Buck–Boost DC-DC converter with fractional control
Martínez García, Herminio; Grau Saldes, Antoni; Bolea Monte, Yolanda; Martínez González, Rubén
2011-01-01
This paper deals with the fractional modeling of a DC-DC buck-boost converter, suitable in solar-powered electrical generation systems, and the design of a fractional controller for the aforementioned switching converter. Although the modeling and design of the controller is carried out for this particular DC-DC converter, it can be easily extended to other kind of switching converter. In addition, the comparison between integer-order plant/controller and fractional-order plants/controller is...
Voltage Tracking of a DC-DC Buck-Boost Converter Using Neural Network Control
W.M.Utomo,; Z.A. Haron, A. A. Bakar, M. Z. Ahmad, Y.M.Y Buswig and S.F. Mansour
2011-01-01
This paper proposes a neural network control scheme of a DC-DC Buck-Boost converter to produce variable DC voltage source that will be applied on DC motor drives. In this technique, a back propagation learning algorithm is derived. The controller is designed to track the output voltage of the DC-DC converter and to improve performance of the Buck-Boost converter during transient operations. Furthermore, to investigate the effectiveness of the proposed controller, some operations such as start...
Charger for NiMH batteries based on buck DC/DC converter
Lap?evi? Vladimir
2014-01-01
In this paper is presented charger for NiMH battery types AA. Charger is realized by Buck DC/DC converter and microcontroller. Microcontroller controls the work of Buck DC/DC converter by pulse width modulation and by measuring the current of battery charging. The current of charging is held constant by power electronics, and the time of charging is set by the user dependent of capacity of the battery. Standard battery chargers enable the recharge of NiMH b...
A novel bidirectional multilevel boost-buck dc-dc converter
Busquets Monge, Sergio; Alepuz Menéndez, Salvador; Bordonau Farrerons, José
2009-01-01
A novel noninverting boost-buck dc-dc converter topology is presented, applicable when both sides of the converter need to have the same grounding. It is based on the back-to-back connection of two n-level diode-clamped converter legs, and allows bidirectional power flow. A simplified topology is proposed for unidirectional power flow applications. Two new pulse width modulation strategies with different advantages are proposed to operate the converter guaranteeing dc-lin...
Design and Modeling of an Integrated Inductor in a Buck Converter DC-DC
Directory of Open Access Journals (Sweden)
Y. Benhadda
2015-06-01
Full Text Available This paper presents the design and modeling of a square inductor for its integration in Buck converter DC-DC. The first, we calculate the value of inductance. The second, we descript our inductor; dimensioning and electrical model. A buck micro converter schematic simulation coupled with ideal and integrated inductor was presented. This conceptual model of the buck is best understood in terms of the relation between current and voltage of the inductor. Finely, we have simulated the electromagnetic effects in two cases. The first case, an inductor in the air, the second case with substrate. Our geometry is created en 3D space dimension.
Modeling and Analysis of Transformerless High Gain Buck-boost DC-DC Converters
Directory of Open Access Journals (Sweden)
Vu Tran
2014-12-01
Full Text Available This paper proposes a transfomerless switched capacitor buck boost converter model, which provides higher voltage gain and higher efficiency when compared to the conventional buck boost converter. The averaged model based on state-space description is analyzed in the paper. The simulation results are presented to confirm the capability of the converter to generate high voltage ratios. The comparison between the proposed model and the traditional model is also provided to reveal the improvement. The proposed converter is suitable for for a wide application which requires high step-up DC-DC converters such as DC micro-grids and solar electrical energy.
A New Zero Voltage Switching Buck-Boost Type DC-DC Converter
Majid Delshad
2010-01-01
In this paper, a new zero voltage switching isolated buck-boost DC-DC converter with active clamp circuit is proposed. The active clamp circuit in this converter not only absorbs voltage spikes across the main switch but also provides soft switching conditions for all switches. All switches are PWM controlled which simplifies the control implementation. One of the main advantages of this converter is the that it operating can operate at high power levels while soft switching conditions exist ...
Charger for NiMH batteries based on buck DC/DC converter
Directory of Open Access Journals (Sweden)
Lap?evi? Vladimir
2014-01-01
Full Text Available In this paper is presented charger for NiMH battery types AA. Charger is realized by Buck DC/DC converter and microcontroller. Microcontroller controls the work of Buck DC/DC converter by pulse width modulation and by measuring the current of battery charging. The current of charging is held constant by power electronics, and the time of charging is set by the user dependent of capacity of the battery. Standard battery chargers enable the recharge of NiMH battery for few hundred times, because termination of charging is done when voltage drop on the battery is detected. The aim of this paper is to create charger which enables that NiMH battery is charged 1000 times.
Design of a PEM Fuel Cell Simulator Based on DC-DC Buck Converter
Georgi Georgievski; Goce L. Arsov
2010-01-01
Modeling of fuel cells is getting more and more important as power fuel cell stacks being available and have to be integrated into real power systems. This paper presents a novel circuit simulator for a PEM fuel cell that can be used to design fuel cell based systems. The simulator is consisted of a DC-DC buck converter driven by PIC 16F877 microcontroller. The proposed circuit can be used in design and analysis of fuel cell power systems.
Controller Design of buck dc/dc converter using neural networks
International Nuclear Information System (INIS)
Nowadays, dc-dc topologies are widely utilized in many industrial applications due to their high efficiency, fast switching actions, low volume and weight and low cost. DC-DC converter is a big family of converters and consist more than thousand of topologies. Buck converter is one of the types of such family and only operates in the step-down mode. Such converter is highly under damped system and contains nonlinearities which lead to oscillations during operation. During last few decades various new control techniques have been investigated and analyzed in order to overcome the developed oscillation in output of this converter. Recently, NNCs (Neural Network Controllers) are gaining popularity in modeling, identification and control of power electronic converters. These controllers are advanced controllers and have fast dynamic behaviour and robustness. The NNCs are nonlinear controllers which enhance the system performance, increase system speed and reduce the system complexity. In this research work, NNCs are designed for Buck topology to minimize uncertainties. The operation of Buck topology with designed NNCs is analyzed during line and load variations and results are compared with results of PI (Proportional and Integral) controller.
Integrated Circuit of CMOS DC-DC Buck Converter with Differential Active Inductor
Kaoutar Elbakkar; Khadija Slaoui
2011-01-01
In this paper, we propose a new design of DC-DC buck converter (BC), which the spiral inductor is replaced by a differential gyrator with capacitor load (gyrator-C) implemented in 0.18um CMOS process. The gyrator-C transforms the capacitor load (which is the parasitic capacitor of MOSFETS) to differential active inductor DAI. The low-Q value of DAI at switching frequency of converter (few hundred kHz) is boosted by adding a negative impedance converter (NIC). The transistor parameters of DAI ...
Directory of Open Access Journals (Sweden)
Dhananjay Choudhary
2014-08-01
Full Text Available The two basic topologies of switch mode DC-DC converters (Buck and Boost are analyzed with a view of their use in PV (photovoltaic systems, as the photovoltaic generator exhibits non-linear characteristics due to the change in environmental condition and load variation. As the efficiency of PV panels is low it becomes mandatory to extract maximum power from the PV panel at a given period of time. Several MPPT algorithms with different types of converters are being proposed for extracting maximum power from the PV panel. It is found that the nature of load plays an important role in the choice of topology. This paper investigates the implementation issues of Incremental Conductance method with Buck and Boost Converters. Mathematical analysis and desirable steady-state operating point of the converters are derived to give satisfactory maximum power point tracking operation.
DEFF Research Database (Denmark)
Pelan, Ovidiu; Cornea, Octavian
2014-01-01
This paper presents and discusses design considerations and efficiency investigation of a conventional step-down and a hybrid switched-capacitor DC-DC converter. Three MOSFETs with low on-resistance have been tested for each converter in order to find the most adequate switch for this application. The experimental results and comparative efficiency graphs were obtained with a 1kW laboratory prototype dedicated for a 42/14V dual voltage automotive system.
Existence of horseshoe maps in current-mode controlled buck-boost dc/dc converters
International Nuclear Information System (INIS)
In this paper, a buck-boost dc/dc converter under a typical current-mode control is studied. The existence of chaos is proven theoretically in this system. The proof consists of showing that the dynamics of the system is semiconjugate to that of the one-sided shift map, which implies positive entropy of the system and hence chaotic behavior. The essential tool is the horseshoe hypotheses proposed by Kennedy and Yorke, which will be reviewed prior to the discussion of the main finding. Moreover, the existence of chaos is also illustrated in the light of homoclinic intersections of stable and unstable manifolds
Reliability-Oriented Design of LC Filter in Buck DC-DC Converter
DEFF Research Database (Denmark)
Liu, Yi; Huang, Meng
2015-01-01
State-of-the-art LC filter design of buck DC-DC converter is based on the specifications of voltage and current ripples and constrains in power density and cost. Since lifetime is an important performance factor in reliability critical applications, this digest proposes a method to optimize the design of the LC filters from a reliability perspective, among other considerations. It investigates the design freedom between the values of inductor and capacitors, the physical formation of the LC network, and the corresponding electro-thermal stresses of the selected capacitors. The outcome enables an optimized LC filter design to fulfill the required lifetime. The theoretical analysis and simulation study are presented which are verified by the experimental results from a buck converter prototype.
DEFF Research Database (Denmark)
Yang, Xi-jun; Qu, Hao; Yao, Chen; Zhang, Ning-yun; Tang, Hou-jun; Chen, Quan; Blaabjerg, Frede
2014-01-01
As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply is selected as research subject, dedicated for the use of plasma cutting machine of 2×45kW, and the passivity-based control over the converter is analyzed theoretically at first, then simulated by means of...
Mari, Federico; Salvo, Ivano; Tronci, Enrico
2011-01-01
Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of SBCS control software. In previous works we presented an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System, DTLHS) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. In this technical report we present full experimental results on using it to synthesize control software for two versions of buck DC-DC converters (single-input and ...
Abdessamad, Benlafkih; Salah-ddine, Krit; Mohamed, Chafik Elidrissi
2013-01-01
This paper presents comparative performance between Analog and digital controller on DC/DC buck-boost converter four switch. The design of power electronic converter circuit with the use of closed loop scheme needs modeling and then simulating the converter using the modeled equations. This can easily be done with the help of state equations and MATLAB/SIMULINK as a tool for simulation of those state equations. DC/DC Buckboost converter in this study is operated in buck (ste...
Adaptive terminal sliding-mode control strategy for DC-DC buck converters.
Komurcugil, Hasan
2012-11-01
This paper presents an adaptive terminal sliding mode control (ATSMC) strategy for DC-DC buck converters. The idea behind this strategy is to use the terminal sliding mode control (TSMC) approach to assure finite time convergence of the output voltage error to the equilibrium point and integrate an adaptive law to the TSMC strategy so as to achieve a dynamic sliding line during the load variations. In addition, the influence of the controller parameters on the performance of closed-loop system is investigated. It is observed that the start up response of the output voltage becomes faster with increasing value of the fractional power used in the sliding function. On the other hand, the transient response of the output voltage, caused by the step change in the load, becomes faster with decreasing the value of the fractional power. Therefore, the value of fractional power is to be chosen to make a compromise between start up and transient responses of the converter. Performance of the proposed ATSMC strategy has been tested through computer simulations and experiments. The simulation results of the proposed ATSMC strategy are compared with the conventional SMC and TSMC strategies. It is shown that the ATSMC exhibits a considerable improvement in terms of a faster output voltage response during load changes. PMID:22877744
Quasi-Periodicity, Chaos and Coexistence in the Time Delay Controlled Two-Cell DC-DC Buck Converter
Koubaâ, Karama; Feki, Moez
In addition to border collision bifurcation, the time delay controlled two-cell DC/DC buck converter is shown to exhibit a chaotic behavior as well. The time delay controller adds new design parameters to the system and therefore the variation of a parameter may lead to different types of bifurcation. In this work, we present a thorough analysis of different scenarios leading to bifurcation and chaos. We show that the time delay controlled two-cell DC/DC buck converter may also exhibit a Neimark-Sacker bifurcation which for some parameter set may lead to a 2D torus that may then break yielding a chaotic behavior. Besides, the saturation of the controller can also lead to the coexistence of a stable focus and a chaotic attractor. The results are presented using numerical simulation of a discrete map of the two-cell DC/DC buck converter obtained by expressing successive crossings of Poincaré section in terms of each other.
Benlafkih Abdessamad; Krit Salah-Ddine; Chafik Elidrissi Mohamed
2013-01-01
this paper presents comparative performance between Analog and digital controller on DC/DC buck-boost converter four switch. The design of power electronic converter circuit with the use of closed loop scheme needs modeling and then simulating the converter using the modeled equations. This can easily be done with the help of state equations and MATLAB/SIMULINK as a tool for simulation of those state equations. DC/DC Buckboost converter in this study is operated in buck (step-down) and boost ...
Adaptive switching frequency buck DC—DC converter with high-accuracy on-chip current sensor
Jinguang, Jiang; Fei, Huang; Zhihui, Xiong
2015-05-01
A current-mode PWM buck DC—DC converter is proposed. With the high-accuracy on-chip current sensor, the switching frequency can be selected automatically according to load requirements. This method improves efficiency and obtains an excellent transient response. The high accuracy of the current sensor is achieved by a simple switch technique without an amplifier. This has the direct benefit of reducing power dissipation and die size. Additionally, a novel soft-start circuit is presented to avoid the inrush current at the starting up state. Finally, this DC—DC converter is fabricated with the 0.5 ?m standard CMOS process. The chip occupies 3.38 mm2. The accuracy of the proposed current sensor can achieve 99.5% @ 200 mA. Experimental results show that the peak efficiency is 91.8%. The input voltage ranges from 5 to 18 V, while a 2 A load current can be obtained. Project supported by the National Natural Science Foundation of China (No. 41274047), the Natural Science Foundation of Jiangsu Province (No. BK2012639), the Science and Technology Enterprises in Jiangsu Province Technology Innovation Fund (No. BC2012121), and the Changzhou Science and Technology Support (Industrial) Project (No. CE20120074).
International Nuclear Information System (INIS)
This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 ?m CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency. (semiconductor integrated circuits)
Scientific Electronic Library Online (English)
FABIOLA, ANGULO GARCIA; GERARD, OLIVAR TOST; GUSTAVO ADOLFO, OSORIO LONDOÑO.
2011-04-01
Full Text Available En la última década se ha reportado la estrategia de control Zero Average Dynamics (ZAD) como una alternativa al control de los convertidores de potencia, garantizando frecuencia fija de conmutación y bajo error. Sin embargo la estabilidad del sistema depende fuertemente de la carga, por lo cual no [...] es robusto. Cuando se pierde la estabilidad la frecuencia fija de conmutación se pierde también. En este artículo se presenta la generalización de la técnica ZAD dentro del marco de la teoría de probabilidades. Usando este marco es posible recuperar el ZAD tal como ha sido analizado hasta ahora y se pueden generar nuevas estrategias de control, las cuales son más estables que las usadas en el ZAD. Por este motivo a esta técnica se le ha llamado Generalized Zero Average Dynamics (GZAD). Presentamos algunas simulaciones del GZAD aplicado a un convertidor de potencia reductor. Esta nueva estrategia no puede ser obtenida con el ZAD clásico. Las simulaciones numéricas muestran buen desempeño del controlador con bajo error de regulación y robustez ante cambio en la carga. Abstract in english The Zero Average Dynamics (ZAD) strategy has been reported in the last decade as an alternative for controlling power converters. This technique has the advantage of guaranteeing fixed frequency switching. However, the stability of the controller is highly dependent on the load value, and when the s [...] tability is lost, the fixed frequency switching is lost too. In this paper we generalize ZAD strategy using the probabilities framework through the expectation operator. Thus, we recover classical sliding mode control classical ZAD strategy, and new control methods can be defined, which are more stable than the others previously used. For this reason, this technique is entitled Generalized Zero Average Dynamics (GZAD). We will show several simulations regarding an application to a DC-DC Buck converter within the generalized ZAD strategy, which cannot be deduced from the classical ZAD. Numerical simulations show good regulation features and a wide range of stability.
Directory of Open Access Journals (Sweden)
H. N. Nagaraj
2012-05-01
Full Text Available Switching frequency acts as a major role, while applying sliding mode control to dc-dc buck converter, switching frequency is affected by line and load variations. To reduce switching frequency deviation to line and load variations, an adaptive feed forward control is used, that varies hysteresis band according to the change of input voltage. Several methods of varying hysteresis band of the hysteresis modulator are possible. In this work adjusting the power supply is to be considered. An adaptive feedback control scheme that varies the control parameters (i.e. sliding coefficient according to the change of output load is proposed. This paper presents a complete investigation into the problem and gives the effectiveness of the desired solutions. In this method implementing the proposed adaptive control strategies are discussed, simulation results gives that the adaptive control methods are capable of reducing the switching frequency variations, simulation have been done in MATLAB /Simulink to verify the results.
Radiation effects on DC-DC Converters
Zhang, Dexin; Attia, John O.; Kankam, Mark D. (Technical Monitor)
2000-01-01
DC-DC switching converters are circuits that can be used to convert a DC voltage of one value to another by switching action. They are increasing being used in space systems. Most of the popular DC-DC switching converters utilize power MOSFETs. However power MOSFETs, when subjected to radiation, are susceptible to degradation of device characteristics or catastrophic failure. This work focuses on the effects of total ionizing dose on converter performance. Four fundamental switching converters (buck converter, buck-boost converter, cuk converter, and flyback converter) were built using Harris IRF250 power MOSFETs. These converters were designed for converting an input of 60 volts to an output of about 12 volts with a switching frequency of 100 kHz. The four converters were irradiated with a Co-60 gamma source at dose rate of 217 rad/min. The performances of the four converters were examined during the exposure to the radiation. The experimental results show that the output voltage of the converters increases as total dose increases. However, the increases of the output voltage were different for the four different converters, with the buck converter and cuk converter the highest and the flyback converter the lowest. We observed significant increases in output voltage for cuk converter at a total dose of 24 krad (si).
Scientific Electronic Library Online (English)
Marcela, González Valencia; Alfonso, Alzate Gómez.
2010-06-01
Full Text Available Se presenta el diseño estático de un convertidor reductor-elevador bidireccional con tres conmutadores y conexión en cascada. La principal aplicación del convertidor es la administración de baterías en sistemas de alimentación ininterrumpida, controlando el flujo de energía y regulando la tensión de [...] alimentación DC durante los diferentes modos de operación de la batería como fuente y sumidero. Abstract in english This paper shows a buck-boost converter static design with 3 switches and cascade connection. The main application of the converter is the battery management on uninterruptible power supplies, controlling energy flow and regulating the DC supply voltage for the different battery operation modes as s [...] ource and sink.
International Nuclear Information System (INIS)
A synchronous buck DC—DC converter with an adaptive multi-mode controller is proposed. In order to achieve high efficiency over its entire load range, pulse-width modulation (PWM), pulse-skip modulation (PSM) and pulse-frequency modulation (PFM) modes were integrated in the proposed DC—DC converter. With a highly accurate current sensor and a dynamic mode controller on chip, the converter can dynamically change among PWM, PSM and PFM control according to the load requirements. In addition, to avoid power device damage caused by inrush current at the start up state, a soft-start circuit is presented to suppress the inrush current. Furthermore, an adaptive slope compensation (SC) technique is proposed to stabilize the current programmed PWM controller for duty cycle passes over 50%, and improve the degraded load capability due to traditional slope compensation. The buck converter chip was simulated and manufactured under a 0.35 ?m standard CMOS process. Experimental results show that the chip can achieve 79% to 91% efficiency over the load range of 0.1 to 1000 mA (semiconductor integrated circuits)
An Efficient DC- DC Converter with Bidirectional Power Flow
N.RAJARAJESWARI; K.THANUSHKODI
2008-01-01
This paper introduces a Bi-directional DC-DC converter with adaptive fuzzy logic controller. Bidirectional power flow is obtained by same power components and provides a simple, efficient, and galvanically isolated converter. In the presence of DC mains the converter operates as buck converter and charges the battery. When the DC mains fails, the converter operates as boost converter and the down stream converter is fed by the battery. The power switches are controlled by Pulse Width Modulati...
Pulse-width modulated DC-DC power converters
Kazimierczuk, Marian K
2015-01-01
PWM DC-DC power converter technology underpins many energy conversion systems including renewable energy circuits, active power factor correctors, battery chargers, portable devices and LED drivers. Following the success of Pulse-Width Modulated DC-DC Power Converters this second edition has been thoroughly revised and expanded to cover the latest challenges and advances in the field. Key features of 2nd edition: Four new chapters, detailing the latest advances in power conversion, focus on: small-signal model and dynamic characteristics of the buck converter in continuous conduction
Hybrid battery with bi-directional DC/DC converter
Directory of Open Access Journals (Sweden)
DUDRIK Jaroslav
2010-05-01
Full Text Available Bi-directional buck-boost DC/DC converterfor hybrid battery is described in this paper. The firstpart of the paper is aimed at concept of hybrid battery;main advance compared to conventional accumulatoris explained there. Control circuit with UC3637 andpower circuit of the converter are described in thesecond part of the paper. Experimental results frommeasuring of converter are mentioned in the last part.
An Integrated High Efficiency DC-DC Converter in 65 nm CMOS
Manh, Vir Varinder
2010-01-01
This thesis work describes the implementation perspective of an integrated high efficiency DC-DC converter implemented in 65 nm CMOS. The implemented system employs the Buck converter topology to down-convert the input battery voltages. This converter offers its use as a power management unit in portable battery operated devices. This thesis work includes the description of a basic Buck converter along with the various key equations involved which describe the Buck operation as well as are us...
Full range ZVS DC-DC converter
International Nuclear Information System (INIS)
A 500 V, 24 Amp DC-DC converter with digital signal processor (DSP) based control and protection has been designed, fabricated and tested. Its power circuit consists of IGBT based single phase inverter bridge, ferrite transformer and diode rectifier. All IGBTs in the inverter bridge are operated in zero voltage switching (ZVS) mode to minimize switching losses thereby increasing the efficiency of the converter significantly. The efficiency of this converter is measured to be greater than 97% at full load. In a conventional full bridge inverter, typically ZVS is achieved under full load condition while at light load ZVS is lost. An auxiliary LC circuit has been intentionally incorporated in this converter to achieve ZVS even at light loaded conditions. Detailed simulation of the converter circuit is carried out and crucial waveforms have been presented in this paper. Microchip make dsPIC30F2020 DSP is employed to provide phase shifted PWMs to IGBTs in the inverter bridge. All the crucial parameters are also monitored by this DSP and in case of any unfavorable conditions, the converter is tripped off. Suitable experiments were carried out in this DC-DC converter under different loaded conditions and a close match between the simulated and experimental results were obtained. Such DC-DC converters can be connected in series or parallel for the development of solid state modular power supplies for various applications. (author)
Energy saving dc-dc converter circuit
International Nuclear Information System (INIS)
An energy saving dc-dc converter circuit is disclosed having two energy efficient means which operate in tandem, an energy conserving means and a voltage doubling means. These energy efficient means are applied in combination with elements commonly found in dc-dc converter circuits, namely an ac voltage generator, a transformer for stepping up the generated ac voltage, and means for storing the converted dc voltage. The energy conserving means is connected to the dc voltage storage means. It comprises a resettable inhibit circuit which cuts off the provision of dc voltage for conversion for a predetermined interval when the output of the converter exceeds a predetermined level. The voltage doubling means is reponsive to outputs of the inhibit circuit of the energy conserving means and the ac voltage generator. It provides a phase inverted waveform of the generated ac voltage on one of two leads to the ac voltage step-up transformer
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-01-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Hysteretic Current Controlled Zvs Dc/Dc Converter For Automobile
DEFF Research Database (Denmark)
Cernat, M.; Scortarul, P.
2007-01-01
A novel bi-directional dc-dc converter with ZVS and interleaving for dual voltage systems in automobiles is presented. A variable frequency extended band hysteretic current control method is proposed. In comparison with classical fixed frequency current control PWM, the reverse polarity peak current needed for ZVS operation is kept constant and no in excess circulating current losses at light load conditions are encountered. Inductor current ripple decreases with load reduction. Automatic changes in operation between buck and boost modes are accomplished without transient currents. Power circuit elements design is given. The four-stage interleaving is digitally controlled.
Efficient, lightweight dc/dc switching converter
Cuk, S.; Middlebrook, R. D.
1981-01-01
Converters have input properties of boost power stage and output properties of buck power stage, yet they perform general conversion function with high efficiency. Other features include non-pulsating input/output currents, use of capacitive energy transfer, low output voltage ripple, reduced EMI, and small size.
Regulation of a lightweight high efficiency capacitator diode voltage multiplier dc-dc converter
Harrigill, W. T., Jr.; Myers, I. T.
1976-01-01
A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.
Regulation of a lightweight high efficiency capacitor diode voltage multiplier dc-dc converter
Harrigill, W. T., Jr.; Myers, I. T.
1976-01-01
A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.
Sliding Mode Control of Dc-Dc Boost Converter
Hanifi Guldemir
2005-01-01
Control of Dc-Dc boost converter is a complex task due to the nonlinearity inherent in the converter and introduced by the external changes. A robust sliding mode controller for the control of Dc-Dc boost converter were described in this study. Dynamic equations describing the boost converter are derived and sliding mode controller is designed. The robustness of the sliding mode controlled boost converter system is tested for step load changes and input voltage variations. The computer-aided ...
Study on stability of the voltage-mode DC-DC converters
International Nuclear Information System (INIS)
Stroboscopic maps for voltage-mode converters in the continuous conduction mode (CCM) are build up. The stability of one-periodic point is analyzed together with eigenvalues of Jacobian matrix of discrete-maps. The voltage-mode buck converter is taken as an example, and the results of theoretical analysis and numerical simulation coincide with each other, which shows that the stability analysis of the DC-DC converters is feasible using the discrete-map model. (authors)
Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters
Directory of Open Access Journals (Sweden)
Achim Kienle
2009-03-01
Full Text Available The connection between PEM fuel cells and common DC-DC converters is examined. The analysis is model-based and done for boost, buck and buck-boost converters. In a first step, the effect of the converter ripples upon the PEM fuel cell is shown. They introduce oscillations in the fuel cell. Their appearance is explained, discussed and possibilities for their suppression are given. After that, the overall behaviors of the coupled fuel cell-converter systems are analyzed. It is shown, that neither stationary multiplicities nor oscillations can be introduced by the couplings and therefore separate control approaches for both the PEMFC and the DC-DC converters are applicable.
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
Directory of Open Access Journals (Sweden)
G. Shiny Vikram
2014-09-01
Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high step-up and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. In this paper a coupled inductor dc-dc converter for photovoltaic system is proposed. The circuit configuration of the proposed converter is very simple. Thus, the proposed converter has higher step-up and step-down voltage gains than the conventional bidirectional dc–dc boost/buck converter. Under same electric specifications for the proposed converter and the conventional bidirectional boost/buck converter, the average value of the switch current in the proposed converter is less than the conventional bidirectional boost/buck converter. The operating principles have been applied to multi input photovoltaic system and outputs have been observed.
Early Oscillation Detection for DC/DC Converter Fault Diagnosis
Wang, Bright L.
2011-01-01
The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.
A New ZVS Nonisolated Bidirectional DC-DC Converter with Minimal Auxiliary Element
Nasrin Asadi Madiseh; Majid Delshad
2013-01-01
In this paper, a new nonisolated bidirectional buck–boost dc–dc converter is introduced. The proposed converter can be operated under ZVS condition and fixed switching frequency regardless of the direction of power flow. To provide ZVS condition for switches a simple auxiliary circuit is used, that consists of an auxiliary inductor and a coupled winding to main inductor. Due to ZVS operation of switches, the reverse recovery problem of the body diode of the switches does not occur. Moreover, ...
Transformerless High Step-Up Dc-Dc Converter
Amit S. Surjagade; Akshay B. Bankar; Mrs. J. P. Rothe
2014-01-01
This paper proposes a transformer-less high step-up DC-DC converter which acts as an interconnection between DC systems. A new step up converter proposed in the paper is designed and simulated in a simulation environment. The conventional boost converter cannot have any control over the input current at a high duty cycle. Due to which, it draws considerable amount of current from the source which can create problems for the components used in DC-DC converter. Moreover, the voltage stress acro...
Directory of Open Access Journals (Sweden)
Eka Prasetyono
2015-09-01
Full Text Available Bidirectional DC-DC converter is needed in the energy storage system. The converter topology used in this paper was a non-isolated bidirectional DC-DC buck-boost converter. This converter worked in two ways, which the charging mode stored energy into battery when load current was less than nominal main DC current (set point and discharging mode transferred energy from battery to the load when its current exceeded set point value. Both of these modes worked automatically according to the load current. The charging and discharging currents were controlled by fuzzy logic controller which was implemented on microcontroller ARM Cortex-M4F STM32F407VG. This paper compares two types of fuzzy membership function (triangular and sigmoid in controlling bidirectional DC-DC converter. The results showed that fuzzy logic controller with triangle membership function and sigmoid as control bidirectional DC-DC converter had no significant different response, both had an average error for charging and discharging process under 4% with ripple current on the main DC bus around 0.5%. The computing time of program for fuzzy logic controller with triangular membership functions had 19.01% faster than sigmoid, and fuzzy logic computation time on a microcontroller with hardware floating point was 60% faster than software floating point.
Modified Multiport Dc-Dc Converter Topology For Smart Grid
Dhamodharan Shanmugam
2013-01-01
The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad active-bridge (QAB) converter which not only provides isolation for the load, but also for the PV and storage. The AC-DC stage is implemented with a pulse-widthmodulated (PWM) single phase rectifier. A unified gyrator-based average model is develope...
Design of DC-DC Converter for Flash Memory IPs
Li-yan Jin; Woo-Young Jung; Ji-Hye Jang; Min-Sung Kim; Myeong-Seok Kim; Heon Park; Pan-Bong Ha; Young-Hee Kim
2013-01-01
A DC-DC converter for flash memory IPs performing erasing by the FN (Fowler-Nordheim) tunneling and programming by the CHEI (channel hot electron injection) is designed in this paper. For the DC-DC converter for flash memory IPs using a dual voltage of VDD (=1.5V±0.15V)/VRD (=3.1V±0.1V), a scheme of using VRD (Read Voltage) instead of VDD is proposed to reduce the pumping stages and pumping capacitances of its charge pump circuit. VRD (=3.1V±0.1V) is a regulated voltage by a voltage regulator...
Development of DC/DC converter in VHF band.
Czech Academy of Sciences Publication Activity Database
Kvasni?ka, Ji?í; Polák, Ivo
Vienna : Vienna University of Technology, 2011. [TWEPP 2011 Topical Workshop on Electronics for Particle Physics. 26.09.2011-30.09.2011, Vienna] R&D Projects: GA MŠk(CZ) ME10026 Institutional research plan: CEZ:AV0Z10100502 Keywords : DC/DC converter * VHF range * BRAHMS project Subject RIV: BF - Elementary Particles and High Energy Physics
A New Soft-Switched Resonant DC-DC Converter
Pourabbasali, Rogayeh; Freghi, Samira; Pourabbasali, Reza; Pakdel, Majid
2011-01-01
This paper presents a new soft-switched resonant dc-dc converter using a passive snubber circuit. The proposed converter uses a new zero voltage and zero current switching (ZVZCS) strategies to get ZVZCS function. Besides operating at constant frequency, all semiconductor devices operate at soft-switching without additional voltage and current stresses. In order to validate the proposed converter, computer simulations and experimental results were conducted. The paper indicates the effective ...
Soft Commutated Three-Phase Dc-Dc Converter
Silpa.P.T; Rajeenamol P.T
2014-01-01
High efficient DC-DC Converters find its application in electric power generation, transmission, distribution and Uninterruptable power supplies (UPS). Three phase converter system as compared with single phase converter system increases power density with reduced switching stresses, efficient usage of the transformer magnetic core and smaller filter design as the frequency of the system is higher. Inorder to make use of the above mentioned advantages a ZVS-PWM three- phase current-fed push-p...
International Nuclear Information System (INIS)
The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck–boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D > 0.5 and that of the VCM controlled switching dc–dc converter to D < 0.5. Compared with PCM controlled switching dc–dc converters with ramp compensation, VCM controlled switching dc–dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper. (general)
Dynamic Evolution Control for Fuel Cell DC-DC Converter
Ahmad Saudi Samosir; Tole Sutikno; Abdul Halim Mohd Yatim
2011-01-01
Fuel cells are new alternative energy resource that has a great promise for distributed generation and electric vehicle application. However, fuel cells have a slow response due to their slow internal electromechanical and thermodynamic response. To optimize the fuel cell system performance, a fuel cell DC-DC converter with an appropriate controller which can regulate the power flow and automatically adjust the converter output voltage is needed. This paper proposes a new control technique fo...
A new LVI assisted PSFB DC-DC converter
BAKAN, Ahmet Faruk
2011-01-01
In this study, a new Phase Shifted Full Bridge (PSFB) Pulse Width Modulated (PWM) isolated dc-dc converter is proposed. In the proposed converter, resonant inductor is replaced with Linear Variable Inductor (LVI) that is controlled by output current. The soft switching operation range is increased and the dependency of ZVS operation on the load current is decreased. The required energy for ZVS operation at low current levels is obtained by means of the high value of the LVI. The val...
Design Of Vswt With Lcl Resonant Dc-dc Converters For Rl Load
Directory of Open Access Journals (Sweden)
M. Vijaya Kumar
2012-08-01
Full Text Available This paper deals with design of variable speed wind turbine (VSWT with LCL resonantDC-to-DC converter for stand-alone wind energy system with RL load. The wind turbinesystem consists of synchronous generator (SG, full bridge diode rectifier, buck DC- DCconverter and inverter with RL load is present. Based on this electrical model, a Simulinkmodel of the system are simulated by using MATLAB Simulink power system blocks. Thisconverter has advantages like reduced transformer size, reduced filter size and currentsource characteristics. The Simulink circuit model for closed loop system of full bridgeDC – DC converter VSWT is developed and the same is used for simulation studies.
Design and implementation of fully-integrated inductive DC-DC converters in standard CMOS
Wens, Mike
2011-01-01
CMOS DC-DC Converters aims to provide a comprehensive dissertation on the matter of monolithic inductive Direct-Current to Direct-Current (DC-DC) converters. For this purpose seven chapters are defined which will allow the designer to gain specific knowledge on the design and implementation of monolithic inductive DC-DC converters, starting from the very basics.
Implementation of FPGA based Digital Controller for Controlling Chaos in DC/DC converters
Directory of Open Access Journals (Sweden)
RANJAN Vanaja
2010-05-01
Full Text Available This paper analyzes the subharmonics andchaos generated in closed loop pulse width modulatedDC/DC buck converter and suggests the implementationof Digital controller based on time delayed selfcontrolling feedback concept for stabilizing the chaosgenerated in such converter. FPGA based digitalcontroller is designed and implemented for controllingthe chaotic oscillations of nonlinear switching converters.An experimental FPGA prototype and an applicationspecific IC that employ new controller architecture arebuilt around 11.3 V, 5.5 W, 2.5 KHz buck converter stageand successful operation of digital controller is verified.The experimental results prove the inherent capability ofthe proposed controller in maintaining the desired outputvoltage and keep the system chaos free by making thesystem insensitive to parameter variations.
High Efficiency Interleaved Bi-Directional ZVS DC-DC Converter
DEFF Research Database (Denmark)
Zafar Ullah Khan, M.; Mohsin Naveed, M.
2013-01-01
A High Efficiency Interleaved Bi-Directional ZVS DC-DC converter is presented in this paper. This converter can be operated in both buck and boost mode. CoolMOS is used as a power device to achieve low conduction losses and fast turn off. The value of inductance is selected such that the CoolMOS drain-to-source voltage always falls to zero before it turns on and ZVS is achieved. Multiphase interleaved inductors are used to achieve high power and low ripple currents. Converter is operated at 50kHz and MATLAB Simulink simulation is performed. 6kW prototype converter is implemented in buck mode and simulation results are verified.
High efficiency interleaved bi-directional ZVS DC-DC converter
Zafarullah Khan, M.; Mohsin Naveed, M.; Akbar Hussain, D. M.
2013-06-01
A high efficiency interleaved bi-directional ZVS DC-DC converter is presented in this paper. This converter can be operated in both buck and boost mode. CoolMOS is used as a power device to achieve low conduction losses and fast turn off. The value of inductance is selected such that the CoolMOS drain-to-source voltage always falls to zero before it turns on and ZVS is achieved. Multiphase interleaved inductors are used to achieve high power and low ripple currents. Converter is operated at 50kHz and MATLAB Simulink simulation is performed. 6kW prototype converter is implemented in buck mode and simulation results are verified.
Sliding Mode Control of Buck Converter
Nagulapati Kiran
2014-01-01
DC-DC converters are used to convert DC voltage from one level to other. These converters are drastically used in industry as well as in research. One of the main limitations of these converters is unregulated supply of voltage and current. To overcome these problems there are various control techniques. This paper presents two such methods. This paper compares dynamic performance of buck Converter using PID controller and Sliding mode controller. Simulation of PI and Sliding mode control of ...
Digital Control Technologies for Modular DC-DC Converters
Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon
2002-01-01
Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.
Multiple-output Class E Isolated dc-dc Converter
Pavlovic, Zoran; Oliver Ramírez, Jesús Angel; Alou Cervera, Pedro; García Suárez, Oscar; Prieto López, Roberto; Cobos Márquez, José Antonio
2010-01-01
This paper presents a multiple output class-E isolated dc-dc converter that regulates the output voltages at fixed switching frequency. The two output converter is simulated at operating frequency of 5 MHz. The converter output power is 40 W and the output voltages are 15 V and 5 V. All the switches operate at zero voltage switching (ZVS) conditions for the full load range. The circuit configuration is simple with small passive components which reduce the size of the converter. The circuit al...
Hysteretic Current Controlled Zvs Dc/Dc Converter For Automobile
DEFF Research Database (Denmark)
Cernat, M.; Scortarul, P.; Tanase, A.; Iov, Florin
2007-01-01
A novel bi-directional dc-dc converter with ZVS and interleaving for dual voltage systems in automobiles is presented. A variable frequency extended band hysteretic current control method is proposed. In comparison with classical fixed frequency current control PWM, the reverse polarity peak current needed for ZVS operation is kept constant and no in excess circulating current losses at light load conditions are encountered. Inductor current ripple decreases with load reduction. Automatic change...
Han Yang
2012-01-01
The power electronics course is a rather challenging subject for instructors and undergraduate students pursuing Bachelor’s Degree in Electrical Engineering. To enhance teaching effectiveness and motivate self-learning capabilities of the students, this paper presents a pedagogical approach for mathematical modeling and simulation of switching mode DC-DC converters. The Buck and Boost converters are analyzed as benchmark systems to study the power converter modeling methodologies. And a compa...
Modular Power System Configured with Standard Product Hybrid DC-DC Converters Project
National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex, multiple-output, DC-DC converter systems can be configured through use of only 2 standard product hybrid DC-DC...
Multiple Output ZVS DC/DC Converter Based on PWM
Directory of Open Access Journals (Sweden)
Olivia Ramya Chitranjan
2014-05-01
Full Text Available This project presents a soft-switching dc/dc converter with transformers connected in series to implement the features of ZVS, low voltage stress for MOSFETs. The converter has two half-bridge circuits connected in series to limit the voltage stress of MOSFETs at one-half of the input voltage. The output sides of four circuits are connected in series and parallel to primary circuit. The proposed multi output converter shows excellent performance in terms of its output regulation from no-load to full-load conditions and it also provides a multi output capability.
Scientific Electronic Library Online (English)
Carlos Andrés, Ramos-Paja; Roberto, Gira; Eliana Isabel, Arango Zuluaga.
2012-09-01
Full Text Available Se propone una estructura de desvío activo para maximizar la producción de potencia en sistemas fotovoltaicos bajo condiciones irregulares de operación, comparando su eficiencia con soluciones individuales y distribuidas basadas en convertidores DC/DC convencionales. Los análisis y simulaciones real [...] istas demuestran las ventajas del nuevo convertidor de desvío activo sobre soluciones basadas en convertidores Boost, Buck y Buck-Boost. Abstract in english An active bypass structure is proposed to maximize the power production in photovoltaic modules under mismatched conditions. Its efficiency is compared with single and distributed maximum power point tracking solutions based on conventional DC/DC structures. The analysis and simulations performed un [...] der realistic assumptions demonstrate the benefits of the novel active bypass converter over solutions based on Boost, Buck or Buck-Boost converters.
Modified Multiport Dc-Dc Converter Topology For Smart Grid
Directory of Open Access Journals (Sweden)
Dhamodharan Shanmugam
2013-10-01
Full Text Available The development of a Solid State Transformer (SST that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad active-bridge (QAB converter which not only provides isolation for the load, but also for the PV and storage. The AC-DC stage is implemented with a pulse-widthmodulated (PWM single phase rectifier. A unified gyrator-based average model is developed for a general multi-active-bridge (MAB converter controlled through phase-shift modulation (PSM. Expressions to determine the power rating of the MAB ports are also derived. The developed gyrator-based average model is applied to the QAB converter for faster simulations of the proposed SST during the control design process as well for deriving the state-space representation of the plant. Both linear quadratic regulator (LQR and singleinput-single-output (SISO types of controllers are designed for the DC-DC stage. A novel technique that complements the SISO controller by taking into account the cross coupling characteristics of the QAB converter is also presented herein. Cascaded SISO controllers are designed for the AC-DC stage. The QAB demanded power is calculated at the QAB controls and then fed into the rectifier controls in order to minimize the effect of the interaction between the two SST stages. The dynamic performance of the designed control loops based on the proposed control strategies are verified through extensive simulation of the SST average and switching models.
Single-Input Dual-Output (SIDO) Linear-Assisted DC/DC Converter
Martínez García, Herminio; Silva-Martínez, José; Conesa Roca, Alfons; Poveda López, Alberto
2008-01-01
This article describes a single-input dual output (SIDO) linear-assisted DC/DC converter. Linear-assisted DC/DC converters are structures that allow to take advantages of the two classic alternatives in the design of power supply systems: voltage linear regulators and switching DC/DC converters. Thanks to the combination of a switching converter and two voltage linear regulators, the proposed SIDO converter provides two independent outputs with suitable load and line regulations. In the prese...
Sharda Jaiswal; Debjyoti Chowdhury; Madhurima Chattopadhyay
2014-01-01
Abstract This paper presents a scheme for implementing two different DC/DC converters in the commutation circuitry of BLDC motor drive and corresponding output characteristic in both sensored and sensorless drive. Here we have considered Buck and Boost converters in order to provide a regulated supply to the commutation circuitry. The drive circuit is a closed loop system with a PI controller, Six-Switch Voltage Source Inverter (VSI) and one of the DC/DC converters among Buck and Boost. The p...
DEFF Research Database (Denmark)
Kovacevic, Milovan Technical University of Denmark,
The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input capacitor coupled between the positive and negative input terminals and the secondary side circuit comprises an output capacitor chargeable to a converter output voltage between a first positive electrode and a second negative electrode. A switched energy storage network is configured for alternatingly being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal of the primary side circuit thereby establishing in both the first and second cases a series coupling of the output capacitor and the input capacitor. A load connection is established, in the first case, between the first positive electrode of the output capacitor and the negative input terminal or, in the second case, between the second negative electrode of the output capacitor and the positive input terminal.
Performance Analysis of Various DC-DC Converters with Optimum Controllers for PV Applications
Directory of Open Access Journals (Sweden)
R. Sankarganesh
2014-08-01
Full Text Available Alternative vehicles to Internal Combustion Engines (ICE, for instance the electric vehicle is becoming popular. Electric Vehicles (EV are pollution free and cost effective because the fossil fuel cost increases day by day. These factors make people passion for electric vehicles. Electrical energy demand necessitates charging of electric vehicles using renewable energy. Among the different renewable energy resources, Photovoltaic (PV cells are suitable for EV. The PV output power capacity is still low, so efforts continue to develop the PV converter and its controller, aiming for higher power-extracting efficiency. The PV system requires a proper DC-DC converter with optimum controller to deliver its maximum power. This study analyses the various DC-DC converters such as buck, boost, cuk and modified cuk converters to find the solution for maximum efficiency. In this study in addition to converters, various Maximum Power Point Tracking (MPPT methods, such as Perturb and Observe, Incremental Conductance along with a proposed algorithm called Brain Emotional Learning Based Intelligent Controller (BELBIC has been analyzed. The operation of the BELBIC is based on the emotion processing mechanism in the brain. This intelligent control is stimulated by the limbic system of the mammalian brain. The performance analysis of the converters and MPPT methods are simulated using MATLAB/SIMULINK. Furthermore, experimental results are presented in order to validate the modified cuk converter with proposed BELBIC algorithm.
Bi-Directional DC-DC Converter for PHEV Applications
Energy Technology Data Exchange (ETDEWEB)
Abas Goodarzi
2011-01-31
Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.
A Novel Bidirectional DC-DC Converter With Flyback Snubber For Hybrid Electric Vehicles
DIVYA K.NAIR; ELIZABETH RAJAN
2013-01-01
Hybrid electric Vehicles combine the benefits of engine, electric motor and batteries to provide improved fueleconomy. A converter is needed in hybrid Electric Vehicle for charging and discharging of the batteries. So a charging anddischarging can be combined in one circuit topology known as bidirectional DC-DC converter. Here the output is completelyisolated from input, so an isolated bidirectional Dc-DC converter is used. In the bidirectional DC-DC converter, there occursovervoltage and ove...
Transformerless High Step-Up Dc-Dc Converter
Directory of Open Access Journals (Sweden)
Amit S. Surjagade
2014-10-01
Full Text Available This paper proposes a transformer-less high step-up DC-DC converter which acts as an interconnection between DC systems. A new step up converter proposed in the paper is designed and simulated in a simulation environment. The conventional boost converter cannot have any control over the input current at a high duty cycle. Due to which, it draws considerable amount of current from the source which can create problems for the components used in DC-DC converter. Moreover, the voltage stress across the switch comes nearly equal to output voltage. These problems can be overcome in the proposed topology discussed in the paper. The improved topology enhances important electrical parameters such as voltage gain, power loss and switch voltage stress. These improvements in the parameters are explained with the help of formulae explained in the paper. The improved topology improves the voltage stress and voltage gain. The output voltage is modified with the introduction of extra components. Due to improvement in these parameters, the proposed topology becomes an attractive feature for use with DG systems. The comparison is performed between conventional boost converter and boost converter with improved topology. The efficiency curves are plotted for simple boost converter and improved topology. The efficiency is evaluated for a wide range of duty cycle and this confirms the effectiveness of the improved topology discussed in the paper. The proposed converter design and its implementation are given with operational results. The simulation results are tested for an input voltage of 12V. The input voltage is stepped up to output voltage of 100V which can be used for various applications. The interfacing problem of DG system (PV cell arrays with grid will solve using this methodology.
Artificial neural network control of sab dc/dc converter
International Nuclear Information System (INIS)
The latest development of power semiconductor devices enable the modern power electronic converters to withstand high voltage and high power applications. Power electronic converters are mostly periodic variable structure systems due to their switched operations. The main drawback of these converters is the generation of oscillations which are developed during the operation of the converters under nonlinear situations. To handle these nonlinearities, various researchers have proposed different control techniques. Power electronic designers are devoting in the further development of converter topologies and their control techniques. SAB (Single Active Bridge) DC/DC converter is a new topology recently introduced by Demetriades. This topology is used in high voltage and high power applications. Because of its smart features, SAB converter has recently drawn attention of many researchers. However, during the operation of SAB converter severe oscillations are generated. In this research work, a novel NNC (Neural Network Controller) model is developed for SAB converter to minimize oscillations generated during its operation. NNC is believed to be an advanced nonlinear and robust controller which has the ability to map the nonlinear behaviour in a negligible response time. The performance of SAB converter with NNC is tested under dynamic region by considering the reference voltage variation and duty ratio variation. The SAB converter is implemented and simulated in MATLAB/Simulink. The simulated results are presented. (author)
DC/DC converter with improved rectification for higher efficiency
Energy Technology Data Exchange (ETDEWEB)
Maisel, Peter; Saliternig, Martin [Continental AG, Nuernberg (Germany)
2010-07-01
High-power dc-dc converters are an important element of the electrical system of electric vehicles and hybrid electric vehicles. These complex modular components provide the link between the high-voltage level used for the powertrain and the low-voltage bus for the lighting system, engine management and auxiliary needs in the vehicle. The essential requirements for all converters are high efficiency, compact size, lightweight and reliability. A very popular method to increase the efficiency is the synchronous rectification. Parasitic inductances in the commutation circuit and reverse recovery effects can produce a ringing with voltage overshoots at the diodes and the transistors. These spikes can cause higher average power dissipation in the seminconductors and higher EMI (electromagnetic interference).
Very High Frequency Half Bridge DC/DC Converter
DEFF Research Database (Denmark)
Madsen, Mickey Pierre; Knott, Arnold
2014-01-01
This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all components in the power stage are given. The circuit has been simulated to verify the accuracy of the presented equations and an efficiency of 89% has been shown. A prototype has been implemented with self-oscillating resonant gate drives driving the switches. The prototype has been used to drive an LED string and shows an efficiency of 85% at 29 MHz with 130 V input and 13.4 W output. The efficiency was above 82% in the range 110-150 V input with output power between 10.3 W and 16.5 W
Design & Implementation of Zero Voltage Switching Buck Converter
A.Suresh Kumar; Krishna Reddy, P.
2014-01-01
Zero voltage switching (ZVS) buck converter is more preferable over hard switched buck converter for low power, high frequency DC-DC conversion applications. In Zero voltage switching converter, turn on & turn off of a switch occurs at zero voltage that results in lower switching losses. In this converter soft switching is achieved by using resonant components. The optimal values of resonant components are determined by using electric functions derived from circuit configurati...
Electrothermal model of choking-coils for the analysis of dc-dc converters
Energy Technology Data Exchange (ETDEWEB)
Gorecki, Krzysztof, E-mail: gorecki@am.gdynia.pl [Gdynia Maritime University, Department of Marine Electronics, Morska 83, Gdynia (Poland); Detka, Kalina [Pomeranian Higher School in Gdynia, Opata Hackiego 8-10, Gdynia (Poland)
2012-09-01
The paper concerns modelling the choking-coil for the needs of the electrothermal analysis of dc-dc converters. A new electrothermal model of the choking-coil is proposed. This model is dedicated for SPICE software and it takes into account nonlinearity of the dependences of the inductance on the current, selfheating and mutual thermal interactions between the core and the winding. The structure of this model is described in detail and its correctness is experimentally verified for the choking-coils with the ferrite and powder cores. Both the characteristics of the choking-coils and the buck converter with these choking-coils were considered. The satisfying agreement between the results of calculations and measurements is obtained.
High-frequency resonant transistor dc-dc converters
Steigerwald, R. L.
1984-05-01
The design of a transistor dc-dc resonant converter operating at 200-300 kHz is presented, and the operation of a 500-W breadboard version is reported. Several configurations of both voltage-input and current-input type are described and illustrated with circuit diagrams and waveforms, and a full-bridge voltage-input resonant inverter using gate turnoff devices is analyzed in detail, using a piecewise linear approach to obtain design curves. The performance of the breadboard voltage-input half bridge using FET power switches is shown in graphs, demonstrating the low switching losses and transistor stresses achieved by lossless-snubber design. It is predicted that similar designs using bipolar transistors or GTOs can attain energy efficiencies greater than 90 percent. Applications to switching power supplies and battery chargers are suggested.
Simulation and Implementation of Quasi Resonant DC-DC Converter
Directory of Open Access Journals (Sweden)
N. Devarajan
2012-01-01
Full Text Available Problem statement: A half-bridge LLC resonant converter with a voltage doubler rectifier has a simple structure and its Zero-Voltage-Switching (ZVS capability is excellent from zero to full load condition. But conduction loss is more due to high circulating energy thus reducing the system efficiency. Moreover a variable frequency control method makes the control circuits more complicated than those using the Pulse Width Modulation (PWM control method. Thus, DC drive has lower efficiency when it operates on light loads. Approach: To improve the efficiency of the DC drive under light loads, a PWM-controlled quasi-resonant converter is proposed .It has simple control circuits and less conduction loss compared to a half-bridge LLC resonant converter under light load conditions. The proposed converter has a half-bridge LLC resonant converter along with an auxiliary circuit. The load regulation of the proposed converter can be achieved by an auxiliary circuit. Thus the proposed converter is expected to be suitable sustaining power module for the efficiency enhancement of DC drives. As the magnetizing inductance of the proposed converter is larger the circulating energy is considerably reduced under light load conditions. In this study the operational principle, design and modeling of QRC DC-DC converters for DC drives are presented. The PWM controlled quasi resonant converter is implemented using PIC microcontroller 16F184A. Results: The capacitor filter in the output is replaced by pi filter to produce DC with minimum ripple. The experimental results and simulation results are compared. This converter has the advantages like reduced number of switches, reduced transformer and filter size, reduced ripple, reduced switching losses, reduced switching stresses and increased power density. Conclusion: The experimental results closely agree with the simulation results.
A Novel Bidirectional DC-DC Converter With Flyback Snubber For Hybrid Electric Vehicles
Directory of Open Access Journals (Sweden)
DIVYA K.NAIR
2013-06-01
Full Text Available Hybrid electric Vehicles combine the benefits of engine, electric motor and batteries to provide improved fueleconomy. A converter is needed in hybrid Electric Vehicle for charging and discharging of the batteries. So a charging anddischarging can be combined in one circuit topology known as bidirectional DC-DC converter. Here the output is completelyisolated from input, so an isolated bidirectional Dc-DC converter is used. In the bidirectional DC-DC converter, there occursovervoltage and overcurrent stress, which can be reduced by snubber circuits. Various technologies such as RCD, active clampand flyback snubber for bidirectional DC-DC converter are compared. The bidirectional DC-DC converter with flyback snubberis explained in detail. The simulations are carried out using Simulink/MATLAB 7.6.0 (R2009b package. The hardware is doneusing PIC16F877A, a microcontroller to generate the PWM pulses for the MOSFET switches so that harmonics in the circuit canbe reduced.
Load Dump Analysis in a 42/14V DC-DC Converter for Automotive Applications
Directory of Open Access Journals (Sweden)
Mohamed Abdualla Shrud
2013-07-01
Full Text Available The paper presents a model for a dc-dc centralised based architecture using Matlab/Simulink for load dump analysis. As the electrical load varies for various driving conditions such as day or night, summer or winter; and city or country side, the analysis of load change is a very important parameter for system behaviour. In order to study the 42V power generation dynamic performance under load variations, step change in loads have been investigated. A detailed mathematical model for a 3-phase, 4 kW and 42V Lundell alternator average electrical equivalent circuit along with the DC/DC converter based architectures for dual-voltage systems has been covered in previous publications. Aspects of the steady-state output current capabilities, transient behaviour due to load dump on the 14/42V buses and the behaviour of the system model under different loads are assessed and results discussed. The performance of the 42V Lundell alternator with the interleaved six-phase buck dc-to-dc converter system is modelled using Simulink software to assess the effectiveness of the model and its transient behaviour. The simulated results are presented for the transient characteristics of the system for load dumps.
High Power Zero-Voltage and Zero-Current Switching DC-DC Converters
Directory of Open Access Journals (Sweden)
Jaroslav Dudrik
2005-01-01
Full Text Available The paper presents principles and properties of the soft switching PWM DC-DC converters. The attention is focused mainly on high power applications and thus the full-bridge inverters are used in DC-DC converters. Considerations are also given to the control methods and principles of the switching and conduction losses reduction.
Energy Technology Data Exchange (ETDEWEB)
Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja
2014-09-09
A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.
Directory of Open Access Journals (Sweden)
Sharda Jaiswal
2014-06-01
Full Text Available Abstract This paper presents a scheme for implementing two different DC/DC converters in the commutation circuitry of BLDC motor drive and corresponding output characteristic in both sensored and sensorless drive. Here we have considered Buck and Boost converters in order to provide a regulated supply to the commutation circuitry. The drive circuit is a closed loop system with a PI controller, Six-Switch Voltage Source Inverter (VSI and one of the DC/DC converters among Buck and Boost. The performances with these two modes of sensored and sensorless have been studied by considering a low speed operation. Finally a comparison has been studied on the basis of characteristics of stator currents, rotor speed and electromagnetic torque. The modeling and simulation of Buck and Boost converter fed BLDC motor is done using MATLAB/SIMULINK for both sensored and sensorless drive.
Fuentes, C; Michelis, S; Blanchot, G; Allongue, B; Faccio, F; Orlandi, S; Kayal, M; Pontt, J
2011-01-01
The upgrade of the Large Hadron Collider (LHC) experiments at CERN sets new challenges for the powering of the detectors. One of the powering schemes under study is based on DC-DC buck converters mounted on the front-end modules. The hard environmental conditions impose strict restrictions to the converters in terms of low volume, radiation and magnetic field tolerance. Furthermore, the noise emission of the switching converters must not affect the performance of the powered systems. A study of the sources and paths of noise of a synchronous buck converter has been made for identifying the critical parameters to reduce their emissions. As proof of principle, a converter was designed following the PCB layout considerations proposed and then used for powering a silicon strip module prototype for the ATLAS upgrade, in order to evaluate their compatibility.
Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics Project
National Aeronautics and Space Administration — We shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low...
Simulation and Implementation of Interleaved Boost DC-DC Converter for Fuel Cell Application
Ahmad Saudi Samosir; NFN Taufiq; Abdul Halim Mohd Yatim
2011-01-01
This paper deals with a boost dc-dc converter for fuel cell application. In fuel cell electric vehicles application, a high power boost dc-dc converter is adopted to adjust the output voltage, current and power of fuel cell engine to meet the vehicle requirements. One of challenge in designing a boost converter for high power application is how to handle the high current at the input side. In this paper an interleaved boost dc-dc converter is proposed for current sharing on high power applica...
Indian Academy of Sciences (India)
Challa Mohana Krishna; Saritha B; Narayanan G
2015-10-01
This paper discusses dynamic modeling of non-isolated DC–DC converters (buck, boost and buck–boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant nonidealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.
Chaos analysis and chaotic EMI suppression of DC-DC converters
Zhang, Bo
2014-01-01
Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design DC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied heavily over the past 20 years, yet researchers are still unsure of the practical application of bifurcations and chaos in switching converters. The electromagnetic interference (EMI), which resulted from the high rates of changes of voltage and current, has become a major design criterion in DC-DC co
Decentralized Nonlinear Controller Based SiC Parallel DC-DC Converter Project
National Aeronautics and Space Administration — This proposal is aimed at demonstrating the feasibility of a Decentralized Control based SiC Parallel DC-DC Converter Unit (DDCU) with targeted application for...
Modular Power System Configured with Standard Product Hybrid DC-DC Converters Project
National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex NASA space power electronic systems can be configured using a small number of qualified hybrid DC-DC converter...
Control of the DC-DC Converter used into Energy Generation System
International Nuclear Information System (INIS)
This paper presents an investigation of the DC-DC Converter controller used into Energy Generation System. The full bridge is used into an Energy Generation System (EGS) as second power interface between the energy source and the high DC bus. The simulation results show that the DC-DC Converter behavior can be improved using a well designed PI control surface. The used Simulink models for the EGS blocks and some design considerations are presented, too. (authors)
Design and Implementation of a FLC for DC-DC Converter in a Microcontroller for PV System
Directory of Open Access Journals (Sweden)
Abel García-B.
2013-07-01
Full Text Available This paper presents the design and implementation of a simple fuzzy logic controller (FLC for a DC-DC buck converter based on the PIC18F4550 microcontroller to control the lead acid battery charging voltage in solar cells applications. For cost consideration, an inexpensive 8-bit microcontroller is selected to program and implement the FLC proportional-integral. The obtained simulation and experimental results show the viability of the controller with a variation on the load of the buck converter showing a good performance on the design of the FLC, and it has also a smooth response with a small overshoot. The DC-DC converter designed in this work can be found applications in low cost photovoltaic (PV systems, although in the literature has been already reported this kind of devices with a better response [3-4], however these use a expensive microcontroller or its designs are very complex, and where these are not necessary for this kind of applications. Finally, a prototype PV system with 100 V/6 A has been implemented for verifying the feasibility of the CD-CD converter.
High reliability DC/DC converter module for electronic boards equipped with FPGAs
International Nuclear Information System (INIS)
The Beam Instrumentation Group at CERN is designing a new general-purpose VME carrier module utilising several PTH04T230W DC/DC converters. These off-the-shelf converters are built with unshielded inductors and need to be mounted on the printed circuit board as stand-alone components. Thus, reducing the global manageability and increasing the total cost of the carrier module. The new design aims to develop a module with better power dissipation, efficiency and reliability. In the future, it should be also possible to be directly integrated on the mainboard. For this reason, a Buck DC/DC converter has been implemented with the following main characteristics: input range from 3.0 V to 5.5 V; output range from 0.6 V to 3.3 V, settable by means of an external resistor; output current protection at 6 A; maximum output ripple ± 50 mVpp; switching frequency of 300KHz; short circuit protection; On/Off function; EMI reduction with frequency spread spectrum; soft-start function and thermal shutdown, in a 16 × 19 mm compact size. The selected buck controller is the TPS40303 integrated circuit and drives the CSD16321 power MOSFET, both from Texas Instruments. All selected components have been used at a minimum derating of 50% to reduce component stress and increase the reliability of this module. The selected inductors, i.e. Bourns SRP1055, are the main contributor for the high efficiency (95%), due to their very low equivalent series resistance. On the 4-layer PCB comprising all the components of this module, a snubber circuit, for further reduction of the output ripple due to the MOSFET ringing, can be mounted optionally. It is left as an option due to its effect on the total efficiency. The board layout has been optimized for maximum heat transfer and it can be used without active cooling. The board can maintain the maximum temperature on its surface, while at maximum current output, below 55°C at 25°C ambient temperature. An example of the electrical performance simulation, as well as the verification methodology and the test bench realised will be shown
High reliability DC/DC converter module for electronic boards equipped with FPGAs
Viganò, W.; Boccardi, A.; Zamantzas, C.
2015-01-01
The Beam Instrumentation Group at CERN is designing a new general-purpose VME carrier module utilising several PTH04T230W DC/DC converters. These off-the-shelf converters are built with unshielded inductors and need to be mounted on the printed circuit board as stand-alone components. Thus, reducing the global manageability and increasing the total cost of the carrier module. The new design aims to develop a module with better power dissipation, efficiency and reliability. In the future, it should be also possible to be directly integrated on the mainboard. For this reason, a Buck DC/DC converter has been implemented with the following main characteristics: input range from 3.0 V to 5.5 V; output range from 0.6 V to 3.3 V, settable by means of an external resistor; output current protection at 6 A; maximum output ripple ± 50 mVpp; switching frequency of 300KHz; short circuit protection; On/Off function; EMI reduction with frequency spread spectrum; soft-start function and thermal shutdown, in a 16 × 19 mm compact size. The selected buck controller is the TPS40303 integrated circuit and drives the CSD16321 power MOSFET, both from Texas Instruments. All selected components have been used at a minimum derating of 50% to reduce component stress and increase the reliability of this module. The selected inductors, i.e. Bourns SRP1055, are the main contributor for the high efficiency (95%), due to their very low equivalent series resistance. On the 4-layer PCB comprising all the components of this module, a snubber circuit, for further reduction of the output ripple due to the MOSFET ringing, can be mounted optionally. It is left as an option due to its effect on the total efficiency. The board layout has been optimized for maximum heat transfer and it can be used without active cooling. The board can maintain the maximum temperature on its surface, while at maximum current output, below 55°C at 25°C ambient temperature. An example of the electrical performance simulation, as well as the verification methodology and the test bench realised will be shown.
Jaw-Kuen Shiau; Min-Yi Lee; Yu-Chen Wei; Bo-Chih Chen
2014-01-01
The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT) evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and ...
Simulation and Implementation of Interleaved Boost DC-DC Converter for Fuel Cell Application
Directory of Open Access Journals (Sweden)
Ahmad Saudi Samosir
2011-10-01
Full Text Available This paper deals with a boost dc-dc converter for fuel cell application. In fuel cell electric vehicles application, a high power boost dc-dc converter is adopted to adjust the output voltage, current and power of fuel cell engine to meet the vehicle requirements. One of challenge in designing a boost converter for high power application is how to handle the high current at the input side. In this paper an interleaved boost dc-dc converter is proposed for current sharing on high power application. Moreover, this converter also reduces the fuel ripple current. Performance of the interleaved boost converter is tested through simulation and experimental results. Keywords: component; Interleaved Boost Converter; Fuel Cell Electric Vehicle; high power application.
Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters
Cravero, Jean-Marc
2013-01-01
This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.
Autonomous ultra-low power DC/DC converter for Microbial Fuel Cells
Adami, Salah-Eddine; Degrenne, Nicolas; Vollaire, Christian; Allard, Bruno; Buret, François; Costa, François
2011-01-01
In this paper, an ultra-low voltage and power DC/DC converter is presented. This converter harvests energy from a Microbial Fuel Cell (MFC) in order to feed another circuit such as an autonomous wireless sensor. The MFC behaves as a voltage generator of 475mV open-circuit voltage with a 600? serial internal impedance. The maximum delivered power is therefore around 100?W. The DC/DC converter provides output voltage in the range 2-7.5V and performs impedance matching with source. The converter...
Design of A Bidirectional Dc-Dc Converter For Hybrid Electric Vehicles (HEV Using MATLAB
Directory of Open Access Journals (Sweden)
DHARAM DUTTA, SOUVIK GANGULI
2013-07-01
Full Text Available The design of a 60 kW bidirectional DC-DC converter is addressed in this paper. The paper also discusses the operation and role of dc-dc converter in Electric Vehicle (EV and Hybrid Electric Vehicle (HEV. Various circuits and their analysis are done to review the operation and design of converter. Results show that at 20Hz operation converter efficiency is better when ETD49 shape is used rather than EC70. However efficiencies are greater with ferrite materials rather than iron powder.
DC/DC Power Converter for Super-Capacitor Supplied by Electric Power Splitter
Haubert, T.; Mindl, P.
The aim of the article is design of DC/DC converter and discussing of problematic supply using electric power splitter. The electric power splitter with AC/DC converter is source for the DC/DC converter, which is dedicated for charging and discharging of hybrid car drive super-capacitor energy storage. The electric power splitter is synchronous machine with two rotating parts. First rotor contains permanent magnet and the second rotor contains three-phase windings. The amplitude of output voltage depends on difference between first and second rotor speed. The main role of the DC/DC converter is to optimize energy content in super-capacitor storage used to acceleration and deceleration driving period of the passenger car with hybrid electric vehicle (HEV) drive system using electric power splitter.
Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells
DEFF Research Database (Denmark)
Pittini, Riccardo; Zhang, Zhe
2013-01-01
Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power interface to the grid. In power electronics, the converter efficiency is characterized at fixed operating voltage for various output power. This type of characterization is not suitable for fuel cells, since as the power from the fuel cell increases, the cell voltage decreases. This paper analyses how the fuel cell I-V characteristics influences the power electronics converter efficiency and their consequence on the overall system. A loaddependent efficiency curve is presented based on experimental results from a 6 kW dc-dc converter prototype including the most suitable control strategy which maximizes the dc-dc conversion efficiency.
Voltage Tracking of a DC-DC Flyback Converter Using Neural Network Control
Wahyu Mulyo Utomo; Sim Sy Yi; Yonis M.Y. Buswig; Afarul Abu Bakar; Md Zarafi Ahmad
2012-01-01
This paper proposes a neural network control scheme of a DC-DC Flyback converter that will step up a 12V DC and applied it on brushless DC motor with 12 and 24V dc. In this technique, a back propagation learning algorithm is derived. The controller is designed to track the output voltage of the DC-DC converter and to improve performance of the Flyback converter during transient operations. Furthermore, to investigate the effectiveness of the proposed controller, some operations such as starti...
Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller
Directory of Open Access Journals (Sweden)
Sreenivasappa Veeranna Bhupasandra
2010-01-01
Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.
Directory of Open Access Journals (Sweden)
Han Yang
2012-10-01
Full Text Available The power electronics course is a rather challenging subject for instructors and undergraduate students pursuing Bachelor’s Degree in Electrical Engineering. To enhance teaching effectiveness and motivate self-learning capabilities of the students, this paper presents a pedagogical approach for mathematical modeling and simulation of switching mode DC-DC converters. The Buck and Boost converters are analyzed as benchmark systems to study the power converter modeling methodologies. And a comparative analysis using digital simulation from Matlab/Simulink and ATP/EMTP is presented. A summary of student survey is also presented, which shows a high level of satisfaction. The presented pedagogical approach would be useful for classroom teaching for the power electronics course and similar engineering courses.
DEFF Research Database (Denmark)
Pittini, Riccardo; Zhang, Zhe
2014-01-01
Efficiency is one of the main concerns during the design phase of switch mode power supply. Planar magnetics based on PCB windings have the potential to reduce the magnetic manufacturing cost however, one of their main drawbacks comes from their low filling factor and high stray capacitance. This paper presents an analysis of different planar windings configurations focusing on dc and ac resistances in order to achieve highly efficiency in dc-dc converters. The analysis considers different copper thicknesses form 70 ?m up to 1500 ?m (extreme copper PCB) taking into account manufacturing complexity and challenges. The analysis is focused on a high current inductor for a dc-dc converter for fuel cell applications and it is based on FEM simulations. Analysis and results are verified on a 6 kW dc-dc isolated full bridge boost converter prototype based on fully planar magnetics achieving a peak efficiency of 97.8%.
Modelling and Simulation of Digital Compensation Technique for dc-dc Converter by Pole Placement
Shenbagalakshmi, R.; Sree Renga Raja, T.
2015-09-01
A thorough and effective analysis of the dc-dc converters is carried out in order to achieve the system stability and to improve the dynamic performance. A small signal modelling based on state space averaging technique for dc-dc converters is carried out. A digital state feedback gain matrix is derived by pole placement technique in order to achieve the stability of a completely controllable system. A prediction observer for the dc-dc converters is designed and a dynamic compensation (observer plus control law) is provided using separation principle. The output is very much improved with zero output voltage ripples, zero peak overshoot, and much lesser settling time in the range of ms and with higher overall efficiency (>90 %).
Controlling DC-DC converters by chaos-based pulse width modulation to reduce EMI
International Nuclear Information System (INIS)
In this paper, periodic and chaotic behaviors of DC-DC converters under certain parametric conditions are simulated, experimentally verified, and analyzed. Motivated by the work of J.H.B. Deane and D.C. Hamill in 1996, where chaotic phenomena are useful in suppressing electromagnetic interference (EMI) by adjusting the parameters of the DC-DC converter and making it operate in chaos, a chaos-based pulse width modulation (CPWM) is proposed to distribute the harmonics of the DC-DC converters continuously and evenly over a wide frequency range, thereby reducing the EMI. The output waves and spectral properties of the EMI are simulated and analyzed as the carrier frequency or amplitude changes with regard to different chaotic maps. Simulation and experimental results are given to illustrate the effectiveness of the proposed CPWM, which provides a good example of applying chaos theory in engineering practice.
Optimized photovoltaic generator-water electrolyser coupling through a controlled DC-DC converter
Energy Technology Data Exchange (ETDEWEB)
Garcia-Valverde, R.; Miguel, C.; Urbina, A. [Universidad Politecnica de Cartagena, Departamento de Electronica, Tecnologia de Computadoras y Proyectos, Plaza del Hospital, 1, Cartagena, 30203 Murcia (Spain); Martinez-Bejar, R. [Universidad de Murcia, Departamento de Ingenieria de la Informacion y las Comunicaciones, Facultad de Informatica, Campus de Espinardo, 30071 Murcia (Spain)
2008-10-15
The coupling of a photovoltaic generator and an electrolyser is one of the most promising options for obtaining hydrogen from a renewable energy source. Both are well known technologies, however, since the high variability of the solar radiation, an efficient coupling still presents some challenges. Direct or through a DC-DC converter couplings are the options in isolated applications. In this work, three models, respectively, for a photovoltaic (PV) generator, a controlled DC-DC converter and a complete proton exchange membrane (PEM) electrolyser have been designed by using Matlab/Simulink. A PV-electrolyser specific algorithm to search for the optimum and safe working point for both elements is presented. Simulation results demonstrate that the use of a controlled DC-DC converter with the proposed algorithm shows better adaptability to the variable radiation conditions than the other coupling options. Therefore, it leads to a better compliance between the electrolyser and the sizing of the PV generator. (author)
Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.
2012-01-01
We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…
Experimental study of dynamic behaviors and routes to chaos in DC-DC boost converters
International Nuclear Information System (INIS)
This paper illustrates an experimental study of a current-programmed DC-DC boost converter, with the aim of investigating possible pathways through which the converter may enter chaos. In particular, based on experimental measurements, it is shown that variations of input voltage and reference current can generate periodic, subharmonic, quasi-periodic and chaotic behaviors
International Nuclear Information System (INIS)
We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders the feasible introduction of this equipment in undergraduate laboratories. (paper)
Fast control technique for high frequency (5MHz) DC/DC integrated converter
Viejo de Frutos, Miriam del; Alou Cervera, Pedro; Oliver Ramírez, Jesús Angel; García Suárez, Oscar; Cobos Márquez, José Antonio
2010-01-01
A switching frequency of 5 MHz allows the integration in a chip of a low power (10W) DC/DC converter. Although this switching frequency would make feasible a voltage mode control with 1MHz bandwidth, the parasitics and robustness don't allow such a high frequency bandwidth. This paper proposes a fast control technique that helps to optimize the dynamic response of high frequency DC/DC converter. The control proposed and analyzed in this paper is based on the peak current mode control of the o...
Three-port DC-DC converter with new integrated transformer for DC Distribution Systems
DEFF Research Database (Denmark)
Ouyang, Ziwei; Andersen, Michael A. E.
2014-01-01
A new integrated transformer for three-port dc-dc converter is proposed to overcome the power coupling effect existed in some known multiple inputs dc-dc converters. Orthogonal primary windings arrangement and in series connection of diagonal secondary Windings enables a fully power decoupling between the multiple inputs while the output power is still coupled with all inputs. The energy is accordingly allowed to deliver into the output load simultaneously or at any time-multiplexing scheme. 1-kW experimental prototypes have been built to demonstrate a well-managed power flow for photovoltaic (PV) and battery standalone system.
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
G. Shiny Vikram
2014-01-01
With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high step-up and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. In this paper a coupled inductor dc-dc converter for photovoltaic system is proposed. The circuit configuration of...
Using Nyquist or Nyquist-Like Plot to Predict Three Typical Instabilities in DC-DC Converters
Fang, Chung-Chieh
2012-01-01
By transforming an exact stability condition, a new Nyquist-like plot is proposed to predict occurrences of three typical instabilities in DC-DC converters. The three instabilities are saddle-node bifurcation (coexistence of multiple solutions), period-doubling bifurcation (subharmonic oscillation), and Neimark bifurcation (quasi-periodic oscillation). In a single plot, it accurately predicts whether an instability occurs and what type the instability is. The plot is equivalent to the Nyquist plot, and it is a useful design tool to avoid these instabilities. Nine examples are used to illustrate the accuracy of this new plot to predict instabilities in the buck or boost converter with fixed or variable switching frequency.
Very High Frequency Resonant DC/DC Converters for LED Lighting
DEFF Research Database (Denmark)
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2013-01-01
This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter with 40 V input and 15 V output are made. The simulation shows possibility of achieving efficiency up to 87 % even with a HEXFET Power MOSFET. Three prototypes of the simulated converter are implemented...
Isolated Bidirectional DC–DC Converter for SuperCapacitor Applications
DEFF Research Database (Denmark)
Dehnavi, Sayed M. D.; Sen, Gökhan; Thomsen, Ole Cornelius; Andersen, Michael A. E.; Møller, Lars
2011-01-01
This paper proposes a new bidirectional DC/DC converter for supercapacitor applications. The proposed converter has a parallel structure in supercapacitor side (where voltage is low and current is high) and a series structure in the other side. This structure increases efficiency of the converter. For current sharing in the parallel side of the proposed converter, two different methods are recommended and compared in this paper: Current balancing transformer (CBT) and two separate inductors (TSI...
A Family of Four Quadrant DC/DC Converters with Reduced Number of Components
DEFF Research Database (Denmark)
Mostaan, Ali; Soltani, Mohsen
2015-01-01
A family of four quadrant DC/DC converters is presented in this paper. Compare with existing four quadrant DC/DC converters that have been introduced in literature, the proposed converters have lower number of components. There are two bidirectional switches, two coupled inductors and one capacitor in proposed converters that can lead to lower cost and also smaller occupied space. The proposed converters are analyzed in detailed and their voltage gain is obtained. It is shown that to obtain high voltage gain, it is not necessary to increase the transformer turn ratio, therefore the leakage inductance effect is minimized in these converters. The effectiveness of the proposed converters is validated with simulation using MATLAB/SIMULINK.
Energy Technology Data Exchange (ETDEWEB)
Polenov, Dieter
2010-01-15
The paper discusses DC/DC converters for integration of double layer condensers into the onboard power system. First, requirements on DC/DC converters are listed and compared on the basis of three exemplary applications. A DC/DC converter concept is developed for decoupling transient high-power loads like electric steering systems. Three different topologies are compared using a specially developed method in order to find the best solution for the given application. In order to establish adequate criteria for selecting the switching frequency and inductivities of storage throttles, the influence of the trottle power change on the switching characteristics of the MOSFETs and on certain ranges of EMP interference emissions is investigated. As methods of optimising the operation of the synchronous rectifiers, parallel connection of Schottky diodes and synchronous rectifiers as well as the variation of the shut-off dead times of synchronous rectifiers were investigated. Further, a concept for converter control was developed in consideration of the intended application and topology. Finally, selected aspects for implementation of the DC/DC converter concept are presented as well as the results of experimental investigations.
A Comparison of Half Bridge & Full Bridge Isolated DC-DC Converters for Electrolysis Application
Directory of Open Access Journals (Sweden)
R. Samuel Rajesh Babu
2011-09-01
Full Text Available This paper presents a comparison of half bridgeand full bridge isolated, soft-switched, DC-DC converters forElectrolysis application. An electrolyser is a part of renewableenergy system which generates hydrogen from water electrolysisthat used in fuel cells. A DC-DC converter is required to coupleelectrolyser to system DC bus. The proposed DC-DC converter isrealized in both full-bridge and half-bridge topology in order toachieve zero voltage switching for the power switches and toregulate the output voltage. Switching losses are reduced by zerovoltage switching. Switching stresses are reduced by usingresonant inductor and capacitor. The proposed DC-DC converterhas advantages like high power density, low EMI, reducedswitching stresses, high circuit efficiency and stable outputvoltage. The MATLAB simulation results show that the output ofconverter is free from the ripples and regulated output voltage andthis type of converter can be used for electrolyser application .Experimental results are obtained from a MOSFET based DC-DCConverter with LC filter. The
Fuzzy Logic Controlled DC-DC Converter Based Dynamic Voltage Restorer
Directory of Open Access Journals (Sweden)
Mustafa ?nci
2015-12-01
Full Text Available This paper presents fuzzy logic controlled dc-dc boost converter based Dynamic Voltage Restorer (DVR to compensate severe voltage sag problems in an electrical system. DVR absorbs real power from battery to compensate voltage sags in the system. This condition causes reduction in voltage magnitude of dc-link capacitor. Additionally, DVR requires large dc capacitors to compensate long and severe voltage sags in the system. In this study, dc-dc boost converter is connected to DVR for keeping dc link voltage constant. For this propose, a control algorithm based on Fuzzy Logic (FL control is developed for dc-dc boost converter. The main contribution of this study is that Fuzzy Logic (FL is firstly used to generate reference signal for PWM signals of dc-dc converter applied in DVR. FL is a very flexible controller which keeps the dc link voltage constant during voltage sag. The performance results of proposed study are verified with PSCAD/EMDTC.
Experimental study of controlling chaos in a DC-DC boost converter
International Nuclear Information System (INIS)
This paper presents a delayed feedback control scheme for eliminating chaotic behaviour in a peak current-mode controlled DC-DC boost converter operating in the continuous current conduction mode. Experimental results and FORTRAN simulations show the effectiveness and robustness of the scheme.
DESIGN AND BUILDING OF MULTIPLE INPUT SINGLE OUTPUT DC - DC CONVERTER
Directory of Open Access Journals (Sweden)
Shaktidhar Mahapatra
2015-06-01
Full Text Available A multiple input DC - DC converter has been proposed in this paper to obtain power from several inpu t sources. The structure of the proposed Multiple Input Converter (MIC is simpler than the several available single input converters for each source. Due to the rapid depletion of the conventional energy the world is turning towards the renewable energy s ources because of their abundance and distribution throughout the earth. Thus using different inputs from renewable sources this MISO DC - DC converter is designed. To show continuous output , two 12V batteries are connected as input sources to give a common regulated output. LTspice software is used in the designing of the converter. Hardware implementation of the converter is also done. Results are obtained from both software and hardware.
A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.
Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih
2012-01-01
This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536
Digital control strategies for DC/DC SEPIC converters towards integration
Li, Nan
2012-01-01
The use of SMPS (Switched mode power supply) in embedded systems is continuously increasing. The technological requirements of these systems include simultaneously a very good voltage regulation and a strong compactness of components. SEPIC ( Single-Ended Primary Inductor Converter) is a DC/DC switching converter which possesses several advantages with regard to the other classical converters. Due to the difficulty in control of its 4th-order and non linear property, it is still not well-expl...
A DC-DC Converter with Wide Input Voltage Range for Fuel Cell and Supercapacitor Application
Zhe ZHANG; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.
2009-01-01
This paper proposes a novel phase-shift plus duty cycle controlled hybrid bi-directional DC-DC converter based on fuel cells and supercapacitors. The described converter employs two high frequency transformers to couple the half-bridge and full-bridge circuits together in the primary side and voltage doubler circuit in secondary side. Boost type converter can limit the output ripple current of the fuel cells; hybrid full-bridge structure can change operating modes according to the differen...
Y-Source Boost DC/DC Converter for Distributed Generation
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede; Andreasen, Søren Juhl; Town, Graham E.
2015-01-01
This paper introduces a versatile Y-source boost dc/dc converter intended for distributed power generation, where high gain is often demanded. The proposed converter uses a Y-source impedance network realized with a tightly coupled three-winding inductor for high voltage boosting that is presently unmatched by existing impedance networks. The proposed converter also has more variables for tuning the required gain and, hence, more degrees of freedom for meeting design constraints. These capabilit...
An Experimental Simulation of a Design Three-Port DC-DC Converter
Samir Al Sharif; Ahmad Harb; Haibing Hu; Issa Batarseh
2014-01-01
Traditional DC-DC converter topologies interface two power terminals: a source and a load. The construction of diverse and flexible power management and distribution (PMAD) systems with such topologies is governed by a tight compromise between converter count, efficiency, and control complexity. The broader impact of the current research activity is the development of enhanced power converter systems suitable for a wide range of applications. Potential users of this technology include the des...
Multi-Level DC-DC Converter for High Gain Applications
Girish Ganesan R; Prabhakar, M.
2013-01-01
The output voltage from most renewable energy sources like photovoltaic arrays and fuel cells will be at low level. This must be stepped up considerably for practical utilization or grid connection. The presented multilevel boost converter DC-DC converter topology consists of the conventional boost converter and voltage doubler stages to provide high voltage gain. The proposed topology uses only one switch along with one inductor, (2N-1) diodes and (2N-1) capacitors for obtaining an output wh...
Comparative Study of PI Controlled and Fuzzy Controlled Buck Converter
Neetu Sharma1 , Dr.Pradyumn Chaturvedi2 , Rahul Dubey
2013-01-01
The main objective of this paper is to compare the performance between fuzzy controller and proportional integral controller in improving the performance of the DC-DC Buck Converter. The evaluation of the output has been carried out and compared by software simulation using MATLAB. This paper also evaluates the stability of the system with fuzzy controller and PI controller and concludes that the fuzzy controller is able to achieve faster transient response, has major stable steady state resp...
Symmetrical multilevel converters with two quadrant DC-DC feeding
Schibli, Nikolaus
2000-01-01
In the technology sector of power electronics and control, the multilevel converter technology is still a rather new research area, but the application possibilities in the field of power drives and energy will demand more solutions with this promising technology. In the future, more converter systems will be realized with the multilevel topology. Up to now, multilevel converters have only been used in very particular applications, mainly due to the high costs and complexity of the multilevel...
ZVZCS PWM DC-DC Converter with Energy Recovery Clamp
Directory of Open Access Journals (Sweden)
Vladimir Ruscin
2008-01-01
Full Text Available This paper presents research motivated by industrial demand for special traction drive topology devoted tominimization of traction transformer weight against topology with classical 50Hz traction transformer. The special tractiondrive topology for AC power systems consists of input high voltage trolley converter (single phase matrix converter –middle frequency transformer – output converter - traction motor has been described. The main attention has been given tothe control algorithm of the traction topology (inserting of NULL vector of matrix converter and Two-value control ofsecondary active rectifier.
Fuentes Rojas, Cristian Alejandro; Blanchot, G
2011-01-01
The upgrade of the Large Hadron Collider (LHC) experiments at CERN sets new challenges for the powering of the detectors. One of the powering schemes under study is based on DC-DC buck converters mounted on the front-end modules. The hard environmental conditions impose strict restrictions to the converters in terms of low volume, radiation and magnetic field tolerance. Furthermore, the noise emission of the switching converters must not affect the performance of the powered systems. A study of the sources and paths of noise of a synchronous buck converter has been made for identifying the critical parameters to reduce their emissions. As proof of principle, a converter was designed following the PCB layout considerations proposed and then used for powering a silicon strip module prototype for the ATLAS upgrade, in order to evaluate their compatibility.
A Bidirectional Multi-Port DC-DC Converter Integrating Voltage Equalizer
DEFF Research Database (Denmark)
Chen, Jianfei; Hou, Shiying
2015-01-01
A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalized with a uniform voltage level while eliminating the voltage imbalance. In addition, high step-down and step-up ratios with low component voltage stress can be achieved in the proposed converter. A bidirectional four-port dc-dc converter is presented to do theoretical analysis for the voltage equalization of three battery modules with different voltages. Simulation results has shown the feasibility of the proposed converter.
Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications
Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard
2003-01-01
DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.
Differential Mode EMI Filter Design for Isolated DC-DC Boost Converter
DEFF Research Database (Denmark)
Makda, Ishtiyaq Ahmed; Nymand, Morten
2014-01-01
A Differential Mode EMI filter for a low input voltage high-current isolated dc-dc boost converter is designed and presented in this paper. The primary side Differential Mode noise voltage is low due to the high transformer turn ratio, however, the input current is very high and since the EMI limit also does not change for such converters, it requires greatly optimized design approach for the filter including the correct sizing of the filter components. A complete analytical filter design process is carried out such a way that the Differential Mode noise voltage source in the converter is identified first. The DM noise model is then established and based on the harmonic analysis of the noise source voltage waveform, the complete Differential Mode EMI filter, including the filter resonance damping branch, is designed for a 3kW isolated dc-dc boost converter. The noise model and its theoretical analysis is verified by means of experimental results.
Adaptive Non-singular Terminal Sliding Mode Control for DC-DC Converters
Yu, Y.; Fan, L
2011-01-01
DC-DC converters have some inherent characteristics such as high nonlinearity and time-variation, which often result in some difficulties in designing control schemes. An adaptive non-singular terminal sliding mode control method is presented in this paper. Non-singular terminal sliding mode control is used to make the converter reach steady state within a limited time, and an adaptive law is integrated to the non-singular terminal sliding mode control scheme to make the proposed control me...
Ultra-Step-Up DC-DC Converter with Integrated Autotransformer and Coupled Inductor
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang
2016-01-01
A new single-switch non-isolated dc-dc converter with very high voltage transfer ratio and reduced semiconductor voltage stress is proposed. The converter utilizes an integrated autotransformer and a coupled inductor on the same core to achieve a very high step-up voltage gain without extreme duty cycle. Further, the integrated passive regenerative circuit recycles the leakage energy of the coupled magnetics and transferred the leakage energy to load which helps to avoid surge voltage across the...
Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells
DEFF Research Database (Denmark)
Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.
2013-01-01
Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power interface to the grid. In power electronics, the converter efficiency is characterized at fixed operating voltage for various output power. This type of characterization is not suitable for fuel cells, sin...
Pulse-width modulated DC-DC power converters
Kazimierczuk, Marian K
2008-01-01
This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,
High Step Up Dc-Dc Converter For Non-Conventional Energy Source
Directory of Open Access Journals (Sweden)
K. Kuralanban
2013-04-01
Full Text Available The demand for non-isolated high step-up dc–dc converters in applications such as dc backup energy systems for UPS, photovoltaicand fuel cell systems, and hybrid electric vehicles has been gradually increasing. This project proposes a non-isolated step-up dc–dc converter with an improved switching method. The proposed converter shows zero-voltage switching turn-on of the switches in continuous conduction mode as well as reduced turnoff switching losses using resonant PWM.As a result of the proposed switching method, the switching losses associated with diode reverse recovery become negligible even in the small duty cycle. The capacitance in the auxiliary circuit is significantly reduced compared to the pulse width modulation method. The duty cycle loss is further reduced resulting in increased step-up ratio.The result of the project is implemented in Simulation using MATLAB Simulink Software.
Voltage Tracking of a DC-DC Flyback Converter Using Neural Network Control
Directory of Open Access Journals (Sweden)
Wahyu Mulyo Utomo
2012-01-01
Full Text Available This paper proposes a neural network control scheme of a DC-DC Flyback converter that will step up a 12V DC and applied it on brushless DC motor with 12 and 24V dc. In this technique, a back propagation learning algorithm is derived. The controller is designed to track the output voltage of the DC-DC converter and to improve performance of the Flyback converter during transient operations. Furthermore, to investigate the effectiveness of the proposed controller, some operations such as starting-up and reference voltage variations are verified. The numerical simulation results show that the proposed controller has a better performance compare to the conventional PI-Controller method.
5 kW DC/DC converter for hydrogen generation from photovoltaic sources
Energy Technology Data Exchange (ETDEWEB)
Garrigos, A.; Blanes, J.M.; Carrasco, J.A.; Lizan, J.L. [Area de Tecnologia Electronica, Universidad Miguel Hernandez de Elche, Avda. de la Universidad s/n, 03202 Elche, Alicante (Spain); Beneito, R. [AIJU, Avda. de la Industria 23, 03440 Ibi, Alicante (Spain); Molina, J.A. [Grupo SITEC, Calle Cadiz 38, Poligono Industrial L' Alfac III, 03440 Ibi, Alicante (Spain)
2010-06-15
This paper covers the design of a DC-DC power converter aimed for hydrogen production from photovoltaic sources. Power conditioning for such application is usually driven by different constraints: high step-down conversion ratio is required if the input voltage of such equipment has to be compatible with photovoltaic sources that are connected to grid-connected inverters; galvanic isolation; high efficiency and low mass. Taking into account those factors, this work proposes a push-pull DC/DC converter for power levels up to 5 kW. The operation and features of the converter are presented and analyzed. Design guidelines are suggested and experimental validation is also given. (author)
SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles
Energy Technology Data Exchange (ETDEWEB)
Marlino, Laura D [ORNL; Zhu, Lizhi [Ballard Power Systems/Siemens VDO
2007-07-01
The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.
Novel family of quasi-Z-source DC/DC converters derived from current-fed push-pull converters
DEFF Research Database (Denmark)
Chub, Andrii; Husev, Oleksandr
2014-01-01
This paper is devoted to the step-up quasi-Z-source dc/dc push-pull converter family. The topologies in the family are derived from the isolated boost converter family by replacing input inductors with the quasi-Z-source network. Two new topologies are proposed, analyzed and compared. Theoretical predictions are verified by means of simulations.
Simulation and Implementation of Quasi Resonant DC-DC Converter
N.DEVARAJAN; P. Parvathy
2012-01-01
Problem statement: A half-bridge LLC resonant converter with a voltage doubler rectifier has a simple structure and its Zero-Voltage-Switching (ZVS) capability is excellent from zero to full load condition. But conduction loss is more due to high circulating energy thus reducing the system efficiency. Moreover a variable frequency control method makes the control circuits more complicated than those using the Pulse Width Modulation (PWM) control method. Thus, DC drive has lower efficiency whe...
DC-DC Converter Topology Assessment for Large Scale Distributed Photovoltaic Plant Architectures
Energy Technology Data Exchange (ETDEWEB)
Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Sabate, Juan A; Steigerwald, Robert L; Jiang, Yan; Essakiappan, Somasundaram
2011-07-01
Distributed photovoltaic (PV) plant architectures are emerging as a replacement for the classical central inverter based systems. However, power converters of smaller ratings may have a negative impact on system efficiency, reliability and cost. Therefore, it is necessary to design converters with very high efficiency and simpler topologies in order not to offset the benefits gained by using distributed PV systems. In this paper an evaluation of the selection criteria for dc-dc converters for distributed PV systems is performed; this evaluation includes efficiency, simplicity of design, reliability and cost. Based on this evaluation, recommendations can be made as to which class of converters is best fit for this application.
A High Power Density DC-DC Converter for Distributed PV Architectures
Energy Technology Data Exchange (ETDEWEB)
Agamy, Mohammed S; Chi, Song; Elasser, Ahmed; Harfman-Todorovic, Maja; Jiang, Yan; Mueller, Frank; Tao, Fengfeng
2012-06-01
In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.
Optimization of Shielded PCB Air-Core Toroids for High-Efficiency DC-DC Converters
Orlandi, S; Buso, S; Michelis, S; Fuentes, C A; Kayal, M; Faccio, F; Spiazzi, G
2011-01-01
The paper describes the design of optimized printed circuit board (PCB) air-core toroids for high-frequency dc-dc converters with strict requirements in terms of volume and noise. The effect of several design parameters on the overall inductor volume, on dc and ac winding resistance, and on the radiated noise will be investigated. PCB toroids are compared to standard air-core solenoids and other state-of-the-art air-core toroids both theoretically and experimentally: at first, using ANSOFT Maxwell and ANSOFT Q3D simulation tools, and subsequently, with laboratory measurements (irradiated noise, efficiency, and frequency response) on several prototypes. These very flexible and rather easy to manufacture inductors appear very attractive for compact high-frequency dc-dc converters where high efficiency, low volume, and low noise are of primary concern.
A Nonlinear Digital Control Solution for a DC/DC Power Converter
Zhu, Minshao
2002-02-01
A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.
Comparison of two different high performance mixed signal controllers for DC/DC converters
DEFF Research Database (Denmark)
Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.
2006-01-01
This paper describes how mixed signal controllers combining a cheap microcontroller with a simple analogue circuit can offer high performance digital control for DC/DC converters. Mixed signal controllers have the same versatility and performance as DSP based controllers. It is important to have an engineer experienced in microcontroller programming write the software algorithms to achieve optimal performance. Two mixed signal controller designs based on the same 8-bit microcontroller are compar...
Four Quadrants Integrated Transformers for Dual-input Isolated DC-DC Converters
DEFF Research Database (Denmark)
Ouyang, Ziwei; Zhang, Zhe; Andersen, Michael A. E.; Thomsen, Ole Cornelius
2012-01-01
A common limitation of power coupling effect in some known multiple-input dc-dc converters has been addressed in many literatures. In order to overcome this limitation, a new concept for decoupling the primary windings in the integrated multiple-winding transformers based on 3-dimensional (3D) space orthogonal flux is proposed in this letter. And thus a new geometry core and relative winding arrangements are proposed in accordance with the orthogonal flux decoupling technology. Due to the four s...
Dynamic Modelling & Controller Design for Z-Source DC-DC Converter
Directory of Open Access Journals (Sweden)
Shilpa Sarode
2013-04-01
Full Text Available This paper presents the detailed mathematical modeling of Z-source dc-dc converter (ZSC in continuous conduction mode. Transfer function of ZSC is derived based on mathematical modeling with state space averaging method. This paper has been focused on dynamic modeling of open loop transfer function of ZSC along with design of closed loop controller. MATLAB based simulation results are presented for open loop and close loop system of ZSC.
A VHF Class E DC-DC Converter with Self-Oscillating Gate Driver
Andersen, Toke Meyer; Christensen, Søren K.; Knott, Arnold; Andersen, Michael A. E.
2011-01-01
This paper describes the analysis and design of a DC-DC converter topology which is operational at frequencies in the Very High Frequency (VHF) band ranging from 30 MHz ? 300 MHz. The presented topology, which consists of a class E inverter, class E rectifier, and self-oscillating gate driver, is inherently resonant, and switching losses are greatly reduced by ensuring Zero Voltage Switching (ZVS) of the power semiconductor devices. A design method to ensure ZVS operat...
Resonant Boost Dc-Dc Converter for a High Frequency Operation
Tejaswini R,
2013-01-01
With different versions of inverters available, a control of VHF resonant boost dc-dc converter is described in detailed in this paper. Though, a classical Class- ? inverter is well documented in the literature, this is a new version and coupled to resonant rectifier. The twin aspect of any design of resonant boost topology is to mainly feature low device voltage stress and to have high efficiency over wide range of loads. Increased switching frequency allows smaller size of the passive compo...
Uncertainty Analysis of the Conducted Interferences in a DC-DC Converter
Ferber De Vieira Lessa, Moises; Vollaire, Christian; Krähenbühl, Laurent; Vasconcelos, Joao,
2012-01-01
A new methodology to analyze systems in the time and frequency domain, containing large number of uncertain parameters, is presented. As an example, the conducted interferences of a DC-DC Converter with uncertainties in its component values is analyzed. The model has a large number of parameters, which are described by Probability Density Functions (PDF). The output considered is a standard measurement of conducted interferences and its PDF is rapidly determined, when compared to the Monte Ca...
Solar Photovoltaic Powered Sailing Boat Using Buck Converter
Directory of Open Access Journals (Sweden)
Soumya Das
2015-03-01
Full Text Available The main objective of this paper is to establish technical and economical aspects of the application of stand-alone photovoltaic (PV system in sailing boat using a buck converter in order to enhance the power generation and also to minimize the cost. Performance and control of dc-dc converter, suitable for photovoltaic (PV applications, is presented here. A buck converter is employed here which extracts complete power from the PV source and feeds into the dc load. The power, which is fed into the load, is sufficient to drive a boat . With the help of matlab simulink software PV module and buck model has been designed and simulated and also compared with theoretical predictions.
Design and Implementation of Digital Current Mode Controller for DC-DC Converters
DEFF Research Database (Denmark)
Taeed, Fazel
2015-01-01
In the recent decades, shortage of fossil fuels and global warming have increased the demand for renewable energy resources. Dc-dc converters are widely used in renewable energy systems, electric vehicles, and battery chargers. In practical applications, dc-dc converters are required to be regulated by a closed-loop controller. The Peak Current Mode Control (PCMC) is one of the most promising control methods for dc-dc converters. It has been known for high bandwidth (speed), and inherent current protection. Increasing the controller bandwidth decreases the output filter size and cost. Analog controllers (including PCMC) are sensitive to temperature drift, component aging and noise. Digital controllers do not have the aforementioned drawbacks of analog controllers; but they have lower bandwidth than analog controllers due to the sampling and calculation delays. Generally, analog controllers have a bandwidth of 1/10 of the switching frequency. In the current state-of-the-art, the best reported digital PCMC hascrossover frequency of 1/15 of the switching frequency. In this PhD study a novel digital PCMC with negligible delay in the inner current loop has been proposed. The proposed solution has a bandwidth of 1/10 of the switching frequency; which is an improvement of 50% compared to the best reported digital solution, also the achieved crossover frequency is nearly equal to analog controller crossover frequency. Furthermore, the proposed solution offers an adaptive compensation slope; therefore the controlled converter can maintain a high bandwidth over wide range of the operating points. The proposed digital PCMC is modeled and the stability criteria are defined. The digital PCMC is implemented in a Field-Programmable Gate Array (FPGA). The experimental results verify the modeling method and the high predicted bandwidth of the proposed controller. Additionally, the small signal model of the isolated full-bridge boost converter is obtained and the modeling method is verified by experimental results. In modeling, the Equivalent Series Resistance (ESR) of the inductor and capacitor are also included. Analyzing the obtained model reveals that the small values of capacitor and inductor ESR results in a large resonance peak of complex poles in the voltage to duty cycle transfer function. High efficiency dc-dc converters essentially have low ESR in the capacitor and the inductor. Since the complex poles are eliminated in current mode control; applying the current mode control in high efficiency dc-dc converters results in much higher controller bandwidth.
Design & Implementation of Zero Voltage Switching Buck Converter
Directory of Open Access Journals (Sweden)
A.Suresh Kumar
2014-09-01
Full Text Available Zero voltage switching (ZVS buck converter is more preferable over hard switched buck converter for low power, high frequency DC-DC conversion applications. In Zero voltage switching converter, turn on & turn off of a switch occurs at zero voltage that results in lower switching losses. In this converter soft switching is achieved by using resonant components. The optimal values of resonant components are determined by using electric functions derived from circuit configuration. This type of soft switched resonant converter offers very low electromagnetic interference (EMI.This study presents the circuit configuration with least components to realize highly efficient zero voltage switching resonant converter. It’s feasibility is confirmed with the developed proto type model and experimental results are verified.
Viejo de Frutos, Miriam del; Alou Cervera, Pedro; Oliver Ramírez, Jesús Angel; García Suárez, Oscar; Cobos Márquez, José Antonio
2010-01-01
High switching frequency allows the integration of low power DC/DC converters. Although a high switching frequency would make feasible a voltage mode control with 1MHz bandwidth, parasitic effects and robustness don’t allow such a high bandwidth. This paper proposes a fast control to optimize the dynamic response of high frequency DC/DC converters. The proposed control is based on the peak current mode control of the output capacitor current. The output capacitor current loop provides...
DEFF Research Database (Denmark)
Sanjeevikumar, Padmanaban; Grandi, Gabriele; Wheeler, Patrick; Blaabjerg, Frede; Loncarski, J.
2015-01-01
This paper presents the novel topology of Photo Voltaic (PV) power generation system with simple Maximum Power Point Tracking (MPPT) algorithm in voltage operating mode. Power circuit consists of high output voltage DC-DC boost converter which maximizes the output of PV panel. Usually traditional DC-DC boost converters are used for such application, but they are not the most suitable solution due to output limitation, lower efficiency and require more sensors with complex control algorithm. Furt...
Transformerless DC-DC Converter Using Cockcroft-Walton Voltage Multiplier to Obtain High DC Voltage
Directory of Open Access Journals (Sweden)
Meghana G Naik,
2014-11-01
Full Text Available In the present scenario the use of transformer for high voltages in converter circuit reduces the overall operating efficiency due to leakage inductance and use of transformer also increases the operational cost. . Therefore the proposed system is implemented with transformer less DC-DC converter so as to obtain high DC voltage with the use of nine stage Cockcroft-Walton (CW voltage multiplier. The proposed converter operates in CCM (continuous conduction mode, so that the converter switch stress, the switching losses are reduced. The DC voltage at the input of the proposed model is low and is boosted up by boost inductor (Ls in DC-DC converter stage and performs inverter operation. The number of stages in CW-voltage multiplier circuit is applied with low input pulsating DC (AC Voltage voltage where it is getting converted to high DC output voltage. The proposed converter switches operates at two independent frequencies, modulating (fsm andalternating (fsc frequency. The fsm operates at higher frequency of the output while the fsc operates at lower frequency of the desired output voltage ripple and the output ripples can be adjusted by the switch Sc1 and Sc2. The regulation of the output voltage is achieved by controlling the Duty ratio.The simulation is carried over by the MATLABSIMULINK.
An Effective High Step-Up Interleaved DC-DC Converter Photovoltaic Grid Connection System
Directory of Open Access Journals (Sweden)
G. Lakpathi,
2013-09-01
Full Text Available Within the photovoltaic (PV power generation systems in the market, the ac PV module has shown obvious growth. However, a high voltage gain converter is concentrate for the module’s grid connection with dc-ac inverter. This paper proposed a converter that employs a floating active switch to isolate energy from the PV panel when the ac module is OFF; this particular design protects installers and users from electrical hazards. Without extreme duty ratios and numerous turns-ratio of a coupled inductor, this converter achieves a high step-up voltage-conversion ratio; the leakage inductor energy of the coupled inductor is efficiently recycled to the load. These features explain about module’s high-efficiency performance. The detailed operating principles and steady-state analyses of continuous mode is described. A 15 volts produces from photovoltaic which is connects to high step-up dc-dc converter to produces output voltage of 170 volts. The novel proposed system is “an effective high step up interleaved dc-dc converter photovoltaic grid connection system”. In this configuration consists of PV array, high step-up interleaved dc-dc converter and three-phase inverter with grid connected system. In this system, the THD value per phase voltage of three phase inverter output without filter is 1.74% with grid connection system. In this same configuration with 2nd order filter connected of three phase inverter output, the THD value reduced to 0.08%. The results are shown in Matlab/simulink 2009a.
Interleaved Self-Oscillating Class E Derived Resonant DC/DC Converters
DEFF Research Database (Denmark)
Kovacevic, Milovan; Knott, Arnold
2012-01-01
A new method for achieving self-oscillating, self-interleaved operation of class E derived resonant DC/DC converters is presented. The proposed method is suitable for operation at frequencies in the Very High Frequency (VHF) band. Interleaved and self-oscillating modes of operation are achieved at the same time with very small number of additional passive components in the interconnection network. To verify the proposed technique, a 110MHz prototype resonant boost converter was designed; experimental results and comparison with SPICE simulation are presented. Peak measured efficiency was 89% in continuous operation.
High-Temperature SOI/SiC-Based DC-DC Converter Suite
Alexander B. Lostetter; Roberto M. Schupbach; Jared Hornberger; Robert Shaw; Brice McPherson; Bradley A. Reese
2008-01-01
A complete design strategy (mechanical and electrical) for a 25Ã¢Â€Â‰W 28Ã¢Â€Â‰V/5Ã¢Â€Â‰V dc-dc converter utilizing SiC and SOI electronics is presented. The converter includes a high-temperature SOI-based PWM controller featuring 150Ã¢Â€Â‰kHz operation, a PID feedback loop, maximum duty cycle limit, complementary or symmetrical outputs, and a bootstrapped high-side gate driver. Several passive technologies were inves...
Bidirectional buck boost converter
Esser, Albert Andreas Maria (Niskayuna, NY)
1998-03-31
A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.
An Efficient High Gain DC-DC Converter for Automotive Applications
Directory of Open Access Journals (Sweden)
Aiswarya T.M.
2015-06-01
Full Text Available This paper presents a high gain DC-DC converter which uses a clamp circuit to achieve soft switching. The proposed converter is designed to supply a high intensity discharge (HID lamp used in automobile head lamps. The converter operates from a 12V input supply and provides an output voltage of 120V at 35W output power. A clamp circuit consisting of a clamp capacitor, clamp switch and resonant inductor will help to achieve zero voltage switching (ZVS of the both main and clamp switches. The practical performance of the converter was validated through experimental results. Results obtained from the prototype hardware prove that the converter meets the requirements of HID lamp application and can be a very good alternative to existing converters.
The PEM Fuel Cell System with DC/DC Boost Converter: Design, Modeling and Simulation
A. Kirubakaran; Jain, Shailendra; R. K. NEMA
2010-01-01
The fuel cells are considered as one of the most promising devices for standalone/grid connected distributed generations (DGs) due to its cleanliness, modularity and higher potential capability. The barriers in the widespread use of fuel cells are their slow response for sudden load changes and higher installation cost. In this paper a simulation study of dynamic behavior of NexaTM 1.2kW PEM fuel cell with DC/DC boost converter is carried out for compact design of PCU. The necessity for the r...
Comparison of two different high performance mixed signal controllers for DC/DC converters
DEFF Research Database (Denmark)
Jakobsen, Lars TØnnes; Andersen, Michael Andreas E.
2006-01-01
This paper describes how mixed signal controllers combining a cheap microcontroller with a simple analogue circuit can offer high performance digital control for DC/DC converters. Mixed signal controllers have the same versatility and performance as DSP based controllers. It is important to have an engineer experienced in microcontroller programming write the software algorithms to achieve optimal performance. Two mixed signal controller designs based on the same 8-bit microcontroller are compared both theoretically and experimentally. A 16-bit PID compensator with a sampling frequency of 200 kHz implemented in the 16 MIPS, 8-bit ATTiny26 microcontroller is demonstrated.
Fuzzy control of the DC-DC converter used as power interface for a fuel cell
International Nuclear Information System (INIS)
In this paper it is analyzed a feed-forward fuzzy control for PWM control of the DC-DC converter using a fuel cell as energy source. For a dynamic load the fuel cell output voltage vary in large DC range and the high DC voltage stabilization can not be a difficult task. The advantages of the forward loop after the fuel cell output voltage concerning the stability and robustness of fuzzy control are compared with the best results obtained using a well designed proportional-integral control. The Simulink models for the used blocks, simulation results, and some design consideration are presented, too. (authors)
COMPARISON OF PID TUNING TECHNIQUES FOR CLOSED LOOP CONTROLLER OF DC-DC BOOST CONVERTER
Directory of Open Access Journals (Sweden)
Apekshit Bhowate
2015-02-01
Full Text Available The capability of PID controller to withstand practical industrial problems has led to its inclusive acceptance in industries and academics. It has been observed that PID controller tuning is quite difficult by classical methods using graphs and mathematical analysis. In this paper, PID theory is briefly summarized and some standard tuning methods are discussed using MATLAB. Accordingly compensator transfer function is derived by different methods and compared based on the steady state response and system characteristics. This effort inspects which method is best for conventional DC-DC boost converter.
Directory of Open Access Journals (Sweden)
Abdul kareem
2011-04-01
Full Text Available Both Soft computing based controllers and sliding mode controllers have been utilized to regulate the output voltage of dc-dc converters in response to changes in the load and the input voltage. Although both control techniques possess desirable characteristics, they have disadvantages which prevent them from being applied extensively. Many researchers have proposed the combination of sliding mode control and Soft computing based control to combine the advantages of both control techniques. In literature survey, it is found that the combination of the methods are proposed so that sliding mode algorithm is used in the design of Soft computing based controllers and the inputs to the controller are error and change in error and the inherent stability property of sliding mode controller is not utilized. This paper presents a novel soft computing based sliding mode controller in which inputs are switching function and change in switching function which combines the advantages of soft computing based controllers, sliding mode controllers and integral controllers. Since soft computing is used in the design of sliding mode controller, the stability of the proposed controller is assured. In addition, it is well suited for digital control design and implementation. The proposed controller has been designed for a buck converter and the controller is able to obtain the desired transient response without causing chattering and error under steady-state conditions. The proposed controller is able to give robust performance in terms of rejection to input voltage variations and load variations.
Two-Phase Interleaved Buck Converter with a new Digital Self-Oscillating Modulkator
Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.
2007-01-01
This paper presents a new Digital Self-Oscillating Modulator (DiSOM) for DC/DC converters. The DiSOM modulator alllows the digital control algorithm to sample the output voltage at a sampling frequency higher than the converter switching frequency. This enables higher control loop bandwidth than for traditional digital PWM modulators given a certain switching frequency. A synchronised version of the DiSOM modulator is derived for interleaved converters. A prototype interleaved Buck convert...
Analysis of Discontinuity Induced Bifurcations in a Dual Input DC-DC Converter
Giaouris, Damian; Banerjee, Soumitro; Mandal, Kuntal; Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; El Aroudi, Abdelali
DC-DC power converters with multiple inputs and a single output are used in numerous applications where multiple sources, e.g. two or more renewable energy sources and/or a battery, feed a single load. In this work, a classical boost converter topology with two input branches connected to two different sources is chosen, with each branch independently being controlled by a separate peak current mode controller. We demonstrate for the first time that even though this converter is similar to other well known topologies that have been studied before, it exhibits many complex nonlinear behaviors that are not found in any other standard PWM controlled power converter. The system undergoes period incrementing cascade as a parameter is varied, with discontinuous hard transitions between consecutive periodicities. We show that the system can be described by a discontinuous map, which explains the observed bifurcation phenomena. The results have been experimentally validated.
A VHF Class E DC-DC Converter with Self-Oscillating Gate Driver
DEFF Research Database (Denmark)
Andersen, Toke Meyer; Christensen, SØren K.
2011-01-01
This paper describes the analysis and design of a DC-DC converter topology which is operational at frequencies in the Very High Frequency (VHF) band ranging from 30 MHz ? 300 MHz. The presented topology, which consists of a class E inverter, class E rectifier, and self-oscillating gate driver, is inherently resonant, and switching losses are greatly reduced by ensuring Zero Voltage Switching (ZVS) of the power semiconductor devices. A design method to ensure ZVS operation when combining the inverter, rectifier, and gate driver is provided. Several parasitic effects and their influence on converter operation are discussed, and measurement results of a 100 MHz prototype converter are presented and evaluated. The designed prototype converter verifies the described topology.
Y-Source Boost DC/DC Converter for Distributed Generation
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Loh, Poh Chiang
2015-01-01
This paper introduces a versatile Y-source boost dc/dc converter intended for distributed power generation, where high gain is often demanded. The proposed converter uses a Y-source impedance network realized with a tightly coupled three-winding inductor for high voltage boosting that is presently unmatched by existing impedance networks. The proposed converter also has more variables for tuning the required gain and, hence, more degrees of freedom for meeting design constraints. These capabilities have been demonstrated by mathematical derivation and experimental testing. For the experiments, a 300-W prototype has been built in the laboratory using silicon carbide devices for better efficiency. The prototype has been tested with a regulated power supply, before operating it with a high-temperature proton-exchange-membrane fuel cell. Results obtained confirm the practicality and performance of the proposed converter.
Four Quadrants Integrated Transformers for Dual-input Isolated DC-DC Converters
DEFF Research Database (Denmark)
Ouyang, Ziwei; Zhang, Zhe
2012-01-01
A common limitation of power coupling effect in some known multiple-input dc-dc converters has been addressed in many literatures. In order to overcome this limitation, a new concept for decoupling the primary windings in the integrated multiple-winding transformers based on 3-dimensional (3D) space orthogonal flux is proposed in this letter. And thus a new geometry core and relative winding arrangements are proposed in accordance with the orthogonal flux decoupling technology. Due to the four secondary windings are arranged in a quadratic pattern at the base core plate with the two perpendicular primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any timemultiplexing scheme, which can optimize the utilization of input sources, simplify the system structure and reduce the overall cost, so they are attractive for the hybrid renewable power system. Section IV initiates a discussion for the advantages of the FQIT. In order to verify the feasibility of the FQIT in multiple-input converter, a dualinput isolated boost dc-dc converter with the FQIT is designed and tested. The results have excellently demonstrated that the two input power stages can be operated independently and the correctness of all the analysis in the letter.
Chien-Wei Ma; Jaw-Kuen Shiau
2013-01-01
This paper analyzes and simulates the Li-ion battery charging process for a solar powered battery management system. The battery is charged using a non-inverting synchronous buck-boost DC/DC power converter. The system operates in buck, buck-boost, or boost mode, according to the supply voltage conditions from the solar panels. Rapid changes in atmospheric conditions or sunlight incident angle cause supply voltage variations. This study develops an electrochemical-based equivalent circuit mod...
Analysis and design of a high-ef?ciency zero-voltage-switching step-up DC–DC converter
Indian Academy of Sciences (India)
Jae-Won Yang; Hyun-Lark Do
2013-08-01
A high-ef?ciency zero-voltage-switching (ZVS) step-up DC–DC converter is proposed. The proposed ZVS DC–DC step-up converter has ?xed switching frequency, simple control, and high ef?ciency. All power switches can operate with ZVS. The output diodes are under zero-current-switching (ZCS) during turn-off. Due to soft-switching operation of the power switches and output diodes, the proposed ZVS DC–DC converter shows high ef?ciency. Steady-state analysis of the converter is presented to determine the circuit parameters. A laboratory prototype of the proposed converter is developed, and its experimental results are presented for validation.
Comparison of MPPT Algorithms for DC-DC Converters Based PV Systems
Directory of Open Access Journals (Sweden)
A.PRADEEP KUMAR YADAV
2013-01-01
Full Text Available The comparative study between two most popular algorithms technique which is incremental conductance algorithm and perturbs and observe algorithm. Two different converters buck and boost converter use for comparative in this study. Few comparison such as voltage, current and power output for each different combination has been recorded.MATLAB Simulink tools have been used for performance evaluation on energy point.
Comparison of MPPT Algorithms for DC-DC Converters Based PV Systems
A.PRADEEP KUMAR YADAV; S.THIRUMALIAH; G.HARITHA
2013-01-01
The comparative study between two most popular algorithms technique which is incremental conductance algorithm and perturbs and observe algorithm. Two different converters buck and boost converter use for comparative in this study. Few comparison such as voltage, current and power output for each different combination has been recorded.MATLAB Simulink tools have been used for performance evaluation on energy point.
A new DC-DC converter technology suitable to support grid connection of wave power energy converter
Back, Erik
2012-01-01
Since 2002, the department of electricity at Uppsala university has pushed the Lysekil project. The project has a number of wave energy converters installed in the sea southwest of Lysekil. The purpose of this work is to design, build and test a DC-DC converter, which will later be used as a necessary part of the grid connection of a wave energy converter. Since a wave energy converter does not generate electricity at a constant frequency, it is not possible to use a gearbox. Instead, power i...
Time delay control for fuel cells with bidirectional DC/DC converter and battery
Energy Technology Data Exchange (ETDEWEB)
Kim, Y.B. [Mechanical Engineering Department, Chonnam National University, Gwangju (Korea); Kang, S.J. [Mechatronics Engineering Department, Korea Polytechnic College V, Gwangju (Korea)
2010-08-15
Transient behavior is a key property in the vehicular application of proton exchange membrane (PEM) fuel cells. A better control technology is constructed to increase the transient performance of PEM fuel cells. A steady-state isothermal analytical fuel cell model is constructed to analyze mass transfer and water transport in the membrane. To prevent the starvation of air in the PEM fuel cell, time delay control is used to regulate the optimum stoichiometric amount of oxygen, although dynamic fluctuations exist in the PEM fuel cell power. A bidirectional DC/DC converter connects the battery to the DC link to manage the power distribution between the fuel cell and the battery. Dynamic evolution control (DEC) allows for adequate pulse-width modulation (PWM) control of the bidirectional DC/DC converter with fast response. Matlab/Simulink/Simpower simulation is performed to validate the proposed methodology, increase the transient performance of the PEM fuel cell system and satisfy the requirement of energy management. (author)
A Stable Control Strategy for Input-Series Output-Series Connected Boost half Bridge DC-DC Converter
Directory of Open Access Journals (Sweden)
Shahnawaz Farhan Khahro
2013-07-01
Full Text Available Boost half bridge DC-DC converters in the combination of an input-series and output-series (ISOS connected configuration with a stable control strategy has been investigated in this paper. A stable control strategy comprises of two loops that are current loop and voltage loop. The reference to the current loop has been chosen from the input side of the DC-DC converter. The reference to the voltage loop has been selected from the output side of the DC-DC converter. Such a reference makes the circuit configuration simple, easy and eventually results in reduced cost. The control strategy for input-series output-series (ISOS configuration of DC-DC converters is proposed to achieve equal input voltage sharing (IVS as well output voltage sharing (OVS. Furthermore, in this paper, the performance of the stable control strategy for input-series output-series (ISOS boost half bridge DC-DC converter has been observed not only for the fixed but also for the varying and continuously varying load. The proposed Stable control scheme has been developed by modeling it on MATLAB using Simulink and Simpower toolboxes. The operation of the proposed stable control strategy has been found to be satisfactory.
Systematic design approach of fuzzy PID stabilizer for DC-DC converters
International Nuclear Information System (INIS)
DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control
Isolated Bidirectional Full-Bridge DC–DC Converter with a Flyback Snubber
Directory of Open Access Journals (Sweden)
Chitanya
2013-05-01
Full Text Available An isolated bidirectional full-bridge dc–dc converter with high conversion ratio, high output power, and soft start-up capability is proposed in this paper. The use of a capacitor, a diode, and a flyback converter can clamp the voltage spike caused by the current difference between the current-fed inductor and leakage inductance of the isolation transformer, and can reduce the current flowing through the active switches at the current-fed side. Operational principle of the proposed converter is first described, and then, the design equation is derived. A 1.5-kW prototype with low-side voltage of 48 V and high-side voltage of 360 V has been implemented, from which experimental results have verified its feasibility.
A High Voltage-lift Efficient Isolated Full Bridge DC-DC Converter
Directory of Open Access Journals (Sweden)
A. Gopi
2014-05-01
Full Text Available The aim of this study is to propose a high voltage lift isolated full bridge dc-dc converter. The proposed converter consists of an isolation transformer a low turn ratio to obtain high step up voltage gain. The secondary of the transformer connected with two boosting capacitors which connects parallel when power switches switch on period and discharged in series during the switch off period. In addition full bridge converter on primary side consists of clamping diode and capacitor, leakage energy is recycled there by improving conversion efficiency. The proposed circuits simulated using PSIM software form input voltage of 48V, an output of 410 V obtained. These results and operations experimented and validated by implementing in hardware model at 20/40 Vdc, 20 Watts.
Design of a total-dose radiation hardened monolithic CMOS DC-DC boost converter
International Nuclear Information System (INIS)
This paper presents the design and implementation of a monolithic CMOS DC-DC boost converter that is hardened for total dose radiation. In order to improve its radiation tolerant abilities, circuit-level and device-level RHBD (radiation-hardening by design) techniques were employed. Adaptive slope compensation was used to improve the inherent instability. The H-gate MOS transistors, annular gate MOS transistors and guard rings were applied to reduce the impact of total ionizing dose. A boost converter was fabricated by a standard commercial 0.35 ?m CMOS process. The hardened design converter can work properly in a wide range of total dose radiation environments, with increasing total dose radiation. The efficiency is not as strongly affected by the total dose radiation and so does the leakage performance. (semiconductor integrated circuits)
Scientific Electronic Library Online (English)
Fredy Hernán, Martínez Sarmiento; Mariela, Castiblanco Ortíz.
2009-12-01
Full Text Available El control de convertidores DC/DC, topologías utilizadas ampliamente en la reducción activa de contenido armónico para equipo monofásico no lineal de baja potencia, plantea grandes retos de diseño debido a lo complejo del modelo matemático y su característica dinámica altamente no lineal. Técnicas d [...] e inteligencia artificial como las redes neuronales, suponen grandes mejoras en el diseño y desempeño final, dada su capacidad de aprender dinámicas complejas y generalizar su comportamiento. La motivación de este trabajo fue la de plantear (y posteriormente evaluar la respuesta dinámica) un lazo de control directo con redes neuronales, que permitiera adicionalmente eliminar elementos de prueba y error en su diseño. Se propone un control directo basado en red neuronal artificial, cuyo diseño se realizó de forma óptima utilizando modelos de búsqueda bioinspirada, esto para optimizar simultáneamente dos aspectos diferentes pero fundamentales de la red: la arquitectura y los pesos de las conexiones. El control es aplicado a un convertidor boost. Los resultados obtenidos permiten observar el desempeño dinámico del esquema, para el cual los tiempos de respuesta y los delta de voltaje en la salida permiten concluir que los criterios seleccionados para el diseño del control son apropiados y representan un aporte en el desarrollo de aplicaciones de control de sistemas conmutados DC/DC. Abstract in english Controlling DC/DC converters (topologies widely used in the active reduction of harmonic content for singlephase nonlinear low power equipment) raises great design challenges due to the mathematical model's complexity and its highly nonlinear dynamic characteristics. Artificial intelligence techniqu [...] es, such as neuronal networks, suppose great improvements in design and final performance, given their capacity for learning complex dynamics and generalising their behaviour. This work was aimed at proposing (and evaluating dynamic response later on) direct control link with neuronal networks which also allowed eliminating test elements and error in its design. Artificial neuronal networkbased direct control was designed as well as possible using bioinspired search models. This simultaneously optimised two different but fundamental aspects of the network: architecture and the weight of the connections. The control was applied to a boost converter. The results led to observing the scheme's dynamic performance; response time and exit voltage delta led to concluding that the criteria selected for designing the control were appropriate and represented a contribution towards developing control applications of DC/DC switchmode systems.
Design and Simulation of a soft switching scheme for a dc-dc Boost Converter with pi controller
X.Felix Joseph; S.Pushpa Kumar; D.Arun Dominic; D.M.Mary Synthia Regis Prabha
2010-01-01
This paper presents the design of simple but powerful soft switching scheme for a DC-DC Boost Converter with a closed loop control. A new novel soft switching scheme is proposed with a single switch and minimum components which offers load independent operations. The only switch used in this converter is switched ON at zero current and switched OFF at zero voltage .The proposed Controller is used to improve the dynamic performance of DC-DC converter by achieving a robust output voltage agains...
Okuda, Tatsuya; Urakabe, Takahiro; Tsunoda, Yoshikazu; Kikunaga, Toshiyuki; Iwata, Akihiko
A novel technique for reducing the ripple current in a DC link capacitor by harmonic control of the DC/DC converter and PWM inverter is proposed in this paper. The proposed technique synchronizes the switching frequencies of the PWM inverter and the DC/DC converter and optimizes the phase difference of the carrier waveforms between them. The effectiveness of our technique is shown by simulation and an experiment conducted with a 10-kW PM motor drive system. In comparison to the conventional technique, the proposed technique reduces the ripple current in the DC link capacitor by 20-40% in a PWM inverter drive system with a DC/DC converter.
Park, Jungyong; Kim, Shiho
2012-06-01
An analog maximum power point tracking (MPPT) circuit for a thermoelectric generator (TEG) is proposed. We show that the peak point of the voltage conversion gain of a boost DC-DC converter with an input voltage source having an internal resistor is the maximum power point of the TEG. The key characteristic of the proposed MPPT controller is that the duty ratio of the input clock pulse to the boost DC-DC converter shifts toward the maximum power point of the TEG by seeking the peak gain point of the boost DC-DC converters. The proposed MPPT technique provides a simple and useful analog MPPT solution, without employing digital microcontroller units.
Conventional control and fuzzy control of a dc-dc converter for machine drive
Energy Technology Data Exchange (ETDEWEB)
Radoi, C.; Florescu, A. [Department of Power Electronics `Politecnica` University Bucharest (Romania)
1997-12-31
Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. The paper describes an application of fuzzy logic in speed control system that uses a dc-dc converter. The fuzzy control is used to linearize the family of external characteristics of the converter in discontinuous-conduction mode occurring at light load and/or high speed. In order to compare the conventional control with the fuzzy logic control, algorithms have been developed in detail and verified by Microsoft Excel simulation. The simulation study indicates that fuzzy control is a good alternative for conventional control methods, being used particularly in non-linear complex systems ill defined or totally unknown. Where the mathematical model exists, it is useful. The applications of fuzzy set theory in power electronics are almost entirely new; fuzzy logic seems to have a lot of premises in the large industrial control field. (orig.) 2 refs.
Multistability and Torus Reconstruction in a DC–DC Converter With Multilevel Control
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai T.; Mosekilde, Erik
2013-01-01
By virtue of their limited size and relatively low costs, multilevel dc-dc converters have come to play an important role in modern industrial power supply systems. When operating in a regime of high corrector gain, such converters can display a variety of new dynamic phenomena associated with the appearance of additional oscillatory modes. Starting in a state where four pairs of stable and unstable period-6 cycles coexist with the basic period-1 cycle, the paper describes a sequence of smooth and nonsmooth bifurcations through which the cycles and their basins of attraction transform as the output voltage is increased. The paper also describes the birth of a multilayered resonance torus through a transverse pitchfork bifurcation of the saddle cycle on an ordinary resonance torus.
High Step-Up DC-DC Converter for Distributed Generation System
Directory of Open Access Journals (Sweden)
V.K. Jayakrishnan
2013-08-01
Full Text Available This study proposes a method which consists of High step up DC-DC converter with a coupled inductor for distributed generation system. Theoretically the conventional boost converter provides high step up voltage gain but in practical it is limited by reverse recovery problem of diode, effective series impedance of inductors and capacitors and switching losses. High charged current and conduction losses occur in the switch when voltage lift and switched capacitor techniques are used. In the proposed strategy a coupled-inductor and two capacitors is utilized to achieve high step-up voltage gain. High power loss and voltage spike on the switch is avoided using passive clamp circuit that recycles the leakage inductor energy. The operating principle and steady-state analysis are discussed. The Proposed topology was simulated using PSPICE SOFTWARE and the following results were obtained. For an input voltage of 24V, an output of 333V was obtained.
A 10 kW dc-dc converter using IGBTs with active snubbers. [Insulated Gate Bipolar Transistor
Masserant, Brian J.; Shriver, Jeffrey L.; Stuart, Thomas A.
1993-01-01
This full bridge dc-dc converter employs zero voltage switching (ZVS) on one leg and zero current switching (ZCS) on the other. This technique produces exceptionally low IGBT switching losses through the use of an active snubber that recycles energy back to the source. Experimental results are presented for a 10 kW, 20 kHz converter.
Directory of Open Access Journals (Sweden)
Sugandhra Pal Singh
2014-07-01
Full Text Available In this paper, we study on buck dc/dc converter of high efficiency by soft switching technique. The paper will focus on modeling, analysis, and design and simulation buck converter architecture. The converter is designed in CCM (continuous conduction mode. The voltage mode control strategy is proposed by using pulse width modulation (PWM with a proportional-integral (PI. The effectiveness of the step down converter is verified through simulation results using control oriented simulator like MATLAB/Simulink tools. The circuit operation, designs and simulation results are mentioned in this paper.
Closed loop control of ZVS half bridge DC-DC converter with DCS PWM Control
Directory of Open Access Journals (Sweden)
JANAPATI SIVAVARA PRASAD
2012-10-01
Full Text Available
The main drawback of the conventional symmetric control is that both primary switches in the converter operate at hard switching condition. Moreover, during the off-time period of two switches, the oscillation between the transformer leakage inductance and junction capacitance of the switches results in energy dissipation and electromagnetic interference (EMI emissions due to reverse recovery of MOSFETs body diodes. The asymmetric (complementary control was proposed to achieve ZVS operation for HB switches. However, asymmetric stresses distribution on the corresponding components may occur due to the asymmetric duty cycle distribution for the two primary switches. A new control scheme, to be known as duty-cycle shifted PWM (DCS PWM control, is proposed and applied to the conventional HB dc–dc converters to achieve ZVS for both the switches without adding extra components and without adding asymmetric penalties of the complementary control. The concept of this new control scheme is shifting one of the two symmetric PWM driving signals close to the other, such that ZVS may be achieved for the lagging switch due to the shortened resonant interval. Moreover, based on the DCS PWM control, a new half-bridge topology is proposed to achieve ZVS for both the main switches and auxiliary switch by adding an auxiliary switch and diode in the proposed half bridge. ZVS for the switch is achieved by utilizing the energy trapped in the leakage inductance. There are two control schemes. One is open loop and the other is closed loop. In open loop scheme, the given dc-dc converter is operating under disturbance. This disturbance effect is eliminated in closed loop scheme.
Y-source impedance-network-based isolated boost DC/DC converter
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Town, Graham
2014-01-01
A dc-dc converter with very high voltage gain is proposed in this paper for any medium-power application requiring a high voltage boost with galvanic isolation. The proposed converter topology can be realized using only two switches. With this topology a very high voltage boost can be achieved even with a relatively low duty cycle of the switches, and the gain obtainable is presently not matched by any existing impedance network based converter operated at the same duty ratio. The proposed converter has a Y-source impedance network to boost the voltage at the intermediate dc-link side and a push-pull transformer for square-wave AC inversion and isolation. The voltage-doubler rectifier provides a constant dc voltage at the output stage. A theoretical analysis of the converter is presented, supported by simulation and experimental results. A 250 W down-scaled prototype was implemented in the laboratory to demonstrate the feasibility and performance of the proposed converter topology.
Resonant Boost Dc-Dc Converter for a High Frequency Operation
Directory of Open Access Journals (Sweden)
Tejaswini R,
2013-07-01
Full Text Available With different versions of inverters available, a control of VHF resonant boost dc-dc converter is described in detailed in this paper. Though, a classical Class- ? inverter is well documented in the literature, this is a new version and coupled to resonant rectifier. The twin aspect of any design of resonant boost topology is to mainly feature low device voltage stress and to have high efficiency over wide range of loads. Increased switching frequency allows smaller size of the passive components, allowing one to use air-core magnetic, and thereby reducing core loss. The output is regulated by MPPT controller. The performance analysis was carried out on MATLAB/Simulink platform and performance characteristics are presented along with the values of components.
DC / DC Converter for the conditioning of the photovoltaic energy - modeling and command strategy
Directory of Open Access Journals (Sweden)
Z. SABIRI
2015-02-01
Full Text Available Demand for energy, especially electricity, throughout the world, is increasingly growing rapidly. Renewable energy: wind, solar, geothermal, and hydroelectric and biomass provides substantial benefits for our climate, our health, and our economy. However it needs more investigations in terms of research. A special attention should be given on the optimization of energy production and its own integration in grids especially when the resources become multiple. The contribution of our researches is to study the technical and physical aspects to optimize the energy management in a multi-source system dedicated to rural area applications. The multi-source system is based on photovoltaic panels, wind turbine, solar PV and storage batteries. In this paper, we present the modeling and simulation of the part composed of photovoltaic source and its DC / DC converter.
Multistability and hidden attractors in a multilevel DC/DC converter
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai T.; Mosekilde, Erik
2015-01-01
An attracting periodic, quasiperiodic or chaotic set of a smooth, autonomous system may be referred to as a "hidden attractor" if its basin of attraction does not overlap with the neighborhood of an unstable equilibrium point. Historically, this condition has implied that the basin of attraction for the hidden set in most cases has been so complicated that special analytic and/or numerical techniques have been required to locate the set. By simulating the model of a multilevel DC/DC converter that operates in the regime of high feedback gain, the paper illustrates how pulse-width modulated control can produce complicated structures of attracting and repelling states organized around the basic switching cycle. This leads us to suggest the existence of hidden attractors in such systems as well. In this case, the condition will be that the basin of attraction does not overlap with the fixed point that represents the basic switching cycle.
Energy Technology Data Exchange (ETDEWEB)
Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank
2012-09-01
In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements
High Step up DC-DC Converter with PID Controller for Photovoltaic Applications
Directory of Open Access Journals (Sweden)
Rakesh Kumar Goudanaikar
2014-06-01
Full Text Available From the literature survey, it is observed that the need of ac photovoltaic modules in photovoltaic (PV power-generation market has increased. However, the important aspect is a requirement of a high voltage gain converter for the module’s grid connection through a dc–ac inverter. A high step up dc-dc converter using PI controller is proposed and presented in this paper. Further, the converter proposed in this paper employs a floating active switch, which is designed to isolate the dc current from the PV panel when the ac module is off-grid as well as in the non-operating condition. This isolation will ensure the operation of the internal components without any residential energy being transferred to the output or input terminal,. The PI controller is used in feedback in order to speed-up the response. The converter achieves a high step-up voltage-conversion ratio without extreme duty ratio and the numerous turns-ratios of a coupled inductor. The leakage inductor energy of the coupled inductor is efficiently recycled to the load. The proposed converter model along with PI controller is modeled using SIMULINK and the simulation results are presented in this paper to authenticate the proposed scheme.
Mishima, Tomokazu; Hiraki, Eiji; Nakaoka, Mutsuo
This paper presents a novel Zero Current Switching (ZCS)-PWM controlled half-bridge DC-DC converter with High-Frequency (HF)-link. The newly-proposed soft switching DC-DC converter consists of a multi-resonant half-bridge HF-isolated inverter controlled by an asymmetrical PWM scheme and a center-tapped diode rectifier with a choke input filter. In order to attain the wide range of soft-commutation under the condition of constant switching frequency, the single Active Edge-Resonant Cell (AERC) that is composed of a lossless inductor and a switched resonant capacitor is originally employed for the half-bridge inverter arm, providing and assisting ZCS operations in the switching power devices. The ZCS-PWMDC-DC converter treated here is evaluated in experiments using the 800 W-55 kHz prototype. The practical effectiveness of the proposed soft switching DC-DC converter is actually demonstrated and discussed with the experimental results under open loop and closed loop configurations. Finally, the feasibility of the DC-DC converter topology is discussed from the view points of the high efficiency and high power density.
Garcerá Sanfeliú, Gabriel; González Medina, Raul; Figueres Amorós, Emilio; Sandia Paredes, Jesús
2012-01-01
In photovoltaic (PV) double-stage grid-connected inverters a high-frequency DC-DC isolation and voltage step-up stage is commonly used between the panel and the grid-connected inverter. This paper is focused on the modeling and control design of DC-DC converters with Peak Current mode Control (PCC) and an external control loop of the PV panel voltage, which works following a voltage reference provided by a maximum power point tracking (MPPT) algorithm. In the proposed overall control structur...
High efficiency and low electromagnetic interference boost DC-DC converter
Yajun, Li; Xinquan, Lai; Qiang, Ye; Bing, Yuan
2014-04-01
A synchronous boost DC-DC converter with an adaptive dead time control (DTC) circuit and anti-ringing circuit is presented. The DTC circuit is used to provide adjustable dead time and zero inductor current detection for power transistors and therefore, a high efficiency is achieved by minimizing power losses, such as the shoot-through current loss, the body diode conduction loss, the charge-sharing loss and the reverse inductor current loss. Simultaneously, a novel anti-ringing circuit controlled by the switching sequence of power transistors is developed to suppress the ringing when the converter enters the discontinuous conduction mode (DCM) for low electromagnetic interference (EMI) and additional power savings. The proposed converter has been fabricated in a 0.6 ?m CDMOS technology. Simulation and experimental results show that the power efficiency of the boost converter is above 81% under different load currents from 10 to 250 mA and a peak efficiency of 90% is achieved at about 100 mA. Moreover, the ringing is easily suppressed by the anti-ringing circuit and therefore the EMI noise is attenuated.
DEFF Research Database (Denmark)
Ouyang, Ziwei; Zhang, Zhe
2011-01-01
In most power electronics converters, the overall volume is mainly determined by the number of parts and the size of passive components. Integrated magnetics and planar magnetics techniques therefore have been an excellent option in order to reduce the counts and the size of magnetic components, hereby increasing the power density of converters. In this paper, a new planar integrated magnetics (PIM) module for a phase-shift plus duty cycle controlled hybrid bi-directional dc-dc converter is proposed, which assembles one boost inductor and two transformers into an E-I-E core geometry, reducing the number of parts, the total volume of converter, as well as the total core loss of the magnetic components. AC losses in the windings and leakage inductance of the transformers are kept low by interleaving the primary and secondary turns of the transformers. To verify the validity of the design approach and theoretical analysis, a lab prototype employing the PIM module is implemented for a fuel cell application with 20~40 V input voltage and 400 V output voltage. Detailed results from the experimental comparisons demonstrate that the PIM module is fully functional and electromagnetically equivalent to the discrete magnetics and a significant reduction of size can be achieved by using the PIM module.
Dynamic analysis of the input-controlled buck converter fed by a photovoltaic array
Directory of Open Access Journals (Sweden)
Marcelo Gradella Villalva
2008-12-01
Full Text Available The control of the input voltage of DC-DC converters is frequently required in photovoltaic applications. In this special situation, unlike conventional converters, the output voltage is constant and the input voltage is controlled. This paper deals with the analysis and the control of the buck converter with constant output voltage and variable input.O controle da tensão de entrada de conversores DC-DC é freqüentemente necessário em aplicações com energia fotovoltaica. Nesta situação especial, diferentemente do que ocorre com conversores convencionais, a tensão de saída é constante e a tensão de entrada é variável. Este artigo versa sobre a análise e o controle do conversor buck com tensão de saída constante e tensão de entrada variável.
DEFF Research Database (Denmark)
Nami, A.; Zare, F.
2010-01-01
This study presents a new DC DC multi-output boost (MOB) converter which can share its total output between different series of output voltages for low- and high-power applications. This configuration can be utilised instead of several single output power supplies. This is a compatible topology for a diode-clamed inverter in the grid connection systems, where boosting low rectified output-voltage and series DC link capacitors is required. To verify the proposed topology, steady-state and dynamic analyses of a MOB converter are examined. A simple control strategy has been proposed to demonstrate the performance of the proposed topology for a double-output boost converter. The topology and its control strategy can easily be extended to offer multiple outputs. Simulation and experimental results are presented to show the validity of the control strategy for the proposed converter.
Design Of Vswt With Lcl Resonant Dc-dc Converters For Rl Load
M. Vijaya Kumar; M. Annamalai
2012-01-01
This paper deals with design of variable speed wind turbine (VSWT) with LCL resonantDC-to-DC converter for stand-alone wind energy system with RL load. The wind turbinesystem consists of synchronous generator (SG), full bridge diode rectifier, buck DC- DCconverter and inverter with RL load is present. Based on this electrical model, a Simulinkmodel of the system are simulated by using MATLAB Simulink power system blocks. Thisconverter has advantages like reduced transformer size, reduced filt...
High-voltage boost quasi-Z-source isolated DC/DC converter
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Blaabjerg, Frede
2014-01-01
A high-voltage gain two-switch quasi-Z-source isolated DC/DC converter has been presented in this study. It consists of a quasi-Z-source network at its input, a push-pull square-wave inverter at its middle, and a voltage-doubler rectifier at its output. When coordinated appropriately, the new converter uses less switches, a smaller common duty cycle and less turns for the transformer when compared with existing topologies. Its size and weight are therefore smaller, whereas its efficiency is higher. It is therefore well-suited for applications, where a wide range of voltage gain is required like renewable energy systems, DC power supplies found in telecom, aerospace and electric vehicles. To demonstrate the performance of the proposed converter, a 400 V, 500 W prototype has been implemented in the laboratory. Efficiency of the prototype measured is found to vary from 89.0 to 97.4% when its input voltage changes from 44 to 82 V at full load.
Basic circuits to design switched-based DC-DC converters
Scientific Electronic Library Online (English)
F, Sandoval-Ibarra; J.R, Mercado-Moreno; L.H, Urióstegui-Vázquez.
2007-12-01
Full Text Available El propósito de este artículo es doble. Por un lado, se presentan conceptos básicos de circuitos conmutados para diseñar un convertidor CD-CD y, por el otro, se rescatan definiciones de electrónica de potencia asociadas a redes eléctricas simples. En el análisis de esas redes es necesario tomar en c [...] uenta no solo las no idealidades de los convertidores sino también cómo minimizar pérdidas de potencia. Porque las perdidas de potencia pueden ser minimizadas aumentando la frecuencia de reloj de los convertidores conmutados, se presentan resultados experimentales de generadores de reloj. Estos circuitos fueron implementados con componentes de bajo costo Abstract in english The purpose of this paper is twofold. On one hand, basics on switched circuits for designing a DC-DC converter are presented and, on the other hand, power electronics definitions associated with simple electrical networks are mentioned. In the analysis of these networks, it is necessary to take into [...] account not only converters' non-idealities but also how to minimize power losses. Since power losses may be minimized by increasing the clock frequency of switched-based converters, experimental results of basic clock generators are presented. These generators were implemented with low-cost components
A Protection Circuit for DC-DC Converter with Voltage Doubler
Directory of Open Access Journals (Sweden)
D.Elangovan
2012-12-01
Full Text Available This paper proposes a method to obtain a protected voltage gain by employing a protection circuit for the voltage doubler or multiplier circuit in an isolated tyde DC-DC Converter. The entire set up consists of a phase shift converter with a protected bridge/voltage doubler rectifier on the output side. The operating frequency of the phase shift converter is 20-25kHz (depending on the requirement of the application which is high enough to improve the efficiency. Ferrite core transformer is used in place of ordinary air core transformer, which is small in size with number of turns of the transformer is reduced and the overall power density is increased. The doubler circuit consists of electrolytic capacitors, which are rated at 400V in order to comply with IEC65 requirements. This paper proposes an “electrolytic capacitor protection circuit”, which enables the voltage rating of the electrolytics to be reduced to 250V. This circuit results in cost savings of more than 50% in the price of the electrolytic filter capacitors. The circuits were simulated using PSPICE SOFTWARE and the following results were obtained. For an input voltage of 200V, an output of 200V and400V were obtained in bridge mode and doubler mode respectively.
Basic circuits to design switched-based DC-DC converters
Directory of Open Access Journals (Sweden)
F Sandoval-Ibarra
2007-12-01
Full Text Available The purpose of this paper is twofold. On one hand, basics on switched circuits for designing a DC-DC converter are presented and, on the other hand, power electronics definitions associated with simple electrical networks are mentioned. In the analysis of these networks, it is necessary to take into account not only converters' non-idealities but also how to minimize power losses. Since power losses may be minimized by increasing the clock frequency of switched-based converters, experimental results of basic clock generators are presented. These generators were implemented with low-cost componentsEl propósito de este artículo es doble. Por un lado, se presentan conceptos básicos de circuitos conmutados para diseñar un convertidor CD-CD y, por el otro, se rescatan definiciones de electrónica de potencia asociadas a redes eléctricas simples. En el análisis de esas redes es necesario tomar en cuenta no solo las no idealidades de los convertidores sino también cómo minimizar pérdidas de potencia. Porque las perdidas de potencia pueden ser minimizadas aumentando la frecuencia de reloj de los convertidores conmutados, se presentan resultados experimentales de generadores de reloj. Estos circuitos fueron implementados con componentes de bajo costo
PV and Wind Energy Hybrid Integrated Full-Bridge-DC–DC Converter for a Residential Application
Directory of Open Access Journals (Sweden)
G.Revan Sidda
2014-09-01
Full Text Available Hybrid power system can be used to reduce energy storage requirements. There is increasing demand for the use of alternate or renewable energy sources to achieve clean and low-cost electricity for Residential Application The PV-wind hybrid system returns the lowest unit cost values to maintain the same level of DPSP as compared to standalone solar and wind systems. For all load demands the levelised energy cost for PV-wind hybrid system is always lower than that of standalone solar PV or wind system. The PV-wind hybrid option is techno-economically viable for rural electrification. This paper proposes a novel integrated converter topology for interfacing between the energy storage system and the dc bus for a residential microgrid application The proposed integrated full-bridge dc–dc converter presents the following features: low number of active devices compared to the converters usually applied to similar applications, low input and output current ripple, high voltage ratio, bidirectional power flow, and galvanic isolation.
Design of current source DC/DC converter and inverter for 2kW fuel cell application
DEFF Research Database (Denmark)
Andreiciks, A.; Steiks, I.
2013-01-01
In order to use hydrogen fuel cell in domestic applications either as main power supply or backup power source, the low DC output voltage of the fuel cell has to be matched to the voltage level and frequency of the utility grid AC voltage. The interfacing power converter systems usually consist of a DC/DC converter and an inverter. In this paper a detailed simulation study of such interfacing converter system comprising a double inductor push-pull step-up DC/DC converter and a cascaded H-bridge inverter has been carried out and further confirmed with experimental results. The power converter system is designed for interfacing a 2kW proton exchange membrane (PEM) fuel cell.
An imroved design for ZVT DC-DC PWM converters with snubber assisted auxiliary switch
Directory of Open Access Journals (Sweden)
J. Russi
2005-03-01
Full Text Available This paper proposes an improved design to calculate the snubber auxiliary elements of ZVT DC-DC PWM converters with snubber assisted auxiliary switch. The proposed improved design guidelines are based on the reduction of the conduction losses through the auxiliary circuit. It is accomplished by the unique location of the turn-off snubber capacitor, which is shared by both active switches. By means of this improved design guidelines the converter efficiency can be increased. An efficiency comparative analysis is carried out and the experimental results, obtained from 1 kW, 100 kHz laboratory prototypes, show a relevant improvement in converter efficiency compared to the original converter design. In addition, experimental results also confirm that with the improved design the ZVT PWM converters with snubber assisted auxiliary switch can be competitive with ZVT PWM converters with constant auxiliary voltage source (True PWM ZVS pole.Este artigo propõe uma metodologia de projeto aprimorada para determinação dos componentes auxiliares para o conversor ZVT CC-CC PWM snubber assisted auxiliary switch. O procedimento de projeto proposto é baseado na redução das perdas de condução no circuito auxiliar. Isto é somente possível devido à localização do capacitor snubber de bloqueio, o qual é compartilhado por ambas as chaves ativas. Através do procedimento de projeto proposto o rendimento do conversor pode ser aumentado. Uma análise comparativa do rendimento é apresentada e os resultados experimentais, obtidos de protótipos de laboratório de 1 kW, 100 kHz, mostram uma melhoria relevante em relação ao rendimento apresentado pelo projeto original. Além disso, os resultados experimentais também confirmam que o projeto proposto para o conversor ZVT snubber assisted auxiliary switch torna-o competitivo em relação ao conversor ZVT PWM com fonte auxiliar de tensão constante (true PWM ZVS pole.
An imroved design for ZVT DC-DC PWM converters with snubber assisted auxiliary switch
Scientific Electronic Library Online (English)
J., Russi; M. L., Martins; H. A., Gründling; H., Pinheiro; J. R., Pinheiro; H. L., Hey.
2005-03-01
Full Text Available Este artigo propõe uma metodologia de projeto aprimorada para determinação dos componentes auxiliares para o conversor ZVT CC-CC PWM snubber assisted auxiliary switch. O procedimento de projeto proposto é baseado na redução das perdas de condução no circuito auxiliar. Isto é somente possível devido [...] à localização do capacitor snubber de bloqueio, o qual é compartilhado por ambas as chaves ativas. Através do procedimento de projeto proposto o rendimento do conversor pode ser aumentado. Uma análise comparativa do rendimento é apresentada e os resultados experimentais, obtidos de protótipos de laboratório de 1 kW, 100 kHz, mostram uma melhoria relevante em relação ao rendimento apresentado pelo projeto original. Além disso, os resultados experimentais também confirmam que o projeto proposto para o conversor ZVT snubber assisted auxiliary switch torna-o competitivo em relação ao conversor ZVT PWM com fonte auxiliar de tensão constante (true PWM ZVS pole). Abstract in english This paper proposes an improved design to calculate the snubber auxiliary elements of ZVT DC-DC PWM converters with snubber assisted auxiliary switch. The proposed improved design guidelines are based on the reduction of the conduction losses through the auxiliary circuit. It is accomplished by the [...] unique location of the turn-off snubber capacitor, which is shared by both active switches. By means of this improved design guidelines the converter efficiency can be increased. An efficiency comparative analysis is carried out and the experimental results, obtained from 1 kW, 100 kHz laboratory prototypes, show a relevant improvement in converter efficiency compared to the original converter design. In addition, experimental results also confirm that with the improved design the ZVT PWM converters with snubber assisted auxiliary switch can be competitive with ZVT PWM converters with constant auxiliary voltage source (True PWM ZVS pole).
Analysis of Dc/Dc converters with PWM and sliding mode controls
International Nuclear Information System (INIS)
Static and dynamic performances of D C/D C converters with PWM and sliding mode controllers are investigated. To improve the performance of the PWM controller, a linear compensator is proposed and used. For sliding controller, important parameters such as sliding coefficients and filter time constant are carefully computed and used. Finally, a D C/D C buck converter with PWM and sliding controller is designed, modeled and constructed. Theoretical and experimental results are compared and the distinguished features and limitations of each control technique are presented
Directory of Open Access Journals (Sweden)
Liao Xiaozhong
2013-02-01
Full Text Available High Output Voltage Based Multiphase Step-Up DC-DC Converter topology with voltage doubler rectifiers is presented in this paper. High output voltage is obtained due to the series combination of voltage doubler rectifiers on the secondary side of high frequency transformers. This topology is useful in the application where the output voltage is greater than the input. The two loop control strategy has been developed in order to analyze the stable and effective working of the converter topology. Therefore the working mode analysis of the converter topology has been described in detail. The multiphase step-up DC-DC converter topology is first simulated on MATLAB and then a prototype has been designed in order to verify the simulation and experimental results. Finally the simulation and experimental results are found to be satisfactory.
High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters
DEFF Research Database (Denmark)
Pittini, Riccardo; Zhang, Zhe
2014-01-01
This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window in an optimal way.
Fast response double series resonant high-voltage DC-DC converter
International Nuclear Information System (INIS)
In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.
Fast response double series resonant high-voltage DC-DC converter
Lee, S. S.; Iqbal, S.; Kamarol, M.
2012-10-01
In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.
Progress on DC-DC Converters for a Silicon Tracker for the sLHC Upgrade
Dhawan, S; Chen, H; Khanna, R; Kierstead, J; Lanni, F; Lynn, D; Musso, C; Rescia, S; Smith, H; Tipton, P; M. Weber, M
2009-01-01
There is a need for DC-DC converters which can operate in the extremely harsh environment of the sLHC Si Tracker. The environment requires radiation qualification to a total ionizing radiation dose of 50 Mrad and a displacement damage fluence of 5 x 1014 /cm2 of 1 MeV equivalent neutrons. In addition a static magnetic field of 2 Tesla or greater prevents the use of any magnetic components or materials. In February 2007 an Enpirion EN5360 was qualified for the sLHC radiation dosage but the converter has an input voltage limited to a maximum of 5.5V. From a systems point of view this input voltage was not sufficient for the application. Commercial LDMOS FETs have developed using a 0.25 ?m process which provided a 12 volt input and were still radiation hard. These results are reported here and in previous papers. Plug in power cards with ×10 voltage ratio are being developed for testing the hybrids with ABCN chips. These plug-in cards have air coils but use commercial chips that are not designed to be radiatio...
Optimal Design and Tradeoff Analysis of Planar Transformer in High-Power DC–DC Converters
DEFF Research Database (Denmark)
Ouyang, Ziwei; Thomsen, Ole Cornelius
2012-01-01
The trend toward high power density, high operating frequency, and low profile in power converters has exposed a number of limitations in the use of conventional wire-wound magnetic component structures. A planar magnetic is a low-profile transformer or inductor utilizing planar windings, instead of the traditional windings made of Cu wires. In this paper, the most important factors for planar transformer (PT) design including winding loss, core loss, leakage inductance, and stray capacitance have individually been investigated. The tradeoffs among these factors have to be analyzed in order to achieve optimal parameters. Combined with an application, four typical winding arrangements have been compared to illustrate their advantages and disadvantages. An improved interleaving structure with optimal behaviors is proposed, which constructs the top layer paralleling with the bottom layer and then in series with the other turns of the primary, so that a lower magnetomotive force ratio $m$ can be obtained, as wellas minimized ac resistance, leakage inductance, and even stray capacitance. A 1.2-kW full-bridge dc–dc converter prototype employing the improved PT structure has been constructed, over 96% efficiency is achieved, and a 2.7% improvement, compared with the noninterleaving structure, is obtained.
High-Temperature SOI/SiC-Based DC-DC Converter Suite
Directory of Open Access Journals (Sweden)
Brice McPherson
2008-08-01
Full Text Available A complete design strategy (mechanical and electrical for a 25Ã¢Â€Â‰W 28Ã¢Â€Â‰V/5Ã¢Â€Â‰V dc-dc converter utilizing SiC and SOI electronics is presented. The converter includes a high-temperature SOI-based PWM controller featuring 150Ã¢Â€Â‰kHz operation, a PID feedback loop, maximum duty cycle limit, complementary or symmetrical outputs, and a bootstrapped high-side gate driver. Several passive technologies were investigated for both control and power sections. Capacitor technologies were characterized over temperature and over time at 300CÃ¢ÂˆÂ˜, power inductors designed and tested up to 350CÃ¢ÂˆÂ˜, and power transformers designed and tested up to 500CÃ¢ÂˆÂ˜. Northrop Grumman normally-off SiC JFETs were used as power switches and were characterized up to 250CÃ¢ÂˆÂ˜. Efficiency and mass optimization routines were developed with the data gained from the first prototype. The effects of radiation on SiC and SOI electronics are then discussed. The results of the first prototype module are presented, with operation from 25CÃ¢ÂˆÂ˜ up to an ambient temperature of 240CÃ¢ÂˆÂ˜ .
Efficiency and Cost Comparison of Si IGBT and SiC JFET Isolated DC/DC Converters
DEFF Research Database (Denmark)
Nielsen, Rasmus Ørndrup; Török, Lajos; Munk-Nielsen, Stig; Blaabjerg, Frede
2013-01-01
Silicon carbide (SiC) and other wide band gap devices are in these years undergoing a rapid development. The need for higher efficiency and smaller dimensions are forcing engineers to take these new devices in to considerations when choosing semiconductors for their converters. In this article a Si based converter and a SiC based converter is compared. Both converters are isolated DC/DC converters and were designed for 5 kW nominal outputs. Test setups for both converters were built and tested. ...
A 1.6-kW, 110-kHz dc-dc converter optimized for IGBT's
Chen, Keming; Stuart, Thomas A.
1993-01-01
A full bridge dc-dc converter using a zero-current and zero-voltage switching technique is described. This circuit utilizes the characteristics of the IGBT to achieve power and frequency combinations that are much higher than previously reported for this device. Experimental results are included for a 1.6-kW, 110-kHz converter with 95 percent efficiency.
R. Seyezhai; Harinee Harinee; Nagarajan Nagarajan
2012-01-01
In this paper, a soft-switched Interleaved DC-DC Boost Converter (IBC) for fuel cell is simulated and implemented. The proposed two-phase IBC circuit consists of two identical boost converter connected in parallel and are controlled by interleaved switching signals. But in the conventional IBC switching loss increases with the number of switching devices. To solve this problem, this paper has proposed a soft switched IBC. Detailed analysis has been done to investigate the benefits of soft-sw...
Dynamic analysis of the input-controlled buck converter fed by a photovoltaic array
Scientific Electronic Library Online (English)
Marcelo Gradella, Villalva; Ernesto, Ruppert Filho.
2008-12-01
Full Text Available O controle da tensão de entrada de conversores DC-DC é freqüentemente necessário em aplicações com energia fotovoltaica. Nesta situação especial, diferentemente do que ocorre com conversores convencionais, a tensão de saída é constante e a tensão de entrada é variável. Este artigo versa sobre a anál [...] ise e o controle do conversor buck com tensão de saída constante e tensão de entrada variável. Abstract in english The control of the input voltage of DC-DC converters is frequently required in photovoltaic applications. In this special situation, unlike conventional converters, the output voltage is constant and the input voltage is controlled. This paper deals with the analysis and the control of the buck conv [...] erter with constant output voltage and variable input.
Energy Technology Data Exchange (ETDEWEB)
Pledl, Georg; Lutter, Peter [Finepower GmbH, Ismaning (Germany)
2010-07-01
Especially in automotive engineering, the big aim of electronic device development is to combine minimum possible weight, highest efficiency and low electromagnetic interference. Since there is a wide range of energy storage devices and power consumption requirements are very versatile, there are many possible solutions for electronic power devices, but not all of them will be appropriate for each system. One possible solution concerning dc/dc converters is represented by the phase shift operation for full bridge topologies. This procedure is used for supplying the electrical 14 V system from the high voltage energy storage or, in the other direction, charge the HV battery from the 14 V net or even from an external 230 V / 400 ac net. Finepower has developed 2 prototypes for research, which are presented in this contribution. Another new topology, a bidirectional LLC Converter, is presented as well. Energy consumption is growing and the available space for electronic power devices is held very small, so the power density increases and thermal management becomes more difficult. As dimensions of bus bars, semiconductors or inductive components are shrinking, parasitic influence becomes more and more significant. For getting information about function and influence of parasitics of electronic power devices, simulation is a very important tool since it saves much time and gives the possibility to extract internal dimensions of electrical circuits which cannot be measured in reality. (orig.)
Digitally intensive DC-DC converter for extreme space environments Project
National Aeronautics and Space Administration — The Space Micro ?Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator...
Digitally intensive DC-DC converter for extreme space environments Project
National Aeronautics and Space Administration — The Space Micro-Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...
Bifurcation and Chaos in a Pulse Width modulation controlled Buck Converter
DEFF Research Database (Denmark)
Kocewiak, Lukasz; Bak, Claus Leth; Munk-Nielsen, Stig
2007-01-01
Power electronic system with pulse width modulation (PWM) control is studied. Behaviour characteristic for a nonlinear dynamical system is observed and theoretically explained. A DC-DC buck converter controlled by a voltage feedback is taken as an example. The studied system is described by a system of piecewise-smooth nonautonomous differential equations. The research are focused on chaotic oscillations analysis and analytical search for bifurcations dependent on parameter. The most frequent ro...
International Nuclear Information System (INIS)
The paper describes an experimental study of the bifurcation behaviour of a modular peak current-mode controlled DC-DC boost converter. The parallel-input/parallel-output converter comprises two identical boost circuits and operates in the continuous-current conduction mode. A comparison is made between the results obtained from an experimental converter with those obtained from bifurcation diagrams generated from previous work and waveforms from a new MATLAB/SIMULINK simulation presented in this paper. Another comparison is made between the modular converter diagrams with those of the single boost converter.
ANIL KUMAR REDDY.K, SIRISHA.S
2013-01-01
Abstract:zero-voltage-switching (ZVS) dc?dc converter with specific voltage gain is proposed . The specific voltage is utilized for inverter operation for supplying 3-phase domestic load. It consists of a ZVS boost converter stage and a ZVS half-bridge converter stage and two stages are merged into a single stage. The ZVS boost converter stage provides a continuous input current and ZVS operation of the power switches. The ZVS half-bridge converter stage provides a high voltage gain. The prin...
Developments on DC/DC converters for the LHC experiment upgrades
International Nuclear Information System (INIS)
Prototypes of DC/DC power and Point of Load (PoL) converters were designed and built with the aim of satisfying the foreseen working parameters of the High Luminosity (HL) LHC experiments, using both Silicon (Si) MOSFETs and/or more recent devices substantiated of better power performance, like Silicon Carbide (SiC) and Gallium Nitride (GaN) transistors. Optimization of their design, based on the comparison between the simulated and measured thermal, electrical and mechanical performance, is in progress, and many improvements with respect to the previous versions are under implementation. We discuss in this paper the results of the last modifications. In addition, many tens of discrete component samples, chosen among the devices commercially available in the three different technologies (Si, SiC and GaN), were electrically characterized and tested under ?-rays, neutron, proton and heavy ion radiation, also using a combined run method. We have also planned to test some commercial DC/DCs under the extreme conditions of radiation and magnetic field expected in the upgrades of the LHC experiments. Here we show the first results on few samples
Planar integrated magnetics design in wide input range DC-DC converter for fuel cell application
DEFF Research Database (Denmark)
Ouyang, Ziwei; Zhang, Zhe
2010-01-01
In the most power electronics converters, the overall volume is mainly determined by the number of parts and the size of passive components. Integrated magnetics and planar magnetics techniques therefore have been an excellent option in order to reduce the count and the size of magnetic components, hereby increasing the power density of converters. A new planar integrated magnetics (PIM) technique for a phase-shift plus duty cycle controlled hybrid bi-directional DC/DC converter is presented and investigated in this paper. The main magnetic components including one boost inductor and two independent transformers are integrated into an E-I-E core geometry. Utilizing the flux cancellation as the principle of uncoupling, the transformers and the boost inductor are integrated, to reduce the total ferrite volume and core loss. The transformers and inductor are wound in the outer legs and the center legs respectively. The uncoupling effect between them is determined by the winding connections. The middle I-core provides a shared low reluctance flux path, uncoupling the two independent transformers. With the air gaps shift into the center legs, the magnetizing inductance of transformers will not be decreased due to there is no air gap throughout the flux paths generated by the two transformers. The new PIM structure can be extended to other topologies. To verify the validity of design approach and theoretical analysis, a lab prototype with PIM has been built, and tested. Comparing with the discrete structure, the result demonstrated a great improvement in profile and volume without sacrificing electrical performance.
Martínez García, Herminio
2015-01-01
This article shows the proposal of a linear–assisted converter or linear–&–switching hybrid converter with a constant switching frequency for photovoltaic solar DC-DC regulators. The control loop of the system is based on the current–mode technique. The main disadvantage of a converter with current–mode control is the inherent instability of the loop when switch duty ratios are greater than 0.5. In order to make stable the proposed linear–assisted converter, the article shows the technique ba...
Directory of Open Access Journals (Sweden)
Muh. Zakiyullah Romdlony
2012-07-01
Full Text Available Well-regulated DC bus voltage is the important point to guarantee the power demand in hybrid vehicle applications. Voltage regulation can be achieved with control method that build switching signal on DC-DC converter. This paper describes design and small scale experimental results of bus voltage regulation control of the DC-DC bidirectional converter with battery and supercapacitor as energy source. The control system consists of two control loops, the outer loop that get DC bus voltage feedback using PI anti-windup back calculation control method. This outer loop will generate a reference current for the inner loop that implement hysteresis control. The inner control loop will compare that reference curent with the source current obtained from the current sensor. Simulation and experimental results show that bus voltage is well-regulated under the load changes with 1% voltage ripple.
Efficiency and Cost Comparison of Si IGBT and SiC JFET Isolated DC/DC Converters
DEFF Research Database (Denmark)
Nielsen, Rasmus Ørndrup; Török, Lajos
2013-01-01
Silicon carbide (SiC) and other wide band gap devices are in these years undergoing a rapid development. The need for higher efficiency and smaller dimensions are forcing engineers to take these new devices in to considerations when choosing semiconductors for their converters. In this article a Si based converter and a SiC based converter is compared. Both converters are isolated DC/DC converters and were designed for 5 kW nominal outputs. Test setups for both converters were built and tested. The hardware differences between the two converters are described and performance is compared. An efficiency of above 97 % for the SiC JFET and over 90 % for the SI IGBT converter was measured. Cost differences between the two converters have been analyzed, showing that 772 days of operation are needed for the SiC converter costs to break even with the Si IGBT converter costs.
MODELING OF PHOTOVOLTAIC MODULE USING BUCK-BOOST CONVERTER WITH PWM CONTROLLING
Directory of Open Access Journals (Sweden)
Shahnam Baig
2015-09-01
Full Text Available Our aim is to increase the efficiency and get the maximum power from the pv system. It is also required that constant voltage be supplied to the load irrespective of the variation in solar irradiance and temperature. To achieve stabilization from above two variation. We have designed a buck boost circuit such that it delivers constant dc voltage to the load. The photovoltaic module is analyzed using MATLAB SIMULINK software. Then we coupled the PV array with the buck boost converter..Now there are cases when isolation level is high and low that it may cause dangerously high power across the load. Under such conditions this DC-DC buck boost converter will automatically start working in buck/boost mode. Now every time when the power crosses its upper limit the DC-DC converter will switch to buck/ mode and when safe power is reached. The output voltage is adjustable based on the duty cycle of the switching transistor. which will control the pwm controller and maintain constant load voltage.
Using Nyquist or Nyquist-Like Plot to Predict Three Typical Instabilities in DC-DC Converters
Fang, Chung-Chieh
2012-01-01
By transforming an exact stability condition, a new Nyquist-like plot is proposed to predict occurrences of three typical instabilities in DC-DC converters. The three instabilities are saddle-node bifurcation (coexistence of multiple solutions), period-doubling bifurcation (subharmonic oscillation), and Neimark bifurcation (quasi-periodic oscillation). In a single plot, it accurately predicts whether an instability occurs and what type the instability is. The plot is equival...
DEFF Research Database (Denmark)
Ouyang, Ziwei; Andersen, Michael A. E.; Thomsen, Ole Cornelius
2012-01-01
A common limitation of power coupling effect in some known multiple-input dc-dc converters has been addressed in many literatures. In order to overcome this limitation, a new concept for decoupling the primary windings in the integrated multiple-winding transformers based on 3-dimensional (3D) space orthogonal flux is proposed in this paper. And thus a new geometry core and relative winding arrangements are proposed in accordance with the rthogonal flux decoupling technology. Due to the four sec...
Design and Robustness Analysis of a PID Based Sliding Mode Controller for a dc-dc Converter
D.M.Mary Synthia Regis Prabha; S.Pushpa Kumar; G.Glan Devadhas
2012-01-01
This study deals with the design and analysis of a dc-dc converter operating in continuous conduction mode with Proportional-Integral-Derivative control and PID based Sliding Mode Control (SMC). A small signal model is developed using Switching Flow Graph (SFG) from which the control coefficients for the PID controller is selected. PID based SMC uses a control law which constrains the weighted sum of the voltage error, its derivatives and the integral of the voltage error to zero. The equival...
DEFF Research Database (Denmark)
Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.; Rahimullah, Sarban
2013-01-01
This paper presents driving circuit for a recently invented dielectric electro active polymer (DEAP) incremental actuator. The basic operation of such an actuator is bioinspired from the movement of an inchworm. The actuator consists of three electrically isolated, and mechanically connected capacitive sub-actuators. It needs to be driven by three high voltage (~2.5 kV) DC-DC converters, to achieve the linear incremental motion. The topology used for this application is a bi-directional flyback ...
Mwaniki, Fredrick Mukundi
2013-01-01
Important considerations of a photovoltaic (PV) source are achieving a high voltage and drawing currents with very little ripple component from it. Furthermore, the output from such a source is variable depending on irradiation and temperature. In this research, literature review of prior methods employed to boost the output voltage of a PV source is examined and their limitations identified. This research then proposes a multi-phase tapped-coupled inductor boost DC-DC converter that can achi...
Implementation of Buck-Boost Converter with Coupled Inductor for Photo-Voltaic System
Directory of Open Access Journals (Sweden)
M.S. Subbulakshmi
2014-12-01
Full Text Available The solar energy is a very interesting alternative on supplement the electrical system generation. In this paper, a photovoltaic based system is obtained from a boost cascaded with a buck converter along with Coupled inductor. Due to its novel operating modes, high efficiency can be achieved because there is only one switch operating at high frequency at a time, and the converter allows the use of power MOSFET and ultra-fast reverse recovery diode. This paper begins with theoretical analysis and modeling of this boost–buck converter. The model indicates that the coupled inductance will lead to an increase in the gain and the decrease in ripples. Finally, this paper analyzes and describes step by step the process of designing, and simulation of high efficiency low ripple voltage buck boost DC-DC converter for the photovoltaic solar conversion system
Directory of Open Access Journals (Sweden)
Ching-Ming Lai
2015-09-01
Full Text Available The objective of this paper is to implement a two-phase, interleaved, bidirectional DC/DC converter topology with an improved voltage conversion ratio for electric vehicle (EV and DC-microgrid systems. In this study, a two-phase interleaved charge-pump topology is introduced to achieve a high voltage conversion ratio with very simple control circuits. In discharge mode, the circuit topology acts as a voltage-multiplier boost converter to achieve a high step-up conversion ratio (48 V to 240 V. In charge mode, the circuit topology acts as a voltage-divider buck converter to achieve a high voltage step-down conversion ratio (240 V to 48 V. The circuit configuration, operating principle, steady-state analysis and the closed-loop control of the proposed converter are presented. Experiments conducted on a laboratory prototype with 500 W power-rating are presented to verify the effectiveness. The maximum efficiency levels in discharge and charge modes are about 97.7% and 98.4% respectively.
Dual-Input Isolated Full-Bridge Boost DC-DC Converter Based on the Distributed Transformers
Zhe ZHANG; Thomsen, Ole Cornelius; Andersen, Michael A. E.; Nielsen, Henning R.
2012-01-01
In this paper, a new two-input isolated boost dc-dc converter based on a distributed multi-transformer structure which is suitable for hybrid renewable energy systems is investigated and designed. With a novel transformer winding-connecting strategy, the two input ports can be decoupled completely, so the proposed converter can draw the power from the two different dc sources, which have low output voltage, and transfer it to the dc bus, which has high voltage, separately or simultaneously. T...
A Cascaded Quasi Z-Source Scheme Step up DC-DC Converter Using ANN Based Control.
R.Praburaja; Karthikeyan, C.
2013-01-01
Modern renewable generation systems need smart and integrated power converters ensure for high efficiency of power conversion .This project intends to the Artificial Neural Network (ANN) based control step up DC-DC converter family with a cascaded Quasi Z-source network (qZS-scheme).The cascaded (two-stage) qZS- network could be derived by the adding of one diode, one inductor, and two capacitors to the traditional single stage quasi-Z-source inverter (qZSI). The proposed cascaded qZSI giving...
Directory of Open Access Journals (Sweden)
ANIL KUMAR REDDY.K, SIRISHA.S
2013-08-01
Full Text Available Abstract:zero-voltage-switching (ZVS dc?dc converter with specific voltage gain is proposed . The specific voltage is utilized for inverter operation for supplying 3-phase domestic load. It consists of a ZVS boost converter stage and a ZVS half-bridge converter stage and two stages are merged into a single stage. The ZVS boost converter stage provides a continuous input current and ZVS operation of the power switches. The ZVS half-bridge converter stage provides a high voltage gain. The principle of operation and system analysis are presented. The specific voltage is used to obtain a 200 volts Line to Line RMS AC supply through inverter operation. The supply is in turn used for a 3-Phase load like operation and speed control of 3-Phase Squirrel cage Induction motor. Keywords: Boost converter, Zero voltage switching, Coupled inductor, Specific voltage gain, Soft switching technique, Inverter, Speed control of Induction motor.
Lina Morales Laguado; Harold Chamorro; Jairo Soriano
2010-01-01
This document proposes analysing and designing two control strategies for permanent current DC-DC buck converter. These kinds of electronic devices convert a constant-voltage to a lower constant-voltage (nonlinearity characteristics being demonstra- ted). Two nonlinear control techniques are shown. The first is a conventional optimal proportional error and integral error (PI) controller based on minimising integral of time per squared errors (ITSE) criteria. A model of the plant at ...
DEFF Research Database (Denmark)
Mira Albert, Maria del Carmen; Zhang, Zhe; Knott, Arnold; Andersen, Michael A. E.
2015-01-01
DC microgrids or nanogrids have attracted increasing research interest in recent years. Therefore, as a critical component, dc-dc converters with multiple inputs are required. In this paper, a dual-input interleaved buck/boost converter is proposed and its corresponding power flow control methods are analyzed and designed accordingly. Furthermore, the design guidelines are discussed. Finally, in order to verify the validity of this study, the measurement results are presented.
Cherif Larouci; Kamal Ejjabraoui; Pierre Lefranc; Claude Marchand
2012-01-01
The current paper deals with a multi-objective design approach of power converters applied to a DC-DC buck structure. This approch consists on optimizing a preselected power architecture by minimizing a multi-objective function (volume and time response) under multi-physic constraints (efficiency, thermal, electromagnetic compatibility and control). This multi-objective optimization allows evaluating the impact of the control aspect on the converter design by considering the control criteria ...
DC-DC CONVERTER WITH VOLTAGE CONTROLLER FOR STAND ALONE WIND ENERGY SYSTEM
Directory of Open Access Journals (Sweden)
A. Bala Chandana
2015-05-01
Full Text Available This paper deals with the design and simulation of DC-DC voltage regulator using closed loop system with pulse width modulation technique and are simulated using MATLAB/SIMULINK power system blocks. This system has advantages like current source characteristics, reduced filter size and reduced transformer size. The simulink circuit model for open loop controller and closed loop model with PI controller are developed, compared and used for simulation studies. Results of the simulation are presented.
Scientific Electronic Library Online (English)
FREDY EDIMER, HOYOS VELASCO; FABIOLA, ANGULO GARCIA; JOHN ALEXANDER, TABORDA GIRALDO; GERARD, OLIVAR TOST.
2010-12-01
Full Text Available En este trabajo se presentan resultados experimentales que confirman la validez de una nueva técnica de control digital, por modulación de ancho de pulso (PWM- Digital), para convertidores de potencia DC-DC y DC-AC. El controlador PWM-Digital combina el esquema de control por promedio cero de la din [...] ámica del error (ZAD), ya reportado en la literatura, con el esquema de control por inducción al punto fijo (FPIC) aún en fase de experimentación. El diseño ha sido validado experimentalmente, usando la plataforma digital DSpace, en convertidores DC-DC y DC-AC de baja potencia. Los diagramas de bifurcaciones, calculados numéricamente en la etapa de diseño, concuerdan en un alto porcentaje con los obtenidos en la etapa experimental. Cuando el sistema opera en zona estable se obtiene buen comportamiento a la salida (regulación en el caso DC-DC y rastreo en el caso DC-AC), con bajo error y rechazo a perturbaciones. Abstract in english In this paper, we show numerical and experimental results obtained when a new PWM-digital control technique is applied to DC-DC and DC-AC converters. The controller combines ZAD (zero average dynamics) and FPIC (Fixed point inducting controller) strategies. The first one has been reported in the lit [...] erature in the last years and the second one is still in experimental phase. The design has been tested in an experimental way in low power DC-DC and DC-AC converters, using DSpace platform. Numerical and experimental bifurcation diagrams agree. When the system is working in a stable range it has very good performance, showing low error and robustness.
A Discrete Modeling Approach for Buck Converter
Zhaoxia, Leng; Qingfeng, Liu; Jinkun, Sun; Huamin, Wang
In this paper, a discrete modeling approach for Buck converters based on continuous condition mode (CCM) and discontinuous condition mode (DCM) was presented. The unified coefficient matrixes of discrete model were described by building a mathematical function and the calculation methods of the parameters in coefficient matrixes were given. The working states of Buck converter on various work conditions were described adopting one discrete equation. The validity of the proposed modeling approach was proved by contrasting the output of discrete model with the operation result of Buck converter system in Simulink.
Directory of Open Access Journals (Sweden)
Pui-Sun Lei
2015-01-01
Full Text Available This Letter presents a low start-up voltage dc–dc converter for low-power thermoelectric systems which uses a native n-type MOS transistor as the start-up switch. The start-up voltage of the proposed converter is 300 mV and the converter does not need batteries to start up. The negative voltage control is proposed to reduce the leakage current caused by native n-type transistor and increase the efficiency. The proposed converter was designed using standard 0.18 µm CMOS process with chip size of 0.388 mm^2. The peak efficiency is 63% at load current of 1.5 mA. The proposed converter provides output voltage >1 V at maximum load current of 3.2 mA.
A Novel Dual-input Isolated Current-Fed DC-DC Converter for Renewable Energy System
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius
2010-01-01
In this paper, a novel isolated current-fed DC-DC converter (boost-type) with two input power sources based on multi-transformer structure, which is suitable for fuel cells and super-capacitors hybrid energy system, is proposed and designed. With particular transformer windings connection strategy, the proposed converter can draw power from two different DC sources with lower voltage and deliver it to the higher voltage DC bus or load individually and simultaneously. The detailed operation principle of the proposed converter has been analyzed in dual-input mode and single-input mode, respectively. Furthermore, the method to increase the number of input ports, the magnetic integration structure, and ground loop decoupling are discussed. Experimental results from the lab prototype converter with two DC voltage sources verify the validity of the theoretical analysis and design of the converter.
International Nuclear Information System (INIS)
Research highlights: ? Hybrid electric power system for a real surface tramway. ? Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. ? New control strategy for the energy management of the tramway. ? Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.
Directory of Open Access Journals (Sweden)
A.S. Oshaba
2013-05-01
Full Text Available This study presents an approach for the speed control of a permanent magnet DC motor drive via Pulse Width Modulation (PWM technique and a DC/DC converter. The Particle Swarm Optimization (PSO technique is used to minimize a time domain objective function and obtain the optimal controller parameters. The performance of the proposed technique has been evaluated using various types of disturbances including load torque variations. Simulation results illustrate clearly the robustness of the controller and validity of the design technique for controlling the speed of permanent magnet motors.
DEFF Research Database (Denmark)
Zhang, Zhe; Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.
2012-01-01
Electrical power system in future uninterruptible power supply (UPS) or electrical vehicle (EV) may employ hybrid energy sources, such as fuel cells and super-capacitors. It will be necessary to efficiently draw the energy from these two sources as well as recharge the energy storage elements by the DC bus. In this paper, a bidirectional isolated DC-DC converter controlled by phase-shift and duty cycle for the fuel cell hybrid energy system is analyzed and designed. The proposed topology minimiz...
Directory of Open Access Journals (Sweden)
V. V. Subrahmanya Kumar Bhajana
2010-07-01
Full Text Available A closed loop ZVS-ZCS bidirectional dc-dc converter is modeled and appropriate digital simulations are provided. With the ZVS-ZCS concept, the MATLAB simulation results of application to a fuel cell and battery application have been obtained whenever the input voltage exceeds the given 24V, at that time the load voltage will change from 180V to 230V. But due to this usage the load is disturbed and there is instability in the model. Using closed loop the output voltage is stabilized.
Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade
Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Max Rauch; Rittich, David Michael; Sammet, Jan Domenik; Wlochal, Michael
2014-01-01
A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.
Directory of Open Access Journals (Sweden)
R. Seyezhai
2012-06-01
Full Text Available In this paper, a soft-switched Interleaved DC-DC Boost Converter (IBC for fuel cell is simulated and implemented. The proposed two-phase IBC circuit consists of two identical boost converter connected in parallel and are controlled by interleaved switching signals. But in the conventional IBC switching loss increases with the number of switching devices. To solve this problem, this paper has proposed a soft switched IBC. Detailed analysis has been done to investigate the benefits of soft-switched IBC compared to that of conventional uncoupled and directly coupled IBC. The converter circuit is constructed using power MOSFET as power switch. The PWM is generated by PIC18F4450 microcontroller. In this paper, the analysis of the converter is presented which is verified by the results of simulation and experimentation.
Directory of Open Access Journals (Sweden)
R. Seyezhai
2012-09-01
Full Text Available In this paper, a soft-switched Interleaved DC-DC Boost Converter (IBC for fuel cell is simulated and implemented. The proposed two-phase IBC circuit consists of two identical boost converter connected in parallel and are controlled by interleaved switching signals. But in the conventional IBC switching loss increases with the number of switching devices. To solve this problem, this paper has proposed a soft switched IBC. Detailed analysis has been done to investigate the benefits of soft-switched IBC compared to that of conventional uncoupled and directly coupled IBC. The converter circuit is constructed using power MOSFET as power switch. The PWM is generated by PIC18F4450 microcontroller. In this paper, the analysis of the converter is presented which is verified by the results of simulation and experimentation.
DEFF Research Database (Denmark)
Ouyang, Ziwei; Andersen, Michael A. E.
2012-01-01
A common limitation of power coupling effect in some known multiple-input dc-dc converters has been addressed in many literatures. In order to overcome this limitation, a new concept for decoupling the primary windings in the integrated multiple-winding transformers based on 3-dimensional (3D) space orthogonal flux is proposed in this paper. And thus a new geometry core and relative winding arrangements are proposed in accordance with the rthogonal flux decoupling technology. Due to the four secondary windings are arranged in a quadratic pattern at the base core plate with the two perpendicular primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any timemultiplexing scheme, which can optimize the utilization of diversified power energy sources, simplify the system structure, improve the flexibility and reduce the overall cost, so they are attractive for the hybrid renewable power system. Section IV initiates a discussion for the advantages of the FQIT. In order to verify the feasibility of the FQIT in multiple-input converter, a dual-input isolated boost dc-dc converter employing with the FQIT is designed and tested. The results have excellently demonstrated that the two input power stages can be operated independently and the correctness of all the analysis in the paper.
SPECTRAL ANALYSIS OF BUCK AND SEPIC CONVERTERS
Directory of Open Access Journals (Sweden)
CHAKIB ALAOUI
2011-02-01
Full Text Available Switched mode power converters generate harmonic currents, which will be injected into the utility grid, causing distortion of the utility waveform. They also become a source for the generation of EMI, which may affect the communication systems. This work is about the design and evaluation of the two most frequently used SMPS used in step down mode of operation: the Buck converter and the Sepic converter working in step-down mode of operation. These converters were designed using optimized equations for their components ratings. Simulation results show that although the Buck output voltage is low in harmonics, it has high harmonic contents in currents circulating in its inductor and diode, and hence requires strong filtering. The Sepic converterhas lower harmonic contents than the Buck converter.
Simpli?ed loss analysis and comparison of full-bridge, full-range-ZVS DC-DC converters
Indian Academy of Sciences (India)
Shubhendu Bhardwaj; Mangesh Borage; Sunil Tiwari
2008-10-01
The loss of zero-voltage-switching (ZVS) of active switches has been a serious limitation of full-bridge (FBZVS) converters. Many techniques have been proposed in the past to extend the range of ZVS operation over the wider and also the full range of operation. However, in these techniques ZVS is achieved at the expense of additional conduction loss in active switches and losses in the auxiliary components. In this paper, the analysis for the additional losses in various full-range FBZVS DC–DC converters and their comparative evaluation is reported. Closed form expressions are derived for average value of device currents and losses. The loss curves for various topologies are plotted and compared. The analytical results are found to be consistent with the experimental ef?ciency tests performed on 500 W, 100 kHz prototype. It is concluded that a recently proposed new topology has the least penalty of additional losses.
New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio
Energy Technology Data Exchange (ETDEWEB)
Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)
2010-01-15
In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)
New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio
International Nuclear Information System (INIS)
In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control.
Dual-Input Isolated Full-Bridge Boost DC-DC Converter Based on the Distributed Transformers
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius
2012-01-01
In this paper, a new two-input isolated boost dc-dc converter based on a distributed multi-transformer structure which is suitable for hybrid renewable energy systems is investigated and designed. With a novel transformer winding-connecting strategy, the two input ports can be decoupled completely, so the proposed converter can draw the power from the two different dc sources, which have low output voltage, and transfer it to the dc bus, which has high voltage, separately or simultaneously. The detailed operation principles of the proposed converter have been analyzed in the dual-input mode and the single-input mode, respectively. The main advantage of the proposed topology is that the four transformers and the secondary rectifiers are fully utilized whether the converter is connected with two input power sources or only one input. Although the four transformers are employed, the nominal powers of each transformer and rectifier are both reduced by four times. Furthermore, some special issues on converter design, such as increasing number of the input ports, the magnetic integration and the ground loop decoupling are discussed. A 2 kW prototype was built and tested. Experiments on the converter’s steady-state and transient operations verified the validity of the analysis and design.
A 0.35?m 50V CMOS Sliding-Mode Control IC for Buck Converters
DEFF Research Database (Denmark)
Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.; Andreani, Pietro
2007-01-01
This paper presents a hysteretic (sliding mode) control IC for a buck DC/DC converter for use as an envelope tracking power supply to increase the efficiency of an RF power amplifier. The IC integrates a high-bandwidth error amplifier, a comparator with hysteresis, and a high-side driver for an external N-channel power MOSFET. The total control loop delay using the implemented IC is 35ns, this is shown to be a 30% reduction compared to a state-of-the-art discrete IC based solution. The presented...
Research on Variable Structure Control Strategy Based on Direct BUCK AC-AC Converter
Xin Geng; Houjun Tang; Liangyu Bai; Nan Jin
2012-01-01
The researches on direct AC-AC convertors have been an important field. The DC-modulated method, which was used in DC-DC convertors before, is used in AC-AC convertors to realize a direct AC-AC converting now. The method as regulating the duty of switch periods can control the circuit to output an acceptable sinusoid voltage wave. But this method can always bring forth a small phase shift between input and output. In this paper, variable structure control (VSC) is used in BUCK circuit. Simula...
Continuation of periodic orbits in a ZAD-strategy controlled buck converter
International Nuclear Information System (INIS)
This paper concerns the dynamics of a Zero Average Dynamics (ZAD) controlled DC-DC Buck converter. We study the continuation problem of periodic orbits in a periodically forced piecewise-smooth system through the ranges of existence and stability. These orbits can have different configuration and periodicity, and they end in a transition to chaotic bands when a parameter is varied. Three assumptions (a symmetry assumption, a zero-average assumption and a regulation assumption) allows existence ranges to be predicted analytically, and there is only a final efficient numerical step. Stability is checked through Floquet exponents, which are also analytically computed
Directory of Open Access Journals (Sweden)
Jaw-Kuen Shiau
2014-08-01
Full Text Available The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter systems are conducted and results are presented in the paper. The maximum power point tracking function is achieved through appropriate control of the power switches of the power converter. A fuzzy logic controller is developed to perform the MPPT function for obtaining maximum power from the PV panel. The MATLAB-based Simulink piecewise linear electric circuit simulation tool is used to verify the complete circuit simulation model.
DEFF Research Database (Denmark)
Thummala, Prasanth; Zhang, Zhe
2014-01-01
This paper presents the design of a low input (24 V) and variable high output voltage (0-2.5 kV) bidirectional dc-dc converter for driving a capacitive actuator. The topology is a digitally controlled bidirectional flyback converter with a variable frequency control. The objective is, to design the converter for efficiently charging and discharging the capacitive actuator from 0 V to 2.5 kV and vice versa, respectively. The converter is used to drive a dielectric electro active polymer (DEAP) based capacitive incremental actuator, which has the potential to be used in automotive (e.g., EVs), space and medical industries. The design of the bidirectional flyback converter to charge and discharge a 400 nF capacitive actuator is presented, when 4 kV and 4.5 kV high voltage MOSFETs are used on the secondary high voltage side. The experimental results and efficiency measurements of the converter with the proposed design are provided
Open-circuit fault detection and tolerant operation for a parallel-connected SAB DC-DC converter
DEFF Research Database (Denmark)
Park, Kiwoo; Chen, Zhe
2014-01-01
This paper presents an open-circuit fault detection method and its tolerant control strategy for a Parallel-Connected Single Active Bridge (PCSAB) dc-dc converter. The structural and operational characteristics of the PCSAB converter lead to several advantages especially for high power applications. By paralleling modular converters, the power and current ratings of each modular converter can be lowered and by interleaving the switching patterns, the input and output current ripples can be significantly reduced without increasing switching losses or device stresses. Apart from these, the PCSAB converter also possesses better reliability under a certain open-circuit fault condition. The proposed fault diagnosis method identifies both location and type of a fault using one current sensor in the output. Depending on the type of the fault, the proposed fault-tolerant strategy tries to keep the capability of the converter unaffected or to improve the quality of the output current under the fault condition. The feasibility of the proposed fault detection and fault-tolerant methods are verified by simulations and experiments.
International Nuclear Information System (INIS)
In this paper, we propose a new design procedure to determine the optimal size of a piezoelectric transformer (PT) for DC/DC converter applications. We examined several parameters, which allows us to produce a piezoelectric transformer with optimal efficiency and which has an optimal range for regulating voltage. The characteristics of a piezoelectric transformer (PT) are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converter applications, it requires the presence of a rectifier circuit block. A rectifier is usually a nonlinear device which does not act like a pure resistor. We began by modeling a full-wave rectifier directly in order to understand the design constraint variables such as the maximum mechanical current, the piezoelectric transformer configuration, and the energy balance of the PT configuration. In our final design, a stacked disk-type piezoelectric transformer with radial-mode vibration was chosen due to the large number of design parameters required. In our new design procedure, instead of just looking at the typical optimal loading condition of the PT, we used the concept of a maximum mechanical current to determine the new optimal efficiency which is suitable for voltage regulation. From our results we found that the size of the piezoelectric transformer and efficiency are trade-offs which means that they have an inverse relationship. In summary, we developed a new design procedure to determine the optimal size of a piezoelectric transformer, which we found to be small but with high efficiency so as to provide an optimal range for regulating voltage
Olivar, Gerard
1997-01-01
Esta tesis estudia el fenómeno del caos en las ecuaciones que modelan un convertidor buck con control PWM. Desde el punto de vista matemático, contribuye al estudio de los sistemas lineales a trozos tridimensionales, con émfasis en las perspectivas geométrica y de cálculo numérico. Se consiguen resultados analíticos pero, finalmente, deben emplearse métodos numéricos para calcular efectivamente las órbitas periódicas, bifurcaciones, variedades invariantes y cuencas de atracción. Desde el punt...
Stability analysis of a high-step-Up DC grid-connected two-stage boost DC-DC converter
Directory of Open Access Journals (Sweden)
El Aroudi A.
2014-01-01
Full Text Available High conversion ratio switching converters are used whenever there is a need to step-up dc source voltage level to a much higher output dc voltage level such as in photovoltaic systems, telecommunications and in some medical applications. A simple solution for achieving this high conversion ratio is by cascading different stages of dc-dc boost converters. The individual converters in such a cascaded system are usually designed separately applying classical design criteria. However these criteria may not be applicable for the complete cascaded system . This paper first presents a glimpse on the bifurcation behavior that a cascade connection of two boost converters can exhibit. It is shown that the desired periodic orbit can undergo period doubling leading to subharmonic oscillations and chaotic regimes. Then, in order to simplify the analysis the second stage is considered as constant current sink and design-oriented analysis is carried out to obtain stability boundaries in the parameter space by taking into account slope interactions between the state variables in the two-different stages.
Directory of Open Access Journals (Sweden)
Nittala S K Sastry
2012-06-01
Full Text Available This paper presents a new PWM Multi phase DC-DC converter under current mode control with an auxiliary circuit which provides zero voltage switching in order to meet the power supply requirements of the processors of modern electronic equipments like laptops, mobiles, and PDAs etc which require more than 70 A current, lower voltage and better transient response.The multi phase topology benefits in high current, good efficiency and better current transient response. High current multi phase buck converters found applications in advanced data control, solid state lasers, communication equipment and Pentium processors etc. In this paper designed of three phase DC-DC converter 100W, 12V/1V under current mode control is discussed in detail and the simulation results are presented to support the theoretical analysis.
Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter
DEFF Research Database (Denmark)
Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre
2015-01-01
This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synchronous. This increases the complexity of the gate drives, which in this paper is solved by using a self-oscillating gate drive. A bidirectional converter has been implemented and is described in this paper; the converter reaches efficiencies above 80% in forward conduction mode and 73.5% in reverse conduction mode. The designed converter operates at a switching frequency of 35.6 MHz, which is well within the VHF range. The same converter is also implemented with PCB embedded inductors to minimize cost and the physical volume of the total converter.
Two-output Class E Isolated dc-dc Converter at 5 MHz Switching Frequency
Pavlovic, Zoran; Oliver Ramírez, Jesús Angel; Alou Cervera, Pedro; García Suárez, Oscar; Prieto López, Roberto; Cobos Márquez, José Antonio
2010-01-01
This paper presents a two output class-E isolated dcdc converter that regulates the output voltages at fixed switching frequency. The converter is simulated at operating frequency of 5 MHz. The converter output power is 40 W and the output voltages are 15 V and 5 V. All the switches operate at zero voltage switching (ZVS) conditions for the full load range. The circuit configuration is simple with small passive components which reduce the size of the converter. The circuit also has ...
DEFF Research Database (Denmark)
Pittini, Riccardo; Zhang, Zhe
2013-01-01
Energy production from renewable energy sources is continuously varying, for this reason energy storage is becoming more and more important as the percentage of green energy increases. Newly developed fuel cells can operate in reverse mode as electrolyzer cells; therefore, they are becoming an attractive technology for energy storage grid-tie applications. In this application dc-dc converter optimization is very challenging due to the large voltage range that the converter is expected to operate. Moreover, the fuel-electrolyzer cell side of the converter is characterized by low voltage and high current. Dc-dc converter efficiency plays a fundamental role in the overall system efficiency since processed energy is always flowing through the converter; for this reason, loss analysis and optimization are a key component of the converter design. The paper presents an isolated full bridge boost dc-dc converter (IFBBC) designed for this new application focusing on losses analysis. The system topology is briefly discussed and the major concerns related to the system, cells stacks and converter operating points are analyzed. The dc-dc converter losses are modeled and presented in detail; the analysis is validated on adc-dc converter prototype rated at 6 kW 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side (for a grid-tie application). The prototype is based on fully planar magnetic, Si MOSFETs, Si IGBTs and SiC diodes; efficiencies up to ~96.5% and ~97.8% were demonstrated depending on the converter operating point.
Modeling and Design of Five Level Cascaded H-Bridge Multilevel Inverter with DC/DC Boost Converter
Directory of Open Access Journals (Sweden)
Vinayaka B.C
2014-06-01
Full Text Available Power electronic converters, especially DC/AC Sinusoidal Pulse Width Modulation inverters have been extending their range of use in industry because of their numerous advantages. They typically synthesize the stair –case voltage waveform (from several dc sources which has reduced harmonic content. This paper aims to extend the knowledge about the performance of Five level Cascaded H-Bridge MLI topology with DC/DC Boost Converter using SPWM for fixed DC Source. The output voltage is the sum of the voltage that is generated by each bridge. The switching angles can be chosen in such a way that the total harmonic distortion is minimized. This topology incorporates Boost Converter in the input side which magnifies the fundamental output voltage with reduction in total harmonic distortion. It also incorporates LC filter and hence output is drawn near the sine wave because of more levels. Results of experiments proved efficiency of 95%.The performance of the proposed SPWM strategy in terms of output voltage and THD has studied successfully and shown using MATLAB/Simulink.
DEFF Research Database (Denmark)
Meng, Lexuan; Dragicevic, Tomislav
2015-01-01
Droop control by means of virtual resistance (VR) control loops can be applied to paralleled dc-dc converters for achieving autonomous equal power sharing. However, equal power sharing does not guarantee an efficient operation of the whole system. In order to achieve higher efficiency and lower energy losses, this paper proposes a tertiary control level including an optimization method for achieving efficient operation. As the efficiency of each converter changes with the output power, VR values are set as decision variables for modifying the power sharing ratio among converters. Genetic algorithm is used in searching for a global efficiency optimum. In addition, a secondary control level is added to regulate the output voltage drooped by the VRs. However, system dynamics is affected when shifting up/down the VR references. Therefore, a secondary control for system damping is proposed and applied for maintaining system stability. Hardware-in-the-loop simulations are conducted to validate the effectiveness of this method. The results show that the system efficiency is improved by using tertiary optimization control and the desired transient response is ensured with system damping secondary control.
High Step-Up DC—DC Converter for AC Photovoltaic Module with MPPT Control
Sundar, Govindasamy; Karthick, Narashiman; Rama Reddy, Sasi
2014-08-01
This paper presents the high gain step-up BOOST converter which is essential to step up the low output voltage from PV panel to the high voltage according to the requirement of the application. In this paper a high gain BOOST converter with coupled inductor technique is proposed with the MPPT control. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor this converter achieves a high step-up voltage-conversion ratio and the leakage energy of the coupled inductor is efficiently recycled to the load. MPPT control used to extract the maximum power from PV panel by controlling the Duty ratio of the converter. The PV panel, BOOST converter and the MPPT are modeled using Sim Power System blocks in MATLAB/SIMULINK environment. The prototype model of the proposed converter has been implemented with the maximum measured efficiency is up to 95.4% and full-load efficiency is 93.1%.
DC-DC Converters Using PID Controller and Pulse Width Modulation Technique
Directory of Open Access Journals (Sweden)
R.Sudha
2014-01-01
Full Text Available This paper presents a boost converter along with a flyback converter. The Zero Voltage Switching (ZVS technique is used to achieve soft switching. A bidirectional boost converter is connected with an output module as a Parallel Input Serial Output configuration. The flyback converter with Voltage Doubler Rectifier (VDR acts as an output module. This connection makes a bidirectional boost converter an active clamp circuit which is connected to the output side in order to extend the step up ratio. A converter with active clamp technique is used to recycle the leakage energy, to eliminate voltage spike due to coupled inductors and also to provide a mechanism to achieve ZVS. To overcome the efficiency degradation during light load due to load dependent soft switching of the ZVS, a control method using Pulse Width Modulation (PWM proportional to the load current is used.
Linear-assisted DC-DC switching converter with constant switching frequency
Martínez García, Herminio; Grau Saldes, Antoni; Bolea Monte, Yolanda; Gámiz Caro, Juan
2011-01-01
This article shows the proposal of a linear–assisted converter or linear–&–switching hybrid converter with a constant switching frequency. The control loop of the system is based on the current–mode technique. The main disadvantage of a converter with current–mode control is the inherent instability of the loop when switch duty ratios are greater than 0.5. In order to make stable the proposed linear–assisted converter, the article shows the technique based on a slope compensation.
Design and Implementation of Power Flow Control for a novel Dual Input DC-DC Converter
DEFF Research Database (Denmark)
Taeed, Fazel; Ouyang, Ziwei; Nymand, Morten; Andersen, Michael A. E.
2014-01-01
In this paper a control strategy for controlling the power flow from input voltage sources of a novel dual-input dcdc converter to the load is introduced. The converter can be used in renewable energy applications with two independent power sources. Firstly, the operation principle of the converter is outlined; then the control method for adjusting power sharing is proposed. In the next step, the controller is implemented in an FPGA, and then a 350W dual input converter is built to verify operat...
Design and Implementation of Power Flow Control for a novel Dual Input DC-DC Converter
DEFF Research Database (Denmark)
Taeed, Fazel; Ouyang, Ziwei
2014-01-01
In this paper a control strategy for controlling the power flow from input voltage sources of a novel dual-input dcdc converter to the load is introduced. The converter can be used in renewable energy applications with two independent power sources. Firstly, the operation principle of the converter is outlined; then the control method for adjusting power sharing is proposed. In the next step, the controller is implemented in an FPGA, and then a 350W dual input converter is built to verify operation of the proposed control strategy. The experimental results show the excellent ability of the controller to control the power flow in the converter. The implemented controller in FPGA is low cost and simple. The complete system can be practically used in power management for renewable energy sources.
DEFF Research Database (Denmark)
Schaltz, Erik; Li, Zhihao; Onar, Omer; Khaligh, Alireza
2009-01-01
Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi-input converter is capable of bi-directional operation and is responsible for power diversification and optimization. A fixed switching frequency strategy is considered to control its operating modes. A portion o...
High efficiency isolated DC/DC converter inherently optimized for fuel cell applications
DEFF Research Database (Denmark)
Petersen, Lars Press; Jensen, Lasse Crone
2013-01-01
The isolated full-bridge boost converter has been suggested as the best choice for fuel cell applications. Comparisons have been carried out in the literature using both stress factors and experimental verified designs to determine the optimal converter. Never the less, this paper suggests a different topology not previous used for fuel cell applications with some clear advantages. Taking into account the I-V characteristics of the fuel cell only emphasized the performance of the proposed converter and reveals its self as an optimal candidate for the fuel cell application.
Modeling and control of isolated full bridge boost DC-DC converter implemented in FPGA
DEFF Research Database (Denmark)
Taeed, Fazel; Nymand, M.
2013-01-01
In this paper an isolated full bridge boost converter (IFBC) firstly is modeled. In the modeling part, a small signal equivalent of the converter is developed. From the small signal model, the converter transfer function is derived. Based on the obtained transfer function, challenges of controller design are discussed. In the next step a digital PI controller is designed and implemented in a FPGA to control the output voltage. Using the injection transformer method the open loop transfer function in closed loop is measured and modeling results are verified by experimental results. © 2013 IEEE.
Multilevel modular DC/DC converter for regenerative braking using supercapacitors
Massot Campos, Miquel; Montesinos Miracle, Daniel; Bergas Jané, Joan Gabriel; Rufer, Alfred
2012-01-01
Regenerative braking is presented in many electric traction applications such as electric and hybrid vehicles, lifts and railway. The regenerated energy can be stored for future use, increasing the efficiency of the system. This paper outlines the benefits of the MMC (modular multilevel converter) in front of the cascaded or series connection of converters to achieve high voltage from low voltage storage elements such as supercapacitors. The paper compares three different solutions and sho...
Design of DC-DC Converter and its Control for a Wind Generation System Connected to an Isolated Load
Directory of Open Access Journals (Sweden)
Carlos A. Ramírez Gómez
2013-11-01
Full Text Available A method to design a Buck converter and its control, which are associated to a wind generation system that is feeding an isolated load, is presented in this paper. To design the converter a Thevenin equivalent is deduced, which represents the behavior of the wind turbine, the permanent magnet synchronous generator, and the rectifier. The design of the converter elements guarantees input/output voltages and inductor current ripples of 5 % or less. The output voltage control is developed with a proportional-integral-derivative controller and as design criteria a damping of 0,707 and cutoff frequency of 1/5 converter commutation frequency are selected. The designed controller regulates the output voltage faced load perturbations and wind speed variations.
DEFF Research Database (Denmark)
Zhang, Zhe; Ouyang, Ziwei
2012-01-01
Electrical power system in future uninterruptible power supply (UPS) or electrical vehicle (EV) may employ hybrid energy sources, such as fuel cells and super-capacitors. It will be necessary to efficiently draw the energy from these two sources as well as recharge the energy storage elements by the DC bus. In this paper, a bidirectional isolated DC-DC converter controlled by phase-shift and duty cycle for the fuel cell hybrid energy system is analyzed and designed. The proposed topology minimizes the number of switches and their associated gate driver components by using two high frequency transformers which combine a half-bridge circuit and a full-bridge circuit together on the primary side. The voltage doubler circuit is employed on the secondary side. The current-fed input can limit the input current ripple that is favorable for fuel cells. The parasitic capacitance of the switches is used for zero voltage switching (ZVS). Moreover, a phase-shift and duty cycle modulation method is utilized to control thebidirectional power flow flexibly and it also makes the converter operate under a quasi-optimal condition over a wide input voltage range. This paper describes the operation principle of the proposed converter, the ZVS conditions and the quasi-optimal design in depth. The design guidelines and considerations about the transformers and other key components are given. Finally, a 1- kW 30~50-V-input 400-V-output laboratory prototype operating at 100 kHz switching frequency is built and tested to verify the effectiveness of the presented converter.
National Aeronautics and Space Administration — The Space Micro ?Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...
An Effective High Step-Up Interleaved DC-DC Converter Photovoltaic Grid Connection System
G. Lakpathi,; S. ManoharReddy,; K. Lakshmi Ganesh,; G. Satyanarayana,
2013-01-01
Within the photovoltaic (PV) power generation systems in the market, the ac PV module has shown obvious growth. However, a high voltage gain converter is concentrate for the module’s grid connection with dc-ac inverter. This paper proposed a converter that employs a floating active switch to isolate energy from the PV panel when the ac module is OFF; this particular design protects installers and users from electrical hazards. Without extreme duty ratios and numerous turns-ratio of a coupled ...
Directory of Open Access Journals (Sweden)
Xiaolong Shi
2012-12-01
Full Text Available This paper proposes a novel extended-single-phase shift (ESPS control strategy of isolated bidirectional full-bridge DC-DC converters (IBDCs which are a promising alternative as a power electronic interface in microgrids with an additional function of galvanic isolation. Based on the mathematical models of ESPS control under steady-state conditions, detailed theoretical and experimental analyses of IBDC under ESPS control are presented. Compared with conventional single-phase-shift (CSPS control, ESPS control can greatly improve the efficiency of IBDCs in microgrids through decreasing current stress and backflow power considerably over a wide input and output voltage range under light and medium loads. In addition, ESPS control only needs to adjust one single phase-shift angel to control transmission power, thus it retains implementation simplicity in comparison with dual-phase-shift (DPS control for microgrid applications. Furthermore, an efficiency-optimized modulation scheme based on ESPS and CSPS control is developed in the whole power range of IBDC for power distribution in microgrids. A 10 kW IBDC prototype is constructed and the experimental results validate the effectiveness of the proposed control strategy, showing that the proposed strategy can enhance the overall efficiency up to 30%.
Scientific Electronic Library Online (English)
Carlos Alejandro, Ramírez; Andrés Julián, Saavedra-Montes; Carlos Andrés, Ramos-Paja.
2014-01-01
Full Text Available Este artículo presenta una revisión de la literatura sobre sistemas eólicos de micro generación. La revisión analiza cuatro tópicos: la topología del sistema, su modelado, el diseño de los convertidores de potencia y el control de los mismos. Finalmente, la revisión resalta los problemas de investig [...] ación abiertos, así como las oportunidades para mejorar soluciones comúnmente utilizadas Abstract in english This paper presents a literature review analyzing four topics concerning wind systems for micro-generation: system topologies, system modeling, power converters design, and power converter controllers. The review also reveals the open research problems in the literature, and the opportunities to imp [...] rove commonly adopted solutions
A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters
Directory of Open Access Journals (Sweden)
Naga Brahmendra Yadav Gorla
2014-02-01
Full Text Available A new active soft switching circuit for Zero Voltage Switched Pulse Width Modulated (ZVS-PWM full bridge converter is presented in this paper. The proposed circuit has two auxiliary circuit cells (Auxiliary circuit cell-1, Auxiliary circuit cell-2, one for each ground referred active switch. Auxiliary circuit cell consists of an active switch, a diode, a resonant inductor and a capacitor, and a coupled winding derived from main power transformer. Auxiliary circuit when gated properly creates zero voltage across the main switch during its turn-on. Winding coupled to the power transformer helps in resetting auxiliary inductor current to zero and hence turn-off of auxiliary switch is lossless. Steady state operation of proposed circuit with necessary analytical expressions is presented. Circuit simulation results of the proposed active soft switched ZVS-PWM full bridge converter are presented.
A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters
Naga Brahmendra Yadav Gorla; N. Lakshmi Narasamma
2014-01-01
A new active soft switching circuit for Zero Voltage Switched Pulse Width Modulated (ZVS-PWM) full bridge converter is presented in this paper. The proposed circuit has two auxiliary circuit cells (Auxiliary circuit cell-1, Auxiliary circuit cell-2), one for each ground referred active switch. Auxiliary circuit cell consists of an active switch, a diode, a resonant inductor and a capacitor, and a coupled winding derived from main power transformer. Auxiliary circuit when gated properly create...
Design and Implementation of high frequency transformer for SMPS Based flyback DC-DC converter
Prashanth R.S.; C.M.Tavade; L.M.Deshpande; Hameed Miyan
2012-01-01
In switch mode power supplies (SMPS), flyback converters are very popular because of, design simplicity, low cost, multiple isolated outputs, high output voltages and high efficiency. They are preferred especially for low power applications. In this paper we have presented the design of transformer for variable DC input (18V to 60V) to 12V DC output. And observed the wave form across the switch, primary & secondary of the transformer.
Optimal Design and Tradeoff Analysis of Planar Transformer in High-Power DC–DC Converters
DEFF Research Database (Denmark)
Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.
2012-01-01
The trend toward high power density, high operating frequency, and low profile in power converters has exposed a number of limitations in the use of conventional wire-wound magnetic component structures. A planar magnetic is a low-profile transformer or inductor utilizing planar windings, instead of the traditional windings made of Cu wires. In this paper, the most important factors for planar transformer (PT) design including winding loss, core loss, leakage inductance, and stray capacitance ha...
Soft Switching Full-Bridge PWM DC/DC Converter Using Secondary Snubber
Directory of Open Access Journals (Sweden)
Jaroslav Dudrik
2009-05-01
Full Text Available A novel full-bridge PWM DC/DCconverter with controlled secondary side rectifier usingsecondary snubber is presented in this paper.Limitation of the circulating current as well as softswitching for all power switches of the inverter isachieved for full load range from no-load to shortcircuit by using controlled rectifier and snubber on thesecondary side. Phase shift PWM control strategy isused for the converter. The principle of operation isexplained and analyzed and the experimental resultson a 1kW, 50 kHz laboratory model of the converterare presented.
Complete bifurcation analysis of DC-DC converters under current mode control
Pikulin, D.
2014-03-01
The purpose of this research is to investigate to what extend application of novel method of complete bifurcation groups to the analysis of global dynamics of piecewise-smooth hybrid systems enables one to highlight new nonlinear effects before periodic and chaotic regimes. Results include the construction of complete one and two-parameter bifurcation diagrams, detection of various types of bifurcation groups and investigation of their interactions, localization of rare attractors, and the investigation of different principles of birth of chaotic attractors. Effectiveness of the approach is illustrated in respect to one of the most widely used switching systems-boost converter under current mode control operating in continuous current mode.
Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico
2011-01-01
Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of SBCS control software. In previous works we presented an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System, DTLHS) of the controlled syst...
Directory of Open Access Journals (Sweden)
Mechouma Rabiaa
2014-01-01
Full Text Available In recent years, power demand of industrial applications has increased significantly reaching some megawatts. The use of multilevel converters for applications of medium and high powers is proposed as a solution to drawback semiconductor technology. A multilevel converter not only achieves high power ratings, but also enables the use of renewable energy sources. Renewable energy sources such as photovoltaic can be easily interfaced to a multilevel converter system for a high power application. This paper presents the simulation study in Matlab/Simulink of a grid connected photovoltaic three phase Neutral Point Clamped (NPC inverter with DC/DC boost converter for constant and variable solar radiation.
International Nuclear Information System (INIS)
This work describes the bifurcational behavior of a modular peak current-mode controlled DC-DC boost converter with multi bifurcation parameters. The parallel-input/parallel-output converter consists of two identical boost circuits and operates in the continuous-current conduction mode (CCM). A nonlinear mapping in closed form is derived and bifurcation diagrams are generated using MATLAB. A comparison is made between the modular converter diagrams with those of the single boost converter. The effect of introducing mutual coupling between the inductors of the constituent modules is also addressed. Results are verified using the circuit analysis package PSPICE
Directory of Open Access Journals (Sweden)
Saritha Thomas
2014-09-01
Full Text Available This paper presents a soft-switching pulse width modulation (PWM non-isolated bi-directional dc–dc converter embedding an edge-resonant switched capacitor (ER-SWC cell. The conceptual dc–dc converter treated herein can achieve high-frequency zero-current soft-switching turn-on and zero-voltage soft-switching turn-off operations in the active switches. Those advantageous properties enable a wide range of soft-switching operations together with a high-voltage step- up conversion ratio with a reduced current stress. Circuit design guideline based on the soft-switching range is introduced; then, a theoretical analysis is carried out for investigating the step up voltage conversion ratio.
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius
2009-01-01
Abstract-In this paper, an extended run time DC UPS system structure with fuel cell and supercapacitor is investigated. A wide input range bi-directional dc-dc converter is described along with the phase-shift modulation scheme and phase-shift with duty cycle control, in different modes. The delivered power and peak current are analyzed and calculated. The key parameters of the bi-directional dc-dc converter, the relationships between the input voltage, phase-shift angle, ratio of the transformer and leakage inductance are analyzed and optimized. Build the system mathematic model and a novel input voltage combined with load current feedback using PI controller with anti-windup scheme to realize closed-loop control of the whole system, and verify the feasibility of the control scheme proposed by simulation. A 1kW prototype controlled by TMS320F2808 DSP is implemented and tested. Experimental results show the validity of design.
Directory of Open Access Journals (Sweden)
Ebrahim Babaei
2015-06-01
Full Text Available In the high voltage dc-dc boost converters, the energy transmission modes are divided into continuous conduction mode (CCM and discontinuous conduction mode (DCM. In addition, these modes are also divided into two different modes: complete inductor supply mode (CISM and incomplete inductor supply mode (IISM. In this paper, the operation of the boost dc-dc converter with high voltage gain is analyzed. Firstly, the energy transmission process between CCM and DCM is analyzed. Then, this process is investigated between IISM and CISM. Moreover, the critical inductance between CCM and DCM in addition to CISM and IISM is calculated. Finally, in order to verify the presented theoretical issues, the simulation results in EMTDC/PSCAD software program are used.
Arshak, Khalil; Almukhtar, Basil
2000-01-01
In this work a step by step planar transformer design proccdare for Flybock switch-mode DC-DC converter application is presented. This transformer has a maximum dimention of 2cm x 2cm x 0.4cm aiming to achieve an efficiency of 99% at an operating frequency of 500kHz. This planar transformer is designed specially for thick film technology development.
High-Efficiency Self-Adjusting Switched Capacitor DC-DC Converter with Binary Resolution
Kushnerov, Alexander
2010-01-01
Switched-Capacitor Converters (SCC) suffer from a fundamental power loss deficiency which make their use in some applications prohibitive. The power loss is due to the inherent energy dissipation when SCC operate between or outside their output target voltages. This drawback was alleviated in this work by developing two new classes of SCC providing binary and arbitrary resolution of closely spaced target voltages. Special attention is paid to SCC topologies of binary resolution. Namely, SCC systems that can be configured to have a no-load output to input voltage ratio that is equal to any binary fraction for a given number of bits. To this end, we define a new number system and develop rules to translate these numbers into SCC hardware that follows the algebraic behavior. According to this approach, the flying capacitors are automatically kept charged to binary weighted voltages and consequently the resolution of the target voltages follows a binary number representation and can be made higher by increasing t...
Scientific Electronic Library Online (English)
Andrés Mauricio, López-Cañón; Rafael Fernando, Diez-Medina; Gabriel, Perilla-Galindo; Diego Alejandro, Patiño-Guevara.
2012-06-01
Full Text Available Neste artigo analisa-se e desenha-se um conversor multinível em topologia tipo escada para una aplicação de alta voltagem (3000 V). Este conversor é comparado com outra estrutura conhecida chamada flying capacitors e mostra sua simplicidade na implementação e no controle. Adicionalmente, analisam as [...] quedas de voltagem a topologia tipo escada em função do número de celular e da corrente de carga. Por outro lado, implementa-se o conversor, que alcança satisfatoriamente 3000 V 100 mA e com os resultados obtidos validam-se as análises teóricas. O conversor é testado com dois tipos diferentes de condensadores e, assim, determina-se qual deles tem o melhor desempenho. Abstract in spanish En este artículo se analiza y se diseña un convertidor multinivel en topología escalera para una aplicación de alto voltaje (3.000 V). Este convertidor se compara con otra estructura conocida llamada flying capacitors y muestra su sencillez en la implementación y en el control. Adicionalmente, se an [...] alizan las caídas de voltaje de la topología escalera en función del número de celdas y de la corriente de carga. Por otro lado, se implementa el convertidor, que alcanza satisfactoriamente 3000 V 100 mA y con los resultados obtenidos se validan los análisis teóricos. El convertidor se prueba con dos tipos diferentes de condensadores y, así, se determina cuál de ellos tiene el mejor desempeño. Abstract in english This article analyzes and designs a ladder multilevel converter topology for a high voltage application (3000 V). This converter is compared to other well-known structures called Flying Capacitors showing its simplicity for implementation and control. In addition, an analysis of the voltage drop of [...] the ladder topology is carried out as a function of the number of cells and of the load current. Furthermore, the converter is implemented and successfully achieves 3000 V 100 mA. The theoretical analysis is validated by the results. The converter is tested with two different types of capacitors in order to determine which one offers a better performance.
A prototype of a fuel cell PEM emulator based on a buck converter
Energy Technology Data Exchange (ETDEWEB)
Marsala, Giuseppe; Cirrincione, Maurizio; Miraoui, Abdellatif [FClab- SET, Universite de Technologie de Belfort-Montbeliard (UTBM), Belfort (France); Pucci, Marcello; Vitale, Gianpaolo [ISSIA-CNR (Institute on Intelligent Systems for the Automation), Via Dante, 12, Palermo (Italy)
2009-10-15
After a brief introduction about fuel cell systems, and their modelling, this paper proposes a possible solution to emulate a proton exchange membrane fuel cell (PEM-FC) system by using a DC-DC buck converter. The fuel cell system, including all its auxiliaries and related control systems, is emulated by a buck converter realized experimentally and controlled in the DSPACE environment. The realization of the buck converter allows the behaviour of any fuel cells to be easily emulated since only the modification of the control law of the switch is necessary. The proposed emulator can be applied easily to other fuel cell systems if the polarization curve has the same current rate and maximum power. In this way it is possible to utilize the converter and perform the necessary tests to optimize a fuel cell system by avoiding the waste of hydrogen and the purchase of cells as well as any cell damage. With regard to current other types of emulators, the one presented here has the following characteristics: (1) all the auxiliaries of the system have been considered, each including its own control system, as in a real FCS, (2) the converter is a classical buck converter with a free-wheeling diode and is designed to have a high bandwidth and to be practically always in conduction mode (discontinuous mode appears only at very low currents) (3) the voltage control is made by a space-state controller, able to fix properly the closed loop poles of the system, thus guaranteeing the desired bandwidth of the control system and (4) it can be used in laboratory as a stand-alone low-cost system for design and experimental purposes. (author)
A prototype of a fuel cell PEM emulator based on a buck converter
International Nuclear Information System (INIS)
After a brief introduction about fuel cell systems, and their modelling, this paper proposes a possible solution to emulate a proton exchange membrane fuel cell (PEM-FC) system by using a DC-DC buck converter. The fuel cell system, including all its auxiliaries and related control systems, is emulated by a buck converter realized experimentally and controlled in the DSPACE environment. The realization of the buck converter allows the behaviour of any fuel cells to be easily emulated since only the modification of the control law of the switch is necessary. The proposed emulator can be applied easily to other fuel cell systems if the polarization curve has the same current rate and maximum power. In this way it is possible to utilize the converter and perform the necessary tests to optimize a fuel cell system by avoiding the waste of hydrogen and the purchase of cells as well as any cell damage. With regard to current other types of emulators, the one presented here has the following characteristics: (1) all the auxiliaries of the system have been considered, each including its own control system, as in a real FCS, (2) the converter is a classical buck converter with a free-wheeling diode and is designed to have a high bandwidth and to be practically always in conduction mode (discontinuous mode appears only at very low currents) (3) the voltage control is made by a space-state controller, able to fix properly the closed loop poles of the system, thus guaranteeing the desired bandwidth of the control system and (4) it can be used in laboratory as a stand-alone low-cost system for design and experimental purposes.
DEFF Research Database (Denmark)
Schaltz, Erik; Li, Zhihao
2009-01-01
Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi-input converter is capable of bi-directional operation and is responsible for power diversification and optimization. A fixed switching frequency strategy is considered to control its operating modes. A portion of New York City Cycle that includes these operation modes is used to perform the analyses.
Integrated power electronic converters and digital control
Emadi, Ali; Nie, Zhong
2009-01-01
Non-isolated DC-DC ConvertersBuck ConverterBoost ConverterBuck-Boost ConverterIsolated DC-DC ConvertersFlyback ConverterForward ConverterPush-Pull ConverterFull-Bridge ConverterHalf-Bridge ConverterPower Factor CorrectionConcept of PFCGeneral Classification of PFC CircuitsHigh Switching Frequency Topologies for PFCApplication of PFC in Advanced Motor DrivesIntegrated Switched-Mode Power ConvertersSwitched-Mode Power SuppliesThe Concept of Integrated ConverterDefinition of Integrated Switched-Mode Power Supplies (ISMPS)Boost-Type Integrated TopologiesGeneral Structure of Boost-Type Integrated T
Directory of Open Access Journals (Sweden)
Chih-Lung Shen
2015-09-01
Full Text Available In this paper, an integrated three-voltage-booster DC-DC (direct current to direct current converter is proposed to achieve high voltage gain for renewable-energy generation systems. The proposed converter integrates three voltage-boosters into one power stage, which is composed of an active switch, a coupled-inductor, five diodes, and five capacitors. As compared with conventional high step-up converters, it has a lower component count. In addition, the features of leakage-energy recycling and switching loss reduction can be accomplished for conversion efficiency improvement. While the active switch is turned off, the converter can inherently clamp the voltage across power switch and suppress voltage spikes. Moreover, the reverse-recovery currents of all diodes can be alleviated by leakage inductance. A 200 W prototype operating at 100 kHz switching frequency with 36 V input and 400 V output is implemented to verify the theoretical analysis and to demonstrate the feasibility of the proposed high step-up DC-DC converter.
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius
2012-01-01
This paper presents a low-cost bidirectional isolated dc–dc converte, derived from dual-active-bridge converter for the power sources with variable output voltage like supercapacitors. The proposed converter consists of push-pull-forward circuit half-bridge circuit (PPFHB) and a high-frequency transformer; this structure minimizes the number of the switching transistors and their associate gate driver components. With phase-shift control strategy, all the switches are operated under zero-voltage switching (ZVS) condition. Furthermore, in order to optimize the converter performance and increase efficiency, optimal design methods and criteria are investigated, including coupled inductors design, bidirectional power flow analysis, harmonics analysis, and ZVS range extension. Based on all the optimal parameters, higher efficiency can be achieved. Finally, prototypes are built in laboratory controlled by digital signal processor for comparison purpose. Detailed test results verify the theoretical analysis and demonstrate the validity of optimization design method.
International Nuclear Information System (INIS)
A novel on-chip frequency compensation circuit for a voltage-mode control DC/DC converter is presented. By employing an RC network in the two signal paths of an operational transconductance amplifier (OTA), the proposed circuit generates two zeros to realize high closed-loop stability. Meanwhile, full on-chip integration is also achieved due to its simple structure. Hence, the number of off-chip components and the board space is greatly reduced. The structure of the dual signal path OTA is also optimized to help get a better transition response. Implemented in a 0.5 ?m CMOS process, the voltage mode control DC/DC converter with the proposed frequency compensation circuit exhibits good stability. The test results show that both load and line regulations are less than 0.3%, and the output voltage can be recovered within 15 ?s for a 400 mA load step. Moreover, the compensation components area is less than 2% of the die's area and the board space is also reduced by 11%. The efficiency of the whole chip can be up to 95%. (semiconductor integrated circuits)
Energy Technology Data Exchange (ETDEWEB)
Senouci, N.
1998-07-01
This work belongs to the European Barmint project which final goal is the realization of a micro-system, implanted in the human body, and devoted to the regulation of the blood pressure of patients. The aim of this thesis is the realization of the miniaturized power supply of this micro-system. The different approaches allowing to reach the required voltage levels from the 3.5 V initial level are analysed first. A solution based on the integration of DC-DC converters with their control loop has been retained. A control loop based on a single-cycle control principle and completed with a technique of control of the maximum current has been applied for the first time to a boost converter in order to eliminate the disturbances coming from the output of the photovoltaic cells. A first prototype with a single converter and with such a control loop has been successfully built and validated. Then a full system has been built which comprises: a DC-DC converter with its control loop for the 5 V-130 mA power supply and two parallel converters with their control loop for the 60 V output supply. This loop comprises an energy saving circuit which switches on the converters only when required by the health situation of the patient. It includes also a charge pump circuit which allows to supply the different 5 V control loop blocks using the 3.5 V input voltage. The entire system represents a 17.5 mm{sup 2} silicon surface. The second part of this work concerns the integration of a coil on a silicon surface. Iron/nickel alloy deposits on silicon substrates have been obtained and characterized. (J.S.)
Directory of Open Access Journals (Sweden)
Cherif Larouci
2012-06-01
Full Text Available The current paper deals with a multi-objective design approach of power converters applied to a DC-DC buck structure. This approch consists on optimizing a preselected power architecture by minimizing a multi-objective function (volume and time response under multi-physic constraints (efficiency, thermal, electromagnetic compatibility and control. This multi-objective optimization allows evaluating the impact of the control aspect on the converter design by considering the control criteria with the same importance as the conventional constraints. The obtained results confirm the influence of the control on the converter design parameters. They help the designer to choose suitable operating points depending on the desired performances in terms of volume and time response while respecting efficiency, junction temperatures and electromagnetic compatibility constraints.
Two phase interleaved buck converter for driving high power LEDs
DEFF Research Database (Denmark)
Beczkowski, Szymon; Munk-Nielsen, Stig
2011-01-01
The goal of this paper is to evaluate an interleaved buck topology for driving high current light-emitting diodes. Low output capacitor value allows the use of non-electrolytic capacitors extending the lifetime of the converter. Converter is operated as a constant, regulated current source which increases luminous efficacy of LED compared to PWM dimmed system. Because of the low dynamic resistance of LEDs the duty cycle of the converter does not change greatly with controlled current. By setting the input voltage of the buck converter to around twice the voltage of diode strings, converter can be operated close to the 50% duty cycle, where the ripple attenuation is the highest.
Directory of Open Access Journals (Sweden)
Kosenko Roman
2015-07-01
Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.
Methods of Battery Charging with Buck Converter Using Soft-Switching Techniques
Directory of Open Access Journals (Sweden)
S. Abinaya
2011-12-01
Full Text Available This paper is a detailed study on methods of battery charging with Buck Resonant converter using soft switching techniques like ZVS and ZCS. This study also presents the circuit configuration with the least components to realize a highly efficient solar energy battery charger with a zero-voltage and zero current switching resonant converter. The high-frequency resonant converter has numerous well-known advantages over the traditional hard-switching converters. The most important advantage is that it offers a lower switching loss and a higher power density. Additionally, the soft switching current waveform characterizes a lower electromagnetic interference (EMI. The operating principles and design procedure of the proposed charger with both zero voltage and zero current are thoroughly analyzed. The optimal values of the resonant components are computed by applying the characteristic curve and electric functions derived from the circuit configuration. Finally, a simulation model is implemented for charger circuit designed for a 12-V 4-Ah lead acid battery using zero voltage and zero current switching and MATLAB/SIMULINK software is used as the simulation tool. The proposed dc?dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. Satisfactory performance is obtained from the experimental results.
Directory of Open Access Journals (Sweden)
SRDIC, S.
2015-08-01
Full Text Available This paper presents a buck-boost converter which is modified to utilize new 600 V gallium nitride (GaN power semiconductor devices in an application requiring 1200 V devices. The presented buck-boost converter is used as a part of a dc/dc stage in an all-GaN photovoltaic (PV inverter and it provides a negative voltage for the 3-level neutral-point-clamped (NPC PWM inverter which is connected to the utility grid. Since in this application the transistor and the diode of the buck-boost converter need to block the sum of the PV string voltage (which is normally in the range from 150 to 350 V and the dc bus voltage (which is in the order of 400 V, the 1200 V devices or series connection of 600 V devices need to be employed. Currently, 1200 V GaN power semiconductor devices are not commercially available. Therefore, the standard buck-boost converter is modified to enable the use of 600 V GaN devices in this particular application. Based on the proposed converter topology, a PSpice simulation model and a 600 W converter prototype were developed. Both simulation and experimental results show successful operation of the converter.
DEFF Research Database (Denmark)
Zhang, Zhe; Andersen, Michael A. E.
2013-01-01
This paper presents an isolated dual-input DC-DC converter with a PWM plus phase-shift control for fuel cell hybrid energy systems. The power switches are controlled by phase shifted PWM signals with a variable duty cycle, and thus the two input voltages as well as the output voltage can be regulated effectively. By using the second input capacitor and the high side switches as an inherent active clamping circuit, zerovoltage switching (ZVS) for the power MOSFETs on the primary side, and zero-current switching (ZCS) for the diodes on the secondary side are achieved respectively to improve the performance of the proposed PWM converter. The principle of operation is analyzed and some design considerations are discussed. Simulation results using PLECS are given to verify the proposed analysis and design. An experimental converter prototype has been designed, constructed and tested in the laboratory to verify the validity of the theoretical analysis and also demonstrate the converter’s performance over wide variations in input voltage.
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius
2013-01-01
This paper presents a new zero-voltage-switching (ZVS) isolated dc-dc converter which combines a boost halfbridge (BHB) cell and a full-bridge (FB) cell, so that two different type of power sources, i.e. both current-fed and voltage-fed, can be coupled effectively by the proposed converter for various applications, such as fuel cell and super-capacitor hybrid energy system. By fully using two high frequency transformers and a shared leg of switches, number of the power devices and associated gate driver circuits can be reduced. With phase-shift control, the converter can achieve ZVS turn-on of active switches and zero-current switching (ZCS) turn-off of diodes. In this paper, derivation, analysis and design of the proposed converter are presented. Finally, a 25~50 V input, 300~400 V output prototype with a 600 W nominal power rating is built up and tested to demonstrate the effectiveness of the proposed converter topology.
R. Ramesh1,2,3,4; U. Subathra
2014-01-01
Single phase ac-dc converters having high frequency isolation are implemented in buck, boost, buck-boost configuration with improving the power quality in terms of reducing the harmonics of input current. The paperpropose the circuit configuration, control mechanism, and simulation result for the single phase ac-dc converter.
Computer simulations of optimum boost and buck-boost converters
Rahman, S.
1982-01-01
The development of mathematicl models suitable for minimum weight boost and buck-boost converter designs are presented. The facility of an augumented Lagrangian (ALAG) multiplier-based nonlinear programming technique is demonstrated for minimum weight design optimizations of boost and buck-boost power converters. ALAG-based computer simulation results for those two minimum weight designs are discussed. Certain important features of ALAG are presented in the framework of a comprehensive design example for boost and buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight annd loss profiles of various semiconductor components and magnetics as a function of the switching frequency.
?uk-Buck Converter for Standalone Photovoltaic System
Ahmad H. El Khateb; Nasrudin Abd. Rahim; Jeyraj Selvaraj
2013-01-01
This paper presents MPPT converter for battery charger. The converter combines both ?uk and buck converters to extract the maximum power from the sun while supplying a controlled constant current/voltage to the battery. The topology uses two control signals instead of one control signal; one for tracking the maximum power point, another for charging the battery providing constant current/voltage to the battery. The advantage of this converter is to exploit the maximum power of the PV array av...
Two phase interleaved buck converter for driving high power LEDs
Beczkowski, Szymon; Munk-Nielsen, Stig
2011-01-01
The goal of this paper is to evaluate an interleaved buck topology for driving high current light-emitting diodes. Low output capacitor value allows the use of non-electrolytic capacitors extending the lifetime of the converter. Converter is operated as a constant, regulated current source which increases luminous efficacy of LED compared to PWM dimmed system. Because of the low dynamic resistance of LEDs the duty cycle of the converter does not change greatly with controlled current. By sett...
Two phase interleaved buck converter for driving high power LEDs
DEFF Research Database (Denmark)
Beczkowski, Szymon; Munk-Nielsen, Stig
2011-01-01
The goal of this paper is to evaluate an interleaved buck topology for driving high current light-emitting diodes. Low output capacitor value allows the use of non-electrolytic capacitors extending the lifetime of the converter. Converter is operated as a constant, regulated current source which increases luminous efficacy of LED compared to PWM dimmed system. Because of the low dynamic resistance of LEDs the duty cycle of the converter does not change greatly with controlled current. By setting...
Design of a Fully Integrated Three-Level Buck Converter
Y. Neelima*,
2014-01-01
Dynamic response of a converter plays an important role in many applications which change load in a rapid manner, especially in POL (Point of load) applicant ions. Here a new method for improving the dynamic response of a converter is presented. Here separate control schemes are implemented during steady state as well as transient load conditions. A three level buck converter topology with fast transient response is discussed here. This topology does not require a soft start u...
A High Step up DC-DC Converter with Coupled Inductor for AC AND DC Module Applications
Anand.S; Eranna
2014-01-01
The grid connected AC module is an alternative solution in photovoltaic (PV) generation systems. It combines a PV panel and a micro inverter connected to grid. A high step up converter is used because the input is about 15V to 40V for a single PV panel. The proposed converter employs a zeta converter and a coupled inductor without extreme duty ratios generally needed for coupled inductor to achieve high step up voltage conversion,the leakage inductor energy of the coupled induc...
A High Step up DC-DC Converter with Coupled Inductor for AC AND DC Module Applications
Directory of Open Access Journals (Sweden)
Anand.S
2014-09-01
Full Text Available The grid connected AC module is an alternative solution in photovoltaic (PV generation systems. It combines a PV panel and a micro inverter connected to grid. A high step up converter is used because the input is about 15V to 40V for a single PV panel. The proposed converter employs a zeta converter and a coupled inductor without extreme duty ratios generally needed for coupled inductor to achieve high step up voltage conversion,the leakage inductor energy of the coupled inductor is efficiently recycled to the load. A 25V input vo
An integrated DC-DC step-up charge pump and step-down converter in 130 nm technology
Bochenek, M; Faccio, F; Kaplon, J
2009-01-01
After the LHC luminosity upgrade the number of readout channels in the ATLAS Inner Detector will be increased by one order of magnitude and delivering the power to the front-end electronics as well as cooling will become a critical system issue. Therefore a new solution for powering the readout electronics has to be worked out. Two main approaches for the power distribution are under development, the serial powering of a chain of modules and the parallel powering with a DCDC conversion stage on the detector. In both cases switchedcapacitor converters in the CMOS front-end chips will be used. In the paper we present the design study of a step-up charge pump and a step-down converter. In optimized designs power efficiency of 85 % for the step-up converter and 92 % for the step-down converter has been achieved.
Thermal Modelling and Design of On-board DC-DC Power Converter using Finite Element Method
DEFF Research Database (Denmark)
Staliulionis, Z.; Zhang, Z.; Pittini, R.; Andersen, M. A. E.; Noreika, A.; Tarvydas, P.
2014-01-01
Power electronic converters are widely used and play a pivotal role in electronics area. The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined by numerical modelling techniques. Therefore, thermal design through thermal modelling and simulation is becoming an integral part of the design process as less expensive compared to the experimental cu...
Thermal Modeling and Design of On-board DC-DC Power Converter using Finite Element Method
DEFF Research Database (Denmark)
Staliulionis, Zygimantas; Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.; Noreika, A.; Tarvydas, P.
2014-01-01
Power electronic converters are widely used and play a pivotal role in electronics area . The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined by numerical modeling techniques. Therefore, thermal design through thermal modeling and simulation is becoming an integral part of the design process as less expensive compared to the experimenta l cu...
A Low-Cost Soft-Switched DC/DC Converter for Solid-Oxide Fuel Cells
Energy Technology Data Exchange (ETDEWEB)
Jason Lai
2009-03-03
A highly efficient DC to DC converter has been developed for low-voltage high-current solid oxide fuel cells. The newly developed 'V6' converter resembles what has been done in internal combustion engine that split into multiple cylinders to increase the output capacity without having to increase individual cell size and to smooth out the torque with interleaving operation. The development was started with topology overview to ensure that all the DC to DC converter circuits were included in the study. Efficiency models for different circuit topologies were established, and computer simulations were performed to determine the best candidate converter circuit. Through design optimization including topology selection, device selection, magnetic component design, thermal design, and digital controller design, a bench prototype rated 5-kW, with 20 to 50V input and 200/400V output was fabricated and tested. Efficiency goal of 97% was proven achievable through hardware experiment. This DC to DC converter was then modified in the later stage to converter 35 to 63 V input and 13.8 V output for automotive charging applications. The complete prototype was tested at Delphi with their solid oxide fuel cell test stand to verify the performance of the modified DC to DC converter. The output was tested up to 3-kW level, and the efficiency exceeded 97.5%. Multiple-phase interleaving operation design was proved to be reliable and ripple free at the output, which is desirable for the battery charging. Overall this is a very successful collaboration project between the SECA Core Technology Team and Industrial Team.
Thermal Modeling and Design of On-board DC-DC Power Converter using Finite Element Method
DEFF Research Database (Denmark)
Staliulionis, Zygimantas; Zhang, Zhe
2014-01-01
Power electronic converters are widely used and play a pivotal role in electronics area . The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined by numerical modeling techniques. Therefore, thermal design through thermal modeling and simulation is becoming an integral part of the design process as less expensive compared to the experimenta l cut - and - try approach. Here the investigation is performed using finite element method - based modeling , and also the potential of such analysis was demonstrated by real - world measurements and comparison of obtained results . Thermal modeling was accomplishe d using finite element anal ysis software COMSOL and thermo - imaging camera was used to measure the thermal field distribution. Also, the improved configuration of power converter was proposed
Self-Starting DC:DC Boost Converter for Low-Power and Low-Voltage Microbial Electric Generators
Degrenne, Nicolas; Buret, François; Morel, Florent; Adami, Salah-Eddine; Labrousse, Denis; Allard, Bruno; Zaoui, Abderrahime
2011-01-01
This paper describes and evaluates an original boost converter able to harvest energy from low-power and lowvoltage power sources. Design and sizing are made according to specifications issued from the stringent characteristics of microbial electric generators such as microbial fuel cells and microbial desalination cells. The harvested power is 10mW under input voltage Vin=0.3V (33mA input current). The design of the converter is adapted from a classical boost topology. It includes a self-osc...
Research on Variable Structure Control Strategy Based on Direct BUCK AC-AC Converter
Directory of Open Access Journals (Sweden)
Xin Geng
2012-11-01
Full Text Available The researches on direct AC-AC convertors have been an important field. The DC-modulated method, which was used in DC-DC convertors before, is used in AC-AC convertors to realize a direct AC-AC converting now. The method as regulating the duty of switch periods can control the circuit to output an acceptable sinusoid voltage wave. But this method can always bring forth a small phase shift between input and output. In this paper, variable structure control (VSC is used in BUCK circuit. Simulations for these different control strategies based on the Simulink platform are used to analyze and compare. The result shows that the VSC can reduce the phase shift hardly to zero. In the same time, the switch period of VSC is not unchanged. It’s changing following the error. Compared to PWM control method, the VSC can gain a smaller response time and a balance between reducing switching loss and improving quality of output.
A 0.35?m 50V CMOS Sliding-Mode Control IC for Buck Converters
DEFF Research Database (Denmark)
HØyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.
2007-01-01
This paper presents a hysteretic (sliding mode) control IC for a buck DC/DC converter for use as an envelope tracking power supply to increase the efficiency of an RF power amplifier. The IC integrates a high-bandwidth error amplifier, a comparator with hysteresis, and a high-side driver for an external N-channel power MOSFET. The total control loop delay using the implemented IC is 35ns, this is shown to be a 30% reduction compared to a state-of-the-art discrete IC based solution. The presented results also show that it is viable to integrate a 100MHz operational amplifier on the same die as a high-voltage MOSFET driver operating with slew rates in excess of 5V/ns. The IC is demonstrated in a tracking power supply with 30W output power and 3?s rise/fall time, running from a 40V input. The complete IC, including pads, takes up 4mm2 in a 0.35?m 50V CMOS process.
Soft Computing Module of High Step-Up DC–DC Converter for PV Module using Simulink Environment
Directory of Open Access Journals (Sweden)
K. Vinoth Kumar
2012-12-01
Full Text Available Within the photovoltaic (PV power-generation market, the PV module has shown obvious growth. However, a high voltage gain converter is essential for the module’s grid connection through a dc–ac inverter. This paper proposes a converter that employs a floating active switch to isolate energy from the PV panel when the ac module is OFF; this particular design protects installers and users from electrical hazards. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor, this converter achieves a high step-up voltage-conversion ratio; the leakage inductor energy of the coupled inductor is efficiently recycled to the load. These features explain the module’s high-efficiency performance. The detailed operating principles and steady-state analyses of continuous, discontinuous, and boundary conduction modes are described. A 15V input voltage, 200V output voltage, and 100W output power prototype circuit of the proposed converter has been implemented; its maximum efficiency is up to 95.3% and full-load efficiency is 92.3%.
Synchronous Buck converter with Output Impedance Correction Circuit
Svikovic, Vladimir; Oliver Ramírez, Jesús Angel; Alou Cervera, Pedro; García Suárez, Oscar; Cobos Márquez, José Antonio
2012-01-01
This work is related to the improvement of the output impedance of the Buck converter by means of introducing an additional power path that virtually increases the output capacitance during transients. It is well known that in VRM applications, with wide load steps, voltage overshoots and undershoots may lead to undesired performance of the load. To solve this problem, high-bandwidth high-switching frequency power converters can be applied to reduce the transient time or a big output capacito...
Design of a Fully Integrated Three-Level Buck Converter
Directory of Open Access Journals (Sweden)
Y. Neelima*,
2014-08-01
Full Text Available Dynamic response of a converter plays an important role in many applications which change load in a rapid manner, especially in POL (Point of load applicant ions. Here a new method for improving the dynamic response of a converter is presented. Here separate control schemes are implemented during steady state as well as transient load conditions. A three level buck converter topology with fast transient response is discussed here. This topology does not require a soft start up circuitry for three level buck converters. Simulation model is done in Matlab/Simulink and the result shows a great improvement in dynamic response of the system. The 3-level converter enables smaller inductors (1 NH than a buck, while generating a wide range of output voltages compared to a 1/2 model capacitor converter. The test-chip prototype delivers up to 0.85 a load current while generating output voltages from 0.4 to 1.4 V from a 2.4 V input supply. It achieves 77% peak efficiency at power density of 0.1 W/mm and 63% efficiency at maximum power density of 0.3 W/mm.
Simulation of High Step-Up DC–DC Converter for Photovoltaic Module Application using MATLAB/SIMULINK
Directory of Open Access Journals (Sweden)
S.Daison Stallon
2013-06-01
Full Text Available As per the present scenario lot of power shortages are there in all over the world especially country like India the grid transferring problem is also high. Almost the power from the fossil fuels are becoming so less some of the examples of the fossil fuels are (coal, lignite, oil, and gases.So most of them looking in forward for the power from green or renewable based energies like solar, wind, biomass, tidal etc. Which does not cause any pollution to the environment. In this paper the simulation and analysis of the PV panel and also high efficient boost converter design and simulation is also performed. Even though the solar based systems are renewable based energies when compared to other renewable energies like wind, biomass it does not connect to more number of grid connections. Lot of necessary steps want to be taken one of the main important factor that high efficient boost converter is needed, here in this paper the input voltage to the boost converter is given as 15V and receives the output voltage of 55.64V
A NEW GENERATION VLSI APPROACH FOR THE PWM CONTROL OF AN INTEGRATED FOUR-PORT DC-DC CONVERTER
Directory of Open Access Journals (Sweden)
SANGAMESH SAKRI
2012-12-01
Full Text Available In the recent years, the increase in the petroleum prices, the rapid run out tendency of fossil fuel reserves and their unavoidable harmful effects and political instabilities in the regions of energy sources have been accelerated the studies on the renewable energy systems. Although various renewable energy power generations are in practice today, the most popular is using photovoltaic (PV arrays and wind generators. Since PV and wind sources can meet the required demand but either source alone provides an intermittent supply and energy storage is needed to deliver a reliable supply. However these two sources complement each other. A combined plant (hybrid therefore has higher availability than either individual source and so needs less storage capacity. This paper proposes a novel converter topology that interfaces four power ports: two sources (PVand wind source, one bidirectional storage port, and one isolated load port. Power electronic converter is needed to interface and concurrently control multiple renewable energy sources with the load along with energy storage in stand-alone or grid-connected residential, commercial and automobile applications. The power electronic interface also contains some level of monitoring and control functionality to ensure that the distributed energy system can operate as required. In the proposed scheme, a unique VLSI chip called Digital Signal Controller (DSC is used to implement the controller operation which has the features of both microcontroller and digital signal processor (DSP. In this work, dsPIC30F2010 DSC chip is used to program the phase shift angles and generate the PWM pulses for the converter switches. The results of proposed system are recorded and analyzed. The experimental results have verified the proposed scheme of PWM control. The proposed topology and control is particularly relevant to battery-backed power systems having multiple renewable sources.
Codimension-Two Big-Bang Bifurcation in a ZAD-Controlled Boost DC-DC Converter
Amador, A.; Casanova, S.; Granada, H. A.; Olivar, G.; Hurtado, J.
In this paper, we study some nonlinear behaviors in a two-dimensional system defined by a Boost Converter controlled by CPWM (Centered Pulse-Width Modulation) and a ZAD (Zero Average Dynamics) strategy. The dynamics was analyzed using a discrete-time map, which consists of a sampled system at each switching cycle. The structure of the two-parametric space is characterized analytically. This allows proving the existence and stability of an infinite number of codimension-one curves that intersect at the same point in the two-parametric space. This phenomenon has been called a big-bang bifurcation.
Digital Linear and Nonlinear Controllers for Buck Converter
Directory of Open Access Journals (Sweden)
Shyama M
2012-03-01
Full Text Available Both linear PID controllers and fuzzy controllers are designed and implemented for a buck converter. Comparison between the two controllers is made in the aspect of design, implementation and experimental results. Design of fuzzy controllers is based on heuristic knowledge of the converter and tuned using trial and error, while the design of linear PID and PI controllers is based on the frequency response of the buck converter. Implementation of linear controllers is quite straightforward, while implementation of fuzzy controllers has its unique issues. A comparison of experimental results indicates that the performance of the fuzzy controller is superior to that of the linear PID and PI controllers. The fuzzy controller is able to achieve faster transient response, has more stable steady-state response, and is more robust under different operating points.
Directory of Open Access Journals (Sweden)
S. Ramya
2012-11-01
Full Text Available The objective of this paper is to propose amulti-input power converter for the hybrid system in order tosimplify the power system and reduce the cost. The proposedconverter interfaces two unidirectional input ports and abidirectional port for storage element in a unified structure. Italso utilizes four power switches that are controlled independentlywith four different duty ratios. The renewable power systemhybridizes PV and Wind as main source & Battery Power forbackup energy source. Three different power operation modes aredefined for the converter based on utilization state of the battery asfollows: 1 An operation type wherein power is delivered to loadfrom hybrid renewable energy sources; 2A single type whereinonly one renewable energy source supplies power to the load withbattery discharging; 3 An operation type wherein power isdelivered to load from renewable sources along with batterycharging. A simple and cost effective control with DC-DCconverter is used for maximum power point tracking (MPPT andhence maximum power is extracted from the source .Theintegration of the hybrid renewable power system is implementedand simulated using MATLAB/SIMULINK.
Directory of Open Access Journals (Sweden)
Mohamed Daowd
2014-04-01
Full Text Available Lithium-based batteries are considered as the most advanced batteries technology, which can be designed for high energy or high power storage systems. However, the battery cells are never fully identical due to the fabrication process, surrounding environment factors and differences between the cells tend to grow if no measures are taken. In order to have a high performance battery system, the battery cells should be continuously balanced for maintain the variation between the cells as small as possible. Without an appropriate balancing system, the individual cell voltages will differ over time and battery system capacity will decrease quickly. These issues will limit the electric range of the electric vehicle (EV and some cells will undergo higher stress, whereby the cycle life of these cells will be shorter. Quite a lot of cell balancing/equalization topologies have been previously proposed. These balancing topologies can be categorized into passive and active balancing. Active topologies are categorized according to the active element used for storing the energy such as capacitor and/or inductive component as well as controlling switches or converters. This paper proposes an intelligent battery management system (BMS including a battery pack charging and discharging control with a battery pack thermal management system. The BMS user input/output interfacing. The battery balancing system is based on battery pack modularization architecture. The proposed modularized balancing system has different equalization systems that operate inside and outside the modules. Innovative single switched capacitor (SSC control strategy is proposed to balance between the battery cells in the module (inside module balancing, IMB. Novel utilization of isolated bidirectional DC/DC converter (IBC is proposed to balance between the modules with the aid of the EV auxiliary battery (AB. Finally an experimental step-up has been implemented for the validation of the proposed balancing system.
Highly efficient PWM synchronous buck converter with optimized LDMOS
Roy, Swarnil; Mukherjee, Sagar; Sarkar, Chandan Kumar
2015-07-01
In this work, a design of high efficiency synchronous buck converter with an optimized LDMOS is presented which works in VHF frequency domain. The circuit performance of the buck converter is then analyzed and optimized to increase the efficiency and to reduce the power losses without modifying the circuit. The analysis and optimization is performed by varying the different device parameters like drift region doping concentration (DDrift) and drift region length (LDrift) along with the circuit level parameters like the dead time and the switching frequency. The effect of the parameters is found to reduce the power losses of the circuit. The circuit with optimized parameters yields 80% efficiency at 100 MHz switching frequency.
Accurate Sliding-Mode Control System Modeling for Buck Converters
DEFF Research Database (Denmark)
Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.
2007-01-01
This paper shows that classical sliding mode theory fails to correctly predict the output impedance of the highly useful sliding mode PID compensated buck converter. The reason for this is identified as the assumption of the sliding variable being held at zero during sliding mode, effectively modeling the hysteretic comparator as an infinite gain. Correct prediction of output impedance is shown to be enabled by the use of a more elaborate, finite-gain model of the hysteretic comparator, which ta...
Characterization of an integrated buck converter using infrared thermography
Viviès, Noelle; Haussener, Marion; Welemane, Hélène; Trajin, Baptiste; Vidal, Paul-Etienne
2014-01-01
This study deals with new integrated systems for power electronics applications including wide-gap semiconductors. Integration of Silicon carbide (SiC) components provides for instance new perspectives with higher temperature operating points than conventional Silicon (Si) semiconductors. The present work intends to study an integrated buck converter composed of a Silicon IGBT (Insulated-Gate Bipolar Transistor) and a Silicon carbide diode. By means of in...
Stability Aspects in One-Cycle Controlled Buck Converters
GURBINA, M.; LASCU, D.
2014-01-01
The paper aims to investigate issues related to one cycle controlled buck converters stability, in the situation when the integration capacitor discharging is performed through a non-zero value resistor, as it happens in practice. It is known that in this case the exponential discharge makes capacitor voltage theoretically never reach zero. Under these conditions, instability phenomena are expected when the discharge time is short, that is at high duty cycles. The stability co...
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.
2013-01-01
This paper introduces a new zero-voltage-switching (ZVS) isolated DC-DC converter with two input ports which can be utilized in hybrid energy systems, for instance, in a fuel cell and super-capacitor system. By fully using two high frequency transformers, the proposed converter can effectively integrate a current-fed boost half-bridge (BHB) and a full-bridge (FB) into one equivalent circuit configuration which has dual-input ability and additionally it can reduce the number of the power devices....
Directory of Open Access Journals (Sweden)
Lina Morales Laguado
2010-05-01
Full Text Available This document proposes analysing and designing two control strategies for permanent current DC-DC buck converter. These kinds of electronic devices convert a constant-voltage to a lower constant-voltage (nonlinearity characteristics being demonstra- ted. Two nonlinear control techniques are shown. The first is a conventional optimal proportional error and integral error (PI controller based on minimising integral of time per squared errors (ITSE criteria. A model of the plant at an operation point was thus obtained. The second one was fuzzy control where input and output sets were also defined by minimising ITSE criteria in the overall system and establishing inputs such as proportional error and integral error. Load was then varied to establish the system’s efficiency with both the aforementioned controllers. It must be borne in mind that such systems should not present super-voltage since this can cause damage. The parameters found in designing both controllers thus corresponded to analytical and descriptive methodology. Simulation results, the performance index mentioned above (ITSE and power consumption showed that the sys- tem’s response for the fuzzy control drew more power consumption than the optimal controller; otherwise, obtained ITSE was lar- ger for the optimal control than the fuzzy control. It is concluded that exploring these types of converter is applicable when using nonlinear control techniques and minimising the different performance indices.
Stability Aspects in One-Cycle Controlled Buck Converters
Directory of Open Access Journals (Sweden)
GURBINA, M.
2014-02-01
Full Text Available The paper aims to investigate issues related to one cycle controlled buck converters stability, in the situation when the integration capacitor discharging is performed through a non-zero value resistor, as it happens in practice. It is known that in this case the exponential discharge makes capacitor voltage theoretically never reach zero. Under these conditions, instability phenomena are expected when the discharge time is short, that is at high duty cycles. The stability condition is analytically derived with respect to the control voltage. It is shown that instability occurs with period doubling leading to a half switching frequency subharmonic. Computer simulations confirm the validity of theoretical considerations.
Scientific Electronic Library Online (English)
Eliana, Arango; Carlos, Ramos-Paja; Carlos, Carrejo; Roberto, Giral; Andres, Saavedra-Montes.
2011-09-01
Full Text Available Este artículo propone un pre-amplificador basado en convertidores DC-DC conectados en paralelo para la reducción de armónicos inyectados a fuentes de potencia. Las principales características del pre-amplificador son la reducción del rizado de corriente de entrada en convertidores de potencia, incre [...] mentado además la eficiencia del sistema de conversión. Se describe el cálculo de las condiciones óptimas de operación del pre-amplificador, así como su modelado matemático y control para operar en las condiciones seleccionadas. Así mismo, se analiza el pre-amplificador con un convertidor elevador clásico, obteniendo una reducción significativa en el rizado de corriente inyectado a la fuente, así como un incremento en la eficiencia del sistema. Finalmente, los análisis teóricos se confirman a través de simulaciones circuitales y resultados experimentales. Abstract in english An efficient pre-amplifier based on interleaved DC-DC boost switching converters to mitigate high-frequency harmonics injection to power sources is proposed. The main features of the pre-amplifier are mitigate the ripple of power converters input-current and improving the efficiency of the whole pow [...] er conversion chain. The pre-amplifier optimal operating conditions are calculated, and the circuit is modeled and controlled to operate in such conditions. The pre-amplifier interacting with a classical single boost is analyzed, obtaining a strong reduction in the current ripple injected to the source, and also improving the efficiency of the initial conversion system. Finally, the theoretical analyses are confirmed by means of circuital PSIM simulations and experimental results.
DEFF Research Database (Denmark)
Thummala, Prasanth; Zhang, Zhe
2014-01-01
This paper presents a digital control technique to achieve valley switching in a bidirectional flyback converter used to drive a dielectric electro active polymer based incremental actuator. The incremental actuator consists of three electrically isolated, mechanically connected capacitive actuators. The incremental actuator requires three high voltage (~2.5 kV) bidirectional DC-DC converters, to accomplish the incremental motion by charging and discharging the capacitive actuators. The bidirectional flyback converter employs a digital controller to improve efficiency and charge/discharge speed using the valley switching technique during both charge and discharge processes, without the need to sense signals on the output high-voltage side. Experimental results verifying the bidirectional operation of a single high voltage flyback converter are presented, using a film capacitor as the load. Energy efficiency measurements are provided.
Integrated design & control of a buck boost converter
Scientific Electronic Library Online (English)
Martin J. Pomar, Garcia; Julio E., Normey-Rico; Gloria, Gutierrez; César de, Prada.
2009-09-01
Full Text Available This paper presents the integrated design and control of a buck boost converter (BBC). In the proposed methodology the design tool provides simultaneously the controller tuning and BBC design parameters in such a way that some closed-loop pre-specified static and dynamic behavior is obtained. This a [...] pproach contrasts with the traditional methodology, where the design of BBC is performed without taking into account its dynamical behavior. An optimization procedure is used to obtain the electronic components of the BBC and the tuning parameters of the controller, minimizing an objective function that considers the set of performance specifications. Although the methodology can be applied to any converter and any control strategy, in this particular case an ideal BBC and a Sliding Model Control (SMC) strategy are used. Some simulation results show the advantages and principally the flexibility that can be obtained with this approach.
Implementation of PV System with Two Inductor Buck Boost Converter
Directory of Open Access Journals (Sweden)
T.Jeevanandham, M.Raja
2015-03-01
Full Text Available The project proposes a new converter for photovoltaic system which is substantially high performance oriented. Furthermore, the lack of batteries replacement water pumping systems without the use of chemicals are responsible for the failure of such systems in isolated areas. The converter is designed to drive a three-phase induction motor directly from photovoltaic system. The majority of commercial systems use low-voltage (PV energy. The use of three-phase induction motor presents a suitable replacement of dc motor though by the use of dc motor we can directly drive by means of converter dc supply, but due to its lack of performance and reliability, we have opted for three phase induction motor. In the developed technique, there is no specialized personnel for operating and the system is based on a current-fed multi-resonant converter also maintaining these motors. Here, we make use of the TIBC topology such that they are found to be made of Buck Boost converter which will both stabilize and boost the output supply. Thus, the project will be a low cost high efficiency water supply duo for agricultural industry. Though solar energy based water supply system is being developed for the past 20 years, this project will be a phenomenal change and development of renewable energy that could be used in agricultural industry projects.
Schoenfeld, A. D.; Yu, Y.
1973-01-01
Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.
Nonlinear program based optimization of boost and buck-boost converter designs
Rahman, S.; Lee, F. C.
1981-01-01
The facility of an Augmented Lagrangian (ALAG) multiplier based nonlinear programming technique is demonstrated for minimum-weight design optimizations of boost and buck-boost power converters. Certain important features of ALAG are presented in the framework of a comprehensive design example for buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight and loss profiles of various semiconductor components and magnetics as a function of the switching frequency.
The DC-DC Conversion Power System of the CMS Phase-1 Pixel Upgrade
Klein, Katja
2014-01-01
The power system of the Phase-1 pixel detector will be described and the performance of the new components, including DC-DC converters, DC-DC converter motherboards and various power distribution boards, will be detailed. The outcome of system tests in terms of electrical behaviour, thermal management and pixel module performance will be discussed.
Design Considerations for High Step-Down ratio Buck Regulators
Khanna, R
2008-01-01
The buck or step-down DC-DC converter is the workhorse switching power supply topology. It utilizes two switches (two FETS or one FET and one diode) along with an output inductor and output capacitor. Whether you look at a large computer server, a personal desktop or a laptop computer, a cell phone or a GPS unit all will contain a buck converter in one form or another. This paper will discuss the synchronous buck topology, design considerations, component selection followed by a small signal model of buck converter. Issues that are important in optimizing the efficiency of the design for example MOSFET selection, the impact that the MOSFET driver plays in improving the efficiency will be examined. The paper will finish by contrasting various control architectures.
Power decoupling method for single phase differential buck converter
DEFF Research Database (Denmark)
Yao, Wenli; Tang, Yi
2015-01-01
The well-known inherent second-order ripple power in single phase converters imposes harmonic stress on the dc link, resulting in low efficiency and overheating issues. In order to avoid installing bulky electrolytic capacitors or LC filters in the dc-link, this paper presents a differential buck inverter to improve the dc link power quality, and an improved active power decoupling method is proposed to achieve ripple power reduction for both AC-DC and DC-AC conversions. The ripple energy storage is realized by the filter capacitors, which are connected between the output terminal and the negative dc bus. By properly controlling the differential mode voltage of the capacitors, it is possible to transfer desired energy between the DC port and AC port. The common mode voltage is controlled in such a way that the ripple power on the dc side will be reduced. Furthermore, an autonomous reference generation technique is proposed to provide accurate ripple power compensation, and closed-loop controllers are also designed based on small signal models. The effectiveness of this power decoupling method is verified by detailed simulation studies as well as laboratory prototype experimental results.
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius
2013-01-01
This paper introduces a new zero-voltage-switching (ZVS) isolated DC-DC converter with two input ports which can be utilized in hybrid energy systems, for instance, in a fuel cell and super-capacitor system. By fully using two high frequency transformers, the proposed converter can effectively integrate a current-fed boost half-bridge (BHB) and a full-bridge (FB) into one equivalent circuit configuration which has dual-input ability and additionally it can reduce the number of the power devices. With the phase-shift control, it can achieve zero-voltage switching turn-on of active switches and zero-current switching (ZCS) turn-off of diodes leading to negligible reverse recovery loss. Voltage conversion ratio is higher compared to the conventional boost converter owing to the BHB circuit and the corresponding control. Finally, a 25~50 V input, 300~400 V output prototype with a 600 W nominal power rating are built up and tested to demonstrate the effectiveness of the proposed converter topology.
Mechouma Rabiaa; Azoui Boubekeur
2014-01-01
In recent years, power demand of industrial applications has increased significantly reaching some megawatts. The use of multilevel converters for applications of medium and high powers is proposed as a solution to drawback semiconductor technology. A multilevel converter not only achieves high power ratings, but also enables the use of renewable energy sources. Renewable energy sources such as photovoltaic can be easily interfaced to a multilevel converter...
Zar?bski, Janusz; Górecki, Krzysztof
In the paper the influence of cooling conditions of semiconductor devices on the characteristics of a boost converter is considered. The form of the thermal model of semiconductor devices is proposed and some results of calculations and measurements of the characteristics of this converter are shown. The investigations were performed for the selected types of power MOSFETs operating at different cooling conditions.
Energy Technology Data Exchange (ETDEWEB)
Amjadi, Zahra; Williamson, Sheldon
2010-09-15
This paper presents the analysis and novel hybrid controller design for an interleaved 2-quadrant switched capacitor (SC) bidirectional DC/DC converter for a hybrid electric vehicle (HEV) dual energy storage system. The designed novel control strategy enables simpler dynamics compared to a standard buck converter with input filter, good regulation capability, low EMI, lower source current ripple, ease of control, and continuous input current waveform in both buck as well as boost modes of operation.
Application of Theory of Hybrid Systems to Control the Switching of Buck Converter
Benmiloud, Mohammed
2013-08-01
The field of power electronics poses challenging control problems that can’t be treated in a complete manner using traditional modeling. In this paper, the buck converter operating in Continuous Conduction Mode (CCM) is represented analytically by hybrid automaton model and graphically representation is also given. The hybrid trajectory and the model behavior are presented. The control problem of buck switching converters is transformed to a guard selection problem. The guard selection calculation formulas of buck converter are derived from the basic circuit laws. The stability of the switching is established analytically by the use of multiple Lyapunov functions to ensure the convergence and Poincare map to assess the local stability of the limit cycle. Numerical results clearly bring out the advantages and effectiveness of the proposed control law under varying line voltage and load conditions. Simulation studies are carried out in Matlab/Simulink/Stateflow.
Degrenne, Nicolas; Allard, Bruno; Buret, François; Morel, Florent; Adami, Salah-Eddine; Labrousse, Denis
2011-01-01
This paper describes and evaluates 3 original step-up converter architectures able to harvest energy from low-voltage and low-power generators. Design and sizing are made according to specifications issued from the stringent characteristics of microbial fuel cells. The maximum harvested power is 10mW under input voltage Vin=0.3V (33mA input current). The considered converters include self-oscillating circuits for autonomous operation. The 2 first topologies are respectively adapted from boost...
Simulation and Implementation a Non-Isolated Buck Converter at ZCS Condition
Directory of Open Access Journals (Sweden)
Nahid Hematian
2013-10-01
Full Text Available A new soft-switching resonant inverting-buck converter with high efficiency is presented. The proposed converter steps down and inverts the input voltage. The zero-current-switching (ZCS technique is employed to reduce switching losses and Electromagnetic Interferences (EMI. An LLC resonant network is utilized to provide soft-switching conditions for all semiconductor devices. Experimental results verify the integrity of the proposed converter operation and the presented theoretical analysis.
Design and implementation of an observer controller for a buck converter
LAKSHMI, Shenbaga; RAJA, T. Sree Renga
2014-01-01
An observer controller for a buck converter is presented. A state feedback gain matrix is derived in order to achieve the stability of the converter and to ensure the robustness of the controller. A load estimator is designed to estimate the unmeasurable variables and to obtain the zero output voltage error. A pulse-width modulation scheme is adopted to obtain the output voltage regulation. In order to improve the transitory response and dynamic constancy of the converter, the controlle...
Energy Technology Data Exchange (ETDEWEB)
Lee, H. [Kyungnam University (Korea, Republic of)
1996-10-27
A soft switching method with small switching loss was proposed for the purpose of increasing the efficiency of a DC-DC boost converter which converted a DC current generated by solar cells to a variable DC current. Existing current converters are supplemented by using a snubber circuit around the switch so as to protect the switch by a hard switching action. However, with an increase of the output current, snubber loss is increased, reducing the efficiency. In order to solve this problem, the partial resonant switch method was applied to the converter; with this method of partially forming a resonant circuit only at the time of turning on/off of the switch, the switching loss was reduced through the soft switching, thereby making the proposed converter operate with high efficiency. Moreover, the resonant element of the partial resonant circuit using a snubber condenser, the energy accumulated in the condenser was regenerated on the power supply side without loss of snubber. With the regenerated energy, the proposed converter was provided with a smaller ratio of switching to use than the conventional converter. 4 refs., 7 figs., 1 tab.
International Nuclear Information System (INIS)
Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus, the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode (CCM) operation are carried out in this paper. The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented. The transfer functions from the input voltage to the output voltage, from the input voltage to the inductor current, from the duty cycle to the output voltage, from the duty cycle to the inductor current, and the output impedance of the open-loop Buck converter in CCM operation are derived, and their bode diagrams and step responses are calculated, respectively. It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor. Finally, the realization of the fractional order inductor and the fractional order capacitor is designed, and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis
Design and realization of the BUCK converter based on anti-saturated PI controller
Directory of Open Access Journals (Sweden)
JIANG Lan
2013-02-01
Full Text Available A kind of anti-saturated digital PI regulator is designed and implemented based on DSP.This PI regulator was applied to the system design of voltage and current double-loop control in a BUCK converter and related experimental research was made in a 5.5 KW prototype machine.Experimental results show that the converter has good static and dynamic performances and the validity of the design of the PI regulator is verified.
Space-state robust control of a Buck converter with amorphous core coil and variable load
Morales Cabrera, Rafael; Somolinos Sanchez, Jose Andres; Moron Fernandez, Carlos; Garcia Garcia, Alfonso
2013-01-01
Pulse-width modulation is widely used to control electronic converters. One of the most frequently used topologies for high DC voltage/low DC voltage conversion is the Buck converter. These converters are described by a second order system with an LC filter between the switching subsystem and the load. The use of a coil with an amorphous magnetic material core rather than an air core permits the design of smaller converters. If high switching frequencies are used to obtain high quality voltag...
Active pre-filters for dc/dc Boost regulators
Directory of Open Access Journals (Sweden)
Carlos Andrés Ramos-Paja
2014-07-01
Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.
Design Of Converter For Low Power Photovoltaic Conversion System
Directory of Open Access Journals (Sweden)
SWAPNIL ZADEY, SUBROTO DUTT
2013-06-01
Full Text Available The solar energy conversion system is an alternative for conventional power generating system. It has no running cost due to freely available and non polluting solar radiations. The voltage which is available from solar array is variable and to obtain a stable voltage from solar panels, DC-DC converters are required for constant power production. There are mainly three converters namely Buck, Boost and Buck-Boost converters which can be used for either increasing or decreasing the voltage. This paper presents mobile charging circuit with a PV source. The circuit structure of the proposed system adopts buck converter combined PWM MPPT technique. In this research, buck converter is used as a charger for charging mobile battery. The input voltage can typically change from (12V initially, down to (5V, and provide a regulated voltage within the range of the 4.5V required for the charging of mobile batteries.
Modelling and Simulation of Closed Loop Controlled Buck Converter Fed Pmbldc Drive System
Directory of Open Access Journals (Sweden)
R. Dhanasekaran
2011-04-01
Full Text Available Permanent Magnet Brushless DC Motor (PMBLDC is one of the best electrical drives that has increasing popularity, due to their high efficiency, reliability, good dynamic response and very low maintenance. This makes the interest of modeling an ideal PMBLDC motor and it’s associated Drive System in simple and lucid manner. In this paper the drive system is proposed with a buck converter topology. It has the advantages of reduced switching losses, low inductor power loss, reduced ripple by using a pi-filter, which in turn makes the DC link voltage to be stable. The modeling and simulation of the PMBLDC motor is done using the software package MATLAB/SIMULINK. The operation principle of the buck converter is analyzed and the simulation results are presented in this paper to verify the theoretical analysis.
Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto
In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.
Birchenough, Arthur G.
2003-01-01
Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.
Zero-Voltage and Zero-Current Switching Buck-Boost Converter for PV Applications
Directory of Open Access Journals (Sweden)
Athulya P Prem
2014-12-01
Full Text Available A ZVS and ZCS buck boost converter is presented for PV panel applications. The salient points are that all the switching devices are under zero-current switching during turn-on and zero-voltage switching during turn-off. The active switches in the converter undergo zero-capacitive turn-on losses unlike switches in other soft-switched topologies. The switches do not experience any over voltage/over current stress proportional to load as in resonant converters. This soft-switching technique can also be applied to other classical switched mode power converters. A detailed analysis of the converter under steady state is discussed and simulation results obtained are presented.
Evaluation of Arm Processor-based Bionic Intelligent Controller for a Buck-boost Converte
Directory of Open Access Journals (Sweden)
M.V. Mini
2015-07-01
Full Text Available This study focuses on performance-comparison of different tuning methods for a PI controller applied to a buck-boost converter. Comparison between the controllers is made by analysis of design methodology implementation issues and empirically measured performance. Design of PI controller is based on frequency response of the converter. The optimization of PI controller is based on ant colony algorithm. Experimental results show that, tuning the PI controller using ACO algorithm gave better performance than the conventional algorithm. This is mainly due to the fact ACO is capable of reducing the overshoot without oscillation.
A New Buck-Boost Converter for a Hybrid-Electric Drive Stand
Directory of Open Access Journals (Sweden)
P. Mašek
2009-01-01
Full Text Available This paper describes work on the laboratory working stand for a hybrid-electric drive located in laboratory T2:H1-26.The basic idea is to operate the combustion engine in its optimal regime. In this regime the engine has the highest efficiency and minimal smoke exhaust. This optimal regime is only a small portion of its operation area. Because the engine has to operate in this area, it is necessary to add a new converter to the hybrid-electric stand. The new converter must be allowed to buck and boost and must operate as a current source in this regime.
Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion
Energy Technology Data Exchange (ETDEWEB)
Kim, J; Kim, M; Herrault, F; Park, JY; Allen, MG
2015-09-01
Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g., higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.
Dynamics and stabilization of peak current-mode controlled buck converter with constant current load
Leng, Min-Rui; Zhou, Guo-Hua; Zhang, Kai-Tun; Li, Zhen-Hua
2015-10-01
The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. Project supported by the National Natural Science Foundation of China (Grant No. 61371033), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142027), the Sichuan Provincial Youth Science and Technology Fund, China (Grant Nos. 2014JQ0015 and 2013JQ0033), and the Fundamental Research Funds for the Central Universities, China (Grant No. SWJTU11CX029).
Design And Implementation Of Luo Converter For Electric Vehicle Applications
Directory of Open Access Journals (Sweden)
A.Manikandan
2013-10-01
Full Text Available This paper proposes the stable and ripple free output voltage from the design of developed Dc-Dc converter topology. Dc voltage provided by battery contains high voltage ripples and it is not constant enough voltage, thus it is not applicable for most devices like electric-vehicle controller, dc-chargers, etc. Dc-Dc converters are employed to attenuate the ripples regardless of change in the load voltage. In the existing method, the classical buck converter for electric vehicle applications does not meet the load requirement containing more ripples on the output voltage and parasitic effects. To overcome this problem the advanced developed Dc-Dc luo-converter technology was introduced. luo converter is the developed converter derived from the buck-boost converter. In this proposed model the additional filter elements in the luo-converter eliminate the output ripples and effectively enhance the output voltage level. A computer simulation using MATLAB/SIMULINK confirms the predicted results.
Yang, Ning-Ning; Liu, Chong-Xin; Wu, Chao-Jun
2012-08-01
In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck—Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck—Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as ? and ? vary. At the same time, the simulation results show that the converter goes through different routes to chaos.
International Nuclear Information System (INIS)
In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck—Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck—Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as ? and ? vary. At the same time, the simulation results show that the converter goes through different routes to chaos. (general)
ANALYSIS OF VARIABLE SPEED PFC BUCK–BOOST CONVERTER-FED PMBLDC MOTOR DRIVE
Directory of Open Access Journals (Sweden)
K. Raghavareddy
2015-09-01
Full Text Available This paper presents an analysis of variable speed low power drive with PFC at supply ends by using BLDC PM motor fed from buck-boost converter. The speed control of BLDC achieved by simply control the DC link voltage of VSI converter which is taken as reference signal. This facilitates the operation of VSI at fundamental frequency switching by using the electronic commutation of the BLDC motor which offers reduced switching losses. A PFC buck–boost converter is designed to operate in discontinuous inductor current mode (DICM to provide an inherent PFC at ac mains. The performance of the proposed drive is evaluated over a wide range of speed control and varying supply voltages (universal ac mains at 170–270 V with improved power quality at ac mains. The obtained power quality indices are within the acceptable limits of international power quality standards such as the IEC 61000-3-2. The performance of the proposed drive is simulated in MATLAB/Simulink environment, and the obtained results are validated experimentally on a developed prototype of the drive.
Reduce Energy Losses and THD in Buck Converter Using Control Algorithm
Directory of Open Access Journals (Sweden)
Vipul C. Rajyaguru, Keerti S.Vashishtha, K. C. Dave
2012-04-01
Full Text Available The paper will focus on modeling, analysis, and design and simulation buck converter architecture. This architecture is used for automotive dual power system to reduce filters, dynamic response and power. The converter is designed in CCM (continuous conduction mode. The voltage mode control strategy is proposed by using pulse width modulation (PWM with a proportional-integralderivative (PID. The effectiveness of the step down converter is verified through simulation results using control oriented simulator like MATLAB/Simulink tools.The proposed circuits operate at constant frequency and are regulated by conventional pulse width modulation (PWM using dedicated PWM and PID control techniques. The circuit operation, mathematical analysis, designs and simulation results for continuous current mode (CCM operation are mentioned in this paper.
Bifurcations and chaos produced by the modulation signal in a PWM buck converter
International Nuclear Information System (INIS)
We present an analysis of the complex dynamics displayed by the classical buck converter, controlled with a Pulse-Width-Modulation technique. We show the conditions to make the circuit display a sliding mode and a null steady-state error. Also, some conditions for the existence of a periodic orbit with the same period as the modulation signal are established. Finally, taking the period of the modulation signal as a bifurcation parameter, we describe a situation where the controlled circuit exhibits chaotic behavior.
The DC-DC conversion power system of the CMS Phase-1 pixel upgrade
Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, St.; Wlochal, M.
2015-01-01
The pixel detector of the CMS experiment will be exchanged during the year-end technical stop in 2016/2017, as part of the experiment's Phase-1 upgrade. The new device will feature approximately twice the number of readout channels, and consequently the power consumption will be doubled. By moving to a DC-DC conversion powering scheme, it is possible to power the new pixel detector with the existing power supplies and cable plant. The power system of the Phase-1 pixel detector is described and the performance of the new components, including DC-DC converters, DC-DC converter motherboards and various power distribution boards, is detailed. The outcome of system tests in terms of electrical behaviour, thermal management and pixel module performance is discussed.
DEFF Research Database (Denmark)
Rødgaard, Martin Schøler; Andersen, Thomas; Meyer, Kaspar Sinding; Andersen, Michael A. E.
2012-01-01
Research and development within piezoelectric transformer (PT) based converters are rapidly increasing as the technology is maturing and starts to prove its capabilities. Especially for high voltage and high step-up applications, PT based converters have demonstrated good performance and DC/AC converters are widely used commercially. The availability of PT based converters for DC/DC applications are very limited and are not that developed yet. I this paper an interleaved multi layer Rosen-type P...
PERFORMANCE OF MATHEMATICAL MODELING OF PHOT OVOLTAIC MODULE WITH SIMULINK BUCK - BOOST CONVERTER
Directory of Open Access Journals (Sweden)
Shahnam Baig
2015-06-01
Full Text Available Photovoltaic systems require interfacing power converters between the PV arrays and the buck - boost converter . In this paper is proposes the modeling, design and simulation of photovoltaic solar cell model considering the effect of solar irradiations and ch anges temperature. Its voltage current and power voltage characteristics are simulated with different conditions. It is noticed that output characteristics of PV array are affected by environmental conditions and conversion efficiency is low. The use math ematical analysis is done for the single diode model. The single diode model is employed to investigate the I - V and P - V characteristics of 36 W module systems. The effect of irradiation and temperature is also considered. This mathematical analysis approac h is a very flexible to change the parameters of the system.
Svikovic, Vladimir; Oliver Ramírez, Jesús Angel; Alou Cervera, Pedro; García Suárez, Oscar; Cobos Márquez, José Antonio
2012-01-01
This work is related to the improvement of the dynamic performance of the Buck converter by means of introducing an additional power path that virtually increase s the output capacitance during transients, thus improving the output impedance of the converter. It is well known that in VRM applications, with wide load steps, voltage overshoots and undershoots ma y lead to undesired performance of the load. To solve this problem, high-bandwidth high-switching frequency power converter s can be a...
Scientific Electronic Library Online (English)
C. A, Ramos-Paja; R, Giral; C, Carrejo.
2014-08-01
Full Text Available Este artículo propone un pre-filtro activo para mitigar los armónicos de corriente generados por reguladores elevadores clásicos, los cuales producen rizados de corriente proporcionales al ciclo de trabajo. Por tanto, altos voltajes de salida, i.e., altos factores de transformación de voltaje, produ [...] cen armónicos de corriente que se deben filtrar para evitar daños o pérdidas de potencia en la fuente. Tradicionalmente, estas componentes se filtran usando condensadores electrolíticos, lo que introducen problemas de confiabilidad debido a su alta taza de falla. En contraste, la solución propuesta usa un convertidor dc/dc, basado en la conexión paralela de celdas canónicas Boost, para filtrar el rizado de corriente generado por el regulador Boost, lo que mejora la confiabilidad del sistema. Esta solución, además, incrementa la eficiencia total y el factor de transformación de voltaje. Finalmente, la solución se valida usando simulaciones y resultados experimentales. Abstract in english This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics tha [...] t must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.
A Tapped-Inductor Buck-Boost Converter for a Dielectric ElectroActive Polymer Generator
DEFF Research Database (Denmark)
Dimopoulos, Emmanouil; Munk-Nielsen, Stig
2014-01-01
Energy harvesting applications based on Dielectric ElectroActive Polymer (DEAP) generators have been in the spotlight in recent years after the latter ones’ documented advantages against competing electromagnetic and field-activated technologies. Yet, the need for bidirectional energy flow under high step-up and high step-down voltage conversion ratios, accompanied by low-average but relatively high-peak currents, imposes great challenges on the design of the employed power electronic converter. In addition, the effective operational range of the converter is usually limited by the lack of commercially-available, high-efficient, high-voltage, low-power semiconductor devices. In this paper, a high-efficient bidirectional tapped-inductor buck-boost converter, addressing high step-up and high step-down voltage conversion ratios, is proposed for energy harvesting applications based on DEAP generators. The high-side switch of the converter is replaced by a string of three non-matched, non-thermally-coupled, off-the-shelf MOSFETs, extending its effective operational range. Experiments conducted on a standalone DEAP generator validate the applicability of the proposed converter by demonstrating energy harvesting of 0.42 J, at 0.75 Hz and 60 % delta-strain, characterized by a world-first; energy density equal to 2 J per kg of active material.
Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System
DEFF Research Database (Denmark)
Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.; Vasquez, Juan Carlos
2013-01-01
Paralleled dc converter systems are widely used in distribution systems and uninterruptable power supplies. This paper implements a hierarchical control in a droop-controlled dc-dc conversion system with special focus on improving system efficiency which is dealt within the tertiary regulation. As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart ...
International Nuclear Information System (INIS)
An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output (SIDO) buck converter in pseudo-continuous conduction mode (PCCM) with a self-adaptive freewheeling current level (SFCL) is presented. Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter. Moreover, an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers. Instead of keeping it as a constant value, the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time. To verify the feasibility of the proposed controller, an SIDO buck converter with two regulated output voltages, 1.8 V and 3.3 V, is designed and fabricated in HEJIAN 0.35 ?m CMOS process. Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 ?s while the cross-regulation is reduced to 0.057 mV/mA, when its first load changes from 50 to 100 mA. (semiconductor integrated circuits)
Sampled-Data and Harmonic Balance Analyses of Average Current-Mode Controlled Buck Converter
Fang, Chung-Chieh
2012-01-01
Dynamics and stability of average current-mode control of buck converters are analyzed by sampled-data and harmonic balance analyses. An exact sampled-data model is derived. A new continuous-time model "lifted" from the sampled-data model is also derived, and has frequency response matched with experimental data reported previously. Orbital stability is studied and it is found unrelated to the ripple size of the current-loop compensator output. An unstable window of the current-loop compensator pole is found by simulations, and it can be accurately predicted by sampled-data and harmonic balance analyses. A new S plot accurately predicting the subharmonic oscillation is proposed. The S plot assists pole assignment and shows the required ramp slope to avoid instability.
Yahaya, N.Z; Lee, M. K.; Begam, K. M.; Awan, M.
2010-01-01
This work is about the analysis of dead time variation on switching losses in a Zero Voltage Switching (ZVS) synchronous buck converter (SBC) circuit. In high frequency converter circuits, switching losses are commonly linked with high and low side switches of SBC circuit. They are activated externally by the gate driver circuit. The duty ratio, dead time and resonant inductor are the parameters that affect the efficiency of the circuit. These variables can be adjusted for the optimization pu...
International Nuclear Information System (INIS)
By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagram, Lyapunov exponent spectrum, time-domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region. (general)
A High Step-Down Interleaved Buck Converter with Active-Clamp Circuits for Wind Turbines
Directory of Open Access Journals (Sweden)
Chih-Lung Shen
2012-12-01
Full Text Available In this paper, a high step-down interleaved buck coupled-inductor converter (IBCC with active-clamp circuits for wind energy conversion has been studied. In high step-down voltage applications, an IBCC can extend duty ratio and reduce voltage stresses on active switches. In order to reduce switching losses of active switches to improve conversion efficiency, a IBCC with soft-switching techniques is usually required. Compared with passive-clamp circuits, the IBCC with active-clamp circuits have lower switching losses and minimum ringing voltage of the active switches. Thus, the proposed IBCC with active-clamp circuits for wind energy conversion can significantly increase conversion efficiency. Finally, a 240 W prototype of the proposed IBCC with active-clamp circuits was built and implemented. Experimental results have shown that efficiency can reach as high as 91%. The proposed IBCC with active-clamp circuits is presented in high step-down voltage applications to verify the performance and the feasibility for energy conversion of wind turbines.
MPPT Using Fuzzy Logic Control and Buck Converter for Photovoltaic System
Directory of Open Access Journals (Sweden)
C.Thulasi Priya*1,
2014-05-01
Full Text Available In this paper, a fuzzy logic control (FLC is proposed to control the maximum power point tracking (MPPT for a photovoltaic (PV system. The proposed technique uses the fuzzy logic control to specify the size of incremental current in the current command of MPPT. As results indicated, the convergence time of maximum power point (MPP of the proposed algorithm is better than that of the conventional Perturb and Observation (P&O technique. The simulation results have been used to verify the effectiveness of the algorithm. The proposed method produces good efficiency with low switching loss. The nonlinearity and adaptiveness of fuzzy controller provided good performance under parameter variations such as solar irradiation. Tracking of the maximum power point (MPPT plays an important role in photovoltaic(PV power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize they module efficiency. This work presents a fuzzy logic controller based MPPT algorithms using design of dc to dc new buck converter for photovoltaic applications. The introduction of fuzzy c
Energy Technology Data Exchange (ETDEWEB)
Lopez, Henrique Fioravanti Miguel
2009-08-15
This work presents the study and development of a processing power system that could be used in the connection of renewable energy sources to commercial power grid. The system consists of a ZETA converter associated with a bridge inverter operating at low frequency. The Zeta converter, operating in discontinuous conduction mode (DCM), plays the main role in this arrangement, producing a rectified sinusoidal current waveform synchronized with the electric grid. The function of the full-bridge inverter, connected in cascade with the Zeta converter, is to reverse every 180 deg the current generated by the Zeta converter. Initially it presents the analysis of the Zeta converter operating in DCM, as well as a design criterion. Following by the control strategy and the experimental results for the proposed system are presented and discussed. (author)
Efficient Design to Meet High Power Density Applications Using DC-DC Energy Conversion
Ashok, L.
2014-01-01
In order to meet higher power applications in power electronics system this proposed with implantation using DC-DC energy conversion with resonant converter. Present generation there is a huge amount of markets has increased the demand for high efficiency and high power density applications. But Conventional adopted pulse width modulation includes small weight, low power, low efficiency, due to high switching frequencies in diodes. The proposed system implements a half-bridge ...
Energy Technology Data Exchange (ETDEWEB)
Schoenen, Timo
2011-07-01
Every time a new hybrid or electrical vehicle is developed, different topologies are compared to achieve the best results regarding weight costs and efficiency. The integration of a dc-to-dc converter between the battery stack and the power train is a frequently discussed alternative because the preferred voltage of the inverter and machine are often higher than the voltage of the battery stack. Within this thesis this approach was studied in detail and compared with the conventional concept without using a dc-to-dc converter. Therefore the influence of the dc-link voltage on the components like battery stack, machine, inverter and dc-to-dc converter was investigated. A change of the dc-link voltage leads to changes inside the components which affect weight, surface of the semiconductor devices and efficiency. This correlation could be used to develop a simulation process which optimizes the dc-link voltage regarding the programmed targets. In hybrid and electrical vehicles low weight and minimum costs are important and were defined as the main targets to achieve. The vantages which arise by using a dc-to-dc converter can be opposed to the disadvantages which also occur. The additional degree of freedom caused by the dc-to-dc converter shall be used. To achieve the best results regarding efficiency, the dc-link voltage has to be adapted to the operating point of the machine. First of all the dc-to-dc converter is an additional component with its weight, volume and losses. By the increased dc-link voltage on the drive train side, the size of the semiconductor devices inside the inverter could be reduced. Therefore the number of windings inside the machine has to be adapted accordingly. Also the wiring could be decreased based on the reduced currents. Overall there is still a higher weight and volume caused by the dc-to-dc converter. Also the efficiency map is influenced by the dc-to-dc converter. In the base speed region the dc-to-dc converter leads to a higher efficiency because the inverter currents should be reduced by the increased voltage. At high speed and especially high load the double energy conversion leads to a reduced efficiency. Whether a dc-to-dc converter is beneficial for traction systems depends highly on the distribution of the operating points. An inverter with an integrated dc-to-dc converter was developed and constructed for the ''Europa-Hybrid'' project. This hybrid vehicle project was public funded by the German Federal Ministry of Economics and Technology (BMWi). The inverter and the dc-to-dc converter where used to verify the simulation results. Within this thesis the factors of influence, which are in correlation with the dc-link voltage, were analyzed and depicted. The pros and cons of the dc-to-dc converter between the battery and the drive train where pointed out accordingly. (orig.)
Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei
2014-04-01
Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.
Directory of Open Access Journals (Sweden)
Muhammad Taufiq Ramadhan
2015-03-01
Full Text Available Penggunaan mobil listrik secara umum terkendala pada beban, kecepatan aktual, serta efisiensi energi. Pemanfaatan Fuzzy Logic Controller untuk pengaturan kecepatan motor DC pada mobil listrik diperlukan untuk meraih kecepatan aktual yang lebih presisi sehingga diperoleh efisiensi energi. Selain itu perlu juga menggunakan Bidirectional Buck-Boost Cascade Converter untuk pengaturan motor DC secara bidirectional, yakni pengaturan saat motoring dan saat pengereman regeneratif (regenerative braking. Hal ini berdasar pada energi yang terbuang percuma, baik itu rugi elektris maupun rugi mekanis saat pengereman.
An efficiency improved single-phase PFC converter for electric vehicle charger applications
DEFF Research Database (Denmark)
Zhu, Dexuan; Tang, Yi
2013-01-01
This paper presents an efficiency improved single-phase power factor correction (PFC) converter with its target application to plug-in hybrid electric vehicle (PHEV) charging systems. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and wide range of output DC voltage. Moreover, the involved DC/DC buck conversion stage may only need to convert partial input power rather than full scale of input power, and therefore the system overall efficiency can be much improved. Through proper control of the buck converter, it is also possible to mitigate the double-line frequency ripple power that is inherent in a single-phase AC/DC system. Both simulation and experimental results are presented to show the effectiveness of this converter.
A Single Phase to Three Phase PFC Half-Bridge Converter Using BLDC Drive with SPWM Technique.
Srinu Duvvada; Manmadha Kumar B
2014-01-01
In this paper, a buck half-bridge DC-DC converter is used as a single-stage power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (BLDC) drive. The front end of this PFC converter is a diode bridge rectifier (DBR) fed from single-phase AC mains. The BLDC is used to drive a compressor load of an air conditioner through a three-phase VSI fed from a controlled DC link voltage. The speed of the compressor is controlled to ach...
Efficient Power Conversion in Common Active Clamp for Interleaved Dc-Dc Boost
Directory of Open Access Journals (Sweden)
V. Rathinavel Subramaniam
2014-10-01
Full Text Available This project presents a high-efficiency and high-step-up non isolated interleaved dc to dc converter with a common active-clamp circuit. In the presented converter, the coupled-inductor boost converters are interleaved. A boost converter is used to clamp the voltage stresses of all the switches in the interleaved converters, caused by the leakage inductances present in the practical coupled inductors, to a low voltage level. The leakage energies of the inter-leaved converters are collected in a clamp capacitor and recycled to the output by the clamp boost converter. The proposed converter achieves high efficiency because of the recycling of the leakage energies, reduction of the switch voltage stress, mitigation of the output diode is reverse recovery problem, and interleaving of the converters. In many applications, high-efficiency, high-voltage step-up dc–dc converters are required as an interface between the available low voltage sources and the output loads, which are operated at much higher voltages. Examples of such applications are as follows. Different distributed energy storage components such as batteries, fuel cells, and ultra capacitors are used in the power trains of hybrid electric vehicles (HEV, electric vehicles (EV, and fuel cell vehicles (FCV. In the present power train architectures of these vehicles, the voltage levels of the energy storage elements are usually low; whereas the motors of the vehicles are driven at much higher voltages. The telecom and the computer industry utilize the standard batteries, with low voltage levels, as a back-up power source. The dc–dc converter, used in this case, is required to boost the low-input voltage of the batteries to the high voltage of the dc bus. Another example is the automotive headlamps, using the high-intensity discharge lamp ballasts..
A tapped-inductor buck-boost converter for a multi-DEAP generator energy harvesting system
DEFF Research Database (Denmark)
Dimopoulos, Emmanouil; Munk-Nielsen, Stig
2014-01-01
Interest on Dielectric ElectroActive Polymer (DEAP) generators has aroused among scientists in recent years, due to the former ones' documented advantages against competing electromagnetic and field-activated technologies. Yet, the need for bidirectional energy flow under high step-up and high step-down voltage conversion ratios, accompanied by low-average but relatively high-peak currents, imposes great challenges on the design of the employed power electronic converter. On top of that, the shortage of commercially-available, high-efficient, high-voltage, low-power semiconductor devices limits the effective operational range of the power electronic converter. In this paper, a bidirectional tapped-inductor buck-boost converter is proposed, addressing high-efficient high step-up and high step-down voltage conversion ratios, for energy harvesting applications based on DEAP generators. The effective operational range of the converter is extended, by replacing its high-side switch with a string of three serialized MOSFETs, to accommodate the need for high-efficient high-voltage operation. Experiments conducted on a single DEAP generator - part of a quadruple DEAP generator energy harvesting system with all elements installed sequentially in the same circular disk with a 90 phase shift - validate the applicability of the proposed converter, demonstrating energy harvesting of 0.26 J, at 0.5 Hz and 60 % delta-strain; characterized by an energy density of 1.25 J per kg of active material.
A tapped-inductor buck-boost converter for a multi-DEAP generator energy harvesting system
Dimopoulos, Emmanouil; Munk-Nielsen, Stig
2014-03-01
Interest on Dielectric ElectroActive Polymer (DEAP) generators has aroused among scientists in recent years, due to the former ones' documented advantages against competing electromagnetic and field-activated technologies. Yet, the need for bidirectional energy flow under high step-up and high step-down voltage conversion ratios, accompanied by low-average but relatively high-peak currents, imposes great challenges on the design of the employed power electronic converter. On top of that, the shortage of commercially-available, high-efficient, high-voltage, low-power semiconductor devices limits the effective operational range of the power electronic converter. In this paper, a bidirectional tapped-inductor buck-boost converter is proposed, addressing high- efficient high step-up and high step-down voltage conversion ratios, for energy harvesting applications based on DEAP generators. The effective operational range of the converter is extended, by replacing its high-side switch with a string of three serialized MOSFETs, to accommodate the need for high-efficient high-voltage operation. Experiments conducted on a single DEAP generator - part of a quadruple DEAP generator energy harvesting system with all elements installed sequentially in the same circular disk with a 90° phase shift - validate the applicability of the proposed converter, demonstrating energy harvesting of 0.26 J, at 0.5 Hz and 60% delta- strain; characterized by an energy density of 1.25 J per kg of active material.
Quasi Y-Source Boost DC-DC Converter
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Blaabjerg, Frede
2015-01-01
A new topology called “quasi-Y-source impedance network” is presented in this paper. It inherits all the advantages of the original Y-source network. In addition, the new topology draws continuous current from the source which is required for many renewable sources. It also has dc-current-blocking capacitors, which avoids saturation in the transformer core.
Designing Magnetic Components for High Frequency DC-DC Converters
McLyman, W. T.
1993-01-01
The conversion process in power electronics requires the use of tranformers and inductors, components which frequenly are the heaviest and bulkiest item in the conversion circuits. They also have a significant effect upon the overall performance and efficiency of the system.
Li, Qing; Zhang, Xiao-ping; Chen, Qi
2011-12-01
The dynamic performance of a novel Buck-Boost matrix converter (BBMC) based on double-loop control strategy is put forward in this paper. The fundamental principle of BBMC has been elaborated and the method of the double-loop control strategy has been built with Matlab, and then the dynamic performances of BBMC based on the double-loop control strategy are discussed. The results show that the output voltage and frequency can be almost constant with the BBMC and double-loop control strategy despite of the changeable input voltage and frequency. Moreover, a high-quality sine output wave with low harmonic distortion can be directly obtained without filtering. So it can be drawn that the BBMC based on the double-loop control strategy has perfectly dynamic performance and practical importance to the engineering.
Scientific Electronic Library Online (English)
Erick, Baethge; Alberto, Berzoy; Víctor, Guzmán; María Isabel, Giménez.
2011-09-01
Full Text Available Para obtener la máxima energía de un panel solar es necesario operarlo en el punto de máxima potencia, donde el producto de la tensión fotovoltaica generada y la corriente extraída es un máximo. En operación normal este punto cambia continuamente, lo que requiere de un sistema de seguimiento del pun [...] to de máxima potencia para optimizar la operación del panel. Los paneles solares presentan una característica no lineal en la curva corriente-voltaje, lo que hace difícil la utilización de algoritmos convencionales de seguimiento de puntos de operación donde se busca un máximo o un mínimo. Se ha demostrado que el algoritmo “perturbar y observar” (P&O) es adecuado para el seguimiento del punto de máxima transferencia de potencia sobre este sistema. Este trabajo presenta una simulación en Matlab Simulink del comportamiento del panel solar bajo irradiancias y temperaturas típicas. El modelo se usa para probar que un sistema de seguimiento del punto de máxima potencia del panel basado en el algoritmo P&O operando sobre un control predictivo de corriente aplicado a un convertidor CC-CC es capaz de encontrar y seguir eficientemente el punto de máxima transferencia de potencia frente a variaciones en las condiciones de irradiancia y temperatura en el panel. Abstract in english To get maximum energy from a solar panel it is necessary to operate in the maximum power point where the product of generated photovoltage and extracted current is a maximum. In normal operation this point changes continuously, therefore a maximum power point tracking system is required. Solar panel [...] s present a nonlinear characteristic in the current-voltage graph, complicating the use of standard operating point tracking algorithms to find a maximum power point. If has been shown that the "perturb and observe" (P&O) algorithm is adequate to achieve this task. This work presents a Simulink Matlab simulation of the solar panel behavior under constant irradiation and typical temperatures. This simulation is used to prove that a maximum power point tracking control based on the P&O algorithm manipulating a predictive current control applied to a DC-DC converter is able to find and efficiently follow the maximum power point under panel irradiance and temperature variations.
Stratégies de commande numérique pour un convertisseur DC/DC SEPIC en vue de l'intégration
Li, Nan
2012-01-01
L'utilisation des alimentations à découpage (SMPSs : switched mode power supplies) est à présent largement répandue dans des systèmes embarqués en raison de leur rendement. Les exigences technologiques de ces systèmes nécessitent simultanément une très bonne régulation de tension et une forte compacité des composants. SEPIC (Single-Ended Primary Inductor Converter) est un convertisseur à découpage DC/DC qui possède plusieurs avantages par rapport à d'autres convertisseurs de structure classiq...
Exploration of Charge Recycling DC-DC Conversion Using a Switched Capacitor Regulator
Directory of Open Access Journals (Sweden)
Mircea R. Stan
2013-07-01
Full Text Available The increasing popularity of DVFS (dynamic voltage frequency scaling schemes for portable low power applications demands highly efficient on-chip DC-DC converters. The primary aim of this work is to enable increased efficiency of on-chip DC-DC conversion for near-threshold operation of multicore chips. The idea is to supply nominal (high off-chip voltage to the cores which are then “voltage-stacked” to generate the near-threshold (low voltages based on Kirchhoff’s voltage law through charge recycling. However, the effectiveness of this implicit down-conversion is affected by the current imbalance among the cores. The paper presents a design methodology and optimization strategy for highly efficient charge recycling on-chip regulation using a push-pull switched capacitor (SC circuit. A dual-boundary hysteretic feedback control circuit has been designed for stacked loads. A stacked-voltage domain with its self-regulation capability combined with a SC converter has shown average efficiency of 78%–93% for 2:1 down-conversion with ILoad (max of 200 mA and workload imbalance varying from 0–100%.
Feld, Lutz Werner; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schmitz, Stefan Antonius; Wlochal, Michael
2015-01-01
The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed.
Series Connected Converter for Control of Multi-Bus Spacecraft Power Utility
Beach, Raymond F. (Inventor); Brush, Andy (Inventor)
1997-01-01
The invention provides a power system using series connected regulators. Power from a source, such as a solar array, is processed through the regulators and provided to corresponding buses used to charge a battery and supply loads. The regulators employ a bypass loop around a DC-DC converter. The bypass loop connects a hot input of the converter to a return output, preferably though an inductor. Part of the current from the source passes through the bypass loop to the power bus. The converter bucks or boosts the voltage from the source to maintain the desired voltage at the bus. Thus, only part of the power is processed through the converter. The converter can also be used without the bypass loop to provide isolation. All of the converters can be substantially identical.
PERFORMANCE OF MATHEMATICAL MODELING OF PHOTOVOLTAIC MODULE WITH SIMULINK BUCK - BOOST CONVERTER
Directory of Open Access Journals (Sweden)
Pixy Saxena
2015-08-01
Full Text Available The effective utilization of the solar panel and the constant power for small system to big energy system is required. A circuit based simulation model for a PV cell for estimating the IV characteristic curves of photovoltaic panel with respect to changes on environmental parameters (temperature and irradiance and cell parameters The simulation and modeling of the solar panel is the initial point to enter in the research related to the solar energy system. The power output is highly depending on the environme nt condition and solar radiation. Photovoltaic systems require interfacing power converters between the PV arrays and the use cuk converter
Closed-Form Critical Conditions of Subharmonic Oscillations for Buck Converters
Fang, Chung-Chieh
2012-01-01
A general critical condition of subharmonic oscillation in terms of the loop gain is derived. Many closed-form critical conditions for various control schemes in terms of converter parameters are also derived. Some previously known critical conditions become special cases in the generalized framework. Given an arbitrary control scheme, a systematic procedure is proposed to derive the critical condition for that control scheme. Different control schemes share similar forms of critical conditions. For example, both V2 control and voltage mode control have the same form of critical condition. A peculiar phenomenon in average current mode control where subharmonic oscillation occurs in a window value of pole can be explained by the derived critical condition. A ripple amplitude index to predict subharmonic oscillation proposed in the past research has limited application and is shown invalid for a converter with a large pole.
A Tapped-Inductor Buck-Boost Converter for a Dielectric ElectroActive Polymer Generator
DEFF Research Database (Denmark)
Dimopoulos, Emmanouil; Munk-Nielsen, Stig
2014-01-01
Energy harvesting applications based on Dielectric ElectroActive Polymer (DEAP) generators have been in the spotlight in recent years after the latter ones’ documented advantages against competing electromagnetic and field-activated technologies. Yet, the need for bidirectional energy flow under high step-up and high step-down voltage conversion ratios, accompanied by low-average but relatively high-peak currents, imposes great challenges on the design of the employed power electronic converter....
Efficient Hybrid Optimal Design Method for Power Electronics Converters
AUTHOR|(SzGeCERN)697719; Aguglia, Davide; Viarouge, Philippe; Cros, Jérôme
2015-01-01
This paper presents a novel design methodology for dimensioning optimal power-electronic converters, which is able to achieve the precision of numerical simulation-based optimization procedures, however minimizing the overall computation time. The approach is based on the utilization of analytical and frequency-domain design models for a numerical optimization process, a validation with numerical simulations of the intermediate optimal solutions, and the correction of the analytical design models precision from the numerical simulation results. This method allows using the numerical simulation in an efficient way, where typically less than ten correction iterations are required. In order to demonstrate the performances of the proposed methodology, the calculation of the control parameters for an H-bridge DC-DC converter and the optimal dimensioning of a damped output filter for a buck converter using the proposed approach is presented.
Directory of Open Access Journals (Sweden)
Tiara Freitas
2015-09-01
Full Text Available A new application of the three-phase buck-resonant converter is presented in this paper. It is shown that the analyzed converter is suitable to operate as the rectifier stage in low power wind energy conversion systems (WECS based on permanent magnet synchronous generators (PMSG with variable wind speed. As main features, it presents a single controlled switch, simple implementation and control, and operates with a high power factor and low harmonic distortion over all wind speed ranges. The converter topology, its design equations and its operation are presented, as well as the simulation results of the PMSG based conversion system. From the analysis carried out in the paper it is concluded that the converter is indicated to be employed in distributed generation and hybrid systems where wind generation is associated with other sources.
Scientific Electronic Library Online (English)
Lina, Morales Laguado; Harold, Chamorro; Jairo, Soriano.
2009-12-01
Full Text Available Este trabajo propone el análisis y diseño de dos estrategias de control para un conversor CC-CC reductor de corriente permanente. Tal tipo de dispositivos de electrónica de potencia convierten una tensión continua a otra de menor magnitud y cuyas características de no linealidad son evidenciadas. Se [...] presentan entonces, dos técnicas de control no lineal, la primera propuesta es un control óptimo PI (error proporcional e integral del error) convencional, basado en la minimización del criterio ITSE (integral del cuadrado del error ponderado en el tiempo). Para ello se obtiene un modelo de la planta en un punto de operación. La segunda propuesta es un control difuso cuyos conjuntos de entrada y salida son también definidos minimizando el criterio ITSE en el sistema general, y estableciendo como entradas el error proporcional y la integral del error. A continuación se realiza una variación de la carga para establecer la eficiencia del sistema con los dos controladores mencionados. Se debe tener en cuenta que este tipo de sistemas no debe presentar sobretensiones considerables, ya que puede ocasionar daño en él. En este sentido, los parámetros encontrados en el diseño de los dos controladores corresponden a una metodología analítica y descriptiva. Los resultados obtenidos en simulación, y estableciendo como figura de mérito el índice de desempeño mencionado (ITSE) y el consumo de potencia, muestra que la respuesta del sistema para el control difuso presenta un mayor consumo de potencia que el control óptimo, mientras que el ITSE obtenido es mayor para el control óptimo que para el difuso. Se concluye que la exploración de este tipo de conversores, utilizando técnicas de control no lineal y minimizando los diferentes índices de desempeño, es aplicable. Abstract in english This document proposes analysing and designing two control strategies for permanent current DC-DC buck converter. These kinds of electronic devices convert a constant-voltage to a lower constant-voltage (nonlinearity characteristics being demonstrated). Two nonlinear control techniques are shown. Th [...] e first is a conventional optimal proportional error and integral error (PI) controller based on minimising integral of time per squared errors (ITSE) criteria. A model of the plant at an operation point was thus obtained. The second one was fuzzy control where input and output sets were also defined by minimising ITSE criteria in the overall system and establishing inputs such as proportional error and integral error. Load was then varied to establish the system's efficiency with both the aforementioned controllers. It must be borne in mind that such systems should not present supervoltage since this can cause damage. The parameters found in designing both controllers thus corresponded to analytical and descriptive methodology. Simulation results, the performance index mentioned above (ITSE) and power consumption showed that the system's response for the fuzzy control drew more power consumption than the optimal controller; otherwise, obtained ITSE was larger for the optimal control than the fuzzy control. It is concluded that exploring these types of converter is applicable when using nonlinear control techniques and minimising the different performance indices.
Parallel connection of high-power DC/DC power supply based on IGBT device
International Nuclear Information System (INIS)
Parallel connection technique of DC/DC power supplies is adopted, and DC high-power supply is designed based on IGBT device, which can be used as the plasma displacement fast control power supply for EAST device. Based on the simulation and experiment, satisfactory dynamic and static performance of the DC/DC power supply was obtained. (authors)
Park, Hyunbin; Sim, Minseob; Kim, Shiho
2015-06-01
We propose a way of achieving maximum power and power-transfer efficiency from thermoelectric generators by optimized selection of maximum-power-point-tracking (MPPT) circuits composed of a boost-cascaded-with-buck converter. We investigated the effect of switch resistance on the MPPT performance of thermoelectric generators. The on-resistances of the switches affect the decrease in the conversion gain and reduce the maximum output power obtainable. Although the incremental values of the switch resistances are small, the resulting difference in the maximum duty ratio between the input and output powers is significant. For an MPPT controller composed of a boost converter with a practical nonideal switch, we need to monitor the output power instead of the input power to track the maximum power point of the thermoelectric generator. We provide a design strategy for MPPT controllers by considering the compromise in which a decrease in switch resistance causes an increase in the parasitic capacitance of the switch.
Low-to-Medium Power Single Chip Digital Controlled DC-DC Regulator for Point-of-Load Applications
Adell, Philippe C. (Inventor); Bakkaloglu, Bertan (Inventor); Vermeire, Bert (Inventor); Liu, Tao (Inventor)
2015-01-01
A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal.
ZVS Operating Region of Multiresonant DC/DC Boost Conveter
Directory of Open Access Journals (Sweden)
Elzbieta Szychta
2007-01-01
Full Text Available Electromagnetic phenomena that occur during stable operation in resonant circuits of multiresonant ZVS boost converter are described, which can be applied in many fields of the needs of DC voltage electricity. The operating region of the converter is defined which assures the circuit’s operation in which semiconductor elements are switched at zero voltage (ZVS. Conditions delimiting the ZVS operating region are provided. Analysis of the circuit’s operation is based on results of simulation testing by means of Simplorer software.
A tapped-inductor buck-boost converter for a multi-DEAP generator energy harvesting system
DEFF Research Database (Denmark)
Dimopoulos, Emmanouil; Munk-Nielsen, Stig
2014-01-01
Interest on Dielectric ElectroActive Polymer (DEAP) generators has aroused among scientists in recent years, due to the former ones' documented advantages against competing electromagnetic and field-activated technologies. Yet, the need for bidirectional energy flow under high step-up and high step-down voltage conversion ratios, accompanied by low-average but relatively high-peak currents, imposes great challenges on the design of the employed power electronic converter. On top of that, the sho...
Investigation of Buck Converter Radiated Emissions (150 kHz - 30 MHz) Measured according to CISPR 25
Murase, John Takeshi
2013-01-01
Electromagnetic compatibility and compliance with relevant standards is imperative for commercial success for any type of electronic equipment. Since more and more electronics are constantly added into today’s vehicles, this is a highly significant matter in the automotive business. The primary source of electric energy in an on-road vehicle is typically a 12 or 24 volt battery; this makes voltage step down converters ubiquitous in virtually any automotive electronic system. In strive for eve...
DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter
Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi
2013-06-01
Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.
Grid converter for LED based intelligent light sources
DEFF Research Database (Denmark)
Török, Lajos
2011-01-01
The purpose of this thesis was to investigate the applicability and effects of digital control to line connected switched mode power supplies with power factor correction. The main approach was cost effectiveness with high efficiency. This involved hardware design for increased switching frequency to reduce the size of the magnetic components. A description of different grid regulations was given followed by a set of converter topologies and controllers. Different control techniques were pointed out. Among the listed topologies and control solutions few were selected for further analysis, design and implementation. Many of different hardware and control solutions available on the market were investigated. Most of the commercial power supplies are controlled by dedicated analog controllers in form an integrated circuit. Thus a survey was conducted to analyze the available state-of-art analog controllers and their implemented control algorithms. As digital control has to be competitive with the existing solutions it was investigated what digital signal processing solutions exist. A performance and cost comparison was also presented. The chosen converter topologies were thoroughly analyzed. Different converters were chosen for different power levels. At low power simple boost converter as power factor corrector (PFC) and a RCD-clamped forward converter was chosen as DC-DC converter. This with has double output and coupled lter inductor. To design a digital controller with the tools of the classical control theory a small signal linearized model of the converter is needed. Detailed modeling and linearizing of the boost converter is presented. At high power level interleaving technique is frequently used to reduce the current stress on the switching components. Though the number of magnetic components is increased they became smaller in size resulting in smaller current ripple through them. An interleaved boost converter with two legs is selected as PFC converter. It was shown that the small signal model of the interleaved converter is similar to the simple boost converter. Only the simple inductor has to be replaced by the paralleled inductors of each leg. This statement is valid only if the total inductor current is controlled rather than controlling the current in each leg. As second stage a phase-shifted full-bridge converter with synchronous rectication and current doubler was selected. It was shown that for output current and voltage control this topology can be modeled as a interleaved synchronous buck converter. As it can be seen interleaving technique is also present in this topology. For this topology a fuzzy logic voltage controller is proposed and compared to the traditional PI controller. After modeling the converters controllers can be designed. The controller design was interconnected with the hardware design and control platform. Thus two dfferent prototypes were designed and built with two dierent digital controllers and the controller design, analysis and implementation was based on these two case studies. The first prototype was a 70 W two-stage PFC and DC-DC converter with boost and forward converters. Average current mode control was selected, designed, simulated an implemented for the boost PFC converter. The two-loop control structure (fast internal current loop and lower bandwidth external voltage loop) was designed for nominal power but system behavior was also analyzed for low-load conditions. The controller was simulated in Matlab/Simulink using PLECS library and embedded Matlab function. All the parameters were treated and scaled just as they appear in the ADC interrupt of the 16 bit fixed point dsPIC30F1010 microcontroller. Peak current control was implemented for the forward converter, using analog comparator module of the digital-signal controller. The waveforms, eciency and power factor results were compared to the performance of an identical two stage 70 W power supply controlled with an analog PFC/PWM integrated circuit. The second prototype was a 600 W two-stage PFC and DC-DC converter with
Kazimierczuk, Marian K
2012-01-01
This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit
Fan, Haifeng
2011-12-01
The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low switching loss and conduction loss are must-haves for high efficiency, while bidirectional power flow capability is a must for power management requirement. To address the demand, the phase-shift dual-halfbridge (DHB) is proposed as the constituent module of ISOP configuration for MV application. The proposed ISOP DHB converter employs zero-voltage-switching (ZVS) technique combined with LV MOSFETs to achieve low switching and conduction losses under high frequency operation, and therefore high efficiency and high power density, and bidirectional power flow as well. Secondly, a large load range of high efficiency is desired rather than only a specific load point due to the continuous operation and large load variation range of utility application, which is of high importance because of the rising energy cost. This work proposes a novel DHB converter with an adaptive commutation inductor. By utilizing an adaptive inductor as the main energy transfer element, the output power can be controlled by not only the phase shift but also the commutation inductance, which allows the circulating energy to be optimized for different load conditions to maintain ZVS under light load conditions and minimize additional conduction losses under heavy load conditions as well. As a result, the efficiency at both light and heavy load can be significantly improved compared with the conventional DHB converter, and therefore extended high-efficiency range can be achieved. In addition, current stress of switch devices can be reduced. The theoretical analysis is presented and validated by the experimental results on a 50 kHz, 1 kW dc-dc converter module. Thirdly, input-voltage sharing and output-current sharing are critical to assure the advantages of the ISOP modular configuration. To solve this issue, an identically distributed control scheme is proposed in this work. The proposed control scheme, using only one distributed voltage loop to realize both input-voltage and output-current sharing, provides plug-and-play capability, possible high-level fault tolerance, and easy implementatio
Zhu, Lizhi (Canton, MI)
2007-11-13
A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.
International Nuclear Information System (INIS)
The instantaneous luminosity of the LHC is expected to reach 2 x 1034 s-1cm-2 and 5 x 1034 s-1cm-2 around the years 2019 and 2024, respectively. After the second upgrade the LHC will be referred to as the High Luminosity LHC (HL-LHC). In order to benefit from the higher luminosities, CMS foresees to upgrade its pixel detector during an extended winter shutdown of the LHC at the end of 2016 and the beginning of 2017. During a long shutdown of the LHC over the years 2022 and 2023, it is foreseen to install a completely new tracking system in CMS. Both upgrades are expected to result in the need to provide more electric current to the detector. However, power losses in cables already contribute 50% to the power consumption of the present tracker and rise with the current squared. Since no more space is available for cables, and thicker cables within the tracking volume spoil the material budget of the detector, new powering schemes are considered mandatory. CMS foresees the use of radiation tolerant DC-DC converters on the front-end to reduce power losses on cables. This thesis describes the new powering scheme of the CMS pixel detector and discusses the options with respect to a new strip tracker. A radiation and magnetic field tolerant DC-DC converter prototype, the PIXV8A, is introduced and the research that led to its development is summarised. The PIXV8A has been developed for the application in the pixel upgrade and is also a first approach for a DC-DC converter for the later upgrade of the CMS tracking system. The PIXV8A makes use of the AMIS4 chip, which has been proven to stay operational for total ionising doses of up to 1 MGy and fluences of up to 1015 neq/cm2. With an input voltage of 10 V, the PIXV8A converter provides an efficiency of about 80% for output voltages of 2.5 V and 3.0 V. Within this thesis the robustness of the novel powering scheme and the qualification of the PIXV8A are demonstrated in several tests, including system test measurements with silicon strip detector modules and silicon pixel detector modules in combination with an evaporative CO2 cooling system.
Energy Technology Data Exchange (ETDEWEB)
Sammet, Jan
2014-03-18
The instantaneous luminosity of the LHC is expected to reach 2 x 10{sup 34} s{sup -1}cm{sup -2} and 5 x 10{sup 34} s{sup -1}cm{sup -2} around the years 2019 and 2024, respectively. After the second upgrade the LHC will be referred to as the High Luminosity LHC (HL-LHC). In order to benefit from the higher luminosities, CMS foresees to upgrade its pixel detector during an extended winter shutdown of the LHC at the end of 2016 and the beginning of 2017. During a long shutdown of the LHC over the years 2022 and 2023, it is foreseen to install a completely new tracking system in CMS. Both upgrades are expected to result in the need to provide more electric current to the detector. However, power losses in cables already contribute 50% to the power consumption of the present tracker and rise with the current squared. Since no more space is available for cables, and thicker cables within the tracking volume spoil the material budget of the detector, new powering schemes are considered mandatory. CMS foresees the use of radiation tolerant DC-DC converters on the front-end to reduce power losses on cables. This thesis describes the new powering scheme of the CMS pixel detector and discusses the options with respect to a new strip tracker. A radiation and magnetic field tolerant DC-DC converter prototype, the PIXV8A, is introduced and the research that led to its development is summarised. The PIXV8A has been developed for the application in the pixel upgrade and is also a first approach for a DC-DC converter for the later upgrade of the CMS tracking system. The PIXV8A makes use of the AMIS4 chip, which has been proven to stay operational for total ionising doses of up to 1 MGy and fluences of up to 10{sup 15} n{sub eq}/cm{sup 2}. With an input voltage of 10 V, the PIXV8A converter provides an efficiency of about 80% for output voltages of 2.5 V and 3.0 V. Within this thesis the robustness of the novel powering scheme and the qualification of the PIXV8A are demonstrated in several tests, including system test measurements with silicon strip detector modules and silicon pixel detector modules in combination with an evaporative CO{sub 2} cooling system.
Modular DC/DC Converter for DC Distribution and Collection Networks
Kenzelmann, Stephan
2012-01-01
A major change in the electrical transmission and distribution system is taking place in Europe at the moment. The shift from a centralised energy production to a distributed generation profoundly changes the behaviour of the grid. Environmental or social issues associated with the construction of new power lines to relieve bottlenecks, together with aged equipment dating from the 1960s, pose some serious challenges to government, the research communi...
Directory of Open Access Journals (Sweden)
Ali Siblini
2012-08-01
Full Text Available This paper presents the conception, fabrication and characterization of integrated inductors containing magnetic layers. We require different steps of micro-technologies: preparation of glass and ferrite substrates, RF sputtering, photolithography, etching and finally electroplating techniques for copper and gold films. The geometrical magnitudes are determined by using HFSS simulator software. The measurements performed at low and high frequencies (up to 1 GHz permit to verify the correlation between experiment and simulation results. The inductance of the manufactured spiral inductor is ??about 200 nH and it is constant from low frequency up to 0.9 GHz.
High efficiency DC-DC converter using GaN transistors
Tóma?, Cosmin-Andrei; Grecu, Cristian; Pantazic?, Mihaela; Marghescu, Ion
2015-02-01
The paper presents a new high-efficiency power switching supply using the Gallium Nitride (GaN) technology. There are compared two solutions, the first using standard MOS transistors and the second using the new GaN transistor. The actual green technologies for obtaining the maximum energy and minimum losses have pushed the semiconductor industry into a continuous research regarding high power and high frequency devices, having uses in both digital communications and switching power supplies.
Basic circuits to design switched-based DC-DC converters
Directory of Open Access Journals (Sweden)
F. Sandoval-Ibarra
2007-01-01
Full Text Available El propósito de este artículo es doble. Por un lado, se presentan conceptos básicos de circuitos conmutados para diseñar un convertidor CD–CD y, por el otro, se rescatan definiciones de electrónica de potencia asociadas a redes eléctricas simples. En el análisis de esas redes es necesario tomar en cuenta no solo las no idealidades de los convertidores sino también cómo minimizar pérdidas de potencia. Porque las perdidas de potencia pueden ser minimizadas aumentando la frecuencia de reloj de los convertidores conmutados, se presentan resultados experimentales de generadores de reloj. Estos circuitos fueron implementados con componentes de bajo costo.
The use of power DC-DC converters and gyrator structures for energy processing
Martínez García, Herminio
2014-01-01
This article provides a classification of high efficiency switching power-gyrator structures and their use as cells for energy processing in photovoltaic solar facilities. Having into account the properties of these topologies presented in the article, their inclusion in solar facilities allows increasing the performance of the whole installation. Thus, the design, simulation and implementation of a G-type power gyrator are carried out throughout the text. In addition, in order to obtain the ...
A DC-DC Converter-Based PEM Fuel Cell System Emulator
Rezzak, Daoud; Khoucha, Farid; Benbouzid, Mohamed; Kheloui, Abdelaziz; Mamoune, Abdeslam
2011-01-01
The Proton Exchange Membrane Fuel Cell (PEMFC) is being investigated as an alternate power source for various applications as transportation and emergency power supplies. Fuel cell systems are characterized by high costs and complex auxiliary devices. For this reason, a fuel cell emulator can be used as a suitable and economic alternative to a real one for developing and testing a fuel cell power conditioning system. The fuel cell emulator must be able to reproduce the FC nonlinear output vol...
Power factor controller used as DC-DC converter for photovoltaic sources
Energy Technology Data Exchange (ETDEWEB)
Mukerjee, A.K.; Dasgupta, Nivedita [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)
2008-06-15
An active power factor controller (PFC) integrated circuit, normally used in AC circuits, has been used for DC-to-DC boost conversion with a stable output voltage for a variable DC input voltage as obtained from photovoltaic (PV) sources. The circuit described here uses a power factor controller MC 34262 to give approximately 400 V{sub DC} output for an input variation from 90 to 280 V{sub DC}. The maximum efficiency achieved was 98% at 450 W. Comparisons between AC and DC operations have been made. (author)
FC/Battery Power Management for Electric Vehicle Based Interleaved DC-DC Boost Converter Topology
Benrabah, Ali; Khoucha, Farid; Herizi, Omar; Benbouzid, Mohamed; Kheloui, Abdelaziz
2013-01-01
Due to the fact that the environmental issues have become more serious recently, interest in renewable energy systems, such as, fuel-cells (FCs) has increased steadfastly. Among many types of FCs, proton exchange membrane FC (PEMFC) is one of the most promising power sources due to its advantages, such as, low operation temperature, high power density and low emission. However, using only PEMFC for electric vehicle may not be feasible to satisfy the peak demand changes especially during accel...
Analysis and design of multicell DC/DC converters using vectorized models
Meynard, Thierry
2015-01-01
Shows how the concepts of vectorization and design masks can be used to help the designer in comparing different designs and making the right choices. The book addresses series and parallel multicell conversion directly, and the concepts can be generalized to describe other topologies.
High frequency capacitor-diode voltage multiplier dc-dc converter development
Kisch, J. J.; Martinelli, R. M.
1977-01-01
A power conditioner was developed which used a capacitor diode voltage multiplier to provide a high voltage without the use of a step-up transformer. The power conditioner delivered 1200 Vdc at 100 watts and was operated from a 120 Vdc line. The efficiency was in excess of 90 percent. The component weight was 197 grams. A modified boost-add circuit was used for the regulation. A short circuit protection circuit was used which turns off the drive circuit upon a fault condition, and recovers within 5 ms after removal of the short. High energy density polysulfone capacitors and high speed diodes were used in the multiplier circuit.
DEFF Research Database (Denmark)
Tang, Yi; Zhu, Dexuan
2015-01-01
This paper presents a three-level quasi-two-stage single-phase power factor correction (PFC) converter that has flexible output voltage and improved conversion efficiency. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and a wide range of output dc voltages, and it will be very suitable for high-power applications where the output voltage can be either lower or higher than the peak ac input voltage, e.g., plug-in hybrid electric vehicle charging systems. Moreover, the involved dc/dc buck conversion stage may only need to process partial input power rather than full scale of the input power, and therefore the system overall efficiency can be much improved. Through proper control of the buck converter, it is also possible to mitigate the double-line frequency ripple power that is inherent in a single-phase ac/dc system, and the resulting load end voltage will be fairly constant. The dynamic response of this regulation loop is also very fast and the system is therefore insensitive to external disturbances. Both simulation and experimental results are presented to show the effectiveness of this converter as well as its efficiency improvement against a conventional two-stage solution.
Roermund, Arthur; Baschirotto, Andrea
2012-01-01
The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.
Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors
Energy Technology Data Exchange (ETDEWEB)
Shepard, Kenneth L
2013-03-31
In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile devices. These new approaches to scaled voltage regulation for computing devices also promise significant impact on electricity consumption in the United States and abroad by improving the efficiency of all computational platforms. In 2006, servers and datacenters in the United States consumed an estimated 61 billion kWh or about 1.5% of the nation's total energy consumption. Federal Government servers and data centers alone accounted for about 10 billion kWh, for a total annual energy cost of about $450 million. Based upon market growth and efficiency trends, estimates place current server and datacenter power consumption at nearly 85 billion kWh in the US and at almost 280 billion kWh worldwide. Similar estimates place national desktop, mobile and portable computing at 80 billion kWh combined. While national electricity utilization for computation amounts to only 4% of current usage, it is growing at a rate of about 10% a year with volume servers representing one of the largest growth segments due to the increasing utilization of cloud-based services. The percentage of power that is consumed by the processor in a server varies but can be as much as 30% of the total power utilization, with an additional 50% associated with heat removal. The approaches considered here should allow energy efficiency gains as high as 30% in processors for all computing platforms, from high-end servers to smart phones, resulting in a direct annual energy savings of almost 15 billion kWh nationally, and 50 billion kWh globally. The work developed here is being commercialized by the start-up venture, Ferric Semiconductor, which has already secured two Phase I SBIR grants to bring these technologies to the marketplace.
Bidirectional converter interface for a battery energy storage test bench
DEFF Research Database (Denmark)
Trintis, Ionut; Thomas, Stephan; Blank, Tobias; Roggendorf, Christoph; Munk-Nielsen, Stig; Teodorescu, Remus
2011-01-01
This paper presents the bidirectional converter interface for a 6 kV battery energy storage test bench. The power electronic interface consists a two stage converter topology having a low voltage dc-ac grid connected converter and a new dual active bridge dc-dc converter with high transformation ratio. The dc-dc converter controls the battery charge/discharge current while the grid converter controls the common dc-link voltage and the grid current. The applied control structures and the hardware...
A Novel V-I Converter Used in the Slope Compensation of a Boost Converter
Yuan-kai Jian; Gang-jun Xie
2012-01-01
A novel voltage to current circuit used in the slopecompensation of a boost DC-DC converter is proposed.Compared with the normal V-I converter, it has a better linearrelation and a larger input voltage range. It can implementslope compensation of the power converter, eliminate thesub-harmonic oscillation and decrease the noise infectioneffectively.
Multifunctional Converter Drive for Automotive Electric Power Steering Systems:
Hackner, T.J.
2013-01-01
In this thesis it is shown that in the case of an automotive electric power steering system, critical pulse power loads can be decoupled from the power net with a storage element and a multifunctional converter. A multifunctional converter system is proposed because it uses the motor drive system as a dc-dc converter and hence no additional front-end dc-dc converter is required. The influence of a multifunctional converter to the torque and losses in induction and PM synchronous machines were...
Directory of Open Access Journals (Sweden)
I Wayan Arta Wijaya
2012-05-01
Full Text Available Pengubah daya DC-DC topologi boost dapat menghasilkan tegangan yang lebih tinggi dari tegangan input dengan riak (ripple yang kecil dan efisiensi yang cukup tinggi. Nilai dari sebuah induktansi dan kapasitansi dari pengubah daya DC-DC dengan menggunakan topologi boost dioptimalkan menggunakan analisa transien. Fungsi ini diatur berdasarkan pada analisa dari pengubah daya selama kondisi transien. Nilai induktansi dan kapasitansi yang telah dioptimalkan dengan perhitungan dibandingkan dalam simulasi pada pengubah daya DC-DC dan hasilnya akan dibuktikan dengan menggunakan hasil percobaan. Nilai optimal untuk kapasitor dan induktor pada frekuensi 666,7 Hz, siklus kerja (duty cycle 66,7 %, resistansi output 36 Î dan tegangan input 12 volt adalah 1038 Î¼F dan 11,9 mH
Scientific Electronic Library Online (English)
J, Linares-Flores; A, Antonio-García; A, Orantes-Molina.
2011-06-01
Full Text Available En este artículo se presenta el diseño e implementación de un controlador de velocidad para un motor de CD a través de un convertidor reductor, el cual sigue una trayectoria de referencia suave diseñada mediante un polinomio de interpolación Bézier. El sistema reduce los picos súbitos de voltaje y c [...] orriente en el circuito de armadura del motor durante el arranque. El cálculo del control de velocidad se obtiene de una salida F llamada salida plana (calculada a través de la matriz de controlabilidad de Kalman). Este control se basa en la retroalimentación de todos los estados reescritos en términos de la salida plana y de sus derivadas sucesivas para el seguimiento de la trayectoria. Con la ayuda de la técnica de ubicación de polos es posible sintonizar adecuadamente el controlador en lazo cerrado. La efectividad del sistema se verifica experimentalmente mediante una plataforma que está compuesta por el convertidor reductor-motor CD y un modulador PWM. Abstract in english This article presents the design and implementation of a speed controller for a DC motor through a buck converter, which tracks a smooth reference trajectory designed by a Bezier polynomial interpolation. The system reduces voltage and current sudden peaks in the armature circuit of the motor during [...] the start. The calculation of the speed control is obtained from an output F called flat output (calculated through the Kalman controllability matrix). This control is based on feedback from all states rewritten in terms of the flat output and its successive derivatives for tracking the trajectory. With the aid of the pole placement technique it is possible to properly tune the controller in closed loop. The effectiveness of the system is verified experimentally by means of a platform that consists of the DC motor-buck converter and a PWM modulator.
Analysis and Design of Embedded Controlled Parallel Resonant Converter
Directory of Open Access Journals (Sweden)
P. CHANDRASEKHAR
2009-07-01
Full Text Available Microcontroller based constant frequency controlled full bridge LC parallel resonant converter is presented in this paper for electrolyser application. An electrolyser is a part of renewable energy system which generates hydrogen from water electrolysis. The DC power required by the electrolyser system is supplied by the DC-DC converter. Owing to operation under constant frequency, the filter designs are simplified and utilization of magnetic components is improved. This converter has advantages like high power density, low EMI and reduced switching stresses. DC-DC converter system is simulated using MATLAB, Simulink. Detailed simulation results are presented. The simulation results are compared with the experimental results.
New Geometry Integrated Inductors in Two-channel Interleaved Bidirectional Converter
DEFF Research Database (Denmark)
Ouyang, Ziwei; Thomsen, Ole Cornelius
2010-01-01
A new geometry of integrated inductors for twochannel interleaved bidirectional converter is presented in this paper. The new geometry module integrates two individual inductors by stacking three I-cores. The middle I-core provides a shared flux path with low reluctance which uncouples the two inductors. The air gaps are constructed by separating the I-cores using copper foil windings with well-defined thickness. In this work, inverse connection and direct connection for the two integrated inductors have been analyzed. For the inverse connection, a unique saturation behavior in the middle I-core has been shown. The integrated inductors with new geometry make it possible to build low-profile, low-cost, flexibility DC/DC converters, and it can be extensively designed for low-voltage and high-current required by modern digital applications. Experiment results obtained from a 48V-12V 30A two-phase interleaved buck converter, demonstrates the difference in the inverse connection and the direct connection. Both efficiencies are above 91% from half to full output current.
Asymptotic Tracking with DC-to-DC Bilinear Power Converters
Olm i Miras, Josep M.
2004-01-01
Avui en dia la conversió DC-AC té una important aplicació pràctica en el camp dels sistemes de potència ininterrompuda (SPI). Els convertidors commutats bàsics (el buck, lineal, i el boost i el buck-boost, no lineals) presenten una estructura molt simple, i al llarg dels últims quinze anys s'ha estudiat la possibilitat d'usar-los en esquemes de conversió DC-AC. L'objectiu de la tesi és aconseguir que els convertidors DC-DC de potència bàsics puguin seguir referències alternes mitjançant el vo...
A Single Phase to Three Phase PFC Half-Bridge Converter Using BLDC Drive with SPWM Technique.
Directory of Open Access Journals (Sweden)
Srinu Duvvada
2014-07-01
Full Text Available In this paper, a buck half-bridge DC-DC converter is used as a single-stage power factor correction (PFC converter for feeding a voltage source inverter (VSI based permanent magnet brushless DC motor (BLDC drive. The front end of this PFC converter is a diode bridge rectifier (DBR fed from single-phase AC mains. The BLDC is used to drive a compressor load of an air conditioner through a three-phase VSI fed from a controlled DC link voltage. The speed of the compressor is controlled to achieve energy conservation using a concept of the voltage control at DC link proportional to the desired speed of the BLDC. Therefore the VSI is operated only as an electronic commutator of the BLDC. The stator current of the BLDC during step change of reference speed is controlled by a rate limiter for the reference voltage at DC link. The proposed BLDC drive with voltage control based PFC converter is designed, modeled and its performance is simulated in Matlab-Simulink environment for an air conditioner compressor driven through a 1.5 kW, 1500 rpm BLDC motor. The evaluation results of the proposed speed control scheme are presented to demonstrate an improved efficiency of the proposed drive system with PFC feature in wide range of the speed and an input AC voltage.
Isolated and soft-switched power converter
Peng, Fang Zheng (Knoxville, TN); Adams, Donald Joe (Knoxville, TN)
2002-01-01
An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.
Analysis and Implementation of Efficient BLDC Motor Drive with Different Converter Systems
Angeline Jayachandran*1,; Mrs. G.R.P Lakshmi2
2014-01-01
This Paper deals with analysis of efficient BLDC motor drive with various converter systems. Performance of the drive system is compared based on THD and PF at the AC mains with the following converter topology: Conventional DC-DC converter, SEPIC and CSC converter. The complete drive system is designed and modeled in MATLAB/Simulink environment for speed control over a wide range.
Directory of Open Access Journals (Sweden)
Venmathi M
2014-07-01
Full Text Available In this paper analysis of an efficient topology of the three-port full bridge dc-dc converter is presented. This topology is promising with the view points of centralised control, compact design as it is capable of interfacing many numbers of ports with less number of switches, low cost, simple and fast power flow management with reduced conversion process. In a stand-alone system this topology is used to interface renewable energy sources and the load along with the energy storage device. Thus the proposed topology interfaces three ports: as one source port, one bidirectional storage port and an isolated output port. The key feature of this converter is that it performs buck-boost operation on the input port side to obtain power balance in the system with the centralised controller. The centralised controller was implemented by using proportional Integral (PI controller. Such that it is used to track maximum power from the Photovoltaic (PV system and to regulate output voltage by controlling the charging and the discharging characteristics of the battery. Zero voltage switching (ZVS is also achieved in all the switches by using the energy stored in the leakage inductance of the transformer, output filter inductance and capacitance.
An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive
Singh, Bhim; Bist, Vashist
2014-01-01
This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.
Efficient Power Conversion in Common Active Clamp for Interleaved Dc-Dc Boost
V. Rathinavel Subramaniam; C.Nallasivam
2014-01-01
This project presents a high-efficiency and high-step-up non isolated interleaved dc to dc converter with a common active-clamp circuit. In the presented converter, the coupled-inductor boost converters are interleaved. A boost converter is used to clamp the voltage stresses of all the switches in the interleaved converters, caused by the leakage inductances present in the practical coupled inductors, to a low voltage level. The leakage energies of the inter-leaved converters ...
Embedded Control of LCL Resonant Converter Analysis, Design, Simulation and Experimental Results
C.Christober Asir Rajan; S. Selvaperumal
2009-01-01
The Objective of this paper is to give more insight into CCM Operation of the LCL Converter to obtain op-timum design using state-space analysis and to verify the results using PSPICE Simulation for wide variation in loading conditions. LCL Resonant Full Bridge Converter (RFB) is a new, high performance DC-DC con-verter. High frequency dc-dc resonant converters are widely used in many space and radar power supplies owing to their small size and lightweight. The limitations of two element reso...
International Nuclear Information System (INIS)
This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.
HI-BRIDGE RESONANT SOFT-SWITCHED BOOST CONVERTER
ELANGOVAN.S, MARIMUTHU. M, VIJYALASKMI
2013-01-01
This paper presents a high step-up DC-DC converter. The proposed converter comprises of a boost converter with an auxiliary switch and resonant circuit. The resonant circuit consists of a resonant inductor, two resonant capacitors, two diodes and an auxiliary switch. These resonant components make partial resonant path for the main and auxiliary switch to perform soft switching under the zero voltage condition using the resonant circuit. The proposed boost converter improves the whole system’...
Commutation Processes in Multiresonant ZVS Bridge Converter
Directory of Open Access Journals (Sweden)
Miroslaw Luft
2008-01-01
Full Text Available The analysis of the multiresonant ZVS DC/DC bridge converter is presented. The control system of the converter is basedon the method of frequency control at the constant time of transistor turn-off with a phase shift. The operation of the circuit is givenand the operating range of the converter is defined where ZVS switching operation is assured. Control characteristics are given andthe converter’s efficiency is defined. The circuit’s operation is analysed on the basis of results of the converter simulation tests using Simplorer programme.
Very-High-Frequency Resonant Boost Converters
Perreault, David J.; Pilawa-Podgurski, Robert C. N.; Rivas, Juan M.; Sagneri, Anthony D.; Anderson, David I.
2009-01-01
This paper presents a resonant boost topology suitable for very-high-frequency (VHF, 30-300 MHz) DC-DC power conversion. The proposed design features low device voltage stress, high efficiency over a wide load range, and excellent transient performance. Two experimental prototypes have been built and evaluated. One is a 110-MHz, 23-W converter that uses a high-performance RF lateral DMOSFET. The converter achieves higher than 87% efficiency at nominal input and output voltages, and maintains ...
Implementation of Three Level Integrated AC-DC Converter with Pulse Width Modulation
K. Deepak Singh; Manish G Rathi
2014-01-01
In this paper, implementation of three-level integrated ac–dc converter with pulse width modulation is presented. The proposed converter combines with the operation of the boost power factor correction and the three-level dc–dc converter. The converter is made to operate with two independent controllers which are combined in a single converter. Input controller does PFC and regulates dc bus, output controller regulates the output voltage. Converter operation is explained and power factor is i...
DEFF Research Database (Denmark)
Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.; Thomsen, Ole Cornelius
2012-01-01
The Dielectric Electro Active Polymer (DEAP) material is a very thin (~80 ?m) silicone elastomer film with a compliant metallic electrode layer on both sides. The DEAP is fundamentally a capacitor that is capable of very high strain. The property that the polymer changes its shape, as a result of the electrostatic forces generated by an applied voltage, can be used in actuators, for instance to adapt the trailing edges of wind turbine blades, for maximum efficiency and increased energy output. C...
Martínez García, Herminio
2014-01-01
This article provides a classification of high efficiency switching power-gyrator structures and their use as cells for energy processing in photovoltaic solar facilities. Having into account the properties of these topologies presented in the article, their inclusion in solar facilities allows increasing the performance of the whole installation. Thus, the design, simulation and implementation of a G-type power gyrator are carried out throughout the text. In addition, in order to obtain the ...
Martínez García, Herminio
2014-01-01
This article provides a classification of high efficiency switching power-gyrator structures and their use as cells for energy processing in photovoltaic solar facilities. Having into account the properties of these topologies presented in the article, their inclusion in solar facilities allows increasing the performance of the whole installation. Thus, the design, simulation and implementation of a G-type power gyrator are carried out throughout the text. In addition, in order to obtain the ...
Commutation processes in multiresonant ZVS bridge converter
Luft, M.; Szychta, E.
2008-01-01
The analysis of the multiresonant ZVS DC/DC bridge converter is presented. The control system of the converter is based on the method of frequency control at the constant time of transistor turn-off with a phase shift. The operation of the circuit is given and the operating range of the converter is defined where ZVS switching operation is assured. Control characteristics are given and the converter’s efficiency is defined. The circuit’s operation is analysed on the basis of results ...
PERFORMANCE ANALYSIS OF 2D CONVERTER BY COMBINING SR & KY CONVERTERS
Directory of Open Access Journals (Sweden)
V. Manoj Kumar
2014-03-01
Full Text Available Most of the portable equipments use battery as power source. The increasing use of low voltage portable devices and growing requirements of functionalities embedded into such devices. Thus an efficient power management technique is needed for longer battery life for them. Highly variable nature of batteries systems often require supply voltages to be both higher and lower than the battery. This is most efficiently generated by a buck-boost switching converter. But here the converter efficiency is decreased since the power loss occurs in the storage devices. Step by step, process of designing, feedback control and simulation of a novel voltage-buck boost converter, combining KY and synchronous Rectifier buck converter for battery power applications. Unlike the traditional buck–boost converter, this converter has the positive output voltage and system is stable, different from the negative output voltage and low stable of the traditional inverting buck–boost converters. Since such a converter operates in continuous conduction mode. Also it possesses the non-pulsating output current, thereby not only decreasing the current stress on the output capacitor but also reducing the output voltage ripple. Both the KY converter and the synchronous buck converter, combined into a positive buck– boost converter, uses the same power switches. Here it makes the circuit to be compact and the corresponding cost to be down. Voltage conversion ratio is 2D,so it is also called 2D converter.
Primary Parallel Isolated Boost Converter with Bidirectional Operation
DEFF Research Database (Denmark)
Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gökhan; Thomsen, Ole Cornelius; Andersen, Michael A. E.
2012-01-01
This paper presents a bidirectional dc/dc converter operated with batteries both in the input and output. Primary parallel isolated boost converter (PPIBC) with transformer series connection on the high voltage side is preferred due to its ability to handle high currents in the low voltage side. The converter has been modeled using non-ideal components and operated without any additional circuitry for startup using a digital soft-start procedure. Simulated and measured loop gains have been compa...
Analysis and Design of Embedded Controlled Parallel Resonant Converter
Chandrasekhar, P; Sathi Rama REDDY
2009-01-01
Microcontroller based constant frequency controlled full bridge LC parallel resonant converter is presented in this paper for electrolyser application. An electrolyser is a part of renewable energy system which generates hydrogen from water electrolysis. The DC power required by the electrolyser system is supplied by the DC-DC converter. Owing to operation under constant frequency, the filter designs are simplified and utilization of magnetic components is improved. This converter has advanta...
High Gain Interleaved Boost Converter for Fuel Cell Applications
R. Seyezhai; Anitha, R; S.Mahalakshmi*; Bhavani, M.
2013-01-01
Fuel cell is one of the promising technologies for distributed generation. For designing high efficiency fuel cell power systems, a suitable DC-DC converter is required. Among the various topologies, interleaved converters using switched capacitor are considered as a better solution for fuel cell systems due to high conversion efficiency. The objective of the paper is to design and implement a high gain interleaved converter using switched capacitors for fuel cell systems. In the proposed int...
Boost Converter with Three-State Switching Cell and Integrated Magnetics
DEFF Research Database (Denmark)
Klimczak, Pawel; Munk-Nielsen, Stig
2009-01-01
Fuel cell systems often require high voltage gain and dc-dc step-up converter is a critical part. Scope of this paper is integration of inductor and transformer on a single core. Usage of integrated magnetics improves utilization of magnetic core and thus size and weight of the converter may be reduced.