and valuation of domestic water demands at the 2050 horizon. They enable to project total water demand, and also the respective shares of the different categories of demand (basic demand, intermediate demand and additional uses). These projections are performed under different combined scenarios of population, GDP and water costs.

  2. Waste Water Treatment And Data Book Of Method Of Water Quality Analysis

    International Nuclear Information System (INIS)

    This book indicates the method of water quality analysis and waste water treatment with collecting water quality data of advanced country and WHO, which introduces poisonous substance in industrial waste water such as heavy metal, ammonia, chlorine ion, PCB, chloroform, residual chlorine and manganese, reports about influence of those materials on human health, lists on method of analysis the poisonous substance, research way like working order and precautions on treatment and method of chemical process and use.

  3. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  4. A study on migration of contaminants and effect on the groundwater system at the Gemencheh domestic waste disposal site, Negeri Sembilan using integrated nuclear, geophysical and hydrogeochemical methods

    International Nuclear Information System (INIS)

    The domestic waste disposal site at Gemencheh, Negeri Sembilan has been in operation since 1981. Integration of three methods namely nuclear, geophysical and hydrogeochemical were used to study the migration and effects of contaminants on the groundwater system at this particular site. Nuclear method was used to determine groundwater system flow velocity that delineates the migration pattern of contaminant species in the groundwater system at the study area. The groundwater flow velocity is found to be heterogeneous and depend on hydraulic conductivity caused by soil permeability except in the low-lying downstream area where the flow velocity is found to be low and constant at 2.0 x 10-6 ms-1. However, the flow velocity increases to as high as 17.8 x 10-5 ms-1 during rainy season due to the influence of weather on hydraulic gradient. Weather condition also influences the flow direction, whereby during draught season, the groundwater flow direction at the middle of the study site moves from an area of high topography to the northeast and southeast of low topography areas. On the other hand, at the downstream the groundwater flows partially towards northeast and southeast whereas flow direction at the upstream is towards the east. A similar pattern was observed during rainy season in both upstream and downstream of the study site but at the middle, the flow is basically towards south-east with a side flow to the north-east and east direction. Geophysical method comprising geo electrical-imaging and electromagnetic transient techniques was used to determine the extent, depth and distribution of contamination in the groundwater system. This method shows that the most seriously contaminated areas at the middle and the downstream regions of the study site within the shallow depth of 3-6 metres. The distribution of the contaminants in groundwater is not widespread but confined within the study site only. Finally, hydrogeochemical method was used to determine the species concentration, rate and extent of contamination. This method shows that the species of chlorides, nitrates, iron, manganese, lead, mercury, sodium, potassium, calcium, magnesium, sulphates, chromium and cadmium originating from the leachate of domestic waste had contaminated the middle and the downstream regions of the study site. The concentration of these species is tens of times higher than the limits of the Drinking Water Quality 1984 as stipulated by the World Health Organisation except for ferum that had reached a value of 700 times higher. It can be concluded that the domestic waste dumped at the Gemencheh disposal site has seriously contaminated the groundwater. This work also shows that the integration of the three methods is useful because it was possible to compile a lot of data and information which were complete, detailed and extensive as well as able to provide a clear picture of the contaminants species, migration and distribution pattern of contamination as well as impact to groundwater quality at the study site. (author)

  5. Isolation and molecular characterization of Acanthamoeba genotypes in recreational and domestic water sources from Jamaica, West Indies.

    Science.gov (United States)

    Todd, Cheridah D; Reyes-Batlle, María; Piñero, José E; Martínez-Carretero, Enrique; Valladares, Basilio; Streete, Don; Lorenzo-Morales, Jacob; Lindo, John F

    2015-09-01

    Free living amoebae (FLA) are amphizoic protozoa that are ubiquitous in nature. Infection with FLA may result in neurological, ocular and skin infections. Exposure to Acanthamoeba occurs frequently through water contact and knowledge of the presence of the organisms in water sources is important in understanding transmission dynamics. The distribution of Acanthamoeba was studied in recreational and domestic water samples collected from across Jamaica. Morphological assessment and polymerase chain reaction revealed Acanthamoeba spp. isolates in 50.6% (42/83) and 17.3% (14/81) of recreational and domestic water, respectively. Sequencing of the DF3 region of the 18S rDNA resulted in the identification of genotypes T3, T4, T5, T10 and T11 corresponding to Acanthamoeba spp: A. griffini, A. triangularis, A. lenticulata, A. culbertsoni and A. hatchetti. Moreover, T4 was the most frequently isolated genotype in both recreational and domestic water. Thermotolerance and osmotolerance assays indicated that most isolates were potentially pathogenic. This is the first report of T3 and T10 genotypes in the Caribbean and the first report of these Acanthamoeba spp. in Jamaican waters. The study shows that there is potential risk of infection to contact wearers who practise poor lens care. Further, Acanthamoeba should be considered as a cause of neurological infections in Jamaica. PMID:26322776

  6. Measurement of water potential in low-level waste management

    International Nuclear Information System (INIS)

    The measurement of soil water is important to the shallow land burial of low-level waste. Soil water flow is the principle mechanism of radionuclide transport, allows the establishment of stabilizing vegetation and also governs the dissolution and release rates of the waste. This report focuses on the measurement of soil water potential and provides an evaluation of several field instruments that are available for use to monitor waste burial sites located in arid region soils. The theoretical concept of water potential is introduced and its relationship to water content and soil water flow is discussed. Next, four major areas of soils research are presented in terms of their dependence on the water potential concept. There are four basic types of sensors used to measure soil water potential. These are: (1) tensiometers; (2) soil psychrometers; (3) electrical resistance blocks; and (4) heat dissipation probes. Tensiometers are designed to measure the soil water potential directly by measuring the soil water pressure. Monitoring efforts at burial sites require measurements of soil water over long time periods. They also require measurements at key locations such as waste-soil interfaces and within any barrier system installed. Electrical resistance blocks are well suited for these types of measurements. The measurement of soil water potential can be a difficult task. There are several sensors commercially available; however, each has its own limitations. It is important to carefully select the appropriate sensor for the job. The accuracy, range, calibration, and stability of the sensor must be carefully considered. This study suggests that for waste management activities, the choice of sensor will be the tensiometer for precise soil characterization studies and the electrical resistance block for long term monitoring programs

  7. AN INVESTIGATION OF COMPRESSION AND PURIFICATION OF BIOGAS AND IT’S USE FOR DOMESTIC INSTANT WATER HEATING APPLICATION

    Directory of Open Access Journals (Sweden)

    Surve Prajakta

    2015-06-01

    Full Text Available In this work a method of compressing, purification and storing of biogas is investigated. A burner is designed and developed for instant water heating application by using bio gas. Experimentation is carried out with purified and unpurified bio gas and the parameter like total quantity of water heated, maximum temperature of water, mass flow rate of bio gas are measured. The results are compared with LPG geyser. It is found that biogas can be a good replacement for LPG for domestic instant water heating application.

  8. Phenols biodegradation in waste waters from petroleum industry

    International Nuclear Information System (INIS)

    Practical methods to isolate, adapt and propagate phenol biodegradation microorganisms were established. Fifteen different microorganism group were obtained, capable of eliminating phenol contained in production water, sour water and waste water from Barrancabermeja's Refinery (Colombia), and dehydration water from heavy oil-in-water emulsions. Elimination efficiencies higher than 95% in periods of time shorter than 24 hour were achieved at laboratory and pilot plant scales. A continuos system using this technology was successfully implemented in April 1994, for the treatment of waste water from Colombia's biggest refinery. Existing stabilizing pools were converted into bioreactors capable of handling water flow rates between 16.000 to 32.000 m3/d. Efficiencies close to 95% have obtained under controlled acidity, aeration and flow rate conditions. This technology is being implemented in other Ecopetrol refineries and production fields

  9. Treatment of radioactive waste water by flocculation method, (1)

    International Nuclear Information System (INIS)

    Coagulation property of particle on the treatment of radioactive waste water by floculation method is varied with its electrical potential and mixing condition. The surface state of the particle is influenced by contents of coexistent materials in the waste water and added materials at the treatment process. In the case of using ferric hydroxide as coagulant, assuming the ions which decide the potential of the particle surface are Fe(OH)2+ and Fe(OH)4-, calculated values of the potential agree with zeta-potential of ferric hydroxide particle which is formed from FeCl4 and NaOH in demineralized water. When Na2CO3 is in the waste water as coexistent materials, anion HCO3- adsorbs on the particle surface in connection with pH variation and thus the surface charge is being minus. If Ca2+ ion is present in the waste water, the surface charge plus. ABS acts as single molecule anion at low concentration, but it forms micell at high concentration and influences zeta-potential of the particle. The potential of the particle is correlated to the coprecipitation rate of 90Sr in the waste water. (auth.)

  10. The potential of Zea mays, Commelina bengelensis, Helianthus annuus and Amaranthus hybridus for phytoremediation of waste water

    Directory of Open Access Journals (Sweden)

    Chacha Joseph Sarima

    2012-12-01

    Full Text Available Waste-water from domestic use and from industrial effluent burden the water systems with high levels of heavy metal hence there is need to remove these heavy metals so that the waste water can be recycled for use for household or irrigation. The present study has screened Zea mays (maize, Commelina bengelensis (wondering jew, Helianthus annuus (sunflower and Amaranthus hybridus (amaranthus for their ability to bioaccumulate Pb, Cu, Cd and Zn metals. The results obtained show that the H. annuus and C. bengelensis plant have promising potential for removal of Pb, Cu and Cd from wastewater though their ability to remove Zn from contaminated solutions is not much different from that of Z. mays and A. hybridus.

  11. [The behavier of Pseudomonas aeruginosa in surface water, cooling water and waste water (author's transl)].

    Science.gov (United States)

    Botzenhart, K; Wolf, R; Thofern, E

    1975-09-01

    This is a report on the occurrence and numerical behaviour of Ps. aeruginosa in natural waters with and without waste water contamination, in dams, cooling water circulations and cooling water discharge, in clarification plant and supplementary laboratory tests. The results show that Ps. aeruginosa may occur in the natural flora of open waters, but only following the introduction of human sewage. In the main, a more or less rapid reduction in the number of Ps. aeruginosa to low levels occurs, but periods of several days to several weeks must be allowed for this. In the presence of large quantities of nutrient, multiplication of Ps. aeruginosa in natural waters cannot be excluded. It certainly appears in technical systems such as cooling water circuits and filter plants. Presumably Ps. aeruginosa also multiplies in waste water, whereas in the biological aerobic clarification process a reduction occurs. The effect of a higher temperature on the survival or multiplication of Ps. aeruginosa could not be confirmed by laboratory experiments. PMID:811012

  12. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    Science.gov (United States)

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  13. [Water provision for domestic ducks kept indoors--a review on the basis of the literature and our own experiences].

    Science.gov (United States)

    Knierim, U; Bulheller, M A; Kuhnt, K; Briese, A; Hartung, J

    2004-03-01

    The wild ancestors of the domestic pekin and muscovy ducks are anatomically, physiologically and behaviourally well adapted to living on and at the water. The domestic ducks kept for fattening purposes still show clear preferences for open water and make use of water for foraging and feeding, drinking, for general exploration, locomotion and preening, even without prior experience. For hygienic, labour, technical and economical reasons ducks are nowadays mostly kept in closed buildings without access to open water. This significantly restricts their freedom to show their natural behaviour. An obvious consequence of this restriction is a deteriorated plumage condition, especially with regard to cleanliness. According to the Council of Europe recommendations, water shall be provided in a way that allows the ducks to cover their head with water and shake it about their body without difficulty. To date, however, there is a lack of solutions satisfying behavioural, hygienic, health, labour and economical requirements to about equally tolerable degrees. The presently available types of different water provisions are presented and discussed on the basis of existing literature as well as experiences and first results from an ongoing research project. The provision of shallow bathing water with daily water exchange promises to be a practicable solution. However, longer term research on possible negative effects of the decreased hygienic quality of the water on duck health is necessary before final conclusions can be drawn. PMID:15195960

  14. Improvement in, or relating to, waste-waters

    International Nuclear Information System (INIS)

    The invention relates to a method for eliminating impurities consisting of fluorides, ammonia and uranium traces from waste waters. That method eliminates fluorides through precipitating alkaline earth fluoride, ammonia through evaporation and the excess alkaline earth metal through passing over an ion exchange resin. The water resulting from such a treatment contains but uranium traces and is suitable for re-cycling. The method can be applied to the treatment of waste waters resulting from the preparation of ammonium di-uranate from uranium hexafluoride

  15. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  16. Optimal control of a waste water cleaning plant

    Directory of Open Access Journals (Sweden)

    Ellina V. Grigorieva

    2010-09-01

    Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  17. Purification of drilling waste water by electric coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Shishov, V.A.; Gnusin, N.N.; Ryabchenko, V.I.; Shemeatov, V.Y.; Vitul' skaya, N.V.

    1982-01-01

    In order to evaluate the possibilities of electric coagulation method for purifying drilling waste waters, a cycle of studies was made on a test stand. Experiments were conducted with constant velocity of water influx into the electrolyzer 3 1/h. This corresponds to specific consumption of 0.2 m/sup 3//h from 1 m/sup 2/ of anode surface. The density of the current fed to the electrodes changed from 0.5 to 2.5 A/in/sup 2/, while the pH of the medium from 4 to 7. Studies indicated a high efficiency of purifying drilling waste waters by electric coagulation.

  18. Analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The object of this study was dynamic modeling, simulation and optimum design of solar DHW (domestic hot water) systems, with respect to different whether conditions, and accurate dynamic behaviour of the heat load. Special attention was paid to systems with thermosyphon and drain-back design. The solar radiation in Beijing (China) and in Denmark are analyzed both by theoretical calculations and the analysis of long-term measurements. Based on the weather data from the Beijing Meteorological Station during the period of 1981-1993, a Beijing Test Reference Year has been formulated by means of statistical analysis. A brief introduction about the Danish Test Reference Year and the Design Reference Year is also presented. In order to investigate the heat loss as a part of the total heat load, dynamic models for distribution networks have been developed, and simulations have been carried out for typically designed distribution networks of the circulation type. The influence of operation parameters such as the tank outlet temperature, the hot-water load and the load pattern, on the heat loss from the distribution networks in presented. It was found that the tank outlet temperature has a significant influence on the heat loss from a circulation type of distribution network, while the hot-water load and the load pattern have no obvious effect. Dynamic models of drain-back tanks, both as a separated tank and combined with a mantle tank, have been developed and presented. Models of the other basic components commonly used in solar DHW systems, such as flat-plate collectors, connection pipes, storage tanks with a heat exchanger spiral, and controllers, are also described. (LN) 66 refs.

  19. A Study of Waste Water Treatment of Microbiological Laboratories of Hospitals by Electrolyzed Oxidized Water

    OpenAIRE

    Fiza Sarwar; Aroos Munir; Ilyas Ahmed Faridi

    2011-01-01

    Hospital liquid infectious waste is one of the most important aspects of water contamination. The presentinvestigation was undertaken to evolve a cost effective alternate method of waste water treatment by usingOxidized Water as a disinfectant for hospital effluents. Liquid infectious waste coming from diagnosticlaboratories of hospitals (Urine, Blood and Mix of both) was treated with electrolyzed Oxidized Water. Differentv/v ratios (95:5, 85:15, 75:25, 50:50 and 25:75) of Sample to Electroly...

  20. Delevopment and use of a model for incinerators of oil spills and domestic waste

    International Nuclear Information System (INIS)

    Experiments in flow models have been used to study various problems concerning incineration of contaminated matter. The basic philosophies are: (1) The fixed bed of burning material in most cases acts as a pyrolyzer, and combustion is completed in the space above the bed. (2) Regardless of existing knowledge of the mechanisms for formation of various air pollutants, the task of the incinerator is to maintain certain conditions regarding the distribution of temperature, residence, time, and concentration of oxidizing agents. The consequence of this is that many problems can be solved in an efficient and cost effective way using experiments in cold and hot models. Similarity criteria and experimental methods are discussed and illustrated by two case studies: finding remedies against fouling problems in an existing incinerating plant for municipal waste, and development of a mobile incinerator for oil-contaminated solid matter

  1. Water recovery using waste heat from coal fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  2. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    International Nuclear Information System (INIS)

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design and optimize its products comparing their systems against a reference system under identical test conditions and secondly, by the consumers in order to select the most suitable system. The resulting experimental data for a particular thermosiphon system is presented and discussed. (author)

  3. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Pilatowsky, I. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco, s/n, Colonia Centro, 62580 Temixco, Morelos (Mexico); Ruiz, V. [Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n, Isla de la Cartuja, 41092 Sevilla, Espana (Spain)

    2008-07-15

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design and optimize its products comparing their systems against a reference system under identical test conditions and secondly, by the consumers in order to select the most suitable system. The resulting experimental data for a particular thermosiphon system is presented and discussed. (author)

  4. Low-Cost Solar Domestic Hot Water Systems for Mild Climates

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

    2005-01-01

    In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

  5. A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain

    Directory of Open Access Journals (Sweden)

    Alberto Gutierrez-Escolar

    2014-10-01

    Full Text Available Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studied DHW consumption with data from 10 apartments in the same building during 18 months. As a result of the study, we updated one chosen methodology, adapting it to the current situation. One of the challenges to improve efficiency of DHW use is that most of people are not aware of how it is consumed in their homes. To help this information to reach consumers, we developed a website to allow users to estimate the final electrical energy needed for DHW. The site uses three estimation methodologies and chooses the best fit based on information given by the users. Finally, the application provides users with recommendations and tips to reduce their DHW consumption while still maintaining the desired comfort level.

  6. Testing and analysis of load-side immersed heat exchangers for solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, R.B.; Bingham, C.E.

    1987-10-01

    This report describes work to determine the performance of load-side heat exchangers for use in residential solar domestic hot water systems. We measured the performance of four heat exchangers: a smooth coil and a finned coil having heat transfer areas of 2.5 m/sup 2/ (26 ft/sup 2/) and those having areas of 1.7 m/sup 2/ (19 ft/sup 2/). A numerical model using the thermal network program MITAS was constructed, and results were compared to the experimental results. Research showed a smooth coil with only 70% of the surface area of a finned coil performed better than the finned coil. Also, load-side heat exchangers can maintain and enhance stratification in storage tanks, permitting the use of control strategies that take advantage of stratified storage tanks to increase system performance. The analytical model, which agreed reasonably well with the experimental results, was used to vary heat exchanger flow rate and area and initial tank temperature for both a smooth- and a finned-coil heat exchanger. Increasing the heat exchanger flow rate and area results in higher heat transfer rates but not necessarily optimal performance. Lower initial tank temperatures resulted in reduced tank stratification. The smooth heat exchanger outperformed the finned heat exchanger with the same outside surface area. 15 refs., 37 figs., 9 tabs.

  7. Methods for chemical analysis of water and wastes

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    This manual provides test procedures approved for the monitoring of water supplies, waste discharges, and ambient waters, under the Safe Drinking Water Act, the National Pollutant Discharge Elimination System, and Ambient Monitoring Requirements of Section 106 and 208 of Public Law 92-500. The test methods have been selected to meet the needs of federal legislation and to provide guidance to laboratories engaged in the protection of human health and the aquatic environment.

  8. Germination of grass seeds with recycling waste water

    OpenAIRE

    Florez Garcia, Mercedes; Carbonell Padrino, Maria Victoria; Martinez Ramirez, Elvira; Amaya Garcia de la Escosura, Jose Manuel; Delgado Arroyo, Maria del Mar

    2008-01-01

    This study was designed to determine the effects of residual water irrigation on the rate and percentage of germination of grass seeds. Germination tests were carried out to compare the seeds irrigated with recycling waste water with seeds irrigated with distilled water. Test with Festuca arundinacea Sch. and Agrostis tenuis L. seeds was performed under laboratory conditions. Parameters used to evaluate germination were: number of germinated seeds (Gmax), mean germination time (MGT), the time...

  9. Electrochemical methods of analysis of natural and waste waters

    International Nuclear Information System (INIS)

    Principles and modern analysis techniques of natural and waste waters using electrochemical methods are systematized. Methods for water sampling and their preparation for the analysis are considered. Techniques for determining individual elements (Cd, W, U, Zr, In, I etc.) in waters as well as multi-element analysis techniques are given Element detection limits and determination errors for these techniques are given and interfering impurities are marked

  10. Vitrification treatability studies of actual waste water treatment sludges

    International Nuclear Information System (INIS)

    Treatability studies have been conducted at the laboratory-scale to evaluate vitrification of waste water sludges at the Oak Ridge Reservation (ORR). These studies are being conducted jointly by Westinghouse Savannah River Technology Center (SRTC) and Oak Ridge National Laboratory (ORNL). These studies include testing with surrogate waste formulations at both the laboratory-scale and pilot-scale, and testing with actual waste at the laboratory-scale, pilot-scale, and field-scale. ORR was chosen as the host site for the field-scale demonstration. The Y12 West End Treatment Facility (WETF) waste water treatment sludges, which are RCRA F-listed wastes, were chosen as the candidate waste stream for the first field-scale demonstration. The laboratory-scale ''proof-of-principle'' demonstrations reported in this study and the pilot-scale studies planned for FY95 on the WETF sludge will provide needed operating parameters for the planned field-scale demonstration. These laboratory-scale ''proof-of-principle'' and pilot-scale studies also provide needed data for the evaluation of the feasibility of vitrification as a stabilization option for a variety of wastes which do not currently meet RCRA/LDR (Resource Conservation and Recovery Act/Land Disposal Restrictions) requirements for storage/disposal and/or those for which treatment capacity does not presently exist

  11. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    Science.gov (United States)

    Ismail, Samir Abd-elmonem A.; Ali, Rehab Farouk M.

    2015-06-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ? 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44-0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel.

  12. Heavy metals in the waste and in the water discharge area of municipal solid waste

    Directory of Open Access Journals (Sweden)

    Luiz Ermindo Cavallet

    2013-12-01

    Full Text Available The county of Paranaguá discards 80 tons of municipal solid waste (MSW daily in the Embocuí landfill without proper treatment. The present study aimed to evaluate the concentration of arsenic (As, cadmium (Cd, chromium (Cr, lead (Pb and mercury (Hg in the dump area and to compare it with reference values for soil and water quality stipulated by CETESB (2005. The methodology of the study involved the collection of waste samples (organic waste mixed with soil from a depth of 1 m deep at 12 points of the dump, and the collection of water samples from a depth of 3 m at 3 points in the deposited waste. Extraction of heavy metals in the water samples was performed according to the USEPA (1999 method and analysis followed ICP-OES (Inductively Coupled Plasma - Atomic Emission Spectrometry. Analysis of the solid waste samples showed the following concentrations: (mg kg -1: As < 10; Cd < 1; Cr = 26; Pb = 52; e Hg = 0.2. The water samples showed the following concentrations: (mg L- 1: As < 5; Cd < 5; Cr =29 e Pb = 10. The amounts of heavy metals in samples of tailings and water from the landfill area fall below the values considered to create a risk of contamination.

  13. Electrolytic separation of tars and oils from waste water

    Energy Technology Data Exchange (ETDEWEB)

    Filonenko, Yu.Ya.; Konev, N.L.; Rzhavichev, S.P.; Myachin, G.V.; Sobolev, S.Ya.; Kuznetsov, V.Ya.; Ivantsov, V.A.

    1991-08-01

    Discusses the feasibility of separating oils and tars from coking waste-water using electrocoagulation. Soluble electrodes made of St3 steel were used. Waste water was treated by flotation (by hydrogen bubbles evolving from a cathode) as well as coagulation (by ions of iron Fe{sup 2+}) formed during catalytic dissolution of an anode. Efficiency of oil and tar separation from waste water using electrocoagulation was tested under laboratory conditions: voltage 15 V, current 62.2. A, current density 1,666.7 A/m{sup 2}, four 11x11 cm electrodes situated at intervals of 3 mm, volume of an electrolyzer 4.42 l, electrolysis time 15 s, output 1.0 m{sup 3}/h. Energy consumption was 1.25 kWxh/m{sup 3}. 3 refs.

  14. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  15. Toxicity of waste water from uranium ore mining and processing

    International Nuclear Information System (INIS)

    Some results are given of the observations made of waste waters from uranium ore mining and processing. Cu, Fe, Pb, Al, Ni, Ba, Zn, NH3 were found in decontaminated waste waters discharged into surface waters in concentrations toxic for various species of aquatic organisms. The maximum permissible concentration or uranium for surface waters in Czechoslovakia is 0.1 mg/l which practically excludes toxic effects on aquatic organisms. The radiation effects of uranium in such concentrations are negligible. The concentration was also studied of 226Ra and 210Po which in association with natural radionuclides in the water may accumulate radiation doses dangerous for aquatic organisms. This value was determined for both radioisotopes at 0.5 Bq/l. The obtained results are discussed against data published in foreign literature. (Z.M.)

  16. Heavy metals in the waste and in the water discharge area of municipal solid waste

    OpenAIRE

    Luiz Ermindo Cavallet; Sebastião Garcia de Carvalho; Paulo Fortes Neto

    2013-01-01

    The county of Paranaguá discards 80 tons of municipal solid waste (MSW) daily in the Embocuí landfill without proper treatment. The present study aimed to evaluate the concentration of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) in the dump area and to compare it with reference values for soil and water quality stipulated by CETESB (2005). The methodology of the study involved the collection of waste samples (organic waste mixed with soil) from a depth of 1 m deep at...

  17. Use of some natural and waste materials for waste water treatment.

    Science.gov (United States)

    Ahsan, S; Kaneco, S; Ohta, K; Mizuno, T; Kani, K

    2001-10-01

    A fundamental study was conducted to assess removal and filtration capacity of waste and natural indigenous materials as treatment mediums e.g., shell, limestone, waste paper mixed with refuse concrete, refuse cement, also processed nitrolite, charcoal-bio and charcoal. Under room temperature condition removal of phosphoric, nitric and ammonium-ions, filtration of suspended substance (SS) together with removal of COD in waste water was investigated. Influence of particle size effect for all treatment mediums except for waste paper was pursued. Significant improvement of waste water quality with respect to SS, phosphoric ions and decrease in COD is possible by treating with these filtration mediums. With specific reference to some treatment mediums NO3-N and NH4-N showed reasonable improvement in quality, although generally removal effect was not very significant. Efficacy of treatment was dependent on the particle size of treatment mediums in general, however, nitrolite for NH4--N, charcoal-A for SS and COD, refuse cement mixed with waste paper for PO4 ion removal showed insignificant variability on the particle size effect. Results of this fundamental study demonstrate effectiveness and feasibility for applied application of these proposed waste and naturally available treatment ingredients at lower cost. PMID:11561637

  18. Viruses and ionizing radiation in respect to waste water treatment

    International Nuclear Information System (INIS)

    After a short survey of viruses and the diseases they can cause in man the effects of ionizing radiation on viruses are discussed. Ionizing radiation inactivates viruses by direct and indirect effects, and it is well established that the radiosensitive target is the nucleic acid. Factors affecting the radiosensitivity are temperature and suspending medium. The possible influence of oxygen on viral radiosensitization remains unclear. For the effective application of radiation treatment on waste waters information is required concerning the concentration of viruses in waste waters in order that treatment doses may be determined. (orig.)

  19. Army Reserve Expands Net Zero Energy, Water, Waste

    Energy Technology Data Exchange (ETDEWEB)

    Solana, Amy E.

    2015-04-14

    In 2012, the Army initiated a Net Zero (NZ) program to establish NZ energy, water, and/or waste goals at installations across the U.S. In 2013, the U.S. Army Reserve expanded this program to cover all three categories at different types of Reserve Centers (RCs) across 5 regions. Projects identified at 10 pilot sites resulted in an average savings potential from recommended measures of 90% for energy, 60% for water, and 83% for waste. This article provides results of these efforts.

  20. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2?S/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are significantly reduced. In this paper salient feature of LTE desalination plant, its applications and advantages are discussed. (author)

  1. Waste water reuse pathways for processing tomato

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann; Andersen, M; Schweitzer, A; Steiner, M; Sandei, L; Gola, S; Dalsgaard, A; Forslund, A; Klopmann, W; Solimando, D

    2008-01-01

      Direct or indirect water reuse involves several aspects: contamination by faecal, inorganic and xenobiotic pollutants; high levels of suspended solids and salinity; rational use of the dissolved nutrients (particularly nitrogen). The challenge is apply new strategies and technologies which allows to use the lowest irrigation water quality without harming nor food safety neither yield and fruit or derivatives quality. The EU project SAFIR aims help farmers solve problems with low quality water ...

  2. Tritiated waste water fixation of solid materials

    International Nuclear Information System (INIS)

    The exchange kinetics between tritiated and distilled water (THO/H2O) from various zeolites, natural and synthetic analcimes, saturated with THO are reported. Kinetic parameters for the diffusion process are calculated from experimental data. Tritiated water releases from the zeolites saturated with THO into distilled water is given for various temperatures and times. Ferric, zinc, cobalt and sodium zeolites are investigated. Results indicated that cobalt zeolite and synthetic analcime release rates of THO are superior to the other zeolites tested

  3. Improving Water Supply Systems for Domestic Uses in Urban Togo: The Case of a Suburb in Lomé

    Directory of Open Access Journals (Sweden)

    Taisha Venort

    2012-02-01

    Full Text Available The rapid urbanization facing developing countries is increasing pressure on public institutions to provide adequate supplies of clean water to populations. In most developing countries, the general public is not involved in strategies and policies regarding enhancement, conservation, and management of water supply systems. To assist governments and decision makers in providing potable water to meet the increasing demand due to the rapid urbanization, this study sought to characterize existing water supply systems and obtain public opinion for identifying a community water supply system model for households in a residential neighborhood in Lomé, Togo. Existing water supply systems in the study area consist of bucket-drawn water wells, mini water tower systems, rainwater harvesting, and public piped water. Daily domestic water consumption in the study area compared well with findings on water uses per capita from Sub-Saharan Africa, but was well below daily water usage in developed nations. Based on the surveys, participants thought highly of a large scale community water tower and expressed interest in maintaining it. Even though people rely on water sources deemed convenient for drinking, they also reported limited confidence in the quality of these sources.

  4. An advective diffusion process on hot wasted water discharged to a depression angle direction into water

    International Nuclear Information System (INIS)

    Effect of change in wasted water from nuclear or fossil fuel power plants discharging direction from horizontal one to depression angle one on an advective diffusion process of hot wasted water was investigated. As a result, it could be confirmed that an effect of depression angle jet discharge on water temperature reduction and so forth could be applied present experimental equation on horizontal discharging by a coordinate transformation of various factors with discharging water angle. And, a judgement equation to obtain a limiting area of hot wasted water affecting with bed surface was obtained by using distance from the lowest point of jet to the sea bed, inner diameter of discharging pipe, and field number for parameters, to elucidate its effectiveness. Furthermore, a diagram to estimate an effect of depression angle discharging water in the area on water temperature reduction and so forth was also proposed. (G.K.)

  5. Combination gas producing and waste-water disposal well

    Science.gov (United States)

    Malinchak, Raymond M. (McKeesport, PA)

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  6. 78 FR 64905 - Carriage of Conditionally Permitted Shale Gas Extraction Waste Water in Bulk

    Science.gov (United States)

    2013-10-30

    ...all regions where shale gas extraction waste water may be transported...Conditionally Permitted Shale Gas Extraction Waste Water in Bulk...barge to transport shale gas extraction waste water (SGEWW) in bulk...involves the injection of water, sand, and chemical...

  7. Isotopic Investigation of the Origin of Nitrate of Waters Outflowing from a Waste Deposit Site Near Scuol (Lower Engadine, South Eastern Switzerland)

    International Nuclear Information System (INIS)

    Near the village of Scuol in the Lower Engadine Valley (South Eastern Switzerland) Sot Ruinas, a waste disposal site for domestic and construction refuse, has been in use since the 1960s. It is situated in the vicinity of the Inn River. Over the last years enhanced concentrations of ammonia were found in the outflow of this waste site. But the observed elevated ammonia concentrations could also be a result of natural origin, by inflows of mineral water as observed in the mineral springs of the area. These springs could have acquired their high ammonia content by water-rock interaction with adjacent ultramafic rocks. The isotope analyses were oriented towards the hydrogen, nitrogen and oxygen isotopes on the ammonia, nitrate and nitrogen molecules. The effect of the waste on the outflowing water downstream could be proved by isotope ratios based on chemical processes of the nitrogen cycle and an influence of natural spring water was excluded. (author)

  8. Impact of Solid Waste Disposal on Ground Water Quality in Different Disposal Site at Jaipur, India

    OpenAIRE

    Rahul Nandwana

    2014-01-01

    This research paper here to present to examine the adverse effect of dumping of solid waste at disposal site on ground water quality at various disposal site at Jaipur city, India. This effect on ground water causes due to the unsystematic or unscientific dumping of solid waste. The water, which already presents in the waste, generates with the biodegradable waste or due to the infiltration of water by rainfall. This water which generates or occurs due to that process pours in...

  9. Monitoring the waste water of LEP

    CERN Document Server

    Rühl, I

    1999-01-01

    Along the LEP sites CERN is discharging water of differing quality and varying amounts into the local rivers. This wastewater is not only process water from different cooling circuits but also water that infiltrates into the LEP tunnel. The quality of the discharged wastewater has to conform to the local environmental legislation of our Host States and therefore has to be monitored constantly. The most difficult aspect regarding the wastewater concerns LEP Point 8 owing to an infiltration of crude oil (petroleum), which is naturally contained in the soil along octant 7-8 of the LEP tunnel. This paper will give a short summary of the modifications made to the oil/water separation unit at LEP Point 8. The aim was to obtain a satisfactory oil/water separation and to install a monitoring system for a permanent measurement of the amount of hydrocarbons in the wastewater.

  10. Waste water shows traces of radioactive substances

    International Nuclear Information System (INIS)

    Sludge at sewage treatment plants has been found to contain radioactive substances originating in hospitals, nuclear weapon tests, the Chernobyl accident, the Finnish nuclear power plants and natural sources. Radioactive substances also enter sewers together with excretions after patients have left the hospital. Hospitals used to let the excretions of patients receiving the iodine 131 treatment into the sewer system only after the activity of the excretions had decreased. Today, excretions can be led into the sewer directly. Calculations have shown that hospital staff receive higher radiation doses when the waste is collected than sewage treatment plant staff receive when the radioactive iodine is led directly into the sewer

  11. Dioxin-like potencies and extractable organohalogens (EOX) in medical, municipal and domestic waste incinerator ashes in Japan.

    Science.gov (United States)

    Matsui, Mitsuaki; Kashima, Yuji; Kawano, Masahide; Matsuda, Muneaki; Ambe, Kazunori; Wakimoto, Tadaaki; Doi, Rikuo

    2003-12-01

    Ash samples collected from medical, municipal and small-scale domestic incinerators in Japan were tested for dioxin-like activity using bioassay technique (ethoxyresorufin-O-deethylase: EROD assay) and for extractable organohalogens (EOX) using instrumental neutron activation analysis in order to estimate potential toxicity and responsible chemicals in those samples. Crude extracts and fractions cleaned-up for dioxin analysis from the samples were used for the analysis. The ranges of dioxins in the ashes were between 2.23 and 12.29 ng TEQ/g (dry weight). Relative potency ranges estimated by EROD assay in the medical incinerator ashes were 3.8-17.6 times higher than the results of conventional chemical analysis. EOX analysis suggested that ash samples contained plenty of organochlorine compounds apart from chlorinated dioxins. In addition, medical waste incinerator ashes were considered to have relatively higher amount of organoiodine compounds. In the cleaned-up fractions, bioassay potency ranges were lower than those in the crude extracts. However, some samples still exhibited higher potency than expected from chemical analysis. Though some polycyclic aromatic hydrocarbons were found in the fractions, the amounts were relatively low (0.39-10.56 ng/g). The results imply that some bioactive organohalogens that cannot be detected in the conventional chemical analysis might have potential for dioxin-like toxicity, and contribute to higher bioassay activities. The combination of the chemical analysis with the bioassay and EOX provides rough figure of dioxin-like toxicity and suggests types of organohalogen compounds that should be identified as a part of dioxin analysis for control emission from an incineration plant. PMID:14505720

  12. A Good Solution for Household Based on Fast Waste Water Blockage Detection

    OpenAIRE

    Mohammad A. Omardin; Ahmed N. Abdalla; Mohd H. Suid; Noraziah Ahmad

    2010-01-01

    Problem statement: The waste pipes from the wash basin are always flow in with several waste form kitchen preparation. Due to time consideration the pipe may comes through blockage and need blockage maintenance. Approach: This study presented an invention for early warning blockage detection for a kitchen waste water drain pipe. The waste water pipe some be connected through vertical pipe runs which are usually embedded in the wall. The Fast Waste Water Blockage Detection (FWABET) is to creat...

  13. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter

    2014-01-01

    Denmark's political ambitions of a fossil fuel free energy system by 2050 calls for more renewable energy sources such as wind and solar. These green energy resources fluctuate and the transition to a green energy system requires a Smart Grid with flexible consumers that balance the fluctuating power production. The energy-heavy processes for waste water transport and treatment could potentially provide a flexible operation with storage capabilities and be a valuable asset to a Smart Grid. In order to enable Waste Water Treatment Plants (WWTPs) as flexible prosumers in the future Smart Grid, we must update their process control system to model based predictive control that monitors the changed flexible operation and plans ahead. The primary aim of a WWTP is to treat the incoming waste water as much as possible to ensure a sufficient effluent water quality and protect the environment of the recipient. The secondary aim is to treat the waste water using as little energy as possible. In the future waste water will be considered an energy resource, that contains valuable nutrients convertible to green biogas and in turn electricity and heat. In a Smart Grid consuming or producing energy at the right time is key to both lower plant electricity costs and actively help to balance the energy system. Predictions of the WWTP and sewer system operation could help a model based controller to adapt power consumption and production according to the energy system flexibility needs; incentivized through energy markets and prices. We are in the process of upgrading the current control system to prepare a flexible operation and Smart Grid market integration. The prototype system will be tested online at a plant in Denmark, that in the current market could save up to 300.000 DKK/year in electricity costs. The solution is based on existing available online plant sensors and is expected to be part of Krüger’s advanced process control software STAR control® already used at plants worldwide.

  14. Wash water waste pretreatment system study

    Science.gov (United States)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  15. Relative potential hazards of radioactive waste in various water systems

    International Nuclear Information System (INIS)

    The potential hazard to man arising from the hypothetical release of radioactive spent fuel waste into various water systems has been evaluated. Radionuclide transport and human exposure were simulated for six water systems: a large Northwestern river, a small Northeastern river, a small Northwestern river, a large Central Region river, a lake with no outflow in an arid region, and an aquifer discharging directly into an ocean

  16. Impact on a utility, utility customers and the environment of an ensemble of solar domestic hot water systems

    International Nuclear Information System (INIS)

    The benefits of the installation of a large number of solar domestic hot water (SDHW) systems are identified and quantified. The benefits of SDHW systems include reduced energy use, reduced electrical demand, and reduced pollution. The avoided emissions, capacity contribution, energy and demand savings were evaluated using the power generation schedules, emissions data and annual hourly load profiles from a Wisconsin utility. It is shown that each six square meter solar water heater system can save annually: 3,560 kWh of energy, 0.66 kW of peak demand, and over four tons of pollution

  17. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  18. An Analysis of the Waste Water Treatment Operator Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  19. STRATEGIES FOR WATER AND WASTE REDUCTION IN DAIRY FOOD PLANTS

    Science.gov (United States)

    A study was undertaken to reduce water and waste discharges in a complex, multiproduct dairy food plant through management control and modifications of equipment and processes. The objectives were to develop approaches that would be broadly applicable throughout the dairy industr...

  20. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Science.gov (United States)

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  1. How much water is enough? Domestic metered water consumption and free basic water volumes: the case of Eastwood, Pietermaritzburg

    Scientific Electronic Library Online (English)

    JA, Smith.

    2010-10-01

    Full Text Available This article is based on an in-depth case study of urban water services to poor households in the community of Eastwood, Pietermaritzburg, in the province of KwaZulu-Natal, South Africa, for the period 2005-2007. The article adopts a mixedmethodological approach. Despite government progress in deliv [...] ering water infrastructure post-1994, ability to pay for the service limited access. The free basic water policy, initiated by national Government in 2001, sought to provide all citizens, but particularly the poor, with a basic supply of free water. The concessions were envisaged to improve public health, gender and equity, affordability, and as an instrument of post-apartheid redress and poverty alleviation. Once free basic water (FBW) was declared a new imperative for local government the debate on exactly how much was enough, why 6 kl was chosen, the structure of the offering and broader state intentions opened up. This article positions the FBW offering within the prevailing international discourse on 'need' calculation. Through the exploration of actual water consumption patterns of urban poor households, the ideological assumptions and 'scientific' calculations underpinning this discourse were found to have ignored the fluidness of use as well as the value of water beyond mere physiological need. In this regard, access to FBW was conditioned on a small household size and further predicated the modification of normal water activities and lifestyle and carried a disproportionate social cost. The free basic volume of 6 kl was found to have no resonance with actual water volumes consumed by the majority of Eastwood households.

  2. Attenuation of Chromium toxicity in mine waste water using water hyacinth

    Directory of Open Access Journals (Sweden)

    Mohanty M.

    2011-12-01

    Full Text Available The mine waste water at South Kaliapani chromite mining area of Orissa (India showed high levels of toxic hexavalent chromium (Cr+6. Cr+6 contaminated mine waste water poses potential threats for biotic community in the vicinity. The current field based phytoremediation study is an in situ approach for attenuation of Cr+6 from mine waste water using water hyacinth (Eichhornia crassipes weeds by rhizofiltration method. The weeds significantly reduced (up to 54% toxic concentrations of Cr+6 from contaminated mine waste water when passed through succeeding water hyacinth ponds. The reduction of toxic chromium level varied with the plant age and passage distance of waste water. Chromium phytoaccumulation and Bio-Concentration Factor (BCF was maximum at growing stage of plant i.e. 75 days old plant. High BCF (10,924 and Transportation Index (32.09 for water hyacinth indicated that the weeds can be used as a tool of phytoremediation to combat the problem of in situ Cr contamination in mining areas.

  3. Performance characterization of water recovery and water quality from chemical/organic waste products

    Science.gov (United States)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  4. Lessons Learned for Construction and Waste Water Management at Radioactive Waste Closure Site

    International Nuclear Information System (INIS)

    Environmental remediation of three different radioactive waste closure sites each required exhaustive characterization and evaluation of sampling and analytical information in resolving regulatory and technical issues that impact cleanup activities. One of the many regulatory and technical issues shared by all three and impacting the cleanup activities is the compliant management and discharge of waste waters generated and resulting from the remediation activities. Multiple options were available for each closure site in resolving waste water management challenges depending upon the base regulatory framework defined for the cleanup or closure of the site. These options are typically regulated by the federal Clean Water Act (CWA), with exemptions available under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA) or Memorandum of Understanding (MOU) between regulatory agencies. In general, all parties must demonstrate equivalent compliance when concerns related to the protection of the general public and the environment. As such, all options for management of waste water resulting from closure activities must demonstrate compliance to or equivalent actions under the CWA. The CWA provides for the National Pollution Discharge Elimination System (NPDES) that is typically maintained by individual states through permitting process to generators, public utilities, and more recently, construction sites. Of the three sites, different compliance strategies were employed for each. The approach for the Columbus Closure Project (CCP) was to initiate full scale compliance to the Ohio EPA General Construction Permit No. OHC000002. The CCP provided Notice of Intent (NOI) to the Ohio EPA to discharge under the general permit according to the regulator approved Storm Water Pollution Prevention Plan. For the second site, the Li Tungsten Superfund Site in Glen Cove, New York, the option was to manage and discharge waste water under a due diligence process to New York State General Permit No. GP-02-01. For the third site, the Middlesex Sampling Plant in Middlesex, New Jersey, the options was to manage and discharge waste water to the Publicly Owned Treatment Works (POTW). Each option has resulted in a safe, cost-effective, and compliant approach to managing discharging waste waters from the site closure activities. (authors)

  5. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  6. Deposition of waste water into deep mines.

    Czech Academy of Sciences Publication Activity Database

    P?ikryl, Petr; Segeth, Karel; ?erný, R.; Havlík, V.; Stupka, P.; Toman, J.

    1999-01-01

    Ro?. 10, - (1999), s. 457-466. ISSN 1180-4009. [International Conference on Quantitative Methods for the Environmental Sciences/8./. Innsbruck, 02.08.1997-09.08.1997] R&D Projects: GA ?R GA103/96/1710 Subject RIV: DJ - Water Pollution ; Quality Impact factor: 0.516, year: 1999

  7. Autotrophic nitrogen removal from low strength waste water at low temperature

    OpenAIRE

    Hendrickx, T.L.G.; Wang, Y; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C. J. N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now, anammox has mainly been used for treating warm (>30 °C) and concentrated (>500 mg N/L) waste streams. Application in the water line of municipal waste water treatment poses the challenges of a lower ...

  8. Integrated photocatalytic waste water recycling in textile finishing

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, C.; Boettcher, J.; Funken, K.H.; Monnerie, N.; Oliveira, L. de; Schaefer, R. [German Aerospace Center, Inst. of Technical Thermodynamics - Solar Research, Cologne (Germany); Mueller, H. [Carl Albani Gardinenfabrik GmbH and Co., Augsburg (Germany); Schaefer, T.; Schulz, S.; Stummer, R. [Enviro Tex GmbH, Augsburg (Germany)

    2003-07-01

    In the BMBF-funded PhoRTex project DLR, carl albani gardinenfabrik GmbH and Co., and EnviroTex GmbH have developed and tested a photocatalytic pilot plant for the treatment and integrated recycling of process waste water in textile finishing. The PhoRTex pilot plant comprises a 4 kW UV-lamp to treat up to 500 L waste water batches. The advanced photo-oxidation process is based on the photo-fenton reaction where iron ions act as photocatalysts producing OH-radicals under irradiation. The pilot plant works in a bypass to washing, bleaching, and conventional water treatment devices as Carl Albani Gardinenfabrik in Augsburg, Germany. In extensive tests, it has been shown that the non-biodegradable contaminants being present in the water fractions can be degraded very efficiently. The tests at laboratory scale as well as at pilot plant scale have shown that the technology is able to treat waste waters of textile finishing processes very efficiently. The degradation of a broad variety of contaminants showed that the technology might be transferable to many other textile finishing processes. (orig.)

  9. Biological treatment of waste water; Haisui no baio shori

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H. [Chiyoda Corp., Kanagawa (Japan)

    2000-07-01

    There are 1,000 to 2,000 species of microorganisms involved in waste water treatment, and they are roughly classified into bacteria, algae, fungi, protozoa and metazoa. There are two methods for disintegrating organic matters in water by microorganism, and they are classified into aerobic treatment and anaerobic treatment. In aerobic treatment, organic matters are oxidized to disintegrate to carbon dioxide and water supplying oxygen to microorganism, and in anaerobic treatment, organic matters are disintegrated reductively without supplying oxygen to microorganism. In this case, organic matters become methane gas and carbon dioxide. Anaerobic treatment is an effective method for relatively high organic matter content waste water, and there are many application cases in food industry, but less in petroleum industry. There are several indispensable elements in microorganism treatment. First is nutrition, and this includes nitrogen and phosphorus. A suitable range of pH is between 6 and 8, and pH must be controlled so as to be in this range. Suitable temperature is between 20 and 30 degrees centigrade, and dissolved oxygen is above 0.5 mg/l, desirable above 2 mg/l. since existence of inhibiting substances and disintegration retardant causes problems, quality of waste water must be investigated in advance. In aerobic treatment, aeration power cost occupies more than a half of treatment cost, and power cost to treat 1 kg BOD is 1.0 to 1.5 kWh. (NEDO)

  10. Method of draining water through a solid waste site without leaching

    Science.gov (United States)

    Treat, Russell L. (Richland, WA); Gee, Glendon W. (Richland, WA); Whyatt, Greg A. (Richland, WA)

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  11. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  12. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  13. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Science.gov (United States)

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when...

  14. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport..., or waste water or other polluting materials. Arriving aircraft shall discharge such matter only...

  15. Alteration of vitrified wastes by water

    International Nuclear Information System (INIS)

    This study aims at grasping a relationship between long-term behavior of natural glass and water resistance of solidified glass, by analyzing hydration phenomenon at glass surface at a viewpoint of reaction between glass and water and change of glass structure, and at contribution to upgrading of long-term reliability evaluation of the solidified glass. In 1998 fiscal year, in order to investigate hydration phenomenon of such glasses in more details, under an aim of introduction of a spectroscopic methodology, some structure changes and reactions of both the natural glass and the solidified glass in a hydration process at low temperature of the sodium silicate type glass composing of their basic composition were investigated by mainly using the infrared spectroscopy and the nuclear magnetic resonance spectroscopy. As a result, it was found that re-bonding occurred at low temperature after deteriorating of network in glass. (G.K.)

  16. An index directly indicates land-based pollutant load contributions of domestic wastewater to the water pollution and its application.

    Science.gov (United States)

    Tsuzuki, Yoshiaki

    2006-11-01

    As indices directly indicate land-based pollutant load contributions to public water pollution, pollutant load per capita flowing into the water body (PLCwb) for the drainage areas of inner city rivers in Chiba City, Chiba Prefecture, Japan, was analyzed. It was reaffirmed that PLCwb was different by the drainage area. For example, the biochemical oxygen demand (BOD) load per capita flowing into the water body (PLCwb-BOD) was calculated as 0.83 g BOD person(-1) day(-1) for population served with wastewater treatment plant (WWTP). In regards to the three types of on-site domestic wastewater treatment methods in Japan: 0.4-2.1 g BOD person(-1) day(-1) for combined jokaso (CJ), 4.5-21 g BOD person(-1) day(-1) for simple jokaso (SJ) and 4.3-19 g BOD person(-1) day(-1) for night soil treatment (NST). In regards to nutrient parameters of the three on-site treatment methods, population weighted average of PLCwb was [corrected] almost the same, however, relatively small PLCwb was [corrected] observed for CJ and SJ comparing to that for NST expecially in the drainage areas with smaller reaching ratios. [corrected] Environmental accounting housekeeping (EAH) books for domestic wastewater were prepared based on the analysis results as the application of the indices. EAH books are effective tools for water pollution mitigation in public water bodies. The results of the preliminary correlation analysis of the indices showed that high-efficiency treatment methods including WWTP, agriculture village wastewater treatment facility (AVETF) and CJ are effective in reducing pollutant load flowing into the water body, and that PLCwb have second-order equation relationships with population density of the drainage area. Judging from these characteristics and the analytical results of this study, PLCwb may be useful as an index for demonstrating the benefit of wastewater treatment in reduction of water pollution in the water body. PMID:16916535

  17. Assessment of Shallow Ground Water Quality of Pindiga Gombe Area, Yola Area, NE, Nigeria for Irrigation and Domestic Purposes

    Directory of Open Access Journals (Sweden)

    G.I. Obiefuna

    2011-03-01

    Full Text Available The aim of this study is to assess the shallow groundwater quality of Pindiga Gombe area for irrigation and domestic purposes. Fifteen water samples collected from wells tapping shallow aquifer was used. The water samples were analyzed for major cations: Na+, Ca2+, K+ and anions: C-, HCO3-1, SO4 2- and NO3-. The important constituents that influence the water quality for irrigation such as Electrical Conductivity (EC, Total Dissolved Solids (TDS, Sodium Adsorption Ratio (SAR, Magnesium Adsorption Ratio (MAR, Permeability Index (PI, Kellys Ratio (KR, and Residual Sodium Bicarbonate (RSBC were assessed and compared with standard limits. The values of total dissolved solids (<166 mg/L, electrical conductivity (<0.249 ds/m, soluble sodium percentage (2.60 to 38.40%, permeability index (0.19 to 7.40%, magnesium adsorption ratio (37.34 to 66.50%, kellys ratio (0.0004 to 0.029 meq/L, residual sodium bicarbonate (0.35 to 3.02 meq/L and sodium adsorption ratio (0 to 0.035 were found to be within the safe limits and thus largely suitable for irrigation purposes. The groundwater will thus neither cause salinity hazards nor have an adverse effect on the soil properties of the study area. Furthermore, the water samples also fall within the recommended limits and are found suitable for domestic purposes.

  18. Volume of baseline data on radioactivity in drinking water, ground water, waste water, sewage sludge, residues and wastes of the annual report 1988 'Environmental radioactivity and radiation exposure'

    International Nuclear Information System (INIS)

    This WaBoLu volume is a shortened version of the annual report by the Federal Ministry of the Environment, Nature Protection and Reactor Safety 'Environmental radioactivity and radiation exposure' and gives an overview of the data on radioactivity in drinking water, ground water, waste water, sewage sludge, residues and wastes, compiled for the area of the Federal Republic of Germany in 1988 by the Institute of Water, Soil and Air Hygiene (WaBoLu) of the Federal Health Office. (BBR) With 22 figs., 15 tabs

  19. Artificial sweeteners as waste water markers in a shallow unconfined aquifer

    Science.gov (United States)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2013-04-01

    One key factor in groundwater quality management is the knowledge of flow paths and recharge. In coupled ground- and surface water systems the understanding of infiltration processes is therefore of paramount importance. Recent studies show that artificial sweeteners - which are used as sugar substitutes in food and beverages - are suitable tracers for domestic wastewater in the aquatic environment. As most rivers receive sewage discharges, artificial sweeteners might be used for tracking surface waters in groundwater. In this study artificial sweeteners are used in combination with conventional tracers (inert anions Cl-, SO42-, stable water isotopes ?18O, ?2H) to identify river water infiltration and the influence of waste water on a shallow unconfined aquifer used for drinking water production. The investigation area is situated in a mesoscale alpine head water catchment. The alluvial aquifer consists of quaternary gravel deposits and is characterized by high hydraulic permeability (kfmax 5 x 10-2 ms-1), high flow velocities (vmax 250 md-1) and a considerable productivity (2,5 m3s-1). A losing stream follows the aquifer in close proximity and is susceptible to infiltrate substantial volumes of water into the alluvial sediments. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners (Acesulfam ACE, Sucralose SUC, Saccharin SAC and Cyclamat CYC) at the investigated site. The local sewage treatment plant was identified as point source of artificial sweeteners in the river water, with ACE concentrations up to 0,6 ?gL-1. ACE concentrations in groundwater where approximately of one order of magnitude lower: ACE was present in 33 out of 40 sampled groundwater wells with concentrations up to 0,07 ?gL-1, thus indicating considerable influence of sewage water loaded surface water throughout the aquifer. Elevated concentrations of ACE and SAC in single observation wells denote other sources of locally limited contamination. Also, the temporal variability of sweeteners in surface water and the drinking water production well is compared with other tracers. ACE, Cl-and SO42- exhibit similar patterns in the river water. However, this behaviour cannot be observed in the production well, where ACE concentrations are varying compared to Cl- and SO42-.This suggests that the production well does receive groundwater being infiltrated prior to the sewage water treatment plant. Time series analysis of 18O, ?2H will give more insight in travel times and the location of infiltration zones.

  20. Treatment of a simulated mixed waste with supercritical water oxidation

    International Nuclear Information System (INIS)

    This report describes a series of tests using supercritical water oxidation (SCWO) to process cutting oil containing a simulated radionuclide. The goal of the tests was to evaluate the technology's ability to process a highly chlorinated waste representative of many mixed waste streams generated in the US DOE complex. The testing was conducted with a bench-scale SCWO system developed by the Modell Development Corp. Significant test objectives included process optimization for adequate destruction efficiency, tracking the radionuclide simulant and certain metals in the effluent streams, and assessment of reactor material degradation resulting from processing a highly chlorinated waste. Test results have been summarized from lab. analysis of the liquid effluent, and of the solid effluent, and witness wire data for corrosion and deposition evaluation

  1. Removal of actinides from dilute waste waters using polymer filtration

    International Nuclear Information System (INIS)

    More stringent US Department of Energy discharge regulations for waste waters containing radionuclides (30 pCi/L total alpha) require the development of new processes to meet the new discharge limits for actinide metal ions, particularly americium and plutonium, while minimizing waste. We have been investigating a new technology, polymer filtration, that has the potential for effectively meeting these new limits. Traditional technology uses basic iron precipitation which produces large amounts of waste sludge. The new technology is based on using water-soluble chelating polymers with ultrafiltration for physical separation. The actinide metal ions are selectively bound to the polymer and can not pass through the membrane. Small molecules and nonbinding metals pass through the membrane. Advantages of polymer filtration technology compared to ion, exchange include rapid kinetics because the binding is occurring in a homogenous solution and no mechanical strength requirement on the polymer. We will present our results on the systematic development of a new class of water-soluble chelating polymers and their binding ability from dilute acid to near neutral waters

  2. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life cycle impact assessment methods on pathogens, whole effluent toxicity and micropollutants will be developed within the project. As part of this work a review of more than 20 previous LCA studies on WWTTs has been done and the findings are summarised on this poster. The review is focused on the relative importance of the different life cycle stages and the individual impact categories in the total impact from the waste water treatment, and the degree to which micropollutants, pathogens and whole effluent toxicity have been included in earlier studies. The results show that more than 30 different WWTT (and even more treatment trains/scenarios) have already been the subject of more or less detailed LCAs. All life cycle stages may be important and all impact categories (except stratospheric ozone depletion) typically included in LCAs may show significance depending on the actual scenario. Potential impacts of pathogens and whole effluent toxicity have not been included in any study, and only a few studies have included micropollutants (in total less than 20 different micropollutants).

  3. Engineered photocatalysts for detoxification of waste water

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, S.A.; Prairie, M.R.; Shelnutt, J.A. [Sandia National Lab., Albuquerque, NM (United States); Khan, S.U.M. [Duquesne Univ., Pittsburgh, PA (United States). Dept. of Chemistry and Biochemistry] [and others

    1996-12-01

    This report describes progress on the development of engineered photocatalysts for the detoxification of water polluted with toxic organic compounds and heavy metals. We examined a range of different oxide supports (titania, alumina, magnesia and manganese dioxide) for tin uroporphyrin and investigated the efficacy of a few different porphyrins. A water-soluble octaacetic-acid-tetraphenylporphyrin and its derivatives have been synthesized and characterized in an attempt to design a porphyrin catalyst with a larger binding pocket. We have also investigated photocatalytic processes on both single crystal and powder forms of semiconducting SiC with an ultimate goal of developing a dual-semiconductor system combining TiO{sub 2} and SiC. Mathematical modeling was also performed to identify parameters that can improve the efficiency of SiC-based photocatalytic systems. Although the conceptual TiO{sub 2}/SiC photodiode shows some promises for photoreduction processes, SiC itself was found to be an inefficient photocatalyst when combined with TiO{sub 2}. Alternative semiconductors with bandgap and band potentials similar to SiC should be tested in the future for further development and a practical utilization of the dual photodiode concept.

  4. Impact of Animal Waste Application on Runoff Water Quality in Field Experimental Plots

    OpenAIRE

    Paul B. Tchounwou; William E. Owens; Hill, Dagne D.

    2005-01-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this...

  5. Employing Interim Water Management Barriers at Waste Disposal Area

    International Nuclear Information System (INIS)

    The West Valley Demonstration Project Act (the Act) of 1980 authorized the U.S. Department of Energy (DOE) to lead a high-level radioactive waste management demonstration project at the site of the former spent fuel reprocessing plant in West Valley, New York. The site is owned by the State of New York, through the New York State Energy Research and Development Authority (NYSERDA). West Valley Environmental Services LLC (WVES) and its predecessor company, West Valley Nuclear Services Company (WVNSCO), have been the prime contractors at the site since the beginning of the Project. One of the primary missions of the Act - demonstrating solidification techniques which can be used for preparing high-level liquid waste for disposal - was completed in 2002. Since that time, wide-scale decontamination and dismantlement activities to prepare for Project completion were begun and continue through present-day operations. Current site activities are focused on preparing and shipping Project wastes off-site for disposal, reducing the site's footprint by removing unneeded facilities, and managing the site in a safe configuration while a Draft Site Decommissioning Environmental Impact Statement is being prepared to evaluate alternatives for site closure and/or long-term stewardship. Remaining site facilities include the former nuclear fuel reprocessing facility building, an associated underground waste tank farm, and a 7-acre area that contains an inactive radioactive waste landfill. Major objectives for safe management of those facilities include protecting employees, the public, and the environment while reducing management costs and risks associated with those facilities. In 2007, DOE began preparations to install water control barriers to prevent clean ground and surface water from coming in contact with buried waste in the inactive Nuclear Regulatory Commission- licensed Disposal Area (NDA). Field work was initiated and completed in 2008. This paper discusses the history of the NDA, the rationale and construction experience in installing these barriers, and the expected results. (authors)

  6. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    DEFF Research Database (Denmark)

    Brand, Marek

    2014-01-01

    District heating (DH) systems supplied by renewable energy sources are one of the main solutions for achieving a fossil-free heating sector in Denmark by 2035. To reach this goal, the medium temperature DH used until now needs to transform to a new concept reflecting the requirement for lower heat loss from DH networks required by the reduced heating demand of low-energy and refurbished buildings combined with the lower supply temperatures required by using renewable heat sources. Both these needs meet in the recently developed concept of low-temperature DH designed with supply/return temperatures as low as 50°C/25°C and highly insulated pipes with reduced inner diameter. With this design, the heat loss from the DH networks can be reduced to one quarter of the value for traditional DH designed and operated for temperatures of 80°C/40°C. However, such low temperatures bring challenges for domestic hot water (DHW) and space heating (SH) systems, from the perspective of both DH customers and the DH company. The aim of this work was therefore to identify, evaluate and suggest solutions. The first part of the research focused on the feasibility of supplying DHW with no increased risk of Legionella and on the performance of low-temperature DH substations. The Danish Standard DS 439 for DHW requires that DHW should be delivered in reasonable time, without unwanted changes in desired temperatures (comfort) and without increased risk of bacterial growth (hygiene). While the comfort requirements set the minimum DHW temperature to 45°C, the hygiene requirements set it to 60°C, which is simply not reachable for low-temperature DH. However, the German DHW standard DVGW 551 makes no requirement about minimum DHW temperature if the overall DHW volume is below 3L. This rule was adopted as a cornerstone for the research and for the whole low-temperature DH concept in general, so the minimum DHW temperature is defined by a requirement for 45°C at the kitchen tap.   The performance of a low-temperature DH substation with instantaneous DHW preparation was evaluated based on the results from laboratory measurements supplemented with results from the verified numerical model developed in MATLAB-Simulink. The laboratory measurements showed that the low-temperature substation can heat the required flow of DHW to 47°C with 50°C DH water while keeping the return temperature as low as 20°C. The results of numerical simulations considering the influence of the DH network, represented by a 10 m long service pipe connection for the substation equipped with an external bypass with a set-point temperature of 35°C, showed that the time needed to produce 40°C DHW was 11 s with and 15 s without the external bypass, respectively. DS 439 suggests 10 s as the reasonable waiting time for DHW, so a low-temperature DH substation based on the instantaneous principle of DHW preparation should be equipped with bypass solution keeping the service pipe warm and reducing the waiting time. Traditional bypass solutions simply redirect the bypassed water back tothe DH network without additional cooling, but bypassed water can instead be redirected to floor heating in the bathroom to be further cooled and thus reduce heat loss from the DH network while improving comfort for occupants and still ensure fast DHW preparation. Various solutions for the redirection and control of bypass flow were developed and their detailed performance tested on the example of a low-energy single-family house modelled in building energy performance simulation tool IDA-ICE 4.22. The effect on the DH network was simulated with the commercial program Termis on a case study of 40 single-family houses supplied by low-temperature DH. In comparison to the reference case with a traditional external bypass, the proposed solution resulted in average cooling of bypassed water by 7.5°C, reducing the heat loss from DH network during non-heating period by 13% and increasing the average floor temperature by 0.6-2.2°C without causing overheating. The price for heating the bathroom floor durin

  7. Selected aspects of the feasibility of utilizing mine waste water

    Energy Technology Data Exchange (ETDEWEB)

    Majko, A.; Sawicki, J. (Poltegor Instytut, Wroclaw (Poland))

    1991-01-01

    Discusses waste water discharge and mine drainage, drainage water properties and feasibility of mine water utilization from Polish underground and surface mines. Total volume of waste water discharged from coal mines in 1985-1987 is analyzed: from underground coal mines 372 million m[sup 3] (of it 350 million m[sup 3] in Upper Silesia, 19 million m[sup 3] in Lower Silesia and 2.6 million m[sup 3] in the Lublin basin), and 374.6 million m[sup 3] from brown coal surface mines (of it 183.6 million m[sup 3] in Belchatow, 68.33 million m[sup 3] in Adamow, 100 million m[sup 3] in Konin, 21 million m[sup 3] in Turow and 1.3 million m[sup 3] in Sieniawa). Drainage water from deep draining wells with a permissible content of mineral matter and bacteria could be used as drinking water. 7 refs.

  8. Integrated water and waste management system for future spacecraft

    Science.gov (United States)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  9. Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

  10. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Science.gov (United States)

    2010-07-01

    A table providing the name, brief description, projected quantity, and composition of solid and liquid wastes (such as spent drilling fluids, drill cuttings, trash, sanitary and domestic wastes, and chemical product wastes) likely to be generated by your proposed exploration activities....

  11. Exploring methods improving oil removal from waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Boetzkaya, K.P.; Ioffe, E.M.

    1982-03-01

    This paper evaluates experiments carried out at the Zhdanov coking by-product plant involving adding synthetic aliphatic acid to waste water and using fiberglass in the filtration process. Later fiberglass is regenerated with contaminated or raw benzene. Experiment results are given in a table showing that oil removal reaches 69.3-95.8%. Residual oil content is described as a function of filtration speed and initial oil concentration. Waste water purification using fiberglass rinsed in benzene is 14.6% more effective than that using fresh fiberglass, with filtration speed increased by 45 ml/min. Fiberglass adsorption capacity remains the same whether it is regenerated with uncontaminated or already used benzene. It is concluded that using fiberglass is profitable from both financial and qualitative points of view.

  12. Membrane bioreactors in waste water treatment - status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Kraume, M. [Technische Universitaet Berlin, Chair of Chemical and Process Engineering, Berlin (Germany); Drews, A. [HTW Berlin, FB II, Life Science Engineering, Berlin (Germany)

    2010-08-15

    Due to their unique advantages like controlled biomass retention, improved effluent quality, and decreased footprint, membrane bioreactors (MBRs) are being increasingly used in waste water treatment up to a capacity of several 100,000 p.e. This article reviews the current status of MBRs and reports trends in MBR design and operation. Typical operational and design parameters are given as well as guidelines for waste water treatment plant revamping. To further improve the biological performance, specific or hybrid process configurations are shown to lead to, e.g., enhanced nutrient removal. With regards to reducing membrane fouling, optimized modules, advanced control, and strategies like the addition of flux enhancers are currently emerging. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Radiation chemical studies on the treatment of waste water

    International Nuclear Information System (INIS)

    The radiation induced reaction in aqueous solution was studied to develope the radiation treatment as a new technique for waste water and to elevate the effectiveness of radiation. The effectiveness of radiation was enhanced by combination of radiation induced reaction with conventional methods such as biological treatment and coagulation treatment. The synergistic effect of radiation and ozone was studied by using phenol and ethylene glycol. The chain reaction was observed in the radiation induced oxidation. The combination of radiation and ozone is considered to be one of the most useful method. In this report, the mechanism of each reaction and the applicability of the reaction to the treatment of waste water are discussed. (author)

  14. Treatment of waste thermal waters by ozonation and nanofiltration.

    Science.gov (United States)

    Kiss, Z L; Szép, A; Kertész, S; Hodúr, C; László, Z

    2013-01-01

    After their use for heating, e.g. in greenhouses, waste thermal waters may cause environmental problems due to their high contents of ions, and in some cases organic matter (associated with an oxygen demand) or toxic compounds. The aims of this work were to decrease the high organic content of waste thermal water by a combination of ozone treatment and membrane separation, and to investigate the accompanying membrane fouling. The results demonstrated that the chemical oxygen demand and the total organic content can be effectively decreased by a combination of ozone pretreatment and membrane filtration. Ozone treatment is more effective for phenol elimination than nanofiltration alone: with a combination of the two processes, 100% elimination efficiency can be achieved. The fouling index b proved to correlate well with the fouling and polarization layer resistances. PMID:23508151

  15. Energy production from waste-water using microbial fuel cells

    International Nuclear Information System (INIS)

    Natural energy sources like fossil fuels are depleting due to increased human activities. Different types of alternatives are being explored to solve this problem with the consideration that they are sustainable. There are many environmental concerns connected with fossil fuel burning which after oxidation processes release greater amounts of carbon emissions in atmosphere. Now the trends are shifting towards exploiting renewable energy options, such as bioethanol, biodiesel, biohydrogen, biogas, and bioelectricity. Bioelectricity is harvested from organic substrates using Microbial Fuel Cells (MFC) that operate on oxidation reduction (redox) reactions. MFCs produce electricity in the presence of microorganisms from biodegradable substances. Waste-water contains enormous amount of organic matter that can be oxidized in MFC for electricity harvesting. In this review, the main focus is made on the applicability of microbial fuels cells for simultaneous waste-water treatment and electricity production. (author)

  16. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water

    OpenAIRE

    Ellison, Michael B.; Rocky de Nys; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation...

  17. Tertiary Treatment for Textile Waste Water-A Review

    OpenAIRE

    Manali Desai*1, Mehali Mehta2

    2014-01-01

    Tertiary treatment is the Industrial waste water treatment process which removes stubborn contaminants that have not been removed in secondary treatment. Effluent becomes even cleaner by Tertiary treatment through the use of stronger and more advanced treatment systems. The present work is an attempt to review all possible tertiary treatment methods for removal of dyestuff from textile effluent. Conventional method for treatment of textile effluent has own certain limitations ...

  18. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered successful, most projects have experienced significant difficulties and long delays until they have entered in operation. The analysis shows that the main reasons for the problems in the implementatio...

  19. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas; Grum, Morten; Madsen, Henrik

    2014-01-01

    Denmark's political ambitions of a fossil fuel free energy system by 2050 calls for more renewable energy sources such as wind and solar. These green energy resources fluctuate and the transition to a green energy system requires a Smart Grid with flexible consumers that balance the fluctuating power production. The energy-heavy processes for waste water transport and treatment could potentially provide a flexible operation with storage capabilities and be a valuable asset to a Smart Grid. In or...

  20. The Urban Waste Water Treatment Directive: Observations on the water quality of Windermere, Grasmere, Derwent Water and Bassenthwaite Lake, 2006

    OpenAIRE

    Maberly, S.C.; De Ville, M. M.; Elliott, J.A.; Fletcher, J M; James, J. B.; Thackeray, S. J.; Vincent, C

    2007-01-01

    This report continues a sequence of annual reviews of water quality in Windermere and Bassenthwaite Lake that are subject to the provisions of the Urban Waste Water Treatment Directive. Grasmere, which feeds into Windermere is also included because of concerns over a deterioration in water quality over the last, approximately 30 years and Derwent Water is included, partly as a comparison with Bassenthwaite Lake and partly because it is the sole refuge of a healthy population of the vendace...

  1. Disinfection of municipal waste-water with gamma radiation

    International Nuclear Information System (INIS)

    The investigation of gamma radiation disinfection of various effluents from the Johannesburg City Council's Northern Waste-Water Purification Works is discussed. The results of gamma radiation disinfection, chlorine disinfection and a combination of chlorine and gamma radiation treatment are compared. It is concluded that to reduce the E.coli content of settled filter effluent to less than 1000 per 100 ml, that is to produce water intended for irrigational and industrial reuse, a total gamma radiation dose of 50 krad is required

  2. Water and waste water, when brine's just fine

    International Nuclear Information System (INIS)

    Desalination has always sounded a good solution to rainfall shortages, who wouldn't rather drink purified seawater than recycled sewage? But projects in Australia and around the world have often been dogged by question marks over cost and greenhouse effects and saline discharge issues. Solar powered pilot plant is being developed in South Australia which will not discharge a drop of briny reject water back to the sea

  3. Water treatment technologies for a mixed waste remedial action

    International Nuclear Information System (INIS)

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  4. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  5. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy

    OpenAIRE

    Bixler, Joel N.; Cone, Michael T.; Hokr, Brett H.; Mason, John D.; Figueroa, Eleonora; Fry, Edward S.; Yakovlev, Vladislav V.; Scully, Marlan O.

    2014-01-01

    Clean water is paramount to human health. Contaminants, such as human waste products in drinking water, can result in significant health issues. In this article, we present a technique for detection of trace amounts of human or animal waste products in water. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment.

  6. A possible case of caprine-associated malignant catarrhal fever in a domestic water buffalo (Bubalus bubalis in Switzerland

    Directory of Open Access Journals (Sweden)

    Dettwiler Martina

    2011-12-01

    Full Text Available Abstract Background Malignant catarrhal fever (MCF is a fatal herpesvirus infection, affecting various wild and domestic ruminants all over the world. Water buffaloes were reported to be particularly susceptible for the ovine herpesvirus-2 (OvHV-2 causing the sheep-associated form of MCF (SA-MCF. This report describes the first case of possibly caprine-associated malignant catarrhal fever symptoms in a domestic water buffalo in Switzerland. Case presentation The buffalo cow presented with persistent fever, dyspnoea, nasal bleeding and haematuria. Despite symptomatic therapy, the buffalo died and was submitted to post mortem examination. Major findings were an abomasal ulceration, a mild haemorrhagic cystitis and multifocal haemorrhages on the epicardium and on serosal and mucosal surfaces. Eyes and oral cavity were not affected. Histopathology revealed a mild to moderate lymphohistiocytic vasculitis limited to the brain and the urinary bladder. Although these findings are typical for MCF, OvHV-2 DNA was not detected in peripheral blood lymphocytes or in paraffin-embedded brain, using an OvHV-2 specific real time PCR. With the aid of a panherpesvirus PCR, a caprine herpesvirus-2 (CpHV-2 sequence could be amplified from both samples. Conclusions To our knowledge, this is the first report of malignant catarrhal fever in the subfamily Bovinae, where the presence of CpHV-2 could be demonstrated. The etiological context has yet to be evaluated.

  7. The Distribution of Polycyclic Aromatic Hydrocarbons in the Wetland Soil Irrigated by Pulp Waste Water

    OpenAIRE

    Cheng Ding; Wang Shihe; Yang Chunsheng

    2006-01-01

    The distribution characteristics of eleven polycyclic aromatic hydrocarbons (PAHs) in the pulp waste water and in seashore wetland soil irrigated by the waste water were detected by GC-ECD. The result shows that the concentrations of PAHs in the gray water, bleached water, black liquid and integrated waste water ranged from 12.826 to 16.83 ? g-1. The total amount of PAHs in the seashore wetland soil irrigated with the papermaking waste water containing PAHs increased significantly and the qua...

  8. Method for reduction in volume and encapsulation of water-containing weakly radioactive waste

    International Nuclear Information System (INIS)

    Solutions and slurries of waste material in water are dehydrated and enclosed in a polymerizate for final storage. The water is removed as an azeotropic mixture and the dehydrated waste residue is then enclosed in an organic polymerizate. The method and system disclosed in this patent claim are particularly suitable for safe removal of radioactive waste. (orig.)

  9. Impact of a solar domestic hot water demand-side management program on an electric utility and its customers

    Energy Technology Data Exchange (ETDEWEB)

    Trzeniewski, J.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.

    1996-09-01

    A methodology to assess the economic and environmental impacts of a large scale implementation of solar domestic hot water (SDHW) systems is developed. Energy, emission and demand reductions and their respective savings are quantified. It is shown that, on average, an SDHW system provides an energy reduction of about 3200 kWH, avoided emissions of about 2 tons and a capacity contribution of 0.7 kW to a typical Wisconsin utility that installs 5000 SDHW system. The annual savings from these reductions to utility is {dollar_sign}385,000, providing a return on an investment of over 20{percent}. It is shown that, on average, a consumer will save {dollar_sign}211 annually in hot water heating bills. 8 refs., 7 figs.

  10. Cocaine and metabolites in waste and surface water across Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Nuijs, Alexander L.N. van [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium)], E-mail: alexander.vannuijs@ua.ac.be; Pecceu, Bert [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium); Theunis, Laetitia; Dubois, Nathalie; Charlier, Corinne [Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege, (ULg), CHU Sart-Tilman, 4000 Liege (Belgium); Jorens, Philippe G. [Department of Clinical Pharmacology/Clinical Toxicology, University of Antwerp (Ukraine), University Hospital of Antwerp, Universiteitsplein 1, 2610 Antwerp (Belgium); Bervoets, Lieven; Blust, Ronny [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium); Neels, Hugo [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium); Laboratory of Toxicology, ZNA Stuivenberg, Lange Beeldekensstraat 267, 2060 Antwerp (Belgium); Covaci, Adrian [Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (Ukraine), Universiteitsplein 1, 2610 Antwerp (Belgium); Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp (Ukraine), Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2009-01-15

    Cocaine abuse, a growing social problem, is currently estimated from population surveys, consumer interviews and crime statistics. A new approach based on the analysis of cocaine (COC) and metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in water samples was applied to 28 rivers and 37 waste water treatment plants in Belgium using solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. While EME was undetectable, COC and BE were detectable with concentrations ranging from <1 to 753 ng/L and <1 to 2258 ng/L, respectively. BE concentrations were employed to calculate the local amount of abused cocaine. The highest values (up to 1.8 g/day cocaine per 1000 inhabitants) were found in large cities and during weekends. The estimation of cocaine abuse through water analysis can be executed on regular basis without cooperation of patients. It also gives clear geographical information, while prevention campaigns can easily be implemented and evaluated. - Cocaine consumption can be evaluated through analysis of waste and surface water.

  11. Cocaine and metabolites in waste and surface water across Belgium

    International Nuclear Information System (INIS)

    Cocaine abuse, a growing social problem, is currently estimated from population surveys, consumer interviews and crime statistics. A new approach based on the analysis of cocaine (COC) and metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in water samples was applied to 28 rivers and 37 waste water treatment plants in Belgium using solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. While EME was undetectable, COC and BE were detectable with concentrations ranging from <1 to 753 ng/L and <1 to 2258 ng/L, respectively. BE concentrations were employed to calculate the local amount of abused cocaine. The highest values (up to 1.8 g/day cocaine per 1000 inhabitants) were found in large cities and during weekends. The estimation of cocaine abuse through water analysis can be executed on regular basis without cooperation of patients. It also gives clear geographical information, while prevention campaigns can easily be implemented and evaluated. - Cocaine consumption can be evaluated through analysis of waste and surface water

  12. Water reuse for domestic consumption. A key element for environmental and economic sustainability

    OpenAIRE

    Coimbra, José; Almeida, Manuela Guedes de

    2013-01-01

    In a context of increasing social awareness about resources conservation, residential water management is essential in ensuring environmental and economic sustainability. An adequate management is attained with integrated solutions, which simultaneously reduce potable water consumption at least in 25% and enable the storage of recovered water. The recovery and storage of underground water can be ensured with the installation of a groundwater drainage network and an underground water deposi...

  13. Mercury and methylmercury contents in mine-waste calcine, water, and sediment collected from the Palawan Quicksilver mine, Philippines

    Science.gov (United States)

    Gray, J.E.; Greaves, I.A.; Bustos, D.M.; Krabbenhoft, D.P.

    2003-01-01

    The Palawan Quicksilver mine, Philippines, produced about 2,900 t of mercury during mining of cinnabar ore from 1953 to 1976. More than 2,000,000 t of mine-waste calcines (retorted ore) were produced during mining, much of which were used to construct a jetty in nearby Honda Bay. Since 1995, high Hg contents have been found in several people living near the mine, and 21 of these people were treated for mercury poisoning. Samples of mine-waste calcine contain high total Hg concentrations ranging from 43-660 ??g/g, whereas total Hg concentrations in sediment samples collected from a mine pit lake and local stream vary from 3.7-400 ??g/g. Mine water flowing through the calcines is acidic, pH 3.1-4.3, and total Hg concentrations ranging from 18-31 ??g/l in this water significantly exceed the 1.0-??g/l drinking water standard for Hg recommended by the World Health Organization (WHO). Total Hg contents are generally lower in water samples collected from surrounding domestic wells, the mine pit lake, Honda Bay, and the nearby stream, varying from 0.008-1.4 ??g/l. Methylmercury concentrations in water draining mine calcines range from <0.02-1.4 ng/l, but methylmercury is highest in the pit lake water, ranging from 1.7-3.1 ng/l. Mercury methylation at the Palawan mine is similar to or higher than that found in other mercury mines worldwide. Much of the methylmercury generated in Palawan mine-waste calcines and those in Honda Bay is transferred to water, and then to marine fish and seafood. A food source pathway of Hg to humans is most likely in this coastal, high fish-consuming population.

  14. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  15. Conceptual solutions to drainage water and treatment of waste water for the settlement Muljava and its surroundings

    OpenAIRE

    Malovrh, Gašper

    2008-01-01

    In this diploma thesis, conceptual solutions of drainage and treatment of waste water for the settlements Muljava and Potok pri Muljavi are described. The procedures of designing a separate sewer system including all the supporting facilities are represented. Hydraulic calculation of the waste water and rain water sewerage is presented separately. Concerning rain water sewer system, various solutions of rain water drainage with regard to the existing situation are described. A ...

  16. Ariab acidic min-influenced water: a waste to waste treatment

    International Nuclear Information System (INIS)

    Six samples of acidic mine-influenced water (AMIW) from Ariab area, Red Sea Hills, northeastern part of Sudan, were analyzed for some waste water parameters. The investigation showed that, the pH ranged between 1.30 to 1.88, sulphate content between 40200 to 235300 mg/1, total iron 9879 to 103969 mg/1, copper, 280.0 to 1112.5 mg/1, zinc, 1825 to 3345 mg/1, manganese, 210.0 to 570.0 mg /1 in addition to high contents of cobalt and cadmium which are known for their negative impact on the environment. Khartoum Refinery Sour Water (KRSW) sample was analyzed for some pollutants, the analysis showed that it is alkaline industrial waste having a pH of 10.10, alkalinity of 26381 mg/1 as CaC3/1, Chemical Oxygen Demand (COD) of 29400 mg/1 as O2. It was found to be relatively free of heavy and environmentally hazardous elements such as Fe, Co, Ca, Cd, Cu, Zn, Mn, Pb and Mg. A waste to waste treatment was carried to Ariab AMIW with KRSW, satisfactory results were obtained in reduction of the parameters studied in the treated effluent. The pH of AMIW was raised to about 8.50, and the element contents of Fe, Co, Ca, Cd, Cu, Zn, Mn, Pb were either completely removed or reduced to levels that meet the allowed limits of the industrial effluent disposal threshold. Sulphate content, however, decreased due to dilution, but still above the specified limits of the effluent disposal. (Author)

  17. Anaerobic treatment with biogas recovery of beverage industry waste water

    International Nuclear Information System (INIS)

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD

  18. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  19. Waste Water Treatment by Some Prepared Polymers by Radiation

    International Nuclear Information System (INIS)

    Synthesis of hydrophilic polymeric material having certain function groups with the ability to absorbs some heavy metals and some dyes from waste water is of a great importance from the point of view of environmental studies. The present work may be represented as the following : The two different methods have been used for the modification of PE-co- PP non woven fabric via two different techniques:- 1. Coating of (PE-co-PP) with mixture of CMC and AAc by using (E.B) irradiation. 2. The modification of (PE-co-PP) non-woven fabric by ?- irradiation induced grafting of (AAm) monomer . 3. The modification of hydrophilic substrate to hydrogel was carried out through the following: The preparation of clay/PVA hydrogel through freezing and thawing followed by E.B. irradiation. The different factors which affect the properties of the modified substrate were investigated. Moreover, the structure properties of the modified substrate were characterized by SEM, XRD, and IR. Thermal properties was also investigated by TGA and DSC. Hydrophilic property of the modified substrate was investigated by water uptake %. The results obtained show that the prepared substrates can be used in the removal of heavy metals and dyes from waste water.

  20. BIOREMEDIATION OF SEWAGE WASTE WATERS BY THE PHOTOTROPHIC BACTERIAL CONSORTIUM ISOLATED FROM SEWAGE WATER

    Directory of Open Access Journals (Sweden)

    Ramchander Merugu

    2015-05-01

    Full Text Available Microbial based treatments are more economical, ecofriendly and sustainable alternative for waste treatment to existing chemical or physical treatment methods. The metabolic rate of microorganisms effect pH, BOD, COD, DO, concentration of suspended solids present in waste waters. Phototrophic consortium from sewage water was used in the present study to remediate sewage water. Treatment with bacteria caused a significant decrease in some of the parameters tested for waste water. Remediation of sewage water of Panagal by photosynthetic bacteria showed a 23% decrease in DO and 64% decrease in BOD was observed which was significant. COD and organic matter decreased to the extent of 32% and 75% respectively. Chloride levels(6%, bicarbonates (32% and sulphates (19% were also decreased. Remediation of sewage water of Prakasam bazaar by photosynthetic bacteria showed a decrease in DO by 22%. Chemical oxygen demand and Biological oxygen demand decreases were significant and were to the extent of 60% and 38% respectively. Bicarbonates (45%, chlorides (35%, sulphates (16% and organic matter (28% also decreased significantly

  1. An improved area-based guideline for domestic water demand estimation in South Africa

    Scientific Electronic Library Online (English)

    HJ, van Zyl; AA, Ilemobade; JE, van Zyl.

    2008-03-01

    Full Text Available Increased infrastructural development and potable water consumption have highlighted the importance of accurate water-demand estimates for effective municipal water services infrastructure planning and design. In the light of evolving water consumption trends, the current guideline for municipal wat [...] er demand estimation, published in 1983, needs to be revised. This study investigated, using regression analyses, the combined effect of various socio-economic and climatic parameters on municipal water consumption with the objective of determining the dominant influencing parameters and suggesting a new guideline for water-demand estimation. To this end, an initial database comprising more than 2.5 x10(6) metered water consumption records extracted from 48 municipal treasury databases, which are located within 5 out of the 7 South African water regions was analysed. Each of the 48 municipal treasury databases spanned a period of at least 12 months. The final amalgamated database, after rigorous cleaning and filtering, comprised 1 091 685 consumption records. Single variable and stepwise multiple variable regression analyses were utilised. Results show that stand area, stand value and geographical location are the dominant parameters influencing municipal water consumption, with stand area and stand value positively correlated to water consumption. In suggesting a new municipal water-demand estimation guideline, these three parameters were considered. Stand value, however, fell away as a reliable parameter for estimating water consumption because of the inconsistent basis for predicting stand values due to the constant fluctuations in the value of property, and municipal valuations that often become outdated. Inland and coastal geographical locations exhibited different consumption patterns, with coastal stands of the same stand area and stand value consistently consuming less water than inland stands. These should therefore be treated separately in any design guideline. Stand area then became the best parameter on which to base water-demand estimations. A single guideline curve is therefore proposed which gives various confidence limits for estimating water demand in South Africa, based on stand area.

  2. Potential of Waste Water Use for Jatropha Cultivation in Arid Environments

    OpenAIRE

    Folkard Asch; Arisoa M. Rajaona; Nele Sutterer

    2012-01-01

    Water is crucial for socio-economic development and healthy ecosystems. With the actual population growth and in view of future water scarcity, development calls for improved sectorial allocation of groundwater and surface water for domestic, agricultural and industrial use. Instead of intensifying the pressure on water resources, leading to conflicts among users and excessive pressure on the environment, sewage effluents, after pre-treatment, provide an alternative nutrient-rich water source...

  3. Utilization of immobilized urease for waste water treatment

    Science.gov (United States)

    Husted, R. R.

    1974-01-01

    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  4. Removal of Sulfate from Waste Water by Activated Carbon

    OpenAIRE

    Mohammed Sadeq Salman

    2009-01-01

    Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 ? 9.) , agitation time (0 ? 120)min and adsorbent dose (2 ? 10) gm.The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isothe...

  5. Less cost for waste water purification; Afvalwaterzuivering kan veel goedkoper

    Energy Technology Data Exchange (ETDEWEB)

    Tan, N. (ed.)

    2006-12-15

    The waste water purification technique Nereda uses aerobic sludge grains. They settle down faster, as a result of which purifiers can be constructed in a more compact and thus cheaper way. The use of Nereda in a drainage area could save 70% of the required surface. For the industry the reduction of surface could mount from 25-50%. [Dutch] De afvalwaterzuiveringstechnologie Nereda maakt gebruik van aerobe slibkorrels. Deze bezinken sneller, waardoor zuiveringsinstallaties compacter en dus goedkoper kunnenworden uitgevoerd. Als Nereda bij waterschappen zou worden geplaatst, zou het oppervlak daar met 70% kunnen worden gereduceerd. Bij de industrie is de ruimtebesparing 25-50%.

  6. TREATMENT OF DOMESTIC WATER USING CERAMIC FILTER FROM NATURAL CLAY AND FLY-ASH

    Directory of Open Access Journals (Sweden)

    NASIR SUBRIYER

    2013-09-01

    Full Text Available The declining water quality in Sriwijaya University has been caused by the presence of heavy metal contents such as Iron (Fe and Zinc (Zn in the treatment and distribution of water. A simple method is proposed in this work to minimize the heavy metal content in water by using filtration technology. This research was carried out using ceramic filter made of 77.5% natural clay, 20% fly ash, and 2.5% iron powder. The results showed an increase in the quality of raw water that is in accordance with the requirement of drinking water standard. The rejection percentage of TDS, Iron (Fe and Zinc (Zn content in feed water tended to be high and met the regulation number 492/MENKES/PER/IV/2010 for standards of drinking water in Indonesia.

  7. Water Pollution and Treatments Part II: Utilization of Agricultural Wastes to Remove Petroleum Oils From Refineries Pollutants Present in Waste Water

    International Nuclear Information System (INIS)

    Several natural agricultural wastes, of lignocellulose nature, such as Nile flower plant (ward El-Nil), milled green leaves, sugar cane wastes, palm tree leaves (carina), milled cotton stems, milled linseed stems, fine sawdust, coarse sawdust and palm tree cover were dried and then crushed to suitable size to be evaluated and utilized as adsorbents to remove oils floating or suspended in the waste water effluents from refineries and petroleum installations. The parameters investigated include effect of adsorbent type (adsorptive efficiency), adsorbate (type and concentration), mixing time, salinity of the water, adsorbent ratio to treated water, temperature, ph and stirring. Two different Egyptian crude oils varying in their properties and several refined products such as gasoline, kerosene, gas oil, diesel oil, fuel oil and lubricating oil were employed in this work in addition to the skimmed oil from the skim basin separator. Most of the agricultural wastes proved to be very effective in adsorbing oils from waste water effluents.

  8. Fungal microbiota in drinking water and domestic sewage/ Microbiota fúngica em amostras de água potável e esgoto doméstico

    Directory of Open Access Journals (Sweden)

    Silvia Gonzalez Monteiro

    Full Text Available The aim of this study was to evaluate the fungal microflora present in drinking water and domestic sewage from different districts of Santa Maria, Rio Grande do Sul, Brazil. Water and sewage samples were collected during the four seasons and analyzed by the technique of Colony Forming Units (CFU. Yeasts and fungi of the genera Penicillium and Aspergillus were observed in the water samples. The genus Geotrichum was also found in the sewage. Therefore, it is concluded that treatment of water held in the municipality is unable to remove these agents. objetivo deste estudo foi investigar a microbiota fúngica presente na água potável e no esgoto doméstico de distintos bairros de Santa Maria, Rio Grande do Sul, Brasil. Amostras de água e esgoto foram colhidas durante as quatro estações do ano e analisadas pela técnica de Unidades Formadoras de Colônias (UFC. Foi observada a presença dos gêneros Penicillium, Aspergillus e leveduras nas amostras de água. No esgoto, além dos agentes fúngicos reportados na água foi identificado o gênero Geotrichum. Dessa forma, conclui-se que o tratamento da água realizado no município não é capaz de eliminar estes agentes.

  9. External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities

    International Nuclear Information System (INIS)

    We report the results of an external audit on the absorbed dose of radiotherapy beams independently performed by third parties. For this effort, we developed a method to measure the absorbed dose to water in an easy and convenient setup of solid water phantom. In 2008, 12 radiotherapy centers voluntarily participated in the external auditing program and 47 beams of X-ray and electron were independently calibrated by the third party's American Association of Physicists in Medicine (AAPM) task group (TG)-51 protocol. Even though the AAPM TG-51 protocol recommended the use of water, water as a phantom has a few disadvantages, especially in a busy clinic. Instead, we used solid water phantom due to its reproducibility and convenience in terms of setup and transport. Dose conversion factors between solid water and water were determined for photon and electron beams of various energies by using a scaling method and experimental measurements. Most of the beams (74%) were within ±2% of the deviation from the third party's protocol. However, two of 20 X-ray beams and three of 27 electron beams were out of the tolerance (±3%), including two beams with a >10% deviation. X-ray beams of higher than 6 MV had no conversion factors, while a 6 MV absorbed dose to a solid water phantom was 0.4% less than the dose to water. The electron dose conversion factors between the solid water phantom and water were determined: The higher the electron energy, the less is the conversion factor. The total uncertainty of the TG-51 protocol measurement using a solid water phantom was determined to be ±1.5%. The developed method was successfully applied for the external auditing program, which could be evolved into a credential program of multi-institutional clinical trials. This dosimetry saved time for measuring doses as well as decreased the uncertainty of measurement possibly resulting from the reference setup in water.

  10. External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Kim, Jung In; Park, Jong Min; Park, Yang Kyun; Ye, Sung Joon [Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cho, Kun Woo; Cho, Woon Kap [Radiation Research, Korean Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lim, Chun Il [Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2010-11-15

    We report the results of an external audit on the absorbed dose of radiotherapy beams independently performed by third parties. For this effort, we developed a method to measure the absorbed dose to water in an easy and convenient setup of solid water phantom. In 2008, 12 radiotherapy centers voluntarily participated in the external auditing program and 47 beams of X-ray and electron were independently calibrated by the third party's American Association of Physicists in Medicine (AAPM) task group (TG)-51 protocol. Even though the AAPM TG-51 protocol recommended the use of water, water as a phantom has a few disadvantages, especially in a busy clinic. Instead, we used solid water phantom due to its reproducibility and convenience in terms of setup and transport. Dose conversion factors between solid water and water were determined for photon and electron beams of various energies by using a scaling method and experimental measurements. Most of the beams (74%) were within {+-}2% of the deviation from the third party's protocol. However, two of 20 X-ray beams and three of 27 electron beams were out of the tolerance ({+-}3%), including two beams with a >10% deviation. X-ray beams of higher than 6 MV had no conversion factors, while a 6 MV absorbed dose to a solid water phantom was 0.4% less than the dose to water. The electron dose conversion factors between the solid water phantom and water were determined: The higher the electron energy, the less is the conversion factor. The total uncertainty of the TG-51 protocol measurement using a solid water phantom was determined to be {+-}1.5%. The developed method was successfully applied for the external auditing program, which could be evolved into a credential program of multi-institutional clinical trials. This dosimetry saved time for measuring doses as well as decreased the uncertainty of measurement possibly resulting from the reference setup in water.

  11. Radioactive and industrial waste water collection system study, Phase I

    International Nuclear Information System (INIS)

    Phase I of the Radioactive Liquid Waste (RLW) Collection System Study has been completed, and the deliverables for this portion of the study are enclosed. The deliverables include: The Work Break-down Structure (WBS) for Phase II; The Annotated Outline for the Collection Study Report; The Process Flow Diagrams (PFD) of the RLW collection system based on current literature and knowledge; The Configuration database; The Reference Index, listing all currently held documents of the RLW collection system; The Reference Drawing Index listing all currently held, potentially applicable, drawings reviewed during the PFD development; The Regulation Identification Document for RCRA and CWA; The Regulation Database for RCRA and CWA; The Regulation Review Log, including statements justifying the non-applicability of certain regulations; Regulation Library, including the photocopied regulations with highlighted text for RCRA and CWA; The summary of RTG's waste water treatment plant design experience and associated regulations on which RTG based the design of these treatment facilities; TA-50 Influent Database; Radioactive Liquid Waste Stream Characterization Database

  12. Domestic Violence

    Science.gov (United States)

    Domestic violence is a type of abuse. It usually involves a spouse or partner, but it can also be ... child, elderly relative, or other family member. Domestic violence may include Physical violence that can lead to ...

  13. Nutrient Abatement Potential and Abatement Costs of Waste Water Treatment Plants in the Baltic Sea Region

    OpenAIRE

    Hautakangas, Sami; Ollikainen, Markku; Aarnos, Kari; Rantanen, Pirjo

    2013-01-01

    We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for b...

  14. Household demand for energy, water and the collection of waste : a microeconometric analysis

    OpenAIRE

    Linderhof, Vincentius Gerardus Maria,

    2001-01-01

    This thesis focuses on the effectiveness and efficiency of economic incentives with respect to the household demand for energy, water and the collection of household waste. In particular, we are primarily interested in the price and income responses of households with respect to the energy and water consumption as well as the household waste production. We determine the effects of prices and income as well as other factors on the consumption of energy, water, and household waste collection. S...

  15. Effect of Waste Water on Heavy Metal Accumulation in Hamedan Province Vegetables

    OpenAIRE

    M. Cheraghi; B. Lorestani; N. Yousefi

    2009-01-01

    The objective of this research was to elucidate the effect of waste water on heavy metal concentration in vegetables. To this purpose a region fertilized with waste water (Najafi Boolvar, Hamedan, Iran) was chosen as a polluted area and a region without any waste water pollution (Heydareh, Hamedan, Iran) as a control area. Eight kinds of vegetables were collected from both areas, separately and after preparing, Pb, Zn, Cu and Mn concentrations of them, were measured by using the atomic absorp...

  16. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1977-01-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using isolation levels present in North Carolina are presented. The effects of monthly variations in isolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  17. An experimental study on the leaching of borate waste and spent resin waste forms in a simulated sea water

    International Nuclear Information System (INIS)

    In general, leaching test is performed and mostly employed in the acceptance criteria for radioactive waste disposal and is considered very important because the rate of release of radionuclides from a waste form is one of the most important parameter in defining and evaluating the radionuclide source term in the disposal environment. NRC strongly recommended that the chosen leachant should be the most aggressive one. Therefore it is considered that the certain results of the leaching test should supply the information to evaluate the radionuclide source term and the basis to determine the most aggressive leachant in the leaching test. In this study, leaching test of borate waste and spent resin waste forms is performed in order to compare the leaching characteristics of the waste forms in a simulated sea-water with those in a distilled water. In addition, the sea-water with different quantities of NaCl is used as a leachant to evaluate the effect of NaCl concentration. The IAEA test method (standard leaching test) and apparent dissolution model are applied to analyze the leaching characteristics. The representative radionuclides are Cs137,: Co60 and Sr90. According to this experimental results, the amounts of leached radionuclides in the sea-water is more than that in the distilled water for borate waste and resin waste forms

  18. Installation package for a domestic solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  19. TREATMENT OF DOMESTIC WATER USING CERAMIC FILTER FROM NATURAL CLAY AND FLY-ASH

    OpenAIRE

    NASIR SUBRIYER

    2013-01-01

    The declining water quality in Sriwijaya University has been caused by the presence of heavy metal contents such as Iron (Fe) and Zinc (Zn) in the treatment and distribution of water. A simple method is proposed in this work to minimize the heavy metal content in water by using filtration technology. This research was carried out using ceramic filter made of 77.5% natural clay, 20% fly ash, and 2.5% iron powder. The results showed an increase in the quality of raw water that is in accordance ...

  20. Coflotation of 134Cs from radioactive process waste water

    International Nuclear Information System (INIS)

    Cesium, coprecipitated with copper ferrocyanide, can be readily removed from radioactive process waste water using sodium lauryl sulphate (NaLS), cetyl trimethyl ammonium bromide (CTAB) or gelatin (Gl) as collector. In addition to the effect of the collector type on the percentage removal and volume reduction, the effects of the pH of three distinct Cu2+:Fe(CN)64- ratios and of different ageing periods of the cesium-copper ferrocyanide-water systems have been established. With NaLS, CTAB and Gl successful removals could be achieved in the pH ranges 3-7.5, 5.0-10.5 and 5.5-9.0 respectively. The results are discussed in terms of the ionization of the active groups of the collectors and of the electrical state of the precipitate. (orig.)

  1. Performance and cost evaluation of constructed wetland for domestic waste water treatment.

    Science.gov (United States)

    Deeptha, V T; Sudarsan, J S; Baskar, G

    2015-09-01

    Root zone treatment through constructed wetlands is an engineered method of purifying wastewater. The aim of the present research was to study the potential of wetland plants Phragmites and Typha in treatment of wastewater and to compare the cost of constructed wetlands with that of conventional treatment systems. A pilot wetland unit of size 2x1x0.9 m was constructed in the campus. 3x3 rows of plants were transplanted into the pilot unit and subjected to wastewater from the hostels and other campus buildings. The raw wastewater and treated wastewater were collected periodically and tested for Total nitrogen (TN),Total Phosphorous (TP), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD). It was observed that this pilot unit reduced the concentrations of TN, TP, BOD and COD by 76, 73, 83 and 86%, respectively, on an average. Root zone system achieved standards for tertiary treatment with low operating costs, low maintenance costs, enhance the landscape, provide a natural habitat for birds, and did not emit any odour. PMID:26521546

  2. Diversity and antibiotic resistance of aeromonas spp. in drinking and waste water treatment plants

    OpenAIRE

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M.

    2011-01-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas ver...

  3. Environmental Effect of Reservoirs Accumulating Highly Mineralized Oil-Field Waste Waters

    OpenAIRE

    Ilyusya M. Gabbasova; Ruslan R. Suleymanov

    2010-01-01

    The effect of oilfield waste water on the ground, the soil and the underground water has been studied. The reservoir is shown to be the source of environmental pollution due to the seepage of highly mineralized waste water through the reservoir bed and walls. Increased water mineralization in the spring two kilometers downward from the reservoir is one indication of it. Desalinization of the water should be expected in 140 years’ time. Typical chernozem formed on the area under study 40 years...

  4. Status of the membrane procedure - Possible applications to waste water digestion; Stand der Technik von Membranverfahren. Einsatzmoeglichkeiten bei der Vergaerung von Abwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Engeli, H.; Edelmann, W.

    2001-07-01

    In waste water with low organic loadings anaerobic microorganisms are working at a low efficiency. The plant's energy balance becomes negative because a big need of process energy to warm up the 'unproductive' water is created. This can be dealt with by concentrating the waste waters my means of membrane systems. Separation of slightly loaded flows into purified permeate and digestible concentrate may therefore increase the potential of digestion in industrial waste water significantly. As a basis for this report the following connections were used: congresses and exhibitions, personal contacts with people and companies who work and have published in this field as well as data base research. According to the technical standard the different processes of nano filtration, ultrafiltration and reverse osmosis are used to purify industrial or domestic waste water. Therefore, the majority of classic suppliers of waste water technology offer membrane systems. The membrane bio-reactors belong to the typical systems used. In this system the biomass is separated and retained by a membrane. Due to this combination the volume of the reactor can be reduced and the grade of degradation increased. Simultaneously a permeate is produced which can reach the quality of the desired effluent and which can be re-used manifold. Additional concentration of weakly loaded waste water to be used in a subsequent digestion can reduce energy consumption. Due to the fact that mainly the technical feasibility of the membrane technology was emphasised, some further evaluation in regard of energy consumption and cost has to be made. (author)

  5. Domestic wastes heat treatment. Evaluation of the 42 french operations assisted by the ADEME; Traitement thermique des dechets menagers. Bilan des 42 operations francaises aidees par l'ADEME

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    Between 1993 and 2000, the ADEME allowed a financial assistance for the construction of 42 domestic wastes incinerators. This document provides the first results of these units operating evaluation with a presentation of the french park transformation, the operating, the economic analysis of the sector, the financial accounting and the future market. (A.L.B.)

  6. Experimental and modeling studies on thermosiphon domestic solar water heaters with flat-plate collectors at clear nights

    International Nuclear Information System (INIS)

    To investigate effects of water temperature in the storage tank and height difference between collector loop connections at the tank on freeze protection of flat-plate collectors at clear nights in terms of outlet water temperature of the thermosiphonic reverse flow from the collector (referred to as Tout), two sets of thermosiphon domestic solar water heaters (DSWH, in short) were constructed and tested. Experimental measurements showed that, for given water temperature in tanks, Tout in the system with a vertical cylindrical tank was slightly higher than that in the one with a horizontal cylindrical tank; Tout increased with the increase of water temperature in the tank but was lower than the ambient air temperature all night. Meanwhile, a mathematical model was developed and experimentally validated for further investigating effects of structural and performance parameters of the system on Tout at clear nights. This model allows predicting Tout and the time at the moment ice formation inside absorber of the collector begins. Results by simulations showed that the collector-tank height difference and the thermal emissivity of absorbers had significant effects on the freeze protection of collectors in terms of Tout; for the system with a collector of non-selective absorber, the expected Tout was lower than the ambient air temperature, as observed in experiments; whereas for the system with a collector of solar selective absorber, the Tout, depending on water temperature in the storage tank, was higher than the ambient air temperature. This finding implied that, in thermosiphon DSWHs, flat-plate collectors with a non-solar-selective absorber might suffer from freezing-damage, but those with a solar selective absorber would not at clear nights with the ambient air temperature near or even lower than the freezing temperature.

  7. Experimental and modeling studies on thermosiphon domestic solar water heaters with flat-plate collectors at clear nights

    Energy Technology Data Exchange (ETDEWEB)

    Tang Runsheng, E-mail: kingtang@public.km.yn.c [Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming 650092 (China); Cheng Yanbin; Wu Maogang; Li Zhimin; Yu Yamei [Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming 650092 (China)

    2010-12-15

    To investigate effects of water temperature in the storage tank and height difference between collector loop connections at the tank on freeze protection of flat-plate collectors at clear nights in terms of outlet water temperature of the thermosiphonic reverse flow from the collector (referred to as T{sub out}), two sets of thermosiphon domestic solar water heaters (DSWH, in short) were constructed and tested. Experimental measurements showed that, for given water temperature in tanks, T{sub out} in the system with a vertical cylindrical tank was slightly higher than that in the one with a horizontal cylindrical tank; T{sub out} increased with the increase of water temperature in the tank but was lower than the ambient air temperature all night. Meanwhile, a mathematical model was developed and experimentally validated for further investigating effects of structural and performance parameters of the system on T{sub out} at clear nights. This model allows predicting T{sub out} and the time at the moment ice formation inside absorber of the collector begins. Results by simulations showed that the collector-tank height difference and the thermal emissivity of absorbers had significant effects on the freeze protection of collectors in terms of T{sub out}; for the system with a collector of non-selective absorber, the expected T{sub out} was lower than the ambient air temperature, as observed in experiments; whereas for the system with a collector of solar selective absorber, the T{sub out}, depending on water temperature in the storage tank, was higher than the ambient air temperature. This finding implied that, in thermosiphon DSWHs, flat-plate collectors with a non-solar-selective absorber might suffer from freezing-damage, but those with a solar selective absorber would not at clear nights with the ambient air temperature near or even lower than the freezing temperature.

  8. Experimental and modeling studies on thermosiphon domestic solar water heaters with flat-plate collectors at clear nights

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Runsheng; Cheng, Yanbin; Wu, Maogang; Li, Zhimin; Yu, Yamei [Education Ministry Key Laboratory of Advanced Technology and Preparation for Renewable Energy Materials, Yunnan Normal University, Kunming 650092 (China)

    2010-12-15

    To investigate effects of water temperature in the storage tank and height difference between collector loop connections at the tank on freeze protection of flat-plate collectors at clear nights in terms of outlet water temperature of the thermosiphonic reverse flow from the collector (referred to as T{sub out}), two sets of thermosiphon domestic solar water heaters (DSWH, in short) were constructed and tested. Experimental measurements showed that, for given water temperature in tanks, T{sub out} in the system with a vertical cylindrical tank was slightly higher than that in the one with a horizontal cylindrical tank; T{sub out} increased with the increase of water temperature in the tank but was lower than the ambient air temperature all night. Meanwhile, a mathematical model was developed and experimentally validated for further investigating effects of structural and performance parameters of the system on T{sub out} at clear nights. This model allows predicting T{sub out} and the time at the moment ice formation inside absorber of the collector begins. Results by simulations showed that the collector-tank height difference and the thermal emissivity of absorbers had significant effects on the freeze protection of collectors in terms of T{sub out}; for the system with a collector of non-selective absorber, the expected T{sub out} was lower than the ambient air temperature, as observed in experiments; whereas for the system with a collector of solar selective absorber, the T{sub out}, depending on water temperature in the storage tank, was higher than the ambient air temperature. This finding implied that, in thermosiphon DSWHs, flat-plate collectors with a non-solar-selective absorber might suffer from freezing-damage, but those with a solar selective absorber would not at clear nights with the ambient air temperature near or even lower than the freezing temperature. (author)

  9. The treatment of waste water containing PVA by ionizing radiation

    International Nuclear Information System (INIS)

    The development of an effective method for treating the waste water containing PVA by the irradiation with ionizing radiation was studied. Particularly, the oxidative decomposition and the degeneration of organic substances in waste water were studied. The radiation dose required for the oxidative decomposition and the irradiation conditions were determined. Further, the effects of adding hydrogen peroxide for improving the decomposition efficiency were determined. The chemical oxygen demand by potassium bichromate (COD-Cr) was measured in conformance to the standard method of testing sewerage. Total organic carbon (TOC) was measured by total carbon after the CO2 in sample solutions had been replaced by oxygen bubbling at pH 2 - 3 for five minutes. Sample solutions were prepared by diluting the aqueous solution containing 8 g/l of PVA having the degree of polymerization of 500. The dose rate was measured by the Fricke dosimeter with a Co-60 gamma-ray source. The experiments revealed that 1) the decomposition of PVA was induced by OH radicals, and the reaction velocity constant was determined. 2) The irradiation of PVA aqueous solution under the condition of saturated oxygen reduced the COD-Cr and TOC of the solution. 3) COD-Cr was reduced by 70 - 80 ppm with the radiation dose of 1.0 x 106R, if the COD-Cr of solutions is over 100 ppm. 4) The irradiated PVA aqueous solution absorbed ultraviolet ray; and 5) G(-TOC) value increased by the addition of hydrogen peroxide. (Iwakiri, K.)

  10. Treatment of tanneries waste water by ultrasound assisted electrolysis process

    International Nuclear Information System (INIS)

    The leather industry is a major producer of wastewater and solid waste containing potential water and soil contaminants. Considering the large amount and variety of chemical agents used in skin processing, the wastewaters generated by tanneries are very complex. Therefore, the development of treatment methods for these effluents is extremely necessary. In this work the electrochemical treatment of a tannery wastewater by ultrasound assisted electrochemical process, using stainless steel and lead cathode and titanium anodes was studied. Effect of ultrasound irradiation at various ultrasonic intensities 0, 40, 60 and 80% on electrochemical removal of chromium was investigated. Experiments were conducted at two pH conditions of pH 3 and 9. Significant removal of chromium was found at pH 3 and it was also noticed that by increasing ultrasonic intensities, percentage removal of chromium and sulfate also increases. The optimum removal of chromium and sulfate ions was observed at 80% ultrasonic intensity. The technique of electrolysis assisted with ultrasonic waves can be further improved and can be the future waste water treatment process for industries. (author)

  11. Use of Hanford waste water ponds by waterfowl

    International Nuclear Information System (INIS)

    Census and environmental surveillance information on waterfowl that use the Hanford Site 200 Area waste water ponds are described and evaluated. Physical features of the ponds are discussed in relation to their use and suitability for waterfowl. Seasonal distributions observed for the years 1971 through 1974 indicate that the highest use by waterfowl occurs during the spring and fall migratory periods. Base population estimates are 300 to 400 resident waterfowl with a few tens of pairs nesting during the summer. Environmental surveillance data on 137Cs in muscle tissue are presented for the years 1971 through 1977. Comparisons are made between Columbia River and waste water pond waterfowl, between waterfowl groups, and among ponds. Waterfowl collected from ponds frequently have easily detected levels of 137Cs in muscle tissue. However, those waterfowl collected from the Columbia River seldom show a 137Cs level above that expected from worldwide fallout. Waterfowl collected from the pond with the smallest 137Cs inventory and the poorest waterfowl habitat contained the lowest levels of 137Cs in muscle tissue

  12. ELECTRICITY PRODUCTION FROM WASTE WATER USING MICROBIAL FUEL CELL

    Directory of Open Access Journals (Sweden)

    Mannarreddy Prabu

    2012-09-01

    Full Text Available Microbial fuel cells (MFCs an electricity producing device using waste-water treatment, biosensor, eco-friendly and low cost management of energy production. In this study, investigation power generation from waste water compared with their pure culture, mixed culture and different medium ingredients with microorganism. Enhance the power production with different ingredients like monosaccharide’s, nitrogen source and amino acids, these sources increasing the electron shuttle in the medium. Glucose (0.98 V, beef extract (0.85 V and Leucine (0.92 V exhibited maximum power production with the anodic chamber. Different electrode was used; platinum showed that maximum electron capturing in the anodic chamber. The SEM photography clearly showed that biofilm formation of microorganism on the electrode. The output power was compared with mixed culture to pure culture and different ingredients, thus bio electric power was retained maximum 1.03 V in pure culture from Morganella morganii and 1.2 V in mixed culture.

  13. Zimbabwe. Country Case Study on Domestic Policy Frameworks for Adaptation in the Water Sector

    International Nuclear Information System (INIS)

    Background information for presentation given at the Annex I Expert Group Seminar in Conjunction with the OECD Global Forum on Sustainable Development on 28 March 2006. The main subjects concern the situation in Zimbabwe with regard to Water Resources and their Use, Institutional Arrangements, Impact of Climate Change on Water Resources, Preparedness and Adaptation to Climate Change, and finally Recommendations are given

  14. Influence of waste water from oil refinery on species and biomass of microzoon in rootzone of water hyacinth

    International Nuclear Information System (INIS)

    There are lots of biological species in rootzone of water hyacinth, which can purify waste water from oil refinery. Rootzone of water hyacinth is an ecological subsystem. There are 20 microzoon species including 13 protozoa, 3 rotifer and 4 others. The main species are Vorticella convallaria, Rotaria rotatoria and Lepadella patella with percentages of 18.5%, 17.5% and 34.5%, respectively. The longer retention time of the waste water is in the oxidation pond, the more species and the bigger population of microzoon in rootzone of water hyacinth. The total biomass increases along with waste water flow. The maximum value of the population is 1.91 x 107 ind/m2. There is no microzoon except Englena which is an autotrophic organism in control pond. Increase of retention time of waste water is beneficial to biomass of microzoon and has no effect on the content of aerobic and facultative aerobic microbes in oxidation pond

  15. Treatment of waste waters from special laundries of Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Waste water treatment methods applied in the purification of waste waters discharged from the laundries are presented. The most usually applied method is vaporization, the most frequently designed procedure is reverse osmosis and ultrafiltration and coagulation. Currently the Nuclear Research Institute in Rez is developing a technology of waste water purification which is aimed at introducing such a method of processing in which a minimum amount of solid wastes will be generated at minimum costs. From the point of view of waste water treatment it is most suitable to wash with soap with an addition of detergent such as sodium alkylaryl sulphonate. A promising preparation is the ROMY suspension. Waste water treatment with the use of coagulation by lime salt, sorption of the residues of organic substances on activated coal and of radionuclide residues on a selective ion exchanger without regeneration should be a sufficiently low-cost and effective technology. (J.P.)

  16. Evaluating the impact of consumer behaviour on the performance of domestic solar water heating systems in South Africa

    Scientific Electronic Library Online (English)

    Pamela, Ijumba; Adoniya Ben, Sebitosi.

    Full Text Available South Africa experienced a rapid expansion in the electric power consumer base after 1994 that was not matched by corresponding investment in the country's generation capacity. By the dawn of 2008, the situation had reached a critical point, with regular countrywide blackouts and load shedding and i [...] s expected to persist for several years, before the proposed new base stations can come online. Currently, 92% of the country's electricity is generated in coal-based power stations and are responsible for the country's heavy carbon footprint. Additionally this power must crisscross the country to distant load centres via an aging transmission infrastructure and in the process massive amounts of energy are lost particularly during peak power demand. Electricity consumption in South African households accounts for approximately 35% of peak demand, with water heating constituting 40% of that. The country has abundant sunshine and solar water heating technology and offers one of the most viable compiementary solutions to the country's energy and environmental crises. Moreover the location of the systems at the consumer end means that the need to upgrade the transmission infrastructure can also be differed. Application of technology alone however, may not necessarily result in the required energy savings particularly in cases of uninformed consumer usage. In this paper the authors evaluate the impact of consumer behaviour on the performance of domestic solar water heaters in South Africa and suggest measures that could be taken to optimize this performance.

  17. Feasibility Studies on Static Pile Co Composting of Organic Fraction of Municipal Solid Waste With Dairy Waste Water

    Directory of Open Access Journals (Sweden)

    Manjula Gopinathan

    2012-06-01

    Full Text Available Milk processing consumes a large amount of water and generates 6–10 liters of effluent per liter of milk processed. An effluent volume is approximately four times the volume of processed milk. Since the pollutants generated by industry are great losses of production, improvements in production efficiency are recommended to reduce pollutant loads. In this research a series of experimental studies were conducted with regard to bioconversion of organic fraction of municipal solid waste along with dairy waste water at different C/N ratios. About 50 kg of shredded waste containing dairy waste water, saw dust, and organic fraction of municipal solid waste was placed in static piles of different proportions and 500 ml of effective micro-organisms was added to them. The variation in physical and chemical parameters was monitored throughout the process. Results indicate that co composting of dairy waste water with municipal solid waste produces compost that is more stable and homogenous and can be effectively used as soil conditioner.DOI: http://dx.doi.org/10.5755/j01.erem.60.2.963

  18. Application of an Integrated Heat Recovery Technology for Domestic Hot Water Supply System and Air Conditioning

    OpenAIRE

    Chen Yan; Zhang Yufeng

    2013-01-01

    This study is to design an integrated heat recovery and air conditioner system and to investigate the feasibility and the potential performance of this system in changing conditions. Different season conditions and operating modes are studied based on the items of one hotel. In winter, heat recovered from wastewater is used on water heating and air condition and the surplus energy of air conditioner system is used on hot water system in summer. Dynamic energy ...

  19. Experimental Investigation of a Natural Circulation Solar Domestic Water Heater Performance under Standard Consumption Rate

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Taherian, H.; Ganji, D. D.

    2012-01-01

    This paper reports experimental studies on the performance of a natural circulation solar water heater considering the weather condition of a city in north of Iran. The tests are done on clear and partly cloudy days. The variations of storage tank temperature due to consumption from the tank, daily consumption influence on the solar water heater efficiency, and on the input temperature of the collector are studied and the delivered daily useful energy has been obtained. The results show that by ...

  20. Legionella - Combating their spreading in domestic water systems; Legionellen - Bekaempfung ihrer Verbreitung in Hausinstallationen

    Energy Technology Data Exchange (ETDEWEB)

    Haas, R.

    2003-07-01

    This comprehensive article discusses the ways in which water systems that are infected by legionella bacteria can be cleaned up and the very high demands placed on companies that conduct the disinfection. The various species of legionella bacteria are listed and their rates of multiplication at various temperatures presented. Also, the time taken to kill them off at various temperatures is examined. The history of the legionnaires illness, the discovery of its cause and various other topics concerned such as risk factors, endangered locations - such as hospitals, nursing homes, prisons and residential estates with centralised hot water systems - are examined, as is the presence of legionella in aerosols and biofilms. Ways of avoiding and combating legionella using thermal, chemical as well as physical methods such UV-light and ozone disinfection and membrane filters are discussed. Recommendations are made on which materials should or should not be used in the hot water systems. Specific recommendations are made concerning the design of hot water boilers, temperature controllers and the installations and fittings to be used. Methods of ensuring that hot water systems are sufficiently protected, such as by avoiding long pipes and standing water, are discussed.

  1. Avaliação de filtros domésticos comerciais para purificação de águas e retenção de contaminantes inorgânicos Evaluation of domestic commercial filters to waters purification and retention of inorganic contaminates

    OpenAIRE

    Nilva Aparecida Ressinetti Pedro; Berenice Mandel Brígido; Maria Irene Cibela Badolato; José Leopoldo Ferreira Antunes; Elisabeth de Oliveira

    1997-01-01

    Twenty domestic commercial filters, in order to determine the percentual retention of color, turbidity, dry residue, bicarbonates, carbonates, total hardness, nitrogens, iron, chlorides, fluorides, and residual chlorine (parameters of food legislation) and sulphides in thirteen water samples proceeding from springs, wells, rivers, lakes, drinking patterns and standards, before and after purification were evaluated. The results showed that purifiers presented adequate retention for nitrates (7...

  2. Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States

    Science.gov (United States)

    Rowe, B.L.; Toccalino, P.L.; Moran, M.J.; Zogorski, J.S.; Price, C.V.

    2011-01-01

    BACKGROUND: As the population and demand for safe drinking water from domestic wells increase, it is important to examine water quality and contaminant occurrence. A national assessment in 2006 by the U.S. Geological Survey reported findings for 55 volatile organic compounds (VOCs) based on 2,401 domestic wells sampled during 1985-2002. OBJECTIVES: We examined the occurrence of individual and multiple VOCs and assessed the potential human-health relevance of VOC concentrations. We also identified hydrogeologic and anthropogenic variables that influence the probability of VOC occurrence. METHODS: The domestic well samples were collected at the wellhead before treatment of water and analyzed for 55 VOCs. Results were used to examine VOC occurrence and identify associations of multiple explanatory variables using logistic regression analyses. We used a screening-level assessment to compare VOC concentrations to U.S. Environmental Protection Agency maximum contaminant levels (MCLs) and health-based screening levels. RESULTS: We detected VOCs in 65% of the samples; about one-half of these samples contained VOC mixtures. Frequently detected VOCs included chloroform, toluene, 1,2,4-trimethylbenzene, and perchloroethene. VOC concentrations generally were compound). CONCLUSIONS: Drinking water supplied by domestic wells is vulnerable to low-level VOC contamination. About 1% of samples had concentrations of potential human-health concern. Identifying factors associated with VOC occurrence may aid in understanding the sources, transport, and fate of VOCs in groundwater.

  3. Domestic policy frameworks for adaptation to climate change in the water sector. Part 1. Annex 1 countries

    International Nuclear Information System (INIS)

    Adaptation to climate change needs to be integrated into policy development. This paper examines domestic policy frameworks in the water sector and analyses how adaptation could be incorporated into these frameworks. Global climate change will have a significant impact on water resources in all countries. Consequently, a key challenge that countries face is how to govern and manage their water resources in the conditions of changing climate. What should be done, when and by whom, is a function of the rate of climate change, but also of the existing water policy frameworks of each country. This study examines current water policy frameworks in four countries (Canada, Finland, United Kingdom and United States). It reviews the existing legal frameworks, institutional arrangements, key players and water planning mechanisms. One objective was to determine to what extent adaptation to climate change is beginning to be incorporated into water policy frameworks and whether there are some lessons that can be drawn from current experiences. The study concludes that a certain degree of adjustment to climate variability and extreme weather events is inherent to the water sector. However, adaptation to long-term climate change is generally not a significant factor in the management of water resources in the four countries, although some initiatives are being undertaken in several countries to build climate change into decision making. All four countries have water policy frameworks, which to different extents, can help them adapt to climate change. These water policy frameworks, which differ in each country, can be enhanced to promote adaptation to climate change. They generally include the following elements: A system of laws (legal frameworks) that stipulate rights and responsibilities of different levels of government and private entities. These may include, for example, a system of water rights and abstraction permits; A variety of national, regional and sub-national institutions that are responsible for developing policies and overseeing their implementation; A set of policies that guide the implementation of national, state and provincial laws; Clearly defined roles for the key players, including government ministries, departments, water suppliers, regulators and other local authorities; Physical water infrastructure, that is dams, levees, reservoirs and sewerage systems that are capable of managing the flow and distribution of water; A set of water management plans (long-term strategic plans, drought plans and flood plans) with flexibility to anticipate and respond to climate changes; and a system to share current and projected climatic information. For the most part, national governments will have to determine how current policy frameworks should be modified in order to prepare for climate change. However, there is little doubt that broadening the exchange of information will be a crucial element, if countries are to be prepared to properly manage their water resources

  4. Domestic policy frameworks for adaptation to climate change in the water sector. Part 1. Annex 1 countries

    Energy Technology Data Exchange (ETDEWEB)

    Levina, E.; Adams, H.

    2006-05-15

    Adaptation to climate change needs to be integrated into policy development. This paper examines domestic policy frameworks in the water sector and analyses how adaptation could be incorporated into these frameworks. Global climate change will have a significant impact on water resources in all countries. Consequently, a key challenge that countries face is how to govern and manage their water resources in the conditions of changing climate. What should be done, when and by whom, is a function of the rate of climate change, but also of the existing water policy frameworks of each country. This study examines current water policy frameworks in four countries (Canada, Finland, United Kingdom and United States). It reviews the existing legal frameworks, institutional arrangements, key players and water planning mechanisms. One objective was to determine to what extent adaptation to climate change is beginning to be incorporated into water policy frameworks and whether there are some lessons that can be drawn from current experiences. The study concludes that a certain degree of adjustment to climate variability and extreme weather events is inherent to the water sector. However, adaptation to long-term climate change is generally not a significant factor in the management of water resources in the four countries, although some initiatives are being undertaken in several countries to build climate change into decision making. All four countries have water policy frameworks, which to different extents, can help them adapt to climate change. These water policy frameworks, which differ in each country, can be enhanced to promote adaptation to climate change. They generally include the following elements: A system of laws (legal frameworks) that stipulate rights and responsibilities of different levels of government and private entities. These may include, for example, a system of water rights and abstraction permits; A variety of national, regional and sub-national institutions that are responsible for developing policies and overseeing their implementation; A set of policies that guide the implementation of national, state and provincial laws; Clearly defined roles for the key players, including government ministries, departments, water suppliers, regulators and other local authorities; Physical water infrastructure, that is dams, levees, reservoirs and sewerage systems that are capable of managing the flow and distribution of water; A set of water management plans (long-term strategic plans, drought plans and flood plans) with flexibility to anticipate and respond to climate changes; and a system to share current and projected climatic information. For the most part, national governments will have to determine how current policy frameworks should be modified in order to prepare for climate change. However, there is little doubt that broadening the exchange of information will be a crucial element, if countries are to be prepared to properly manage their water resources.

  5. Remaking waste as water: The governance of recycled effluent for potable water supply

    Directory of Open Access Journals (Sweden)

    Sarah A. Moore

    2013-02-01

    Full Text Available Water managers increasingly rely on the indirect potable reuse (IPR of recycled effluent to augment potable water supplies in rapidly growing cities. At the same time, the presence of waste – as abject material – clearly remains an object of concern in IPR projects, spawning debate and opposition among the public. In this article, we identify the key governance factors of IPR schemes to examine how waste disrupts and stabilises existing practices and ideologies of water resources management. Specifically, we analyse and compare four prominent IPR projects from the United States and Australia, and identify the techno-scientific, legal, and socio-economic components necessary for successful implementation of IPR projects. This analysis demonstrates that successful IPR projects are characterised by large-scale, centralised infrastructure, state and techno-scientific control, and a political economy of water marked by supply augmentation and unchecked expansion. We argue that – despite advanced treatment – recycled effluent is a parallax object: a material force that disrupts the power geometries embedded in municipal water management. Consequently, successful IPR schemes must stabilise a particular mode of water governance, one in which recycled effluent is highly regulated and heavily policed. We conclude with insights about the future role of public participation in IPR projects.

  6. Domestic Solid Waste Management and its Impacts on Human Health and the Environment in Sharg El Neel Locality, Khartoum State, Sudan

    Directory of Open Access Journals (Sweden)

    A.M. Abdellah

    2013-01-01

    Full Text Available Due to rapid urbanization in Khartoum State, Domestic Solid Waste (DSW management remains the biggest obsession that recurrently attracts the attention of the concern authorities and stakeholders. As one of the seven localities comprised the state, the Sharg El Neel Locality was chosen to study the DSW management efficiency. The materials and methods employed in collection of data is a package of techniques, one of which was by conducting interviews using structured and unstructured questions mainly directed to appropriate persons i.e., householders and particular government employees directly engaged in DSW management operations. The main findings reached in this study were that local authorities lack the necessary capacities to handle the immense problems of DSW management. Shortages of funds, inadequate number of workers, lack of transport and facilities and weakness of attitudes of respondents found to be among factors hindering the DSW management. Accordingly, proper scheduled and timing, well-trained public health officers and sanitary overseers and strict sustainable program to controlling flies, rodents, cockroach and other disease vectors are essential to properly managing DSW. Otherwise, problems resulting from solid waste generation in the study area will be magnitudized and the surrounding environment will definitely be deteriorated.

  7. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  8. Stillwater Wildlife Management Area : Suitability of geothermal waste water for use in waterfowl marsh maintenance

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report analyzes the suitability of geothermal waste waters for use in waterfowl management. An extensive review of available data on water quality of...

  9. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste

    Science.gov (United States)

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used in chemistry and climate modeling applications. This paper presents th...

  10. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  11. Microbiological and Chemical Aspects on Some Fresh Water and Industrial Waste Water Samples

    OpenAIRE

    El-Fadaly H.; M. El-Defrawy; F. El-Zawawy; D. Makia

    1999-01-01

    Both microbiological and chemical analysis of water and industrial wastewater samples collected from Dakahlia governorate (Egypt) were carried out. The microbiological examination involved the measurement of microbial total count, specific bacterial groups, pathogenic bacteria yeast, and fungi. The isolation and purification of different bacterial groups were also performed from different samples of industrial wastes. Trial to reuse the industrial effluents was also made. The chemical analysi...

  12. Environmental impact on the bacteriological quality of domestic water supplies in Lagos, Nigeria Impacto ambiental sobre a qualidade bacteriológica do abastecimento domiciliar de água em Lagos, Nigéria

    OpenAIRE

    L Egwari; O O Aboaba

    2002-01-01

    OBJECTIVE: To assess the impact of town planning, infrastructure, sanitation and rainfall on the bacteriological quality of domestic water supplies. METHODS: Water samples obtained from deep and shallow wells, boreholes and public taps were cultured to determine the most probable number of Escherichia coli and total coliform using the multiple tube technique. Presence of enteric pathogens was detected using selective and differential media. Samples were collected during both periods of heavy ...

  13. In-situ parameter estimation for solar domestic hot water heating systems components. Final report, June 1995--May 1996

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.R.

    1997-03-01

    Three different solar domestic hot water systems are being tested at the Colorado State University Solar Energy Applications Laboratory; an unpressurized drain-back system with a load side heat exchanger, an integral collector storage system, and an ultra low flow natural convection heat exchanger system. The systems are fully instrumented to yield data appropriate for in-depth analyses of performance. The level of detail allows the observation of the performance of the total system and the performance of the individual components. This report evaluates the systems based on in-situ experimental data and compares the performances with simulated performances. The verification of the simulations aids in the rating procedure. The whole system performance measurements are also used to analyze the performance of individual components of a solar hot water system and to develop improved component models. The data are analyzed extensively and the parameters needed to characterize the systems fully are developed. Also resulting from this indepth analysis are suggested design improvements wither to the systems or the system components.

  14. Genetic diversity in the prion protein gene (PRNP) of domestic cattle and water buffaloes in Vietnam, Indonesia and Thailand.

    Science.gov (United States)

    Uchida, Leo; Heriyanto, Agus; Thongchai, Chalermchaikit; Hanh, Tran Thi; Horiuchi, Motohiro; Ishihara, Kanako; Tamura, Yutaka; Muramatsu, Yasukazu

    2014-07-01

    There has been an accumulation of information on frequencies of insertion/deletion (indel) polymorphisms within the bovine prion protein gene (PRNP) and on the number of octapeptide repeats and single nucleotide polymorphisms (SNPs) in the coding region of bovine PRNP related to bovine spongiform encephalopathy (BSE) susceptibility. We investigated the frequencies of 23-bp indel polymorphism in the promoter region (23indel) and 12-bp indel polymorphism in intron 1 region (12indel), octapeptide repeat polymorphisms and SNPs in the bovine PRNP of cattle and water buffaloes in Vietnam, Indonesia and Thailand. The frequency of the deletion allele in the 23indel site was significantly low in cattle of Indonesia and Thailand and water buffaloes. The deletion allele frequency in the 12indel site was significantly low in all of the cattle and buffaloes categorized in each subgroup. In both indel sites, the deletion allele has been reported to be associated with susceptibility to classical BSE. In some Indonesian local cattle breeds, the frequency of the allele with 5 octapeptide repeats was significantly high despite the fact that the allele with 6 octapeptide repeats has been reported to be most frequent in many breeds of cattle. Four SNPs observed in Indonesian local cattle have not been reported for domestic cattle. This study provided information on PRNP of livestock in these Southeast Asian countries. PMID:24705506

  15. Governing Peri-Urban Waste Water Used by Farmers: Implications for Design and Management

    OpenAIRE

    Grendelman, E.R.; Huibers, F.P.

    2010-01-01

    Worldwide, population is increasingly centralized in metropolitan areas. This has an impact on water systems and complex metropolitan watersheds emerge. Flows of varying water quality are generated and distributed among different users who develop new opportunities and coping mechanisms for dealing with marginal quality waters. In developing countries waste water management often fails to cope with the increasing number and volumes of flows. Financial and institutional limitations force waste...

  16. Chemical properties of surface waters in areas of waste water discharge from the Belchatow brown coal surface mine

    Energy Technology Data Exchange (ETDEWEB)

    Murdza, J.; Sowinska, G.; Tomala, M. (Poltegor Instytut, Wroclaw (Poland))

    1991-01-01

    Quality of surface water of the Widawka river and its tributaries was determined in 1990 and 1991 four times a year. Waste water from the Belchatow brown coal surface mine is discharged into the Widawka river. The following aspects were considered: pH value, conductivity, mineral content, permanganate value, content of calcium, magnesium, chlorine, sulfate, carbonates and hydroxide ions. Investigations showed that surface water quality in spite of waste water discharge was good and corresponded with the 1st water class. Mineral content was below 500 mg/dm[sup 3]. Water permanganate value was low; the content of bicarbonate ions was higher. Content of sulfate and chlorine ions was elevated only in surface waters affected by waste water discharged from a fly ash sedimentation tank. 4 refs.

  17. REVIEW OF SUSTAINABLE WASTE WATER TREATMENT OPTION FOR URBAN SANITATION FACILITIES IN DEVELOPING COUTRIES, CASE STUDY: UPPER BHIMA BASIN, INDIA

    OpenAIRE

    S.V. MAPUSKAR; P.M. RAVAL; SAMEER SHASTRI

    2010-01-01

    Generation and accumulation of domestic waste from fast growing human settlements is becoming a major environment and health problem in developing country like India. The problem is becoming very acute in urban areas. Appropriate management of these wastes is very important for a positive improvement in the quality of life in cities. With unprecedented growth of cities, the present waste management facilities have been found to be very haphazard and inadequate. Conventional methodologies like...

  18. Design and operational parameters of transportable supercritical water oxidation waste destruction unit

    International Nuclear Information System (INIS)

    Supercritical water oxidation (SCWO) is the destruction of hazardous waste by oxidation in the presence of water at temperatures and pressures above its critical point. A 1 gal/h SCWO waste destruction unit (WDU) has been designed, built, and operated at Los Alamos National Laboratory. This unit is transportable and is intended to demonstrate the SCWO technology on wastes at Department of Energy sites. This report describes the design of the WDU and the preliminary testing phase leading to demonstration

  19. Eco-technological procedure of the waste water and sludge treatment of the galvanic process

    OpenAIRE

    Melnik, E.S.

    2007-01-01

    The subject of the paper is eco-technological procedure of the wast water treatment of galvanic process with the following processing of sludge generated during the conventiotal purification of the waste water. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/17402

  20. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Science.gov (United States)

    2010-10-01

    ... 2010-10-01 false Food, potable water, and waste: U.S. seaports and airports...Sanitary Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports...approved by the Commissioner of Food and Drugs, Food and...

  1. Influence of mine waste water purification on radium concentration in desalinisation products

    International Nuclear Information System (INIS)

    The effects of mine waste water treatment in the desalination process on radium concentration in final products have been shown on the example of installations working in 'Ziemowit' and 'Piast' Polish coal mines. The environmental impact and health hazard resulting deposition of waste water treatment plant by-products have been also discussed

  2. Volume reduction and encapsulation process for water containing low level radioactive waste

    International Nuclear Information System (INIS)

    In encapsulating solutions or slurries of radio-active waste within polymeric material for disposal, the water is removed therefrom by adding a water insoluble liquid forming a low boiling azeotrope and evaporating the azeotrope, and then a polymerisable composition is dispersed throughout the dewatered waste and allowed to set. (author)

  3. Application of inorganic sorbents for waste waters purification in paper production

    International Nuclear Information System (INIS)

    Present work is devoted to application of inorganic sorbents for waste waters purification in paper production. Therefore as sorbents for waste waters purification of paper production inorganic materials (hydroxides of different elements, bentonite, chalk) are tested. The optimal conditions of sorption are defined.

  4. Degradation of methyl orange waste water by electrochemical oxidation method

    International Nuclear Information System (INIS)

    Degradation of methyl orange (MO) waste water was conducted by electrochemical oxidation method with PbO2/Ti electrode as anode. PbO2/Ti electrode was fabricated by electrochemical deposition of PbO2 on Ti foil. The micrograph and crystal structure of PbO2 show that uniform coating of PbO2 on titanium foil was obtained and the dominant crystal structure was ?-PbO2. Degradation experiments of MO solution indicate that the degradation rate increased with cell voltage and solution conductivity. In addition, air aeration also improved the degradation of MO solution; but an increase in cell voltage or input energy decreased the energy efficiency of MO removal. The energy efficiency reached over 0.1mg kJ?1 under a cell voltage lower than 15V, and the removal rate could reach 90%.

  5. Method and apparatus for waste destruction using supercritical water oxidation

    Science.gov (United States)

    Haroldsen, Brent Lowell (1251 Sprague St., Manteca, CA 95336); Wu, Benjamin Chiau-pin (2270 Goldenrod La., San Ramon, CA 94583)

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  6. Removal of Sulfate from Waste Water by Activated Carbon

    Directory of Open Access Journals (Sweden)

    Mohammed Sadeq Salman

    2009-01-01

    Full Text Available Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 ? 9. , agitation time (0 ? 120min and adsorbent dose (2 ? 10 gm.The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76. The percent of removal of sulfate (22% - 38% at (PH=7 in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43% at pH=7.

  7. Surface water considerations for low-level radioactive waste site

    International Nuclear Information System (INIS)

    To ensure that the objective of isolation of low-level radioactive wastes and stability of the disposal site after closure can be achieved, the surface hydrology of the potential sit must be carefully characterized prior to engineering and operation. At a site the most important considerations with regard to flooding, infiltration, erosion, and pathway of radionuclides are addressed as they relate to streams, ponds, hydraulic structures, and surface water users. To satisfactorily characterize the site, the type and amount of data and analyses needed for license applications and the environmental report are discussed. The discussion also includes potential sources of available data, the field data collection program that may be necessary, and methodologies that can be used for analysis

  8. Effluent and water treatment at AERE Harwell

    International Nuclear Information System (INIS)

    The treatment of liquid wastes at Harwell is based on two main principles: separation of surface water, domestic sewage, trade wastes and radioactive effluents at source, and a system of holding tanks which are sampled so that the appropriate treatment can be given to any batch. All discharges are subject to independent monitoring by the authorising departments and the Thames Water Inspectors. (author)

  9. Implementing domestic tradable permits: recent developments and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-08-01

    This book presents the proceedings of an OECD workshop on domestic tradeable permits (TPs) held in September 2001 in Paris. It provides an analysis on recent developments in the use of domestic TP in new areas including climate change, renewable energy, transport, solid waste management, and water resources management. It highlights issues regarding the use of TPs in policy mixes, reviews key elements of ex post evaluations of earlier TP schemes, identifies key challenges in the design and use of TP systems, and attempts to link the past lessons to further research needs. 20 figs., 21 tabs.

  10. Potencial de recuperación de residuos sólidos domésticos dispuestos en un relleno sanitario / Potential Recovery of Domestic Solid Waste Disposed of in A Landfill

    Scientific Electronic Library Online (English)

    Quetzalli, Aguilar-Virgen; Carolina, Armijo-de Vega; Paul, Taboada-González; Xochitl M., Aguilar.

    2010-11-01

    Full Text Available Conocer las cantidades y tipos de residuos sólidos domésticos (RSD) que son depositados en el relleno sanitario, brinda la posibilidad de proponer opciones sustentables para su aprovechamiento. Los residuos de cualquier localidad manejados de forma apropiada se pueden convertir en insumos de algún o [...] tro proceso. El objetivo de este estudio fue cuantificar los componentes de los RSD susceptibles de ser reciclados, depositados en el relleno sanitario de la ciudad de Ensenada (Baja California, México), para ser valorizados en el mercado de los reciclables. En promedio se podrían comercializar semanalmente 643.67 toneladas de residuos alimenticios para composta, 389.45 toneladas de papel y cartón, 217.55 toneladas de plástico, 78.81 toneladas de vidrio, 37.20 toneladas de metales y 8.11 toneladas de aluminio. Se obtendría en total un aproximado de MXP $911,224.18 (USD $ 71,693.48) por la comercialización de los principales reciclables. Abstract in english Knowing the amount and type of Domestic Solid Waste (DSW) that is deposited in the land fill gives us the possibility to consider options in how to make sustainable use of it. Waste from any location, if properly handled, can be turned into the raw material for other processes. The aim of this study [...] was to quantify the components of the DSW likely to be recycled, deposited in the landfill in the city of Ensenada, Baja California, Mexico, so that they could be valued on the market as recyclables. The average weekly market could be 643.67 tons of food waste for composting, 389.45 tons of paper and cardboard, 217.55 tons of plastic, 78.81 tons of glass, 32.20 tons of metal and 8.11 tons of aluminum. This should result in a total of approximately MXP $ 911,224.18 (USD $ 71693.48) for the marketing of major recyclables.

  11. Modification of laundry waste water cleanup technology for water containing new washing powders

    International Nuclear Information System (INIS)

    2 kg of dry laundry with a contamination level of 40-50 Bq/cm2 were washed in a modified commercial washing machine. The Alfa-DEO washing powder was used and the following operations gradually undertaken: soaking, pre-wash, rinse, wash, treble rinse and spinning. Then the Alfa-DES detergent was used for the following operations: pre-wash, rinse, spinning, washing with a foam suppressing agent, treble rinse and spinning. Both procedures reduced radioactivity of the working garments to under 3 Bq/cm2. Tabulated are the average contents of surfactants, phosphates, sodium ions, and the most important nuclides in the wash water after the individual operations. Wash waters were cleaned using three alternative methods: 1. the procedure designed for treatment plants for contaminated laundry wash waters in Mochovce and Temelin, 2. biological waste water treatment, 3. biological procedure with chemical treatment. The results of the three procedures are tabulated. It was found that new detergents can make waste water treatment more efficient. The possibility was also opened for solidification of sludges from chemical treatment and their subsequent fixation in a cement mixture. (E.S.). 6 tabs., 4 refs

  12. Environmental performance evaluation of hot water supplying systems for domestic use

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre Kulay

    2015-04-01

    Full Text Available The consumption profile of Brazilian citizens is changing as alternatives are sought to reduce costs. A major focus of this change of attitude involves expenditures for electricity, particularly in relation to water heating systems. The manufacturers of these devices add value to their products beyond price. A usual strategy is the enhancement of the environmental performance of the product. This study compared four water heating systems: electric, gas, solar and hybrid, using an environmental perspective. The systems were operated under similar conditions. The analysis was conducted by using the Life Cycle Assessment technique, for the impact categories of Climate Change, Acidification Eutrophication and Water, Metal and Fossil Resource depletion. The results indicated that the electric and hybrid systems are less harmful to the environment for all the impact categories under analysis. On the other hand, the gas system provided the worst performance of the group. The solar heating system was penalized due to its dependence on electricity to operate under the conditions in which the study was conducted.

  13. Potential of domestic sewage effluent treated as a source of water and nutrients in hydroponic lettuce

    Directory of Open Access Journals (Sweden)

    Renata da Silva Cuba

    2015-07-01

    Full Text Available The search for alternative sources of water for agriculture makes the use of treated sewage sludge an important strategy for achieving sustainability. This study evaluated the feasibility of reusing treated sewage effluent as alternative source of water and nutrients for the hydroponic cultivation of lettuce (Lactuca sativa L. The experiment was conducted in the greenhouse of the Center for Agricultural Sciences - UFSCar, in Araras, SP. The cultivation took place from February to March 2014. The hydroponic system used was the Nutrient Film Technique, and included three treatments: 1 water supply and mineral fertilizers (TA; 2 use of effluent treated and complemented with mineral fertilizers based on results of previous chemical analysis (TRA; and 3 use of treated effluent (TR. The applied experimental design was four randomly distributed blocks. We evaluated the fresh weight, nutritional status, the microbiological quality of the culture, and the amount of mineral fertilizers used in the treatments. The fresh weights were subjected to analysis of variance and means were compared by the Tukey test at 5% probability. Only the TR treatment showed a significant difference in the evaluated variables, as symptoms of nutritional deficiencies in plants and significant reduction in fresh weights (p <0.01 were found. There was no detectable presence of Escherichia coli in any treatment, and it was possible to use less of some fertilizers in the TRA treatment compared to TA.

  14. Contaminated Groundwater N flux to Surface Waters from Biosolid Waste Application Fields at a Waste Water Treatment Facility

    Science.gov (United States)

    Showers, W. J.; Fountain, M.; Fountain, J. C.

    2006-05-01

    Biosolids have been land applied at the Neuse River Waste Water Treatment Plant (NRWWTP) since 1980. The long biosolid application history at this site has resulted in a build up of nitrate in the ground water beneath the Waste Application Fields (WAFs). We have used an innovative river monitoring system that measures in situ nitrate concentrations and discharge above and below the plant to determine the amount of nitrate gained in the reach from the WAFs. The nitrogen and oxygen isotopic composition of nitrate in the WAF groundwater indicates that 18% of the monitoring wells are impacted by fertilizer N, 57% of the wells are impacted by biosolid N, 22% of the wells are affected by denitrification, and one well is impacted by A.D.N. The net daily contribution of surface / ground water and nitrate to the reach was calculated from the sum of the flux into the reach at the upper RiverNet station plus the plant discharge minus the flux out of the reach at the lower RiverNet station. The difference between the flux into the reach and plant discharge minus the flux out of the reach is termed the non-point source gain (NPS gain). The NPS gain could come from groundwater and/or surface drainage additions to the reach. On an annual basis, daily integrated NPS nitrate gains were ~70,000 kg in year 2004 and ~27,900 kg in 2005. This represents an average over the two year period of ~12% of the total nitrate flux out of the reach and 43% of the nitrate discharged from the plant. During the past year groundwater wells were installed in the river riparian buffer and N Flux was measured in a surface water drainage in the WAF. The results indicate that N is not migrating through the shallow groundwater, and most of the NPS gains in the reach can come from surface drainages which have nitrate concentrations of 30-80 mg/l. Over the next year wetlands will be reconstructed in the surface drainages to attenuate the N flux and protect river water quality.

  15. Summary of Selected U.S. Geological Survey Data on Domestic Well Water Quality for the Centers for Disease Control's National Environmental Public Health Tracking Program

    Science.gov (United States)

    Bartholomay, Roy C.; Carter, Janet M.; Qi, Sharon L.; Squillace, Paul J.; Rowe, Gary L.

    2007-01-01

    About 10 to 30 percent of the population in most States uses domestic (private) water supply. In many States, the total number of people served by domestic supplies can be in the millions. The water quality of domestic supplies is inconsistently regulated and generally not well characterized. The U.S. Geological Survey (USGS) has two water-quality data sets in the National Water Information System (NWIS) database that can be used to help define the water quality of domestic-water supplies: (1) data from the National Water-Quality Assessment (NAWQA) Program, and (2) USGS State data. Data from domestic wells from the NAWQA Program were collected to meet one of the Program's objectives, which was to define the water quality of major aquifers in the United States. These domestic wells were located primarily in rural areas. Water-quality conditions in these major aquifers as defined by the NAWQA data can be compared because of the consistency of the NAWQA sampling design, sampling protocols, and water-quality analyses. The NWIS database is a repository of USGS water data collected for a variety of projects; consequently, project objectives and analytical methods vary. This variability can bias statistical summaries of contaminant occurrence and concentrations; nevertheless, these data can be used to define the geographic distribution of contaminants. Maps created using NAWQA and USGS State data in NWIS can show geographic areas where contaminant concentrations may be of potential human-health concern by showing concentrations relative to human-health water-quality benchmarks. On the basis of national summaries of detection frequencies and concentrations relative to U.S. Environmental Protection Agency (USEPA) human-health benchmarks for trace elements, pesticides, and volatile organic compounds, 28 water-quality constituents were identified as contaminants of potential human-health concern. From this list, 11 contaminants were selected for summarization of water-quality data in 16 States (grantee States) that were funded by the Environmental Public Health Tracking (EPHT) Program of the Centers for Disease Control and Prevention (CDC). Only data from domestic-water supplies were used in this summary because samples from these wells are most relevant to human exposure for the targeted population. Using NAWQA data, the concentrations of the 11 contaminants were compared to USEPA human-health benchmarks. Using NAWQA and USGS State data in NWIS, the geographic distribution of the contaminants were mapped for the 16 grantee States. Radon, arsenic, manganese, nitrate, strontium, and uranium had the largest percentages of samples with concentrations greater than their human-health benchmarks. In contrast, organic compounds (pesticides and volatile organic compounds) had the lowest percentages of samples with concentrations greater than human-health benchmarks. Results of data retrievals and spatial analysis were compiled for each of the 16 States and are presented in State summaries for each State. Example summary tables, graphs, and maps based on USGS data for New Jersey are presented to illustrate how USGS water-quality and associated ancillary geospatial data can be used by the CDC to address goals and objectives of the EPHT Program.

  16. Renewable energy in Switzerland - Potential of waste-water treatment plants, waste-incineration plants and drinking water supply systems - Strategical decisions in politics

    International Nuclear Information System (INIS)

    This article discusses how waste-water treatment plants, waste-incineration plants and drinking water supply systems make an important contribution to the production of renewable energy in Switzerland. Financing by the 'Climate-Cent' programme, which finances projects involving the use of renewable energy, is discussed. Figures are quoted on the electrical energy produced in waste-water treatment plants, waste-incineration plants and combined heat and power generation plant. Eco-balances of the various systems are discussed. Political efforts being made in Switzerland, including the 'Climate Cent', are looked at and promotion provided by new energy legislation is discussed. Eco-power and the processing of sewage gas to meet natural gas quality standards are discussed, as are energy analysis, co-operation between various research institutions and external costs

  17. Production and distribution of domestic hot water in selected Danish apartment buildings and institutions. Analysis of consumption, energy efficiency and the significance for energy design requirements of buildings

    International Nuclear Information System (INIS)

    Highlights: ? Circulation system heat losses were 23–70% in apartment buildings. ? The use of additional heat meters in large buildings is recommended. ? The demand for domestic hot water, space heating and ventilation should be obtained. ? Domestic hot water will constitute a major part of future energy demand of dwellings. - Abstract: The goal of this work has been to document the efficiency of domestic hot water (DHW) distribution systems and to propose more energy efficient and environmentally friendly solutions for DHW systems based on analyses of existing conditions. In the article, measurements from 13 apartment buildings and two institutions are presented, i.e. consumption of DHW, heat loss from circulation lines and efficiency of the DHW system. The heat load and the cooling of the district heating water for DHW are documented as well. Possibilities for improving the DHW system include new types of circulation pipes, which have the potential of a 40% reduction of heat losses. In addition to the reduction of heat losses inside the building, a low return temperature from the hot water system will have a large impact on the heat losses from the district heating network when the building is being heated by district heating. It is likely that the production and distribution of DHW in buildings will constitute a dominant share of both the present, and in particular, the future energy design requirements of buildings. The results of this project could influence not only future buildings, but also existing buildings when renovation of installations take place

  18. Processing method for cleaning waste water discharged from nuclear power plant

    International Nuclear Information System (INIS)

    A flow rate of cleaning waste water of a ultrafiltration membranes is controlled by controlling an inlet pressure of the ultrafiltration membranes and a pressure on the side of permeation water of the membranes. In addition, the pressure of the cleaning waste water at the inlet of the ultrafiltration membranes is detected and, when the pressure is elevated, the direction of the flow of the cleaning waste water caused to flow into the ultrafiltration membranes is reversed. Then, clogging of the ultrafiltration membranes is scarcely caused, so that the replacement of the membranes is not necessary for a long period of time thereby enabling to reduce the running cost. (T.M.)

  19. Sensitivity analysis of the waste composition and water content parameters on the biogas production models on solid waste landfills

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco; Rodrigo-Clavero, Maria-Elena

    2014-05-01

    Landfills are commonly used as the final deposit of urban solid waste. Despite the waste is previously processed on a treatment plant, the final amount of organic matter which reaches the landfill is large however. The biodegradation of this organic matter forms a mixture of greenhouse gases (essentially Methane and Carbon-Dioxide as well as Ammonia and Hydrogen Sulfide). From the environmental point of view, solid waste landfills are therefore considered to be one of the main greenhouse gas sources. Different mathematical models are usually applied to predict the amount of biogas produced on real landfills. The waste chemical composition and the availability of water in the solid waste appear to be the main parameters of these models. Results obtained when performing a sensitivity analysis over the biogas production model parameters under real conditions are shown. The importance of a proper characterizacion of the waste as well as the necessity of improving the understanding of the behaviour and development of the water on the unsaturated mass of waste are emphasized.

  20. Microbiological and Chemical Aspects on Some Fresh Water and Industrial Waste Water Samples

    Directory of Open Access Journals (Sweden)

    El-Fadaly H

    1999-01-01

    Full Text Available Both microbiological and chemical analysis of water and industrial wastewater samples collected from Dakahlia governorate (Egypt were carried out. The microbiological examination involved the measurement of microbial total count, specific bacterial groups, pathogenic bacteria yeast, and fungi. The isolation and purification of different bacterial groups were also performed from different samples of industrial wastes. Trial to reuse the industrial effluents was also made. The chemical analysis included the measurement of conductivity, alkalinity, hardness, sulphate, PH, total dissolved solids, chloride, as well as dissolved oxygen. Results of the microbiological examination exhibited presence of yeast, fungi and bacteria. Short rods were the most bacterial isolates followed by spore formers and coccoid-shaped bacteria which came last in their count. Data also showed that neither water samples nor industrial wastes contain pathogenic bacteria when using specific cultivation media. Results of the chemical analysis showed that all measured parameters were found within the limitation either national or that of international law. Some samples exhibited higher values than that of permissible limits for some measured parameters. Furthermore, data proved the possibility of using the tested industrial wastes in production of both biomass and microbial enzymes as well. The bacterial treatment of industrial wastewater leads also to heavy metal reduction up to more than 50 per cent in some cases.