WorldWideScience

Sample records for constructal solar chimney

  1. Solar chimney

    International Nuclear Information System (INIS)

    Solar Chimney is an interesting unconventional method for production of electricity from the sun. It consists of a large greenhouse which purpose is to heat the air and create air flow directing it to the base of the chimney and then through the pressure-staged turbine array. Solar Chimney can be used for pick load operation. Australia plans 200 MW solar plant for the and of 2004, which will be the tallest man made structure in the world with a height of almost 1 km and greenhouse diameter reaching 7.5 km. It is a result of Australia's commitment to find alternative energy solutions in order to reduce the environmental impact of fossil and nuclear technologies for electric power production. (Author)

  2. Integrating a solar chimney:

    OpenAIRE

    Akerboom, R.; Gkerou, V.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. This designer’s manual presents an overview of integration methods of a solar chimney during refurbishment of office buildings and describes step by step the design methods. A lot of research has been made the past years on the efficiency of the solar chimney. However none of them focuses on the integration of the system in the buildings. In the most available case studies were the solar chimney...

  3. Inclined solar chimney for power production

    International Nuclear Information System (INIS)

    Highlights: ? Solar energy harnessing using inclined face of high mountains as solar chimney. ? Solar chimneys with structural stability, ease of construction and lower cost. ? Mathematical model developed, using complete (mechanical and thermal) energy balance. ? Can harness wind power also, as wind velocities at mountain top add to power output. ? Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.

  4. Analyzes of Solar Chimney Design

    OpenAIRE

    Paez Ortega, Elias

    2011-01-01

    The aim of this work to study the solar chimney installed in the EPT-lab of the NTNU. The work starts with the development of a CFD model of the solar chimney and comparing with the experimental data, showing a good accuracy of the CFD results. The CFD model is used to compare three types of solar chimneys for different heights and width; obtained that the chimney installed in the EPT-lab gets higher flow rates in the most of the most of the cases. The CFD model shows a uniform temperature an...

  5. Parameterization Studies of Solar Chimneys in the Tropics

    OpenAIRE

    Alex Yong Kwang Tan; Nyuk Hien Wong

    2013-01-01

    The paper examines the effect of the solar chimney’s stack height, depth, width and inlet position on the interior performance (air temperature and speed at 1.20 m height above the ground) as well as proposes an optimal tropical solar chimney design. Simulations show that the output air temperature remains constant while the solar chimney’s width is the most significant factor influencing output air speed. The solar chimney’s inlet position has limited influence ...

  6. A simple theoretical model of a solar chimney

    International Nuclear Information System (INIS)

    A simple theoretical model of a solar chimney to predict its performance under varying ambient and geometrical features was proposed. Steady state heat transfer equations were set up using a thermal resistance network and solved using matrix inversion. Surface temperatures of the heat absorbing wall and glass and induced air flow velocity in the chimney are predicted. An experiment model 2 m high x 0.45 m wide with air channel gaps of 0.1, to 0.3 m wide was constructed. Outdoor tests were performed by exposure to both direct and diffuse solar radiation. The effects of air channel gap and solar radiation intensity were investigated. Air velocities between 0.25 to 0.39 ms-1 at radiation intensities up to 650 W m-2 were obtained. No reserve air circulation was observed at the chimney exit. The model was found more suitable for solar chimney with large air gaps

  7. Experimental Investigations on Performance and Design Parameters of Solar Chimney

    Directory of Open Access Journals (Sweden)

    ?brahim ÜÇGÜL

    2010-03-01

    Full Text Available In this study, a solar chimney system, which is suitable for climate conditions of Isparta and its surroundings, is designed theoretically. With the aim of studying experimentally as based on that design, a prototype solar chimney has been constructed in the university campus area of Süleyman Demirel University-RACRER (Research and Application Center for Renewable Energy Resources. Additionally, after the experimental studies, the system is modelled theoretically with depending on the design. Then, this model constituted the basis for developed computer programme and performance parameters of the system are obtained. The obtained findings showed that the solar chimney, which is suitable for climate conditions of Isparta and its surroundings, are sufficient for determining design and performance parameters. The results showed that electricity generation with solar chimney is suitable for areas which have high solar incident and long sunshine duration and similar climate conditions as such as Isparta and its surroundings. When the results are evaluated, it is seen that electricity generation power of solar chimney depends on the region solar data, the chimney height and the size of greenhouse area.

  8. Simulation and optimization of geometric parameters of a solar chimney in Tehran

    International Nuclear Information System (INIS)

    Highlights: • A fundamental mathematical of solar chimney model was described. • The performance of solar chimney power plant was analytically simulated. • The results of predictions were compared with the experimental data. • The velocity magnitude can be raised 4–25% in different cases. - Abstract: An analytical and numerical study for geometrical optimizing of a solar chimney prototype at University of Tehran was performed. A fundamental mathematical model that describes the flow was presented, and the performance evaluation of solar chimney was simulated with operational and geometric configurations. The numerical predictions were validated through comparison with the experimental data of the solar chimney pilot which was constructed in height of 2 m and collector radius of 3 m. The results show that, the collector inlet of 6 cm, the chimney height of 3 m, and the chimney diameter of 10 cm were the best alternatives for the constructed solar chimney pilot. It is found that the velocity magnitude can be raised to 4–25% in different cases; also the analysis indicated that the height and diameter of the chimney are the most important physical variables for solar chimney design

  9. Parameterization Studies of Solar Chimneys in the Tropics

    Directory of Open Access Journals (Sweden)

    Alex Yong Kwang Tan

    2013-01-01

    Full Text Available The paper examines the effect of the solar chimney’s stack height, depth, width and inlet position on the interior performance (air temperature and speed at 1.20 m height above the ground as well as proposes an optimal tropical solar chimney design. Simulations show that the output air temperature remains constant while the solar chimney’s width is the most significant factor influencing output air speed. The solar chimney’s inlet position has limited influence on the output air speed although regions near the solar chimney’s inlet show an increase in air speed. Furthermore, a regression model is developed based on the solar chimney’s stack height, depth and width to predict the interior air speed. To optimize solar chimney in the tropics, the recommendation is to first maximize its width as the interior’s width, while allowing its stack height to be the building’s height. Lastly, the solar chimney’s depth is determined from the regression model by allocating the required interior air speed.

  10. DESIGN OF A SMALL – SCALE SOLAR CHIMNEY FOR SUSTAINABLE POWER

    Science.gov (United States)

    After several months of design and testing it has been determined that a small scale solar chimney can be built using nearly any local materials and simple hand tools without needing superior construction knowledge. The biggest obstacle to over come was the weather conditions....

  11. Design and measured performance of a solar chimney for natural-circulation solar-energy dryers

    International Nuclear Information System (INIS)

    The design and construction of a solar chimney which was undertaken as part of a study on natural-circulation solar-energy dryers is reported. The experimental solar chimney consists of a 5.3m high and 1.64m diameter cylindrical polyethylene-clad vertical chamber, supported structurally by steel framework and draped internally with a selectively-absorbing surface. The performance of the chimney which was monitored extensively with and without the selective surface in place (to study the effectiveness of this design option) is also reported. (author). 14 refs, 7 figs

  12. EXPERIMENTAL ANALYSIS OF A VELOCITY FIELD USING VARIABLE CHIMNEY DIAMETER FOR SOLAR UPDRAFT TOWER

    Directory of Open Access Journals (Sweden)

    Neeraj Mehla,

    2011-04-01

    Full Text Available A solar updraft tower consists of an air collector 1.4 m in diameter and 80 cm tall chimney was set upin NIT Hamirpur, Himachal-Pradesh, India. The objective of the study was to investigate the variation of velocity with essential geometricparameter of the system. The solar updraft tower system consists of three essential elements- collector, chimney height and wind turbine. The output power of a system is depended on the input velocity to the wind turbine. Turbine inlet velocity (V is the function of five parameter of the solar updraft tower systems such as collector diameter (Dc, roof glass angle (?, entrance height (h, tower's height (Ht, tower's diameter (D, out of which variable roof angle and the chimney height is analysis. It was found that the solar chimney diameter of 8 cm is having the maximum velocity for the constructed setup, and the ratio of chimney diameter to chimney heightwas found to be 0.1.

  13. The solar chimney. Electricity from the sun

    Energy Technology Data Exchange (ETDEWEB)

    Schiel, W. [Schlaich, Bergermann und Partner, Stuttgart (Germany)

    1997-12-31

    Current energy production from coal and oil is damaging to the environment and non-renewable. Many developing countries cannot afford these energy sources, and nuclear power stations are an unacceptable risk in many locations. Inadequate energy supplies can lead to high energy costs as well as to proverty, which commonly results in population explosions. Sensible technology for the use of solar power must be simple and reliable, accessible to the technologically less developed countries that are sunny and often have limited raw materials resources, should not need cooling water or produce waste heat and should be based on environmentally sound production from renewable materials. The solar chimney meets these conditions and makes it possible to take the crucial step towards a global solar energy economy. Large scale solar chimneys can be built now without any technical problems and at defined costs. (orig.)

  14. A performance analysis of solar chimney thermal power systems

    OpenAIRE

    Al-Dabbas Awwad Mohammed

    2011-01-01

    The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic). A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney tr...

  15. Solar Chimney Model Parameters to Enhance Cooling PV Panel Performance

    OpenAIRE

    Mohammed Sh Elden; Sopian, K.; Fatah O. Alghoul; Abdelnasser Abouhnik; Ae. Muftah M.

    2013-01-01

    The concept of using the Solar Chimney plays an important role in a wide range of topics to improve cooling system efficiency such as drying process, and single and multi-story buildings ventilation against temperature rising. In this paper, study the effective solar cooling chimney parameter model to enhance the performance of photovoltaic (PV) cooling system. First, a brief description of theoretical performance predictions of the solar cooling chimney also discusses the effect of the ambie...

  16. Analytical Analysis of Roof Top Solar Chimney for Power Generation

    OpenAIRE

    K.V. Sreejaya; Hussain H. AL-Kayiem; Syed Ihtsham Ul-Haq Gilani

    2011-01-01

    The solar chimney is a technology, which has been already proved of being capable to generate electrical energy from the sun. On the other hand, the solar chimney has been used on the roof of housing for ventilation purpose. Since the sun is not available during night and cloudy days, there should be another source of input to guarantee continuous operation of the system. Present study is the development of experimental, computational and mathematical models of ?On Roof Solar Chimney...

  17. Simulation of a sloped solar chimney power plant in Lanzhou

    International Nuclear Information System (INIS)

    Research highlights: ? A sloped solar chimney power plant in Lanzhou, China is investigated. ? The configuration sizes are designed separately. ? The system has high periodicity and stability but low efficiency. ? The sloped solar chimney power system is of high value for Northwest China. -- Abstract: Solar chimney power system is one large-scale utilization style of solar energy, which has drawn high attentions worldwide. Though scholars all over the world have made many researches on the solar chimney power system, reports of sloped solar chimney power system are still few. A sloped solar chimney power plant, which is expected to provide electric power for remote villages in Northwest China, has been designed for Lanzhou City in this paper. The designed plant, in which the height and radius of the chimney are 252.2 m and 14 m respectively, the radius and angle of the solar collector are 607.2 m and 31o respectively, is designed to produce 5 MW electric power on a monthly average all year. The performances, such as the airflow temperature increase, pressure, the airflow speed, system efficiency and solar collector efficiency, of the built sloped solar chimney power plant are simulated and presented. Simulation results show that parameters of the sloped solar chimney power plant are symmetrical and stable; the power plant has better performances in spring and autumn days; the overall efficiency of the power plant is low. Considering the abundant solar radiation, environmental friendliness, easy management and low population density, the sloped solar chimney power system is of high value to Northwest China.

  18. Performance of a Solar Chimney Under Egyptian Weather Conditions: Numerical Simulation and Experimental Validation

    OpenAIRE

    A.A. Mostafa; M. F. Sedrak; Adel M. Abdel Dayem

    2011-01-01

    High solar radiation and ambient temperature, and large desert in Egypt are excellent conditions to install efficiently solar chimney power plants there. Therefore this research aimed to develop a validated mathematical model and governing equations of solar chimney. It is proposed to improve the performance of solar chimney under effects of various parameters, and study of possibility of installing solar chimney in Egypt. The mathematical simulation of the solar chimney has been developed in...

  19. Power generation from wind turbines in a solar chimney

    OpenAIRE

    Tudor Foote, Ramesh K. Agarwal

    2013-01-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/co...

  20. Analytical Analysis of Roof Top Solar Chimney for Power Generation

    Directory of Open Access Journals (Sweden)

    K.V. Sreejaya

    2011-01-01

    Full Text Available The solar chimney is a technology, which has been already proved of being capable to generate electrical energy from the sun. On the other hand, the solar chimney has been used on the roof of housing for ventilation purpose. Since the sun is not available during night and cloudy days, there should be another source of input to guarantee continuous operation of the system. Present study is the development of experimental, computational and mathematical models of ?On Roof Solar Chimney? for small-scale power generation. The objective of the present study is to review the similar works and to present a mathematical model of a solar chimney operation and analyze the analytical result. The model involves the energy and mass transportation in the system under steady state conditions. Heat transfer equations were set up to determine the boundary temperatures at the surface of the glass cover, the rear solar heat absorbing wall and the air flow in the channel using a thermal resistance network. Results showed the transient behavior of the system during the day. With model area of 15 m2, the highest velocity of 0.17 m sec-1 is predicted at around the mid day time. The mass flow rate increases as the solar radiation increase. The area is a vital parameter in the successful application of the technique. Also enhancement technique to rise up the collector temperature would improve the performance considerably.

  1. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  2. A NUMERICAL study of solar chimney power plants in Tunisia

    Science.gov (United States)

    Bahar F, Attig; S, Guellouz M.; M, Sahraoui; S, Kaddeche

    2015-04-01

    A 3D CFD (Computational fluid dynamics) model of a Solar Chimney Power Plant (SCPP) was developed and validated through comparison with the experimental data of the Manzanares plant. Then, it was employed to study the SCPP performance for locations throughout Tunisia.

  3. Passive cooling with solar updraft and evaporative downdraft chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

    1985-01-01

    Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

  4. Solar ventilation: The use of solar chimneys for natural ventilation of buildings:

    OpenAIRE

    Macquoy, B.

    2011-01-01

    This paper is written for the TIDO-course AR0532 Smart & Bioclimatic Design Theory. A very old principle is the system of the solar chimney for ventilation, which in recent years has regained interests. This essay will explore the potentials of solar chimneys in a modern application.

  5. Performance of a Solar Chimney Under Egyptian Weather Conditions: Numerical Simulation and Experimental Validation

    Directory of Open Access Journals (Sweden)

    A. A. Mostafa

    2011-02-01

    Full Text Available High solar radiation and ambient temperature, and large desert in Egypt are excellent conditions to install efficiently solar chimney power plants there. Therefore this research aimed to develop a validated mathematical model and governing equations of solar chimney. It is proposed to improve the performance of solar chimney under effects of various parameters, and study of possibility of installing solar chimney in Egypt. The mathematical simulation of the solar chimney has been developed including all its performance parameters, dimensions (of collector, chimney and turbine and the metrological data; which were considered as inputs of the simulation program. A comparison between the mathematical and experimental performance has been investigated to validate the mathematical simulation. The mathematical model has been used to predict the performance of the solar chimney power plant over a year in Egypt. It is used to study of effects of geometrical parameters, and investigate possibility of the optimum geometrical dimensions. It is obtained that there is in fact no optimum physical size for such plants without considering the economical constraints. The chimney height has a significant effect in the chimney performance. Visualizing of annual performance of the solar chimney would seem to be essentially a power generator in Egypt if it installed in a large scale.Key words: Solar chimney; Numerical simulation; Annual performance; Experimental validation; Optimization

  6. Numerical Study of a Solar Chimney Power Plant

    Directory of Open Access Journals (Sweden)

    A. Dhahri

    2014-11-01

    Full Text Available The aim of this study is to present a numerical analysis on the performance of a solar chimney power plant using steady state Navier-Stokes and energy equations in cylindrical coordinate system. The fluid flow inside the chimney is assumed to be turbulent and simulated with the k-? turbulent model, using the FLUENT software package. Numerical simulations were performed using the Spanish prototype as reference. The computed results are in good agreement with experimental measurements of Manzanares power plant. Besides, a theoretical model was proposed taking into account the kinetic energy difference within the solar collector. The effects of the main geometrical parameters of the collector and the solar radiation intensity on the air mass flow rate and the temperature rise in the collector have been investigated. The fluid and ground temperature distributions were also presented and analyzed.

  7. Annual performance analysis of the solar chimney power plant in Sinkiang, China

    International Nuclear Information System (INIS)

    Highlights: • A theoretical model was developed concerning hourly variation of solar radiation. • A limitation on maximum collector radius of an SCPP with a given chimney exists. • Annual performance of a 100 MW SCPP was predicted in hourly interval. • The Hami region is considered suitable for the construction of SCPP. - Abstract: To obtain more accurate prediction of the annual performance of solar chimney power plants (SCPPs), a comprehensive theoretical model is developed by taking into account the hourly variation of solar radiation. The effects of the collector and chimney radii on the power output of the SCPP are analyzed, and the results reveal that a limitation on the maximum collector radius exists for the maximum attainable power output of the SCPP. Then four designs of 100 MW SCPPs with different combinations of collector and chimney radii are proposed and the most cost effective one is chosen from among the four SCPPs. The annual power output of the chosen SCPP in the Hami region is estimated at an interval of 1 h for a whole year. The results indicate that the power generation of SCPP presents obvious seasonal variation. Furthermore, the use of 14% of the unused land in the Hami region for the installation of SCPPs would satisfy the annual power requirement for the whole of the Sinkiang region

  8. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  9. Power generation from wind turbines in a solar chimney

    Directory of Open Access Journals (Sweden)

    Tudor Foote, Ramesh K. Agarwal

    2013-01-01

    Full Text Available Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable k – ? model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  10. Solar chimney design: Investigating natural ventilation and cooling in offices with the aid of computer simulation

    Science.gov (United States)

    Angelis, Nikolaos

    Solar chimney design is investigated as a means of improving natural ventilation and passive cooling in office buildings. Existing scientific research and built precedents are generally limited literature review findings on various features of solar chimneys were categorised and used to develop a building simulation strategy. Using UK climatic data, simulations were performed on several computer models in order to investigate solar chimney performance during a single day period and an entire cooling season. Passive cooling with a solar chimney is possible but actual reduction in temperatures in most cases examined could be negligible. Cooling potential is increased on still, warm days, while the prospects for night cooling are further improved. A solar chimney may help reduce considerably the occurrence of resultant temperatures at or above the 25 C and 28 C thresholds. Solar chimney width, height, apertures and integral use of thermal mass are the most significant parameters for cooling. Simulation results showed that a solar chimney can increase significantly natural ventilation rates. Total ventilation rates may be increased by at least 22%. During still days a solar chimney can enhance ventilation rates by 36% or more. Stack ventilation through a solar chimney is typically 20% of cross ventilation during night time this may increase to at least 40-45% and on still days it may reach 100% of typical cross ventilation rates. Solar chimney induced stack ventilation and cross ventilation are interrelated. Resultant air flow patterns may have an important effect on convective heat transfers and thermal comfort. Climate and microclimate conditions should be an integral part of solar chimney design. Key aspects and recommendations regarding solar chimneys, passive cooling and natural ventilation are provided for design guidance and feedback in further research.

  11. Solar chimney power generation project - The case for Botswana

    International Nuclear Information System (INIS)

    Import of a huge proportion of electrical energy from the Southern African Power Pool, and the geographical location and population distribution of Botswana stimulated the need to consider renewable energy as an alternative to imported power. The paper describes a systematic experimental study on a mini-solar chimney system. Particular attention is given to measurements of air velocity, temperature and solar radiation. The results for the selected 5 and 6 clear days of October and November, respectively, are presented. These results enable the relationship between average insolation, temperature difference and velocity for selected clear days to be discussed. (author)

  12. Review on the Enhancement Techniques and Introduction of an Alternate Enhancement Technique of Solar Chimney Power Plant

    OpenAIRE

    Hussain H. AL-Kayiem; Aja Ogboo Chikere; Zainal Ambri Abdul Karim

    2011-01-01

    Due to the low plant efficiency associated with Solar Chimney Power Plant, there is a need for the plant performance enhancement. This study presents the enhancement techniques of solar chimney power plant. It reviews previous works that had been done in performance enhancement of solar chimney power plants. It also, introduces an alternative approach to enhance the solar chimney performance by hybridizing the solar operation mode and waste heat energy from flue gas. The new idea is to conver...

  13. Basement Kind Effects on Air Temperature of a Solar Chimney in Baghdad - Iraq Weather

    OpenAIRE

    Miqdam Tariq Chaichan

    2011-01-01

    A solar updraft tower power plant (solar tower) is a solar thermal power plant that utilizes a combination of solar air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity. This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatur...

  14. Review on the Enhancement Techniques and Introduction of an Alternate Enhancement Technique of Solar Chimney Power Plant

    Directory of Open Access Journals (Sweden)

    Hussain H. Al-Kayiem

    2011-01-01

    Full Text Available Due to the low plant efficiency associated with Solar Chimney Power Plant, there is a need for the plant performance enhancement. This study presents the enhancement techniques of solar chimney power plant. It reviews previous works that had been done in performance enhancement of solar chimney power plants. It also, introduces an alternative approach to enhance the solar chimney performance by hybridizing the solar operation mode and waste heat energy from flue gas. The new idea is to convert the waste thermal energy in the flue to useful thermal energy in a Solar Chimney Power Plant collector. It is another form of waste heat energy recovery and utilization method.

  15. Experimental study of temperature field in a solar chimney power setup

    International Nuclear Information System (INIS)

    A pilot experimental solar chimney power setup consisted of an air collector 10 m in diameter and an 8 m tall chimney has been built. The temperature distribution in the solar chimney power setup was measured. Temperature difference between the collector outlet and the ambient usually can reach 24.1 deg. C, which generates the driving force of airflow in the setup. This is the greenhouse effect produced in the solar collector. It is found that air temperature inversion appears in the latter chimney after sunrise both on a cool day and on a warm day. Air temperature inversion is formed by the increase of solar radiation from the minimum and clears up some time later when the absorber bed is heated to an enough high temperature to make airflow break through the temperature inversion layer and flow through the chimney outlet

  16. Experimental study of temperature field in a solar chimney power setup

    International Nuclear Information System (INIS)

    A pilot experimental solar chimney power setup consisted of an air collector 10 m in diameter and an 8 m tall chimney has been built. The temperature distribution in the solar chimney power setup was measured. Temperature difference between the collector outlet and the ambient usually can reach 24.1 C, which generates the driving force of airflow in the setup. This is the greenhouse effect produced in the solar collector. It is found that air temperature inversion appears in the latter chimney after sunrise both on a cool day and on a warm day. Air temperature inversion is formed by the increase of solar radiation from the minimum and clears up some time later when the absorber bed is heated to an enough high temperature to make airflow break through the temperature inversion layer and flow through the chimney outlet. (author)

  17. Numerical investigation on thermal and fluid dynamic behaviors of solar chimney building systems

    International Nuclear Information System (INIS)

    Full text: Buildings as big energy-consuming systems require large amount of energy to operate. Globally, buildings are responsible for approximately 40% of total world annual energy consumption. Sustainable buildings with renewable energy systems are trying to operate independently without consumption of conventional resources. Renewable energy is a significant approach to reduce resource consumption in sustainable building. A solar chimney is essentially divided into two parts, one - the solar air heater (collector) and second - the chimney. Two configurations of solar chimney are usually used: vertical solar chimney with vertical absorber geometry, and roof solar chimney. For vertical solar chimney, vertical glass is used to gain solar heat. Designing a solar chimney includes height, width and depth of cavity, type of glazing, type of absorber, and inclusion of insulation or thermal mass. Besides these system parameters, other factors such as the location, climate, and orientation can also affect its performance. In this paper a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The analysis is carried out on a three-dimensional model in air flow and the governing equations are given in terms of k-s turbulence model. Two geometrical configurations are investigated: 1) a channel with vertical parallel walls and 2) a channel with principal walls one vertical and the other inclined. The problem is solved by means of the commercial code Ansys-Fluent and the results are performed for a uniform wall heat flux on the vertical wall is equal to 300 and 600 W/m2. Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles in order to evaluate the differences between the two base configurations and thermal and fluid dynamic behaviors. Further, the ground effect on thermal performances is examined. key words: mathematical modeling, solar chimney, renewable energy

  18. Feasibility study on optimization of a typical solar chimney power plant

    Science.gov (United States)

    Najmi, Mohsen; Nazari, Ali; Mansouri, Hossein; Zahedi, Ghazzanfar

    2012-03-01

    The solar chimney which has been built in Kerman (Kerman city-Iran) is a small scale electrical power plant. The chimney of this unit has 60 m height and 3 m diameter. The collector of this unit is 40 m × 40 m square. To reach nominal power of this unit of power plant, parameters which are effective in optimization are studied. In this regard, we deliberate and propose suggestions to maximize usage of solar energy and kinetic energy. The calculation of maximum power is one of the objectives of this study, so the paper present economic analysis for Kerman solar chimney. A home code has been written for this modeling, in MATLAB.

  19. Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

    Science.gov (United States)

    Vanreken, T. M.; Nenes, A.

    2006-12-01

    The mounting negative impacts of our dependence on fossil fuels make obvious the need for continued development of alternative power generation technologies. One promising technology is the solar chimney power plant, the concept of which is straightforward and consists of three main components: a solar air collector, the chimney itself, and a power turbine. The solar collector is a large, circular, greenhouse-like structure that gently slopes toward its center; air enters at the outer edge, and as the air parcel warms buoyancy causes it to move upward and toward the center of the collector. When the air has reached the center of the collector, its temperature has increased by an amount ?T, at which point it enters the chimney. The chimney functions as the main thermal engine in the power plant; the available power for electrical conversion is a function of the maximum potential air velocity through the chimney, which depends primarily on its height and on ?T. The actual air velocity is determined by the efficiency of the turbine, which is placed between the solar collector and the chimney. A pilot-scale solar chimney power plant has operated in Manzanares, Spain for two decades, and larger facilities have been proposed in China and Australia. As with all new technologies, it is important to consider the potential adverse impacts of solar chimney power generation facilities. This study considers one such impact- the potential for water vapor in solar chimney plumes to affect both the performance of the facility and the local meteorology. Using a cloud parcel model, the progress of a plume up through and out of a solar chimney was simulated for a range of conditions consistent with the proposed Australian facility. As might be expected, in the absence of any water vapor enhancement the plume demonstrated minimal cloud forming potential. However, our results indicate that in cases of moderate water vapor enhancement, cloud formation can occur after the plume exits the chimney and possibly impact plant performance and local meteorology. In cases of more substantial water vapor enhancement, cloud formation can even occur within the chimney itself.

  20. On the form of the power equation for modeling solar chimney power plant systems

    OpenAIRE

    Fathi, Nima; Aleyasin, Seyed Sobhan; Vorobieff, Peter

    2015-01-01

    Recently several mathematical models of a solar chimney power plant were derived, studied for a variety of boundary conditions, and compared against CFD calculations. The importance of these analyses is about the accuracy of the derived pressure drop and output power equation for solar chimney power plant systems (SCPPS). We examine the assumptions underlying the derivation and present reasons to believe that some of the derived equations, specifically the power equation in ...

  1. Effect of solar chimney inclination angle on space flow pattern and ventilation rate

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Korah, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2009-02-15

    The solar chimney is a simple and practical idea that is applied to enhance space natural ventilation. The chimney could be vertical or inclined. The chimney inclination angle is an important parameter that greatly affects space flow pattern and ventilation rate. In the present study, the effect of chimney inclination angle on air change per hour and indoor flow pattern was numerically and analytically investigated. A numerical simulation using Ansys, a FEM-based code, was used to predict flow pattern. Then the results were compared with published experimental measurements. A FORTRAN program was developed to iteratively solve the mathematical model that was obtained through an overall energy balance on the solar chimney. The analytical results showed that an optimum air flow rate value was achieved when the chimney inclination is between 45 and 70 for latitude of 28.4 . The numerically predicted flow pattern inside the space supports this finding. Moreover, in the present study a correlation to predict the air change per hour was developed. The correlation was tested within a solar intensity greater than or equal to 500 W/m{sup 2}, and chimney width from 0.1 m to 0.35 m for different inclination angles with acceptable values. (author)

  2. Numerical simulation and comparison of conventional and sloped solar chimney power plants: the case for Lanzhou.

    Science.gov (United States)

    Cao, Fei; Li, Huashan; Zhang, Yang; Zhao, Liang

    2013-01-01

    The solar chimney power plant (SCPP) generates updraft wind through the green house effect. In this paper, the performances of two SCPP styles, that is, the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP), are compared through a numerical simulation. A simplified Computational Fluid Dynamics (CFD) model is built to predict the performances of the SCPP. The model is validated through a comparison with the reported results from the Manzanares prototype. The annual performances of the CSCPP and the SSCPP are compared by taking Lanzhou as a case study. Numerical results indicate that the SSCPP holds a higher efficiency and generates smoother power than those of the CSCPP, and the effective pressure in the SSCPP is relevant to both the chimney and the collector heights. PMID:24489515

  3. Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-01-01

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

  4. Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-01-01

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

  5. Solar chimney for the natural ventilation of buildings: simulation and mediation; Chimenea solar para la ventilacion natural de edificios: simulacion y mediacion

    Energy Technology Data Exchange (ETDEWEB)

    Lanceta, D.; Llorente, J.

    2008-07-01

    In this article, the first part of a research project about the modelling of a solar chimney is presented. In this first part, the average ventilation flows measured in an experimental installation have been compared to the results obtained by CFD (Computational Fluid Dynamics) simulations. In order to do so, a solar chimney with a cross-section of 0.78 m x 0.156 m, height 3,6 m, has been constructed. The chimney consists of a glass surface oriented towards the south. The internal (absorber) surface is made of a copper plate, which has been painted black in order to increase the solar absorption. The chimney is connected to a room measuring 5 m x 2.5 m x 2.5 m, from where it extracts air. The comparison of the results obtained by measurements with those obtained by CFD simulations show that computational tools are accurate enough to predict the behaviour of natural buoyancy in this kind of installations. (Author)

  6. Economic analysis of power generation from floating solar chimney power plant

    International Nuclear Information System (INIS)

    Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh)-1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity. (author)

  7. On the form of the power equation for modeling solar chimney power plant systems

    CERN Document Server

    Fathi, Nima; Vorobieff, Peter

    2015-01-01

    Recently several mathematical models of a solar chimney power plant were derived, studied for a variety of boundary conditions, and compared against CFD calculations. The importance of these analyses is about the accuracy of the derived pressure drop and output power equation for solar chimney power plant systems (SCPPS). We examine the assumptions underlying the derivation and present reasons to believe that some of the derived equations, specifically the power equation in this model, may require a correction to be applicable in more realistic conditions. The analytical resutls are compared against the available experimental data from the Manzanares power plant.

  8. EXPERIMENTAL ANALYSIS OF A VELOCITY FIELD USING VARIABLE CHIMNEY DIAMETER FOR SOLAR UPDRAFT TOWER

    OpenAIRE

    Neeraj Mehla,; Rahul Makade,; Thakur, N. S.

    2011-01-01

    A solar updraft tower consists of an air collector 1.4 m in diameter and 80 cm tall chimney was set upin NIT Hamirpur, Himachal-Pradesh, India. The objective of the study was to investigate the variation of velocity with essential geometricparameter of the system. The solar updraft tower system consists of three essential elements- collector, chimney height and wind turbine. The output power of a system is depended on the input velocity to the wind turbine. Turbine inlet velocity (V) is the f...

  9. Performance analysis of conventional and sloped solar chimney power plants in China

    International Nuclear Information System (INIS)

    The solar chimney power plant (SCPP) has been accepted as one of the most promising approaches for future large-scale solar energy applications. This paper reports on a heat transfer model that is used to compare the performance of a conventional solar chimney power plant (CSCPP) and two sloped solar chimney power plants (SSCPPs) with the collector oriented at 30° and 60°, respectively. The power generation from SCPPs at different latitudes in China is also analyzed. Results indicate that the larger solar collector angle leads to improved performance in winter but results in lower performance in summer. It is found that the optimal collector angle to achieve the maximum power in Lanzhou, China, is around 60°. Main factors that influence the performance of SCPPs also include the system height and the air thermophysical characteristics. The ground energy loss, reflected solar radiation, and kinetic loss at the chimney outlet are the main energy losses in SCPPs. The studies also show SSCPPs are more suitable for high latitude regions in Northwest China, but CSCPPs are suggested to be built in southeastern and eastern parts of China with the combination to the local agriculture. - Highlights: ? The optimum collector angle for maximum power generation is 60° in Lanzhou. ? Main parameters influencing performances are the system height and air property. ? Ground loss, reflected loss and outlet kinetic loss are the main energy losses. ? The sloped styles are suitable for Northwest China. ? The conventional styles are suitable for Southeast and East China.

  10. Numerical analysis on the performance of solar chimney power plant system

    International Nuclear Information System (INIS)

    Power generating technology based on renewable energy resources will definitely become a new trend of future energy utilization. Numerical simulations on air flow, heat transfer and power output characteristics of a solar chimney power plant model with energy storage layer and turbine similar to the Spanish prototype were carried out in this paper, and mathematical model of flow and heat transfer for the solar chimney power plant system was established. The influences of solar radiation and pressure drop across the turbine on the flow and heat transfer, output power and energy loss of the solar chimney power plant system were analyzed. The numerical simulation results reveal that: when the solar radiation and the turbine efficiency are 600 W/m2 and 80%, respectively, the output power of the system can reach 120 kW. In addition, large mass flow rate of air flowing through the chimney outlet become the main cause of energy loss in the system, and the collector canopy also results in large energy loss.

  11. Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant

    International Nuclear Information System (INIS)

    Graphical abstract: This work is aimed at optimizing the geometry of the major components of a solar chimney power plant using ANSYS-CFX. The collector inlet opening, collector height, collector outlet diameter, the chimney throat diameter and the chimney divergence angle were varied for the same chimney height and collector diameter and the performance of the plant was studied in terms of the available power and an optimum configuration was obtained. The temperature and velocity variations in the collector and along the chimney height were also studied. - Highlights: • Geometry of the major components of a solar chimney power plant optimized using CFX. • Collector inlet opening, height, outlet diameter, chimney throat diameter, and the chimney divergence angle were varied. • Temperature and velocity variations and available power were obtained for different configurations. • Optimum values of collector outlet height and diameter and the divergence angle were obtained. - Abstract: A solar chimney power plant (SCPP) is a renewable-energy power plant that transforms solar energy into electricity. The SCPP consists of three essential elements – solar air collector, chimney tower, and wind turbine(s). The present work is aimed at optimizing the geometry of the major components of the SCPP using a computational fluid dynamics (CFD) software ANSYS-CFX to study and improve the flow characteristics inside the SCPP. The overall chimney height and the collector diameter of the SCPP were kept constant at 10 m and 8 m respectively. The collector inlet opening was varied from 0.05 m to 0.2 m. The collector outlet diameter was also varied from 0.6 m to 1 m. These modified collectors were tested with chimneys of different divergence angles (0°–3°) and also different chimney inlet openings of 0.6 m to 1 m. The diameter of the chimney was also varied from 0.25 m to 0.3 m. Based on the CFX computational results, the best configuration was achieved using the chimney with a divergence angle of 2° and chimney diameter of 0.25 m together with the collector opening of 0.05 m and collector outlet diameter of 1 m. The temperature inside the collector is higher for the lower opening resulting in a higher flow rate and power

  12. Theoretical and experimental evaluation of solar chimney with thermal inertia; Evaluacion energetica teorica y experimental de una chimenea solar con enercia termica

    Energy Technology Data Exchange (ETDEWEB)

    Marti Herrero, J.; Heras Celemin, M. R.

    2004-07-01

    A simple study has been realized about the solar chimney built at the LECE, using FLUENNT, a Computational Fluid Dynamics (CFD) software. The more important restrictions imposed to the simulation has bee: stationary state and no interaction between the solar chimney and the atmosphere. The results shows a discrepancy between the theory and experimental data, because the conditions employed on the simulation. The solar chimney has a concrete wall with thermal inertia, that is not represented on the simulation because the stationary state. It is necessary to research on more detailed dynamic studies using CDF, in order to obtain the energetic performance of a solar chimney with thermal inertia. (Author)

  13. Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region

    International Nuclear Information System (INIS)

    This paper analyzes the feasibility of solar chimney power plants as an environmentally acceptable energy source for small settlements and islands of countries in the Mediterranean region. For the purpose of these analyses, two characteristic geographic locations (Split and Dubrovnik) in Croatia were chosen and simplified model for calculation of produced electric power output is also developed. These locations possess typical characteristics of the Mediterranean climate. The solar characteristics of the chosen geographic locations are shown along with characteristic meteorological data. A solar chimney (SC) power plant with a chimney height of 550 m and a collector roof diameter of 1250 m would produce 2.8-6.2 MW of power. The average annual electric power production of this SC power plant would range between 4.9 and 8.9 GWh/year, but in reality from 5.0 to 6.0 GWh/year in average. An approximate costs analysis, which included a total investment estimate, was performed. The levelized electricity cost was also calculated. It is found that the price of produced electric energy by solar chimney power plant in Mediterranean region is considerably higher compared to the other power sources. (author)

  14. An analytical and numerical study of solar chimney use for room natural ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Koura, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2008-07-01

    The solar chimney concept used for improving room natural ventilation was analytically and numerically studied. The study considered some geometrical parameters such as chimney inlet size and width, which are believed to have a significant effect on space ventilation. The numerical analysis was intended to predict the flow pattern in the room as well as in the chimney. This would help optimizing design parameters. The results were compared with available published experimental and theoretical data. There was an acceptable trend match between the present analytical results and the published data for the room air change per hour, ACH. Further, it was noticed that the chimney width has a more significant effect on ACH compared to the chimney inlet size. The results showed that the absorber average temperature could be correlated to the intensity as: (T{sub w} = 3.51I{sup 0.461}) with an accepted range of approximation error. In addition the average air exit velocity was found to vary with the intensity as ({nu}{sub ex} = 0.013I{sup 0.4}). (author)

  15. Basement Kind Effects on Air Temperature of a Solar Chimney in Baghdad - Iraq Weather

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2011-01-01

    Full Text Available A solar updraft tower power plant (solar tower is a solar thermal power plant that utilizes a combination of solar air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity. This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatures. Three basements were used: concrete, black concrete and black pebbles basements. The study was conducted in Baghdad from August to November 2009. The results show that the best chimney efficiency attained was 49.7% for pebbles base. The highest collected air temperature reached was 49ºC when using the black pebbles basement also.also, the maximum basement temperature measured was 59ºC for black pebbles. High increaments in collected air temperatures were achieved in comparison with the ambient air temperatures for the three basement kinds. The highest temperature difference reached was 22ºC with the pebble ground.

  16. Solar chimney: A sustainable approach for ventilation and building space conditioning

    Directory of Open Access Journals (Sweden)

    Lal, S.,

    2013-03-01

    Full Text Available The residential and commercial buildings demand increase with rapidly growing population. It leads to the vertical growth of the buildings and needs proper ventilation and day-lighting. The natural air ventilation system is not significantly works in conventional structure, so fans and air conditioners are mandatory to meet the proper ventilation and space conditioning. Globally building sector consumed largest energy and utmost consumed in heating, ventilation and space conditioning. This load can be reduced by application of solar chimney and integrated approaches in buildings for heating, ventilation and space conditioning. It is a sustainable approach for these applications in buildings. The authors are reviewed the concept, various method of evaluation, modelings and performance of solar chimney variables, applications and integrated approaches.

  17. Evaluation of the potential of solar chimneys to drive natural ventilation in non domestic buildings

    OpenAIRE

    Swainson, M. J.

    1997-01-01

    The solar chimney allows natural ventilation to be achieved during periods when the wind velocities are low and the difference between internal and external air temperatures is minimal. The correct design of such building components requires that designers have appropriate design tools available to them that are both effective and easy to use. The aim of this project was to evaluate design tools currently available and if appropriate to provide a tool that would allow the ef...

  18. Design and simulation of a geothermal–solar combined chimney power plant

    International Nuclear Information System (INIS)

    Highlights: • A geothermal–solar chimney power plant (GSCPP) is designed and analyzed. • Three different models, viz. full solar model, full geothermal model and geothermal–solar mode are compared. • Power generation under GSM is larger than the sum of FSM and FGM. • GSCPP can effectively solve the continuous operation problem of the SCPP. - Abstract: The solar chimney power plant (SCPP) is dominated by the solar radiation, and therefore its discontinuous operation is an unavoidable problem. In this paper, low temperature geothermal water is introduced into the SCPP for overcoming this problem. Based on a developed transient model, theoretical analyses are carried out to investigate the performance of the geothermal–solar chimney power plant (GSCPP) with main dimensions the same as the Manzanares prototype in Spain. Three operation models, viz. the full solar model, the full geothermal model and the geothermal–solar combined model are compared in typical summer and winter days and throughout the year. It is found that the GSCPP can attractively run in the GSM to deliver power continuously. Due to the ambient-dependant geothermal water outlet temperature, introducing the geothermal water makes greater contribution in winter days than in summer days, in the night than in the daytime. Power generation under GSM is larger than the sum of FSM and FGM. GSM is not the simple superposition of FSM and FGM, but makes better utilization of solar and geothermal energy. In addition, introducing high temperature and mass flow rate geothermal water can doubled and redoubled improve the GSCPP’s power capacity

  19. A scaling investigation of the laminar convective flow in a solar chimney for natural ventilation

    International Nuclear Information System (INIS)

    Highlights: • Scaling investigation of a solar chimney for ventilation is carried out. • Three distinct flow regimes are identified depending on the Rayleigh number. • Scaling relations are proposed to describe the transient flow development and are verified by numerical data. -- Abstract: The flow behavior due to natural convection of air (with a Prandtl number less than 1) inside a solar chimney with an imposed heat flux on a vertical absorber wall is investigated by a scaling analysis and a corresponding numerical simulation. Three distinct flow regimes are identified, one with a distinct thermal boundary layer and the other two without a distinct thermal boundary layer, depending on the Rayleigh number. The two regimes without a distinct thermal boundary layer are further classified into low and medium Rayleigh number sub-regimes respectively. These sub-regimes are characterized by conduction dominance in which the thermal boundary layer grows to encompass the entire width of the channel before convection becomes important. Flow development in each of these flow regimes and sub-regimes is characterized through transient scaling, and scaling correlations are developed to describe the temperature, flow velocity and mass flow rate, which characterize the ventilation performance of the solar chimney. The scaling arguments are validated by the corresponding numerical data

  20. Numerical investigation of a plume from a power generating solar chimney in an atmospheric cross flow

    Science.gov (United States)

    Zhou, Xinping; Yang, Jiakuan; Ochieng, Reccab M.; Li, Xiangmei; Xiao, Bo

    2009-01-01

    A plume in an atmospheric cross flow from a power generating solar chimney is investigated using a three-dimensional numerical simulation model. The simulation model is validated by comparing the data calculated using our model with the numerical simulated results for one-dimensional buoyancy-driven compressible flow in a proposed 1500 m high solar chimney. In this paper, the parametric performances including static pressure, static temperature, density, streamline, and relative humidity field of the flow at the symmetry plane, at the cross plane 2700 m high and at the cross plane 750 m high in the geometry are simulated. It is found that relative humidity of the plume is greatly increased due to the jet of a plume into the surroundings colder than the plume. In addition to a great amount of tiny granules in the plume originating from the ground as effective condensation nuclei of moisture, a condensation would occur, a cloud system and precipitation e.g. rainfall, snow and hail would be formed around the plume when vapor is supersaturated. It is also found that with an increase in chimney height or relative humidity of atmosphere, or a reduction in wind velocity, relative humidity is increased, and increases the probability of precipitation and the potential precipitation areas. Furthermore, the latent heat released from the condensation of supersaturated vapor can aid the plume to keep on rising.

  1. DESIGN NOTE: Ultrasonic velocity meter to evaluate the behaviour of a solar chimney

    Science.gov (United States)

    Olmos, P.

    2004-07-01

    The addition of solar chimneys represents a substantial improvement in the natural ventilation scheme of a building and is thus an important component of so-called passive cooling, mainly in warm climates. In order to evaluate and/or control its performance, an accurate measurement of the velocity and temperature of the air passing through the duct is needed. Normal commercial equipment, developed for other applications, does not suit this particular scenario very well. An ultrasonic velocity meter has been specially designed, manufactured and tested inside an actual chimney, proving that this approach is a reliable solution to the problem of measuring the ventilation parameters. Here a detailed description of the instrument is given, along with a presentation of its first operational tests.

  2. Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Khasawneh, Khalid; PARK, Youn Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of LUHS. In addition to its dual functionality; it provides a complete independent and diverse means of safety functions supporting, a free carbon oxide power production source and allow following the world's trend toward the usage of renewable energy sources. The Solar Chimney Power Plant was suggested to be employed as a supporting system for NPPs to provide emergency power, in case of SBO, and emergency cooling, in case of LUHS. It provides a complete independent and diverse means of safety function supporting. Following the SCPP operation requirements of the availability of high solar irradiation, the UAE region provides a perfect environment for its implementation; furthermore, it can be linked to the under-construction NPPs at Al-Barakah site to deliver alternative emergency power and emergency cooling. Due to the inherent unreliability of the currently utilized EDGs and the AAC power sources, a postulated SBO event could affect the safety of the NPP in general, and for the specific case of the UAE NPPs, a LUHS caused by oil spill accident in the UHS could be experienced, given the massive oil related activates being performed in the Arabian Gulf. Comparing the similarity between Al-Barakah site and the Loviisa NPP in Finland; looking for solution and alternatives for the enhancement of their reactors safety should be considered by the UAE nuclear regulator.

  3. Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants

    International Nuclear Information System (INIS)

    In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of LUHS. In addition to its dual functionality; it provides a complete independent and diverse means of safety functions supporting, a free carbon oxide power production source and allow following the world's trend toward the usage of renewable energy sources. The Solar Chimney Power Plant was suggested to be employed as a supporting system for NPPs to provide emergency power, in case of SBO, and emergency cooling, in case of LUHS. It provides a complete independent and diverse means of safety function supporting. Following the SCPP operation requirements of the availability of high solar irradiation, the UAE region provides a perfect environment for its implementation; furthermore, it can be linked to the under-construction NPPs at Al-Barakah site to deliver alternative emergency power and emergency cooling. Due to the inherent unreliability of the currently utilized EDGs and the AAC power sources, a postulated SBO event could affect the safety of the NPP in general, and for the specific case of the UAE NPPs, a LUHS caused by oil spill accident in the UHS could be experienced, given the massive oil related activates being performed in the Arabian Gulf. Comparing the similarity between Al-Barakah site and the Loviisa NPP in Finland; looking for solution and alternatives for the enhancement of their reactors safety should be considered by the UAE nuclear regulator

  4. Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant

    International Nuclear Information System (INIS)

    Solar chimney power plants are a technology capable to generate electric energy through a wind turbine using the solar radiation as energy source; nevertheless, one of the objectives pursued since its invention is to achieve energy generation during day and night. Soil under the power plant plays an important role on the energy balance and heat transfer, due to its natural behavior as a heat storage system. The characteristics of the soil influence the ability of the solar chimney power plant to generate power continuously. Present work analyzes the thermodynamic behavior and the power output of a solar chimney power plant over a daily operation cycle taking into account the soil as a heat storage system, through a numerical modeling under non-steady conditions. The influence of the soil thermal inertia and the effects of soil compaction degree on the output power generation are studied. A sizeable increase of 10% in the output power is obtained when the soil compaction increases. -- Highlights: ? Solar chimney power plants are a technology capable to generate renewable energy from solar radiation. ? The ground under the solar chimney can act as a heat storage system. ? The soil thermal inertia plays a relevant role in a scenario where the plant operates continuously. ? A higher compaction of soil causes a relevant increase on total energy generation.

  5. Simulation of solar chimney power plant with an external heat source

    International Nuclear Information System (INIS)

    Solar chimney power plant is a sustainable source of power production. The key parameter to increase the system power output is to increase its size but the plant cannot operate during night hours. This study deals with simulation work to validate results of pilot plant at Manzanares and include the effects of waste heat from a gas turbine power plant in the system. The effects show continuous night operation, a 38.8 percent increase in power at 1000 W/m2 global solar irradiation at daytime and 1.14 percent increase in overall efficiency.

  6. Simulation of solar chimney power plant with an external heat source

    Science.gov (United States)

    Islamuddin, Azeemuddin; Al-Kayiem, Hussain H.; Gilani, Syed I.

    2013-06-01

    Solar chimney power plant is a sustainable source of power production. The key parameter to increase the system power output is to increase its size but the plant cannot operate during night hours. This study deals with simulation work to validate results of pilot plant at Manzanares and include the effects of waste heat from a gas turbine power plant in the system. The effects show continuous night operation, a 38.8 percent increase in power at 1000 W/m2 global solar irradiation at daytime and 1.14 percent increase in overall efficiency.

  7. Heat transfer by convection, conduction and radiation in solar chimney systems for ventilation of dwellings

    International Nuclear Information System (INIS)

    Numerical study by conjugate heat transfer is carried out of solar chimney systems for heating and ventilation of dwellings. Conservation equations are solved by finite difference-control volume numerical method. The governing parameters were: the Rayleigh numbers from 5 x 108 to 1011, the Prandtl number, Pr = 0.7, constant for air, the chimney aspect ratio, A = H/L from 6 to 15, the air channel width l'/L = 0.2 to 0.5, the air entrance port size, h/L = 0.167-0.667, the wall thickness l/L = 0.25-0.4, the conductivity ratio kr from 5 to 50 and the surface emissivity, ? from 0 to 1. The Nusselt number, the dimensionless volume flow rate V. and radiation heat flux ratio qr/qtot are calculated as a function of the governing parameters, and streamlines and isotherms are produced. The results show that the surface radiation modifies the flow and temperature fields, affects the Nusselt number and the volume flow rate, both in a positive way, and improves the ventilation performance of the chimneys

  8. A First Approach to Natural Thermoventilation of Residential Buildings through Ventilation Chimneys Supplied by Solar Ponds

    Directory of Open Access Journals (Sweden)

    Ferdinando Salata

    2015-07-01

    Full Text Available The exploitation of natural ventilation is a good solution to improve buildings from an energetic point of view and to fulfill the requirements demanded by the thermohygrometric comfort and the air quality in enclosed spaces. Some past researches demonstrated how some devices, useful to this purpose, follow the principles of solar chimneys and are able to move air masses while exploiting the Archimedes thrust. The natural ventilation must be supplied by a flow moving upward, generated by a heat source performing at temperatures slightly higher than the one present in the environment. To have a minimum energetic effect, the heat can be extracted from solar ponds; solar ponds are able to collect and store solar energy in the geographical regions characterized by sufficient values of solar radiation. Thus it is possible, in summer, to provoke a nocturnal natural ventilation useful for the air change in indoor spaces (in those climatic areas where, during the night, there is a temperature gradient.

  9. A parametric study on the feasibility of solar chimney power plants in North Cyprus conditions

    International Nuclear Information System (INIS)

    Highlights: • A parametric for solar chimney power plants (SCPPs) feasibility approach is proposed. • We found the annual electricity production of a 30 MW SCPP to be 94.5 GW h. • We compare this production with the same capacity fossil fuel thermal power plant. • We assess the effect of varying some parameters on economic viability of the SCPP. • Capital expenditure plays a critical role in assessing SCPP economic feasibility. - Abstract: The present work investigates the feasibility of installing a solar chimney power plant (SCPP) under North Cyprus (NC) conditions. The method utilized for the simulations of electricity production was compared and verified by the experimental recordings of the prototype in Manzanares, Spain, before carrying out performance predictions for different plant sizes, collector diameters and chimney heights. The annual electricity production of a 30 MW hypothetical SCPP system is estimated to be 94.5 GW h, which can cater for annual electricity needs of over 22,128 residences without any CO2, NOx and SOx emissions. For an installation cost of €145 million, it was estimated that the savings-to-investment ratio (SIR) would be 1.14, indicating a marginal economic feasibility. It is important to find ways of reducing the installation cost in order to strengthen the economic viability of the system. Considering that, at present, fuel oil no. 6 is being used in NC to produce electricity; the SCPP would cause avoidance of 24,840 tonnes of CO2 delivered into the atmosphere annually, if it replaced an equivalently-sized conventional power unit. To identify the most feasible cost option for the installation of the SCPP, a parametric cost analysis is carried out by varying the parameters such as; capital investment costs, carbon dioxide emission trading system price, chimney height, collector diameter and SCPP plant capacity. In all cases, the effect of these parameters on the economic feasibility indicators, such as SIR, net present value (NPV) and internal rate of return (IRR) were calculated. The results showed that SCPP investment cost, capacity of the plant and chimney height are critical in assessing the project viability

  10. State of the art of industrial masonry chimneys: A review from construction to strengthening

    OpenAIRE

    Pallarés Rubio, Francisco Javier; Ivorra Chorro, Salvador; Pallarés Rubio, Luis; Adam Martínez, José Miguel

    2011-01-01

    This paper presents a review of the present state of research into industrial masonry chimneys and a detailed description of their characteristics. The first part is thus devoted to the history of these chimneys, how and why they were built, their dimensions, and the pathologies or causes that could lead to the need for their repair or strengthening. The second part reviews the different studies on industrial chimneys that can be found in the literature. These include aspects such as modellin...

  11. Passive cooling with solar updraft and evaporative downdraft chimneys. Interim report, June 15, 1984--March 1, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

    1985-12-31

    Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

  12. Experimental investigation into heating and airflow in trombe walls and solar chimneys

    International Nuclear Information System (INIS)

    Trombe Walls and solar chimneys are examples of passive solar air heating systems. However, the airflow and thermal efficiency characteristics of this type of system are not well understood, and partly for this reason, they are not commonly utilised. This paper reports on an experimental investigation into buoyancy-driven convection in a test rig designed to simulate the operation of a passive solar collector. The test rig comprised a vertical open-ended channel, approximately 1a square, heated from one side. The channel depth could be varied from 20mm to 110mm, and heating inputs varied from 200W to 1000W. Temperatures and airflow rates were measured and recorded, to characterise both steady-state and transient performance. The principal findings are: 1. Time constants (for heating)ranged typically between 30 and 70 minutes. 2. Flow regimes were mainly laminar (Reynolds number varing from ?500 to ?4000, depending on heat input and channel depth. 3. The thermal efficiency (as a solar collector and the heat transfer coefficient were functions of heat input, and were not depended on the channel depth. 4. The mass flow rate through the channel increased bath as the heat input increased and as the channel depth increased. The paper presents these findings and discusses their implications in more detail.(Author)

  13. Thermodynamic analysis of a low-temperature waste heat recovery system based on the concept of solar chimney

    International Nuclear Information System (INIS)

    Highlights: • A low grade waste heat recovery system based on the concept of solar chimney is proposed. • The effects of three key factors on the system performance are examined. • Thermodynamics analysis is to find a better way to utilize low grade heat source efficiently. - Abstract: The utilization of low-temperature waste heat draws more and more attention due to serious energy crisis nowadays. This paper proposes a low-temperature waste heat recovery system based on the concept of solar chimney. In the system, low-temperature waste heat is used to heat air to produce an air updraft in the chimney tower. The air updraft propels a turbine fixed at the base of the chimney tower to convert waste heat into electricity. The mathematical model of the system is established based on first law and second law of thermodynamics. Hot water is selected as the representative of low-temperature waste heat sources for researching. The heat source temperature, ambient air temperature and area of heat transfer are examined to evaluate their effects on the system performance such as velocity of updraft, mass flow rate of air, power output, conversion efficiency, and exergy efficiency. The velocity of air demonstrates a better stability than the mass flow rate of air and the pressure difference when temperature of heat source, ambient air temperature or area of heat transfer changes

  14. Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer

    International Nuclear Information System (INIS)

    Numerical simulations have been performed to analyze the characteristics of heat transfer and air flow in the solar chimney power plant system with an energy storage layer. Different mathematical models for the collector, the chimney and the energy storage layer have been established, and the effect of solar radiation on the heat storage characteristic of the energy storage layer has been analyzed. The numerical simulation results show that: (1) the heat storage ratio of the energy storage layer decreases firstly and then increases with the solar radiation increasing from 200 W/m2 to 800 W/m2; (2) the relative static pressure decreases while the velocity increases significantly inside the system with the increase of solar radiation; (3) the average temperature of the chimney outlet and the energy storage layer may increase significantly with the increase of solar radiation. In addition, the temperature gradient of the storage medium may increase, which results in an increase of energy loss from the bottom of the energy storage layer

  15. A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant

    International Nuclear Information System (INIS)

    Highlights: • We develop an economic model different from related models. • We evaluate the initial investment cost of a plant built in northwest China. • We analyze the cost and benefit of a plant built in northwest China. • By the sensitivity analysis, we examine the sensitivity of TNPV to many parameters. - Abstract: This paper develops a model different from existing models to analyze the cost and benefit of a reinforced concrete solar chimney power plant (RCSCPP) built in northwest China. Based on the model and some assumptions for values of parameters, this work calculates total net present value (TNPV) and the minimum electricity price in each phase by dividing the whole service period into four phases. The results show that the minimum electricity price in the first phase is higher than the current market price of electricity, but the minimum prices in the other phases are far less than the current market price. The analysis indicates that huge advantages of the RCSCPP over coal-fired power plants can be embodied in phases 2–4. In addition, the sensitivity analysis performed in this paper discovers TNPV is very sensitive to changes in the solar electricity price and inflation rate, but responds only slightly to changes in carbon credits price, income tax rate and interest rate of loans. Our analysis predicts that RCSCPPs have very good application prospect. To encourage the development of RCSCPPs, the government should provide subsidy by setting higher electricity price in the first phase, then lower electricity price in the other phases

  16. The solar chimney. Power from solar radiation on an industrial scale; Das Aufwindkraftwerk. Strom aus der Sonne im grosstechnischen Massstab

    Energy Technology Data Exchange (ETDEWEB)

    Schlaich, J. [Schlaich und Partner, Beratende Ingenieure im Bauwesen, Stuttgart (Germany)

    1998-04-01

    The author looks at the relationships between population growth, standard of living, gross social product and energy. Development needs energy. Energy consumption grows in proportion to gross social product or prosperity, while population growth goes down exponentially. If distribution-related armed conflicts and fundamentalism are to be avoided, developing countries must be provided with energy enabling their peoples to live in dignity. Even though the required amount of energy is much smaller than the energy demand of industrialized countries, it means that world energy consumption will soar to several times what it is now. Where should this energy come from without causing the environment to collapse (because developing countries lack funds for environmental protection) and without threats to safety from nuclear power stations (because of inadequate knowledge of safety standards)? Poor countries have abundant solar radiation and large desert areas; so it is obvious to use technologically mature, large solar power plants, especially solar chimneys. They are described by means of some detailed drawings and graphs. A solar chimney corresponds in principle to a hydro-electric power station but uses hot air instead of water. Heat stored during the daytime is released during the nighttime to a 200 MW vertical-axis turbine, permitting non-stop 24-hour operation. (AKV) [Deutsch] Im Beitrag beleuchtet der Verfasser die Zusammenhaenge zwischen Bevoelkerungszuwachs, Lebensstandard, Bruttosozialprodukt und Energie. Entwicklung braucht Energie. Proportional zum Bruttosozialprodukt oder Wohlstand waechst der Energieverbrauch, waehrend der Bevoelkerungszuwachs exponentiell sinkt. Um Verteilungskriege und Fundamentalismus zu verhindern, muss den Entwicklungslaendern Energie bereitgestellt werden, so dass ein menschenwuerdiges Leben ermoeglicht wird. Obwohl diese Menge wesentlich niedriger als die den Industrielaendern bereitgestellte Energie anzusetzen ist, wuerde damit der Weltenergieverbrauch um ein Mehrfaches nach oben schnellen. Wo soll diese Energiemenge herkommen, ohne Umweltkollaps (fehlende Gelder bei den Entwicklungslaendern fuer Umweltschutz) und ohne Gefahr fuer die Sicherheit (mangels Kenntnissen der Sicherheitsstrukturen beim Einsatz von Kernkraftwerken)? Da die armen Laender mit hoher Sonneneinstrahlung und grossen Wuestengebieten bedacht sind, bietet sich die Verwendung von ausgereiften solartechnischen Grosskraftwerken in erster Linie von Auftriebskraftwerken an. Diese werden an Hand von einigen Detailzeichnungen und Grafiken beschrieben. Ein Auftriebskraftwerk entspricht prinzipiell einem Wasserkraftwerk, arbeitet aber mit warmer Luft statt Wasser. Durch Waermespeicherung tagsueber und Abgabe in der Nacht an eine 200 MW Vertikalachsenturbine, wird ein kontinuierlicher 24-Stunden-Betrieb garantiert. (AKF)

  17. Mathematical modelling and validation of the drying process in a Chimney-Dependent Solar Crop Dryer

    International Nuclear Information System (INIS)

    Highlights: ? The simulation code predicts temperatures to within 1.5% of recorded data. ? The ventilation is predicted to within 5% accuracy. ? Effects of heat inertia cause the actual drying path to deviate from the simulated path. ? The two paths converge in the end with a final moisture content prediction to within 10%. ? The simulation code can be used to compare and refine the dryer designs for optimum drying performance. - Abstract: A simulation procedure describing the drying process within a Chimney-Dependent Solar Crop Dryer (CDSCD) has been developed. The simulation follows the authors’ experimental work on the effect of varying drying chamber roof inclination on the ventilation and drying processes, and their work on the development of simulation code to help optimise ventilation in such dryers. The current paper presents the modelling and subsequent validation of the drying process inside the dryer, to come out with a design tool for the CDSCD. The work considers the height of the crop shelf above the drying-chamber base, crop resistance to airflow and the shading on the drying-chamber base and their effects on the drying process. The under-load condition temperatures and velocities are predicted to within a relative difference of 1.5% and 10%, respectively of the observed values. Even though the heat inertia of the physical model causes deviation between the predicted drying path and the observed drying path, the two paths tend to converge at the end of each drying cycle, with a general prediction to within 10% relative difference of the observed crop moisture content. The validation results show that the simulation code can serve as an effective tool for comparing and refining the designs of the CDSCD for optimum drying performance

  18. Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys. Final report, June 15, 1984--December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-12-31

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

  19. Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Final report, June 15, 1984--December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-12-31

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

  20. Passive solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-08-01

    Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

  1. Furnaces and chimneys. Correct planning and construction of room heating systems. 7. rev. ed.; Oefen und Kamine. Raumheizungen fachgerecht planen und bauen

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Michael; Weber, Juergen (eds.); Bochmann, Werner; Huppmann, Ralf; Pfestorf, Karl Heinz; Traeger, Katja; Willnat, Reinhold

    2011-07-01

    The book is a completely revised new edition of the standard reference manual 'Kacheloefen und Kamine handwerksgerecht gebaut' by Karl Heinz Pfestorf. It provides practical information on calculation, design and construction of furnaces and chimneys. It comprises step-by-step instructions, solutions to common problems, and pertinent regulations and standards. The new TR OL was taken into account. Subjects: Legal fundamentals; Fundamentals of heat transfer and fluid dynamics; Fundamentals of safety requirements; Energy sources (fuels); Combustion and combustion air; Open chimneys and heating chimneys, hot-air furnaces, combined furnaces, basic furnaces; Chimneys, dimensioning, damage in furnace systems. [German] Dieses Buch ist eine vollstaendige Ueberarbeitung des Standardwerks ''Kacheloefen und Kamine handwerksgerecht gebaut'' von Karl Heinz Pfestorf. Es vermittelt praxisnah die Fachkenntnisse zum fachgerechten Berechnen, Konstruieren und dem darauf basierenden ordnungsgemaessen Bauen von Oefen und Kaminen. Das Buch enthaelt Handlungsanleitungen, Loesungsvorschlaege fuer haeufig auftretende Probleme und Verweise auf geltende Vorschriften und Normen. Bei der Ueberarbeitung wurde die neue TR OL beruecksichtigt. Folgende Themen werden behandelt: Gesetzliche Grundlagen, Grundlagen der Waerme- und Stroemungslehre; Grundlegende Sicherheitsanforderungen; verschiedene Energietraeger (Brennstoffe); Verbrennung und Verbrennungsluft; Offene Kamine und Heizkamine, Warmluftoefen, Kombioefen, Grundoefen; Schornsteine, feuertechnische Bemessung, Schaeden an Feuerungsanlagen.

  2. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    Science.gov (United States)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  3. Passive-solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  4. From large natural draft cooling tower shells to chimneys of solar upwind power plants

    OpenAIRE

    KRAETZIG, Wilfried B.; HARTE, Reinhard; MONTAG, Ulrich; WOERMANN, Ralf

    2009-01-01

    Natural draft cooling towers (NDCTs) presently form the world-largest RC shell structures, solar updraft power plants (SUPPs) will do this in future. The paper starts with explanations of the working principles of NDCTs and SUPPs. In industrialized countries with strong legal emphasis on sustainable power production technologies, NDCTs are widely spread, while SUPPs represent future solar power generation concepts in the world¿s tropical areas, using solar irradiation as power plant fuel. Con...

  5. Análisis de la ventilación inducida en un espacio habitable, mediante un sistema de Chimenea Hidro-Solar / Analisys of Ventilation induced in a Livable Space through a hydro-solar Chimney System

    Scientific Electronic Library Online (English)

    H, Pérez Castro; J, Flores; A, López.

    2013-11-01

    Full Text Available El Cuerpo Académico Arquitectura y Tecnología Ambiental de la Universidad Juárez Autónoma de Tabasco, desarrolla la Línea de Investigación Arquitectura y Medio Ambiente, realiza análisis sobre el diseño y la arquitectura bioclimática, teniendo como premisa la sustentabilidad entre usuario, entorno y [...] espacio construido. Este último, en sitios con clima cálido húmedo, presenta incomodidad térmica debido a los altos índices de temperatura y humedad relativa, condición mitigada mediante equipos de aire acondicionado que repercuten en el gasto energético y la economía del usuario. De acuerdo con la arquitectura bioclimática una técnica pasiva para este hecho es la ventilación. La presente investigación es la tercera etapa de una propuesta de ventilación inducida. Consistió en la simulación del sistema denominado Chimenea Hidro-Solar, empleando tubería de cobre y agua como elementos captores de calor. Se planteó el diseño, construcción y evaluación del prototipo. Se construyeron modelos, del espacio proyectado y de referencia, a escala 1:6, observando las dimensiones establecidas por el Reglamento de Construcción para una recámara. El análisis se centró en obtener, valorar y categorizar los datos de magnitud del viento que conllevaron a evaluar el comportamiento del espacio. Los datos validaron el sistema propuesto, proporcionando alternativas de acondicionamiento pasivo al espacio habitable. Abstract in english The academic group called Architecture and Environmental Technology of the Universidad Juárez Autónoma de Tabasco, develops Line Architecture and Environmental Research, producing analyzes on the design and bioclimatic architecture, with the premise of sustainability between user space and built env [...] ironment. The latter, presents thermal discomfort due to the high levels of temperature and relative humidity, condition is mitigated by air conditioners that affect energy expenditure and the economy user. According to the bioclimatic architecture a passive technique for this, is ventilation. This research is the third stage of a proposal on ventilator-induced. It consisted of the simulation system called Hydro-Solar Chimney, using copper tubing and water and heat sensors elements. The steps contemplated the design, construction and evaluation of the prototype. Models were constructed, the projected space and reference, 1:6 scale, noting the dimensions set by the Building Code of the State of Tabasco. The analysis focused on obtaining, evaluating and categorizing the magnitude of the wind data that led to evaluate the behavior within the space. Schematized data validated the proposed system, providing passive conditioning alternative to living space.

  6. Procedimentos estimativos do potencial de uso de chaminés solares para promover a ventilação natural em edificações de baixa altura / Procedures for estimating the potential use of solar chimneys for natural ventilation enhancement in low-rise buildings

    Scientific Electronic Library Online (English)

    Leticia de Oliveira, Neves; Maurício, Roriz.

    2012-03-01

    Full Text Available A ventilação natural é uma das estratégias mais importantes para o condicionamento térmico passivo de ambientes internos de edificações, podendo ocorrer pela ação dos ventos, pelo efeito chaminé ou pela combinação de ambos. Em áreas urbanizadas, a velocidade do vento é sensivelmente reduzida pelos o [...] bstáculos locais, tornando o efeito chaminé uma alternativa de projeto mais viável, pois independe dos ventos. Este artigo tem por objetivo apresentar e discutir procedimentos estimativos do potencial de uso de chaminés solares para edificações de baixa altura, localizadas em regiões de baixa latitude. Desenvolveram-se previsões teóricas, através de um modelo matemático e de simulação computacional. Realizou-se um processo de calibração destes modelos, utilizando como referência os resultados do monitoramento experimental de uma célula de teste. O processo baseou-se na análise comparativa de algumas variáveis selecionadas, considerando-se dados de temperatura superficial, temperatura do ar e vazão volumétrica no interior da chaminé. Os resultados indicaram que os modelos teóricos têm potencial de aplicação na avaliação do desempenho de chaminés solares, especialmente o modelo de simulação, em que foram observadas diferenças inferiores a 20% entre resultados medidos e calculados. Abstract in english Natural ventilation is one of the most important strategies for passive cooling of indoor environments. It can occur by wind forces, by stack effect or by a combination of both strategies. The second choice tends to be more effective in urban areas, where there are obstacles that block or significan [...] tly reduce wind speed. This paper analyses prediction procedures for the potential use of solar chimneys in low-rise buildings at low latitude locations. Theoretical predictions were developed using a mathematical model and computer simulation. A calibration procedure was used, based on results obtained through an experimental set up. The procedure consisted in a comparative analysis of chosen variables, considering data of surface temperature, air temperature and volumetric flow rate inside the chimney channel. The results confirmed the great potential of applicability of the theoretical models in the performance analysis of solar chimneys, especially the simulation model, which presented differences lower than 20% between measured and estimated results.

  7. Chimney Open Issues

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, R.; /Fermilab

    1993-10-04

    In the process of developing a design for the design report, many side questions or comments arose which were not completely answered or investigated because the work was outside the scope of developing a base design. I have pored over my meeting notes and tried to list all such chimney 'open issues' in this engineering note.

  8. Fairy chimneys in Peru

    CERN Document Server

    Sparavigna, Amelia Carolina

    2011-01-01

    Erosion creates beautiful landscapes. A large part of them is known just by the local population. Google Maps can help in locating the places, study them and start any project for preservation. An interesting example is given by a landscape of fairy chimneys in Peru, near San Pedro de Larcay. It is remarkable the fact that some of them have been adapted as dwelling places.

  9. Chimney technique; Schornsteintechnik

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, G.

    1997-11-01

    Modern low temperature plants or calorific value equipments are now standard in building new dwellings. However, an important part of the whole system of the combustion plant, chimney technique, is often ignored. But modern heating systems are dependent on suitable exhaust gas technique. (orig.) [Deutsch] Moderne Niedertemperaturanlagen oder Brennwertgeraete sind beim Wohnungsneubau mittlerweile Standard. Allerdings wird oft ein wesentlicher Teil des Gesamtsystems Feuerungsanlage ausser Acht gelassen: die Schornsteintechnik. Aber gerade die modernen Heizsysteme sind unabdingbar auf die passende Abgasanlagentechnologie angewiesen. (orig.)

  10. Effects of acid smut production on Design of industrial chimneys

    OpenAIRE

    Shahin, M. M

    1990-01-01

    Atmospheric, mechanical and chemical kinds of attacks on industrial chimneys constructed of brickwork, concrete and steel are discussed. Acid smut production in chimneys is described. Two of the factors, widely regarded as critical, to avoid acid condensation are identified as thermal insulation and flue gas velocity. The measurements taken by several researchers studying these factors are reviewed. The conslusions of this paper suggests that the 6 mm annular air gap around the steel shell, a...

  11. Psychology and photography: chimneys dreaming and chimneys warriors

    Directory of Open Access Journals (Sweden)

    Tilde Giani Gallino

    2013-02-01

    Full Text Available The article covers two aspects related to Psychology and Art. The first aspect concerns the similarities found between photography and various Schools of experimental psychology. For instance, the scientists of Psychology of ethological theory, and Non-verbal communication (NVC, observe with particular methodologies the non-verbal messages that animals and humans transmit to their peers through expressions, posture, gestures. The same is done by photographers (those who use the “camera” with a good knowledge of the medium and a “photographic  eye” when they look around, careful to catch an expression, any unusual attitude, or a gesture of friendship. Another School of psychology, the Gestalpsychologie (Gestalt: form, figure, configuration, attributes a decisive value to the perception of space, the foreground and the background, the perspective and vanishing points, the contrast between black and white. All aspects that effectively interest psychologists just as much as photographers. Finally, the second aspect relates to the art of Antony Gaudì and makes some hypothesis about the personality and behavior of the great architect, with regard to the construction of two houses, "Casa Batllo" and "Casa Mila": particularly because of the configuration or Gestalt of the "chimneys" that dominate the two buildings. In this study, cooperate each other psychological analysis and the art of photography. The last enables us to study also the details of the work of Gaudì, as can be seen in the pictures of this essay.

  12. Dimensioning, construction and commissioning of a coffee beans drying system with use of solar collectors

    International Nuclear Information System (INIS)

    A system of low-cost solar drying of coffee beans is dimensioned, built and commissioned by using solar collectors based on recycled aluminum cans. The information is collected from literature about the drying of coffee, types of drying and the various types of solar dryers.The coffee beans drying system is conceptualized and sized based on a solar collector constructed of aluminum cans as solar radiation absorbing material. The grain drying system is then built in coffee benefit CoopeTarrazu to all provided by the company and help materials and labor facilities. A guide to implementation of solar drying technology with general information is tailored to implement, select, build and maintain a solar grain dryer in Central America. The launch of the drying system was made by checking the proper functioning of the system and measurement instruments variables selected to calculate the efficiency of the system. The drying system is tested with a load of 45 kg of coffee bean, using a flow of air through natural convection to operate the system with the exclusive use of renewable energy. The grain is drying from a humidity of 50% (b.n), up to a humidity between 11% and 13% (b.n), which is the range generally used for the safe storage of grain. Facts of solar radiation, temperature, air velocity, relative humidity and grain humidity were taken to determine the behavior of the sized system. The maximum thermal efficiency achieved by the solar collector is determined constructed of 18%, with an air flow of 0.013 kg/s and a solar radiation 1138 W/m2. The average drying efficiency during experimentation was 17.8%, which is among the range of efficiencies for the type of drying equipment. Best thermal efficiencies were obtained from the solar collector built that the commercial solar collector compared. Controlling the flow of air into the equipment is recommended in order to improve the thermal efficiency and drying equipment, using blowers, fans or induced draft chimney. (author)

  13. Corrosion at system chimneys made of CrNi-steels

    Energy Technology Data Exchange (ETDEWEB)

    Pajonk, Gunther [Institute of Materials Testing of Northrhine-Westfalia, D-44285 Dortmund (Germany)

    2004-07-01

    Names like 'chimney' und 'funnel' usually identify flue gas devices made of bricks. Much less known is the fact that chimney elements are still manufactured from alloys. The following article describes the particular demands ruled by legislation on building pro-ducts, just as the consequences resulting from corrosion loads by flue gas condensates. Difficulties caused by manufacturing and construction are primarily discussed. Furthermore a test procedure is introduced that allows to catch and correlate corrosion loads and technical designs systematically to corrosion behaviour and service life of flue gas devices. For the first time a tool for active quality assurance has been given by this test rig allowing to recognize construction errors systematically. This way, manufacturers of system chimneys and flue liners are enabled to optimize their products applications going ahead to the respective requests of the market. (authors)

  14. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    International Nuclear Information System (INIS)

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries

  15. Analysis of Self-Supporting Chimney

    OpenAIRE

    Rajkumar,; Vishwanath. B .Patil,

    2013-01-01

    Chimneys are tall structures and the major loads acting on these are self weight of the structure, wind load, live load due to lining, earthquake load & temperature loads. In this paper a RC chimneys will be designed considering dead load, wind load and earthquake load. The Bureau of Indian Standards (BIS) design codes procedures will be used for the design of chimney. The present paper discusses the parametric study of RC chimney which is made by obtaining the results from software for diffe...

  16. Solar Glazing Tips for School Construction

    Science.gov (United States)

    Smith, Jonathan

    2012-01-01

    Glazing can be optimized to enhance passive solar heating and daylight harvesting by exceeding the prescriptive limits of the energy code. This savings can be garnered without the high cost of external overhangs or expensive glazing products. The majority of savings from solar glazing are attributable to the increase in solar heating and…

  17. Toward a Heat Recovery Chimney

    Directory of Open Access Journals (Sweden)

    Min Pan

    2011-11-01

    Full Text Available The worldwide population increase and subsequent surge in energy demand leads electricity producers to increase supply in an attempt to generate larger profit margins. However, with Global Climate Change becoming a greater focus in engineering, it is critical for energy to be converted in as environmentally benign a way as possible. There are different sustainable methods to meet the energy demand. However, the focus of this research is in the area of Waste Heat Recovery. The waste heat stored in the exiting condenser cooling water is delivered to the air flow through a water-air cross flow heat exchanger. A converging thermal chimney structure is then applied to increase the velocity of the airflow. The accelerated air can be used to turn on the turbine-generator installed on the top the thermal chimney so that electricity can be generated. This system is effective in generating electricity from otherwise wasted heat.

  18. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  19. Design and Construction of a Domestic Passive Solar Food Dryer

    OpenAIRE

    Oguntola J. ALAMU; Collins N. NWAOKOCHA; Olayinka ADUNOLA

    2010-01-01

    The solar drying system utilizes solar energy to heat up air and to dry any food substance loaded, which is not only beneficial in that it reduces wastage of agricultural produce and helps in preservation of agricultural produce, but it also makes transportation of such dried produce easy and promotes the health and welfare of the people. This paper presents the design and construction of a domestic passive solar food dryer. The dryer is composed of solar collector (air heater) and a solar dr...

  20. Constructing and Characterising Solar Structure Models for Computational Helioseismology

    OpenAIRE

    Schunker, H.; Cameron, R.; Gizon, L.; Moradi, H.

    2011-01-01

    In local helioseismology, numerical simulations of wave propagation are useful to model the interaction of solar waves with perturbations to a background solar model. However, the solution to the linearised equations of motion include convective modes that can swamp the helioseismic waves that we are interested in. In this article, we construct background solar models that are stable against convection, by modifying the vertical pressure gradient of Model S (Christensen-Dalsgaard et al., 1996...

  1. Analysis of Self-Supporting Chimney

    Directory of Open Access Journals (Sweden)

    Rajkumar

    2013-10-01

    Full Text Available Chimneys are tall structures and the major loads acting on these are self weight of the structure, wind load, live load due to lining, earthquake load & temperature loads. In this paper a RC chimneys will be designed considering dead load, wind load and earthquake load. The Bureau of Indian Standards (BIS design codes procedures will be used for the design of chimney. The present paper discusses the parametric study of RC chimney which is made by obtaining the results from software for different heights, diameter, earthquake zones, wind zones, type of soils and various load conditions because of changes in the dimensions of chimney, structural analysis such as response to earthquake and wind oscillations have become more critical to influence on the response and design of chimney. Parametric study on chimney from height 150 meters to 250 meters at an interval of 5 meters, for Zone II, Hard soil & Critical Zone of Zone V, Soft soil with wind speed varying from 33 meters/sec to 55 meters/sec with an internal temperature of 100 Degrees. The response of the chimney is studied & recorded in Tables & Graphs. The analysis is carried out using programming software Microsoft Visual Basic 6.0. The results obtained from the above cases are compared. Finally, the maximum values obtained in wind analysis and seismic analyses are then compared for deciding the design value.

  2. Piping systems, containment pre-stressing and steel ventilation chimney

    International Nuclear Information System (INIS)

    Units 5 and 6 of NPP Kozloduy have been designed initially for seismic levels which are considered too low today. In the frame of an IAEA Coordinated Research Programme, a Swiss team has been commissioned by Natsionalna Elektricheska Kompania, Sofia, to analyse the relevant piping system, the containment prestressing and the steel ventilation chimney and to recommend upgrade measures for adequate seismic capacity where applicable. Seismic input had been specified by and agreed upon earlier by IAEA experts. The necessary investigations have been performed in 1995 and discussed with internationally recognized experts. The main results may be summarized as follows: Upgrades are necessary at different piping sy ports (additional snubbers or viscous dampers). These fixes can be done easily at low cost. The containment prestressing tendons are adequately designed for the specified load combinations. However, unfavourable construction features endanger the reliability. It is therefore strongly recommended to replace the tendons stepwise and to upgrade the existing monitoring system. Finally, the steel ventilation chimney may not withstand a seismic event, however the containment and diesel generator building will not be destroyed at possible impact by the chimney. On the other hand the roof of the main building has to be reinforced partially. It is recommended to continue the project for 1996 and 1997 to implement the upgrade measures mentioned above, to analyse the remaining piping systems and to consolidate all results obtained by different research groups of the IAEA programme with respect to piping systems including components and tanks

  3. Collapse of chimney with impact on reactor building

    International Nuclear Information System (INIS)

    The behavior of the chimney for the loads has to be investigated, as a possible collapse onto adjacent safety-relevant structures (reactor building, reactor auxiliary building, fuel-handling building). The loading cases which might cause a collapse are outlined. The mathematical models used to calculate the highly physically and geometrically non-linear behavior are described. The resulting response of the structures subjected to impact is determined and compared to that caused by other external extreme loading conditions. The safe-shutdown earthquake is represented by an artificially generated time history which fits a specified design-response spectrum. For preliminary calculations the response for simple sine wave excitation is determined. The ground acceleration at which collapse first occurs is calculated for different soil parameters and dimensions of the chimney. Overall consideration of the balance of energy and of impulse as well as detailed solutions of the resulting differential equations of motion are performed. These investigations are carried out on models of increasing complexity starting with the idealisation of the chimney as a rigid bar on a rigid, tensionless foundation and leading up to an elastoplastic representation of the structure and of the soil. When impacting onto adjacent buildings, the latter are always considered as being rigid. This allows a load-time relationship to be constructed, which, in a second independent step, is used in the dynamic analysis of the building subjected to impact. Several different failure modes of the chimney are examined. The scope of this paper is to determine the overall response of the structure and of its equipment

  4. Investigation and Construction of a Thermosyphoning Solar Hot Water System

    Science.gov (United States)

    Johnson, Harvey

    1978-01-01

    Describes how a thermosyphoning solar water heater capable of heating 110 kilogram of water to 80 degree Celsius and maintaining this temperature for 24 hours was constructed by four students in the fifth form of Sekolah Date Abdul Razak, Seremban, Malaysia in 1976. (HM)

  5. Design and Construction of a Passive Solar Power Clothing Dryer

    Directory of Open Access Journals (Sweden)

    Ali Alahmer

    2014-04-01

    Full Text Available This manuscript presents the design and construction of the energy efficient, time saving, cost effective of passive solar powered clothes dryer. This manuscript begins with a derivation of mathematical model represents of solar dryer followed with an analysis of the elements necessary for successfully designing the various components of a solar dryer. The solar drying performance achieved an average drying rate of 0.35 kg/h and drying time of 3 h in a typical day, even under local low ambient humidity of around 35% and at moderate outdoor wind speed. Also, the computational fluid dynamic CFD of transient thermal behavior based on Navier-Stokes equations was used to demonstrate the prevailing temperature rises in the solar natural-ventilation system associated with the internal heat flux due to solar radiation and moisture removal. The efficiency of solar dryer was improved using Nano coating technology. The result showed good agreement between the computational solid simulation and the experimental measurements obtained from this system.

  6. Design, Construction and Testing of a Parabolic Solar Steam Generator

    OpenAIRE

    Joshua FOLARANMI

    2009-01-01

    This paper reports the design, construction and testing of a parabolic dish solar steam generator. Using concentrating collector, heat from the sun is concentrated on a black absorber located at the focus point of the reflector in which water is heated to a very high temperature to form steam. It also describes the sun tracking system unit by manual tilting of the lever at the base of the parabolic dish to capture solar energy. The whole arrangement is mounted on a hinged frame supported with...

  7. Design, Construction and Testing of Simple Solar Maize Dryer

    Directory of Open Access Journals (Sweden)

    Joshua FOLARANMI

    2008-12-01

    Full Text Available This project reports the design, construction and testing of a simple solar maize dryer. It is design in such a way that solar radiation is not incident directly on the maize, but preheated air warmed during its flow through a low pressure thermosphonic solar energy air heater or collector made up of an insulating material (polystyrene of size 100mmx50mmx25.4mm, absorber plate (aluminium sheet painted black of size 100mmx50mm and a cover glass (5mm thickness measuring 100mmx50mm all arranged in this order contributed to the heating. The test results gave temperature above 45OC in the drying chamber, and the moisture content of 50kg of maize reduced to about 12.5% in three days of 9hours each day of drying.

  8. Toy models for the falling chimney

    OpenAIRE

    Varieschi, Gabriele; Kamiya, Kaoru

    2002-01-01

    In this paper we review the theory of the ``falling chimney'', which deals with the breaking in mid-air of tall structures, when they fall to the ground. We show that these ruptures can be caused by either shear forces, typically developing near the base, or by the bending of the structure, which is caused primarily by the internal bending moment. In the latter case the breaking is more likely to occur between one third and one half of the height of the chimney. Small scal...

  9. Measurement of chimney dimensions and development of special tools for installation of in-chimney bracket in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yeong Garp; Ryu, J. S.; Lee, J. H.; Lee, Y. S; Lee, B. H

    2000-06-01

    The in-chimney bracket is a structure which supports the guide tubes of irradiation facilities at the irradiation sites of CT, IR1, IR2, OR4 and/or OR5 in HANARO core to reduce the flow-induced vibration and the dynamic response to seismic load. It horizontally supports the middle part of lthe irradiation facilities for CT/IR sites in addition to the robot arms which had already been installed at the reactor pool liner to support the top of the facilities, and supports the top of the guide tubes for OR sites. For these purposes, the in-chimney bracket was installed in the chimney using four siphoning holes located at 70 cm below the chimney top. It is necessary to measure the dimensions of chimney before the design of in-chimney bracket because there must be manufacturing tolerances and the deformation of the chimney due to the load of the system pipes. To implement this, various special tools had been developed to measure the as-built dimensions of the chimney at the elevation of the siphoning holes, and measured the chimney dimensions and the eccentricity of the chimney center from the reactor core center. Also, a special tool was developed for the installation of the in-chimney bracket by remote operating at the pool top 10 meters apart from the chimney. The installation procedures were established through the enough installation rehearsal using the installation tool and the dummhy chimney which was fabricated to the same dimensions of the real chimney, and the installation interference problems were resolved through the preliminaly installation to the reactor chimney. Finally, the in-chimey bracket was successfully installed at the reactor chimney and is well being used for the irradiation test since the installation on May 16, 2000.

  10. Suitability of locally constructed solar dryers for vegetable drying

    International Nuclear Information System (INIS)

    Indigenous vegetables and spices are usually common and abundant during the rainy season but unfortunately, almost disappear during the dry season due to inadequate processing because of their high moisture content, poor storage and marketing facilities. A study was therefore conducted to find the possibilities of drying vegetables using locally constructed solar dryers at the Mechanisation section of the University of Education, Mampong Campus. The study was done during the months of March to September, 2004 and six designs of solar panels were used. The panels were constructed using hard wood, binding materials (nails), chicken mesh, nylon net, and black and white polythene sheets. Variations in panels resulted from the type of polythene sheet used (white, black or both), drying platform and shape of the roof. The panels with their interior lined with the black polythene sheet recorded higher temperatures than those with their bases covered with only the chicken mesh and nylon nettings. All the designs recorded higher temperatures than the ambient temperature. The drying of vegetables was observed to be faster in the panels with their drying platforms lined with the black polythene sheet than those with their bases covered with only the chicken mesh and nylon net. Appearance of the vegetables after drying in the solar panels was almost the same as before drying as compared to the open sun drying that got mouldy after drying. Those vegetables that were dried directly on the black polythene sheet however were slightly darker in colour. Solar drying with these locally constructed panels would be a better means of drying vegetables by rural folks. (au)

  11. Energy efficient and solar construction. Themes 2008; Energieeffizientes und solares Bauen. Themen 2008

    Energy Technology Data Exchange (ETDEWEB)

    Stadermann, Gerd (ed.)

    2009-04-15

    Within the annual meeting of the Renewable Energy Research Association (Berlin, Federal Republic of Germany) at 29th to 30th September, 2008, the lectures were held to the following themes: (a) Energy efficient and solar construction - a change of paradigm; (b) Revolution in construction technology; (c) Energetic sanitation of old buildings; (d) Innovative technologies of energy supply; (e) Integrated facility management; (f) Demonstration and practice of new technologies; (g) Market, politics, and sustainability.

  12. Constructal method to optimize solar thermochemical reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Tescari, S.; Mazet, N. [PROMES-CNRS, Rambla de la Thermodynamique, Tecnosud, 66100 Perpignan (France); Neveu, P. [PROMES-CNRS, Rambla de la Thermodynamique, Tecnosud, 66100 Perpignan (France); Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France)

    2010-09-15

    The objective of this study is the geometrical optimization of a thermochemical reactor, which works simultaneously as solar collector and reactor. The heat (concentrated solar radiation) is supplied on a small peripheral surface and has to be dispersed in the entire reactive volume in order to activate the reaction all over the material. A similarity between this study and the point to volume problem analyzed by the constructal approach (Bejan, 2000) is evident. This approach was successfully applied to several domains, for example for the coupled mass and conductive heat transfer (Azoumah et al., 2004). Focusing on solar reactors, this work aims to apply constructal analysis to coupled conductive and radiative heat transfer. As a first step, the chemical reaction is represented by a uniform heat sink inside the material. The objective is to optimize the reactor geometry in order to maximize its efficiency. By using some hypothesis, a simplified solution is found. A parametric study provides the influence of different technical and operating parameters on the maximal efficiency and on the optimal shape. Different reactor designs (filled cylinder, cavity and honeycomb reactors) are compared, in order to determine the most efficient structure according to the operating conditions. Finally, these results are compared with a CFD model in order to validate the assumptions. (author)

  13. Construction of Solar-Wind-Like Magnetic Fields

    Science.gov (United States)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  14. Wicking limits for porous deposits with chimneys

    International Nuclear Information System (INIS)

    The primary coolant system in light water reactors is subjected to corrosion on surfaces and to the deposition of corrosion products on surfaces. These conditions occur both in-core and out-of-core and inhibit the thermal transfer across the layers. The deposition of such crud layers on reactor fuel element surfaces is a recognized problem that can affect performance and potentially limit the maximum power rating of the fuel. When boiling is present with such crud layers, wick boiling has been postulated to be the dominant mode of heat transfer, at least when it can be assumed that the structure of the deposit includes chimneys, i.e., large pore holes that penetrate deeply into the deposit and almost perpendicularly to the surface on which the deposit has formed. The wick boiling mechanism is explained. In this study, the wicking limit for porous deposits with chimneys is investigated. The major highlights gained from this study include: (1) the dryout heat flux for a heating surface may be caused by the Helmholtz instability due to high-velocity gas jets or by the wicking limit. (2) The dryout heat flux based on the wicking limit decreases very rapidly with decreasing porosity, with decreasing size of particles in the porous layer, and with increasing crud thickness. (3) Physically, it is expected that the chimney population would increase with increasing heat flux. Using a power law relation between heat flux and chimney population density, much lower wicking limits or thinner deposits are predicted

  15. Design, Construction and Testing of a Parabolic Solar Steam Generator

    Directory of Open Access Journals (Sweden)

    Joshua FOLARANMI

    2009-07-01

    Full Text Available This paper reports the design, construction and testing of a parabolic dish solar steam generator. Using concentrating collector, heat from the sun is concentrated on a black absorber located at the focus point of the reflector in which water is heated to a very high temperature to form steam. It also describes the sun tracking system unit by manual tilting of the lever at the base of the parabolic dish to capture solar energy. The whole arrangement is mounted on a hinged frame supported with a slotted lever for tilting the parabolic dish reflector to different angles so that the sun is always directed to the collector at different period of the day. On the average sunny and cloud free days, the test results gave high temperature above 200°C.

  16. Design, Construction and Effectiveness Analysis of Hybrid Automatic Solar Tracking System for Amorphous and Crystalline Solar Cells

    OpenAIRE

    Bhupendra Gupta

    2013-01-01

    - This paper concerns the design and construction of a Hybrid solar tracking system. The constructed device was implemented by integrating it with Amorphous & Crystalline Solar Panel, three dimensional freedom mechanism and microcontroller. The amount of power available from a photovoltaic panel is determined by three parameters, the type of solar tracker, materials of solar panel and the intensity of the sunlight. The objective of this paper is to present analysis on the use of two differ...

  17. Preliminary work for stage 2 decommissioning of B16 pile chimney

    International Nuclear Information System (INIS)

    Planning of the second stage of decommissioning of the two pile chimneys at Sellafield started while work was underway on the first stage, which involved removal of the sections above the filters. The second stage requires the removal of all radio-active parts and the dismantling of the filter and diffuser sections, and has to be completed by 1997. The planning involved studying the many possible options and their effects on both radiological and industrial safety. This decommissioning project employs a high proportion of civil engineering and construction techniques, which are then developed to eliminate the hazards from radioactive dusts, and to minimise the effect of radiation on operatives working on the project. Much of this equipment is modified forms of standard construction equipment and includes cutting equipment and remotely operated vehicles. The initial phases of the work involve: provision of a waste packaging and access building; provision of temporary ventilation systems to control the dust generated by the work, cutting of 3 m square access doorway through the 1.5 m thick reinforced concrete wall of the chimney; provision of Remotely Operated Vehicle (ROV) to act as a tool carrier for lining stripping work; removal of the thermal lining from the floor and lower walls of the chimney, and installation of precast concrete walls which separate the pile reactor core from the chimney flue. (author)

  18. Solar building construction - new technologies; Solares Bauen - Neue Technologien fuer Gebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Luther, J.; Voss, K.; Wittwer, V. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Abt. ``Thermische und Optische Systeme``

    1998-02-01

    There is an increasing demand for integrated building concepts in order to reduce energy consumption. Building design, construction and heating, ventilation and air-conditioning (HVAC) technology are decisive in this respect. Thus, an essentially higher energy efficiency is achieved and solar energy becomes the main energy source. An `active building envelope` assumes the task of controlling the energy flows between inside and outside. This paper reports on new components, system concepts and planning tools for solar building. (orig.) [Deutsch] Fuer zukuenftige Bauten werden in hohem Masse Forderungen nach integrierten Konzepten zur Begrenzung des Energieverbrauchs gestellt. Gestalt, Konstruktion und Klimatechnik sind dabei massgebliche Einflussfaktoren. Hierdurch wird eine wesentlich hoehere Energieeffizienz erzielt und Solarenergie kann die uebrigen Energiequellen zurueckdraengen. Eine `aktive Gebaeudehuelle` uebernimmt die Aufgabe, den Energiefluss zwischen Innen und Aussen zu steuern. Der Beitrag berichtet ueber neue Komponenten, Systemkonzepte und Planungswerkzeuge fuer das Solare Bauen. (orig.)

  19. Excess of cancer in Swedish chimney sweeps.

    OpenAIRE

    Gustavsson, P; Gustavsson, A.; Hogstedt, C

    1988-01-01

    The incidence of cancer was investigated among 5266 Swedish chimney sweeps employed for any period between 1918 and 1980. An analysis of the mortality has been reported earlier and showed an increased number of deaths from coronary heart disease, respiratory diseases, and lung, oesophageal, and liver cancer. Excess risks for cancer of the lung and oesophagus were confirmed in this analysis. Among the lung cancers, both squamous cell carcinoma and oatcell/undifferentiated carcinoma were in exc...

  20. Construction of a Small Scale Laboratory for Solar Collectors and Solar Cells in a Developing Country

    OpenAIRE

    Gentile Niko; Davidsson Henrik; Bernardo Ricardo; Gomes Joao; Gruffman Christian; Chea Luis; Mumba Chabu; Karlsson Björn

    2013-01-01

    In the field of renewable energy, self-provided research in developing countries is barely present, but most welcomed. The creation of know-how and self-development of technologies should reduce the dependence on industrialized countries for both materials and knowledge. This work presents technological and social issues related to the construction of a low budget solar laboratory in Mozambique. The goal is to demonstrate that scientific level research can be carried out in developing countri...

  1. Design, Construction and Effectiveness Analysis of Hybrid Automatic Solar Tracking System for Amorphous and Crystalline Solar Cells

    Directory of Open Access Journals (Sweden)

    Bhupendra Gupta

    2013-10-01

    Full Text Available - This paper concerns the design and construction of a Hybrid solar tracking system. The constructed device was implemented by integrating it with Amorphous & Crystalline Solar Panel, three dimensional freedom mechanism and microcontroller. The amount of power available from a photovoltaic panel is determined by three parameters, the type of solar tracker, materials of solar panel and the intensity of the sunlight. The objective of this paper is to present analysis on the use of two different material of Solar panel like Amorphous & Crystalline in a Solar tracking system at Stationary, Single Axis, Dual Axis & Hybrid Axis solar tracker to have better performance with minimum losses to the surroundings, as this device ensures maximum intensity of sun rays hitting the surface of the panel from sunrise to sunset

  2. Self-construction of a solar water heater; Calentador solar de agua de auto-construccion

    Energy Technology Data Exchange (ETDEWEB)

    Lentz Herrera, Alvaro E.; Rincon Mejia, Eduardo A. [Universidad Autonoma de la Ciudad de Mexico, Mexico, D.F. (Mexico)

    2009-07-01

    In this work a flat receiver of self construction is shown with relatively low cost and easy manufacture, but with a thermal efficiency superior to 40% for applications at temperatures less than 60 degrees Celsius, that allows satisfying international standards in this respect. The heater has been matter of study in open courses distributed in the Universidad Autonoma de la Ciudad de Mexico (UACM) oriented to that the participants construct their own system, in addition to its installation and tests. The obtained results have been excellent. The massive use of efficient solar receivers of self-construction can truly help to the decreasing of the gas discharges of greenhouse effect. [Spanish] En este trabajo se presenta un captador plano de auto construccion con relativamente bajo costo y facil manufactura, pero con un rendimiento termico superior a 40% para aplicaciones a temperatura menos de 60 grados centigrados que le permite satisfacer estandares internacionales a este respecto. El calentador ha sido materia de estudio en cursos abiertos impartidos en la Universidad Autonoma de la Ciudad de Mexico (UACM) orientados a que los participantes construyan su propio sistema, ademas de su instalacion y pruebas. Los resultados obtenidos han sido excelentes. El uso masivo de captadores solares eficientes de autoconstruccion puede en verdad coadyuvar a la disminucion de las emisiones de gases de efecto invernadero.

  3. Hybrid solar-electric oven construction prototype; Construccion de prototipo de horno hibrido solar-electrico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Roman, M. A; Pineda Pinon, J; Arcos Pichardo, A [CICATA, Santiago de Queretaro, Queretaro (Mexico)

    2013-03-15

    The oven construction consists of a solar collector system of cylindrical parabolic type, a heating through electrical resistance and a curing chamber. The warm fluid is air, which is injected into the chamber through forced draft. The temperature required in the system is within a range of 150 to 300 degrees Celsius. [Spanish] La construccion del horno consta de un sistema de captacion solar del tipo cilindrico parabolico, un sistema de calentamiento a traves de resistencias electricas y una camara de curado. El fluido a calentar es aire, el cual es inyectado dentro de la camara a traves de tiro forzado. La temperatura solicitada en el sistema es dentro de un rango de 150 a 300 grados centigrados.

  4. Design manual for HANARO in-chimney bracket

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Y. G.; Whang, S. Y.; Wu, J. S.; Jun, B. J

    2000-06-01

    As a supplementary structure supporting the irradiation facilities, the in-chimney bracket holds guide tubes whose holding position in CT or IR is the middle part of the instrumented facility between the hole spider and the robot arm already provided in the reactor pool liner. Also, the bracket grips the upper part of the guide tubes when it is applied to hold the instrumented facility loaded in OR sites. The irradiation test will be successfully conducted since this bracket reduces the flow-induced vibration (FIV) and the dynamic response to seismic load. The installation position of the bracket is 60 cm below the top of the chimney, i.e., thermo siphoning hole position. To evaluate the structural integrity on the in-chimney bracket and the related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response analyses were performed for the in-chimney bracket and the related reactor structures of HANARO under the design earthquake response spectrum loads of OBE and SSE. The analysis results show that the stress values in main points of reactor structures and in-chimney bracket for the seismic loads are also within the ASME code limits. It is also confirmed that the fatigue usage factor is much less than 1.0. Therefore any damage on structural integrity is not expected when the in-chimney bracket is installed at the upper part of the reactor chimney. This bracket had been designed and manufactured based on the dimensions of the as-built chimney. In the process of design and preliminary installation, chimney measurement tools, dummy chimney, and installation tools were developed and the installation procedure was prepared and verified through the installation rehearsal.

  5. D0 Solenoid Chimney Routing Clearances

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, R.; /Fermilab

    1994-02-23

    This engineering note contains information about the measured clearances along the chimney route from the solenoid to the control dewar. This type of information is best conveyed by sketches and a few photos. Twelve photos taken on 2/17/94 are included which gIVe perspective views along the path. The detector was parked in the collision hall on this date. The CF iron was split open to the east and the South EF iron was rolled back. Also the South EndCap Calorimeter was rolled to the south on this day. This allowed personnel access and the photographic opportunity. A full set of raw dimensional sketches are included. These sketches were generated by me using a 25 foot tape measure and a note pad. The sketches are in chronological order with the most recent on top. The first sketch, 5/18/94, describes the 'tightest' location for the upward incline portion of the chimney. The sketches on 2/14/94 thru 2/16/94 are refinements of the early 1992 and 1993 sketches. They pick out quite a bit more detail of specific detector components along the path. The dimensional sketches of 1992 and 1993 gave information in not as much detail and therefore gave a more constrained clearance description. Most of the information of the early sketches was jotted down on the plan view dated 10-29-92. This sketch also had some information lifted from prints which later was superseded by the 1994 sketches. I tried to label components and give views either titled 'Elevation' or 'Plan' which refers to a top view looking down. Also where I could I jotted down direction, ie. South, East etc. Hopefully with a little effort one can decifer it. The curvature of the CC was determined from a three dimensional topographical survey. This survey information is stored in an electronic drawing file 3823.111-ME-317165, 'Solenoid-CC south face 3D shape survey'. The 'z' dimensions for the radial chimney path were picked off this drawing. A curvature was then generated knowing many points by radial and z coordinates. This curve is stored in drawing file 3823.111-ME317164, 'Solenoid-CC south face-chimney contour layout'. All drawings mentioned above are kept in hard copy form in the D-Zero drawing files. The electronic 'master' copy is kept in the XDCS drawing control system, dOms vault. The information contained in this engineering note could be very useful for those who are interested in the clearances and shape of the solenoid chimney path. It could even be of use to future designers and engineers involved with the VLPC project which is planned.

  6. Constructal Optimization of Top Contact Metallization of a Photovoltaic Solar Cell

    OpenAIRE

    Santanu Bandyopadhyay; Aditya Bhakta

    2005-01-01

    A top contact metallization of a photovoltaic solar cell collects the current generated by incident solar radiation. Several power-loss mechanisms are associated with the current flow through the front contact grid. The design of the top metal contact grid is one of the most important areas of efficient photovoltaic solar cell design. In this paper, an approach based on the constructal theory is proposed to design the grid pattern in a photovoltaic solar cell, minimizing total resistive losse...

  7. Design, construction and evaluation of solarized airlift tubular photobioreactor

    Science.gov (United States)

    Bahadur, A.; Zubair, M.; Khan, M. B.

    2013-06-01

    An innovative photobioreactor is developed for growing algae in simulated conditions. The proposed design comprises of a continuous tubular irradiance loop and air induced liquid circulation with gas separation through air lift device. The unique features of air lift system are to ensure the shear free circulation of sensitive algal culture and induce light/dark cycles to the photosynthetic micro-organisms. The design strategy employs to model and construct a 20-liter laboratory scale unit using Boro-silicate glass tubing. The material is selected to ensure maximum photon transmission. All components of the device are designed to have flexibility to be replaced with an alternative design, providing fair chance of modification for future investigators. The principles of fluid mechanics are applied to describe geometrical attributes of the air lift system. Combination of LEDs and Florescent tube lights (Warm white) were used to illuminate the photosynthesis reaction area providing a possibility to control both illumination duration and light intensity. 200 Watt Solar PV system is designed to power up the device which included air pump (100 Watt) and illumination system (100 Watt). Algal strain Chlorella sp was inoculated in photobioreactor which was sparged with air and carbon dioxide. The growth was sustained in the batch mode with daily monitoring of temperature, pH and biomass concentration. The novel photobioreactor recorded a maximum experimental average yield of 0.65 g/l.day (11.3 g/m2.day) as compared to theoretical modeled yield of 0.82 g/l.day (14.26 g/m2.day), suggesting the device can be efficiently and cost-effectively employed in the production of algal biomass for biofuels, concomitantly mitigating CO2.

  8. Design, construction and evaluation of solarized airlift tubular photobioreactor

    International Nuclear Information System (INIS)

    An innovative photobioreactor is developed for growing algae in simulated conditions. The proposed design comprises of a continuous tubular irradiance loop and air induced liquid circulation with gas separation through air lift device. The unique features of air lift system are to ensure the shear free circulation of sensitive algal culture and induce light/dark cycles to the photosynthetic micro-organisms. The design strategy employs to model and construct a 20-liter laboratory scale unit using Boro-silicate glass tubing. The material is selected to ensure maximum photon transmission. All components of the device are designed to have flexibility to be replaced with an alternative design, providing fair chance of modification for future investigators. The principles of fluid mechanics are applied to describe geometrical attributes of the air lift system. Combination of LEDs and Florescent tube lights (Warm white) were used to illuminate the photosynthesis reaction area providing a possibility to control both illumination duration and light intensity. 200 Watt Solar PV system is designed to power up the device which included air pump (100 Watt) and illumination system (100 Watt). Algal strain Chlorella sp was inoculated in photobioreactor which was sparged with air and carbon dioxide. The growth was sustained in the batch mode with daily monitoring of temperature, pH and biomass concentration. The novel photobioreactor recorded a maximum experimental average yield of 0.65 g/l.day (11.3 g/m2.day) as compared to theoretical modeled yield of 0.82 g/l.day (14.26 g/m2.day), suggesting the device can be efficiently and cost-effectively employed in the production of algal biomass for biofuels, concomitantly mitigating CO2.

  9. Design and construction of a solar heating and cooling plant

    OpenAIRE

    FRANCHINI, GIUSEPPE; MANAZZALE, DAVIDE; PERDICHIZZI, ANTONIO GIOVANNI

    2012-01-01

    The present work deals with the design of a combined solar heating and cooling plant for an office building located in Northern Italy. An innovative system based on an absorption chiller driven by evacuated tube collectors and a dual-source reversible heat pump is presented. In summer, solar energy is used to drive the absorption chiller. In winter, solar collector field can provide hot water to the radiant ceiling circuit or, alternatively, drive the heat pump evaporator. A control strategy...

  10. NUMERICAL ANALYSIS OF HEAT STORAGE OF SOLAR HEAT IN FLOOR CONSTRUCTION

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Holck, Ole; Svendsen, Svend

    2003-01-01

    In this paper, heat storage of solar heating in the floor construction of single-family houses is examined. A floor construction with two concrete decks is investigated. The lower is used as heat storage while the upper deck has a floor heating system. The potential for a reduction of the energy consumption for heating, by using heat storage in the floor construction is calculated using a dynamic simulation model of solar collector, solar tank and heat storage coupled to a building model, using ...

  11. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  12. Prospects for the construction of solar furnaces for industry

    Science.gov (United States)

    La Blanchetais, Ch. H.

    The various techniques and prototype installations employed to absorb and concentrate solar energy for use in applications requiring 100-4000 C temperatures are explored. Mention is made of the Pericles heliostat field and the THEK distributed parabolic concentrator installations, and attention is focused on viable concepts useful for industrial purposes. The Odeillo solar furnace provided design guidelines and requirements for industrial usage. It was found that the reliability of the furnace depends on the annual insolation, that the solar furnaces must be designed to meet specific thermal goals, that simplification and optimization are needed for the orientation and focusing mechanisms, and that solar furnaces are ideally suited for developing nations which experience high levels of insolation. A stepped paraboloid is described for improving the efficiency of a heliostat system, while still employing plane parallel mirrors.

  13. Design, construction and testing of parabolic solar energy cooker

    International Nuclear Information System (INIS)

    Parabolic solar energy cooker was designed using locally available materials such as pieces of iron and plane mirrors. The diameter of the dish was 12 x 10-3 mm and pieces of glass mirrors were adhered to its concave surface using abro silicon gum as solar energy reflectors. The solar cooker was used to cook different food materials such as rice, bean, yam and stew between 11am and 3pm. The time taken to cook the food materials were measured and compared to the time it takes to cook similar food samples of the same quantity using kerosene and electric stove. It took the kerosene and electric stoves two hours, forty minutes (2.40) and two hours, ten minutes (2.10) respectively to cook beans with all the ingredients while the fabricated solar cooker took only one hour fifteen minutes. Due to high solar energy absorption capacity of the solar cooker and insolation rate, the study has reveled that it is faster, safer and takes less time to cook using cooker than either kerosene or electric stove.

  14. Seismic response Analyses of Hanaro in-chimney bracket structures

    International Nuclear Information System (INIS)

    The in-chimney bracket will be installed in the upper part of chimney, which holds the capsule extension pipes in upper one-third of length. For evaluating the effects on the capsules and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response anlayses of in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE (0.1 g) and SSE (0.2 g) are performed. The maximum horizontal displacements of the flow tubes are within the minimum half gaps between close flow tubes, it is expected that these displacement will not produce any contact between neighbor flow tubes. The stress values in main points of reactor structures and in-chimney bracket for the seismic loads are also within the ASME Code limits. It is also confirmed that the fatigue usage factor is much less than 1.0. So, any damage on structural integrity is not expected when an in-chimney bracket is installed to upper part of the reactor chimney. (author). 12 refs., 24 tabs., 37 figs

  15. Solar thermal power plants

    International Nuclear Information System (INIS)

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  16. The gas chimney formation during the steam explosion premixing phase

    International Nuclear Information System (INIS)

    The crucial part in isothermal premixing experiment simulation is the correct prediction of the gas chimney, which forms when the spheres penetrate into water. The first simulation results with the developed original combined multiphase model showed that the gas chimney starts to close at the wrong place at the top of the chimney and not in the middle, like it was observed in the experiments. To find the physical explanation for this identified weakness of our numerical model a comprehensive parametric analysis (mesh size, initial water-air surface thickness, water density, momentum coupling starting position) has been performed. It was established that the reason for the unphysical gas chimney closing at the top could be the gradual air-water density transition in the experiment model, since there is due to the finite differences description always a transition layer with intermediate phases density over the pure water phase. It was shown that this difference between our numerical model and the experiment can be somewhat compensated if the spheres interfacial drag coefficient at the upmost mesh plane of the unphysical air-water transition layer is artificially risen. On this way a more correct gas chimney formation can be obtained.(author)

  17. 29 CFR 1926.854 - Removal of walls, masonry sections, and chimneys.

    Science.gov (United States)

    2010-07-01

    ...2010-07-01 2010-07-01 false Removal of walls, masonry sections, and chimneys. 1926.854... Demolition § 1926.854 Removal of walls, masonry sections, and chimneys. (a) Masonry walls, or other sections of masonry,...

  18. 78 FR 72060 - Chimney Rock National Monument Management Plan; San Juan National Forest; Colorado

    Science.gov (United States)

    2013-12-02

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Chimney Rock National Monument Management Plan; San Juan National...) to establish management direction for the land and resources within Chimney Rock National Monument... establishing Chimney Rock National Monument (the Monument) requires preparation of a management plan....

  19. Influence of Chimney Width in Natural Convection Heat Transfer on a Vertical Finned Plate

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jeyoung; Heo, Jeonghwan; Chung, Bumjin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    The RCCS adopts the chimney system to increase the flow rate. Also the fins installed in the inner walls of the chimney will provide an additional cooling performance by increasing the heat transfer area. On the other hand, the fins also increase the friction loss i. e. the pressure drop. Thus, in order to improve the heat transfer performance of the RCCS, an optimization among the fin parameters is necessary. Many experimental and numerical studies regarding the fin and the chimney are available. In this study, the natural convection heat transfer of the fin system located inside the chimney was measured. Based on the analogy concept, heat transfer experiments were replaced by mass transfer experiments using a sulfuric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system. The experiments were conducted by varying fin spacing, fin height, chimney width, and chimney height. This study experimentally investigated the natural convection heat transfer of the vertical finned plate in the chimney. Using an analogy, the heat transfer systems were replaced by mass transfer systems. The measured mass transfer coefficients was the difference with the existing heat transfer correlations due to the large value of the Pr, but exhibited similar trends with the existing heat transfer correlations. The heat transfer rate is increased by the decrease of the fin spacing and the increased fin height due to increased heat transfer area and chimney flow pattern. The chimney effect enhances heat transfer rate of vertical finned plate and the chimney effect on the Nu{sub s} In this study, the heat transfer rate on vertical finned plate in the chimney was confirmed by experiment for high values of Ra was stronger for the narrow chimney width, and became stronger by the higher chimney. The chimney effect was not observed when the chimney width becomes larger than a certain value depending on the Ra{sub s}.

  20. A manual of solar greenhouse construction - in Ladakh, Himalayan range

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, V. [Groupe Energies Renouvelables, Environnement et Solidarite, Developpement Durable et Solidarite Internationale (ABAC-GERES), 13 - Aubagne (France)

    2003-03-01

    Food security has always been the main preoccupation of mountain communities. Agriculture is focused on cereal growing, in order to reach complete auto-subsistence. If mountain communities have been able for a long time to survive in a harsh environment, the situation has slightly changed over the last ten years: the demographic explosion is leading to the reduction marginal farms and agricultural area is threatening the environment by increasing the pressure on the limited natural resources. This leads conduct to the pauperization of the rural population and the depopulation by migration to the main cities. Aware of this stakes, GERES has been supporting for 20 years of the mountain communities to enable them to stay in their original area by the strengthening and developing their livelihood. Thus many innovative tools have been improved during a long process, and nowadays they can be considered as adapted: building or retrofitting housing technologies to reduce the fuel wood consumption (dung, bush), used as combustible, which could be valorized in agriculture, tools for agricultural production and transformation (greenhouse, poultry farm, dryer, spinning wheel) adapted the technical and management skill of a household or a women group in order to generate additional income. Even if during an harsh winter, longer than 6 months, the communities enjoy parties and introspection, it is often considerate as inactive and sad period. The challenge undertaken by GERES, its partners in development (European commission, French Ministry of Foreign Affair) and Indian, Chinese, Nepal and Afghan NGO is to enable these communities to turn this inactive winter period to account, in order to generate additional income and to contribute to the food security (egg and vegetable production during all the year). This challenge has been taken up concerning the running of agricultural greenhouses. Several hundreds of them are used Ladakh (India), Quinghai (China), Nepal and nowadays in Afghanistan. This manual of construction will help technical organisations (government services, NGO, development projects...) to enable a large number of communities to grow vegetable during winter in the cold area of Asia, thanks to a greenhouse. (author)

  1. Experimental and numerical analysis of pollutant dispersion from a chimney

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.M.; Mhiri, H. [Ecole Nationale d' Ingenieurs de Monastir, Tunisie (Tunisia). Laboratorie de Mecanique des Fluides et Thermique; Le Palec, G.; Bournot, P. [UNIMECA, Marseille (France). Institut de Mecanique de Marseille, Equipe IMFT

    2005-03-01

    Particle image velocimetry (PIV) is used to extract and characterize the underlying organized motions, i.e. coherent structures, within the near-wake region of a turbulent round jet discharged perpendicularly from a chimney into a crossflow. This flow has been found to be quite complex owing to its three-dimensional nature and the interactions between several flow regions. Analyses of the underlying coherent structures, which play an important role in the physics of the flow, are still rare and mostly based on flow-visualization techniques. Using a PIV technique, we examined the wake regions of the chimney and plume at levels near the top of the chimney. The complex geometry of these structures in the wake of the plume as well as their interaction with the plume as it bends over after emission is discussed. In this paper we describe the Kelvin-Helmholtz vortex structures, the downwash phenomena and the effect of the height of the chimney. Extensive wind tunnel experimental results are presented and compared with numerical simulation. A good level of agreement was found between the results of flow visualization and numerical simulation. (author)

  2. The construction of a process line for high efficiency silicon solar cells under clean-room conditions

    International Nuclear Information System (INIS)

    The aim of this research project was to plan, construct and test a clean-room technology laboratory for the manufacturing of silicon solar cells with 20% efficiency (1.5AM). In addition to the establishment of the laboratory, there existed the case of establishing the material and technological fundamentals of high-efficiency solar cells, testing and optimizing all stages of production as well as constructing test stands for accompanying characterisation work. The following final report describes the construction of the laboratory and characterisation systems, the material elements of high-efficiency solar cells as well as the most important results of solar cell production and optimisation. (orig./BWI)

  3. 75 FR 2133 - Construction and Operation of the Quartzsite Solar Energy Project, La Paz County, AZ (DOE/EIS-0440)

    Science.gov (United States)

    2010-01-14

    ... Area Power Administration Construction and Operation of the Quartzsite Solar Energy Project, La Paz... Project (Project) in La Paz County, near Quartzsite, Arizona. Quartzsite Solar Energy, LLC (QSE) has... facilities would be on BLM administered land. The proposed Project would use concentrating solar...

  4. Design, Engineering, and Construction of Photosynthetic Microbial Cell Factories for Renewable Solar Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, Peter; Lindberg, Pia; Stensjoe, Karin (Photochemistry and Molecular Science, Dept. of Chemistry-Aangstroem Laboratory, Uppsala Univ., Uppsala (Sweden)), E-mail: Peter.Lindblad@kemi.uu.se; Oliveira, Paulo (Instituto de Biologia Molecular e Celular, Porto (Portugal)); Heidorn, Thorsten (Bioforsk-Norwegian Inst. for Agricultural and Environmental Research, Aas Oslo, (Norway))

    2012-03-15

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H{sub 2} production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted

  5. Collapse of chimney with impact on reactor building

    International Nuclear Information System (INIS)

    As the chimney does not belong to the higher-safety-class structures of a nuclear power plant, it is normally not designed for such extreme loading conditions as the safe-shutdown earthquake and the aircraft impact. Nevertheless, the behaviour of the chimney for these loads has to be investigated, as a possible collapse onto adjacent safety-relevant structures (reactor building, reactor auxiliary building, fuel-handling building) may significantly influence the design of these structures and of the equipment in them. The loading cases which might cause a collapse are outlined. The mathematical models used to calculate the highly physically and geometrically non-linear behaviour are described. The resulting response of the structures subjected to impact is determined and compared to that caused by other external extreme loading conditions. The safe-shutdown earthquake is represented by an artificially generated time history which fits a specified design-response spectrum. For preliminary calculations the response for simple sine wave excitation is determined. The ground acceleration at which collapse first occurs is calculated for different soil parameters and dimensions of the chimney. As an additional loading case, the direct impact of an aircraft or its freely flying debris on the chimney is investigated approximately. For different locations of impact, the impulse causing collapse is established. Under normal circumstances, debris such as engines can hardly lead to a collapse of the entire chimney. Overall consideration of the balance of energy and of impulse as well as detailed solutions of the resulting differential equations of motion are performed. (Auth.)

  6. The use of a rubble chimney for denitrification of irrigation return waters

    International Nuclear Information System (INIS)

    Biological denitrification has been proposed as a means of removing nitrates from waste waters to control eutrophication in receiving waters. A potential use for this method is the treatment of irrigation return waters containing high concentrations of nitrate-nitrogen, since direct discharge of such wastes may cause objectionable algal growth in the receiving waters. For example, the process may be used to treat agricultural waste waters in the San Joaquin Valley in California, where an estimated 580,000 acre-feet/year of return waters, containing 20 mg/l of nitrate-nitrogen, will require disposal by A.D. 2020. Two methods of biological denitrification are presently under study for possible use in the San Joaquin Valley. In one method nitrates are reduced to nitrogen gas by bacterial action in deep ponds; in the other method bacterial denitrification takes place in biological filters. In biological filters, bacteria are grown on columns of submerged stones. A possible alternative to the conventional construction of these filters is the creation of a rubble chimney by a contained nuclear explosion. This paper presents the results of a preliminary investigation of the feasibility of using a rubble chimney as a biological filter for denitrification. (author)

  7. Wisdom Way Solar Village: Design, Construction, and Analysis of a Low Energy Community

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.

    2012-08-01

    This report describes work conducted at the Wisdom Way Solar Village (WWSV), a community of 10 high performance duplexes (20 homes) in Greenfield, MA, constructed by Rural Development, Inc. (RDI). Building America's CARB team monitored temperatures and comfort in several homes during the winter of 2009-2010, and tracked utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes.

  8. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    For many industrial processes, the chimney is the final step before hot fumes, with high thermal energy content, are discharged into the atmosphere. Tapping into this energy and utilizing it for heating or cooling applications, could improve sustainability, efficiency and/or reduce operational costs. Alternatively, an unused chimney, like the monumental chimney at the Eindhoven University of Technology, could serve as an 'energy channeler' once more; it can enhance free cooling by exploiting the stack effect. This study aims to identify design parameters that influence annual heat exchange in such stack chimney applications and optimize these parameters for specific scenarios to maximize the performance. Performance is defined by annual heat exchange, system efficiency and costs. The energy required for the water pump as compared to the energy exchanged, defines the system efficiency, which is expressed in an efficiency coefficient (EC). This study is an example of applying building performance simulation (BPS) tools for decision support in the early phase of the design process. In this study, BPS tools are used to provide design guidance, performance evaluation and optimization. A general method for optimization of simulation models will be studied, and applied in two case studies with different applications (heating/cooling), namely; (1) CERES case: 'Eindhoven University of Technology monumental stack chimney equipped with a heat exchanger, rejects heat to load the cold source of the aquifer system on the campus of the university and/or provides free cooling to the CERES building'; and (2) Industrial case: 'Heat exchanger in an industrial stack chimney, which recoups heat for use in e.g. absorption cooling'. The main research question, addressing the concerns of both cases, is expressed as follows: 'what is the optimal set of design parameters so heat exchange in stack chimneys is optimized annually for the cases in which a stack chimney heat exchanger is used for heating or cooling applications, what is the expected performance and how do the design parameters relate to this performance'. Simulation models were developed in the BPS tool ESP-r. The most important design parameters and their relative influence on the performance indicators were analysed based on sensitivity analysis (SA). From this analysis general design guidelines were derived ('optimal set of design parameters'). A multi objective optimization of the design parameters was performed on the simulation models, using the responsive surface methods and artificial neural network capabilities of optimization environment ModEContier to speed up the iteration process. In this optimization, 'heat exchange in stack chimneys is optimized annually'. The uncertainty in the optimized results has been analysed using uncertainty analysis (UA). Finally, the appropriateness of deploying a complex, high resolution simulation has been evaluated by studying current modelling resolution selection methodology found in literature.

  9. Design, Construction And Characterization Of A Pyranometer For Measuring Global Solar Radiation

    International Nuclear Information System (INIS)

    Due to cost and stringent importation requirement, we have designed and constructed a Pyranometer from locally available materials. The constructed Pyranometer was calibrated against a standard calibrated Eppley pyranometer model PSP17190F3. the two pyranometers were used simultaneously in measuring global solar radiation at Nsukka, Nigeria on latitude 6.8 degree North and longitude 7.35 degree East, located 488m above sea level. The average insolation for each of the two typical clear sky days were 3.221KW per square metre and 3.266KW per square metre. The maximum insolation obtained with the constructed pyranometer was 965.5 W per square metre on 16/1/03. The corresponding insolation obtained with the reference Eppley pyranometre on the same day was 1087.5W per square metre. We are happy to remark that there was not significant difference between the performances of the constructed pyranometer and the standard Eppley pyranometer

  10. 10-MWe solar-thermal central-receiver pilot plant: collector subsystem foundation construction. Revision No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-18

    Bid documents are provided for the construction of the collector subsystem foundation of the Barstow Solar Pilot Plant, including invitation to bid, bid form, representations and certifications, construction contract, and labor standards provisions of the Davis-Bacon Act. Instructions to bidders, general provisions and general conditions are included. Technical specifications are provided for the construction. (LEW)

  11. Condensation of flue gas vapours in ducts and chimneys

    Science.gov (United States)

    Jarman, R. T.; de Turville, C. M.

    The growth of a single dust particle by vapour condensation is derived from Fick's diffusion equation after considering the conditions under which it may be used. The treatment is then extended to a polydisperse dust cloud, allowing for (1) a constant cooling rate (2) the depletion of the vapour by condensation (3) the dependence of droplet vapour pressure on curvature and (4) the variation of the diffusion coefficient with droplet size. The general expression obtained for the radial growth of aerosol particles is suitable for numerical integration by computer, and has been applied to the flue gas of an oil-fired power station in the case when the sulphuric acid dewpoint is reached within the chimney. It is shown that, under typical power station operating conditions, the rate of condensation by heterogeneous nucleation is sufficiently fast to maintain the flue gas in the chimney at a low degree of supersaturation, for which condensation by self-nucleation is unlikely.

  12. GPS FOM Chimney Analysis using Generalized Extreme Value Distribution

    Science.gov (United States)

    Ott, Rick; Frisbee, Joe; Saha, Kanan

    2004-01-01

    Many a time an objective of a statistical analysis is to estimate a limit value like 3-sigma 95% confidence upper limit from a data sample. The generalized Extreme Value Distribution method can be profitably employed in many situations for such an estimate. . .. It is well known that according to the Central Limit theorem the mean value of a large data set is normally distributed irrespective of the distribution of the data from which the mean value is derived. In a somewhat similar fashion it is observed that many times the extreme value of a data set has a distribution that can be formulated with a Generalized Distribution. In space shuttle entry with 3-string GPS navigation the Figure Of Merit (FOM) value gives a measure of GPS navigated state accuracy. A GPS navigated state with FOM of 6 or higher is deemed unacceptable and is said to form a FOM 6 or higher chimney. A FOM chimney is a period of time during which the FOM value stays higher than 5. A longer period of FOM of value 6 or higher causes navigated state to accumulate more error for a lack of state update. For an acceptable landing it is imperative that the state error remains low and hence at low altitude during entry GPS data of FOM greater than 5 must not last more than 138 seconds. I To test the GPS performAnce many entry test cases were simulated at the Avionics Development Laboratory. Only high value FoM chimneys are consequential. The extreme value statistical technique is applied to analyze high value FOM chimneys. The Maximum likelihood method is used to determine parameters that characterize the GEV distribution, and then the limit value statistics are estimated.

  13. Formation of Chimneys in Mushy Layers: Experiment and Simulation

    CERN Document Server

    Anderson, Anthony M; Worster, Grae

    2011-01-01

    In this fluid dyanmics video, we show experimental images and simulations of chimney formation in mushy layers. A directional solidification apparatus was used to freeze 25 wt % aqueous ammonium chloride solutions at controlled rates in a narrow Hele-Shaw cell (1mm gap). The convective motion is imaged with schlieren. We demonstrate the ability to numerically simulate mushy layer growth for direct comparison with experiments.

  14. Evaluation of a stack: A concrete chimney with brick liner

    International Nuclear Information System (INIS)

    A 200 ft. tall stack, consisting of a concrete chimney with an independent acid proof brick liner built in the 1950's, serving the Separations facility at the Savannah River Site (SRS), was evaluated for the performance category 3 (PC3) level of Natural Phenomena Hazards (NPH) effects. The inelastic energy absorption capacity of the concrete chimney was considered in the evaluation of the earthquake resistance, in particular, to compute the F? factor. The calculated value of F? exceeded 3.0, while the seismic demand for the PC3 level, using an F? value of 1.5, was found to be less than the capacity of the concrete chimney. The capacity formulation of ACI 307 was modified to incorporate the effect of an after design opening on the tension side. There are considerable uncertainties in determining the earthquake resistance of the independent brick liner. The critical liner section, located at the bottom of the breeching opening, does not meet the current recommendations. A discussion is provided for the possible acceptable values for the ''Moment Reduction Factor'', Rw or F? for the liner. Comments are provided on the comparison of stack demands using response spectra (RS) versus time history (TH) analysis, with and without soil structure interaction (SSI) effects

  15. Antecedent and progress of the project on the treatment of chimney gases with electrons in Mexico

    International Nuclear Information System (INIS)

    After the realization of the chimney gases treatment seminar with electrons, organized jointly among the National Institute of Nuclear Research (ININ) and the International Atomic Energy Agency (IAEA), in August of 1990 and following one of the received recommendations, it was elaborated an economic technical feasibility study of this process in Mexico, using technical data of a thermoelectric power station of Federal Commission of Electricity, where is being consumed fuel oil. This study is good to know some technical parameters of a plant of this process, proposed to settle in Mexico, so as some economic estimates of installation and operation costs of this plant; also, it is traced about the construction of a demonstration plant of the process, with capacity of 20,000 m3N/h, using the same data of the thermoelectric power station considered previously, as the first step in the scaling of this process toward industrial level. (Author)

  16. Wind load analysis of tall chimneys with piled raft foundation considering the flexibility of soil

    Science.gov (United States)

    Jayalekshmi, B. R.; Jisha, S. V.; Shivashankar, R.

    2015-06-01

    Soil-structure interaction (SSI) analysis was carried out for tall reinforced concrete chimneys with piled raft foundation subjected to wind loads. To understand the significance of SSI, four types of soil were considered based on different material properties. Chimneys of different elevations and different ratios of height to base diameter of chimney were selected for the parametric study. The thickness of raft of piled raft foundation was also varied based on different ratios of outer diameter to thickness of raft. The chimneys were assumed to be located in open terrain and subjected to a maximum wind speed of 50 m/s. The along-wind and across-wind loads were computed according to IS: 4998 (Part 1)-1992 and applied along the height of the chimney. The analysis was carried out using three-dimensional finite element technique based on the direct method of SSI. The linear elastic material behaviour was assumed for the integrated chimney-foundation-soil system. The radial and tangential moments, lateral deflection and base moment of chimney were evaluated through SSI analysis and compared with the response obtained from chimney with fixed base. The base moment of chimney considerably reduces due to the effect of SSI. It is found that the variation of different responses in chimney due to the effect of SSI depends significantly on the geometrical properties of chimney and foundations. The response variation at base for a distance of 1/40th of the height of chimney should be considered for a safe design.

  17. Natural convection enhancement in an asymmetrically heated channel-chimney system

    International Nuclear Information System (INIS)

    In this paper, a numerical study is performed in order to analyze the effect of adding a chimney to a vertical open channel. The channel is heated asymmetrically at uniform heat flux while the chimney is symmetric and wider than the channel. The thermal and dynamic aspects of the channel-chimney system (T chimney) are studied by varying the width and the height of the chimney while the aspect ratio of the channel is kept fixed. The main objective of this work is to determine the optimal geometric parameters of the chimney: the expansion ratio B (chimney width normalized by the channel width) and the extension ratio Er (chimney height normalized by the channel height), that maximize the mass flow rate (G) and the average Nusselt number (Nua). More than four hundred numerical simulations have been carried out at modified Rayleigh numbers ranging from 102 to 5x104 (laminar regime). The computations allowed the identification of three types of system responses. The flow structure and the pressure field were also analyzed to elucidate why the increase of the chimney width can improve or deteriorate the mass flow rate and the heat transfer. Finally, appropriate correlations have been proposed for determining the optimal configurations and the corresponding enhancement of the mass flow rate and the heat transfer coefficient. (authors)

  18. Guide for a building energy label. Promoting bio-climatic and solar construction and renovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Technically speaking, building experts have the knowledge to deal with thermal inertia of buildings, solar gains, insulation, efficient ventilation, and daylighting... to get low energy buildings that provide comfort for the users. Buildings should always be designed according to the specificities of the local climate, according to a ''solar and bio-climatic construction'' approach. It is not always possible to fully apply these principles, particularly in urban areas with high density. However, this is unacceptable to keep building with such errors as insufficient insulation and direct electrical heating, single glazing, thermal bridges, low efficiency heating systems. This guide aims at encouraging the building experts to take into account the energy efficiency. Implementing a building energy label will allow general public to be aware of this issue and then, and will then lead to develop better practices. (author)

  19. Total solar irradiance variations: The construction of a composite and its comparison with models

    Science.gov (United States)

    Froehlich, Claus; Lean, Judith

    1997-01-01

    Measurements of the total solar irradiance (TSI) during the last 18 years from spacecraft are reviewed. Corrections are determined for the early measurements made by the HF radiometer within the ERB experiment on NIMBUS 7 and the factor to refer active cavity radiometer irradiation monitoring (ACRIM) 2 to the ACRIM 1 irradiance scale. With these corrections, a composite TSI is constructed with a model that combines a magnetic brightness proxy with observed sunspot darkening and explains nearly 90 percent of the observed short and long term variance. Possible, but still unverified degradation of the radiometers hampers conclusions about irradiance changes on decadal time scales and longer.

  20. Construction of a multilayered X-ray telescope for solar coronal studies from space

    International Nuclear Information System (INIS)

    The construction and testing of soft x-ray Ritchey-Chretien aplanatic telescope which is to be flown on a NASA sounding rocket in 1986 for very high resolution studies of the solar corona are discussed. Goals include figuring, polishing and measuring the mirror surfaces to tolerances exceding the 5000 A wavelength diffraction limit while achieving a superpolished surface finish, and the development of a structural design to withstand the rigors of the launch. Multilayer coatings are used to achieve usable reflectivity in the soft X-ray regime, and the design goal is for spatial resolution of 1/4 sec. Future applications are discussed. 12 references

  1. Construction of a multilayered X-ray telescope for solar coronal studies from space

    Science.gov (United States)

    Golub, L.; Nystrom, G.; Spiller, E.; Wilczynski, J.

    1985-01-01

    The construction and testing of soft x-ray Ritchey-Chretien aplanatic telescope which is to be flown on a NASA sounding rocket in 1986 for very high resolution studies of the solar corona are discussed. Goals include figuring, polishing and measuring the mirror surfaces to tolerances exceding the 5000 A wavelength diffraction limit while achieving a superpolished surface finish, and the development of a structural design to withstand the rigors of the launch. Multilayer coatings are used to achieve usable reflectivity in the soft X-ray regime, and the design goal is for spatial resolution of 1/4 sec. Future applications are discussed.

  2. Economic geology of Big Chimney quadrangle, Kanawha County, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Windolph, J.F. Jr.

    1988-08-01

    Recent geologic mapping of Pennsylvanian strata in the Big Chimney quadrangle, 2.5 mi northeast of Charleston, West Virginia, suggests a possible association between syntectonic depositional influences and the occurrences of economically important mineral deposits. Coal and flint clay were deposited in the Charleston Sandstone (Middle Pennsylvanian) during periods of stillstand. The Mahoning Sandstone Member is disconformable with underlying strata and locally contains Precambrian and early Paleozoic pebbles. The member is thick in synclinal troughs and thin or absent on the crests of anticlines where there also is a thinner underlying stratigraphic sequence. Flint clay deposits reach their maximum quality on the crests of anticlines and in areas adjacent to suspected paleotopographic highs. These deposits are laterally gradational with underclay, ganister, and paleosol. The Elk fireclay (No. 6 Block underclay) may in part have originated as a volcanic ash fall. The No. 5 Block coal bed reached 60 in. in thickness on the Milliken anticline and has minor fault displacement at Big Chimney. The Pittsburgh coal bed is as much as 90 in. thick, cropping out in high ridges. It is absent on the northern edge and eastern part of the quadrangle. More than 260 oil and gas wells have been drilled in the overlapping Elk-Poca, Big Chimney, and Blue Creek gas or oil fields. Natural gas, paraffin-base oil, and/or minor amounts of condensate are produced from structural and stratigraphic traps in four units: the Weir Formation (sand) and the Oriskany, Keefer, and Tuscarora Sandstones. The Oriskany Sandstone, however, is used almost exclusively as a gas-storage reservoir. Oil is produced largely from repressurized stripper wells.

  3. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011–2014

    Science.gov (United States)

    Sondermeyer, Gail; Shusterman, Dennis; McNary, Jennifer; Vugia, Duc J.; McDowell, Ann; Borenstein, Penny; Gilliss, Debra; Ancock, Benedict; Prudhomme, Janice; Gold, Deborah; Windham, Gayle C.; Lee, Lauren; Materna, Barbara L.

    2015-01-01

    Coccidioidomycosis is associated with soil-disruptive work in Coccidioides-endemic areas of the southwestern United States. Among 3,572 workers constructing 2 solar power–generating facilities in San Luis Obispo County, California, USA, we identified 44 patients with symptom onset during October 2011–April 2014 (attack rate 1.2 cases/100 workers). Of these 44 patients, 20 resided in California outside San Luis Obispo County and 10 resided in another state; 9 were hospitalized (median 3 days), 34 missed work (median 22 days), and 2 had disseminated disease. Of the 25 patients who frequently performed soil-disruptive work, 6 reported frequent use of respiratory protection. As solar farm construction in Coccidioides-endemic areas increases, additional workers will probably be exposed and infected unless awareness is emphasized and effective exposure reduction measures implemented, including limiting dust generation and providing respiratory protection. Medical providers, including those in non–Coccidioides-endemic areas, should suspect coccidioidomycosis in workers with compatible illness and report cases to their local health department. PMID:26484688

  4. Coccidioidomycosis among Workers Constructing Solar Power Farms, California, USA, 2011-2014.

    Science.gov (United States)

    Wilken, Jason A; Sondermeyer, Gail; Shusterman, Dennis; McNary, Jennifer; Vugia, Duc J; McDowell, Ann; Borenstein, Penny; Gilliss, Debra; Ancock, Benedict; Prudhomme, Janice; Gold, Deborah; Windham, Gayle C; Lee, Lauren; Materna, Barbara L

    2015-11-01

    Coccidioidomycosis is associated with soil-disruptive work in Coccidioides-endemic areas of the southwestern United States. Among 3,572 workers constructing 2 solar power-generating facilities in San Luis Obispo County, California, USA, we identified 44 patients with symptom onset during October 2011-April 2014 (attack rate 1.2 cases/100 workers). Of these 44 patients, 20 resided in California outside San Luis Obispo County and 10 resided in another state; 9 were hospitalized (median 3 days), 34 missed work (median 22 days), and 2 had disseminated disease. Of the 25 patients who frequently performed soil-disruptive work, 6 reported frequent use of respiratory protection. As solar farm construction in Coccidioides-endemic areas increases, additional workers will probably be exposed and infected unless awareness is emphasized and effective exposure reduction measures implemented, including limiting dust generation and providing respiratory protection. Medical providers, including those in non-Coccidioides-endemic areas, should suspect coccidioidomycosis in workers with compatible illness and report cases to their local health department. PMID:26484688

  5. Design, construction and characterization of a rural solar furnace; Diseno, construccion y caracterizacion de un horno solar rural

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Luna, Gabriela

    2001-06-15

    This thesis presents the design, construction and characterization of a solar furnace, box type, for its use in rural communities in the inter-tropical zone. The work presented in this thesis departs from the opto-geometric design of a solar furnace, box type, proposed by an enthusiastic group of young students from the Centro de Investigacion de Energia (CIE) of the Universidad Nacional Autonoma de Mexico (UNAM). The contents of this thesis includes the systematization of the work previously made by these authors: the design and the optimization of geometry, the experimental evaluation of the same, as well as a theoretical model of the thermal behavior of the solar furnace based on a global balance of energy that assumes thermal states in cuasi-equilibrium of the internal components of the furnace. In this thesis a theoretical model of the solar concentration of energy by the reflectors of the furnace based on the model of Peres and Karsson (1993) is developed. The predictions of this model are satisfactorily compared with the experimental results of Jaramillo et al. (1999). Counting on the opto-geometric design of the furnace, the design is completed selecting the materials to be used in the different parts of the same, as well as defining constructive details. The material selected for the inner and outer boxes and the reflectors is stainless steel mirror finishing. Mineral wool is used As insulating mineral. The upper part of the furnace is protected by a glass that allows the entrance of the solar energy and diminishes the energy convective and radiation losses. For the thermal evaluation of the furnace an experimental methodology, based on the international procedures standardized for tests of furnaces and solar stoves is followed. Three tests for each one of the following operation conditions were performed: without load, with oil and with water. The maximum temperature registered in the inside air of the furnace, for the first condition was of 150 centigrade, followed of the condition using 6 liters of oil, in which a maximum temperature of 115 centigrade was obtained and in the tests with 6 liters of water as load a maximum temperature of 95 centigrade was registered. In these tests the temperature of the oil surpasses 60 centigrade during an approximate period of 7 hours and is higher than 80 centigrade by a lapse of 5 hours. The water temperature is higher than 60 centigrade for a period of more than 5 hours and during 3 hours is higher than 80 centigrade. These results are satisfactory, because they assure the accomplishment of the process of baking inside the furnace. A calculation program was elaborated to implement the theoretical model of the concentration. This program reads the data of radiation intensity in the horizontal plane supplied by the weather station of the CIE and determines the incident radiation in the furnace collector. The theoretical model of the thermal behavior was implemented in another computer program; this program reads the data of the incident radiation in the collector of the furnace and the data of room temperature and calculates the temperature of the furnace as a time function. The model overestimates the temperature reached in the furnace, nevertheless reproduces qualitatively the thermal behavior of the same. In spite of the limitations of the theoretical model, this can be of utility in achieving the reproduction of the temperature of the load experimentally registered, through an effective coefficient of heat losses and an effective coefficient of heat capacity, characteristic of each one of the conditions of the test. [Spanish] Esta tesis presenta el diseno, construccion y caracterizacion de un horno solar tipo caja para su uso en comunidades rurales en la zona intertropical. El trabajo presentado en esta tesis parte del diseno opto-geometrico de un horno solar tipo caja propuesto por un entusiasta grupo de jovenes estudiantes (Acosta et al., 1996, Vazquez et al., 1998, Jaramillo et al., 1999) del Centro de Investigacion en Energia (CIE) de la Universidad Nacional Autonom

  6. Design, construction and performance testing of a solar dryer for agroindustrial by-products

    Energy Technology Data Exchange (ETDEWEB)

    Montero, I.; Miranda, T.; Rojas, S.; Celma, A.R. [University of Extremadura, Department of Chemical and Energetics Engineering, Industrial Engineering School, Av. Elvas s/n, 06071 Badajoz (Spain); Blanco, J. [PSA (CIEMAT), Department of Solar Chemistry, Ctra. Sens, P.O. Box 22, 04200 Tabernas (Almera) (Spain)

    2010-07-15

    Spain generates a big amount of agroindustrial by-products of high moisture that produce a high environmental impact. This fact motivates the aim of this paper, in which a solar dryer prototype is designed, constructed, and performance tested for the analysis of the drying kinetics of these by-products and their possible power valuation. The characteristics of the prototype are presented, together with the variations of the properties of temperature, relative humidity, air mass flow, and efficiency for indirect, mixed, passive, active, and hybrid operation modes. The most efficient operation mode will be the forced-hybrid one, followed by the passive and active modes. The analysis of the drying kinetics of the olive pomace shows the better performance of the hybrid and mixed modes, obtaining reductions of the drying time of a 50% in both cases. (author)

  7. Construction of research wind-solar monitoring station 'North-East Bulgaria'

    International Nuclear Information System (INIS)

    The rising energy prices, the lack of conventional energy sources, as well as the growing ecological problems, imposing the development of a new energy strategy of Bulgaria, are the prerequisites for the thorough researches in the field of wind-solar resources and the construction of experimental bases with modern equipment for the detailed investigations on the specificities of these resources with the view of their optimal utilization. The lack of homogenous covering of the territory of the country with meteorological stations, as well as the rather specific microclimatic conditions in the diverse physical-geographic localities in the country make the necessity of building experimental stations for meteo-monitoring under specific local conditions still more indispensable. This work presents the monitoring parameters of wind-solar resources in a real physical-geographic environment, for carrying out scientific-research, applied-practical and educational-training activity. A broad spectrum of scientific methods and approaches - instrumental, topographic, terrain, mathematical-statistical, numerical modeling, cartographic, educational and team-working, are envisaged for attaining the set objective. (author)

  8. Full scale monitoring of the twin chimneys of the rovinari power plant

    Directory of Open Access Journals (Sweden)

    Bayati I.

    2015-01-01

    Full Text Available The presented paper deals with the structural identification and monitoring of two twin chimneys in very close arrangement. Due to twin arrangement, important interference effects are expected to modify the chimney response to wind action, causing vortex shedding and state-dependent excitation associated to the oscillatory motion of the leeward chimney, in and out of the windward chimney wake. The complexity of the physics of this problem is increased by the dependency of the aerodynamics of circular cylinders on Reynolds number; however, there is a weakness of literature about cylinders behaviour at critical and super-critical range of Reynolds number, due to experimental limitations. Also the International Committee on Industrial Chimneys (CICIND does not provide, at present, any specific technical guideline about twin chimneys whose interaxis distance is less or equal two times the diameter, as in this case. For this reason a Tuned Mass Damper (TMD has been installed in order to increase the damping of the chimney, as merely suggested. This work aims at assessing the effectiveness of the installed TMD and characterizing the tower dynamic behaviour itself due to the wind excitation, as well as providing full scale measurements for twin cylinders configuration at high Reynolds numbers.

  9. Diffused vs. Focused Flow - Metaproteogenomic Insights into Effects of Hydrothermal Fluid Flow on Metal-Sulfide Chimney Colonizing Biofilms

    Science.gov (United States)

    Pjevac, P.; Markert, S.; Richter, M.; Gruber-Vodicka, H.; Schweder, T.; Amann, R.; Meyerdierks, A.

    2014-12-01

    At many sites of hydrothermal discharge in the deep-sea, the deposition of metal sulfides from hydrothermal fluids leads to the formation of geological structures known as hydrothermal chimneys. The mixing of reduced hydrothermal fluids with oxygenated seawater leads to the formation of steep redox gradients within the chimney walls. These gradients facilitate the co-existence of metabolically diverse microorganisms in the narrow habitable zone of hydrothermal chimney walls. However, the overall composition of chimney-associated microbial community is usually of low complexity and represents an environment suitable for metaomic-based studies. We used metagenomic and metaproteomic tools to compare microbial communities colonizing two metal-sulfide chimneys from the Manus Basin back-arc spreading center in the Bismarck Sea off Papua New Guinea. These chimneys were supplied by the same source hydrothermal fluids, but exhibited different fluid flow regimes. One chimney (RMR5) had a focused venting edifice, while the other (RMR-D) displayed diffuse fluid efflux on its entire outer surface. Although the microbial diversity of both chimneys is similar and dominated by mesophilic Epsilonproteobacteria, our results indicate a strong structuring effect of hydrothermal fluid flow regime on chimney-associated biofilms. The microbial community composition indicates a homogeneous colonization of the diffuse chimney walls. In contrast, the walls of the focused venting chimney appear to be colonized in layers reflecting different temperature tolerances of the dominant microorganisms. Sulfide-oxidation is likely the key metabolism in both chimneys, which is in line with the high sulfide content of the source hydrothermal fluid. However, preliminary metaproteome analysis indicates high activity of low-abundant methanotrophic Bacteria in the diffuser chimney walls. This finding is particularly interesting in light of the very low methane content of the source hydrothermal fluid. Overall, this study is among the first metaprotoemic investigations of hydrothermal vent associated communities and provides deep insights into the metabolic versatility of hydrothermal chimney colonizing microbes.

  10. Chimney stent graft for endovascular sealing of a pararenal aortic aneurysm.

    Science.gov (United States)

    Rouer, Martin; El Batti, Salma; Julia, Pierre; de Blic, Romain; Fabiani, Jean-Noël; Alsac, Jean-Marc

    2014-11-01

    Chimney endovascular aneurysm repair is still a controversial treatment of complex aortic aneurysms. Stent-graft patency and type-I endoleaks are the main challenges that temper this bailout technique. Endovascular aneurysm sealing (EVAS) consists of anchoring and sealing the device within the aneurysm sac. The first results are promising, even for adverse anatomy. We describe a case of EVAS for a pararenal aortic aneurysm associated with a chimney stent graft for the right renal artery. Wrapping the chimney stent graft inside endobags filled with polymer is expected to prevent gutters and stent compressions. PMID:25108097

  11. ChEVAS: Combining Suprarenal EVAS with Chimney Technique.

    Science.gov (United States)

    Torella, Francesco; Chan, Tze Y; Shaikh, Usman; England, Andrew; Fisher, Robert K; McWilliams, Richard G

    2015-10-01

    Endovascular sealing with the Nellix(®) endoprosthesis (EVAS) is a new technique to treat infrarenal abdominal aortic aneurysms. We describe the use of endovascular sealing in conjunction with chimney stents for the renal arteries (chEVAS) in two patients, one with a refractory type Ia endoleak and an expanding aneurysm, and one with a large juxtarenal aneurysm unsuitable for fenestrated endovascular repair (EVAR). Both aneurysms were successfully excluded. Our report confirms the utility of chEVAS in challenging cases, where suprarenal seal is necessary. We suggest that, due to lack of knowledge on its durability, chEVAS should only been considered when more conventional treatment modalities (open repair and fenestrated EVAR) are deemed difficult or unfeasible. PMID:26202393

  12. Analytical study of the closure flow inside the ETRR-2 core chimney

    International Nuclear Information System (INIS)

    The present work is carried out in order to study the closure flow inside the core chimney of the Egypt second research reactor (ETRR-2). Based on the finite difference technique, a two dimensional model is developed to simulate the coolant flow inside the chimney. The model is verified by FEHT finite element program. Then a study of different closure flow values inside the chimney was made using the developed model where a flow map is plotted showing the stagnation depth for each closure flow. The flow map shows that for a closure flow greater than 0.16 m3/h, no active water ascends from the core to the pool through the chimney. The model results are analyzed and discussed. (orig.)

  13. Leakage-flow induced vibrations of a chimney structure suspended in a liquid flow

    International Nuclear Information System (INIS)

    This paper presents the results of flow-induced vibration tests conducted to assess the vibration characteristics of a chimney structure suspended in a liquid flow. The test article is a full-scale model of a flow chimney used in a nuclear reactor as a part of reactor upper internals. Tests were performed by simulating all pertinent prototype conditions achievable in a laboratory environment. The test results show that there exists a fluid-elastic instability of the chimney motion which has a distinct lock-in phenomenon with respect to the flow rate. This unstable vibration is associated with the leakage-flow-modulated excitation through the small clearances between the chimney and its supports

  14. Reasons for the self-envelopment of chimneys of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Richter, L.A.; Gorlin, S.M.; Gavrilov, E.I.; Prochorov, V.B. (Moskovskij Ehnergeticheskij Inst. (USSR); Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Mekhaniki)

    1978-03-01

    It is shown that self-envelopment of chimneys is due to the formation of 'dilution zones' on the outer surface of the chimneys as a result of wind flow, into which the flue gases emitted from the chimneys are drawn. The main influencing parameter for the process of self-envelopment is the hydrodynamic or flow parameter I - i.e., the ratio between the dynamic flue gas pressure and the dynamic wind pressure. Self-envelopment happens when this ratio becomes smaller than 2.4. With the aid of the investigations carried out, the duration of self-envelopment may be calculated for any concrete chimney if the operating conditions of the power plant and the changes of wind velocity with time are known.

  15. Effect of cold inflow on chimney height of natural draft cooling towers

    International Nuclear Information System (INIS)

    Highlights: ? Natural convection data were obtained from an air-cooled heat exchanger model. ? The extent of cold inflow was quantified to relate to the decrease in effective chimney height. ? Installation of wire mesh screen on chimney outlet blocked off cold inflow to improve the chimney efficiency. ? Evidence of existence of effective plume-chimney for when cold inflow was blocked off warrants further work. - Abstract: Temperature and pressure drop data obtained from an air-cooled heat exchanger model with cross-sectional flow areas of 0.56 m2, 1.00 m2 and 2.25 m2 operating under natural convection are presented that indicate significant cold inflow, resulting in the reduction of effective chimney height. Cold inflows encountered in actual applications where the Froude number is typically 0.2, may not be as severe as described in this paper, which was of the order of 10?6–10?4. Additional tests on smaller scale models appeared to favor the explanation that the occurrence of cold inflow in the air-cooled heat exchanger model was primarily due to the relative ease in either drawing cold air from inlet or from outlet, and to a lesser extent the Froude number of the chimney or the critical velocity estimated by formula. A CFD study will bring much understanding of the phenomenon for the different situations.

  16. Turbulent mixing inside the chimney model of a pool type research reactor

    International Nuclear Information System (INIS)

    Open pool type research reactors often use a chimney structure to prevent mixing of core outlet water directly into the pool in order to keep the radioactivity level at the pool top to a lower limit. This chimney structure facilitates guiding of the radioactive water from the reactor core towards the side outlet nozzles and simultaneously sucking water from the reactor pool through the chimney top. The present work aims at studying the turbulent mixing behaviour of water coolant inside a 1/6th scaled down model of chimney structure. The range of dimensionless numbers considered in the simulation are 1.44 x 106 6 and 0.002 < Ri < 0.008. The effects of flow ratio between upward flow and downward flow and their temperature difference on the mixing behaviour are analysed by means of commercial software. Turbulence is modelled by using the Reynolds averaged Navier Stokes (RANS) equation. The results indicate that the increase in downward (core bypass) flow, increases stagnation depth and try to keep the radio-activity well within the chimney region. On the contrary, the temperature difference between the hot upward fluid and cold downward fluid tries to reduce the stagnation depth. It is observed that if sufficient bypass flow is provided, no water from the core will reach the reactor pool through the chimney top opening. (author)

  17. Solar ventilation and tempering

    Science.gov (United States)

    Adámek, Karel; Pavlů, Miloš; Bandouch, Milan

    2014-08-01

    The paper presents basic information about solar panels, designed, realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window, facade, chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring, autumn) prolongs the period without classical heating of the room or building, in winter the classical heating is supported. In the summer period the system, furnished with chimney, can exhaust inner warm air together with necessary cooling of the system by gravity circulation, only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

  18. Development of the lined masonry chimney oil appliance

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.; Strasser, J. [Brookhaven National Lab., Upton, NY (United States)

    1996-07-01

    This paper describes the development of the lined masonry chimney venting tables form the output of the Oil Heat Analysis Program 9OHVAP. These new tables are different from the prior format, offered in the Proceedings of the 1995 Oil Heat Technology Conference and Workshop, paper No. 95-4. Issues expressed by representatives of the oil heat industry at last years conference during the Venting Technology Workshop resulted in subsequent discussions. A full day meeting was held, co-sponsored by BNL and the Oilheat Manufacturers Association (OMA), to address revision of the format of the venting tables prior to submission to the National Fire Protection Association (NFPA) Standard 31 Technical Committee. The resulting tables and text were submitted to NFPA during the first week of October, 1995. Since then minor changes were made reflecting the addition of data obtained by including intermediate firing rates (0.4, 0.65, and 0.85 gph) not included in the original tables which were developed in increments of 0.25 gph. The new tables address the specific question; {open_quotes}If remediation is required, what is the recommendation for the sizing of a metal liner and the appropriate firing rate range to be used with that liner?{close_quotes}

  19. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin

    Directory of Open Access Journals (Sweden)

    YingHe

    2013-06-01

    Full Text Available Deep-sea hydrothermal vent chimneys contain a high diversity of microorganisms, yet the metabolic activity and the ecological functions of the microbial communities remain largely unexplored. In this study, a metagenomic approach was applied to characterize the metabolic potential in a Guaymas hydrothermal vent chimney and to conduct comparative genomic analysis among a variety of environments with sequenced metagenomes. Complete clustering of functional gene categories with a comparative metagenomic approach showed that this Guaymas chimney metagenome was clustered most closely with a chimney metagenome from Juan de Fuca. All chimney samples were enriched with genes involved in recombination and repair, chemotaxis and flagellar assembly, highlighting their roles in coping with the fluctuating extreme deep-sea environments. A high proportion of transposases was observed in all the metagenomes from deep-sea chimneys, supporting the previous hypothesis that horizontal gene transfer may be common in the deep-sea vent chimney biosphere. In the Guaymas chimney metagenome, thermophilic sulfate reducing microorganisms including bacteria and archaea were found predominant, and genes coding for the degradation of refractory organic compounds such as cellulose, lipid, pullullan, as well as a few hydrocarbons including toluene, ethylbenzene and o-xylene were identified. Therefore, this oil-immersed chimney supported a thermophilic microbial community capable of oxidizing a range of hydrocarbons that served as electron donors for sulphate reduction under anaerobic conditions.

  20. Use of chemical explosives for emergency solar flare shelter construction and other excavations on the Martian surface

    International Nuclear Information System (INIS)

    The necessity to shelter people on the Martian surface from solar flare particles at short notice and the need for long-term habitats with thick cosmic ray shielding suggests that explosives could be used effectively for excavation of such structures. Modern insensitive high explosives are safe, efficient, and reliable for rock breakage and excavation. Extensive Earth-bound experience leads us to propose several strategies for explosively-constructed shelters based on tunneling, cratering, and rock casting techniques

  1. MPPT algorithm test on a photovoltaic emulating system constructed by a DC power supply and an indoor solar panel

    International Nuclear Information System (INIS)

    Highlights: • A novel PV emulator is constructed by using conventional solar panels with a DC power supply. • The proposed PV emulator is cost-effectiveness, relatively easy implementation. • The proposed PV emulator avoids the bandwidth problem associated with electronics PV emulators. • Indoor testing of MPPT algorithms and power converters avoids the dependency on solar irradiation. • The PV emulating system has been used for testing a P and O MPPT algorithm and a boost dc converter. - Abstract: In this paper a novel photovoltaic (PV) emulating scheme for testing maximum power point tracking (MPPT) algorithms and PV inverters has been proposed. It is constructed by the parallel connection of conventional solar panels with a DC power supply operating in current source mode. The advantages of the proposed scheme are cost-effectiveness, relatively easy implementation and indoor testing of MPPT algorithms and power converters avoiding weather and time of day dependency on solar irradiation levels. Furthermore, the proposed PV emulator avoids the bandwidth problem associated with the dc converter based PV emulating systems. Detailed circuit connection, parameters, electrical characteristics and mathematical model of the PV emulator are presented and discussed. Proposed PV emulating system has been used to test a boost DC/DC converter controlled by Perturb and Observe (P and O) MPPT algorithm. Test results confirmed the effectiveness of the proposed PV emulation system and all achieved results correspond well to the original designed values

  2. Vibration test report for in-chimney bracket and instrumented fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, D. B.; Cho, Y. G.; Ahn, G. H.; Lee, J. H.; Park, J.H

    2000-10-01

    The vibration levels of in-chimney bracket structure which is installed in reactor chimney and instrumented fuel assembly(Type-B Bundle) are investigated under the steady state normal operating condition of the reactor. For this purpose, 4 acceleration data on the guide tube of the instrumented fuel assembly and in-chimney bracket structures subjected to fluid induced vibration are measured. For the analysis of the vibration data, vibration analysis program which can perform basic time and frequency domain analysis, is prepared, and its reliability is verified by comparing the analysis results with those of commercial analysis program(I-DEAS). In time domain analysis, maximum amplitudes, and RMS values of accelerations and displacements from the measured vibration signal, are obtained. The frequency components of the vibration data are analyzed by using the frequency domain analysis. These analysis results show that the levels of the measured vibrations are within the allowable level, and the low frequency component near 10 Hz is dominant in the vibration signal. For the evaluation of the structural integrity on the in-chimney bracket and related structures including the instrumented fuel assembly, the static analysis for ANSYS finite element model is carried out. These analysis results show that the maximum stresses are within the allowable stresses of the ASME code, and the maximum displacement of the top of the flow tube is within the displacement limit. Therefore any damage on the structural integrity is not expected when the irradiation test is performed using the in-chimney bracket.

  3. Vibration test for HANARO in-chimney bracket and instrumented fuel assembly

    International Nuclear Information System (INIS)

    The vibration characteristics and structural integrity of the instrumented fuel assembly and in-chimney bracket structures, which is recently installed in HANARO reactor chimney, are investigated. For this purpose, four acceleration data on the guide tube of the instrumented fuel assembly and in-chimney bracket structures subjected to fluid induced vibration are measured and analyzed. In time domain analysis, maximum amplitudes and RMS values of accelerations and displacements are obtained from the measured vibration signal. The frequency components of the vibration data are analyzed by using the frequency domain analysis. These analysis results show that the levels of the measured vibrations are within the allowable limit, and the low frequency component near 10 Hz is dominant in the vibration signal. For the evaluation of the structural integrity on the in-chimney bracket and related structures, the static analysis for ANSYS finite element model is carried out. The maximum displacements of the measured vibration signals are used as the load inputs. These analysis results show that the maximum stresses and within the allowable stresses of the ASME code, and the maximum displacement at the top of the flow tube is within the displacement limit. Therefore any damage on the structural integrity is not expected when the irradiation test is performed using the in-chimney bracket

  4. Plastic Solar Cells: A Multidisciplinary Field to Construct Chemical Concepts from Current Research

    Science.gov (United States)

    Gomez, Rafael; Segura, Jose L.

    2007-01-01

    Examples of plastic solar-cell technology to illustrate core concepts in chemistry are presented. The principles of operations of a plastic solar cell could be used to introduce key concepts, which are fundamentally important to understand photosynthesis and the basic process that govern most novel optoelectronic devices.

  5. Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The structural and optical characterizations of ZnO nanoflowers were carried out on ITO by hydrothermal method. • Dye sensitized solar cell based ZnO nanoflowers were constructed on substrate. • The surface morphology effect on quantum efficiency and solar conversion efficiency were investigated. - Abstract: 3-dimensional ZnO nanoflower were obtained on FTO (F:SnO2) substrate by hydrothermal method in order to produce high efficiency dye sensitized solar cells (DSSCs). We showed that nanoflowers structures have nanoscale branches that stretch to fill gaps on the substrate and these branches of nano-leaves provide both a larger surface area and a direct pathway for electron transport along the channels. It was found that the solar conversion efficiency and quantum efficiency (QE) or incident photon to current conversion efficiencies (IPCE) is highly dependent on nanoflower surface due to high electron injection process. The highest solar conversion efficiency of 5.119 and QE of 60% was obtained using ZnO nanoflowers/N719 dye/I?/I?3 electrolyte. In this study, three dimensional (3D)-nanoflower and one dimensional (1D)-nanowires ZnO nanostructures were also compared against each other in respect to solar conversion efficiency and QE measurements. In the case of the 1D-ZnO nanowire conversion efficiency (?) of 2.222% and IPCE 47% were obtained under an illumination of 100 mW/cm2. It was confirmed that the performance of the 3D-nanoflowers was better than about 50% that of the 1D-nanowire dye-sensitized solar cells

  6. Feasibility of utilising solar-induced ventilation in Malaysia

    International Nuclear Information System (INIS)

    The feasibility of applying solar-induced ventilation in a typical Malaysian house measuring 3 m high x wide x 5 m deep was considered based on experimental results obtained from a laboratory-scale model. A wall-type solar chimney was considered. The design of the solar chimney incorporated providing a glass panel alongside a vertical wall of a building. Openings at the top and bottom of the wall allowed fresh air to be introduced into the building. Simulations obtained from a simple theoretical model showed that the solar chimney was able to induce air flow rates of between 640 to 1040 m3 h-1 with a 0.3 m air gap. These ventilation rates are found to be in compliance with codes specified by ASHRAE and the Uniform Building By-laws. Full scale studies would need to be conducted in order to evaluate its effectiveness especially the flow pattern in the room

  7. Validation experiments of the chimney model for the operational simulation of hydrogen recombiners

    International Nuclear Information System (INIS)

    The calculation program REKO-DIREKT allows the simulation of the operational behavior of a hydrogen recombiner during accidents with hydrogen release. The interest is focused on the interaction between the catalyst insertion and the chimney that influences the natural ventilation and thus the throughput through the recombiner significantly. For validation experiments were performed with a small-scale recombiner model in the test facility REKO-4. The results show the correlation between the hydrogen concentration at the recombiner entrance, the temperature on catalyst sheets and the entrance velocity using different chimney heights. The entrance velocity increases with the heights of the installed chimney that influences the natural ventilation significantly. The results allow the generation of a wide data base for validation of the computer code REKO-DIREKT.

  8. New energy from an old chimney; Nieuwe energie uit een oude schoorsteen

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J. [BAM Techniek, Benningbroek (Netherlands)

    2013-07-15

    A new purpose has been found for the unused monumental stack chimney at the Eindhoven University of Technology. The idea is to use the chimney to provide free cooling. Using advanced simulation and analysis methods, the feasibility of the concept was studied. The results show that it is indeed possible to use the chimney effectively to provide free cooling to the neighbouring Ceres (Central Energy and Control Station) building [Dutch] De ongebruikte monumentale schoorsteen van de Universiteit Eindhoven is nieuw leven ingeblazen door hem in te zetten voor vrije koeling. Een studie naar de haalbaarheid hiervan is uitgevoerd met behulp vangeavanceerde simulatie en analysetechnieken. Het is gebleken dat de schoorsteen inderdaad effectief kan worden ingezet voor het leveren van koeling aan het naastgelegen Ceres (Centraal Energie en Regelstation) gebouw.

  9. Experimental investigation and construction of PV solar tracker control system using image processing

    OpenAIRE

    morteza taki; yahya ajabshirchi; hossein behfar; mohsen taki

    2011-01-01

    The sun tracking system of a solar panel based on computer image processing of a shadow is investigated. This is done by using a camera to obtain the picture of a shadow on a screen by solar panel displacements. This system is independent respect to geographical location of the solar panel and periodical alignments such as daily or monthly regulations. The collected energy was measured and compared with that on a fixed surface tilted at towards the South. The results indicate that the measure...

  10. A Semi-Empirical Model for Tilted-Gun Planar Magnetron Sputtering Accounting for Chimney Shadowing

    Science.gov (United States)

    Bunn, J. K.; Metting, C. J.; Hattrick-Simpers, J.

    2015-01-01

    Integrated computational materials engineering (ICME) approaches to composition and thickness profiles of sputtered thin-film samples are the key to expediting materials exploration for these materials. Here, an ICME-based semi-empirical approach to modeling the thickness of thin-film samples deposited via magnetron sputtering is developed. Using Yamamura's dimensionless differential angular sputtering yield and a measured deposition rate at a point in space for a single experimental condition, the model predicts the deposition profile from planar DC sputtering sources. The model includes corrections for off-center, tilted gun geometries as well as shadowing effects from gun chimneys used in most state-of-the-art sputtering systems. The modeling algorithm was validated by comparing its results with experimental deposition rates obtained from a sputtering system utilizing sources with a multi-piece chimney assembly that consists of a lower ground shield and a removable gas chimney. Simulations were performed for gun-tilts ranging from 0° to 31.3° from the vertical with and without the gas chimney installed. The results for the predicted and experimental angular dependence of the sputtering deposition rate were found to have an average magnitude of relative error of for a 0°-31.3° gun-tilt range without the gas chimney, and for a 17.7°-31.3° gun-tilt range with the gas chimney. The continuum nature of the model renders this approach reverse-optimizable, providing a rapid tool for assisting in the understanding of the synthesis-composition-property space of novel materials.

  11. Design, construction and test run of a two-tonne capacity solar rice dryer with rice-husk-fired auxiliary heater

    International Nuclear Information System (INIS)

    The design and construction details of a two-tonne per batch capacity natural-circulation solar rice dryer and the highlights of the design of its rice-husk-fired auxiliary heating system which is still under construction are presented. The dryer measures approximately 17.7m long by 9.8m wide by 6m high. Preliminary results of a test run on the solar dryer section only is reported. (author). 5 refs, 3 figs

  12. Structural Integrity Evaluation of an New In-Chimney Bracket Structures for HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Lee, Jung Hee; Jung, Hoan Sung; Seo, Choon Gyo; Shin, Jin Won

    2007-12-15

    In HANARO are there provided three hexagonal irradiation holes (CT, IR1 and IR2) in the central region of the core while four circular irradiation holes (OR3 {approx} OR6) in the outer core. There exist two types of irradiation facilities: uninstrumented or instrumented. The uninstrumented irradiation facility is little influenced by the coolant flow. But the dynamic behavior by the flow-induced vibration (FIV) and seismic loads is expected to largely occur in case of the instrumented test facility due to the long guide tube to protect the instrumentation cables. To suppress this dynamic behavior of the facility, the in-chimney bracket was designed. As a supplementary supporting structure for irradiation facility, this bracket will hold guide tubes whose holding position of the instrumented facility in CT or IR is the middle part of the instrumented facility between the hole spider and the robot arm already provided in the reactor pool liner. On the while, the bracket will grip the upper part of the guide tube when it is applied to hold the instrumented facility loaded in OR sites. Therefore it is believed that the irradiation test can be successfully conducted since this bracket can reduce the FIV and dynamic response to seismic load as well. In new in-chimney bracket, IR1 is reserved for IPS(In-Pile Section) so only CT/IR2 guide tubes are supported by CT/IR clamp units and the shape of In-chimney bracket is redesigned. For evaluating the structural integrity on the new in-chimney bracket and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response analyses of new in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE(0.1g) and SSE(0.2g) are performed. The response shows that the stress values for main points on the reactor structures and the new in-chimney bracket for seismic loads are within the ASME Code limits. It is also confirmed that the fatigue usage factor is much less than 1.0. Therefore any damage on structural integrity is not expected when a new in-chimney bracket is installed in the upper part of the reactor chimney.

  13. Structural Integrity Evaluation of an New In-Chimney Bracket Structures for HANARO

    International Nuclear Information System (INIS)

    In HANARO are there provided three hexagonal irradiation holes (CT, IR1 and IR2) in the central region of the core while four circular irradiation holes (OR3 ? OR6) in the outer core. There exist two types of irradiation facilities: uninstrumented or instrumented. The uninstrumented irradiation facility is little influenced by the coolant flow. But the dynamic behavior by the flow-induced vibration (FIV) and seismic loads is expected to largely occur in case of the instrumented test facility due to the long guide tube to protect the instrumentation cables. To suppress this dynamic behavior of the facility, the in-chimney bracket was designed. As a supplementary supporting structure for irradiation facility, this bracket will hold guide tubes whose holding position of the instrumented facility in CT or IR is the middle part of the instrumented facility between the hole spider and the robot arm already provided in the reactor pool liner. On the while, the bracket will grip the upper part of the guide tube when it is applied to hold the instrumented facility loaded in OR sites. Therefore it is believed that the irradiation test can be successfully conducted since this bracket can reduce the FIV and dynamic response to seismic load as well. In new in-chimney bracket, IR1 is reserved for IPS(In-Pile Section) so only CT/IR2 guide tubes are supported by CT/IR clamp units and the shape of In-chimney bracket is redesigned. For evaluating the structural integrity on the new in-chimney bracket and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response analyses of new in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE(0.1g) and SSE(0.2g) are performed. The response shows that the stress values for main points on the reactor structures and the new in-chimney bracket for seismic loads are within the ASME Code limits. It is also confirmed that the fatigue usage factor is much less than 1.0. Therefore any damage on structural integrity is not expected when a new in-chimney bracket is installed in the upper part of the reactor chimney

  14. Construction and testing of a transportable solar adsorption refrigerator; Construction et test d'un refrigerateur solaire a adsorption transportable

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J.; Dind, P.

    2002-07-01

    The report describes the development of an autonomous solar adsorption refrigerator characterized by its compactness and transportability. The refrigerator utilizes water as the working fluid and silicagel as the adsorbent and operates discontinuously over the day/night cycle. For a cooling volume of about 100 liters a collector-adsorber surface of 1 m{sup 2} is required and the total mass of the system amounts to about 150 kg. In order to keep its mass as low as possible the apparatus has been built with light weight materials. The cold-storage room has been insulated with a high-performance insulation material, thus minimizing thermal losses without excessively reducing the cooled volume. A new automatic valve system has been developed making superfluous any manual manipulation during normal operation. The dimensioning of the cooling system allows to cool the equivalent of 2.5 to 3.7 kg of water by 30 K daily in a climate of the Sahelien type. The cooling energy is stored in the form of ice in the evaporator and allows to bridge a period of three overcast-sky days. The construction of the solar refrigerator was made in cooperation with small regional enterprises and workshops. The cooperation with a non governmental organization allowed to test the system from May to September 2002 in a Subsaharian region of Africa where an equivalent model had been built using locally available materials. Likewise, a market study has been made in Burkina Faso in order to analyze the potential of solar adsorption refrigerators in this region. The result of the study suggests that the opening of a production workshop for such refrigerators in Burkina Faso is promising.

  15. Re-construction of global solar radiation time series from 1933 to 2013 at the Izaña Atmospheric Observatory

    Directory of Open Access Journals (Sweden)

    R. D. García

    2014-04-01

    Full Text Available This paper presents the re-construction of the 80 year time series of daily global shortwave downward radiation (SDR at the subtropical high-mountain Izaña Atmospheric Observatory (IZO, Spain. For this purpose, we combine SDR estimates from sunshine duration (SD data using the Ångström–Prescott method over the 1933/1991 period, and SDR observations directly performed by pyranometers between 1992 and 2013. Since SDR measurements have been used as a reference, a strict quality control has been applied, when it was not possible data have been re-calibrated by using the LibRadtran model. By comparing to high quality SDR measurements, the precision and consistency over time of SDR estimations from SD data have successfully been documented. We obtain a overall root mean square error (RMSE of 9.2% and an agreement between the variances of SDR estimations and SDR measurements within 92% (correlation coefficient of 0.96. Nonetheless, this agreement significantly increases when the SDR estimation is done considering different daily fractions of clear sky (FCS. In that case, RMSE is reduced by half, up to about 4.5%, when considering percentages of FCS > 40% (90% of days in the testing period. Furthermore, we prove that the SDR estimations can monitor the SDR anomalies in consistency with SDR measurements and, then, can be suitable for re-constructing solar radiation time series. The re-constructed IZO global SDR time series between 1933 and 2013 confirms discontinuities and periods of increases/decreases of solar radiation at Earth's surface observed at a global scale, such as the early brightening, dimming and brightening. This fact supports the consistency of the IZO SDR time series presented in this work, which may be a reference for solar radiation studies in the subtropical North Atlantic region.

  16. Re-construction of global solar radiation time series from 1933 to 2013 at the Izaña Atmospheric Observatory

    Science.gov (United States)

    García, R. D.; Cuevas, E.; García, O. E.; Cachorro, V. E.; Pallé, P.; Bustos, J. J.; Romero-Campos, P. M.; de Frutos, A. M.

    2014-04-01

    This paper presents the re-construction of the 80 year time series of daily global shortwave downward radiation (SDR) at the subtropical high-mountain Izaña Atmospheric Observatory (IZO, Spain). For this purpose, we combine SDR estimates from sunshine duration (SD) data using the Ångström-Prescott method over the 1933/1991 period, and SDR observations directly performed by pyranometers between 1992 and 2013. Since SDR measurements have been used as a reference, a strict quality control has been applied, when it was not possible data have been re-calibrated by using the LibRadtran model. By comparing to high quality SDR measurements, the precision and consistency over time of SDR estimations from SD data have successfully been documented. We obtain a overall root mean square error (RMSE) of 9.2% and an agreement between the variances of SDR estimations and SDR measurements within 92% (correlation coefficient of 0.96). Nonetheless, this agreement significantly increases when the SDR estimation is done considering different daily fractions of clear sky (FCS). In that case, RMSE is reduced by half, up to about 4.5%, when considering percentages of FCS > 40% (90% of days in the testing period). Furthermore, we prove that the SDR estimations can monitor the SDR anomalies in consistency with SDR measurements and, then, can be suitable for re-constructing solar radiation time series. The re-constructed IZO global SDR time series between 1933 and 2013 confirms discontinuities and periods of increases/decreases of solar radiation at Earth's surface observed at a global scale, such as the early brightening, dimming and brightening. This fact supports the consistency of the IZO SDR time series presented in this work, which may be a reference for solar radiation studies in the subtropical North Atlantic region.

  17. Coaxial tubular solar collector constructed from polymeric materials: an experimental and transient simulation study

    International Nuclear Information System (INIS)

    An experimental study and a simulation model describing a coaxial tubular solar collector fabricated from polymeric materials, consisting of an inner black tube as a solar energy absorber in intimate contact with an outer transparent tube as an insulator, having the potential to provide low grade thermal energy at reasonable costs is reported. The simulation model describes the transient performance of the coaxial tubular polymeric solar collector utilizing non-linear equations solved by a difference splitting technique. The simulation model was first validated utilizing the experimental data and was then used to determine the optimal design parameters, viz. the inner, black absorber, and outer, transparent insulator, tube thicknesses. In addition, the effect of an annular air filled gap between the coaxial tubes on system performance was also studied. The results of the experimental and simulations studies are reported together with the optimal design specifications

  18. Constructing a One-solar-mass Evolutionary Sequence Using Asteroseismic Data from Kepler

    DEFF Research Database (Denmark)

    Silva Aguirre, V.; Chaplin, W.J.

    2011-01-01

    Asteroseismology of solar-type stars has entered a new era of large surveys with the success of the NASA Kepler mission, which is providing exquisite data on oscillations of stars across the Hertzsprung-Russell diagram. From the time-series photometry, the two seismic parameters that can be most readily extracted are the large frequency separation (??) and the frequency of maximum oscillation power (?max). After the survey phase, these quantities are available for hundreds of solar-type stars. By scaling from solar values, we use these two asteroseismic observables to identify for the first time an evolutionary sequence of 1 M sun field stars, without the need for further information from stellar models. Comparison of our determinations with the few available spectroscopic results shows an excellent level of agreement. We discuss the potential of the method for differential analysis throughout the main-sequence evolution and the possibility of detecting twins of very well-known stars.

  19. Application of Bejan’s Constructal Theory to a Solar Collector System. Part I: The Fundamentals to Define the First Construction

    Directory of Open Access Journals (Sweden)

    Jorge Ojeda

    2010-11-01

    Full Text Available In the present work, we develop a theoretical scheme that establishes the fundamentals of the first construction for a solar collector system. In particular, the first construction is divided in two elements: a solar cavity and the fluid that is heated. For the cavity, we assume a natural convective regime that for small values of Rayleigh number conducts to that the heat transfer is dominated only by a conductive heat transfer regime. Meanwhile the other region, where the fluid is circulating in a circular tube, the forced convective mode, is prevailed. The dimensionless temperature profiles, in both regions, are calculated theoretically and the minimization conditions for the dimensionless heating time of the fluid is found by this first construction.

  20. Design, construction and operation of spherical solar cooker with automatic sun tracking system

    International Nuclear Information System (INIS)

    In this work, the effect of two axes tracking on a solar cooking system was studied. A dish was built to concentrate solar radiation on a pan that is fixed at the focus of the dish. The dish tracks the sun using a two axes sun tracking system. This system was built and tested. Experimental results obtained show that the temperature inside the pan reached more than 93 oC in a day where the maximum ambient temperature was 32 oC. This temperature is suitable for cooking purposes and this was achieved by using the two axes sun tracking system.

  1. Combining interventions: improved chimney stoves, kitchen sinks and solar disinfection of drinking water and kitchen clothes to improve home hygiene in rural Peru L’association d’interventions - améliorer les cuisinières à bois, mettre en place des éviers, désinfecter l’eau domestique et le linge de cuisine par le solaire – permet d’améliorer l’hygiène dans les foyers ruraux du Pérou Intervenciones combinadas: mejorar las cocinas a leña, instalar fregaderos y desinfectar el agua para beber y los paños de cocina con energía solar para mejorar la higiene en hogares rurales en Perú

    Directory of Open Access Journals (Sweden)

    Ana I. Gil

    2012-05-01

    Full Text Available Home based interventions are advocated in rural areas against a variety of diseases. The combination of different interventions might have synergistic effects in terms of health improvement and cost effectiveness. However, it is crucial to ensure cultural acceptance. The aim of the study was to develop an effective and culturally accepted home-based intervention package to reduce diarrhoea and lower respiratory illnesses in children. In two rural Peruvian communities we evaluated the performance and acceptance of cooking devices, household water treatments (HWT and home- hygiene interventions, with qualitative and quantitative methods. New ventilated stove designs reduced wood consumption by 16%. The majority of participants selected solar water disinfection as HWT in a blind tasting. In-depth interviews on hygiene improvement further revealed a high demand for kitchen sinks. After one year of installation the improved chimney stoves and kitchen sinks were all in use.  The intervention package was successfully adapted to local customs, kitchen-, home- and hygiene management. High user satisfaction was primarily driven by convenience gains due to the technical improvements and only secondarily by perceived health benefits.Les interventions à domicile sont recommandées dans les zones rurales pour éviter diverses maladies. L’association de différentes interventions entraîne une synergie en termes d’amélioration de la santé et de rapport coût-efficacité. Il est cependant crucial d’obtenir l’adhésion de la population. Le but de l’étude était d'élaborer un programme d’interventions à domicile, efficaces et acceptées par la population, visant à réduire la diarrhée et les affections des voies respiratoires basses chez l’enfant. Nous avons évalué, dans deux communautés rurales du Pérou, l’efficacité et l’acceptation d’appareils de cuisson, des traitements de l’eau domestique (HWT et d’interventions d’hygiène à domicile à l’aide de méthodes qualitatives et quantitatives. De nouvelles cuisinières avec ventilation ont permis de réduire la consommation de bois de 16 %. La majorité des participants ont choisi la désinfection solaire de l’eau comme moyen de HWT lors d’un essai à l’aveugle. Des entretiens approfondis sur l’amélioration de l’hygiène ont en outre révélé une forte demande d’éviers. Un an après leur installation, les nouvelles cuisinières et les éviers sont tous utilisés. Le programme d’interventions a été adapté avec succès aux coutumes locales, à la gestion de la cuisine, du foyer et de l’hygiène. Le haut degré de satisfaction des utilisateurs résulte en premier lieu des bénéfices obtenus en termes de commodité dus aux améliorations techniques, et, en second lieu, des bénéfices obtenus en termes de santé.Las intervenciones en los hogares en áreas rurales se recomiendan para luchar contra una variedad de enfermedades. Combinar distintas intervenciones puede tener efectos de sinergia en cuanto a mejorar la salud y la rentabilidad. Sin embargo, es indispensable lograr la aceptación cultural. El objeto de este estudio fue desarrollar un paquete de intervención en el hogar eficaz y culturalmente aceptado para reducir la diarrea y las enfermedades de las vías respiratorias inferiores en niños. En dos comunidades rurales en Perú, se evaluó el rendimiento y la aceptación de dispositivos de cocina, tratamientos de agua doméstica (HWT e intervenciones de higiene del hogar, con métodos cualitativos y cuantitativos. El nuevo diseño de las cocinas reduce el consumo de madera en un 16 %. La mayoría de los participantes eligió la desinfección solar del agua como método de HWT en una cata ciega. Las entrevistas detalladas acerca de las mejoras de la higiene también revelaron una alta demanda de fregaderos. Un año después de ser instaladas, las cocinas mejoradas y los fregaderos estaban todos en uso. El paquete de intervención fue adaptado con éxito a las costumbres locales y de gestión de la cocin

  2. Novel construction of CdTe solar cell based on polyketanil structure

    International Nuclear Information System (INIS)

    A novel concept of CdS/CdTe solar cell structure utilisation for BIPV concept is reported. ICSVT as the base manufacturing technology is presented, in the background of its new properties investigation. Technological concepts of the cadmium telluride structure employment in its new application field are described.

  3. Constructing a one-solar-mass evolutionary sequence using asteroseismic data from \\textit{Kepler}

    CERN Document Server

    Aguirre, V Silva; Ballot, J; Basu, S; Bedding, T R; Serenelli, A M; Verner, G A; Miglio, A; Monteiro, M J P F G; Weiss, A; Appourchaux, T; Bonanno, A; Broomhall, A M; Bruntt, H; Campante, T L; Casagrande, L; Corsaro, E; Elsworth, Y; Garcia, R A; Gaulme, P; Handberg, R; Hekker, S; Huber, D; Karoff, C; Mathur, S; Mosser, B; Salabert, D; Schonrich, R; Sousa, S G; Stello, D; White, T R; Christensen-Dalsgaard, J; Gilliland, R L; Kawaler, S D; Kjeldsen, H; Houdek, G; Metcalfe, T S; Molenda-Zakowicz, J; Thompson, M J; Caldwell, D A; Christiansen, J L; Wohler, B

    2011-01-01

    Asteroseismology of solar-type stars has entered a new era of large surveys with the success of the NASA \\textit{Kepler} mission, which is providing exquisite data on oscillations of stars across the Hertzprung-Russell (HR) diagram. From the time-series photometry, the two seismic parameters that can be most readily extracted are the large frequency separation ($\\Delta\

  4. Constructing bulk heterojunction with componential gradient for enhancing the efficiency of polymer solar cells

    Science.gov (United States)

    Lu, Shudi; Liu, Kong; Chi, Dan; Yue, Shizhong; Li, Yanpei; Kou, Yanlei; Lin, Xuechun; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo

    2015-12-01

    Herein, high-efficient PTB7:PC71BM solar cells with bulk heterojunction being optimized by componential distribution have been realized by solvent treating the active layer with a series of alcohols. Subsequent characterizations including X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM) reveal that such treatment adjusts the distribution of PC71BM in the bulk heterojunction by making the concentration of PC71BM higher at the solvent treated surface in comparison with that close to the bottom electrode. Such morphological transformation enables the conventional structured devices with great advantages in exciton separation and charge transfer. Therefore, the power conversion efficiency could be remarkably improved from 6.57% to 7.74%. However, for the inverted structured polymer solar cells, the morphology evolution deteriorates the relevant performance, particularly in exciton separation and charge transfer. We attribute these contrary observations to the matching degree of charge transfer direction in the active layer with the charge collection direction in the entire device. Not only providing a designing principle for optimizing the structure of polymer solar cells according to the morphology of active layer, this paper also offers a comprehensive understanding about the influence of solvent treatment on the performance of polymer solar cells.

  5. D0 Solenoid Upgrade Project: Pressure Ratings for Some Chimney and Control Dewar Componenets

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, R.; /Fermilab

    1993-05-25

    Pressure rating calculations were done for some of the chimney and control dewar components. This engineering note documents these calculations. The table below summarizes the components looked at, and what pressure rating are. The raw engineering calculations for each of the components is given.

  6. Convection chimneys in three-phase magmas (Invited)

    Science.gov (United States)

    Rust, A.; Fowler, A. C.; McGuinness, M. J.; Mitchell, S.

    2010-12-01

    Lavas are three-phase mixtures of viscous liquid (silicate melt), vapour bubbles and solid crystals. The contrasting density and deformability of the phases can lead to complex flows and segregation features. Here we focus on the origin of vertical cylinders of vesicular (bubbly) magma that form in many basalt lava flows that have been inflated by the injection of molten lava below a solid crust. The very top and bottom of the lava flows cool quickly enough for bubbles to be quenched in place but in the hot interior, bubbles rise easily and collect below the crust. The rise of bubbles leaves a non-vesicular core; however, as the base cools and crystallizes, water concentrates in the residual melt, and new bubbles form in the mush, making the interstitial fluid (melt and bubbles) buoyant. Obstructed by crystals, the bubbles do not rise freely; rather, their growth causes segregation by pushing residual melt and bubbles out between the crystals. The bubbly residuum somehow rises through the lava in regularly-spaced vertical cylinders and then seems to spread laterally into vesicular sheets. The generally-accepted origin of the vesicular cylinders in lava flows is that bubbly residual fluid collects on the top of mush at the base of the lava and regularly-spaced bumps that become cylindrical conduits spontaneously grow from ambient noise once the buoyant layer thickness exceeds a critical value. However, our analogue experiments, combined with existing theory, suggest that such Rayleigh-Taylor instabilities are not the origin of the vesicular lava cylinders. An alternative explanation is ”mushy convection” where flow within a stationary crystallizing mush is driven by gradients in liquid density that are generated because some components are preferentially incorporated into the crystals leaving a buoyant residual liquid. Such mushy convection is known to focus flow in vertical “chimneys” devoid of crystals in mushy (crystal-rich) layers of sea ice and metal alloys. We present a theoretical and numerical analysis of mushy convection in lava as it cools from above and below. A mush layer grows upwards from the base of the flow and is overlain by crystal-poor lava. Rayleigh numbers for this crystal-poor magma indicate that it will convect vigorously, but since it is cooled from above and below, dense plumes of fluid will descend towards the lower unit, where they will pond, and deliver a conductive heat flux to the underlying mush. The model for convection within the mush itself assumes a simplified phase diagram for the magma, that the pore liquid and gas move homogeneously through the pore space of the mush, and also that the pressure in the liquid and gas phases are equal. One difference between classic mushy convection in metal alloys and mushy convection in lava, is that in the latter, the residual melt contains bubbles. The much lower bulk density of the bubbly fluid will help drive convection, although bubbles can reduce the effective permeability of the mush if bubbles are trapped in constrictions due to capillary stress.

  7. Translucent load-bearing GFRP envelopes for daylighting and solar cell integration in building construction

    OpenAIRE

    Pascual Agullo, Carlos

    2014-01-01

    This project investigates the light transmittance of load-bearing glass fiber-reinforced polymer (GFRP) laminates with a view to two architectural applications: the daylighting of buildings through load-bearing translucent GFRP envelopes and encapsulation of solar cells into the GFRP building skins of sandwich structures. The total and diffuse visible light transmittances of the laminates were experimentally investigated using a spectrophotometer coupled to an integrating sphere. The refracti...

  8. Solar thermal utilization--an overview

    International Nuclear Information System (INIS)

    Solar energy is an ideal renewable energy source and its thermal utilization is one of its most important applications. We review the status of solar thermal utilization, including: (1) developed technologies which are already widely used all over the world, such as solar assisted water heaters, solar cookers, solar heated buildings and so on; (2) advanced technologies which are still in the development or laboratory stage and could have more innovative applications, including thermal power generation, refrigeration, hydrogen production, desalination, and chimneys; (3) major problems which need to be resolved for advanced utilizaiton of solar thermal energy. (authors)

  9. SOLAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    KALMÁR Ferenc

    2009-06-01

    Full Text Available The electrical energy import-export balance of Hungary is negative. The renewable energy sources will not solve the power supply of the country but there are cases when these systems offer an optimal solution for energy supply of special establishments. This paper presents the possibilities of power production using solar energy. The efficiency of power production using different systems is analysed taking into consideration the Hungarian climate and design parameters. Different solutions of power plant conception are presented comparing the efficiency of power production process. Beside the well known photovoltaic systems, the solar trough, the solar dish/engine system, the solar power tower, the solar chimney, the solar lake is presented.

  10. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    Science.gov (United States)

    Welser, Roger E. (Inventor); Sood, Ashok K. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  11. Microbial lipid remnants within sulfide chimneys reveal organic matter transport in seafloor hydrothermal systems

    Science.gov (United States)

    Reeves, E.; Goldenstein, N. I.; Yoshinaga, M. Y.; Pjevac, P.; Bach, W.; Hinrichs, K.

    2013-12-01

    Several investigations have detected enigmatic evidence for microbial life in high-temperature (>150°C) interiors of hydrothermal vent ';chimney' structures - habitats much hotter than the known temperature limit of life. It is unclear whether these findings reflect fluid ingress after collection, cross-contamination with exterior microbial biomass, or genuine natural phenomena. While the abundant microbial biomass on the exteriors of vent edifices has been more commonly characterized, the origin of biomolecules inside these structures is poorly understood. In this study, we used a novel ';clean' sampling approach to investigate these interior regions in both a moderate temperature ';diffuser' and an inactive ';smoker' chimney structure from the Manus Basin, and use microbial DNA- and detailed lipid-based characterization to elucidate provenances. Mineralogical analysis using scanning-electron- and reflected-light-microscopy suggests vent fluid temperatures of up to ~200°C for the diffuser and >200°C during previous venting of the inactive chimney. No DNA could be amplified from any interior samples and cell membrane intact polar lipids were only recovered from the outer surfaces of the structures, precluding the possibility of active microbial communities in interior regions of either. Free fatty acids from bacteria, however, were abundant in the inactive chimney, including the previously high temperature interior, suggesting possible microbial colonization of the interior or inward transport of biomass during waning of fluid flow. Free fatty acids were not detected in the interior of the active diffuser chimney, consistent with uninhabitable temperatures for microbes and outward fluid flow. In contrast to fatty acids, archaeal core diether and tetraether lipid remnants with distinctive provenances were present in interior and exterior samples from both structures. Principal component analysis (PCA) of these mixtures reveals gradients in their distribution, with presumed hyperthermophilic archaeal lipid remnants more prevalent in interior and more mesophilic lipids in outer regions of the inactive chimney. Diffuser interior samples, however, are highly unusual, in that they contain presumed mesophilic archaeal core lipids, despite uninhabitable temperatures. Thermal degradation of an in situ microbial community (e.g. due to transient fluid flow variability) is a possible explanation, but the nature of these lipids suggests they may instead reflect transport and pyrolysis of microbial material from lower temperature mixing zones within the crustal aquifer. Not only does this study broaden our understanding of lipid biomolecule distribution in the interiors of sulfide edifices, it provides an initial evaluation of possible sources and implications for carbon cycling in seafloor hydrothermal systems.

  12. Optical and structural characterization od titanium dioxide films used for construction of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    The dye-sensitized solar cells are the most serious concept that could replace the silicon solar cells. These are low-cost photovoltaic, and represent a technology which could seriously decrease the cost of the electrical energy they produce. The dye-sensitized solar cells are composed of several layers of materials that belong to the group of inorganic semiconductors. For the efficiency improvement of these cells, there are two basic concepts of research regarding the construction materials. On one side, investigation of new materials that will, as a result of their physical and electrochemical characteristics, increase the cell efficiency, and on the other side, use of materials that will contribute to the long term stability of the cell in atmospheric conditions. As a part of this Master thesis, compact and meso porous Ti(>2 films for dye- sensitized solar cells have been prepared. The compact Ti02 films were deposited with the technique of spray pyrolysis, and the preparation of the meso porous films was made with a blade casting technique. The optical and structural analysis and characterization of the films was done with optical spectroscopy in the visible and ultraviolet spectral region (UV- Vis), Raman spectroscopy and atomic force microscopy (AFM). The crystal structure of the films, surface uniformity, thickness and grain size dependence on the deposition parameters was investigated, this led to calculation of the optical constants for the compact films, as well as the determination of the electron transitions and the determination of the bang gap energy. Also regarding the structure and porosity of the meso porous films, characterization of the quality of the film depending on the chemical composition of the paste used for deposition was made. As a result of the preformed investigations, through defining the structural and optical parameters of quality compact and meso porous TiC>2 films for dye-sensitized solar cells, the optimal parameters for film deposition have been identified, establishing a straightforward and simple process for deposition of quality TiC>2 films with spray pyrolysis and blade casting. (Author)

  13. A Contemporary Analysis of the O'Neill-Glaser Model for Space-Based Solar Power and Habitat Construction

    Science.gov (United States)

    Curreri, Peter A.; Detweiler, Michael K.

    2011-01-01

    In 1975 Gerard O Neill published in the journal Science a model for the construction of solar power satellites. He found that the solar power satellites suggested by Peter Glaser would be too massive to launch economically from Earth, but could be financially viable if the workforce was permanently located in free space habitats and if lunar and asteroid materials were used for construction. All new worldwide electrical generating capacity could be then achieved by solar power satellites. The project would financially break even in about 20 years after which it would generate substantial income selling power below fossil fuel prices. Two NASA / Stanford University led studies at Ames Research center during the summers of 1974 and 1976 found the concept technically sound and developed a detailed financial parametric model. Although the project was not undertaken when suggested in the 1970s, several contemporary issues make pursuing the O Neill -- Glaser concept more compelling today. First, our analysis suggests that if in the first ten years of construction that small habitats (compared to the large vista habitats envisioned by O Neill) supporting approximately 300 people were utilized, development costs of the program and the time for financial break even could be substantially improved. Second, the contemporary consensus is developing that carbon free energy is required to mitigate global climate change. It is estimated that 300 GW of new carbon free energy would be necessary per year to stabilize global atmospheric carbon. This is about 4 times greater energy demand than was considered by the O Neill Glaser model. Our analysis suggests that after the initial investments in lunar mining and space manufacturing and transportation, that the profit margin for producing space solar power is very high (even when selling power below fossil fuel prices). We have investigated the financial scaling of ground launched versus space derived space solar power satellites. We find that for the carbon mitigation case even modernized ground launched space solar power satellites are not financially viable. For space derived solar power satellites, however, the increased demand makes them break even substantially sooner and yield much higher profit. Third, current awareness is increasing about the dangers of humanity remaining a single planet species. Our technological power has been increasing relative to the size of the planet Earth. Since the middle of the 20th century our technological power has grown large relative to our planet's size. This presents a very real potential for human self-extinction. We argue that the potential for human self-extinction is increasing with time in proportion to the exponential growth of our technological power making self-extinction likely within this century if humanity remains a single planet species. The O Neill model of multiple independent free space habitats, it is argued, can protect humanity from extinction in the same way that portfolio diversification protects ones assets from total loss. We show that about 1 million people for the electricity only case, and about 1 billion people for the carbon mitigation case, can be provided with permanent space habitats and transportation from Earth in 30 years and can be funded by the space derived solar power satellite program. 1.2 Scope of this Chapter The goal of this chapter is to illustrate the power and importance of the O'Neill-Glaser concept in the context of human survival and maintaining a healthy planet Earth. We argue that at this point in human history our technological power is too dangerous to our selves and our home planet for us not to expand into space. We show by the models presented in the chapter that the imminent dangers of global warming and human self-extinction mandate that humanity move aggressively into the solar system in this generation. We show that the production of solar power satellites using space resources and with a work foe living in space provides a viable financial model to mitigate CO2 preventing the worst global w

  14. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Long, R.C.

    1996-12-31

    This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

  15. Variable solution projects for measuring: 1. The flue gases from the TPP chimneys; 2. The flue gases nearby the ground around the TPP or in populated site

    International Nuclear Information System (INIS)

    This paper is aimed to determine the possible variants for installation of electronic equipment for the environmental control in the TPP area. The system for control of the emissions for the TPP chimneys is installed on site and measures the following parameters: temperature, pressure and humidity of the flue gases and the air; velocity of the flue gases and the air; content of SO2, NOx, O2 and ashes in the flue gases and dust in the air. The system for monitoring of meteorological conditions and emissions in the surface atmosphere, close to the TPP and the populated area, is installed in the town and it measures the following parameters: temperature, pressure and humidity of the air, wind velocity, content of SO2, NOx and dust in the air and the solar radiation. Results from the measurements of these parameters are presented. Several variants for technical solution are presented and the optimal variants are chosen

  16. Analysis Study of Solar Tower Power Plant & Its Configuration Effects on Its Performance in Iraq (Baghdad City)

    OpenAIRE

    Mohammed H. Ali

    2013-01-01

    A solar chimney power plant model, consisting of a solar collector to produce a hot air when the incident solar radiation hit it, a solar chimney and a wind turbine with generator was investigated in this study. The mathematical model as a tool was used to study and analyze the performance of the power plant for electrical production in Baghdad city of Iraq as a result a mathematical equation was obtained for the hot air outlet temperature from the collector as a function of collector’s area ...

  17. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea

    Science.gov (United States)

    Sun, Zhilei; Wei, Helong; Zhang, Xunhua; Shang, Luning; Yin, Xijie; Sun, Yunbao; Xu, Lei; Huang, Wei; Zhang, Xianrong

    2015-01-01

    The East China Sea is an important marginal sea of the Western Pacific Ocean, from which natural gas hydrate sample has not been acquired so far. Recently, copious carbonate chimneys have been discovered in turbidite deposits in the olistostrome zone located on the west slope of the northern section of Okinawa Trough. Here, the petrology, geochemistry and chronology of an iron-rich carbonate chimney were characterized, confirming a close relationship between its formation and the dissociation of natural gas hydrate beneath the chimney in OT. A distinctive relationship has been observed between goethite and total carbonate contents along with a negative correlation between Fe and Ca contents. Conversely, abundant Fe accumulated on carbonate substrate by mineralized microorganisms. The ?13C values of the chimney wall were from -27.56 to -43.66‰ (average: -37.18‰, V-PDB), implying anaerobic oxidation of methane (AOM) as a predominant controlling factor on carbonate precipitation. As no pyrite and organic residues were identified in the iron-rich chimney, it was assumed that AOM was coupled to the iron reduction reaction at least to some extent during the chimney growth owing to the local deficiency of sulfate supply. The ?56Fe values of bulk chimney wall (ranging from -0.316‰ to -0.023‰, average -0.134‰) suggest mass and isotope exchanges between the chimney and ambient environment during its growth history, whereas the enrichment of ?18O of the carbonate implies these carbonate sourcing from hydrate dissociation underlying our sampling site. This assumption has been supported by a distinct bottom simulation reflector (BSR) and a well-developed fault system beneath the sampling site. This is the first report of cold seepage inside the OT and the identified iron-dependent AOM has shed a new light to the Carbon cycle related to the marine methane oxidation, particularly before the Great Oxidation Event ~2.45 Ga ago.

  18. Barometric pressure transient testing applications at the Nevada Test Site. Nuclear chimney analysis. Final report

    International Nuclear Information System (INIS)

    Investigations of barometric pressure testing of NTS nuclear chimneys were reviewed. This review includes the models used in the interpretation, methods of analysis, and results. Analytic and semi-analytic models were presented and applied to both historical data and new data taken for this current project. An interpretation technique based on non-linear least squares methods was used to analyze this data in terms of historic and more recent chimney models. Finally, a detailed discussion of radioactive gas transport due to surface barometric pressure fluctuations was presented. This mechanism of transport, referred to as ''barometric pumping,'' is presented in terms of conditions likely to be encountered at the NTS. The report concludes with a discussion of the current understanding of gas flow properties in the alluvial and volcanic areas of the NTS, and suggestions for future efforts directed toward increasing this understanding are presented

  19. D0 Solenoid Upgrade Project: Heat Load Calculations for the Solenoid Chimney

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, R.; /Fermilab

    1993-05-26

    This engineering note documents the calculations done to determine the chimney heat loads. These heat load numbers were reported in the D0 solenoid upgrade design report. The heat loads to the LN2 circuit were done by Andrew Stefanik, RDIMechanical Systems group. They were part of his LN2 shield calculations dated 2/23/93. Pages 1 thru 3 of his calculations that apply to the chimney are attached. The heat loads to the LHe circuit were done originally on 12/16/92 and then revised on 12/23/92 to be more conservative. The raw calculations are attached. I include both the original 12/16 version and the 12/23 revised version to document the amount of conservativeness added.

  20. Seismic chimneys in the Southern Viking Graben - Implications for palaeo fluid migration and overpressure evolution

    Science.gov (United States)

    Karstens, Jens; Berndt, Christian

    2015-02-01

    Detailed understanding of natural fluid migration systems is essential to minimize risks during hydrocarbon exploration and to evaluate the long-term efficiency of the subsurface storage of waste water and gas from hydrocarbon production as well as CO2. The Southern Viking Graben (SVG) hosts numerous focused fluid flow structures in the shallow (SVG hosts more than 46 large-scale vertical chimney structures, which can be divided in three categories implying different formation processes. Our analysis reveals that seal-weakening, formation-wide overpressure and the presence of free gas are required to initiate the formation of vertical fluid conduits in the SVG. The presence of numerous vertical fluid conduits implies inter-stratigraphic hydraulic connectivity, which significantly affects the migration of fluids in the subsurface. Chimney structures are important for understanding the transfer of pore pressure anomalies to the shallow parts of the basin.

  1. 75 FR 2133 - Construction and Operation of the Quartzsite Solar Energy Project, La Paz County, AZ (DOE/EIS-0440)

    Science.gov (United States)

    2010-01-14

    ...and Operation of the Quartzsite Solar Energy Project, La Paz County, AZ...EIS) for the proposed Quartzsite Solar Energy Project (Project) in La Paz County...Quartzsite, Arizona. Quartzsite Solar Energy, LLC (QSE) has applied to...

  2. Microbial Sulfur Cycle in Two Hydrothermal Chimneys on the Southwest Indian Ridge

    OpenAIRE

    Cao, Huiluo.; WANG, YONG; Lee, On On; Zeng, Xiang; Shao, Zongze; Qian, Pei-Yuan

    2014-01-01

    Sulfur is an important element in sustaining microbial communities present in hydrothermal vents. Sulfur oxidation has been extensively studied due to its importance in chemosynthetic pathways in hydrothermal fields; however, less is known about sulfate reduction. Here, the metagenomes of hydrothermal chimneys located on the ultraslow-spreading Southwest Indian Ridge (SWIR) were pyrosequenced to elucidate the associated microbial sulfur cycle. A taxonomic summary of known genes revealed a few...

  3. Design and Construction of Variable DC Source for Laboratory Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Hnin Mar Wai

    2014-10-01

    Full Text Available The purpose of this paper is to design and construct variable DC power supply for laboratory using switch mode DC to DC converter. The regulated power of a variable output voltage ranging is from 0 to 36 V with a maximum output current of 3A is presented in this paper. This variable DC power supply is based on the step-down and step-up output voltage process which use both buck and boost converter topologies. A switching converter comprise of capacitors, an inductor, a diode and a switch. DC power supply is an essential device for most of electrical circuits and engineering students. The benefits of this design are; reduce size, less expensive and energy save. In this design, a microcontroller is used to control output voltage for precise and stability. The output voltage and duty cycle is displayed with LCD display.

  4. The application of masonry chimney venting tables for oil-fired appliances

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F.; Strasser, J. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    This paper presents an overview of the results of work in developing a set of rational guidelines for the venting of modern oil-fired appliances. The activities included the continued development and completion of the Oil-Heat Vent Analysis Program (OHVAP), Version 1.0 and the interpretation of nearly 2,000 runs in preparing recommendations for presentation in table form. These results are presented in the form of venting tables for the installation of chimney vent systems for mid- and high-efficiency oil-fired heating appliances using masonry chimneys. A brief description of OHVAP is given as well as a discussion of what the program does. Recommendations based on the results of OHVAP are presented in the form of five tables spanning oil-fired appliance Steady state Efficiencies (Eff{sub ss}) of 80% to 88%. The assumptions used in the calculations and examples of the computed results are presented as well as a discussion of the rationale for masonry chimney system treatment. Working examples are given with suggested diagnostic approaches for application of the table recommendations.

  5. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m2 and averages of daily solar irradiation are larger than 5.0 kW h/m2/day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ? Scenarios for solar thermal applications are presented. ? Payback is typically below 4 years for small scale water heating systems. ? Large-scale water heating systems also present high feasibility. ? The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  6. Continuous In Situ Measurements of Near Bottom Chemistry and Sediment-Water Fluxes with the Chimney Sampler Array (CSA)

    Science.gov (United States)

    Martens, C. S.; Mendlovitz, H. P.; White, B. L.; Hoer, D.; Sleeper, K.; Chanton, J.; Wilson, R.; Lapham, L.

    2011-12-01

    The Chimney Sampler Array (CSA) was designed to measure in situ chemical and physical parameters within the benthic boundary layer plus methane and oxygen sediment-water chemical fluxes at upper slope sites in the northern Gulf of Mexico. The CSA can monitor temporal changes plus help to evaluate oceanographic and sub-seafloor processes that can influence the formation and stability of gas hydrates in underlying sediments. The CSA consists of vertical cylinders (chimneys) equipped with internal chemical sensors and with laboratory flume-calibrated washout rates. Chimney washout rates multiplied by chimney mean versus ambient concentrations allow calculation of net O2 and methane sediment-water fluxes. The CSA is emplaced on the seafloor by a ROVARD lander using a ROV for chimney deployments. The CSA presently includes two 30 cm diameter by 90 cm length cylinders that seal against the sediment with lead pellet beanbags; within each chimney cylinder are optode, conductivity and methane sensors. The CSA's data logger platform also includes pressure and turbidity sensors external to the chimneys along with an acoustic Doppler current meter to measure temporal variation in ambient current velocity and direction. The CSA was deployed aboard a ROVARD lander on 9/13/2010 in the northern Gulf of Mexico (Lat. 28 51.28440, Long. 088 29.39421) on biogeochemically active sediments within Block MC-118. A ROV was utilized for chimney deployment away from the ROVARD lander. The CSA monitored temporal changes in water column physical parameters, obtained near-bottom chemical data to compare with pore fluid and sediment core measurements and measured temporal variability in oxygen and methane sediment-water fluxes at two closely spaced stations at MC-118. A continuous, three-week data set was obtained that revealed daily cycles in chemical parameters and episodic flux events. Lower than ambient chimney dissolved O2 concentrations controlled by temporal variability in washout rates were used to calculate sediment O2 demand. Episodic events yielding turbidity spikes produced episodic spikes in chimney methane concentrations and sediment-water fluxes. The robust data set reveals new capabilities for long-term monitoring of near-bottom processes in biogeochemically active, continental margin environments.

  7. Biogeochemistry of Hydrothermal Chimney Environments: Continuous-Flow Experiments at in situ Temperature and Pressure

    Science.gov (United States)

    Houghton, J.; Seyfried, W.; Reysenbach, A.; Banta, A.; von Damm, K.

    2002-12-01

    Recent interest in the existence of a subsurface microbial biosphere at hydrothermal vents has resulted in a plethora of new questions that might best be answered using interdisciplinary techniques that combine geochemistry, microbial ecology, and molecular biology. Ideally, such studies will quantitatively address issues concerning what organisms exist in the subsurface, what metabolisms are sustained in the hydrothermal environment, and what effects these active organisms might have on the nearby fluid and rock. We present a new experimental approach to studying these questions that enables monitoring of an active hydrothermal community of microbes in the presence of chimney material at in situ temperature and pressure. This apparatus is designed as a continuous-flow reactor from which fluid samples can be extracted during the course of the experiment to measure chemistry and biomass, and at the termination of an experiment solids can be extracted for analysis of mineralogical changes and microbial identification. Results of a series of experiments conducted using hydrothermal chimney material (solids and microbial community) collected from 21° N and 9° N East Pacific Rise are presented. At 70° C, a seawater-based fluid with additional NO3-, CO2(aq), and H2(aq) was reacted with chimney material from L vent, 9° N EPR. The fluid lost significant NO3-, PO43-, and gained SO42- even after accounting for the contribution from anhydrite dissolution. No significant sulfide or iron was observed in the fluid. Analysis of the DNA extracted from the solids at the termination of the experiment using partial 16S-rRNA sequence data revealed that the dominant bacteria were S-oxidizing tube worm endosymbionts, a S/NO3- reducing member of the Deferribacter genus, and a H2-oxidizing/NO3- reducing strain of Aquifex. Mineral analysis from before and after the experiment indicates the loss of pyrrhotite (FeS) and anhydrite (CaSO4), and the gain of an Fe-oxide phase tentatively identified using magnetic remnance and Mossbauer as goethite (FeOOH), responsible for the minimal Fe in solution. An abiotic control experiment was conducted under the same conditions, where the chimney material was first freeze-dried under vacuum, then autoclaved to sterilize without producing any artificial mineral changes. This experiment shows no loss of NO3-, PO43-, no additional SO42- gain after anhydrite dissolution, and a steadily increasing dissolved iron concentration, implying the net dissolution of pyrrhotite. Results from additional experiments testing different fluid chemistry, temperature, and source chimney similarly show linkages between the measured fluid chemistry, the identity of the dominant organisms in the experiment, and bulk changes in the mineralogy.

  8. Diffusion of solar energy technologies in the new-construction market: a survey of new solar-home and onventional-home buyers

    Energy Technology Data Exchange (ETDEWEB)

    Rains, D.; Dunipace, D.; Woo, C.K.

    1981-02-01

    Comsumer motivations for choosing a solar energy equipped new home when the non-solar or conventional model was also available were investigated. The approach was to test the relative importance of demographic, dwelling unit, and heating system characteristics in household decisions to purchase a home equipped with solar energy devices. Two statistical models were developed: one to examine the relationship between the types of home buyers (as an identifiable market segment) and the decision to purchase a solar home, and the other to compare the energy use of solar vs. conventional homes selected in the sample. (MHR)

  9. Solar chimney: A sustainable approach for ventilation and building space conditioning

    OpenAIRE

    Lal, S.; Kaushik, S.C.; Bhargav, P.K.

    2013-01-01

    The residential and commercial buildings demand increase with rapidly growing population. It leads to the vertical growth of the buildings and needs proper ventilation and day-lighting. The natural air ventilation system is not significantly works in conventional structure, so fans and air conditioners are mandatory to meet the proper ventilation and space conditioning. Globally building sector consumed largest energy and utmost consumed in heating, ventilation and space conditioning. This lo...

  10. Geodetical aspects of nuclear power plant construction

    International Nuclear Information System (INIS)

    The requirements of nuclear power plant construction and the problems of site selection are discussed. The need for construction capacity of the Hungarian nuclear power plant project is estimated. The geometrical base point network of the Paks Power Plant was designed and equalized by computer methods. The measurements have been made by electrooptical range finders. After equalization the network was further divided. The results of equalization and error analysis are presented. The requirements for geodetical surveying for the indoor construction are described. The leaning of the auxiliary boiler chimneys of the plant were studied by photogrammetry. (R.J.)

  11. Diffusion of solar energy technologies in the new-construction market: A survey of new solar-home and conventional-home buyers

    Science.gov (United States)

    Rains, D.; Dunipace, D.; Woo, C. K.

    1981-02-01

    Consumer motivations for choosing a solar energy equipped home when the nonsolar or conventional model was available were investigated. The approach was to test the relative importance of demographic, dwelling unit, and heating system characteristics in household decisions to purchase a home equipped with solar energy devices. Two statistical models were developed: one to examine the relationship between the types of home buyers (as an identifiable market segment) and the decision to purchase a solar home; and the other to compare the energy use of solar vs. conventional homes selected in the sample.

  12. Improvement of the Vertical Dispersion of Pollutants Resulting From Chimneys by Thermosiphon Effect

    Directory of Open Access Journals (Sweden)

    A. O.M. Mahmoud

    2006-01-01

    Full Text Available The dispersion of pollutants, resulting from industrial chimneys, in the surrounding atmosphere made the interest in realizing emitting conditions appears. It also encourages the vertical dispersion of these pollutants. At a given wind velocity, the height of this dispersion is essentially a function of the thermal power and the flow rate at the chimney exit. To improve these qualities, we propose a system that could be integrated to the industrial chimney exit. An open-ended vertical cylinder of larger diameter essentially constitutes this system. In order to determine the characteristics of the resulting flow, we simulated the problem in the laboratory while studying the evolution of a free thermal plume generated by a disk heated uniformly by the Joule effect at a constant temperature. The thermal plume expands in a quiet environment of isotherm temperature. To study the thermosiphon effect, we surrounded the plume source by a vertical cylinder opened at the extremities. Thermal radiation emitted by the hot disk heats the cylinder wall. The pressure drop due to the acceleration of the flow at the cylinder inlet causes the appearance of thermosiphon effect around the thermal plume. The analysis of the average fields of velocity and temperature shows that the thermosiphon effect entails a good homogenization of the flow at the system exit. Furthermore, the comparison of the results obtained at the exit of the two studied systems shows a relative increase of the flow rate and the thermal power absorbed by the air of the order of 50% under the thermosiphon effect. This result is expressed by a gain in the plume rise of the order of 40%.

  13. Microbial Primary Productivity in Hydrothermal Vent Chimneys at Middle Valley, Juan de Fuca Ridge

    Science.gov (United States)

    Olins, H. C.; Rogers, D.; Frank, K. L.; Girguis, P. R.; Vidoudez, C.

    2012-12-01

    Chemosynthetic primary productivity supports hydrothermal vent ecosystems, but the extent of that productivity has not been well measured. To examine the role that environmental temperature plays in controlling carbon fixation rates, and to assess the degree to which microbial community composition, in situ geochemistry, and mineralogy influence carbon fixation, we conducted a series of shipboard incubations across a range of temperatures (4, 25, 50 and 90°C) and at environmentally relevant geochemical conditions using material recovered from three hydrothermal vent chimneys in the Middle Valley hydrothermal vent field (Juan de Fuca Ridge). Net rates of carbon fixation (CFX) were greatest at lower temperatures, and were similar among structures. Rates did not correlate with the mineralogy or the geochemical composition of the high temperature fluids at each chimney. No obvious patterns of association were observed between carbon fixation rates and microbial community composition. Abundance of selected functional genes related to different carbon fixation pathway exhibited striking differences among the three study sites, but did not correlate with rates. Natural carbon isotope ratios implicate the Calvin Benson Bassham Cycle as the dominant mechanism of primary production in these systems, despite the abundance of genes related to other pathways (and presumably some degree of activity). Together these data reveal that primary productivity by endolithic communities does not exhibit much variation among these chimneys, and further reveal that microbial activity cannot easily be related to mineralogical and geochemical assessments that are made at a coarser scale. Indeed, the relationships between carbon fixation rates and community composition/functional gene abundance were also likely obfuscated by differences in scale at which these measurements were made. Regardless, these data reveal the degree to which endolithic, anaerobic carbon fixation contributes to regional primary production, and via modeling reveal the role that this process plays in deep-sea and global carbon cycling.

  14. Endovascular Aortic Aneurysm Repair with Chimney and Snorkel Grafts: Indications, Techniques and Results

    International Nuclear Information System (INIS)

    The chimney technique in endovascular aortic aneurysm repair (Ch-EVAR) involves placement of a stent or stent-graft parallel to the main aortic stent-graft to extend the proximal or distal sealing zone while maintaining side branch patency. Ch-EVAR can facilitate endovascular repair of juxtarenal and aortic arch pathology using available standard aortic stent-grafts, therefore, eliminating the manufacturing delays required for customised fenestrated and branched stent-grafts. Several case series have demonstrated the feasibility of Ch-EVAR both in acute and elective cases with good early results. This review discusses indications, technique, and the current available clinical data on Ch-EVAR

  15. Dryout heat fluxes for surfaces overlayed with chimney-type porous deposits

    International Nuclear Information System (INIS)

    The dryout heat flux applicable to light water reactor fuel elements covered with porous deposits characterized by the presence of steam channels, or chimneys, is determined by the wicking or choking limit. The results of a study of these limits show that the dryout heat flux for thick, dense, or small particle size deposits is controlled by the wicking limit. In contrast, the choking limit is limiting for thin, highly porous, or large particle size deposits. The calculations also show that the choking limit results in dryout heat fluxes that are two to three times greater than dryout heat fluxes on clean surfaces

  16. Endovascular Aortic Aneurysm Repair with Chimney and Snorkel Grafts: Indications, Techniques and Results

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rakesh P., E-mail: rpatel9@nhs.net [Northwick Park Hospital, Department of Vascular Radiology (United Kingdom); Katsargyris, Athanasios, E-mail: kthanassos@yahoo.com; Verhoeven, Eric L. G., E-mail: Eric.Verhoeven@klinikum-nuernberg.de [Klinikum Nuernberg, Department of Vascular and Endovascular Surgery (Germany); Adam, Donald J., E-mail: donald.adam@tiscali.co.uk [Heartlands Hospital, Department of Vascular Surgery (United Kingdom); Hardman, John A., E-mail: johnhardman@doctors.org.uk [Royal United Hospital Bath, Department of Vascular Radiology (United Kingdom)

    2013-12-15

    The chimney technique in endovascular aortic aneurysm repair (Ch-EVAR) involves placement of a stent or stent-graft parallel to the main aortic stent-graft to extend the proximal or distal sealing zone while maintaining side branch patency. Ch-EVAR can facilitate endovascular repair of juxtarenal and aortic arch pathology using available standard aortic stent-grafts, therefore, eliminating the manufacturing delays required for customised fenestrated and branched stent-grafts. Several case series have demonstrated the feasibility of Ch-EVAR both in acute and elective cases with good early results. This review discusses indications, technique, and the current available clinical data on Ch-EVAR.

  17. Positional Arrangements of Waste Exhaust Gas Ducts of C-Type Balanced Chimney Heating Devices on Building Façades

    Directory of Open Access Journals (Sweden)

    Erkan AVLAR

    2009-01-01

    Full Text Available In Turkey today, with the increase in availability of natural gas,detached heating devices are being preferred over existingheating devices. Due to the lack of chimneys in existing buildingsin Turkey or the presence of chimneys that fail to conformto standards, the use of C-type balanced chimney devices has increased.C-type balanced chimney devices take the combustionair directly from the outside by a specific air duct as detachedheating equipment, with enclosed combustion chambers anda specific waste gas exhaust duct, and they are ventilated independentlyof the field of equipment. Because of their essentiality,the use of a chimney is not required in these devices;the waste gas is exhausted through walls, windows, doors, orbalconies. The natural gas is a clean fossil fuel that requires nostorage in buildings and is easy to use. However, water vapor,carbon dioxide and nitrogen oxides are produced by the combustionof natural gas. It is widely known that high concentrationsof these products can have some adverse effects onhumans such as dizziness, headaches and nausea. As a result,the waste products could recoil through wall openings on thefaçade to create unhealthy indoor environments that could bedangerous to human health. Therefore, the importance of standardsand regulations about the positional arrangements of thewaste gas exhaust ducts of C-type balanced chimney devices onbuilding façades is increasing. In this research, we analyze thestudies of the Institution of Turkish Standards, Chamber of MechanicalEngineers, gas distribution companies, municipalitiesand authorized firms and compare the criteria to determine thenecessary application method. According to our comparison ofthe references accessed, the criteria are not uniform.

  18. Alternativas de construcción utilizando materiales de bajo costo para la evaluación térmica de cocinas solares tipo caja / Construction alternatives using low-cost materials for the thermal test of box-type solar cookers

    Scientific Electronic Library Online (English)

    Luis Enrique, Mealla Sánchez; Pablo Daniel, Bonaveri Arangoa.

    2012-06-01

    Full Text Available Se presenta la evaluación y resultados térmicos de cocinas tipo cajas, realizadas con el objeto de comparar diversos factores constructivos de las mismas utilizando un protocolo de prueba conocido como RICSA (Red Interamericana de Cocción Solar de Alimentos). Para ellos se dispuso de cuatro cocinas [...] en donde se combinaron dos materiales de placa y dos materiales que sirven como aislante. Se sometieron a radiación solar directa calentando la placa colectora y luego al calentamiento utilizando agua como líquido de prueba. Se procedió a medir las perdidas térmicas y la eficiencia térmica. Parámetros adicionales como el tiempo en que alcanza la temperatura de cocción efectiva y el tiempo en que la mantiene sin intervención del operador también fueron medidos. De aquí, el análisis de la información proporcionó un buen rendimiento comparable entre cocinas con placa de hierro y los dos aislantes probados por sobre las cocinas de placa de aluminio; además, por la relación precio-rendimiento, se recomienda su construcción utilizando materiales que tienen alto rendimiento y bajo precio. Abstract in english This document presents the evaluation of a different set of solar ovens in terms of their thermal performance by the RICSA protocol. For this purpose, four solar ovens were constructed differentiated mainly by the type of isolation and plates. All were exposed to direct solar radiation. First, only [...] the collector plate was heated to measure thermal losses and efficiency and second, a determined amount of water was introduced to measure the thermal power of the solar oven. Additional parameters like the time in which it reaches the temperature of effective boiling point and the time in which it maintains functioning without intervention of the operator also were measured. The analysis provide empirical evidence regarding adequate levels of thermal performance of solar ovens constructed using iron on one hand, and aluminum on the other. It is recommended to extend the use of this type of equipments given the priceeffi ciency obtained in the experiments.

  19. High emissions of PCDD/Fs from coal-fired stoves : indications of the formation in the chimney

    Energy Technology Data Exchange (ETDEWEB)

    Paradiz, B.; Horak, J.; Dilara, P.; Umlauf, G. [Joint Research Centre of the European Commission, Brussels (Belgium). Inst. of Environment and Sustainability

    2005-07-01

    Solid fuel heating appliances are known to emit dioxins and furans (PCDD/Fs). In 2000, the dioxin emission inventory for the European Union attributed 29 per cent of total PCDD/F emissions to the residential combustion of wood and coal. High emissions of PCDD/Fs for coal combustion in stoves have been reported in various countries. The conditions and mechanisms that lead to high PCDD/F emissions are not well understood. This paper provided details of an experiment conducted to investigate the effects of temperature profiles in chimneys on PCDD/F emissions. An optimized commercial stove was used for the experiments. Two PCDD/F sampling points were used at the bottom and top a chimney. Different temperature profiles in the chimney were obtained by insulating the entire length of the chimney with a 25 mm -thick mineral glass insulation. A commercial Polish hard coal with a calorific value of 30.0 MJ/kg was used. Each combustion cycle consisted of 2 phases. Hot ash was used for the ignition of the main batch of 5 kg coal. During the operational phase, the complete main batch of the coal was combusted for a period of 3 hours and 45 minutes. PCDD/F sampling was performed using a cooled probe method at a constant speed. The average velocity of the flue gases in the chimney was determined from the calculated flue gas volume based on the carbon content and consumption of the fuel as well as the composition of the flue gases. A Fourier transform infrared (FTIR) spectrometer was used to measure carbon monoxide (CO), carbon dioxide (CO{sub 2}), nitric oxide (NO), sulfur dioxide (SO{sub 2}), and halogenated cyclic hydrocarbons (HCI) concentrations. Very high emissions of PCDD/Fs were observed in all combustion experiments. Concentrations of PCDD/Fs in the flue gases were between 6 and 115 ng-I-TEQ/Nm{sup 3}. Values were comparable to those of waste incinerators with minimal air pollution control. Emissions of PCDD/Fs were higher when the chimney was insulated. Emissions of other pollutants and polycyclic aromatic hydrocarbons (PAHs) were not affected by the different temperature profiles in the chimney. It was concluded that higher temperatures in chimneys can contribute to higher emissions of PCDD/Fs. 5 refs., 1 tab., 1 fig.

  20. CdSe Quantum Dots and N719-Dye Decorated Hierarchical TiO2 Nanorods for the Construction of Efficient Co-Sensitized Solar Cells.

    Science.gov (United States)

    Subramaniam, Mohan Raj; Kumaresan, Duraisamy

    2015-08-24

    Three-dimensional hierarchical TiO2 nanorods (HTNs) decorated with the N719 dye and 3-mercaptopropionic or oleic acid capped CdSe quantum dots (QDs) in photoanodes for the construction of TiO2 nanorod-based efficient co-sensitized solar cells are reported. These HTN co-sensitized solar cells showed a maximum power-conversion efficiency of 3.93?%, and a higher open-circuit voltage and fill factor for the photoanode with 3-mercaptopropionic acid capped CdSe QDs due to the strong electronic interactions between CdSe QDs, N719 dye and HTNs, and the superior light-harvesting features of the HTNs. An electrochemical impedance analysis indicated that the superior charge-collection efficiency and electron diffusion length of the CdSe QD-coated HTNs improved the photovoltaic performance of these HTN co-sensitized solar cells. PMID:26212770

  1. Performance of digester decant system with biological filter followed by constructed wetland and solar reactor in the treatment of domestic sewage

    OpenAIRE

    Delfran Batista dos Santos; Miguel Ferreira Neto; Luis César de Aquino Lemos Filho; Rafael Oliveira Batista; Paulo César Moura da Silva; Glícia Pinto Barra Reinaldo

    2012-01-01

    This study aimed to analyze the performance of digester decant system with biological filter followed by constructed wetland and solar reactor in the treatment of domestic sewage from Milagres rural community in Apodi-RN. The treatment system was monitored for the period of October and November 2010, 48 days after planting Pennisetum purpureum Schumach. Samples of domestic sewage were collected at different stages of treatment, in four replications on time, to determine physicochemical and mi...

  2. NASA advanced design program: Analysis, design, and construction of a solar powered aircraft. B.S. Thesis

    Science.gov (United States)

    Chan, Agnes; Conley, Kristin; Javorski, Christian T.; Cheung, Kwok-Hung; Crivelli, Paul M.; Torrey, Nancy P.; Traver, Michael L.

    1992-01-01

    Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as the most logical alternative source of power. The major objective of this project was to build a solar powered remotely controlled aircraft to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design was optimized for minimum weight and maximum strength of the structure. These design constraints necessitated a carbon fiber composite structure. Surya is a lightweight, durable aircraft capable of achieving level flight powered entirely by solar cells.

  3. Thermal Safety of the Current Buses in the Chimney of the D0 Solenoid

    International Nuclear Information System (INIS)

    The thermal and electrical behaviour of the current buses in the chimney of the D0 solenoid during upset conditions is modeled to guide the selection of trip levels for magnet protection circuits which discharge the magnet if abnormal conditions are detected. The current buses in the chimney are designed to operate safely without likelihood of loss of superconductivity as long as normal cooling conditions are maintained. Helium liquid level probes, helium flow instrumentation, and thermometry all are provided to certify that proper cooling conditions exist in the subcooler and chimney at all times. Rising temperatures in any portion of the system, excessive voltage drops on the vapor cooled leads, or decreasing liquid level in the subcooler or flow rate in the system, will each cause the fast discharge system to be triggered. Postulated failures of the helium flow system, somehow undetected by any and all of the aforementioned instrumentation, can in principal eventually lead to loss of superconductivity in the buses. Quenching in one bus will rapidly lead to quenching in the other. Potential taps on the buses and magnet coil halves connected to voltage-detection bridges external to the system provide at least dually redundant signals which will unambiguously trigger the magnet rapid discharge system. The conservative design of the bus system ensures that it will not be damaged during such incidents, however improbable they may be. The transition leads in the subcooler are equally conservatively designed, and would not be damaged if they were operated in a fully non-superconducting state for several minutes. The loss of liquid helium in the sub cooler required to cause this condition would imply that helium flow from the magnet had stopped, which in turn would imply that flow to the magnet had also stopped. The lack of flow into the sub cooler would result in insufficient flow to the vapor cooled leads. Any or all of these conditions would be detected, as would easily detected spurious voltages on the potential tap system, before damage to the transition leads occurred.

  4. The Barra passive solar system: Combined solar architecture and photovoltaic conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Campanile, M.; Franceschi, L.; Nicoletti, A.; Piccione, B.; Zito, A. (Calabria Univ, Arcavacata di Rende (Italy). Dipt. di Fisica; LIFE Srl, Rome (Italy))

    1989-02-01

    The paper presents brief design notes on an Italian designed solar chimney system which can operate with heat absorption panels consisting of an array of photovoltaic cells mounted in such a way as to form a sort of Venetian blind configuration. The combination of the two technologies is described as a 'total energy' system providing energy for heating, ventilation, dehumidification and powering of electrical fixtures in residential homes and small commercial buildings. Results of performance analyses on demonstration units employing the solar chimney system (without photovoltaic panels), which can be used for both space heating and cooling, are tabled. Sketches are provided of a typical building cross section to indicate the location of thermal insulation, under ceiling air passages and directions of summer and winter air flows.

  5. Performance of digester decant system with biological filter followed by constructed wetland and solar reactor in the treatment of domestic sewage

    Directory of Open Access Journals (Sweden)

    Delfran Batista dos Santos

    2012-08-01

    Full Text Available This study aimed to analyze the performance of digester decant system with biological filter followed by constructed wetland and solar reactor in the treatment of domestic sewage from Milagres rural community in Apodi-RN. The treatment system was monitored for the period of October and November 2010, 48 days after planting Pennisetum purpureum Schumach. Samples of domestic sewage were collected at different stages of treatment, in four replications on time, to determine physicochemical and microbiological characteristics about the system performance. The results indicated significant removal of turbidity, biochemical oxygen demand, chemical oxygen demand, total solids, suspended solids, phosphorus and oil and grease using the set digester decant with biological filter, followed by constructed wetland and solar reactor; the association of average solar radiation of 28.73 MJ m-2 d-1, effluent depth of 0.10 m on reactor and time of sun exposure of 12 hours provided removal of fecal coliform up to 99.99% of domestic sewage in Apodi, RN, the treated effluent met microbiological standard of the Brazilian guidelines for agricultural use with restrictions.

  6. Innovative Chimney-Graft Technique for Endovascular Repair of a Pararenal Abdominal Aortic Aneurysm

    Science.gov (United States)

    Galiñanes, Edgar Luis; Hernandez-Vila, Eduardo A.

    2015-01-01

    After abdominal aortic aneurysm repair, progressive degeneration of the aneurysm can be challenging to treat. Multiple comorbidities and previous operations place such patients at high risk for repeat surgery. Endovascular repair is a possible alternative; however, challenging anatomy can push the limits of available technology. We describe the case of a 71-year-old man who presented with a 5.3-cm pararenal aneurysm 4 years after undergoing open abdominal aortic aneurysm repair. To avoid reoperation, we excluded the aneurysm by endovascular means, using visceral-artery stenting, a chimney-graft technique. Low-profile balloons on a monorail system enabled the rapid exchange of coronary wires via a buddy-wire technique. This novel approach facilitated stenting and simultaneous angioplasty of multiple visceral vessels and the abdominal aorta. PMID:25873796

  7. Characteristics of bubbly flow in chimney model of lead-bismuth-cooled fast reactor

    International Nuclear Information System (INIS)

    The characteristics of Pb-Bi-Ar two-phase flow were investigated in a rectangular vessel (400mm in width, 1500mm in height, 50mm in depth) simulating the chimney in the fast reactor. Ar was injected through the nozzles of 4mm into Pb-Bi, and the superficial Ar velocity was 0.01-0.03m/s at atmospheric pressure. The horizontal distributions of the flow structure, such as bubble velocity and chord length and void fraction were measured by seven double sensor electro conductivity probes. The PDF histograms of the bubble velocity and chord length were obtained. It was estimated that the existing drag coefficient to bubble in water is larger than in Pb-Bi by comparing the experimental results with the analytical results. (author)

  8. D0 Solenoid Upgrade Project: Chimney LN2 Radiation Shield Attachment Area Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, R.; /Fermilab

    1993-05-26

    A short calculation was done to check the attachment method of the radiation shield to it's LN2 cooling tubes. The case considered was only for the obround chimney section. The proposed attachment method was to use 1/8-inch plug welds spaced every 5-inch along the length of the shield. The calculations were done conservatively for 6-inch spacing between plug welds. The criteria used was that the LN2 shield warmest temperature be less than 2 K above the temperature of the LN2 fluid. Using a very conservative heat transfer model. the calculations predict that the warmest temperature on the radiation shield will be < 1.4 K warmer than the LN2 fluid temperature.

  9. D0 Solenoid Upgrade Project: Thermal Contraction Analysis for the D0 Solenoid Chimney

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, R.; /Fermilab

    1993-09-30

    This engineering note documents the thermal contraction analysis that was done for the D-Zero solenoid chimney. The analysis was done as support of the 'Design Report of the 2 Tesla Superconducting Solenoid for the Fermilab DO Detector upgrade.' The cryogenic LHE and LN2 lines were analyzed for combined pressure, thermal movement, and dead weight. The tubing was stress analyzed per ASME code for Pressure Piping, standard ANSI AS:ME B31.3, for eight combinations ofthermal loading. A commercial pipe stress analysis and design system by Algor{reg_sign} was used for the analysis. Stresses calculated were well below allowables. Based on the analysis, the cryogenic lines will be installed at an offset from the vacuum jacket centerline so that during steady state cold operation, the cryogenic lines will be in a proper location.

  10. Contaminant transport during atmospheric pumping of a nuclear chimney: Progress report

    International Nuclear Information System (INIS)

    Cyclical variations in barometric pressure cause an oscillatory up-and-down motion of gases within the chimney produced by an underground nuclear test. Analytical and experimental modeling of this atmospheric pumping mechanism has been undertaken to better understand and to quantify the associated rates of cavity gas migration toward the earth's surface and the probable rate of release to the atmosphere. Three different types of models are being investigated: (1) homogeneous porous medium; (2) fractured medium with impermeable matrix blocks; and (3) double-porosity media consisting of fracture networks among porous matrix blocks. A primary purpose is to understand how the oscillatory character of the atmospheric pumping process might significantly enhance the contaminant transport in any or all of the three classes of media. This preliminary report describes some of the analytical, numerical, and experimental work which have been completed

  11. Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life

    Science.gov (United States)

    White, Lauren M.; Bhartia, Rohit; Stucky, Galen D.; Kanik, Isik; Russell, Michael J.

    2015-11-01

    One model for the emergence of life posits that ancient, low temperature, submarine alkaline hydrothermal vents, partly composed of iron-sulfides, were capable of catalyzing the synthesis of prebiotic organic molecules from CO2, H2 and CH4. Specifically, hydrothermal mackinawite (FeIIS) and greigite (FeIIFeIII2S4) have been highlighted in previous studies as analogs of the active centers of hydrogenase, ferredoxin, acetyl coenzyme-A synthase and carbon monoxide dehydrogenase featured in the biochemistry of certain autotrophic prokaryotes that occupy the base of the evolutionary tree. Despite the proposed importance of iron sulfide minerals and clusters in the synthesis of abiotic organic molecules, the mechanisms for the formation of these sulfides from solution and their preservation under the anoxic and low temperature (below 100 °C) conditions expected in off-axis submarine alkaline vent systems is not well understood (Bourdoiseau et al., 2011; Rickard and Luther, 2007). To rectify this, single hydrothermal chimneys were precipitated using a unique apparatus to simulate growth at hydrothermal vents of moderate temperature under supposed Hadean ocean-bottom conditions. Iron sulfide phases were observed through Raman spectroscopy at growth temperatures ranging from 40° to 80 °C. Fe(III)-containing mackinawite is confirmed to be present with mackinawite and greigite, supporting an FeIII-mackinawite intermediate mechanism for the transformation of mackinawite to greigite below 100 °C. Raman spectroscopy of the chimneys revealed a maximum yield of greigite at 75 °C. These results suggest abiotic production of catalytically active mackinawite and greigite are possible under early Earth hydrothermal conditions as well as on other wet, rocky worlds geochemically similar to the Earth.

  12. Automating the Solar DRYER—AIRFLOW Control Utilizing Pressure Diffrence Concept

    Science.gov (United States)

    Luk, T. B.; Vakhguelt, A.

    2009-08-01

    The presence of a chimney in natural convective solar dryer has proven its benefit in accelerated transport of moist air from the drying compartment and thus shortening the drying time for intended crops. The experiment and simulation studies done by various parties have guaranteed increases in the airflow in relation to the physical height of chimney. A simple automated control system is proposed to assist the controls of airflow rate so that a near optimum mass flow rate could be achieved for the best possible dried product quality in the shortest possible drying period.

  13. Prediction of Air Flow and Temperature Profiles Inside Convective Solar Dryer

    Directory of Open Access Journals (Sweden)

    Marian Vintil?

    2014-11-01

    Full Text Available Solar tray drying is an effective alternative for post-harvest processing of fruits and vegetables. Product quality and uniformity of the desired final moisture content are affected by the uneven air flow and temperature distribution inside the drying chamber. The purpose of this study is to numerically evaluate the operation parameters of a new indirect solar dryer having an appropriate design based on thermal uniformity inside the drying chamber, low construction costs and easy accessibility to resources needed for manufacture. The research was focused on both the investigation of different operation conditions and analysis of the influence of the damper position, which is incorporated into the chimney, on the internal cabinet temperature and air flow distribution. Numerical simulation was carried out with Comsol Multiphysics CFD commercial code using a reduced 2D domain model by neglecting any end effects from the side walls. The analysis of the coupled thermal-fluid model provided the velocity field, pressure distribution and temperature distribution in the solar collector and in the drying chamber when the damper was totally closed, half open and fully open and for different operation conditions. The predicted results were compared with measurements taken in-situ. With progressing computing power, it is conceivable that CFD will continue to provide explanations for more fluid flow, heat and mass transfer phenomena, leading to better equipment design and process control for the food industry.

  14. Microtexture and distribution of minerals in hydrothermal Barite-Silica chimney from the Franklin seamount, SW Pacific: Constraints on mode of formation.

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, D.; Kota, D.; Das, P.; SuryaPrakash, L.; Khedekar, V.D.; Paropkari, A.L.; Mudholkar, A.V.

    An extinct hydrothermal barite-silica chimney from the Franklin Seamount of the Woodlark Basin, in the southwestern Pacific Ocean, was investigated for mineral distribution and geochemical composition. Six layers on either side of the orifice of a...

  15. Endovascular Aneurysm Repair Using a Reverse Chimney Technique in a Patient With Marfan Syndrome and Contained Ruptured Chronic Type B Dissection

    International Nuclear Information System (INIS)

    We report endovascular thoracic and abdominal aneurysm repair (EVAR) with reverse chimney technique in a patient with contained ruptured type B dissection. EVAR seems feasible as a bailout option in Marfan patients with acute life-threatening disease.

  16. Distribution of Microorganisms in Deep-Sea Hydrothermal Vent Chimneys Investigated by Whole-Cell Hybridization and Enrichment Culture of Thermophilic Subpopulations

    OpenAIRE

    Harmsen, H.; Prieur, D; Jeanthon, C.

    1997-01-01

    The microbial community structure of hydrothermal vent chimneys was evaluated by the combined use of enrichment cultures and whole-cell hybridizations with fluorescently labeled 16S rRNA-based oligonucleotide probes. Chimneys were collected during the Microsmoke cruise on the Mid-Atlantic Ridge and were subsampled on board and stored under reduced conditions or fixed. For estimation of culturable thermophiles, selective media were inoculated by dilution series of the samples and incubated at ...

  17. Evidence from three-dimensional seismic tomography for a substantial accumulation of gas hydrate in a fluid-escape chimney in the Nyegga pockmark field, offshore Norway

    OpenAIRE

    Plaza-Faverola, A.; Westbrook, Graham K.; Ker, Stephan; Exley, Russel J. K.; Gailler, A.; T. A. Minshull; Broto, Karine

    2010-01-01

    In recent years, it has become evident that features commonly called gas chimneys provide major routes for methane to pass through the methane-hydrate stability zone in continental margins and escape to the ocean. One of many such chimneys lying beneath pockmarks in the southeastern Vøring Plateau off Norway was investigated with a high-resolution seismic experiment employing a 2-D array of sixteen 4-component ocean bottom seismic recorders at approximately 100 m separation and a dense networ...

  18. Characteristics of Cu isotopes from chalcopyrite-rich black smoker chimneys at Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau basin

    Science.gov (United States)

    Berkenbosch, H. A.; de Ronde, C. E. J.; Paul, B. T.; Gemmell, J. B.

    2015-02-01

    We analysed primary chalcopyrite from modern seafloor `black smoker' chimneys to investigate high-temperature hydrothermal Cu isotope fractionation unaffected by metamorphism. Samples came from nine chimneys collected from Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau backarc basin. This is the first known study of Cu isotopes from submarine intraoceanic arc/backarc volcanoes, with both volcanoes discharging significant amounts of magmatic volatiles. Our results (n = 22) range from ?65Cu = -0.03 to 1.44 ± 0.18 ‰ (2 sd), with the majority of samples between ˜0.00 and 0.50 ‰. We interpret this cluster (n = 17) of lower ?65Cu values as representing a mantle source for the chimney Cu, in agreement with ?65Cu values for mantle rocks. The few higher ?65Cu values (>0.90 ‰) occur (1) within the same chimneys as lower values, (2) randomly distributed within the chimneys (i.e. near the top and bottom, interior and exterior), and (3) within chalcopyrite of approximately the same age (chalcopyrite, volcanic arc chimneys are most similar to porphyry copper deposits that also form from magmatic-hydrothermal processes in convergent tectonic settings.

  19. Pretty sporty - the swimming hall Biberach. Transparent construction uses solar yields; Ganz schoen sportlich - das Hallensportbad Biberach. Transparente Bauweise nutzt solare Gewinne

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Dagmar

    2011-07-01

    The expressive, dynamic design of the swimming hall Biberach (Federal Republic of Germany) symbolizes sporting character already outside. Inside, fresh colors create a friendly atmosphere. The focus of the planning realized by 4a Architekten (Stuttgart, Federal Republic of Germany) was a high design quality and an economic construction. The swimming hall was optimized according to ecological, economic and social aspects which ensures the sustainable operation and also enabled the compliance of a tight budget.

  20. Conserving gallons and kilowatts. Challenges of today's solar power plants. An EPC (Engineering, Procurement and Construction) perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, Jeanette [Ivanpah Solar Electric Generating Facility, CA (United States); Bechtel Power Corp., Frederick, MD (United States); Huth, Christopher; Sinha, Kumar [Bechtel Power Corp., Frederick, MD (United States)

    2013-03-15

    With the increasing restrictions on CO2 emissions, the utilization of solar power is emerging as an effective way to increase the renewable portfolio for utility power. For example in California, the utilities' current renewable portfolios must increase from 20% to 33% by 2020. This drive has made renewable power considerably more desirable. However, fresh water availability and optimal solar irradiation are generally two mutually exclusive local characteristics that make locating and designing these plants challenging. Not only is fresh water scarce at the desert locations where these solar plants are generally located, but options for disposal of wastewater can be very limited as well. These factors have pushed the design of these plants to develop a fine balance between conserving and reusing water to the greatest extent practical and reducing parasitic electrical loads. This paper addresses the challenges associated with developing solar power plant designs that optimize house electrical load while minimizing water footprint. Through the implementation of operational water management techniques and optimized water treatment processes, water usage can be reduced to manageable levels. Utilizing systems that recover and recycle wastewater, the system can be further optimized to reduce the overall water footprint. Case studies are presented for multiple sites detailing the individual optimization required based on the water quality provided. Lessons learned during plant siting and permitting are provided to shed light on the current issues associated with wastewater disposal in these areas and utilization of evaporation ponds. In addition, various design philosophies are discussed to guide the reader through the difficulties of determining the right mix of initial capital cost, optimized water usage, minimized operating cost and minimized parasitic electrical load. (orig.)

  1. Behaviors of feed water direct contact boiling two-phase flow in chimney of lead-bismuth cooled fast reactor

    International Nuclear Information System (INIS)

    Lead-bismuth-feed water direct contact boiling two-phase flow in chimneys above the core of lead-bismuth-cooled fast reactor was numerically analyzed by means of two fluids and two-dimensional model. Overall volumetric heat transfer coefficient was calculated from quantity of heat exchange of the whole system and it was confirmed that it agreed with existing direct contact boiling heat transfer experimental result. (author)

  2. Chimney-Graft as a Bail-Out Procedure for Endovascular Treatment of an Inflammatory Juxtarenal Abdominal Aortic Aneurysm

    OpenAIRE

    Fratesi, Francesca; Handa, Ashok; Uberoi, Raman; Sideso, Ediri

    2015-01-01

    Inflammatory and juxtarenal Abdominal Aortic Aneurysm (j-iAAA) represents a technical challenge for open repair (OR) due to the peculiar anatomy, extensive perianeurysmal fibrosis, and dense adhesion to the surrounding tissues. A 68-year-old man with an 11?cm asymptomatic j-iAAA was successfully treated with elective EVAR and chimney-graft (ch-EVAR) without postprocedural complications. Target vessel patency and normal renal function are present at 24-month follow-u...

  3. Neovejiga ileal con doble chimenea. Anastomosis ureterointestinal / Ileal neobladder with double chimney: Ureterointestinal anastomosis

    Scientific Electronic Library Online (English)

    F., Aguirre Benites; J.M., Duarte Ojeda; M., Pamplona Casamayor; R., Díaz González; O., Leiva Galvis.

    2005-04-01

    Full Text Available La cistoprostatectomía radical es el tratamiento de elección para el cáncer vesical infiltrante. En los últimos años las indicaciones de sustitución vesical se han ampliado debido a las ventajas que aportan sobre otros tipos de derivaciones siendo la neovejiga ileal descrita por Hautmann una de las [...] más utilizadas. Posteriormente se han descrito diversas modificaciones de la técnica original como la utilización de un segmento de asa sin detubulizar a modo de chimenea a la cual se anastomosan los uréteres. Presentamos una variante técnica de la neovejiga de Hautmann utilizando dos "chimeneas" anastomosando cada uréter a la luz previamente abierta de cada asa espatulando el uréter a modo de "palo de golf" para adaptar los calibres. Entre las ventajas de este tipo de anastomosis destacan la utilización de segmentos ureterales más cortos adaptando la longitud del asa lo que posibilita una anastomosis sin tensión y minimiza la isquemia disminuyendo por tanto la aparición de fístulas y estenosis. No precisa la realización de enterotomías adicionales y se facilita el acceso a cada anastomosis por separado en caso de necesidad de reintervención. Abstract in english Radical cystoprostatectomy is accepted as the standard treatment for muscle-invasive bladder cancer. During last years the indications for orthotopic neobladders have increased due to their advantages over other kind of diversions. Hautmann neobladder is one of the most commonly used. Several modifi [...] cations have been later described. For example, after perform the W-shape pouch ureters can be anastomosed to a not-detubularized bowel segment (chimney modification). Here is described a modification of the Hautmann neobladder with two chimneys. Each ureter is spatulated in a golf club manner and anastomosed to the open end of each bowel loop. This kind of anastomosis provides several advantages. It is possible to use shorter ureteral segments by increasing the length of bowel used. It allows an anastomosis without tension, and less ischemia, so the risk of stenosis and fistula is decreased. It is not necessary to perform additional enterothomies and in case of reintervention it is easier to access each anastomosis without damaging the other one.

  4. Swarms of gas chimneys and methane plumes in southern end of the Sea of Okhotsk, offshore Hokkaido, Japan

    Science.gov (United States)

    Matsumoto, R.

    2012-12-01

    Gas hydrate expedition UT12 in July-August 2012 has identified more than fifty gas chimneys with occasional methane plumes in narrow study area, 3 km x 10 km, in southern end of the Sea of Okhotsk, offshore Hokkaido, Japan. Gas chimneys are either observed to extrude to the seafloor to form gas hydrate mound and pockmarks or buried under the seafloor. Gas hydrates occur as cm thick horizontal layers or broken chunks in piston cores, suggesting that the hydrates precipitate within clayey matrix and grew up in muddy host sediments, pushing aside the sediments. Depth profile of the concentrations of DIC and sulfate on and near chimneys place the sulfate-methane transition (SMT) at surprisingly shallow levels, hydrate are mostly derived from bacterial CO2 reduction with carbon isotopic composition of methane, -65 to 68 permil, and ethane, -30 to -36 permil. Identification of new shallow gas hydrate field within Japan's EEZ after the well constraint hydrate field of Joetsu basin, eastern margin of Japan Sea, seems to attract strong interest in shallow gas hydrates as a potential natural gas resources.

  5. Dioxin emissions from coal combustion in domestic stove: Formation in the chimney and coal chlorine content influence

    Directory of Open Access Journals (Sweden)

    Paradiz Bostjan

    2015-01-01

    Full Text Available Combustion experiments conducted in domestic stove burning hard coal demonstrated a predominant influence of the coal chlorine content on the PCDD/F emissions, together with a pronounced effect of the flue gas temperature. PCDD/F concentrations of over 100 ng TEQ/m3, three orders of magnitude higher than in a modern waste incinerator, were measured in the flue gases of a domestic stove when combusting high chlorine coal (0.31 %. The PCDD/F concentrations in the flue gases dropped below 0,5 ng TEQ/m3, when low chlorine coal (0.07 % was used. When low chlorine coal was impregnated with NaCl to obtain 0.38 % chlorine content, the emission of the PCDD/Fs increased by two orders of magnitude. Pronounced nonlinearity of the PCDD/F concentrations related to chlorine content in the coal was observed. The combustion of the high chlorine coal yielded PCDD/F concentrations in flue gases one order of magnitude lower in a fan cooled chimney when compared to an insulated one, thus indicating formation in the chimney. The influence of flue gas temperature on the PCDD/F emissions was less pronounced when burning low chlorine coal. The predominant pathway of the PCDD/F emissions is via flue gases, 99 % of the TEQ in the case of the high chlorine coal for insulated chimney.

  6. Exit chimney joint and method of forming the joint for closed circuit steam cooled gas turbine nozzles

    Science.gov (United States)

    Burdgick, Steven Sebastian (Schenectady, NY); Burns, James Lee (Schenectady, NY)

    2002-01-01

    A nozzle segment for a gas turbine includes inner and outer band portions and a vane extending between the band portions. The inner and outer band portions are each divided into first and second plenums separated by an impingement plate. Cooling steam is supplied to the first cavity for flow through the apertures to cool the outer nozzle wall. The steam flows through a leading edge cavity in the vane into the first cavity of the inner band portion for flow through apertures of the impingement plate to cool the inner nozzle wall. Spent cooling steam flows through a plurality of cavities in the vane, exiting through an exit chimney in the outer band. The exit chimney is secured at its inner end directly to the nozzle vane wall surrounding the exit cavities, to the margin of the impingement plate at a location intermediate the ends of the exit chimney and to margins of an opening through the cover whereby each joint is externally accessible for joint formation and for subsequent inspection.

  7. Crystal Structure and Thermoelectric Properties of the Incommensurate Chimney-Ladder Compound VGe? (? ~1.82)

    Science.gov (United States)

    Hamada, Haruki; Kikuchi, Yuta; Hayashi, Kei; Miyazaki, Yuzuru

    2015-09-01

    A single-phase sample of a Nowotny chimney-ladder phase known as V17Ge31 has been prepared and its modulated crystal structure has been determined by means of a (3+1)-dimensional superspace approach. As in the case of higher manganese silicides (HMSs) MnSi?, the compound consists of two tetragonal subsystems of [V] and [Ge] with an irrational c-axis ratio ? = c_{V} /c_{Ge} ˜ 1.82, and hence the structure formula is represented as VGe ? . As expected from the valence electron count estimated from the refined ?, the present germanide exhibits a metallic behavior with the electrical conductivity ? = 6.25 × 103 S/cm and the Seebeck coefficient S = 10.2 ?V/K at 900 K. The resulting thermoelectric power factor of S^2? = 6.56 × 10-5 W/mK2 and the dimensionless figure-of-merit, ZT, = 3.7 × 10-3 at 900 K demonstrate that the germanide is not a promising thermoelectric material. However, as the determined lattice thermal conductivity is comparable to that of HMSs, thermoelectric properties can be maximized through the partial substitution of V with group 6-8 elements to decrease hole carrier concentration.

  8. A comparative integrated geophysical study of Horseshoe Chimney Cave, Colorado Bend State Park, Texas

    Directory of Open Access Journals (Sweden)

    Brown Wesley A.

    2011-01-01

    Full Text Available An integrated geophysical study was performed over a known cave in Colorado Bend State Park (CBSP, Texas, where shallow karst features are common within the Ellenberger Limestone. Geophysical survey such as microgravity, ground penetrating radar (GPR, direct current (DC resistivity, capacitively coupled (CC resistivity, induced polarization (IP and ground conductivity (GC measurements were performed in an effort to distinguish which geophysical method worked most effectively and efficiently in detecting the presence of subsurface voids, caves and collapsed features. Horseshoe Chimney Cave (HCC, which is part of a larger network of cave systems, provides a good control environment for this research. A 50 x 50 meter grid, with 5 m spaced traverses was positioned around the entrance to HCC. Geophysical techniques listed above were used to collect geophysical data which were processed with the aid of commercial software packages. A traditional cave survey was conducted after geophysical data collection, to avoid any bias in initial data collection. The survey of the cave also provided ground truthing. Results indicate the microgravity followed by CC resistivity techniques worked most efficiently and were most cost effective, while the other methods showed varying levels of effectiveness.

  9. Free release waste characterisation during the decommissioning of windscale Pile 2 Chimney

    International Nuclear Information System (INIS)

    The decommissioning of windscale Pile 2 Chimney resulted in the removal of one of most historically significant and prominent features of the Sellafield site. The project was the first large scale concrete ''free release'' operation to be undertaken on the Sellafield nuclear site, producing 4500 tons of concrete of which 3000 tons was demonstrated to be ''free release''. The paper describes the radiometric techniques employed in the characterisation and segregation of the concrete into low level waste (LLW), very low level waste (VLLW) and free release categories. It examines the robust solutions that were developed to meet the technical and regulatory challenges of the project, which included the definition of free release, the selection of averaging volumes, the testing and validation of the monitoring systems employed for ton quantities of concrete and the identification and removal of small numbers of fuel particles from the free release waste stream. As a result of interest shown by other BNFL and UKAEA decommissioning projects at Sellafield, the paper finishes by discussing ways in which the system may be developed to assay other waste streams. (orig.)

  10. Re-construction of global solar radiation time series from 1933 to 2013 at the Izaña Atmospheric Observatory

    OpenAIRE

    García, R.D.; Cuevas, E.; García, O.E.; Cachorro, V. E.; P. Pallé; Bustos, J. J.; Romero-Campos, P. M.; A. M. de Frutos

    2014-01-01

    This paper presents the re-construction of the 80 year time series of daily global shortwave downward radiation (SDR) at the subtropical high-mountain Izaña Atmospheric Observatory (IZO, Spain). For this purpose, we combine SDR estimates from sunshine duration (SD) data using the Ångström–Prescott method over the 1933/1991 period, and SDR observations directly performed by pyranometers between 1992 and 2013. Since SDR measurements have been used as a referen...

  11. Characteristics of Cu isotopes from chalcopyrite-rich black smoker chimneys at Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau basin

    Science.gov (United States)

    Berkenbosch, H. A.; de Ronde, C. E. J.; Paul, B. T.; Gemmell, J. B.

    2015-10-01

    We analysed primary chalcopyrite from modern seafloor `black smoker' chimneys to investigate high-temperature hydrothermal Cu isotope fractionation unaffected by metamorphism. Samples came from nine chimneys collected from Brothers volcano, Kermadec arc, and Niuatahi volcano, Lau backarc basin. This is the first known study of Cu isotopes from submarine intraoceanic arc/backarc volcanoes, with both volcanoes discharging significant amounts of magmatic volatiles. Our results ( n = 22) range from ?65Cu = -0.03 to 1.44 ± 0.18 ‰ (2 sd), with the majority of samples between ˜0.00 and 0.50 ‰. We interpret this cluster ( n = 17) of lower ?65Cu values as representing a mantle source for the chimney Cu, in agreement with ?65Cu values for mantle rocks. The few higher ?65Cu values (>0.90 ‰) occur (1) within the same chimneys as lower values, (2) randomly distributed within the chimneys (i.e. near the top and bottom, interior and exterior), and (3) within chalcopyrite of approximately the same age (convergent tectonic settings.

  12. Microbial carbon cycling in Lost City hydrothermal chimneys and other serpentinite-hosted ecosystems (Invited)

    Science.gov (United States)

    Brazelton, W. J.; Lang, S. Q.; Morrill, P. L.; Twing, K. I.; Crespo-Medina, M.; Morgan-Smith, D.; Früh-Green, G. L.; Schrenk, M. O.

    2013-12-01

    Ultramafic rocks formed in the Earth's mantle and uplifted into the crust represent an immense but poorly described reservoir of carbon. The biological availability of this rock-hosted carbon reservoir is unknown, but the set of geochemical reactions known as serpentinization can mobilize carbon from the subsurface and trigger the growth of dense microbial communities. Serpentinite-hosted ecosystems such as the chimney biofilms of the Lost City hydrothermal field can support dense populations of bacteria and archaea fueled by the copious quantities of H2 and methane (CH4) released by serpentinization (1-5). The metabolic pathways involved, however, remain unknown, and conventional interpretations of genomic and experimental data are complicated by the unusual carbon speciation in these environments. Carbon dioxide is scarce due to the highly reducing, high pH conditions. Instead, the predominant forms of carbon are CH4 and formate (5). Despite its natural abundance, however, direct evidence for CH4-derived biomass is lacking (1,4,5), and the role of formate is potentially significant but largely unexplored (1,5). To gain a more generalized perspective of carbon cycling in serpentinite-hosted ecosystems, we have recently investigated fluids and rocks collected from serpentinizing ophiolites in California, Canada, and Italy. Our results point to potentially H2-utilizing, autotrophic Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia inhabiting anoxic, subsurface zones (1,6). The carbon sources utilized by the Clostridia are unknown, but preliminary metagenomic evidence is consistent with a fermentation-style metabolic strategy that may be conducive to an oxidant-limited, subsurface environment. Curiously, despite the abundance of H2 and CH4 in these continental springs, none of the geochemical, genomic, or experimental results obtained thus far contain any evidence for biological methanogenesis (1,6). This is in stark contrast to the dense populations of methanogen-like archaea in Lost City chimneys. Clearly, the role of methanogens must be constrained in order to gain a firm understanding of the carbon flux from serpentinite ecosystems, and future potential investigations of these systems will be discussed. References 1. Schrenk MO, Brazelton WJ, Lang SQ. 2013. Rev. Mineral. Geochem. 75:575-606. 2. Schrenk MO, Kelley DS, Bolton SA, Baross JA. 2004. Environ. Microbiol. 6:1086-1095. 3. Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. 2006. Appl. Environ. Microbiol. 72:6257-6270. 4. Brazelton WJ, Mehta MP, Kelley DS, Baross JA. 2011. mBio2:4. doi:10.1128/mBio.00127-11. 5. Lang SQ, Früh-Green GL, Bernasconi SM, Lilley MD, Proskurowski G, Méhay S, Butterfield D a. 2012. Geochim. Cosmochim. Acta. 92:82-99. 6. Brazelton WJ, Morrill PL, Szponar N, Schrenk MO. 2013. Appl. Environ. Microbiol. 79:3906.

  13. Solar housing construction. Thousands of solar cells form the facade of a living project for homeless people in Paris; Solarer Wohnungsbau. Tausende von Solarzellen bilden die Fassade eines Wohnprojekts fuer Obdachlose in Paris

    Energy Technology Data Exchange (ETDEWEB)

    Korn, Stefan

    2013-02-15

    A house on the banks of the historic channel Saint Martin in Paris in the elegant tenth arrondissement attracts attention: An emerald-colored solar facade extends from the roof to the ground floor between town palaces. But the spectacular front of the building does not cover luxury condominiums for the Parisian upper class, but a social housing project for families in need.

  14. The thermal performances of a solar wall

    International Nuclear Information System (INIS)

    In this paper, the computational fluid dynamics technique (CFD) was used for air flow simulation in the solar chimney. The flow is assumed laminar, unsteady and incompressible. The air flow model consisted of a system of governing equations continuity, momentum, energy are solved for 2D Cartesian system uses the SIMPLE algorithm and the Power–Law differencing scheme. The influence of the variation depth of the solar chimney on the thermal efficiency of the system was studies. The principle of functioning of the system is visualized. The temperatures obtained on the level of the zone of occupation are adaptable to the interval of thermal comfort. The results of simulation are congruent with those of the literature. -- Highlights: ? The present work consists of the modilisation of the natural convection flow in a room heated by the technique of a ventilated Trombe wall. ? The use of solar energy consists in profiting from the direct contribution of the solar radiation. ? With vented thermal storage walls, the vents can provide an important control mechanism both in heating and cooling the building. ? The results obtained for the area of Bechar seem interesting, which makes it possible to do much energy saving.

  15. Development of a practical training program based on BNL`s input to new NFPA Lined Masonary Chimney Venting Tables

    Energy Technology Data Exchange (ETDEWEB)

    Potter, G. [Agway Energy Products, Tully, NJ (United States)

    1997-09-01

    This paper describes how we developed a practical training program for technicians and sales personnel from the BNL studies that evolved into the Lined Chimney Venting Tables. One of the topics discussed is our search for solutions to the reoccurring problems associated with flue gas condensation on newly installed oil fired appliances. The paper will also discuss our own experiences in applying the new venting tables and working through the questions that arise when we encounter installations beyond the scope of the present tables.

  16. Distribution of Microorganisms in Deep-Sea Hydrothermal Vent Chimneys Investigated by Whole-Cell Hybridization and Enrichment Culture of Thermophilic Subpopulations

    Science.gov (United States)

    Harmsen, H.; Prieur, D.; Jeanthon, C.

    1997-01-01

    The microbial community structure of hydrothermal vent chimneys was evaluated by the combined use of enrichment cultures and whole-cell hybridizations with fluorescently labeled 16S rRNA-based oligonucleotide probes. Chimneys were collected during the Microsmoke cruise on the Mid-Atlantic Ridge and were subsampled on board and stored under reduced conditions or fixed. For estimation of culturable thermophiles, selective media were inoculated by dilution series of the samples and incubated at 65, 80, and 95(deg)C. To analyze the microbial diversity of the samples, cells were extracted from the fixed chimney structure samples and hybridized with domain- and kingdom-specific probes. Quantification of the extracted cells was assessed by whole-cell hybridization on membrane filters. By both methods, the largest amounts of microorganisms were found in the upper and outer parts of the chimneys, although even the inner parts contained culturable and detectable amounts of cells. Different morphotypes of thermophilic and hyperthermophilic microorganisms were enriched and detected in samples. Our data clearly indicate that the morphological diversity observed by using whole-cell hybridization is much larger than that assessed by use of culture-based enrichments. This new approach, including culture-independent and -dependent methods to study hydrothermal vent chimneys, showed an uneven distribution of a diverse microbial community. Application of lower-level specific probes for known families and genera within each domain by our approach will be useful to reveal the real extent and nature of the chimney microbial diversity and to support cultivation attempts. PMID:16535655

  17. Severe compression of a bailout self-expanding chimney stent for rescuing the miscoverage of left common carotid artery during TEVAR of a type B aortic dissection.

    Science.gov (United States)

    Wang, Lixin; Guo, Daqiao; Jiang, Junhao; Shi, Zhenyu; Fu, Weiguo; Wang, Yuqi

    2014-04-01

    A 54-year-old man who suffered from paraplegia due to type B aortic dissection was treated with a Valiant stent-graft. However, attempts to gain secure proximal sealing resulted in an inadvertent coverage of the left common carotid artery by the endograft. The blood flow in the left common carotid artery was restored by a transcarotid Smart Control stent in a chimney fashion. At 6- and 18-month follow-up, computed tomography scan showed that the chimney stent was severely compressed by the stent graft, although the patient remained neurologically asymptomatic. PMID:24309751

  18. Solar habitats: a transmodern architecture

    Energy Technology Data Exchange (ETDEWEB)

    Pajvanski, Victor [Skopje Univ., Faculty of Architecture, Skopje (Macedonia (The Former Yugoslav Republic of))

    2000-04-01

    Architecture is both a science and an art. The cities in Macedonia were built as an image inherited mainly from ancient civilisations of the Roman empire, until the XIXth century. During this period, the proportions used for designing places were to a human scale. Today we recapture these traditional architectural images for living as made 'in situ and natura'. Human scale implies that housing units are single, double and multi houses at every level, surrounded with gardens and water. Also environmentally-oriented housing units are employed for collecting solar energy. Transmodern architecture takes, as an inspirational source, traditional Macedonian architecture coupled with contemporary building technology employing solar harnessing and energy efficiency, including the use of conservatories (for heat gain), chimneys (for heat loss) and water. (Author)

  19. Construction of a photometer to detect stellar occultations by outer solar system bodies for the Whipple mission concept

    Science.gov (United States)

    Kraft, Ralph P.; Kenter, Almus T.; Alcock, Charles; Murray, Stephen S.; Loose, Markus; Gauron, Thomas; Germain, Gregg; Peregrim, Lawrence

    2014-08-01

    The Whipple mission was a proposal submitted to the NASA Discovery AO in 2010 to study the solid bodies of the Kuiper Belt and Oort Cloud via a blind occultation survey. Though not accepted for flight, the proposal was awarded funding for technology development. Detecting a significant number of Trans Neptunian Objects (TNOs) via a blind occultation survey requires a low noise, wide field of view, multi object differential photometer. The light curve decrement is typically a few percent over timescales of tenths of seconds or seconds for Kuiper Belt and Oort cloud objects, respectively. To obtain a statistically interesting number of detections, this photometer needs to observe many thousands of stars over several years since the rate of occultation for a single star given the space density of the TNOs is low. The light curves from these stars must be monitored with a sensor with a temporal resolution of rv 25-50 ms and with a read noise ofmode. The full Whipple focal plane consists of a 3x3 array of these sensors, with each sensor comprised of 1024x 1024 36/?m pixels. Combined with the telescope optic, the Whipple focal plane provides a FOV of rv36 deg2 . In operation, each HyViSI detector, coupled to a Teledyne SIDECAR ASIC, monitors the flux from 650 stars at 40 Hz. The ASIC digitizes the data at the required cadence and an FPGA provides preliminary occultation event selection. The proposed 2010 Whipple mission utilized a spacecraft in a a "drift-away" orbit which signifi­ cantly limited the available telemetry data rate. Most of the light curve processing is required to be on-board the satellite so only candidate occultation events are telemetered to the ground. Occul­ tation light curves must be processed in real time on the satellite by an Field Programmable Gate Array (FPGA). A simple, real time band pass filter, called the Equivalent Width (EW) algorithm, has been instantiated in the FPGA. This EW filter selects for telemetry only those occultation event light curves that differed significantly from noise. As part of our technology development program, a key facet of the proposed Whipple focal plane was constructed and operated in our laboratory consisting of a single HyViSI H2RG sensor, a Teledyne SIDECAR ASIC, and a flight-like Virtex-5 FPGA. In order to fully demonstrate the capabilities of this photometer, we also made a occultation light-curve simulator. The entire system can generate simulated occultation light curves, project them onto an H2RG sensor, read out the sensor in windowing mode at 40 Hz, pass the data to an FPGA that continuously monitors the light curves and dumps candidate occultation events to our simulated Ground Support Equipment (GSE). In this paper, we summarize the technical capabilities of our system, present sample data, and discuss how this system will be used to support our proposal effort for the next Discovery round.

  20. Design, construction and test run of a solid adsorption solar refrigerator using activated carbon/methanol, as adsorbent/adsorbate pair

    International Nuclear Information System (INIS)

    The design, construction and test run of a solid adsorption solar refrigerator are presented. It used activated carbon/methanol as the adsorbent/adsorbate pair. The refrigerator has three major components: collector/generator/adsorber, condenser and evaporator. Its flat plate type collector/generator/adsorber used clear plane glass sheet of effective exposed area of 1.2 m2. The steel condenser tube with a square plan view was immersed in pool of stagnant water contained in a reinforced sandcrete tank. The evaporator is a spirally coiled copper tube immersed in stagnant water. Adsorbent cooling during the adsorption process is both by natural convection of air over the collector plate and tubes and night sky radiation facilitated by removing the collector box end cover plates. Ambient temperatures during the adsorbate generation and adsorption process varied over 18.5-34 deg. C. The refrigerator yielded evaporator temperatures ranging over 1.0-8.5 deg. C from water initially in the temperature range 24-28 deg. C. Accordingly, the maximum daily useful cooling produced was 266.8 kJ/m2 of collector area

  1. Solar Sailing

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  2. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  3. Design and construction of models of solar thermal facilities in the ''Centro integrado de FP superior de energias renovables de Imarcoain''(Navarra); Maquetas de instalaciones solares termicas para la formacion profesional de grado superior en el centro integrado de formacion profesional superior de energias renovables

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M. A.; Orus, L. M.; Yerro, C.; Aguado, H.; Cambra, T.; Oroz, J.

    2004-07-01

    This article shows how we have approached the solar energy installations in the ''Centro integrado de FP superior de energias renovables de Imarcoain''(Navarra) with the design and construction of models which allow us to teach in this type of installations at different levels. (Author)

  4. In situ ore formation experiment: Amino acids and amino sugars trapped in artificial chimneys on deep-sea hydrothermal systems at Suiyo Seamount, Izu-Bonin Arc, Pacific Ocean

    OpenAIRE

    Takano; Y.; Marumo; Ebashi; Gupta; P., L.; Kawahata; H1; Kobayashi; K.; Yamagishi; A.*;; Kuwabara; T.

    2013-01-01

    The present study reports on the bio-organic composition of a deep-sea venting hydrothermal system originating from arc volcanism; the origin of the particulates in hydrothermal fluids from the Suiyo Seamount in the southern Izu-Bonin (Ogasawara) Arc is discussed with regard to amino compounds. Chimney samples on deep-sea hydrothermal systems and core samples at Suiyo Seamount were determined for amino acids, and occasionally amino sugars. Two types of chimney samples were o...

  5. Interpretation of seismic reflection data from the Piledriver Event Area, Nevada Test Site; A case study for evaluation of technique for characterization of void and chimney features

    Energy Technology Data Exchange (ETDEWEB)

    Tonander, K.E. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1993-12-31

    A remote sensing geophysical method is needed to properly characterize the void and chimney characteristics of underground nuclear tests. Various techniques were considered and a seismic reflection survey was selected. This survey was then fitted to the conditions at the test site so as to give optimum results. The data was then reduced via DOS computer and analyzed for content. The planned survey using a 50 ft offset did not show any useful information, however, a second survey with a variable longer offset was also conducted which was capable of determining the depth to the top and the bottom of the chimney with reasonable accuracy. Measurements of the horizontal spread of the structure, though, were inconclusive.

  6. Impact of the light intensity variation on the performance of solar cell constructed from (Muscovite/TiO2/Dye/Al)

    OpenAIRE

    R. Abd Elgani; M. H. M. HILO; M. D. Abd Allah; A. Al Hassan; R. Abd Elhai

    2013-01-01

    In this work, the influence of the light intensity as one of the parameters that control the solar cell is studied. The effect of the other main variables, such as temperature, rotation per Minuit of the spin coating instrument, and the samples concentration, was found to be in conformity with other results, but unfortunately the intensity of light does not increase the solar cell efficiency, and fill factor, by other words it was found to play only a secondary role.

  7. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre

    Science.gov (United States)

    James, Rachael H.; Green, Darryl R. H.; Stock, Michael J.; Alker, Belinda J.; Banerjee, Neil R.; Cole, Catherine; German, Christopher R.; Huvenne, Veerle A. I.; Powell, Alexandra M.; Connelly, Douglas P.

    2014-08-01

    The East Scotia Ridge is an active back-arc spreading centre located to the west of the South Sandwich island arc in the Southern Ocean. Initial exploration of the ridge by deep-tow surveys provided the first evidence for hydrothermal activity in a back-arc setting outside of the western Pacific, and we returned in 2010 with a remotely operated vehicle to precisely locate and sample hydrothermal sites along ridge segments E2 and E9. Here we report the chemical and isotopic composition of high- and low-temperature vent fluids, and the mineralogy of associated high-temperature chimney material, for two sites at E2 (Dog’s Head and Sepia), and four sites at E9 (Black & White, Ivory Tower, Pagoda and Launch Pad). The chemistry of the fluids is highly variable between the ridge segments. Fluid temperatures were ?350 °C at all vent sites except Black & White, which was significantly hotter (383 °C). End-member chloride concentrations in E2 fluids (532-536 mM) were close to background seawater (540 mM), whereas Cl in E9 fluids was much lower (98-220 mM) indicating that these fluids are affected by phase separation. Concentrations of the alkali elements (Na, Li, K and Cs) and the alkaline earth elements (Ca, Sr and Ba) co-vary with Cl, due to charge balance constraints. Similarly, concentrations of Mn and Zn are highest in the high Cl fluids but, by contrast, Fe/Cl ratios are higher in E9 fluids (3.8-8.1 × 10-3) than they are in E2 fluids (1.5-2.4 × 10-3) and fluids with lowest Cl have highest Cu. Although both ridge segments are magmatically inflated, there is no compelling evidence for input of magmatic gases to the vent fluids. Fluid ?D values range from 0.2‰ to 1.5‰, pH values (3.02-3.42) are not especially low, and F concentrations (34.6-54.4 ?M) are lower than bottom seawater (62.8 ?M). The uppermost sections of conjugate chimney material from E2, and from Ivory Tower and Pagoda at E9, typically exhibit inner zones of massive chalcopyrite enclosed within an outer zone of disseminated sulphide, principally sphalerite and pyrite, in an anhydrite matrix. By contrast, the innermost part of the chimneys that currently vent fluids with lowest Cl (Black & White and Launch Pad), is dominated by anhydrite. By defining and assessing the controls on the chemical composition of these vent fluids, and associated mineralisation, this study provides new information for evaluating the significance of hydrothermal processes at back-arc basins for ocean chemistry and the formation of seafloor mineral deposits.

  8. Bacterial Lifestyle in a Deep-sea Hydrothermal Vent Chimney Revealed by the Genome Sequence of the Thermophilic Bacterium Deferribacter desulfuricans SSM1

    OpenAIRE

    Takaki, Yoshihiro; Shimamura, Shigeru; Nakagawa, Satoshi; Fukuhara, Yasuo; Horikawa, Hiroshi; Ankai, Akiho; Harada, Takeshi; Hosoyama, Akira; Oguchi, Akio; Fukui, Shigehiro; Fujita, Nobuyuki; Takami, Hideto; Takai, Ken

    2010-01-01

    The complete genome sequence of the thermophilic sulphur-reducing bacterium, Deferribacter desulfuricans SMM1, isolated from a hydrothermal vent chimney has been determined. The genome comprises a single circular chromosome of 2 234 389 bp and a megaplasmid of 308 544 bp. Many genes encoded in the genome are most similar to the genes of sulphur- or sulphate-reducing bacterial species within Deltaproteobacteria. The reconstructed central metabolisms showed a heterotrophic lifestyle primarily d...

  9. Determination of Selenium, Mercury, Chromium, Nickel, Iron, Zinc, Cobalt, Antimony, Manganese, Arsenic, Lead and Cadmium in the hairs of chimney sweeps and control persons

    International Nuclear Information System (INIS)

    The content of Selenium, Mercury, Chromium, Nickel, Iron, Zinc, Cobalt, Antimony, Manganese, Arsenic, Lead and Cadmium in 18 chimney sweeps hair were determined by neutron activations analysis and atomic absorptions spectrometry and compared with 18 control persons. The results show: The concentration of Se, Hg, Cr, Ni, Fe, Zn, Co, Sb, Mn, As, Pb and Cd of all investigated volunteers are within the normal range. (author)

  10. Solar Thermal Electricity Generating System

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300?C ñ 800?C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at Earth¥s surface. The higher the concentration, the higher the temperatures we can achieve when converting solar radiation into thermal energy

  11. Thoracic aortic stent-graft placement combined with left subclavian artery 'chimney operation': therapeutic analysis of 15 cases with insufficient proximal anchor area

    International Nuclear Information System (INIS)

    Objective: To discuss the strategies for the management of insufficient proximal anchoring area during the performance of transluminal stent-graft placement (TSGP), and to evaluate the feasibility of intentional coverage of the left subclavian artery (LSA) together with left subclavian artery stent-graft placement by using 'chimney operation' technique. Methods: A total of 15 patients with thoracic aortic diseases complicated by insufficient proximal anchoring area, who were encountered in authors' hospital during the period from Dec. 2009 to April 2011, were enrolled in this study. The clinical data were retrospectively analyzed. The thoracic aortic diseases included aortic dissection (n=6), aortic pseudoaneurysm (n=1), aortic aneurysm (n=4) and penetrating ulcer (n=4). Of the 15 patients, the distance between the lesion and LSA anchoring site 15 mm in 2. TSGP was carried out. The ostium of LSA was intentionally and completely covered by thoracic aortic stent-graft and left subclavian artery stent-graft placement was subsequently performed. The patients were kept under observation for symptoms of cerebral and upper limb ischemia. The postoperative complications such as endoleak and the patency of LSA were assessed with angiography. Results: Thoracic aortic stent-graft placement was successfully carried out in all 15 patients. In addition, one 'chimney' stent was properly implanted in LSA in each patient. After the procedure, no complications of nervous system or severe ischemia of upper extremity occurred. Follow-up examinations performed between 5 days to 3 months after the treatment revealed that the aortic stent-graft remained in stable condition and no type ? endoleak occurred, meanwhile the blood flow in 'chimney' stent was unobstructed. Conclusion: Intentional LSA coverage with 'chimney operation' can expand the applicability of TSGP with high tolerability. It is especially useful for patients with left vertebral artery blood supply dominance or with cerebral infarction, sleep apnoea syndrome and other brain insufficient blood supply diseases. Some parameters should be assessed before the procedure, which include the diameter and location of the chimney stent. Avoidance of type ? endoleak of aortic stent should be stressed. (authors)

  12. Global and diffuse solar irradiance modelling over north-western Europe using MAR regional climate model : validation and construction of a 30-year climatology

    Science.gov (United States)

    Beaumet, Julien; Doutreloup, Sébastien; Fettweis, Xavier; Erpicum, Michel

    2015-04-01

    Solar irradiance modelling is crucial for solar resource management, photovoltaic production forecasting and for a better integration of solar energy in the electrical grid network. For those reasons, an adapted version of the Modèle Atmospheric Regional (MAR) is being developed at the Laboratory of Climatology of the University of Liège in order to provide high quality modelling of solar radiation, wind and temperature over north-western Europe. In this new model version, the radiation scheme has been calibrated using solar irradiance in-situ measurements and CORINE Land Cover data have been assimilated in order to improve the modelling of 10 m wind speed and near-surface temperature. In this study, MAR is forced at its boundary by ERA-40 reanalysis and its horizontal resolution is 10 kilometres. Diffuse radiation is estimated using global radiation from MAR outputs and a calibrated version of Ruiz-Arias et al., (2010) sigmoid model. This study proposes to evaluate the method performance for global and diffuse radiation modelling at both the hourly and daily time scale using data from the European Solar Radiation Atlas database for the weather stations of Uccle (Belgium) and Braunschweig (Germany). After that, a 30-year climatology of global and diffuse irradiance for the 1981-2010 period over western Europe is built. The created data set is then analysed in order to highlight possible regional or seasonal trends. The validity of the results is then evaluated after comparison with trends found in in-situ data or from different studies from the literature.

  13. Multidimensional analysis of developing two-phase flows in an ESBWR chimney with and without riser channels

    International Nuclear Information System (INIS)

    The object of this work was to simulate developing multidimensional velocity and void fraction distributions in bubbly and churn turbulent two-phase flows. An advanced Computational Multiphase Fluid Dynamics (CMFD) code, NPHASE, was used to perform three-dimensional, multi-field simulations of the developing phasic velocity and phase distributions in vertical adiabatic conduits. The NPHASE code employed a multi-field two-fluid model, in which, for churn turbulent flow, the vapor phase was divided into small and large, cap bubble fields. In addition, state-of-the-art interfacial area density and field-to-field mass transfer models were used for both the small and large, cap bubbles. In particular, the bubble breakup and coalescence processes were quantified using a two-group interfacial area density transport equation. This allowed the CMFD simulation of developing churn turbulent flows in an ESBWR with and without vertical riser channels in the chimney region above the core. Based on these simulations it was concluded that riser channels have little adverse effect on the induced natural circulation flow through the core and the stability characteristics of an ESBWR. (authors)

  14. Endovascular Repair of Acute Symptomatic Pararenal Aortic Aneurysm With Three Chimney and One Periscope Graft for Complete Visceral Artery Revascularization

    International Nuclear Information System (INIS)

    PurposeTo describe a modified endovascular technique for complete revascularization of visceral and renal arteries in symptomatic pararenal aortic aneurysm (PRAA).TechniqueArterial access was surgically established in both common femoral arteries (CFAs) and the left subclavian artery (LSA). Revascularization of the left renal artery, the celiac trunk, and the superior mesenteric artery was performed through one single sheath via the LSA. Suitable covered stents were put in the aortic branches but not deployed. The right renal artery was accessed over the left CFA. Due to the longitudinal extension of the presented aneurysm two stent-grafts were introduced via the right CFA. After deploying the aortic stent-grafts, all covered stents in the side branches were deployed consecutively with a minimum overlap of 5 mm over the cranial and caudal stent-graft edges. Simultaneous ballooning was performed to fully expand all stent-grafts and warranty patency. Conclusion: This is the first report in the literature of chimney grafting in PRAA for complete revascularization of visceral and renal branches by using more than two covered stents introduced from one side through one single sheath. However this technique is modified, it should be used only in bailout situations when branched stent-grafts are not available and/or surgery is not suitable.

  15. 76 FR 54454 - Issuance of Loan Guarantee to Genesis Solar, LLC, for the Genesis Solar Energy Project

    Science.gov (United States)

    2011-09-01

    ...Genesis Solar, LLC, for the Genesis Solar Energy Project AGENCY: U.S. Department...construction and startup of the Genesis Solar Energy Project (GSEP), a 250-megawatt...Impact Statement for the Genesis Solar Energy Project, Riverside County,...

  16. Solar Radiation Estimation on Building Roofs and Web-Based Solar Cadastre

    Science.gov (United States)

    Agugiaro, G.; Nex, F.; Remondino, F.; De Filippi, R.; Droghetti, S.; Furlanello, C.

    2012-07-01

    The aim of this study is the estimation of solar irradiance on building roofs in complex Alpine landscapes. Very high resolution geometric models of the building roofs are generated by means of advanced automated image matching methods. Models are combined with raster and vector data sources to estimate the incoming solar radiation hitting the roofs. The methodology takes into account for atmospheric effects, site latitude and elevation, slope and aspect of the terrain as well as the effects of shadows cast by surrounding buildings, chimneys, dormers, vegetation and terrain topography. An open source software solution has been developed and applied to a study area located in a mountainous site and containing some 1250 residential, commercial and industrial buildings. The method has been validated by data collected with a pyranometer and results made available through a prototype WebGIS platform.

  17. Desempenho de sistema decanto-digestor com filtro biológico seguido por alagado construído e reator solar no tratamento de esgoto doméstico / Performance of digester decant system with biological filter followed by constructed wetland and solar reactor in the treatment of domestic sewage

    Scientific Electronic Library Online (English)

    Glícia Pinto Barra, Reinaldo; Rafael Oliveira, Batista; Paulo Cesar Moura da, Silva; Luis Cesar de Aquino, Lemos Filho; Miguel, Ferreira Neto; Delfran Batista dos, Santos.

    2012-06-01

    Full Text Available O presente trabalho objetivou analisar o desempenho de sistema decanto-digestor com filtro biológico seguido por alagado construído e reator solar no tratamento de esgoto doméstico do assentamento rural Milagres em Apodi-RN. Nos meses de outubro e novembro de 2010 realizou-se o monitoramento do sist [...] ema 48 dias após o plantio do capim elefante (Pennisetum purpureum Schumach). Foram coletadas amostras do esgoto doméstico nas distintas etapas de tratamento, em quatro repetições no tempo, para determinação de características físico-químicas e microbiológicas referentes ao desempenho do sistema. Os resultados indicaram que houve remoção significativa de turbidez, Demanda Bioquímica de Oxigênio, Demanda Química de Oxigênio, sólidos totais, sólidos suspensos, fósforo e óleos e graxas com o uso sistema decanto-digestor com filtros biológicos seguidos de alagado construído e reator solar; a associação de radiação solar média de 28,73 MJ m-2 d-1, lâmina de 0,10 m de efluente no reator e tempo de exposição solar de 12 horas permitiu remoção de até 99,99% dos coliformes termotolerantes no esgoto doméstico em Apodi-RN; e o efluente tratado apresenta padrão microbiológico satisfatório às diretrizes brasileiras para uso agrícola com restrição. Abstract in english This study aimed to analyze the performance of digester decant system with biological filter followed by constructed wetland and solar reactor in the treatment of domestic sewage from Milagres rural community in Apodi-RN. The treatment system was monitored for the period of October and November 2010 [...] , 48 days after planting Pennisetum purpureum Schumach. Samples of domestic sewage were collected at different stages of treatment, in four replications on time, to determine physicochemical and microbiological characteristics about the system performance. The results indicated significant removal of turbidity, biochemical oxygen demand, chemical oxygen demand, total solids, suspended solids, phosphorus and oil and grease using the set digester decant with biological filter, followed by constructed wetland and solar reactor; the association of average solar radiation of 28.73 MJ m-2 d-1, effluent depth of 0.10 m on reactor and time of sun exposure of 12 hours provided removal of fecal coliform up to 99.99% of domestic sewage in Apodi, RN, the treated effluent met microbiological standard of the Brazilian guidelines for agricultural use with restrictions.

  18. The solar Zeppelin project. French students intend to cross the Channel in a self-constructed solar Zeppelin; Mit Leichtigkeit zum Ziel. Franzoesische Studenten bauen einen Solarzeppelin und wollen damit den Aermelkanal ueberqueren

    Energy Technology Data Exchange (ETDEWEB)

    Sollmann, Dominik

    2009-10-15

    This October, the world's first manned solar Zeppelin will take its virgin flight across the Channel. About 30 students worked on the project for more than two years in the interdisciplinary project ''PLrojet Sol'R''. The ''Nephelios'' zeppelin will use flexible but low-capacity CIGS modules for its first flight. (orig.)

  19. Geologic, geophysical, and in-situ stress investigations in the vicinity of the Dining Car chimney, Dining Car/Hybla Gold Drifts, Nevada Test Site

    International Nuclear Information System (INIS)

    The Hybla Gold event, detonated on Nov. 1, 1977, was conducted in the U12e.20 drifts of the E-tunnel complex beneath the surface of Rainier Mesa at the Nevada Test Site. Though the proximity of the Hybla Gold working point to the chimney of the Dining Car event was important to the experiment, the observable geologic effects from Dining Car on the Hybla Gold site were minor. Overburden above the working point is approximately 385 m (1263 ft). The pre-Tertiary surface, probably quartzite, lies approximately 254 m (833 ft) below the working point. This report comprises three chapters detailing the geologic, geophysical, and in situ stress data gathered in the period January through June 1977, in the course of mining and drilling in the Hybla Gold/Dining Car region. These investigations confirm several observations reported previously for the Rainier event, i.e., a zone of microfailure observable in thin-section and in physical properties exists adjacent to the chimney. In addition, however, a number of investigations add new information to our understanding of effects near the detonation point. Shear waves were found to be highly diagnostic in the microcracked zone near the chimney as well as zones of failure at greater range not discernible as well as zones of failure at greater range not discernible by other techniques. Extensive in situ stress measurements made by the hydrofracture and overcore techniques indicate changes in the orientation and magnitude of the pre-Dining Car stress field. The hydrofracture technique further suggests pronounced gradients in minimum stress magnitudes over short distances at some locations in the postshot stress regime

  20. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  1. Space Solar Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  2. The Solar Eclipse

    Science.gov (United States)

    Stern, David

    1970-01-01

    Instructions for observing the Solar Eclipse on Saturday, March 7, 1970, which will be total along a strip about 85 miles wide along the Atlantic Seaboard. Safety precautions and how to construct a pinhole camera to observe eclipse. (BR)

  3. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  4. Solar Ready: An Overview of Implementation Practices

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

    2012-01-01

    This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

  5. Solar Walls for concrete renovation

    DEFF Research Database (Denmark)

    Gramkow, Lotte; Vejen, Niels Kristian; Olsen, Lars; Jensen, Søren; Michaelsen, Lisbet; Schmidt, Thomas; Kellerup, Ulla; Madsen, Michael

    1996-01-01

    This repport gives a short presentation of three full-scale testing solar walls, the construction including the architectural design, materials and components, transportation and storage of solar enegy, the effect on the construction behind, statics and practical experience.The results of the measurments (energy- and temperature conditions, airchange-, termovisions- and moist measurments), operation- and user experience from the three buildings are describet.

  6. Construction of a Semiconductor-Biological Interface for Solar Energy Conversion: p-Doped Silicon/Photosystem I/Zinc Oxide.

    Science.gov (United States)

    Beam, Jeremiah C; LeBlanc, Gabriel; Gizzie, Evan A; Ivanov, Borislav L; Needell, David R; Shearer, Melinda J; Jennings, G Kane; Lukehart, Charles M; Cliffel, David E

    2015-09-15

    The interface between photoactive biological materials with two distinct semiconducting electrodes is challenging both to develop and analyze. Building off of our previous work using films of photosystem I (PSI) on p-doped silicon, we have deposited a crystalline zinc oxide (ZnO) anode using confined-plume chemical deposition (CPCD). We demonstrate the ability of CPCD to deposit crystalline ZnO without damage to the PSI biomaterial. Using electrochemical techniques, we were able to probe this complex semiconductor-biological interface. Finally, as a proof of concept, a solid-state photovoltaic device consisting of p-doped silicon, PSI, ZnO, and ITO was constructed and evaluated. PMID:26318861

  7. Basic study for the construction of solar cell using CdS photocatalysts and Na{sub 2}S{sub 4} electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Mabuchi, Takashi, E-mail: hideyuki@mail.kankyo.tohoku.ac.jp; Hayashi, Tsugumi, E-mail: hideyuki@mail.kankyo.tohoku.ac.jp; Takahashi, Hideyuki, E-mail: hideyuki@mail.kankyo.tohoku.ac.jp; Tohji, Kazuyuki, E-mail: hideyuki@mail.kankyo.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, Sendai (Japan)

    2013-12-10

    Photoexcited electrons pathway from thin film consisting of semiconductor particles to electrode was tried to develop by using conducting polymers. PEDOT/PSS and polyaniline was selected as transparent conducting polymer material. In the case of the cell consisted by using polyaniline, it was confirmed that conductive emeraldine salt stated polyaniline converted to non-conductive emeraldine base state because of contact with strong basic Na{sub 2}S{sub 4} electrolyte solution. On the other hand, as regards the cell with PEDOT/PSS, it was expected that positive and negative electrode short-circuited and/or Schottky junction was formed between CdS and PEDOT/PSS. The formation of Schottky junction between CdS and PEDOT/PSS was reduced the kinetic energy of the photoexcited electrons to 5.1eV which was the Fermi level of PEDOT. These electrons could not reduce Na{sub 2}S{sub 4} electrolyte solution since oxidation-reduction potential was 4.1eV. As a result, it considered that photoexcited electrons transfer was restricted, which read the decreasement of mobility of photoexcited electron, while the cell “without” PEDOT/PSS could operate as a solar cell.

  8. Economic aspects of Solar Thermal Technologies for electricity generation

    International Nuclear Information System (INIS)

    Economic results of German studies are presented, which compare the four solar thermal technologies for electricity generation (parabolic trough collector system, central receiver system, parabolic dish/Stirling system, solar chimney plant). These studies were carried out by Interatom (today Siemens/KWU) in Bergisch Gladbach, Flachglas Solartechnik in Koln and Schlaich Bergermann and Partner in Stuggart under contract of DLR in Koln. Funds were made available by the German Ministry of Research and Development (BMFT). The results indicate that all of the investigated technologies have the potential to reduce the generating costs and that in the future costs of below 0.30 DM/kWh could be expected under excellent insolation conditions (e.G. 2850 kWh/m''2 a direct insolation as in California/USA). (Author) 25 refs

  9. 76 FR 60475 - Issuance of a Loan Guarantee to Tonopah Solar Energy, LLC, for the Crescent Dunes Solar Energy...

    Science.gov (United States)

    2011-09-29

    ... Tonopah Solar Energy, LLC, Crescent Dunes Solar Energy Project, Nye County, Nevada (75 FR 70917, November... of a Loan Guarantee to Tonopah Solar Energy, LLC, for the Crescent Dunes Solar Energy Project AGENCY...), to Tonopah Solar Energy, LLC (TSE), for construction and start-up of the Crescent Dunes Solar......

  10. 76 FR 62052 - Issuance of a Loan Guarantee to First Solar, Inc., for the Desert Sunlight Solar Farm Project

    Science.gov (United States)

    2011-10-06

    ... FR 50493). In December 2009, First Solar applied to DOE for a loan guarantee under Title XVII of... of a Loan Guarantee to First Solar, Inc., for the Desert Sunlight Solar Farm Project AGENCY: U.S... Solar, Inc., (First Solar) for construction and start-up of the Desert Sunlight Solar Farm...

  11. Solar neutrinos

    International Nuclear Information System (INIS)

    Within the last decade solar neutrino physics has evolved into a field of relevance not only for probing our understanding of stellar physics, but also for investigating and pinpointing intrinsic neutrino properties, most importantly neutrino masses and mixing angles. To date, results from six different and partly complementary experiments have been acquired. Taken together, these experimental data provide evidence for neutrino oscillations, i.e. neutrino masses and mixing, and thus physics beyond the standard model of electroweak interactions. Several new experiments currently being planned or constructed will commence operation within the next few years. They will provide additional complementary data and allow - together with the already running detectors - performance of a full solar neutrino spectroscopy in both the charged-current and the neutral-current detection mode. Performing a thorough comparison of the spectral shape observed on Earth and the neutrino spectrum expected from solar model computations will be essential for further pinpointing neutrino masses and mixing parameters. This article, after giving a short introduction to the field, reviews the current status of solar neutrino physics and gives an outlook on the potential which the upcoming experiments offer for further progress. (author)

  12. Enhancement of the potential biodegradability and the mineralization of a pesticides mixture after being treated by a coupled process of TiO2-based solar photocatalysis with constructed wetlands / Mejora de la biodegradabilidad potencial y la mineralización de una mezcla de pesticidas después de ser tratada con un sistema acoplado de fotocatálisis solar con TiO2 y humedales artificiales

    Scientific Electronic Library Online (English)

    José, Colina-Márquez; Fiderman, Machuca-Martínez; Wilson, Salas.

    2013-12-01

    Full Text Available La fotocatálisis solar homogénea es un proceso de oxidación avanzada que permite tratar de forma exitosa un gran número de contaminantes recalcitrantes, como: pesticidas, tintas industriales y compuestos farmacéuticos. No obstante, a pesar de su efectividad, los costos de aplicación de este proceso [...] son altos cuando se trata de alcanzar la mineralización completa o de obtener un efluente amigable con el medio ambiente. Los sistemas acoplados fotocatalítico-biológicos se han convertido en una alternativa factible para tratar de forma eficiente estos contaminantes. En este trabajo, un sistema acoplado de dos reactores solares de colectores parabólicos compuestos (CPC) y humedales artificiales de flujos sub-superficial (HFSS) a escala piloto se evaluó para degradar un mezcla de pesticidas comerciales usados en el cultivo de la caña de azúcar. Para medir el desempeño del proceso para eliminar el contaminante, se estimaron el aumento de la relación DBO5/DQO y la reducción del carbono orgánico total (COT) para cada sistema por separado y para el acople. Se consideraron tres diferentes niveles de radiación solar UV acumulada y de flujos de alimentación al HFSS en el diseño experimental. La relación DBO5/DQO aumentó de 0.15 a 0.90 y la reducción de COT (mineralización total) estuvo alrededor del 80% Abstract in english Solar heterogeneous photocatalysis is an advanced oxidation technology, which allows a successful treatment of many recalcitrant and emergent pollutants, such as: pesticides, industrial dyes and pharmaceutical compounds. Nonetheless, despite its effectiveness, the costs of applying this process are [...] high when it is necessary to achieve a complete mineralization or to obtain an environment-friendly effluent. Photocatalytic-biological coupled systems have become in a feasible alternative able to treat efficiently these pollutants. In this work, a coupled system consistent of two compound parabolic collectors (CPC) solar photoreactors and a subsurface flow constructed wetland (SFCW) at pilot-scale was tested for degrading a mixture of commercial pesticides used in sugar cane crops. For measuring the process performance, regarding to the pollutant removal, the increase of the BOD5/COD ratio and the total organic carbon (TOC) removal were estimated for each separated system and the coupled system. Three different levels of solar UV accumulated energy and feed flow-rates to the SFCW were considered for the experimental design. The pilot-scale coupled system increased the BOD5/COD ratio from 0.15 to 0.90, and the TOC removal (total mineralization) was around 80%

  13. In situ ore formation experiment: Amino acids and amino sugars trapped in artificial chimneys on deep-sea hydrothermal systems at Suiyo Seamount, Izu-Bonin Arc, Pacific Ocean

    CERN Document Server

    Takano,; Marumo,; K.,; Ebashi,; T.,; Gupta,; P., L; Kawahata,; H.,; Kobayashi,; K.,; Yamagishi,; A.,; Kuwabara,; T,

    2013-01-01

    The present study reports on the bio-organic composition of a deep-sea venting hydrothermal system originating from arc volcanism; the origin of the particulates in hydrothermal fluids from the Suiyo Seamount in the southern Izu-Bonin (Ogasawara) Arc is discussed with regard to amino compounds. Chimney samples on deep-sea hydrothermal systems and core samples at Suiyo Seamount were determined for amino acids, and occasionally amino sugars. Two types of chimney samples were obtained from active hydrothermal systems by submersible vehicles: one was natural chimney (NC) on a hydrothermal natural vent; the other was artificial chimneys (AC), mainly formed by the growth and deposition of sulfide-rich particulate components in a Kuwabara-type in situ incubator (KI incubator). Total hydrolyzed amino acids (THAA) and hydrolyzed hexosamines (HA) in AC ranged from 10.7 nmol/g to 64.0 nmol/g and from 0 nmol/g to 8.1 nmol/g, respectively, while THAA in hydrothermally altered core samples ranged from 26.0 nmol/g to 107.4 ...

  14. Solar astronomy

    Science.gov (United States)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  15. Web based Measurement System for Solar Radiation

    OpenAIRE

    Shachi Awasthi,; Dr. P. Mor

    2012-01-01

    We present in this paper, the principles of the measurement system for solar radiation, and our implementation using Web based data logging concept. The photocurrent produced by Silicon PN junction is used as a solar radiation transducer, to make it more viable we have used commercially available solar panels as our transducers. Using a silicon solar cell as sensor, a low cost solar radiometer can be constructed. The photocurrent produced by solar cell is electronically tailored to be measure...

  16. Neutrinos and Solar Models

    International Nuclear Information System (INIS)

    After summarizing principles of solar model construction and presenting an updated prediction for the neutrino counting rates, I focus this review on the question of reliability of current models. Methods and results of seismic sounding of the solar interior are presented in some detail. The results confirm the standard scenario of the solar evolution. This conclusion, combined with the evidences for neutrino oscillations, means the end of astrophysical aspect of the solar neutrino problem. The models of the Sun interior remain important for interpretation of the data from the neutrino detectors but the data cannot be used to contradict the models, not even to constrain them. (author)

  17. Seafloor mounds, craters and depressions linked to seismic chimneys breaching fossilized diagenetic bottom simulating reflectors in the central and southern Scotia Sea, Antarctica

    Science.gov (United States)

    Somoza, Luis; León, Ricardo; Medialdea, Teresa; Pérez, Lara F.; González, Francisco J.; Maldonado, Andrés

    2014-12-01

    Based on an extensive dataset including swath bathymetry, chirp sub-bottom profiler (TOPAS) and multichannel seismic reflection profiles obtained during four cruises in the Scotia Sea aboard the R/V Hespérides, we report a variety of seismic and morphological structures related to focused fluid flow in the Scan Basin (southern Scotia Sea) and the central Scotia Sea (Antarctica). We show that both positive-relief (mounds) and negative-relief (craters and elongated depressions) seafloor morphologies are associated with deep seismic chimneys that link the deep source zone to the subsurface structures through a network of fractures that progressively breach sub-horizontal bands of anomalously high-amplitude reflections. Based on the recognition that these bands of reflections generally mimic the seafloor topography and locally cross-cut the stratigraphic seismic reflections, we recognize three different bottom simulating reflectors (BSRs). According to the theoretical model for hydrate and silica diagenesis stability conditions in the central and southern Scotia Sea and the calculations of temperature and seismic polarity for the three BSRs, we infer that BSR-2 and BSR-3 are reflections caused by the transformation between Opal-A/Opal-CT and Opal-CT/Quartz, respectively. We thus postulate that the successive diagenetic fronts were caused by significantly high geothermal gradients during the early-middle Miocene. In contrast, the low temperatures calculated for the depth of the BSR-1 event rule out its diagenetic origin but delineate the base of the gas hydrate stability zone (GHSZ). An evolutionary model is proposed to explain the plumbing system and chimney structures that help the focused flow of gas-rich fluids to migrate into the subsurface. Firstly, the formation of silica transformation zones may have acted as reservoir traps during Neogene times. Secondly, the progressive decrease of heat flow during the late Pliocene and Quaternary favored the development of the networks of polygonal faults forming collapses and downward tapering chimneys. Finally, seafloor mounds are formed as a result of the continuous injection of gas-enriched fluids through these networks of fractures; they are transformed into gas hydrates above the present base of the GHSZ and move upwards by buoyancy drive as they lose density and increase their volume. We present these structures as type cases that might represent highly concentrated hydrates around local seafloor fluid venting structures. Furthermore, they may be one of the most important conduits into the ocean-atmosphere system for deep methane in the Antarctic seafloor. The breach of BSRs influenced by global warming may induce the catastrophic release of greenhouse gases to the ocean-atmosphere system and, in turn, impact on the Earth's evolution.

  18. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  20. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  2. Construction logistics

    OpenAIRE

    Niklasson, Lisa; Toft, Lina

    2010-01-01

    There is often talk about the construction industry and its reluctant to change. The industry also lags behind in productivity and cost reduction compared to other industries. Statistics from SCB shows that the costs of producing buildings have risen sharply over time, although the construction companies continue to build. We will therefore in this thesis examine the application of logistics in the construction industry and the problems involved. This is because a non-functioning logistics le...

  3. FFTF constructibility

    International Nuclear Information System (INIS)

    The influence of the design criteria on the constructibility of the Fast Flux Test Facility is described. Specifically, the effects of requirements due to maintenance accessibility, inerting of cells, seismicity, codes, and standards are addressed. The design and construction techniques developed to minimize the impact of the design criteria on cost and schedule are presented with particular emphasis on the cleanliness and humidity controls imposed during construction of the sodium systems. (U.S.)

  4. Solar energy in Amersfoort, Netherlands

    International Nuclear Information System (INIS)

    For the first time in the world a newly to be built housing area (Nieuwland in Amersfoort, Netherlands) will be constructed, exclusively on the basis of sustainability. First, the use of three forms of solar energy conversion techniques (thermal solar energy, passive solar energy and photovoltaic energy) is going to be integrated in 50 rental houses. At the end of this century 10,000 m2 of solar cells will be installed with a capacity of 1 MWp. 2 figs

  5. A novel design for construction of dwellings in radon prone areas of Ramsar

    International Nuclear Information System (INIS)

    Radon can accumulate in residential places at sufficiently high levels. Indoor radon levels in some regions of Ramsar are up to 3700 Bq m-3, a concentration that is much higher than US EPA recommended action level of 148 Bq m-3 (4 pCi/L). Radon is the 2nd leading cause of lung cancer, after cigarette smoking. It is widely believed that there is no threshold for lung cancer from radon exposure. In this study after reviewing the meteorological changes of Ramsar over the past 50 years (1955-2005), a novel design for constructing dwellings in radon prone areas is introduced. Natural ventilation is a type of ventilation that is created by the differences in the distribution of air pressures around a building. The basic element of our design is enhancement of natural ventilation by making wind and chimney effect to move fresh air through dwellings. The buoyancy effect caused by temperature differences makes air flow. The size and location of openings in each dwelling determine the extent of natural ventilation. In our two-storey house model, wind speed and direction, relative humidity, average temperature, and especially the traditional architecture of the northern coastal part of Iran, are taken into account. Furthermore, in this model, windows and skylights, evergreen or deciduous trees and fireplace chimneys as well as construction materials and wall coverings are the key components of the natural ventilation system. (author)

  6. Superstring construction

    CERN Document Server

    1989-01-01

    The book includes a selection of papers on the construction of superstring theories, mainly written during the years 1984-1987. It covers ten-dimensional supersymmetric and non-supersymmetric strings, four-dimensional heterotic strings and four-dimensional type-II strings. An introduction to more recent developments in conformal field theory in relation to string construction is provided.

  7. Construction Costs.

    Science.gov (United States)

    Georgia State Dept. of Education, Atlanta. Facilities Services Unit.

    With the increasing pace of school construction, knowing how much a school should cost can facilitate effective new-school planning. To help with this process, this document provides new-construction costs as figured for the State of Georgia. The estimates include costs per square foot for elementary schools, middle schools, and high schools, as…

  8. 76 FR 60475 - Issuance of a Loan Guarantee to Tonopah Solar Energy, LLC, for the Crescent Dunes Solar Energy...

    Science.gov (United States)

    2011-09-29

    ...ENERGY Issuance of a Loan Guarantee to Tonopah Solar Energy, LLC, for the Crescent Dunes Solar Energy Project AGENCY: U.S. Department of Energy...Act of 2009 (Recovery Act), to Tonopah Solar Energy, LLC (TSE), for construction and...

  9. Enhanced bilateral somatostatin receptor expression in mediastinal lymph nodes (''chimney sign'') in occult metastatic medullary thyroid cancer: a typical site of tumour manifestation?

    International Nuclear Information System (INIS)

    In medullary thyroid cancer (MTC), post-surgically elevated plasma calcitonin and/or carcinoembryonic antigen levels frequently indicate persisting metastatic disease, although conventional diagnostic procedures fail to localize the responsible lesions (occult disease). Somatostatin analogues have been used successfully in disease localization, but recently concerns have been raised that increased thoracic uptake of indium-111 pentetreotide in patients with previous external beam irradiation may represent a false-positive finding, caused by post-irradiation pulmonary fibrosis. We recently examined seven patients with metastatic MTC by somatostatin receptor scintigraphy (six with occult and one with established disease). In four patients, all of whom had stable or slowly rising tumour marker levels over several years, a chimney-like bilateral mediastinal uptake of indium-111 pentetreotide was found. In two patients with persisting hypercalcitonaemia immediately after primary surgery, supraclavicular lymph node metastases were identified as the responsible lesions. None of these seven patients had prior external beam radiation therapy. In two cases, histological confirmation was obtained. In one patient, disease progression could be shown during follow-up. These data suggest that bilateral mediastinal lymph node involvement is a typical site of disease in slowly progressing occult metastatic MTC; the ''chimney sign'' may represent a typical finding with somatostatin anant a typical finding with somatostatin analogues in such cases. Therefore, we believe that even in the case of prior external beam irradiation, mediastinal uptake of octreotide might represent metastatic MTC rather than radiation fibrosis. (orig.). With 2 figs., 1 tabIn medullary thyroid cancer (MTC), post-surgically elevated plasma calcitonin and/or carcinoembryonic antigen levels frequently indicate persisting metastatic disease, although conventional diagnostic procedures fail to localize the responsible lesions (occult disease). Somatostatin analogues have been used successfully in disease localization, but recently concerns have been raised that increased thoracic uptake of indium-111 pentetreotide in patients with previous external beam irradiation may represent a false-positive finding, caused by post-irradiation pulmonary fibrosis. We recently examined seven patients with metastatic MTC by somatostatin receptor scintigraphy (six with occult and one with established disease). In four patients, all of whom had stable or slowly rising tumour marker levels over several years, a chimney-like bilateral mediastinal uptake of indium-111 pentetreotide was found. In two patients with persisting hypercalcitonaemia immediately after primary surgery, supraclavicular lymph node metastases were identified as the responsible lesions. None of these seven patients had prior external beam radiation therapy. In two cases, histological confirmation was obtained. In one patient, disease progression could be shown during follow-up. These data suggest that bilateral mediastinal lymph node involvement is a typical site of disease in slowly progressing occult metastatic MTC; the ''chimney sign'' may represent a typical finding with somatostatin an

  10. Construction mathematics

    CERN Document Server

    Virdi, Surinder

    2006-01-01

    Taking a starting point below that of GCSE level, by assuming no prior mathematical knowledge, Surinder Virdi and Roy Baker take the reader step by step through the mathematical requirements for Level 2 and 3 Building and Construction courses.Unlike the majority of basic level maths texts available, this book focuses exclusively on mathematics as it is applied in actual construction practice. As such, topics specific to the construction industry are presented, as well as essential areas for Level 2 craft NVQs - for example, costing calculations, labor costs, cost of materials and setting out o

  11. Construction aggregates

    Science.gov (United States)

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  12. Solar Lentigo

    Science.gov (United States)

    newsletter | contact Share | Solar Lentigo Information for adults A A A This image displays many solar lentigos due to the patient having many sunburns as a child and teenager. Overview A solar lentigo (plural, solar lentigines), also known as a ...

  13. Where does the huge orbital a.m. of solar and exoplanets come from? Evidence in both arenas that they get it during during nebula-borne construction, the property of new insight on the physics of gravitation

    Science.gov (United States)

    Osmaston, M. F.

    2013-09-01

    The present solar planetary system is replete with dynamical constraints on how it was built, and further constraint is provided by accumulating exoplanet observations. In this regard, the most securely determined and far-reaching dynamical constraint of all - the high orbital angular momenta of the planets, relative to solar rotation - has been recognized for nearly a century [1-5], but has proven to be the very elusive to explain within the currently prevailing variants of the Kant-Laplace solar nebula paradigm. One of the most recent, the 'Nice' model, see [6], lacks systematic treatment of the prograde directions of planetary spins and satellite orbits. My purpose here is to underline the significance of these and other failures by working through the various planetary system features at issue, and then to outline a possible way ahead. The mean specific orbital angular momentum (a.m.) of the solar planetary materials is ~1.3x105 times the rotational a.m. of solar material. Individual planetary a.m. arises from the prevailing Keplerian velocity pattern; the question is how they got there. Sparse exoplanet data on central-body rotation show no sign that the star's rotation is anywhere near fast enough to remove this huge disparity of a.m. So we seek to resolve this problem by recognizing that nebular action during planet formation was the only agent available for such 'partition' of a.m. Such action, by whatever means, requires completion of planetary growth within the period of nebular presence, so that their growth materials also be equipped with the appropriate a.m. This limitation accords with two constraints from meteorites:- accretion onto asteroids continued until ~4563Ma (but no later), and relationships between very shortlife isotopes require that they were imported very soon (1Ma?) after their production in a stellar explosion [7]. So the >50Ma timescales of the Nice model, to provide for orbit migration in the presence of much other material, seem to be ruled out. The near-circular orbits of all except Mercury are indeed consistent with completion in the presence of nebular gas-drag. But planetary growth by randomly directed impact would not systematically increase their orbit size and a.m. So where and how were the SS protoplanets nucleated and achieve their growth? This introduces the matter of planetary spin directions. Mercury's spin is probably irrelevant, having suffered a late giant impact (tilted and highly eccentric orbit, /3rds of its mantle missing) [8,9]. Of the 7 other planets all are prograde except Venus, whose very slow retrograde spin might be due to retrograde-capturing large amounts of the Mercury impact debris, another 2.7% of which may have built the Moon. The 98deg inclination of Uranus does not render it 'retrograde'. Restoring it by that angle makes its satellite pattern like those of the other three Giant Planets (GP). Moreover, Uranus' orbit is now as circular as its GP brethren, so the impact which tilted its axis must have been quite early, giving time for subsequent circularization by nebular action. So we are looking for a nebula-present mode of planetary construction which leads to a systematically prograde spin result. Such systematic behaviour hints strongly at gravitational nucleation. Note at once that in a Keplerian disc the vorticity is retrograde. The only place where prograde vorticity would be available in a plasma-rich protoplanetary disc is very close to the Sun and due to quasi-equatorial magnetic coupling. This point immediately strikes a chord with the exoplanet scene. There, ~23% of all those found are grouped around an orbital distance of ~10 solar radii. The proportion has changed little as the numbers grew, despite changes in detection methods. It is not a matter of ease of detection, but of why they are there at all, when Mercury, our closest-in planet, is at 83 solar radii. Some have sought to explain this as the result of inward migration due to gas drag, but that overlooks the problem of how they had the highera.m. of being in a bigger orbit to start w

  14. Solar energy

    International Nuclear Information System (INIS)

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  15. Cooking with the Sun. How To Build and Use Solar Cookers.

    Science.gov (United States)

    Halacy, Beth; Halacy, Dan

    For those working with solar energy and/or conservation and the careful use of resources, constructing a solar oven can be a fun and useful activity. This book describes the construction and use of solar ovens for cooking. Construction details are provided for two inexpensive solar ovens and a reflector hot plate that can then be used to cook 100…

  16. 76 FR 54454 - Issuance of Loan Guarantee to Genesis Solar, LLC, for the Genesis Solar Energy Project

    Science.gov (United States)

    2011-09-01

    ... of Loan Guarantee to Genesis Solar, LLC, for the Genesis Solar Energy Project AGENCY: U.S. Department... Genesis Solar, LLC, for construction and startup of the Genesis Solar Energy Project (GSEP), a 250... Statement for the Genesis Solar Energy Project, Riverside County, California (75 Federal Register...

  17. Construction safety

    CERN Document Server

    Li, Rita Yi Man

    2013-01-01

    A close-to-ideal blend of suburb and city, speedy construction of towers of Babylon, the sparkling proportion of glass and steel buildings’ facade at night showcase the wisdom of humans. They also witness the footsteps, sweats and tears of architects and engineers. Unfortunately, these signatures of human civilizations are swathed in towering figures of construction accidents. Fretting about these on sites, different countries adopt different measures on sites. This book firstly sketches the construction accidents on sites, followed by a review on safety measures in some of the developing countries such as Bermuda, Egypt, Kuwait and China; as well as developed countries, for example, the United States, France and Singapore. It also highlights the enormous compensation costs with the courts’ experiences in the United Kingdom and Hong Kong.

  18. Solar/seasonal heat storage. Reconstruction of the Tubberupvaenge tank. Part 2. Repair of the leaking storage tank by means of stainless thin-plate liner. Part 2: Construction and implementation; Sol/saesonvarmelagre. Rekonstruktion af Tubberupvaengetanken Del 2. Udbedring af utaet lagertank med rustfri tyndpladeliner. Del. 2: Bygning og idriftssaettelse

    Energy Technology Data Exchange (ETDEWEB)

    Munch, K. [KAB Bygge- og Boligadministration, (Denmark); Wesenberg, C. [Nellemann, Nielsen og Rauschenberger A/S (Denmark)

    1998-04-01

    Construction of the 3000 m{sup 3} Tubberupvaenge storage tank and of the 1000 m{sup 2} solar heating system was the Danish contribution to the IEA cooperation in the area of large solar heating systems with seasonal heat storage. The price of the tank was DKK 3.1 million. In 1991 leakages from the tank were observed and the tank was left empty. The method chosen for repair has been mounting of stainless steel liners: the ceiling of AISI 316/SS 2343 and walls-floor of 254 SMO connected by means of seam welding. Repair and reconstruction have been extremely expensive due to several changes during the repairs and problems with welding. Nevertheless a watertight, flexible and materials saving steel liner for seasonal heat storage can be constructed, its service life can exceed 20 years and water temperature can be about 100 deg.C. (EG)

  19. System analysis of a PV/T hybrid solar window

    OpenAIRE

    Davidsson, Henrik

    2010-01-01

    A building-integrated multifunctional PV/T solar window was suggested and developed by Andreas Fieber. The solar window is constructed of PV cells laminated on solar absorbers placed in a window behind the glazing. To reduce the costs of solar electricity, tiltable reflectors have been introduced in the construction to focus radiation onto the solar cells. The reflectors make it possible to control the amount of radiation transmitted into the building. The insulated reflectors also reduce the...

  20. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  1. Orbital origins of helices and magic electron counts in the Nowotny chimney ladders: the 18 - n rule and a path to incommensurability.

    Science.gov (United States)

    Yannello, Vincent J; Fredrickson, Daniel C

    2014-10-01

    Valence electron count is one of the key factors influencing the stability and structure of metals and alloys. However, unlike in molecular compounds, the origins of the preferred electron counts of many metallic phases remain largely mysterious. Perhaps the clearest-cut of such electron counting rules is exhibited by the Nowotny chimney ladder (NCL) phases, compounds remarkable for their helical structural motifs in which transition metal (T) helices serve as channels for a second set of helices formed from main group (E) elements. These phases exhibit density of states pseudogaps or band gaps, and thus special stability and useful physical properties, when their valence electron count corresponds to 14 electrons per T atom. In this Article, we illustrate, using DFT-calibrated Hückel calculations and the reversed approximation Molecular Orbital analysis, that the 14-electron rule of the NCLs is, in fact, a specific instance of an 18 - n rule emerging for T-E intermetallics, where n is the number of E-supported T-T bonds per T atom. The structural flexibility of the NCL series arises from the role of the E atoms as supports for these T-T bonds, which simply requires the E atoms to be as uniformly distributed within the T sublattice as possible. This picture offers a strategy for identifying other intermetallic structures that may be amenable to incommensurability between T and E sublattices. PMID:25215958

  2. Thoracic type Ia endoleak: direct percutaneous coil embolization of the aortic arch at the blood entry site after TEVAR and double-chimney stent-grafts

    Energy Technology Data Exchange (ETDEWEB)

    Bangard, Christopher; Franke, Mareike; Maintz, David; Chang, De-Hua [University Hospital, University of Cologne, Department of Radiology, Cologne (Germany); Pfister, Roman [University Hospital, University of Cologne, Department of Internal Medicine III, Cologne (Germany); Deppe, Antje-Christin [University Hospital, University of Cologne, Department of Cardiothoracic Surgery, Cologne (Germany); Matoussevitch, Vladimir [University Hospital, University of Cologne, Department of Vascular Surgery, Cologne (Germany)

    2014-06-15

    To introduce a novel percutaneous technique to stop blood entry at the lesser aortic arch curvature by coil embolisation in type Ia endoleak after TEVAR. A 61-year-old Marfan patient presented with type Ia endoleak of the aortic arch and a growing aortic arch pseudoaneurysm after TEVAR. Multiple preceding operations and interventions made an endovascular approach unsuccessful. Direct percutaneous puncture of the aneurysmal sac would have cured the sign, but not the cause of blood entry at the lesser curvature of the aortic arch. Direct CT-guided percutaneous puncture of the blood entry site in the aortic arch with fluoroscopically guided coil embolisation using detachable extra-long coils was successfully performed. Three weeks after the intervention, the patient developed fever because of superinfection of the pseudoaneurysm. The blood cultures and CT-guided mediastinal aspirate were sterile. After intravenous administration of antibiotics, the fever disappeared and the patient recovered. Six-month follow-up showed permanent closure of the endoleak and a shrinking aneurysmal sac. Direct percutaneous puncture of the aortic arch at the blood entry site of a thoracic type Ia endoleak after TEVAR and double-chimney stent-grafts with coil embolisation of the wedge-shaped space between the lesser aortic curvature and the stent-graft is possible. (orig.)

  3. Tratamento Endovascular de Aneurisma de Aorta Abdominal pela Técnica de Chaminé / Endovascular Repair of Abdominal Aortic Aneurism Using the Chimney Graft Technique

    Scientific Electronic Library Online (English)

    Adriano Gonçalves de, Araujo; Fábio Henrique Ribeiro de, Souza; Fernando Henrique, Fernandes; Flávio Passos, Barbosa; José Antônio, Jatene; Paulo Cézar Guimarães, Câmara.

    2014-12-01

    Full Text Available Paciente idoso, portador de insuficiência renal não dialítica e doença pulmonar obstrutiva crônica dependente de oxigênio, foi admitido no pronto-socorro com quadro de dor abdominal lancinante. A angiotomografia de abdome revelou a presença de grande aneurisma aórtico com comprometimento das artéria [...] s viscerais. Devido ao elevado risco cirúrgico, foi proposto o tratamento endovascular pela técnica de chaminé para a preservação dos vasos viscerais. Essa técnica mostra-se promissora por permitir o reparo endovascular desses aneurismas, seja em casos eletivos, em situações de urgência/emergência ou de resgate de uma artéria visceral acidentalmente encoberta por uma endoprótese aórtica. Abstract in english An elderly patient with non-dialysis renal failure and oxygendependent chronic obstructive pulmonary disease was admitted to the emergency room with lancinating abdominal pain. Angiotomography of the abdomen revealed the presence of a large aortic aneurysm with involvement of visceral arteries. Due [...] to the high surgical risk, endovascular repair was proposed, using the chimney graft technique for the preservation of the visceral vessels. This technique is promising because it enables endovascular repair of aneurysms, be it in elective cases, emergencies, or rescue of a visceral artery accidentally covered by an aortic stent graft.

  4. Thoracic type Ia endoleak: direct percutaneous coil embolization of the aortic arch at the blood entry site after TEVAR and double-chimney stent-grafts

    International Nuclear Information System (INIS)

    To introduce a novel percutaneous technique to stop blood entry at the lesser aortic arch curvature by coil embolisation in type Ia endoleak after TEVAR. A 61-year-old Marfan patient presented with type Ia endoleak of the aortic arch and a growing aortic arch pseudoaneurysm after TEVAR. Multiple preceding operations and interventions made an endovascular approach unsuccessful. Direct percutaneous puncture of the aneurysmal sac would have cured the sign, but not the cause of blood entry at the lesser curvature of the aortic arch. Direct CT-guided percutaneous puncture of the blood entry site in the aortic arch with fluoroscopically guided coil embolisation using detachable extra-long coils was successfully performed. Three weeks after the intervention, the patient developed fever because of superinfection of the pseudoaneurysm. The blood cultures and CT-guided mediastinal aspirate were sterile. After intravenous administration of antibiotics, the fever disappeared and the patient recovered. Six-month follow-up showed permanent closure of the endoleak and a shrinking aneurysmal sac. Direct percutaneous puncture of the aortic arch at the blood entry site of a thoracic type Ia endoleak after TEVAR and double-chimney stent-grafts with coil embolisation of the wedge-shaped space between the lesser aortic curvature and the stent-graft is possible. (orig.)

  5. Occurrence and distribution of seismic chimneys associated with gas hydrate using 2D multi-channel seismic data in the Ulleung Basin, East Sea.

    Science.gov (United States)

    Kang, Nyeon-keon; Yoo, Dong-geun; Yi, Bo-yeon

    2015-04-01

    This study presents an interpretation of 2D multi-channel seismic data for the seismic chimneys in the Ulleung Basin, East Sea. Based on the geometry, seismic reflection pattern, well log response and lithology, we identified two representative types: (a) Type-I and Type-II. Type-I is pipe-like feature seen as the vertically stacked distorted reflectors in the seismic profile. This type is predominantly distributed on the northern part of the basin floor. Most of Type-I is connected to underlying deep seated fault. The well log response and lithology of Type-I indicate that they preserve the primary properties of sediments. Type-II is cone-like feature seen as transparent or chaotic reflection pattern in the seismic profile. The well log interpretation reveals that the Type-II consists of homogeneous and monotonous mud, different from same stratigraphic level. This type dominantly appeared over the mass transport deposit. Moreover, the distribution of Type-II represents a robust relationship to the underlying structural highs located on the northern and eastern basin floor. Our current study suggests that Type-I is a consequence of the natural hydraulic fracturing and Type-II results from the intrusive sediment remobilization. Indeed, the underlying structural highs and mass transport deposit mainly influenced the distribution of Type-II. The deep-seated fault, reactivated during the Quaternary, probably developed the Type-I.

  6. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  7. Constructing Catalonia

    Directory of Open Access Journals (Sweden)

    Bill Phillips

    2009-01-01

    Full Text Available Catalonia, in common with other nations, has long b een concerned with the question of identity and difference. Its problemati c relationship with Spain has led to an emphasis on differentiating itself from its larger neighbour (if we are to accept, as most Spaniards do not, that Catalonia is not Spain, a s ituation complicated by the loss of the Spanish colonies of Cuba and The Philippines in 189 8, and the Spanish Civil War and subsequent dictatorship from 1936 to 1976. Beginnin g in the late nineteenth century, the construction of a Catalan identity followed a simil ar route to that taken by other European nations such as England, Ireland and, inde ed, Spain, including an emphasis on rural values, activities and the countryside, and t he conversion of specifically local traditions into national past times. It is only in the last ten years or so that this model of Catalan identity has been recognised for what it is – a model constructed and encouraged for and by specific nationalist politica l interests. Ironically, Catalonia’s identity abroad has also been constructed and manip ulated for political purposes, but from quite a different perspective. Orwell’s /Homag e to Catalonia/ (1938 narrates an extremely blinkered version of the Spanish Civil Wa r which has achieved iconic status as a result of cold war politics. Subsequent portra yals of the Spanish Civil War – Valentine Cunningham’s /The Penguin Book of Spanish Civil War Verse/ (ed., Penguin, 1980, or Ken Loach’s 1995 film /Land and F reedom/ base their arguments unquestioningly on /Homage to Catalonia/, perpetuat ing a view of the nation’s recent history that is both reductive and inaccurate

  8. Constructing History

    DEFF Research Database (Denmark)

    Jørgensen, Michael Riber

    2010-01-01

    The Icelandic sagas can be read and interpreted in many ways. This article examines the sagas both as literary expressions of a longstanding oral tradition and as part of a collective and cultural memory. The focus in the first part is on people and places in the sagas as ‘realms of memory’: things that help construct a common past and a common identity. The second part of the article explores the role of the sagas in medieval Iceland as ‘key myths’ that explain the origin and uniqueness of a so...

  9. Numerical modelling of the process of heat transference, of the convective flow induced and the power generated in a wind power station; Modelizacion numerica del proceso de transferencia de calor, del flujo convectivo inducido y de la potencia generada en una central eolico solar

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, F. J.; Kaiser, A. S.; Zamora, B.; Lucas, M.; Viedma, A.

    2008-07-01

    A thermodynamic analysis for solar chimney power plant has been carried out by numerical simulation. A numerical model has been developed using the general purpose code Fluent to study heat transfer and convective flow within the chimney power plant. The {kappa}-{epsilon} turbulence model has been employed. A heat transfer, mass flow and power production numerical analysis has been carried out on different hours during the day, assuming steady state conditions. The numeric values obtained are 10% different from experimental measures. Once model has been validated, a numeric study about flow within power plant, heat transfer and mass flow has been carry out, and the non-dimensional parameters obtained have been compared with studies about free convection. (Author)

  10. Requirements for solar predictions

    International Nuclear Information System (INIS)

    The types of data analyzed and disseminated by the Space Environment Services Center (SESC) and the Air Force Global Weather Central (AFGWC) are outlined. Manned by U.S. Air Force and NOAA personnel under the auspices of the DoD and the DoC, the services provide solar predictions on x-ray events, optical flares, radio bursts, high energy particle events, solar wind variations or geomagnetic activity, background radio flux and the general level of solar activity in terms of real-time data and probabilities of events. Sample forecast documents are provided for the various types of events. It is noted that new facilities are being planned or constructed to upgraded existing computing capabilities and to incorporate state-of-the-art predictive models of the solar processes being monitored. 5 references

  11. Solar Energy Education. Home economics: student activities. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  12. Constructing Knowledge

    Science.gov (United States)

    Blanton, Patricia

    2003-02-01

    Schools are expected to lay the foundation upon which knowledge can be built and equip students with the tools necessary to accomplish the construction. The role of the teacher in this building process is crucial to the type of structure the student can build. Whether you call it constructivism, discussion teaching, project-based learning, inquiry learning, or any of the other names given to the instructional strategies being suggested by education researchers, the key is getting students to become active participants in the process. While some students may be able to learn from eloquently delivered lectures and dynamic demonstrations, the majority of students cannot effectively retain and apply ideas communicated in this manner.

  13. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  14. Solar chemical engineering and solar materials research into the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Funken, Karl-Heinz; Becker, Manfred [Deutsches Zentrum fuer Luft- und Raumfahrt e.V. (DLR), Solare Energietechnik, Koeln (Germany)

    2001-11-01

    Solar Chemistry and Solar Materials Research is one important task of the Solar Energy Association North Rhine-Westphalia, Germany. Numerous individual projects have been carried out which address the construction and operation of a high-flux solar furnace, solar chemical engineering, and solar materials research. Almost 10 years of research and development have led to significant progress. This paper reviews the scope of work in solar chemistry and summarizes the results. The authors present perspectives for commercialization and address open questions and needs for further research and development. (Author)

  15. 78 FR 63276 - Interim Policy, FAA Review of Solar Energy System Projects on Federally Obligated Airports

    Science.gov (United States)

    2013-10-23

    ...Interim Policy, FAA Review of Solar Energy System Projects on Federally Obligated...obligated airports to construct solar energy systems on airport property. FAA...measuring ocular impact of proposed solar energy systems which are effective...

  16. 76 FR 78021 - Notice of Availability of the Record of Decision for the Rice Solar Energy, LLC, Rice Solar...

    Science.gov (United States)

    2011-12-15

    ... Bureau of Land Management Notice of Availability of the Record of Decision for the Rice Solar Energy, LLC, Rice Solar Energy Project (RSEP) and California Desert Conservation Area Plan Amendment, California...: Rice Solar Energy, LLC, a subsidiary of SolarReserve, LLC plans to construct a 150 megawatt (MW)...

  17. Study on Construction Cost of Construction Projects

    OpenAIRE

    Hui Li

    2009-01-01

    China is a country which has the largest investment amount in engineering construction in the world and which has the most construction projects. It is a significant subject for the extensive engineering managers to have effective engineering cost management in construction project management and to reasonably determine and control construction cost on the condition of ensuring construction quality and time limit.On the basis of the status quo of losing control in Chinese construction investm...

  18. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  19. DUALPURPOSE SOLAR OVEN

    OpenAIRE

    S. H. Sengar; A.K. Kurchania

    2010-01-01

    Dual purpose solar oven (DPSO) was designed and constructed. It observed that by using the new design of solar oven, both function of cooking and drying were possible for meeting the requirement of a family. The maximum stagnation temperature of 119°C and water temperature of 93.25°C were obtained in winter in DPSO while using as cooker. The calculated values of figure of merit F in DPSO was 0.119 and the time duration 1 for raising water temperature from 60 C to 90°C in hot box was 120 min. ...

  20. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar cou...

  1. Solar energy use in a construction project: The new old people's home at Muenchenbernsdorf. Final report; Solarenergienutzung im Rahmen eines Bauvorhabens Neubau bzw. Umbau eines Senioren- und Pflegeheimes in Muenchenbernsdorf. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Maschke, R.; Mueller; Grossmann

    2000-07-01

    Old people's homes have a high and largely constant water consumption in all seasons. They are therefore ideal objects for solar sytems. The new old people's home at Muenchenbernsdorf is presented which has a large thermal solar power system, which is also to induce private builder-owners to opt for solar power. [German] Aufgrund ihres hohen (und jahreszeitlich weitestgehend konstanten) Warmwasserverbrauches bieten Senioren- und Pflegeheime sehr gute Voraussetzungen fuer die Nutzung der thermischen Solarenergie zur Warmwasserbereitung. Der Ersatzneubau des Senioren- und Pflegeheims der Stadt Muenchenbernsdorf bietet sehr gute Ansatzpunkte fuer die Senkung des Energieverbrauches und der vom Objekt ausgehen Umweltbelastungen durch Nutzung regenerativer Energietraeger. Durch die Realisierung einer grossen thermischen Solaranlage auf einem oeffentlichen Gebaeude sollen private Bauherren der Region zu eigenen Energiesparinvestitionen angeregt werden. (orig.)

  2. Constructing Aligned Assessments Using Automated Test Construction

    Science.gov (United States)

    Porter, Andrew; Polikoff, Morgan S.; Barghaus, Katherine M.; Yang, Rui

    2013-01-01

    We describe an innovative automated test construction algorithm for building aligned achievement tests. By incorporating the algorithm into the test construction process, along with other test construction procedures for building reliable and unbiased assessments, the result is much more valid tests than result from current test construction

  3. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  4. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  5. Buying Solar.

    Science.gov (United States)

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  6. Solar Energy Education. Renewable energy activities for junior high/middle school science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  7. Solar interior

    International Nuclear Information System (INIS)

    The Glossary is designed to be a technical dictionary that will provide solar workers of various specialities, students, other astronomers and theoreticians with concise information on the nature and properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: solar standard model; internal rotation; energy generation; solar neutrinos; convection zone; convective theory; and Boussinesq assumption. (B.R.H.)

  8. Research and development of system to utilize photovoltaic energy. Survey on the high-durability and low-cost materials for constructing the solar-cell module and its structure; Taiyoko hatsuden riyo system no kenkyu. Taiyo denchi module yo kotaikyusei tei cost zairyo, kozo ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the results obtained during fiscal 1994 on a survey on the high-durability and low-cost materials for constructing the solar-cell module and on its structure. With respect to forms and materials used in the present solar-cell modules, identification was made on the current status of products commercially available and developed inside and outside Japan. Main types of solar cells used for electric power are of crystal-based silicon. Amorphous silicon and CdS-CdTe are used for consumer applications of indoor and outdoor use. As regards transparent resin materials, fluorine resin, PET, acryl, and polyimide are used as surface materials, and EVA, silicon and PVB are often used as fillers. Developments inside and outside Japan are limited to systems of polycarbonate, methacryl, fluorine, polyurethane, acryl and polyester. Butyl rubber and polyurethane are used as sealing materials. Developments are being performed on silicon rubber, polychloroprene rubber and EPT rubber for shaped materials, and silicon systems, urethane systems and polysulfide systems for non-shaped materials. 3 figs., 8 tabs.

  9. Aboriginal consultation report, Amherstburg solar farm

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    First Solar is constructing many solar farms in North America, Europe and Asia, including a planned solar farm in California expected to generate 550 MW of electricity and a completed 80 MW, 1150 acre solar farm in Sarnia, Ontario representing the largest photovoltaic (PV) solar facility in the world. First Solar is now working on the project of constructing a solar farm that will use thin film photovoltaic modules and convert the solar energy into electrical energy for distribution to the local electricity distribution system. This solar farm, identified as a Class 3 solar facility according to the Regulation, is expected to generate 10 MW of electricity. Class 3 solar facilities are renewable energy facilities presenting a name plate power capacity exceeding 10kW and they take place at any location other than a roof or the wall of a building. During the project development process, First Solar will keep on liaising and communicating with the two identified First Nations, the Windsor Essex Metis Council, MNO and the Crown authorities. The purpose of the process will keep on giving a particular attention to identifying any concerns raising from the project, and if some are identified, it will also focus on methods of reducing or preventing related impacts.

  10. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor

    OpenAIRE

    Xinhui Xia; Jingshan Luo; Zhiyuan Zeng; Cao Guan; Yongqi Zhang; Jiangping Tu; Hua Zhang; Hong Jin Fan

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO2/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseud...

  11. Solar Energy: Solar System Economics.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  12. Movable air solar collector and its efficiency

    International Nuclear Information System (INIS)

    Implementing the guidelines of the Latvian National Programme for Energy in the field of alternative energy, intensive research shall be carried on regarding the use of solar energy, as it can be successfully used not only for the purposes of water heating and production of electrical energy, but also for air warming. The amount of heat necessary for the drying of rough forage and grain drying by active aeration in June, July and August can be obtained using solar radiation. The Latvian Guidelines for the Energy Development 2006-2016 state that the solar radiance in Latvia is of quite low intensity. The total amount of solar energy is 1109 kWh m-2 per year. The period of usage of the solar thermal energy is beginning from the last decade of April, when the intensity of radiation is 120 kWh m-2, until the first decade of September. Within this period (approximately 1800 hours), it is possible to use the solar thermal energy by placing solar collectors. The usage of solar collectors for in drying of agricultural production is topical from the viewpoint of decreasing the consumption of energy used for the drying, as electrical energy and fossil energy resources become more expensive and tend to run out. In the processes that concern drying of agricultural production, efficiently enough solar radiation energy can be used. Due to this reason researching continues and expands in the field of usage of solar energy for the processes of drying and heating. The efficiency factor of the existing solar collectors is not high, but they are of simple design and cheep for production and exploitation. By improving the design of the solar collectors and choosing modern materials that absorb the solar radiation energy, it is possible the decrease the efficiency factor of solar collectors and decrease the production costs. In the scientific laboratory of grain drying and storage of Latvia University of Agriculture, a pilot device movable folding solar collector pilot device suitable for Latvia has been developed and constructed. Within the article, the movable folding solar collector is described, which has been constructed as a solar collector of module types for being able to move and unfold it in the place of work. The solar collector serves as an experimental prototype, as well as simultaneously as a ground for comparative researches in solar absorbent air. The solar collector serves as an experimental prototype and simultaneously also as a carrying surface for comparative researches in solar absorbent air. In the researches, the roof coverings available in Latvia and their suitability for construction of solar collectors will be compared. (author)

  13. Design of SMART waste heat removal dry cooling tower using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Jae; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed.

  14. Design of SMART waste heat removal dry cooling tower using solar energy

    International Nuclear Information System (INIS)

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed

  15. Space Solar Power Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Harris, P.; Hucteau, M.; Jacobs, D.F.; Johnson, R.; Kanno, Y.; Koenig, E.M.; Kojima, K.; Kondepudi, P.; Kottbauer, C.; Kuiper, D.; Kulagin, K.; Kumara, P.; Kurz, R.; Laaksonen, J.; Lang, A.N.; Lathan, C.; Le Fur, T.; Lewis, D.; Louis, A.; Mori, T.; Morlanes, J.; Murbach, M.; Nagatomo, H.; O`Brien, I.; Paines, J.; Palaszewski, B.; Palmnaes, U.; Paraschivoiu, M.; Pathare, A.; Perov, E.; Persson, J.; Pessoa-Lopes, I.; Pinto, M.; Porro, I.; Reichert, M.; Ritt-Fischer, M.; Roberts, M.; Robertson, L. II; Rogers, K.; Sasaki, T.; Scire, F.; Shibatou, K.; Shirai, T.; Shiraishi, A.; Soucaille, J.F.; Spivack, N.; St. Pierre, D.; Suleman, A.; Sullivan, T.; Theelen, B.J.; Thonstad, H.; Tsuji, M.; Uchiumi, M.; Vidqvist, J.; Warrell, D.; Watanabe, T.; Wills, R.; Wolf, F.; Yamakawa, H.; Zhao, H.

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, & operations; design examples; and finance.

  16. Performance of a solar-thermal collector

    Science.gov (United States)

    Higa, W. H.

    1975-01-01

    Possible means of achieving the technology required for field application of solar thermal power systems are discussed. Simplifications in construction techniques as well as in measurement techniques for parabolic trough collectors are described. Actual measurement data is also given.

  17. Building and using the solar greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-01-01

    Thorough directions are given for planning, constructing and using a solar greenhouse attached to a house. Included is a method of calculating the savings accruing from the use of the greenhouse. (LEW)

  18. Nice module. Apollon Solar present their new line of solar modules; Nettes Modul. Apollon Solar stellt Linie fuer neuartige Modultechnologie vor

    Energy Technology Data Exchange (ETDEWEB)

    Podewils, C.

    2008-06-15

    Solar modules, TGV engines and perfume Zerstaeuber seem to have nothing in common. The new solar module developed by French producer Apollon Solar makes use of both technologies in the construction process. The contribution presents the 'Nice' module which has many new features. (orig.)

  19. Toward a Heat Recovery Chimney

    OpenAIRE

    Min Pan; Zhen Gao; Yuelei Yang; Dan Zhang

    2011-01-01

    The worldwide population increase and subsequent surge in energy demand leads electricity producers to increase supply in an attempt to generate larger profit margins. However, with Global Climate Change becoming a greater focus in engineering, it is critical for energy to be converted in as environmentally benign a way as possible. There are different sustainable methods to meet the energy demand. However, the focus of this research is in the area of Waste Heat Recovery. The waste heat store...

  20. Shuttle Engine Designs Revolutionize Solar Power

    Science.gov (United States)

    2014-01-01

    The Space Shuttle Main Engine was built under contract to Marshall Space Flight Center by Rocketdyne, now part of Pratt & Whitney Rocketdyne (PWR). PWR applied its NASA experience to solar power technology and licensed the technology to Santa Monica, California-based SolarReserve. The company now develops concentrating solar power projects, including a plant in Nevada that has created 4,300 jobs during construction.

  1. Solar heat utilization for adsorption cooling device

    OpenAIRE

    Malcho Milan; Patsch Marek; Pilát Peter

    2012-01-01

    This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  2. A Theory of Acoustics in Solar Energy

    OpenAIRE

    Himanshu Dehra

    2013-01-01

    A novel theory of acoustics in solar energy supporting the principle of source and sink of solar energy is presented. The significance of the theory is in ascertaining the aftermaths of turning off solar energy. An amplifier constituting of a parallel plate photovoltaic device connected to a potentiometer is illustrated. It was constructed with a pair of glass coated photovoltaic modules and polystyrene filled plywood board as back panel with air ventilation through a parallel plate channel ...

  3. Solar neutrino with Borexino: results and perspectives

    OpenAIRE

    Smirnov, O.; Bellini, G.; Benziger, J.; Bick, D; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.(Department of Physics, University of Houston, Houston, TX 77204, USA); Derbin, A.

    2014-01-01

    Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5\\% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been perf...

  4. Solar hybrid school project in East Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, Wolfgang [Kombinasi Solar Sdn. Bhd., Selangor Barul Ehsan (Malaysia)

    2010-07-01

    This paper describes the development of constructing hybrid solar systems in East Malaysia to power up selected rural schools. This includes experience regarding the designing phase, the progress works, obstacles and challenges in developing the system in rural areas. The objective of this paper is to provide an overview of building solar power systems in harsh tropical climate. (orig.)

  5. How to transform an asphalt concrete pavement into a solar turbine

    International Nuclear Information System (INIS)

    Highlights: • We create a system for harvesting energy from asphalt concrete. • We create an artificial porosity in the asphalt concrete. • We connect a chimney to this porosity. • Differences in temperature produce an air flow. • This air flow serves also for cooling down the pavement. - Abstract: Asphalt concrete can absorb a considerable amount of the incident solar radiation. For this reason asphalt roads could be used as solar collectors. There have been different attempts to achieve this goal. All of them have been done by integrating pipes conducting liquid, through the structure of the asphalt concrete. The problem of this system is that all pipes need to be interconnected: if one is broken, the liquid will come out and damage the asphalt concrete. To overcome these limitations, in this article, an alternative concept is proposed:parallel air conduits, where air can circulate will be integrated in the pavement structure. The idea is to connect these artificial pore volumes in the pavement to an updraft or to a downdraft chimney. Differences of temperature between the pavement and the environment can be used to create an air flow, which would allow wind turbines to produce an amount of energy and that would cool the pavement down in summer or even warm it up in winter. To demonstrate that this is possible, an asphalt concrete prototype has been created and basics calculations on the parameters affecting the system have been done. It has been found that different temperatures, volumes of air inside the asphalt and the difference of temperature between the asphalt concrete and the environment are critical to maximize the air flow through the pavement. Moreover, it has been found that this system can be also used to reduce the heat island effect

  6. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  7. Solar energy in Buildings. La energia solar en la edificacion

    Energy Technology Data Exchange (ETDEWEB)

    Heras Celemin, M.R.

    1992-01-01

    Fundamentals on climate and architecture : design, aspects to be considered in building design. energy analysis for the building. application of Passive Solar Systems. Thermal comfort. Systems and components construction. Active energy systems included at the design. Social economical aspects. State of the art in Bioclimatic Architecture. (Author)

  8. Solar prominences

    International Nuclear Information System (INIS)

    The mechanism of formation and the dynamics of different types of solar prominences and dark and bright solar flairs is described in a popularized form. One tries to explain the dynamics of the prominences as the result of the interactions of magnetic forces, the gas pressure and gravity. The work is illustrated with photographs and diagrams

  9. Solar window

    OpenAIRE

    ??????, ??????? ??????????; ??????, ??????? ??????????; Usenko, Nataliia Mykolaivna; Oliinyk, I.V.

    2011-01-01

    In recent years various companies are developing technology to turn ordinary windows into solar panels. And now the U.S. firm New Energy Technologies has also decided to compete in the creation of new sources of energy generation, providing SolarWindow. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/22075

  10. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  11. Solar Optimization in Urban Design

    OpenAIRE

    Magureanu, Andrei-Florin

    2014-01-01

    The thesis attempts to construct a framework for urban design by finding an optimal balance between urban density and solar access. It presents the results of running a multiple objective optimization process on a predesigned urban grid, in order to find the spatial configuration that performs the best both urban density-wise and having the best facade radiation.

  12. Solar in the Krimea; Sonne ueber der Krim

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, Ralph Heinrich

    2011-09-21

    Ukraine offers high reimbursement rates to potential investors in solar energy. One of these is Activ Solar, seated in Vienna. The company is currently modernizing a former Soviet silicon factory and is also constructing one of the world's biggest solar farms on the Krimea.

  13. New instruments for solar research

    Science.gov (United States)

    Rust, David M.; O'Byrne, John W.; Sterner, Raymond E., II

    1990-01-01

    In fulfilment of its goal to develop early detection and warning of emerging solar magnetic fields, the Center for Applied Solar Physics (CASP) has designed and constructed a solar vector magnetograph (VMG) that will provide unique data on the sunspot regions where flares originate. The instrument is reportedly beginning to approach its goals of measuring all three components of the solar magnetic field with a sensitivity of 50 to 100 G and a spatial resolution on the sun of about 700 km (1 arcsec). Importance of new high-resolution capabilities is stressed and the interpretation of VMG measurements is discussed. The performance of the solar VMG, installed in a 6-m dome at the National Solar Observatory at Sacramento Peak in Sunspot, New Mexico, and its construction and environment are described; particular attention is given to the use and function of the filters. Initial results are examined, including a description and analysis of a magnetogram obtained after installation of an improved blocking filter.

  14. Construction management versus construction project management

    OpenAIRE

    Howes, Christopher John

    2010-01-01

    Within the South African construction industry today, the terms Construction Management and Construction Project Management are used by professionals when in fact they themselves are unsure of the exact definition and description of what each profession entails in adequate detail. This treatise aims to address that issue. It describes in detail exactly what each profession entails as well as highlighting software, systems and programs that both professions would need and be able to adeq...

  15. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as fuel and electricity prices - and global temperatures - continue their upward curve.

  16. Solar thermal

    International Nuclear Information System (INIS)

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as fuel and electricity prices - and global temperatures - continue their upward curve

  17. Closeout of the award DE-FG02-05ER46223. Trustees of the University of Pennsylvania. Project title- "Modular Designed Protein Constructions for Solar Generated H2 From Water

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, P. Leslie [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-02-18

    As the title of the grant clearly states, this project has explores a unique way that makes use of manmade proteins to turn solar energy into chemical fuels. A major impetus to the work is that there is growing support for the view that two related forces will impact on future livability of Earth. The first is the finite supply of fossil fuels to power the Earth making it prudent to save this resource for the creation of useful chemicals. The second is that burning fossil fuels to generate power releases “greenhouse” gases into the atmosphere. There is mounting evidence that this is a major contribution to the warming trend in the Earth’s atmosphere and biosphere.

  18. Prototype solar domestic hot water systems

    Science.gov (United States)

    1978-01-01

    Construction of a double wall heat exchanger using soft copper tube coiled around a hot water storage tank was completed and preliminary tests were conducted. Solar transport water to tank potable water heat exchange tests were performed with a specially constructed test stand. Work was done to improve the component hardware and system design for the solar water heater. The installation of both a direct feed system and a double wall heat exchanger system provided experience and site data to enable informative decisions to be made as the solar market expands into areas where freeze protection is required.

  19. Solar energy; Aurinkoenergia

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-12-01

    The newsletter discusses different means of using solar radiation and it is divided into four part. The topics discussed are: (1) Solar energy and availability of solar energy in Finland; (2) Solar photovoltaic energy including the solar power applications, solar panels, storage of solar power, control units for solar power systems, dimensioning and assembly of solar power systems, energy production of solar power systems, power consumption of the solar power applications, the solar power applications connected to power transmission networks, and self-sufficient solar power systems; (3) Solar thermal including active solar heating, solar collectors, storage of solar heat, dimensioning and assembly of solar heating systems; (4) Passive utilization of solar energy including the passive basic solutions, direct utilization of solar energy, and the positioning of the rooms

  20. Papers presented at ISES solar world congress 1993 in Budapest, Hungary

    International Nuclear Information System (INIS)

    Papers presented at the ISES Solar World Congress 1993 by researchers employed at the Thermal Insulation Laboratory at the Technical University of Denmark. The subjects dealt with are: the design of small domestic hot water low-flow solar heating systems, heat storage for large low-flow solar heating systems, the monitoring of Danish marketed solar heating systems, conversion of indoor measurements to outdoor long term performances for low flow solar collectors, optimum ventilation rate of solar collectors, the construction of seasonal heat storage based on a pit with clay membrane, a solar house with a new solar collector, and a framing system for solar wall glazings. (AB)

  1. Advanced Technology Solar Telescope project management

    Science.gov (United States)

    Wagner, J.; Hansen, E.; Hubbard, R.; Rimmele, T. R.; Keil, S.

    2010-07-01

    The Advanced Technology Solar Telescope (ATST) has recently received National Science Foundation (NSF) approval to begin the construction process. ATST will be the most powerful solar telescope and the world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. This paper gives an overview of the project, and describes the project management principles and practices that have been developed to optimize both the project's success as well as meeting requirements of the project's funding agency.

  2. Solar powered multipurpose remotely powered aircraft

    Science.gov (United States)

    Alexandrou, A. N.; Durgin, W. W.; Cohn, R. F.; Olinger, D. J.; Cody, Charlotte K.; Chan, Agnes; Cheung, Kwok-Hung; Conley, Kristin; Crivelli, Paul M.; Javorski, Christian T.

    1992-01-01

    Increase in energy demands coupled with rapid depletion of natural energy resources have deemed solar energy as an attractive alternative source of power. The focus was to design and construct a solar powered, remotely piloted vehicle to demonstrate the feasibility of solar energy as an effective, alternate source of power. The final design included minimizing the power requirements and maximizing the strength-to-weight and lift-to-drag ratios. Given the design constraints, Surya (the code-name given to the aircraft), is a lightweight aircraft primarily built using composite materials and capable of achieving level flight powered entirely by solar energy.

  3. Solar air heaters for industrial drying; Aquecedor solar de ar para secagem industrial

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Everaldo Mendes [Governo do Estado da Paraiba, Joao Pessoa, PB (Brazil). Secretaria de Planejamento e Gestao

    2008-07-01

    The objective of this study is to encourage the use of solar energy in industrial drying of fruits, with the producers poles, at the same time, promote the rational use of energy for heat, or replacing the hydroelectric and oil derivatives for this purpose. This study is presented in the following chapters: availability of solar energy; details of constructive solar heated air; drying fruit; market. (author)

  4. Solar neutrinos

    International Nuclear Information System (INIS)

    General considerations on solar neutrinos are presented here. Detection experiment foreseen and completed are examined under a critical point of view. Our attention is focused on Indium detector using superconducting grains or tunnel junctions. Working plan is described

  5. Solar flares

    International Nuclear Information System (INIS)

    Numerous phenomena in low and high temperature solar flares are reviewed. Attention is paid to observations in the H? line, e.g. the motions in flares and the relation of flares to magnetic fields, and to other aspects of the chromospheric low temperature flare spectra. The impulsive non-thermal effects observed in X-ray, EUV and radio spectral regions are presented as high temperature flare phenomena together with the thermal flare effects that are two or three orders of magnitude hotter than the chromospheric part of the flare. Non-thermal and thermal effects, e.g. coronal condensations, various aspects of soft X-ray emission and gradual microwave bursts, are coupled in the high temperature flare regions in the solar corona. Attention is paid to flare associated optical phenomena. The emission of particles from solar flares is discussed. A survey of various models dealing with different aspects of solar flares is presented

  6. Solar prominences

    CERN Document Server

    Engvold, Oddbjørn

    2015-01-01

    This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence “object” with some historical background on observations and instrumentation. In the next chapter, the various forms of promine...

  7. Solar paraphotons

    OpenAIRE

    Troitsky, Sergey V.

    2011-01-01

    I revisit the question of production of paraphotons, or hidden photons, in the Sun and suggest that a simultaneous observations of solar flares by conventional instruments and by axion helioscopes may provide a discovery channel for paraphotons.

  8. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  9. Solar Energy Education. Reader, Part IV. Sun schooling

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A collection of magazine articles which focus on solar energy is presented. This is the final book of the four part series of the Solar Energy Reader. The articles include brief discussions on energy topics such as the sun, ocean energy, methane gas from cow manure, and solar homes. Instructions for constructing a sundial and a solar stove are also included. A glossary of energy related terms is provided. (BCS)

  10. Solar flair.

    OpenAIRE

    Manuel, John S.

    2003-01-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electri...

  11. Solar Cells

    Science.gov (United States)

    1983-01-01

    The Heat Exchanger Method (HEM) produces high efficiency crystal ingots in an automated well-insulated furnace offering low equipment, labor and energy costs. The "grown" silicon crystals are used to make solar cells, or photovoltaic cells which convert sunlight directly into electricity. The HEM method is used by Crystal Systems, Inc. and was developed under a NASA/Jet Propulsion Laboratory contract. The square wafers which are the result of the process are sold to companies manufacturing solar panels.

  12. Solar energy technologies and project delivery for buildings

    CERN Document Server

    Walker, Andy

    2013-01-01

    Solar Energy is an authoritative reference on the design of solar energy systems in building projects, with applications, operating principles, and simple tools for the construction, engineering, and design professional. The book simplifies the solar design and engineering process, providing sample documentation and special tools that provide all the information needed for the complete design of a solar energy system for buildings to enable mainstream MEP and design firms, and not just solar energy specialists, to meet the growing demand for solar energy systems in building projects.

  13. A partitioned central solar receiver

    International Nuclear Information System (INIS)

    Else of solar energy as substitute for conventional fuels at a competitive cost requires efficient conversion from solar radiation to usable forms of energy. In solar thermal or thermochemical applications, high efficiency usually re- quires high temperature and high concentration of incoming radiation. The main form of energy loss from high temperature solar central receivers is thermal emission ('re radiation'), at an effective temperature close to the maximum receiver temperature. This loss is reduced if the aperture is divided into segments, most of which are maintained at lower temperatures. A two-stage partitioned receiver demonstrating this concept is under construction at the Weizman Solar Tower. The high-temperature stage is the DIAPR (Directly Irradiated Annular Pressurized Receiver). The low-temperature stage is made of tubular cavity receivers of simpler design. Preliminary optical and thermal design of the partitioned receiver is presented. For the design exit temperature of 1500 K, the aperture size of the partitioned receiver is about 60% of the equivalent single-stage receiver, indicating a significant increase of conversion efficiency. The exit temperature of the low-temperature stage is around 1100 K, allowing simpler design and inexpensive construction. (authors)

  14. Solar Features - Solar Flares - SIDS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Sudden Ionospheric Disturbance (SID) is any of several radio propagation anomalies due to ionospheric changes resulting from solar or geophysical events.

  15. Solar Features - Solar Flares - Patrol

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  16. Sustainable construction: construction and demolition waste reconsidered

    OpenAIRE

    Rio Merino, Mercedes del; Salto-Weis Azevedo, Isabel; Izquierdo Gracia, Pilar

    2010-01-01

    Although the construction sector has suffered a great increase and development in later decades acting as the main economic leading force in many European countries, it has produced, nevertheless, a great problem regarding the increase in the generation of construction and demolition waste (C&DW). This, together with the fact that in many European countries the amount of recycled and reused C&DW is still quite low has engendered a serious environmental problem and an urge to develop str...

  17. Sustainability of Construction Education

    OpenAIRE

    Brian Wood

    2011-01-01

    Construction management is changing and so is education. Sustainability is asignificant global issue. This paper examines the sustainability of current forms andcontent of construction education and suggests that there may be a link betweenmedium and message.

  18. Lyme Disease in Construction

    Science.gov (United States)

    ... vaccine.) (Please turn the page.) Lyme Disease in Construction Hazard Alert Check for tick bites every day. ... development, and training arm of the Building and Construction Trades Dept., AFL-CIO: CPWR, Suite 1000, 8484 ...

  19. USAID Construction Assessment

    Data.gov (United States)

    US Agency for International Development — The USAID construction assessment is a survey of the character, scope, value and management of construction activities supported by USAID during the period from...

  20. Visualization of construction engineering

    International Nuclear Information System (INIS)

    It is required for nuclear power plant construction to reduce construction cost and shorten construction period. An early and accurate construction planning including schedule coordination among the companies has recently become more important and it is possible to obtain necessary information for construction planning in early stage. In this situation, we have been developing a visualization system for construction engineering for nuclear power plants. This system has an interface with the existing Plant Layout 3D-CAD system and consists of three sub systems: (1) Scheduling and simulation system, (2) Yard planning system and (3) Scaffolding planning system. This paper describes overview of this system. This visualization system is very helpful for construction engineers to easily understand situation and environment around installation area, to easily plan a work sequence and confirm the planned schedule, and it is also effective for customers and workers to understand the planning. As a result, this visualization system enables safety and high quality construction. (author)

  1. Validating MEDIQUAL Constructs

    Science.gov (United States)

    Lee, Sang-Gun; Min, Jae H.

    In this paper, we validate MEDIQUAL constructs through the different media users in help desk service. In previous research, only two end-users' constructs were used: assurance and responsiveness. In this paper, we extend MEDIQUAL constructs to include reliability, empathy, assurance, tangibles, and responsiveness, which are based on the SERVQUAL theory. The results suggest that: 1) five MEDIQUAL constructs are validated through the factor analysis. That is, importance of the constructs have relatively high correlations between measures of the same construct using different methods and low correlations between measures of the constructs that are expected to differ; and 2) five MEDIQUAL constructs are statistically significant on media users' satisfaction in help desk service by regression analysis.

  2. Use of the solar and eolic energy in the drying of bean seed at rural level

    International Nuclear Information System (INIS)

    The drying is a camera through which is made pass air heated in a solar collector, by means of a rotational fan impelled by the wind. The dryer is wooden and the zinc consists of five levels where the trays are deposited that contain the product. In the end of the chimney placed above the drying camera this the fan that is a rotor of corrugate fins; when rotating under the action of the wind it extracts air of the ventilation chimney; in the periods that the wind doesn't blow the drying it happens for natural convention. In the collector the badge absorbent is zinc colored corrugate of black; the mark is wooden, isolated in its inferior part with icopor and the cover a sheet of plastic. To evaluate the dryer they were carried out four drying rehearsals with seed of bean variety Calima. One observes that the bean drying with this dryer type is feasible even with cloudy or partially cloudy sky. The drying was satisfactory with the two loads of 200 and 400 kg. With the flow of air through the trays and for the load of 210 kg with flow around them; being the drying uniform for this it finishes. The quality of the seeds was not affected in the drying coke superior temperatures they were presented to 43-centigrade degrees. The dryer can adapt to individual necessities and conditions you specify of operation. It is recommended to carry out rehearsals for other agricultural products that allow knowing the capacity and functionality from the dryer to property level

  3. IMPROVED STRUCTURE OF AUTOMATIC SOLAR TRACKING SYSTEM

    Directory of Open Access Journals (Sweden)

    D. Venkatakrishna*, E. Siva Sai, K. Sree Hari

    2015-07-01

    Full Text Available Energy crisis is the most important issue in today's world as demand for electrical energy increasing over the years. Conventional energy sources are not only limited but also hazardous to environment. Therefore, usage of non - conventional energy sources are getting more popula r to lessen the dependency over conventional energy sources. In the recent years, solar energy has been established as one of the chief non - conventional energy sources. Owing to the usage of solar energy, it has become necessary to develop some methods fo r the better use of solar energy. This paper presents one such resurgent method: Solar Position Tracking. A Arduino controller based method of solar tracking is presented in this paper. Light dependent resistors are used as sensors to determine the start a nd stop point of tracker. A small prototype of solar tracking system is also constructed to implement the design methodology.

  4. CONSTRUCTION PROJECT MANAGEMENT

    OpenAIRE

    LOREDANA HEDRE

    2009-01-01

    This work tries to define and present the characteristics and of project management and construction projects. One can find arguments for the need to use project management in the construction industry and the main management procedures making the essence of construction project management.

  5. Public Library Construction.

    Science.gov (United States)

    Fork, Donald J.

    This report summarizes public library construction activities supported by Library Services and Construction Act (LSCA), Title II, funds as of fiscal 1985. Following a brief legislative background and overview, the use of federal funds in support of public library construction is reviewed, and the impact of LSCA funding during fiscal 1983-85 is…

  6. Safety in construction industry

    International Nuclear Information System (INIS)

    Causative factors of accidents in construction industry in the context of experience of construction work of the Rajasthan Atomic Power Project are enumerated. The aspect of accident cost - direct and indirect - is discussed briefly. Setting up of a safety set-up at construction sites is emphasized and principles which should guide the accident prevention programme are spelt out. (M.G.B.)

  7. The HERMES Solar Atlas and the spectroscopic analysis of the seismic solar analogue KIC3241581

    CERN Document Server

    Beck, P G; Van Reeth, T; Tkachenko, A; Raskin, G; van Winckel, H; Nascimento, J -D do; Salabert, D; Corsaro, E; Garcia, R A

    2015-01-01

    Solar-analog stars provide an excellent opportunity to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar and late type stars observed with this instrument and thus perform differential spectral comparisons. We acquire high-resolution and high signal-to-noise spectroscopy to construct three solar reference spectra by observing the reflected light of Vesta and Victoria asteroids and Europa (100

  8. Solar Neutrinos

    CERN Document Server

    Antonelli, V; Pena-Garay, C; Serenelli, A

    2012-01-01

    The study of solar neutrinos has given since ever a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framemork more complete and stable, understanding the origin o...

  9. Solar oscillations

    International Nuclear Information System (INIS)

    Amongst all stars observed to pulsate, the Sun has by far the largest number and variety of modes of oscillation. This presents a unique opportunity to apply and test stellar oscillation theory. To match the observational accuracy, very precise calculations of oscillation frequencies are needed. Asymptotic methods have proved useful in the analysis and interpretation of the frequencies. The results provide tight constraints on solar models; they may also enable a direct determination of properties of the solar interior. There are difficulties in reconciling the amplitudes obtained in Doppler velocity with those observed in the apparent position of the solar limb. The excitation of the oscillations is so far not well understood, although it is probable that the interaction between pulsation and convection plays an important role. (orig.)

  10. Solar corona

    International Nuclear Information System (INIS)

    The Glossary is designed to be a technical dictionary that will provide solar workers of various specialties, students, other astronomers and theoreticians with concise information on the nature and the properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description, including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: white-light corona; ellipticity or flattening; coronal streamers; polar plumes; coronal cavity; rifts; coronal condensation and enhancement; E-corona; coronal loops; EUV and X-ray corona; magnetic arcades; coronal holes; coronal bright points; coronal events or coronal transients; T-corona; Lyot-coronagraph; and externally occulted coronagraph. (B.R.H.)

  11. Solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siba, Nobuyasu; Kadono, Koji; Kurata, Sadaaki

    1988-11-28

    The solar cell in which each of a lower electrode, a semiconductor layer and an upper electrode is successively formed on a substrate has so far been well known. However, since its electric current fluctuates considerably by illumination of the light received, the secondary cell is damaged when a big current flows, hence for its prevention, a resistor element for current control is inserted in the circuit connecting the solar cell and the secondary cell. This element is soldered to the printed circuit substrate, but its reliability depends upon the connection at the soldered section. In order to solve this problem, this invention proposes, with regard to the above solar cell, that a resistor film is formed on the above substrate and one end of the above resistor and at least either the above lower electrode or the upper electrode are connected in an integrated way through the formation of the above film. 2 figs.

  12. DUALPURPOSE SOLAR OVEN

    Directory of Open Access Journals (Sweden)

    S. H. Sengar

    2010-10-01

    Full Text Available Dual purpose solar oven (DPSO was designed and constructed. It observed that by using the new design of solar oven, both function of cooking and drying were possible for meeting the requirement of a family. The maximum stagnation temperature of 119°C and water temperature of 93.25°C were obtained in winter in DPSO while using as cooker. The calculated values of figure of merit F in DPSO was 0.119 and the time duration 1 for raising water temperature from 60 C to 90°C in hot box was 120 min. Cooking trials have also been conducted 0.5 kg of rice in 1 kg of water and 0.250 Kg of green gram split washed in one and half hrs in winter while it took about one hour in summer. The maximum temperature of 58 °C was recorded at 14:00 hrs of the day at level of tray no.2 when used as dryer. The time required to dry maize on different trays upto average moisture content 7.13 %( w.w. for winter and 5.43 %( w.w. for summer (w.w.was 420 minute and 360 minute respectively. The total cost of solar oven was worked out to be Rs(.2,715. Its pay back period varied between 1.3 to 1.86 years depending upon fuel it replaced.

  13. Towards green construction

    International Nuclear Information System (INIS)

    Sustainability is the key to any development works. In the operation phase, hydro power is the most sustainable form of energy. However construction activities for the same power station are usually far from being green. The popular myth is that construction activity converts green into grey. Despite this popular myth, construction of a hydro power project in Nepal has made the project area greener than earlier during the construction phase itself. Choice of construction technology, appropriate level of environmental impact assessment, monitoring of environmental parameters along side the construction progress followed by mitigation at the right time; launching community development programmes side by side, having environmental specification in contractual documents and self-reliance to fulfill environmental obligations by contractors itself are the key factors in the environmental management within the construction activities. The main conclusions in the paper is the need to change the way to think about the project constraints

  14. Solar cells

    International Nuclear Information System (INIS)

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  15. Solar lighting

    CERN Document Server

    Pode, Ramchandra

    2011-01-01

    Limited availability of grid-based electricity is a major challenge faced by many developing countries, particularly the rural population. Fuel-based lighting, such as the kerosene lantern, is widespread in these areas, but it is a poor alternative, contributing to global warming and causing serious health problems. Several developing countries are therefore now encouraging the use of sustainable lighting. ""Solar Lighting"" gives an in-depth analysis of energy-efficient light production through the use of solar-powered LED systems. The authors pay particular attention to the interplay between

  16. Solar Neutrinos

    OpenAIRE

    PALLAVICINI, MARCO

    2009-01-01

    The Sun is a powerful neutrino source that can be used to study the physical properties of neutrinos and, at the same time, neutrinos are a unique tool to probe the interior of the Sun. For these reasons, solar neutrino physics is both fundamental neutrino and solar physics. In this paper we summarize shortly the main results of the last three decades and then focus on the new results produced by running experiments. We also give a short look at already funded or proposed ne...

  17. Solar club

    CERN Multimedia

    Solar club

    2013-01-01

    SOLAR CLUB Le  CERN-Solar-Club souhaite une  très bonne année 2013 à tous les Cernois et Cernoises, et remercie encore une fois  tous ceux et celles qui, fin octobre, par leur vote, nous ont permis de finir dans les 5 premiers du concours "Conforama Solidaire" et ainsi financer nôtre projet "énergie solaire et eau potable pour Kilela Balanda" en République Démocratique du Congo (voir : http://www.confo.ch/solidarite/?lang=fr). Nous vous annoncons également notre Assemblée Générale Annuelle jeudi 21 février à 18 h 00 Salle C, 1er étage, Bât. 61 Vous êtes les bienvenus si vous souhaitez en savoir un peu plus sur les énergies renouvelables.

  18. Analysis of Shiraz Solar Thermal Power Plant Response Time

    OpenAIRE

    K. Azizian; M Yaghoubi; I. Niknia; P. Kanan

    2013-01-01

    Shiraz pilot solar thermal power plant is the first Iranian solar power plant constructed near the city of Shiraz, Iran. The main purpose of constructing this pilot plant was to acquire the technology of developing parabolic trough solar thermal power plants for future energy production from solar energy. This plant consists of 48 parabolic trough collectors; each one has 25m long and 3.4 m wide. The plant consists of two cycles, oil heat absorbing cycle and steam production cycle. The plant ...

  19. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of the measurement system for solar radiation, and our implementation using Web based data logging concept. The photocurrent produced by Silicon PN junction is used as a solar radiation transducer, to make it more viable we have used commercially available solar panels as our transducers. Using a silicon solar cell as sensor, a low cost solar radiometer can be constructed. The photocurrent produced by solar cell is electronically tailored to be measured and stored by our web based data acquisition and monitoring system. Measurement using real solar cell array gives a good measure of actual producible energy by solar arrays. Our portable instrument can be used in remote sites and substitutes the solar monitor and integrator, Current data of solar radiation can be monitored using Ethernet interface available in all PC, Laptops. We store the data into a secure digital card which can be retrieved to plot and analyse the data. We have developed system hardware and software based on ATmega32 AVR Microcontrollers and ENC28J60 Ethernet PHY and MAC network interface chip by Microchip. So the global irradiance data are obtained after correction using the instantaneous measurement of ambient temperature which allows us to calculate the junction temperature and consequently improve the precision of measurement of our data acquisition system.

  20. Construction time of PWRs

    International Nuclear Information System (INIS)

    The construction time of PWRs is studied considering published data about nuclear power plants in the world. For the 268 PWRs in operation in 2010, the mode of the construction time distribution is around 5–6 years, and 80% of the plants were built in less than 120 months. To circumvent the problem of comparing plants with different size we normalized the construction time to plants with 1 GW. We restricted the analysis to 201 PWRs which suffered less from external factors that were beyond the control of the management from 1965 to 2010. The results showed that the normalized construction time did not increase over the years and nor with the plants’ gross power level. The learning rate of the industry regarding normalized construction times showed a reduction with 95% confidence level of about 0.56±0.07 months for each 10 GW of installed capacity. Over the years the normalized construction time decreased and became more predictable. The data showed that countries with more centralized regulatory, construction and operation environments were able to build PWRs in shorter times. Countries less experienced with the nuclear technology built PWRs in longer times. - Highlights: ? The construction time of PWRs is analyzed based on historical data. ? Different factors affecting construction time are considered in the analyses. ? The normalized construction time of PWRs decreased with time and gross power level. ? Countries with more centralized institutions built PWRs more quickly

  1. Experimental study of the influence of collector height on the steady state performance of a passive solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, D.; Burek, S.A.M. [School of the Built and Natural Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA Scotland (United Kingdom)

    2010-09-15

    Passive solar air heaters, such as solar chimneys and Trombe Walls, rely on solar-induced buoyancy-driven (natural) convection to produce the flow of air. Although buoyancy-driven convection is well understood for a single vertical plate, buoyancy-driven convection in an asymmetrically-heated channel is more problematic, and in particular, the effects of the channel height on the flow rate and heat transfer. This paper reports on experiments on test rigs resembling lightweight passive solar air-heating collectors. The test rigs were of heights 0.5, 1.0 and 2.0 m, with adjustable channel depths (20-150 mm) and heat inputs (up to 1000 W/m{sup 2}). Measurements were made of the air, plate and cover temperatures, and air velocities. Results are presented as dimensionless correlations of mass flow (as Reynolds number) and efficiency against heat input (as Rayleigh number), channel depth and height. Thermal efficiency is shown to be a function of the heat input and the system height, but not of the channel depth; mass flow is shown to be a dependent on all three parameters. (author)

  2. Solar Power

    Science.gov (United States)

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  3. Solar system

    CERN Document Server

    Homer, Charlene

    2007-01-01

    Thrill young astronomers with a journey through our Solar System. Find out all about the Inner and Outer Planets, the Moon, Stars, Constellations, Asteroids, Meteors and Comets. Using simplified language and vocabulary, concepts such as planetary orbits, the asteroid belt, the lunar cycle and phases of the moon, and shooting stars are all explored.

  4. Solar Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  5. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  6. Solar cosmic rays

    International Nuclear Information System (INIS)

    The following topics are considered: solar cosmic rays as a source of information on electromagnetic state of the solar system; geophysical effect of solar cosmic rays; energy spectrum, nuclear composition and time variations of solar cosmic rays; propagation of solar cosmic rays in the interplanetary space; some problems of the physics of solar flares and generation of cosmic rays on the Sun

  7. Universal solar energy desalination system

    Science.gov (United States)

    Fusco, V. S.

    Design considerations to allow site-dependent flexibility in the choice of solar/wind powered desalinization plant configurations are discussed. A prototype design was developed for construction of 6300 cu m per day brackish water treatment in Brownsville, TX. The water is treated to reduce the amount of suspended solids and prevent scaling. A reverse osmosis unit processes the treated liquid to recover water at a ratio of 90%. The power system comprises a parabolic trough solar thermal system with an organic Rankine cycle generator, rock-oil thermal storage, and 200 kW wind turbines. Analysis of the complementarity of the solar and wind subsystems indicates that at any site one system will supplement the other. Energy storage, e.g., battery banks, would increase system costs to unacceptable levels. Climatic conditions will significantly influence the sizing of each segment of the total power system.

  8. Solar neutrino experiments: An update

    International Nuclear Information System (INIS)

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical 37Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical 71Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed

  9. Solar Panel based Milk Pasteurization

    DEFF Research Database (Denmark)

    Nielsen, Kirsten MØlgaard; Pedersen, Tom SØndergaard

    2001-01-01

    This paper treats the subject of analysis, design and development of the control system for a solar panel based milk pasteurization system to be used in small villages in Tanzania. The analysis deals with the demands for an acceptable pasteurization, the varying energy supply and the low cost, low complexity, simple user interface and high reliability demands. Based on these demands a concept for the pasteurization system is established and a control system is developed. A solar panel has been constructed and the energy absorption has been tested in Tanzania. Based on the test, the pasteurization system is dimensioned. A functional prototype of the pasteurization facility with a capacity of 200 l milk/hour has been developed and tested. The system is prepared for solar panels as the main energy source and is ready for a test in Tanzania.

  10. Constructive Interval Disjunction

    OpenAIRE

    Trombettoni, Gilles; Chabert, Gilles

    2007-01-01

    This paper presents two new filtering operators for numerical CSPs (systems with constraints over the reals) based on constructive disjunction, as well as a new splitting heuristic. The fist operator (CID) is a generic algorithm enforcing constructive disjunction with intervals. The second one (3BCID) is a hybrid algorithm mixing constructive disjunction and shaving, another technique already used with numerical CSPs through the algorithm 3B. Finally, the splitting strategy learns from the CI...

  11. ACCELERATING CONSTRUCTION INDUSTRY DEVELOPMENT

    OpenAIRE

    Mohan M. Kumaraswamy

    2006-01-01

    The needs for construction industry development are initially viewed from the broader perspectives of imperatives for infrastructure development and national development. All these are clearly more critical in developing countries. A non-exhaustive set of potential drivers and common barriers to construction industry development is identified from previous research. These suggest the usefulness of consolidating a cluster of recent proposals and exercises aiming at (a) construction organizatio...

  12. Construction quality verification program

    International Nuclear Information System (INIS)

    A system designed to analyze project documents, construction and quality control inspection procedures and verify conformance to contractual requirements is described. Any variance from invoked requirements in the nature of incorrect references, conflicts between project documents to regulatory requirements or omissions, are reported to management as identified items. These Construction Quality Verification Program (CQVP) reports provide management with a quality assurance tool to prevent proliferation of problems that may result in substantial costs to correct or construction schedule delays

  13. Constructions of Peripherality

    DEFF Research Database (Denmark)

    Carter, Helen Frances Lindsay

    2013-01-01

    In this paper I focus on the concept of peripheralisation. In particular, I consider how peripheries can be discursively constructed in the debates surrounding planning cases, and how this might serve to legitimate particular interests. This is related to the case of a proposed golf resort in a rural area of Northern Ireland, and the manner in which peripherality is constructed by a variety of different actors in this debate. In the case discussed in the article, peripherality is constructed in ...

  14. Model Development of Constructability

    OpenAIRE

    Malek, M

    2011-01-01

    The choice of the construction system is a multivariate decision making with criteria that vary from one project to the other, depending on the particularities and constraints imposed on the builder. This research develops a tool that measures the constructability of various construction projects. The decision making logic is based on fuzzy set theory (FST). FST is used to address uncertainties in decision making. The tool is generic enough to allow the user to encompass the criteria of the p...

  15. Colloidal cluster phases and solar cells

    OpenAIRE

    Mailer, Alastair George

    2012-01-01

    The arrangement of soft materials through solution processing techniques is a topic of profound importance for next generation solar cells; the resulting morphology has a major influence on construction, performance and lifetime. This thesis investigates the connections between the soft matter physics of colloidal systems and solid state dye sensitised (SSDS) and bulk heterojunction (BHJ) solar cells. A study of aqueous titanium dioxide nanoparticulate suspensions was carrie...

  16. HITACHI construction CAE system

    International Nuclear Information System (INIS)

    Construction and maintenance of nuclear power plants have important problems such as shortening the construction period and reducing the construction cost. Recently, the problem of insufficient construction labor has arisen, and as drastic strategic development has become a necessary counter-measure. The following four principles are included in the measures to be taken for efficient execution of the construction work within the short construction period: (1) reduction of on-site work and expansion of module block making, (2)improvement of the accuracy of the on-site work process, adjustment and expansion of the work in parallel with the construction process, (3)improvement of efficiency of the on-site work and mechanization and automation of the work, (4)improvement of the accuracy of the management of the construction. A three dimensional simulation system plant construction plan CAE, comprising five modules has been developed. A project management system was also developed to improve the accuracy and efficiency of management work in the field

  17. Helioseismology, solar models and solar neutrinos

    OpenAIRE

    Fiorentini, G; B. Ricci

    1999-01-01

    We review recent advances concerning helioseismology, solar models and solar neutrinos. Particularly we shall address the following points: i) helioseismic tests of recent SSMs; ii)the accuracy of the helioseismic determination of the sound speed near the solar center; iii)predictions of neutrino fluxes based on helioseismology, (almost) independent of SSMs; iv)helioseismic tests of exotic solar models.

  18. MHD solar fluctuations and solar neutrinos

    Scientific Electronic Library Online (English)

    N., Reggiani; M.M., Guzzo; P.C. de, Holanda.

    2003-12-01

    Full Text Available We analyze how solar neutrino experiments could detect time fluctuations of the solar neutrino flux due to magnetohydrodynamic (MHD) perturbations of the solar plasma. We state that if such time fluctuations are detected, this would provide a unique signature of the Resonant Spin-Flavor Precession ( [...] RSFP) mechanism as a solution to the Solar Neutrino Problem.

  19. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  20. Solar variability observed through changes in solar figure and mean diameter

    International Nuclear Information System (INIS)

    The objective of the project is to detect and monitor climatically significant solar variability by accurate monitoring of the associated variability in solar shape and diameter. The observing program for this project was initiated in 1981. Solar diameter measurements have been taken and data reduction programs for these measurements have been developed. Theoretical analysis of the expected change in the intensity from the solar atmosphere to a given mechanial driving has progressed to the extent that changes in the solar diameter can be related to the associated change in the solar luminosity. An absolute calibration system for the telescope has been constructed and is currently being tested. A proposal is made for the continuation of the work in each of these areas

  1. Fisica solare

    CERN Document Server

    Degl’Innocenti, Egidio Landi

    2008-01-01

    Il volume è un'introduzione alla Fisica Solare che si propone lo scopo di illustrare alla persona che intende avvicinarsi a questa disciplina (studenti, dottori di ricerca, ricercatori) i meccanismi fisici che stanno alla base della complessa fenomenologia osservata sulla stella a noi più vicina. Il volume non ha la pretesa di essere esauriente (basta pensare che la fisica solare spazia su un gran numero di discipline, quali la Fisica Nucleare, la Termodinamica, L'Elettrodinamica, la Fisica Atomica e Molecolare, la Spettoscopia in tutte le bande dello spettro elettromagnetico, la Magnetoidrodinamica, la Fisica del Plasma, lo sviluppo di nuova strumentazione, l'Ottica, ecc.). Piuttosto, sono stati scelti un numero di argomenti di rilevanza fondamentale nello studio presente del Sole (soprattutto nei riguardi delle osservazioni da terra con grandi telescopi) e su tali argomenti si è cercato di dare una panoramica generale, inclusiva dell'evoluzione storica, senza scendere in soverchi dettagli. Siccome la Fis...

  2. Solar house

    International Nuclear Information System (INIS)

    The possibilities of the solar energy application for the heat and electrical power supply of the house located in the center of Europe are considered. The optimal form of the house which provides for the minimum energy losses and maximum solar energy application is determined through the mathematical modeling. Special attention is paid to the transparent thermal insulation (TTI) considering the thin-wall capillaries (30 ?m). The house wall fragment with TTI which is located on the south facade, is described in detail. The photoelectrical battery with the peak capacity of 4.2 kw is mounted on its roof for supplying the house with electrical power. The square of all compartments in the house is equal to 332 m2. All the electrical equipment in the house refers to the energy-saving class

  3. Solar Club

    CERN Multimedia

    Solar Club

    2010-01-01

    Le CERN Solar-Club vous invite à la présentation de sa participation dans : The Cyprus Institute Solar Car Challenge du 18 au 20 juin à Chypre . en réponse à l’invitation dudit institut, dans le cadre de la demande de Chypre pour joindre le CERN . Le Club y participera avec son vénérable Photon rénové , et la Dyane E-Solaire d’un de ses membres, rénové aussi . Après la présentation, le forum est ouvert pour toutes vos questions et propositions diverses, également dans d’autres domaines des énergies renouvelables . C’est aussi l’occasion pour joindre le Club ! Où, et Quand ? Le Mercredi 7 Avril à 19 h 00, au 6ème étage du Bât. Principal, (60-6-015) à la suite de l’AG des membres du Club , à 18h00 dans...

  4. Financing Public Library Construction.

    Science.gov (United States)

    Rohlf, Robert H.; Stoffel, Lester L.

    1987-01-01

    Reviews financing options available to Illinois public libraries for construction or expansion, including general obligation bonds, mortgage funds, building reserve funds, building fund levies, lease back arrangements, sale of air or ground development rights, interest on special funds, gift funds and grants, Library Service and Construction Act…

  5. Solar energy thermalization and storage device

    Science.gov (United States)

    McClelland, John F. (Ames, IA)

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  6. Feasibility Study & Design of Brightfield Solar Farm

    Energy Technology Data Exchange (ETDEWEB)

    Law, Susan

    2014-09-28

    This Congressionally Directed Project originally provided funds to the Township of Lower Providence, Pennsylvania for the purpose of investigating the potential for a renewable energy generation facility to make beneficial reuse of a closed landfill located within the Township, known as Moyer Landfill. Early in the course of the project, it was determined through collaboration and discussion with DOE to alter the scope of the project to include a feasibility assessment of a landfill solar project, as well as to construct a demonstration solar project at the municipal facilities to provide an educational and community outreach opportunity for the Township to offer regarding solar photovoltaic (“PV”) electricity generation.

  7. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of themeasurement system for solar radiation, and ourimplementation using Web based data loggingconcept.The photocurrent produced by Silicon PNjunction is used as a solar radiation transducer, tomake it more viable we have used commerciallyavailable solar panels as our transducers. Using asilicon solar cell as sensor, a low cost solarradiometer can be constructed. The photocurrentproduced by solar cell is electronically tailored to bemeasured and stored by our web based dataacquisition and monitoring system. Measurementusing real solar cell array gives a good measure ofactual producible energy by solar arrays. Ourportable instrument can be used in remote sites andsubstitutes the solar monitor and integrator,Current data of solar radiation can be monitoredusing Ethernet interface available in all PC,Laptops. We store the data into a secure digital cardwhich can be retrieved to plot and analyse the data.We have developed system hardware andsoftware based on ATmega32 AVR Microcontrollersand ENC28J60 Ethernet PHY and MAC networkinterface chip by Microchip.So the global irradiance data are obtained aftercorrection using the instantaneous measurement ofambient temperature which allows us to calculatethe junction temperature and consequently improvethe precision of measurement of our dataacquisition system

  8. Solar cogeneration

    Science.gov (United States)

    1982-04-01

    After a brief introduction to the operational principles and advantages of solar cogeneration, seven cogeneration studies are summarized covering such applications as sulfur mining, copper smelting, enhanced oil recovery, natural gas processing, sugar mill operations, and space heating and cooling. For each plant is given a brief site description, project summary, conceptual design, and functional description, including a picture of the facility and a flow chart. Also listed are the addresses of the companies involved for obtaining additional information.

  9. Mini-Optics Solar Energy Concentrator

    CERN Document Server

    Davidson, M; Davidson, Mark; Rabinowitz, Mario

    2003-01-01

    This invention deals with the broad general concept for focussing light. A mini-optics tracking and focussing system is presented for solar power conversion that ranges from an individual's portable system to solar conversion of electrical power that can be used in large scale power plants for environmentally clean energy. It can be rolled up, transported, and attached to existing man-made, or natural structures. It allows the solar energy conversion system to be low in capital cost and inexpensive to install as it can be attached to existing structures since it does not require the construction of a superstructure of its own. This novel system is uniquely distinct and different from other solar tracking and focussing processes allowing it to be more economical and practical. Furthermore, in its capacity as a power producer, it can be utilized with far greater safety, simplicity, economy, and efficiency in the conversion of solar energy.

  10. The engineering analysis of solar radiation

    Science.gov (United States)

    Reid, M. S.; Hamilton, C. L.; Hester, O. V.

    1978-01-01

    A necessary precursor to construction of well-designed, efficient, and economically viable solar energy systems is the engineering analysis not only of the systems themselves but also of the solar radiation that will drive them. This paper presents the first steps in such an analysis to support the design of solar thermal power systems. A rationale for development of an integrated approach to this analysis is outlined, and elements of the approach are described. A dynamic computer simulation of a conceptual system was employed in an initial sensitivity analysis to explore how performance estimates might be affected by the precision and amount of detail in solar radiation data used as model input. A measurement program, including instrumentation, used to characterize precisely and in detail the solar resource at one location is described as is a probabilistic model derived from it, for predicting insolation as a function of time.

  11. Outlook for solar water heaters in Taiwan

    International Nuclear Information System (INIS)

    The share of indigenous energy supply continuously decreases over the last two decades in Taiwan. The development and use of renewable energy sources and technologies are becoming vital for the management of energy supply and demand. For promotion of solar water heaters, the incentive programs were firstly initiated in the period of 1986-1991 and re-initiated from 2000 to the present. These programs create an economic incentive for the end users and have a drastic effect on the popularization of solar water heaters. To further promote solar water heaters during the current incentive program period, several key factors are addressed. In addition to the cost of solar water heaters and energy price index, the potential market of solar water heaters in Taiwan is associated with the climatic conditions, population structure, urbanization, building type of housing and status of new construction. (author)

  12. Outlook for solar water heaters in Taiwan

    International Nuclear Information System (INIS)

    The share of indigenous energy supply continuously decreases over the last two decades in Taiwan. The development and use of renewable energy sources and technologies are becoming vital for the management of energy supply and demand. For promotion of solar water heaters, the incentive programs were firstly initiated in the period of 1986-1991 and re-initiated from 2000 to the present. These programs create an economic incentive for the end users and have a drastic effect on the popularization of solar water heaters. To further promote solar water heaters during the current incentive program period, several key factors are addressed. In addition to the cost of solar water heaters and energy price index, the potential market of solar water heaters in Taiwan is associated with the climatic conditions, population structure, urbanization, building type of housing and status of new construction

  13. Solar neutrino with Borexino: results and perspectives

    CERN Document Server

    Smirnov, O; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Caccianiga, B; Calaprice, F; Caminata, A; Cavalcante, P; Chavarria, A; Chepurnov, A; D'Angelo, D; Davini, S; Derbin, A; Empl, A; Etenko, A; Fomenko, K; Franco, D; Fiorentini, G; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Hagner, C; Hungerford, E; Ianni, Aldo; Ianni, Andrea; Kobychev, V; Korablev, D; Korga, G; Kryn, D; Laubenstein, M; Lehnert, B; Lewke, T; Litvinovich, E; Lombardi, F; Lombardi, P; Ludhova, L; Lukyanchenko, G; Machulin, I; Manecki, S; Maneschg, W; Mantovani, F; Marcocci, S; Meindl, Q; Meroni, E; Meyer, M; Miramonti, L; Misiaszek, M; Mosteiro, P; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Pocar, A; Ranucci, G; Razeto, A; Re, A; Ricci, B; Romani, A; Rossi, N; Saldanha, R; Salvo, C; Schoenert, S; Simgen, H; Skorokhvatov, M; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Wang, H; Winter, J; Wojcik, M; Wright, A; Wurm, M; Zaimidoroga, O; Zavatarelli, S; Zuber, K; Zuzel, G

    2014-01-01

    Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5\\% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baselin...

  14. Solar flares

    International Nuclear Information System (INIS)

    In this thesis an electrodynamic model for solar flares is developed. The main theoretical achievements underlying the present study are treated briefly and the observable flare parameters are described within the framework of the flare model of this thesis. The flare model predicts large induced electric fields. Therefore, acceleration processes of charged particles by direct electric fields are treated. The spectrum of the accelerated particles in strong electric fields is calculated, 3 with the electric field and the magnetic field perpendicular and in the vicinity of an X-type magnetic neutral line. An electromagnetic field configuration arises in the case of a solar flare. A rising current filament in a quiescent background bipolar magnetic field causes naturally an X-type magnetic field configuration below the filament with a strong induced electric field perpendicular to the ambient magnetic field. This field configuration drives particles and magnetic energy towards the neutral line, where a current sheet is generated. The global evolution of the fields in the flare is determined by force balance of the Lorentz forces on the filament and the force balance on the current sheet. The X-ray, optical and radio observations of a large solar flare on May 16, 1981 are analyzed. It is found that these data fit the model very well. (Auth.)

  15. Operations management for construction

    CERN Document Server

    March, Chris

    2009-01-01

    Students studying construction management and related subjects need to have a broad understanding of the major aspects of controlling the building processes. Operations Management for Construction is one of three textbooks (Business Organisation, Operations Management and Finance Control) written to systematically cover the field. Focusing on construction sites and operations which are challenging to run, Chris March explores issues such as the setting up of the site, the deciding of the methodology of construction, and the sequence of work and resourcing. As changing and increasing regulations affect the way sites are managed, he also considers the issues and methods of successful administering, safety, quality and environment. Finally, the contractor's responsibility to the environment, including relationships with third parties, selection of materials, waste management and sustainability is discussed. Chris March has a wealth of practical experience in the construction industry, as well as considerable exp...

  16. VENTILATION NEEDS DURING CONSTRUCTION

    International Nuclear Information System (INIS)

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options

  17. VENTILATION NEEDS DURING CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Gorrell

    1998-07-23

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options.

  18. Solar energy reflector for steel tempering

    International Nuclear Information System (INIS)

    Solar energy is a vital source of energy. It attracted the attention of many nations. In fact two aspects promote the use of solar energy specially for the low temperature heat treatment of metal: 1- Environmental protection. 2- Economical issue. The search for the implementation of solar energy as a source remains a key issue in widening the scope of solar energy application and use in industry. This paper is an attempt to explore the feasibility and efficiency of using solar reflector in the tempering treatment of steel. A solar reflector in constructed, basically by a rolled steel plate with glass mirror strips glued to the rolled steel plate. A heating chamber is constructed at the focal site of the parabola in which small steel specimens were placed and then under the effect of solar sun shine the temperature of the specimens raise and for a period of time they were subjected to tempering. The temperature in the chamber was monitored and it was found that it reaches 110 degree centigrade in the months July and August just past middy 12:35.(Author)

  19. Science Experimenter: Observing the Sun and Solar Eclipses.

    Science.gov (United States)

    Mims, Forrest M., III

    1991-01-01

    Describes the construction and use of simple optical aids that allow the amateur scientist to safely observe sunspots and solar eclipses and also to measure the sun's rotation. (five references) (JJK)

  20. Solar solution

    International Nuclear Information System (INIS)

    China is facing enormous energy challenges. Everyone seems to know that we need to increase our energy supply by the equivalent of one power plant per week to support China's economic growth, which is allowing millions of people to enjoy better standards of living. Much less is known of the extent to which China has taken steps to mitigate the impact of that growing energy demand through incentives for greater efficiency and renewable energy. Policies include: Cutting energy intensity - 20 per cent between 2005 and 2010, saving five times as much CO2 as the EU's goals. Cutting major pollutants by 10 per cent by 2010. Setting one of the world's most aggressive renewable energy standards: 15 per cent of national energy from renewables by 2020. Setting targets of 300 megawatts of installed solar by 2010, and 1.8 gigawatts by 2020, in the 2007 National Development and Reform Commission Renewable Energy Development Plan. Dedicating $180 billion for renewable energy by 2020. Imposing energy efficiency targets for the top 1,000 companies, a measure with greater carbon savings potential than most Western initiatives. Establishing building energy codes in all regions and extensive efficiency standards for appliances, which will be particularly important as China continues to grow. Targeting new buildings in major cities like Beijing, Shanghai and Chongqing, to achieve 65 per cent greater energy efficiency than local codes require. Closing thousands of older, smaller, dirtier power plants by 2010. China understands the economic development potential in clean energy technologies. Even the noted journalist Thomas Friedman has remarked that 'China is going green in a big way,' using domestic demand for cleaner energy to build low-cost, scalable green technologies. Suntech Power Holdings - now the world's largest solar photovoltaic (PV) module manufacturer, with operations around the globe - was just one of dozens of solar companies that realised the opportunity provided by China's energy challenges and the government's strong commitment to provide alternatives. Through favourable tax policies, aggressive government procurement and national targets, China is building a world-class export industry in all parts of the solar value chain, as well as encouraging increased use of the sun's energy at home. It is now the third-largest national producer of solar PV for the global market and may soon become the leader. In short, it realises that green energy is the key to both sustainable economic growth and a more pleasant environment.Yet China can still do more, and I'm working closely with the Government to set even more aggressive standards to help drive the development of the country's renewable energy resources. The Government is developing a solar building code with Suntech's participation, and is considering a review of the solar targets in the national renewable energy law - the 1.8 gigawatt goal by 2020 is just a fraction of the country's true potential within that time frame

  1. Constructions with Lexical Integrity

    Directory of Open Access Journals (Sweden)

    Ash Asudeh

    2013-07-01

    Full Text Available Construction Grammar holds that unpredictable form-meaning combinations are not restricted in size. In particular, there may be phrases that have particular meanings that are not predictable from the words that they contain, but which are nonetheless not purely idiosyncratic. In addressing this observation, some construction grammarians have not only weakened the word/phrase distinction, but also denied the lexicon/grammar distinction. In this paper, we consider the word/phrase and lexicon/grammar distinction in light of Lexical-Functional Grammar and its Lexical Integrity Principle. We show that it is not necessary to remove the word/phrase distinction or the lexicon/grammar distinction to capture constructional effects, although we agree that there are important generalizations involving constructions of all sizes that must be captured at both syntactic and semantic levels. We use LFG’s templates, bundles of grammatical descriptions, to factor out grammatical information in such a way that it can be invoked either by words or by construction-specific phrase structure rules. Phrase structure rules that invoke specific templates are thus the equivalent of phrasal constructions in our approach, but Lexical Integrity and the separation of word and phrase are preserved. Constructional effects are captured by systematically allowing words and phrases to contribute comparable information to LFG’s level of functional structure; this is just a generalization of LFG’s usual assumption that “morphology competes with syntax” (Bresnan, 2001.

  2. Solar cells in abundance

    International Nuclear Information System (INIS)

    This article takes a look at the rapidly growing market for photovoltaic systems and the production facilities needed to meet increasing demands. Trends in the construction of manufacturing facilities are quoted as showing that facilities will be attaining a similar size to that found in the automotive industry. The author quotes that production capacities are growing much faster than market demands and that prices on the market are not competitive with other electricity prices. Markets with strong growth are noted, as are others with high administrative impediments and resulting slower growth of installed power. Reduced governmental funding in Germany is commented on. Also, the availability of sufficient silicon is examined. The pressure on costs is considered as being positive, as sinking costs will soon make solar power more competitive on the power market.

  3. Solar radioastronomical instruments

    Science.gov (United States)

    Gonze, R.

    Instruments for detecting and recording the radio emissions of the sun are required to cover the entire electromagnetic spectrum, measure intensity and polarization, as well as the region of the emissions, and display high resolution in both space and time. Radioheliographic images of the sun are made from wavelengths outside of the visible, and yield images based on a grid of relative intensities of varying fineness of resolution. Radioelectric isophote contours can be generated using radiotelescopes at specific receptive frequencies, and interferometric techniques permit the employment of multiple paraboloidal receivers to construct a synthetic image of greater resolution than possible with a single antenna. Dynamic radiospectrography is used to examine transitory solar radio emissions where fine structures are produced in frequency bands covering at least an octave. Multichannel radiospectrographic equipment with many receptors tuned to discrete frequencies and regularly adjusted permits coverage of broad frequency bands, with digital control to augment the dynamics of the instruments.

  4. Early solar physics

    CERN Document Server

    Meadows, A J

    1970-01-01

    Early Solar Physics reviews developments in solar physics, particularly the advent of solar spectroscopy and the discovery of relationships between the various layers of the solar atmosphere and between the different forms of solar activity. Topics covered include solar observations during 1843; chemical analysis of the solar atmosphere; the spectrum of a solar prominence; and the solar eclipse of December 12, 1871. Spectroscopic observations of the sun are also presented. This book is comprised of 30 chapters and begins with an overview of ideas about the sun in the mid-nineteenth century, fo

  5. Sustainability Base Construction Update

    Science.gov (United States)

    Mewhinney, Michael

    2012-01-01

    Construction of the new Sustainability Base Collaborative support facility, expected to become the highest performing building in the federal government continues at NASA's Ames Research Center, Moffet Field, Calif. The new building is designed to achieve a platinum rating under the leadership in Energy and Environment Design (LEED) new construction standards for environmentally sustainable construction developed by the U. S. Green Building Council, Washington, D. C. When completed by the end of 2011, the $20.6 million building will feature near zero net energy consumption, use 90 percent less potable water than conventionally build buildings of equivalent size, and will result in reduced building maintenance costs.

  6. Construction program management

    CERN Document Server

    Delaney, Joseph

    2013-01-01

    Although construction is one of the largest industries in the United States, it lags behind other industries in its implementation of modern management techniques such as those contained in the Standard for Program Management (the Standard) by the Project Management Institute (PMI(R)). Construction Program Management details the successful use of the PMI(R) approach for the construction of capital programs. It demonstrates, through case studies, how implementation of PMI's set of tools and techniques can improve the chances of program success. Exploring tactical and strategic management method

  7. Construction and Demolition Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Andersen, L.

    2011-01-01

    Construction and demolition waste (C&D waste) is the waste generated during the building, repair, remodeling or removal of constructions. The constructions can be roads, residential housing and nonresidential buildings. C&D waste has traditionally been considered without any environmental problems and has just been landfilled. However, in recent years more focus has been put on C&D waste and data are starting to appear. One reason is that it has been recognized that C&D waste may include many ma...

  8. Quantitative constructional attributes selection in construction series of types

    OpenAIRE

    P. Gendarz; M. Cielniak

    2011-01-01

    Purpose: The main aim of research was to analyze the selection process of quantitative constructional attributes in construction series of types.Design/methodology/approach: The quantitative constructional attributes selection process is based on constructional similarity theory.Findings: The constructional similarity theory allows to select the quantitative constructional attributes.Research limitations/implications: The final construction similarity is not complete because of adjusting the ...

  9. Lean production construction : prospects for the Icelandic construction industry

    OpenAIRE

    Christoph Merschbrock 1978

    2009-01-01

    The emerging concept of lean construction is concerned with the application of the lean paradigm to the construction industry. Purpose – This research paper seeks to identify the prospects and applicability of lean construction techniques at site level construction processes in the Icelandic construction industry. Design/methodology/approach – Firstly, the basis of current project management and tools to control construction in the Icelandic construction industry was identified through ...

  10. Interaction of the solar wind with the neutral component of the interstellar gas.

    Science.gov (United States)

    Holzer, T. E.

    1972-01-01

    A model is constructed to represent the interaction between the solar wind and the neutral component of the interstellar gas. It is found that the neutral gas has several important effects on the solar-wind expansion beyond the orbit of the earth and that it should be possible to infer the presence of the neutral gas from observations of the solar wind made by a space probe traveling into the outer solar system. The effects include a deceleration and heating of the supersonic solar wind, a cooling of and pressure reduction in the subsonic solar wind, and a tightening of the spiral magnetic field in the supersonic solar wind.

  11. Solar and Reactor Neutrinos: Upcoming Experiments and Future Projects

    OpenAIRE

    Schoenert, Stefan

    2002-01-01

    Sub-MeV solar neutrino experiments and long-baseline reactor oscillation experiments toe the cutting edge of neutrino research. The upcoming experiments KamLAND and BOREXINO, currently in their startup and final construction phase respectively, will provide essential information on neutrino properties as well as on solar physics. Future projects, at present under development, will measure the primary solar neutrino fluxes via electron scattering and neutrino capture in real ...

  12. Seismic investigation of the solar structure using GONG frequencies

    CERN Document Server

    Tripathy, S C; Hill, F; Ambastha, A

    1997-01-01

    Using the recently obtained GONG frequencies, we investigate the properties of the solar interior by constructing solar models with various input physics like opacities, equation of state, nuclear reaction rates etc. The differential asymptotic inversion technique is then used to infer the relative difference in sound speed between the Sun and solar models. Here we apply these results to test equation of state and different formulation for calculating the convective flux.

  13. Solar energy systems in architecture - Integration criteria and guidelines

    OpenAIRE

    Munari Probst, Maria Cristina; Roecker, Christian; Frontini, Francesco; Scognamiglio, Alessandra; Farkas, Klaudia; Maturi, Laura; Zanetti, Isa

    2013-01-01

    This document is conceived for architects and intended to be as clear and practical as possible. It summarizes the knowledge needed to integrate active solar technologies (solar thermal and photovoltaics) into buildings, handling at the same time architectural integration issues and energy production requirements. Solar thermal and photovoltaics are treated separately, but the information is given following the same structure: 1- Main technical information; 2- Constructive/functional integrat...

  14. Urban Options Solar Greenhouse Demonstration Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cipparone, L.

    1980-10-15

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  15. Exploring Solar Power at Zion-Benton High

    Science.gov (United States)

    Kasper, Rick

    1978-01-01

    Developed to provide students with actual hands-on experience in constructing energy-efficient homes and to increase the community's and students' knowledge of solar power as an alternate source of energy, a building trades program at a high school in Zion, Illinois has its students building single-family solar energy homes. (BM)

  16. A review of the solar array manufacturing industry costing standards

    Science.gov (United States)

    1977-01-01

    The solar array manufacturing industry costing standards model is designed to compare the cost of producing solar arrays using alternative manufacturing processes. Constructive criticism of the methodology used is intended to enhance its implementation as a practical design tool. Three main elements of the procedure include workbook format and presentation, theoretical model validity and standard financial parameters.

  17. Solar and energy-conserving food technologies: a training manual

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, J.; Goldman, L.

    1985-01-01

    The report is designed to help plan and implement in-service trainings in solar and other energy-conserving food technologies. It focuses on design, construction, and use of solar dryers for fruits, vegetables, meat, fish and herbs, along with fireless cookery. It emphasizes integrating technical and nontechnical information.

  18. Solar energy an introduction

    CERN Document Server

    Mackay, Michael E

    2015-01-01

    'Solar Energy' is for the beginner involved in solar energy or a related field, or for someone wanting to gain a broader perspective of solar energy technologies. An introduction to all aspects of solar energy, from photovoltaic devices to active and passive solar thermal energy conversion is presented, giving both a detailed and a broad perspective of the field.

  19. Project Solaris – Construction of Solar Powered UAV Prototype

    OpenAIRE

    Johansson, Magnus

    2011-01-01

    Abstract To control an un-swept flying wing is problematic in some ways. One of the problems is that when the wing experiences a disturbance in yaw, it does not, since it has no tail, generate any torque in the opposite direction as a plane with a vertical stabilizer does. This thesis is foremost aimed at exploring one particular solution to this problem. One approach to this problem is to place the motors out on the wing and differentiate the thrust, to achieve the same torque as splitted el...

  20. Solar Electricity

    Science.gov (United States)

    1988-01-01

    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.