WorldWideScience

Sample records for clinch river remedial

  1. Addendum to the Phase 2 Sampling and Analysis Plan for the Clinch River Remedial Investigation

    International Nuclear Information System (INIS)

    1994-03-01

    This document is an addendum to the Phase 2 Sampling and Analysis Plan for the Clinch River Remedial Investigation (DOE 1993). The Department of Energy--Oak Ridge Operations (DOE-ORO) is proposing this addendum to the US Envianmental Protection Agency, Region IV (EPA-IV), and the Tennessee Department of Environment and Conservation (TDEC) as a reduced sampling program on the Clinch River arm of Watts Bar Reservoir and on Poplar Creek. DOE-ORO is proposing to maximize the use of existing data and minimize the collection of new data for water, sediment, and biota during Phase 2 of the Clinch River Remedial Investigation. The existing data along with the additional data collected in Phase 2 would be used to perform a baseline risk assessment and make remedial decisions. DOE-ORO considers that the existing data, the additional data collected in Phase 2, and on-site remedial investigation data would be sufficient to understand the nature and extent of the contamination problem in the Clinch River, perform a baseline risk assessment,and make remedial decisions. This addendum is organized in three sections. The first section provides background information and describes a rationale for modifying the Phase 2 Sampling and Analysis Plan. Section 2 presents a summary of the existing data for the Clinch River arm of Watts Bar Reservoir and an evaluation of the sufficiency of this data for a baseline human health and ecological risk assessment. Section 3 describes the revised Phase 2 Sampling and Analysis Plan for surface water, sediment, and biota in the Clinch River OU and in the Poplar Creek OU

  2. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    International Nuclear Information System (INIS)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Etnier, E.L.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Greeley, M.S.; Halbrook, R.S.; Harris, R.A.; Holladay, S.K.; Hook, L.A.; Howell, P.L.; Kszos, L.A.; Levine, D.A.; Skiles, J.L.; Suter, G.W.

    1992-12-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S ampersand A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S ampersand A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI

  3. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Etnier, E.L.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Greeley, M.S.; Halbrook, R.S.; Harris, R.A.; Holladay, S.K.; Hook, L.A.; Howell, P.L.; Kszos, L.A.; Levine, D.A.; Skiles, J.L.; Suter, G.W.

    1992-12-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI.

  4. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 4. Appendix F

    International Nuclear Information System (INIS)

    1995-09-01

    This section contains ecotoxicological profiles for the COPECs for the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The ecotoxicological information is presented for only those endpoints for which the chemicals are COPECs. The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  5. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 4. Appendix F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This section contains ecotoxicological profiles for the COPECs for the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The ecotoxicological information is presented for only those endpoints for which the chemicals are COPECs. The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  6. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 3. Appendix E

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document contains Appendix E: Toxicity Information and Uncertainty Analysis, description of methods, from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  7. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  8. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 3. Appendix E

    International Nuclear Information System (INIS)

    1995-09-01

    This document contains Appendix E: Toxicity Information and Uncertainty Analysis, description of methods, from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  9. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    International Nuclear Information System (INIS)

    1995-09-01

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  10. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 2. Appendixes A, B, C, D

    International Nuclear Information System (INIS)

    1995-09-01

    This document contains appendices A (water characterization), B (sediment characterization), C (biota Characterization), D (applicable or relevant and appropriate requirements) from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  11. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 2. Appendixes A, B, C, D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document contains appendices A (water characterization), B (sediment characterization), C (biota Characterization), D (applicable or relevant and appropriate requirements) from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  12. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1: Main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  13. DOE's environmental restoration program for the Clinch River and Watts Bar Reservoir

    International Nuclear Information System (INIS)

    Kimmel, B.

    1992-01-01

    Operations and waste disposal activities at the Y-12 Plant, the K-25 Site,and the Oak Ridge National Laboratory (ORNL) on the U.S. Department of Energy's Oak Ridge Reservation (ORR) have introduced a variety of contaminants (radionuclides, metals, and organic compounds) into off-site surface waters since the early 1940s, The Clinch River and Watts Bar Reservoir are located downstream from the ORR. A comprehensive remedial investigation (the Clinch River Remedial Investigation) of off-site surface water contamination at Oak Ridge is now being conducted in compliance with the Resource Conservation and Recovery Act and Comprehensive Environmental Response, Compensation, and Liability Act requirements. The objectives of the Clinch River Remedial Investigation (CRRI) are to: (1) define the nature and extent of off-site surface water contamination, (2) quantify the potential risks to human health and the environment associated with off-site contamination, and (3) identify and preliminarily evaluate potential remediation alternatives. The CRRI is being conducted in three phases: (1) scoping studies, in which preassessment studies based on existing data and limited sampling were conducted to preliminarily estimate the nature and extent of the problem; (2) Phase 1, in which limited sampling and risk analyses are conducted to define specifically the distributions of the contaminants of concern and the environmental and human health risks associated with the contamination. These phases allow a progressive focusing of assessment efforts on specific contaminants, pathways, and sites contributing to risk and on the evaluation of potential remediation alternatives. A brief overview of the Clinch River RI is presented, followed by a description of on going efforts to achieve control of contaminated sediments located in the White Oak Creek Embayment

  14. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 3. Risk assessment information. Appendixes E, F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 3 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  15. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 3: Appendixes E and F -- Risk assessment information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  16. Quality assurance/quality control summary report for Phase 1 of the Clinch River remedial investigation. Environmental Restoration Program

    International Nuclear Information System (INIS)

    Holladay, S.K.; Bevelhimer, M.S.; Brandt, C.C.

    1994-07-01

    The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants released from the US Department of Energy Oak Ridge Reservation and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. Phase 1 of the CRRI was a preliminary study in selected areas of the Clinch River/Watts Bar Reservoir. Fish, sediment, and water samples were collected and analyzed for inorganic, organic, and radiological parameters. Phase 1 was designed to (1) obtain high-quality data to confirm existing historical data for contaminant levels; (2) determine the range of contaminant concentrations present in the river-reservoir system; (3) identify specific contaminants of concern; and (4) establish the reference (background) concentrations for those contaminants. Quality assurance (QA) objectives for Phase I were that (1) scientific data generated would withstand scientific scrutiny; (2) data would be gathered using appropriate procedures for field sampling, chain-of-custody, laboratory analyses, and data reporting; and (3) data would be of known precision and accuracy. These objectives were met through the development and implementation of (1) a QA oversight program of audits and surveillances; (2) standard operating procedures accompanied by a training program; (3) field sampling and analytical laboratory quality control requirements; (4) data and records management systems; and (5) validation of the data by an independent reviewer. Approximately 1700 inorganic samples, 1500 organic samples, and 2200 radiological samples were analyzed and validated. The QA completeness objective for the project was to obtain valid analytical results for at least 95% of the samples collected

  17. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 5. Appendixes J, K, L, M, and N-other supporting information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 5 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  18. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Biota and representative concentrations of contaminants. Appendixes A, B, C, D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OU`s). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  19. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 4. Information related to the feasibility study and ARARs. Appendixes G, H, I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  20. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Appendixes A, B, C, and D-Biota and representative concentrations of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 2 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  1. Characterization of sediments in the Clinch River, Tennessee, using remote sensing and multi-dimensional GIS techniques

    International Nuclear Information System (INIS)

    Levine, D.A.; Hargrove, W.W.; Hoffman, F.

    1995-01-01

    Remotely-sensed hydro-acoustic data were used as input to spatial extrapolation tools in a GIS to develop two- and three-dimensional models of sediment densities in the Clinch River arm of Watts Bar Reservoir, Tennessee. This work delineated sediment deposition zones to streamline sediment sampling and to provide a tool for estimating sediment volumes and extrapolating contaminant concentrations throughout the system. The Clinch River arm of Watts Bar Reservoir has been accumulating sediment-bound contaminants from three Department of Energy (DOE) facilities on the Oak Ridge Reservation, Tennessee. Public concern regarding human and ecological health resulted in Watts Bar Reservoir being placed on the National Priorities List for SUPERFUND. As a result, DOE initiated and is funding the Clinch River Environmental Restoration Program (CR-ERP) to perform a remedial investigation to determine the nature and extent of sediment contamination in the Watts Bar Reservoir and the Clinch River and to quantify any human or ecological health risks. The first step in characterizing Clinch River sediments was to determine the locations of deposition zones. It was also important to know the sediment type distribution within deposition zones because most sediment-bound contaminants are preferentially associated to fine particles. A dual-frequency hydro-acoustic survey was performed to determine: (1) depth to the sediment water interface, (2) depth of the sediment layer, and (3) sediment characteristics (density) with depth (approximately 0.5-foot intervals). An array of geophysical instruments was used to meet the objectives of this investigation

  2. Phase 1 data summary report for the Clinch River Remedial Investigation: Health risk and ecological risk screening assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Holladay, S.K.; Hook, L.A.; Levine, D.A.; Longman, R.C.; McGinn, C.W.; Skiles, J.L.; Suter, G.W.; Williams, L.F.

    1992-12-01

    The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants released from the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. The contaminants released since the early 1940s include a variety of radionuclides, metals, and organic compounds. The purpose of this report is to summarize the results of Phase 1 of the CRRI. Phase 1 was designed to (1) obtain high-quality data to confirm existing historical data for contaminant levels in fish, sediment, and water from the CR/WBR; (2) determine the in the range of contaminant concentrations present river-reservoir system; (3) identify specific contaminants of concern; and (4) establish the reference (background) concentrations for those contaminants.

  3. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 4. Appendixes G, H, and I and information related to the feasibility study and ARARs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 4 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  4. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.

  5. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    International Nuclear Information System (INIS)

    1996-03-01

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee

  6. Data summary for the near-shore sediment characterization task of the Clinch River Environmental Restoration Program

    International Nuclear Information System (INIS)

    Levine, D.A.; Hargrove, W.W.; Campbell, K.R.; Wood, M.A.; Rash, C.D.

    1994-10-01

    This report presents the results of the Near-Shore Sediment Characterization Task of the Clinch River Environmental Restoration Program (CR-ERP). The goals of the task were to (1) determine the extent to which near-shore surface sediments are contaminated by releases from the Oak Ridge Reservation (ORR) and (2) provide data for the Watts Bar Reservoir Interagency Permitting Group (WBRIPG) to evaluate the human health risks from exposure to sediments during and following dredging operations. The data collected for this task are also to be used in the Remedial Investigation/Feasibility Study (RLTS) for the CR-ERP operable units (Lower Watts Bar and Clinch River) to characterize the human health risk associated with exposure to near-shore sediments throughout the Watts Bar Reservoir

  7. Phase 1 data summary report for the Clinch River Remedial Investigation: Health risk and ecological risk screening assessment. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Holladay, S.K.; Hook, L.A.; Levine, D.A.; Longman, R.C.; McGinn, C.W.; Skiles, J.L.; Suter, G.W.; Williams, L.F.

    1992-12-01

    The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants released from the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. The contaminants released since the early 1940s include a variety of radionuclides, metals, and organic compounds. The purpose of this report is to summarize the results of Phase 1 of the CRRI. Phase 1 was designed to (1) obtain high-quality data to confirm existing historical data for contaminant levels in fish, sediment, and water from the CR/WBR; (2) determine the in the range of contaminant concentrations present river-reservoir system; (3) identify specific contaminants of concern; and (4) establish the reference (background) concentrations for those contaminants.

  8. Technical management plan for sample generation, analysis, and data review for Phase 2 of the Clinch River Environmental Restoration Program

    International Nuclear Information System (INIS)

    Brandt, C.C.; Benson, S.B.; Beeler, D.A.

    1994-03-01

    The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. The remedial investigation is entering Phase 2, which has the following items as its objectives: define the nature and extent of the contamination in areas downstream from the DOE ORR, evaluate the human health and ecological risks posed by these contaminants, and perform preliminary identification and evaluation of potential remediation alternatives. This plan describes the requirements, responsibilities, and roles of personnel during sampling, analysis, and data review for the Clinch River Environmental Restoration Program (CR-ERP). The purpose of the plan is to formalize the process for obtaining analytical services, tracking sampling and analysis documentation, and assessing the overall quality of the CR-ERP data collection program to ensure that it will provide the necessary building blocks for the program decision-making process

  9. Data Management Plan and Functional System Design for the Information Management System of the Clinch River Remedial Investigation and Waste Area Grouping 6

    Energy Technology Data Exchange (ETDEWEB)

    Ball, T.; Brandt, C.; Calfee, J.; Garland, M.; Holladay, S.; Nickle, B.; Schmoyer, D.; Serbin, C.; Ward, M. [Oak Ridge National Lab., TN (United States)

    1994-03-01

    The Data Management Plan and Functional System Design supports the Clinch River Remedial Investigation (CRRI) and Waste Area Grouping (WAG) 6 Environmental Monitoring Program. The objective of the Data Management Plan and Functional System Design is to provide organization, integrity, security, traceability, and consistency of the data generated during the CRRI and WAG 6 projects. Proper organization will ensure that the data are consistent with the procedures and requirements of the projects. The Information Management Groups (IMGs) for these two programs face similar challenges and share many common objectives. By teaming together, the IMGs have expedited the development and implementation of a common information management strategy that benefits each program.

  10. Clinch River breeder project gets boost

    International Nuclear Information System (INIS)

    Hill, W.H.

    1982-01-01

    Progress on the Clinch River Breeder Reactor Plant project, the United States' next step in developing liquid metal fast breeder technology is examined including consideration of Plant design, component fabrication and testing, construction schedule, funding, fuel cycle development and licensing. (U.K.)

  11. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 5. Appendixes G, H, I, J

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Quality Assurance/Quality Control (QA/QC) Program for Phase 2 of the Clinch River Remedial Investigation (CRRI) was designed to comply with both Department of Energy (DOE) Order 5700.6C and Environmental Protection Agency (EPA) QAMS-005/80 (EPA 1980a) guidelines. QA requirements and the general QA objectives for Phase 2 data were defined in the Phase 2 Sampling and Analysis Plan (SAP)-Quality Assurance Project Plan, and scope changes noted in the Phase 2 Sampling and Analysis Plan Addendum. The QA objectives for Phase 2 data were the following: (1) Scientific data generated will withstand scientific and legal scrutiny. (2) Data will be gathered using appropriate procedures for sample collection, sample handling and security, chain of custody (COC), laboratory analyses, and data reporting. (3) Data will be of known precision and accuracy. (4) Data will meet data quality objectives (DQOs) defined in the Phase 2 SAP.

  12. Health risks from radionuclides released into the Clinch River

    International Nuclear Information System (INIS)

    Thomas, B.A.; Hoffman, F.O.; Miller, L.F.

    1999-01-01

    The purpose of this work is to estimate off-site radiation doses and health risks (with uncertainties) associated with the release of radionuclides from the X-10 site. Following an initial screening analysis, the exposure pathways of interest included fish ingestion, drinking water ingestion, the ingestion of milk and meat, and external exposure from shoreline sediment. Four representative locations along the Clinch River, from the White Oak Creek Embayment to the city of Kingston, were chosen. The demography of the lower Clinch River supplied information dealing with land use that aided in the determination of sites on which to focus efforts. The locations that proved to be the most significant included Jones Island at Clinch River Mile (CRM) 20.5, Grassy Creek and K-25 (CRM 14), Kingston Steam Plant (CRM 3.5), and the city of Kingston (CRM 0). These areas of interest have historically been and are still primarily agricultural and residential areas. Reference individuals were determined with respect to the pathways involved. The primary radionuclides of interest released from the X-10 facility into the Clinch River via White Oak Creek were identified in the initial screening analysis as 137 Cs, 90 Sr, 60 Co, 106 Ru, 144 Ce, 131 I, 95 Zr, and 95 Nb. Of these radionuclides, 137 Cs, 60 Co, 106 Ru, 90 Sr, 144 Ce, 95 Zr, and 95 Nb were evaluated for their contribution to the external exposure pathway. This study utilized an object-oriented modeling software package that provides an alternative to the spreadsheet, providing graphical influence diagrams to show qualitative structure of models, hierarchical models to organize complicated models into manageable modules, and intelligent arrays with the power to scale up simple models to handle large problems. The doses and risks estimated in this study are not significant enough to cause a detectable increase in health effects in the population. In most cases, the organ does are well below the limits of epidemiological

  13. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This volume is in support of the findings of an investigation into contamination of the Clinch River and Poplar Creek near the Oak Ridge Reservation (for more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities there). It addresses the quality assurance objectives for measuring the data, presents selected historical data, contains data from several discrete water characterization studies, provides data supporting the sediment characterization, and contains data related to several biota characterization studies.

  14. Saga of Clinch River

    International Nuclear Information System (INIS)

    Young, W.H.

    1984-01-01

    An epic struggle in the US Congress between what the author calls the forces of transcendence and the forces of experience over development of a breeder reactor for electric power generation is described in this article. The project was started by President Nixon, survived repeated attacks under President Carter, and ironically succumbed under a strong supporter, President Reagan, as a result of an unlikely coalition of conservative organizations and Republican politicians. The broader meanings of the demise of the Clinch River project are examined on several levels, examining the significance for the nation's energy future and for the nation's political future

  15. Technical background information for the environmental and safety report, Volume 5: the 1977 Clinch River sediment survey - data presentation

    International Nuclear Information System (INIS)

    Oakes, T.W.; Ohnesorge, W.F.; Eldridge, J.S.; Scott, T.G.; Parsons, D.W.; Hubbard, H.M.; Sealand, O.M.; Shank, K.E.; Eyman, L.D.

    1982-11-01

    This study determined the fate and distribution of nuclides in the Clinch River by analyzing selected cores for transuranic radionuclide activity and examined the effect of the altered flow regime in the Clinch River on the distribution of the fission product activity. Cores were collected along the full length of the Clinch River from the WOC outfall (CRM 20.8) to locations in the Tennessee River on either side of the junction of the two rivers. The sampling was concentrated around CRM 20.8 and the proposed CRBR site. An inventory of alpha-emitting radionuclides and gamma-emitting fission products and their lateral and vertical distribution patterns in the Clinch River was established

  16. Characterization of surface water contaminants in the Clinch River and Poplar Creek

    International Nuclear Information System (INIS)

    Ford, C.; Madix, S.; Rash, C.

    1995-01-01

    Surface waters in the Clinch River and Poplar Creek have been contaminated by activities on the DOE's Oak Ridge Reservation throughout the more than 50 year history of Oak Ridge. Though the Clinch River and Poplar Creek drainage areas are contaminated with heavy metals, organics and radionuclides, public access to these sites is not restricted. The investigation, divided into discrete studies, was tailored to provide a statistically sound picture of contaminants and aqueous toxicity in Poplar Creek, investigate contaminant remobilization from sediments, and determine contaminant levels during a series of ''worst-case'' events. Results for Poplar Creek indicate that average contaminant values were below levels of concern for human health and ecological risk, though contaminant distributions suggest that episodic events contribute sufficiently to system contaminant levels to be of concern. Additionally, water column contaminant levels were significantly higher in particle deposition areas rather than at known contaminant sources. Levels of organic compounds in reference areas to Poplar Creek exceeded those in the Poplar Creek study area. In the Clinch River and Poplar Creek, statistical differences in metal and radionuclide levels from known contaminated areas confirmed previous results, and were used to independently distinguish between sites. Contaminant concentrations were elevated in association with sediments, though no distinction between deposition and remobilization could be made. Due to elevated contaminant levels, and some unexpected contaminant distributions, sites in Poplar Creek and off-channel embayments of the Clinch River were identified that will require additional characterization

  17. "Wandering in the Desert": The Clinch River Breeder Reactor Debate in the U.S. Congress, 1972-1983.

    Science.gov (United States)

    Camp, Michael

    2018-01-01

    The experimental Clinch River breeder reactor, approved by the U.S. Congress in 1970 for construction in East Tennessee, would have used plutonium instead of uranium. The project drew the ire of environmentalists who insisted that plutonium was too dangerous for commercial use, along with opponents of nuclear proliferation. Tennessee's representatives in Congress, however, desired the jobs that the project would create, and formed legislative coalitions to ensure continued appropriations for the project. Funding lasted until 1983, when fiscal conservatives, concerned about ballooning cost projections, joined with environmentalists to defund the breeder. Interpretations of U.S. nuclear policy in the 1980s have often revolved around the Three Mile Island meltdown's aftermath, but Clinch River was not affected by the incident. Instead, the Clinch River controversy revolved around other unrelated issues. The Clinch River story therefore offers a corrective to accounts that privilege national public opinion at the expense of other variables.

  18. Clinch River Breeder Reactor Plant Project: construction schedule

    International Nuclear Information System (INIS)

    Purcell, W.J.; Martin, E.M.; Shivley, J.M.

    1982-01-01

    The construction schedule for the Clinch River Breeder Reactor Plant and its evolution are described. The initial schedule basis, changes necessitated by the evaluation of the overall plant design, and constructability improvements that have been effected to assure adherence to the schedule are presented. The schedule structure and hierarchy are discussed, as are tools used to define, develop, and evaluate the schedule

  19. Radionuclide accumulations in Clinch River fish

    International Nuclear Information System (INIS)

    Oakes, T.W.; Easterly, C.E.; Shank, K.E.

    1976-01-01

    Fish samples were collected from several locations above Melton Hill Dam, which is upstream from the liquid effluent release point of the Oak Ridge National Laboratory. The sampling locations were chosen to determine the accumulation of natural and man-made radionuclides in fish from areas in the Clinch River not influenced by the Laboratory's liquid effluents. Bass, carp, crappie, shad, bluegill, and other sunfish were collected; ten fish per species were composited to form a single sample for each location. The gamma-emitting radionuclide concentrations were determined by gamma-ray spectroscopy. Estimates of radiological dose to man subsequent to ingestion of these fish are made

  20. Large test rigs verify Clinch River control rod reliability

    International Nuclear Information System (INIS)

    Michael, H.D.; Smith, G.G.

    1983-01-01

    The purpose of the Clinch River control test programme was to use multiple full-scale prototypic control rod systems for verifying the system's ability to perform reliably during simulated reactor power control and emergency shutdown operations. Two major facilities, the Shutdown Control Rod and Maintenance (Scram) facility and the Dynamic and Seismic Test (Dast) facility, were constructed. The test programme of each facility is described. (UK)

  1. Clinch River Breeder Reactor Plant: a building block in nuclear technology

    International Nuclear Information System (INIS)

    McCormack, M.

    1979-01-01

    Interest in breeder reactors dates from the Manhatten Project to the present effort to build the Clinch River Liquid Metal Fast Breeder Reactor (LMFBR) demonstration plant. Seven breeder-type reactors which were built during this time are described and their technological progress assessed. The Clinch River Breeder Reactor Project (CRBRP) has been designed to demonstrate that it can be licensed, can operate on a large power grid, and can provide industry with important experience. As the next logical step in LMFBR development, the project has suffered repeated cancellation efforts with only minor modifications to its schedule. Controversies have developed over the timing of a large-scale demonstration plant, the risks of proliferation, economics, and other problems. Among the innovative developments adopted for the CRBRP is a higher thermal efficiency potential, the type of development which Senator McCormack feels justifies continuing the project. He argues that the nuclear power program can and should be revitalized by continuing the CRBRP

  2. Clinch River Breeder Reactor Plant: a building block in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, M.

    1979-01-01

    Interest in breeder reactors dates from the Manhatten Project to the present effort to build the Clinch River Liquid Metal Fast Breeder Reactor (LMFBR) demonstration plant. Seven breeder-type reactors which were built during this time are described and their technological progress assessed. The Clinch River Breeder Reactor Project (CRBRP) has been designed to demonstrate that it can be licensed, can operate on a large power grid, and can provide industry with important experience. As the next logical step in LMFBR development, the project has suffered repeated cancellation efforts with only minor modifications to its schedule. Controversies have developed over the timing of a large-scale demonstration plant, the risks of proliferation, economics, and other problems. Among the innovative developments adopted for the CRBRP is a higher thermal efficiency potential, the type of development which Senator McCormack feels justifies continuing the project. He argues that the nuclear power program can and should be revitalized by continuing the CRBRP.

  3. Preconstruction radioactivity levels in the vicinity of the proposed Clinch River Breeder Reactor Project

    International Nuclear Information System (INIS)

    1984-05-01

    Routine samples of ground water, river water, and bottom sediment were collected from the Clinch River in 1983 in the preconstruction-construction phase of the CRBRP environmental radiological monitoring program. The water samples analyzed for iodine-131 yielded only a slight indication of the presence of I-131 at levels below the nominal lower limit of detection of 0.5 pCi/L. The only significant radioisotopes identified in sediment samples were 137 Cs, 60 Co, and the naturally occurring 40 K. The results for 137 Cs vary from 2.2 to 10.1 pCi/g (dry weight), while the results for 60 Co range from 0.35 to 1.2 pCi/g (dry weight). With the exception of tritium, no significant radioactivity was detected in ground or surface water at the CRBRP site. Tritium concentrations ranging from 12,667 to 12,823 pCi/L were found in samples of surface water taken from the Clinch River below Melton Hill Dam while samples taken at the dam exhibited tritium levels from 28 to 942 pCi/L. These elevated tritium levels in the Clinch River below Melton Hill Dam are attributable to DOE operations at Oak Ridge. The external gamma radiation levels measured at the CRBRP site averaged 17.4 +- 3.2 mR/quarter for 1983. This is consistent with levels measured at TVA's nonoperating nuclear power plant construction sites. 3 figures, 8 tables

  4. Transport and accumulation of cesium-137 and mercury in the Clinch River and Watts Bar Reservoir system

    International Nuclear Information System (INIS)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; Moriones, C.R.; Ford, C.J.; Dearstone, K.C.; Turner, R.R.; Kimmel, B.L.; Brandt, C.C.

    1992-06-01

    Operations and waste disposal activities at the Oak Ridge Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) have introduced a variety of airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams, which ultimately drain into the Clinch and Tennessee river system. Previously reported concentrations of radionuclides, metals and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of a variety of contaminants of possible concern to the protection of human health and the environment. The work reported here represents part of the initial scoping phase for the Clinch River RCRA Facility Investigation. In this work, the distribution of 137 Cs is used to identify contaminant accumulation patterns and potential problem, or ''hot-spot,'' areas with regard to environmental hazard or human health. Radiocesium was chosen for this scoping effort because (1) its history of release into the Clinch River is reasonably well documented, (2) it is easy and inexpensive to measure by gamma spectrometry, and (3) it is rapidly sorbed to particulate matter and thus serves as a cost-effective tracer for identifying the transport and accumulation patterns of many other particle-reactive contaminants, such as mercury (Hg), lead (Pb), and plutonium (Pu), and polychlorinated biphenyls (PCBs)

  5. Clinch River Environmental Restoration Program

    International Nuclear Information System (INIS)

    Cook, R.B.

    1992-01-01

    This report consists of tables and listings from the results of the Phase I data gathering activities of the Clinch River Environmental Restoration Program (CR-ERP). The table of contents outlines the presentation of the material and has been annotated to indicate the key fields used to order the printing of each data table. Definitions of selected column headings are provided. Sample collection information is shown first and then more specific information for each matrix type is presented. The analytical results have been reviewed by independent validators and the qualifiers shown are the results of their efforts. No data that were rejected by the validation process are included in this listing. Only results of routine samples are listed; quality control sample results were excluded. All data, both detected and nondetected values, were used to calculated the summary table values. However, only Detected values are given on the analyte specific listings

  6. Remedial investigation/feasibility study report for lower Watts Bar Reservoir Operable Unit

    International Nuclear Information System (INIS)

    1994-08-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the Lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch River. This area has received hazardous substances released over a period of 50 years from the U.S. Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received containments, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. Water-soluble contaminants released to ORR surface waters are rapidly diluted upon entering the Clinch River and then quickly transported downstream to the Tennessee River where further dilution occurs. Almost the entire quantity of these diluted contaminants rapidly flows through LWBR. In contrast, particle-associated contaminants tend to accumulate in the lower Clinch River and in LWBR in areas of sediment deposition. Those particle-associated contaminants that were released in peak quantities during the early years of ORR operations (e.g., mercury and 137 Cs) are buried under as much as 80 cm of cleaner sediment in LWBR. Certain contaminants, most notably polychlorinated biphenyls (PCBs), have accumulated in LWBR biota. The contamination of aquatic biota with PCBs is best documented for certain fish species and extends to reservoirs upstream of the ORR, indicating a contamination problem that is regional in scope and not specific to the ORR

  7. Clinch River Breeder Reactor secondary control rod system

    International Nuclear Information System (INIS)

    McKeehan, E.R.; Sim, R.G.

    1977-01-01

    The shutdown system for the Clinch River Breeder Reactor (CRBR) includes two independent systems--a primary and a secondary system. The Secondary Control Rod System (SCRS) is a new design which is being developed by General Electric to be independent from the primary system in order to improve overall shutdown reliability by eliminating potential common-mode failures. The paper describes the status of the SCRS design and fabrication and testing activities. Design verification testing on the component level is largely complete. These component tests are covered with emphasis on design impact results. A prototype unit has been manufactured and system level tests in sodium have been initiated

  8. Safety-Evaluation Report related to the construction of the Clinch River Breeder Reactor Plant. Docket No. 50-537

    International Nuclear Information System (INIS)

    1983-03-01

    The Safety-Evaluation Report for the application by the United States Department of Energy, Tennessee Valley Authority, and the Project Management Corporation, as applicants and owners, for a license to construct the Clinch River Breeder Reactor Plant (docket No. 50-537) has been prepared by the Office of Nuclear Reactor Regulation of the United States Nuclear Regulatory Commission. The facility will be located on the Clinch River approximately 12 miles southwest of downtown Oak Ridge and 25 miles west of Knoxville, Tennessee. Subject to resolution of the items discussed in this report, the staff concludes that the construction permit requested by the applicants should be issued

  9. Human factors engineering in Clinch River Breeder plant design

    International Nuclear Information System (INIS)

    Planchon, H.P. Jr.; Kaushal, N.N.; Snider, J.

    1982-01-01

    The Clinch River Breeder Reactor Plant (CRBRP) Project formed a Control Room Task Force to ensure that lessons learned from the Three Mile Island accident are incorporated into the design. The charter for the Control Room Task Force was to review plant operations from the control room. The focus was on the man-machine interface to ensure that the systems' designs and operator actions meshed to properly support plant operation during normal and off-normal conditions. Specific items included for review are described. This paper describes the methodology utilized to accomplish the Task Forces' objectives and the results of the review

  10. Update of preconstruction radioactivity levels in the vicinity of the proposed Clinch River breeder reactor project

    International Nuclear Information System (INIS)

    1981-08-01

    Routine samples of ground water, river water, and bottom sediment were collected from the Clinch River in 1977 in the preconstruction-construction phase of the CRBRP environmental radiological monitoring program. The results obtained from the analysis of these samples are similar to those reported earlier. The only significant radioisotopes identified in sediment samples were 137 Cs, 60 Co, and the naturally occurring 40 K. Other than for samples collected in November 1976, the results vary from 0.1 to 13.0 pCi/g (dry weight), with concentration generally increasing with distance downstream from CRM 24.0 to CRM 14.4. The extent to which this relationship may or may not hold below CRM 14.4 is beyond the intended scope of this program. No explanation can be given at this time for the elevated levels of 137 Cs detected in November 1976. These values ranged from 28.0 to 82.6 pCi/g (dry weight), with similar values found at CRM 24.0 above Melton Hill Dam. With the exception of tritium, no significant radioactivity was detected in ground or surface water at the CRBRP site. Tritium concentrations ranging from 368 to 5882 pCi/l were found in samples of surface water taken from the Clinch River below Melton Hill Dam while samples taken above the dam exhibited tritium levels from 56 to 368 pCi/l. These elevated tritium levels in the Clinch River below Melton Hill Dam are attributable to DOE operations at Oak Ridge

  11. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    International Nuclear Information System (INIS)

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR

  12. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR.

  13. Assessment of potential impact of the Clinch River Breeder Reactor Plant thermal effluent on the Watts Bar Reservoir striped bass population

    International Nuclear Information System (INIS)

    Heuer, J.H.; McIntosh, D.; Ostrowski, P.; Tomljanovich, D.A.

    1983-11-01

    This report is an assessment of potential adverse impact to striped bass (Morone saxatilis) in Watts Bar Reservoir caused by thermal effluent from operation of the Clinch River Breeder Reactor Plant (CRBRP). The Clinch River arm of Watts Bar Reservoir is occupied by adult striped bass during the warmest months of the year. Concern was raised that operation of the CRBRP, specifically thermal discharges, could conflict with management of striped bass. In all cases examined the thermal plume becomes nearly imperceptible within a short distance from the discharge pipe (about 30 ft [10 m]) compared to river width (about 630 ft [190 m]). Under worst case conditions any presence of the plume in the main channel (opposite side of the river from the discharge) will be confined to the surface layer of the water. An ample portion of river cross sections containing ambient temperature water for passage or residence of adult striped bass will always be available in the vicinity of this thermal effluent. Although a small portion of river cross section would exceed the thermal tolerance of striped bass, the fish would naturally avoid this area and seek out adjacent cooler water. Therefore, it is concluded the CRBRP thermal effluent will not significantly affect the integrity of the striped bass thermal refuge in the Clinch River arm of Watts Bar Reservoir. At this time there is no need to consider alternative diffuser designs and thermal modeling. 8 references, 3 figures, 2 tables

  14. Reliability modeling of Clinch River breeder reactor electrical shutdown systems

    International Nuclear Information System (INIS)

    Schatz, R.A.; Duetsch, K.L.

    1974-01-01

    The initial simulation of the probabilistic properties of the Clinch River Breeder Reactor Plant (CRBRP) electrical shutdown systems is described. A model of the reliability (and availability) of the systems is presented utilizing Success State and continuous-time, discrete state Markov modeling techniques as significant elements of an overall reliability assessment process capable of demonstrating the achievement of program goals. This model is examined for its sensitivity to safe/unsafe failure rates, sybsystem redundant configurations, test and repair intervals, monitoring by reactor operators; and the control exercised over system reliability by design modifications and the selection of system operating characteristics. (U.S.)

  15. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D. [and others

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  16. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge

  17. Present day design challenges exemplified by the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Dickson, P.W. Jr.; Anderson, C.A. Jr.

    1976-01-01

    The present day design challenges faced by the Clinch River Breeder Reactor Plant engineer result from two causes. The first cause is aspiration to achieve a design that will operate at conditions which are desirable for future LMFBRs in order for them to achieve low power costs and good breeding. The second cause is the licensing impact. Although licensing the CRBRP won't eliminate future licensing effort, many licensing questions will have been resolved and precedents set for the future LMFBR industry

  18. Conceptual design of the Clinch River Breeder Reactor spent-fuel shipping cask

    International Nuclear Information System (INIS)

    Pope, R.B.; Diggs, J.M.

    1982-04-01

    Details of a baseline conceptual design of a spent fuel shipping cask for the Clinch River Breeder Reactor (CRBR) are presented including an assessment of shielding, structural, thermal, fabrication and cask/plant interfacing problems. A basis for continued cask development and for new technological development is established. Alternates to the baseline design are briefly presented. Estimates of development schedules, cask utilization and cost schedules, and of personnel dose commitments during CRBR in-plant handling of the cask are also presented

  19. Seismic design criteria for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Morrone, A.; Bitner, J.L.; Sigal, G.B.

    1975-01-01

    The general criteria for seismic resistant design for structures, systems and components of the Clinch River Breeder Reactor Plant (CRBRP) are presented and discussed. Site dependency of the maximum ground accelerations for the Operating Basis Earthquake and the Safe Shutdown Earthquake is described from the viewpoint of historical records and geological and seismological studies for the CRBRP site. The respective ground response spectra are derived by normalization of the latest AEC Regulatory standard shapes to these maximum ground accelerations. Modeling and analytical techniques and requirements are given. In addition, loading conditions and categories, loading combinations, earthquake direction effects and allowable damping values are defined. A discussion of the testing criteria which considers both single and multiple frequency test motions, and basic test procedures for single frequency sine beat testing is presented. (U.S.)

  20. Thermal insulation system design and fabrication specification (nuclear) for the Clinch River Breeder Reactor plant

    International Nuclear Information System (INIS)

    1978-01-01

    This specification defines the design, analysis, fabrication, testing, shipping, and quality requirements of the Insulation System for the Clinch River Breeder Reactor Plant (CRBRP), near Oak Ridge, Tennessee. The Insulation System includes all supports, convection barriers, jacketing, insulation, penetrations, fasteners, or other insulation support material or devices required to insulate the piping and equipment cryogenic and other special applications excluded. Site storage, handling and installation of the Insulation System are under the cognizance of the Purchaser

  1. Quality assurance in technology development for The Clinch River Breeder Reactor Plant Project

    International Nuclear Information System (INIS)

    Anderson, J.W.

    1980-01-01

    The Clinch River Breeder Reactor Plant Project is the nation's first large-scale demonstration of the Liquid Metal Fast Breeder Reactor (LMFBR) concept. The Project has established an overall program of plans and actions to assure that the plant will perform as required. The program has been established and is being implemented in accordance with Department of Energy Standard RDT F 2-2. It is being applied to all parts of the plant, including the development of technology supporting its design and licensing activity. A discussion of the program as it is applied to development is presented

  2. Structural analysis of the Upper Internals Structure for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Houtman, J.L.

    1979-01-01

    The Upper Internals Structure (UIS) of the Clinch River Breeder Reactor Plant (CRBRP) provides control of core outlet flow to prevent severe thermal transients from occuring at the reactor vessel and primary heat transport outlet piping, provides instrumentation to monitor core performance, provides support for the control rod drivelines, and provides secondary holddown of the core. All of the structural analysis aspects of assuring the UIS is structurally adequate are presented including simplified and rigorous inelastic analysis methods, elevated temperature criteria, environmental effects on material properties, design techniques, and manufacturing constraints

  3. Clinch river breeder reactor plant steam generator water quality

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, D; Lowe, P A

    1975-07-01

    The recent problems experienced by some LWR Steam Generators have drawn attention to the importance of system water quality and water/ steam side corrosion. Several of these reactor plants have encountered steam generator failures due to accelerated tube corrosion caused, in part, by poor water quality and corrosion control. The CRBRP management is aware of these problems, and the implications that they have for the Clinch River Breeder Reactor Plant (CPBRP) Steam Generator System (SGS). Consequently, programs are being implemented which will: (1) investigate the corrosion mechanisms which may be present in the CRBRP SGS; (2) assure steam generator integrity under design and anticipated off-normal water quality conditions; and (3) assure that the design water quality levels are maintained at all times. However, in order to understand the approach being used to examine this potential problem, it is first necessary to look at the CRBRP SGS and the corrosion mechanisms which may be present.

  4. Clinch river breeder reactor plant steam generator water quality

    International Nuclear Information System (INIS)

    Van Hoesen, D.; Lowe, P.A.

    1975-01-01

    The recent problems experienced by some LWR Steam Generators have drawn attention to the importance of system water quality and water/ steam side corrosion. Several of these reactor plants have encountered steam generator failures due to accelerated tube corrosion caused, in part, by poor water quality and corrosion control. The CRBRP management is aware of these problems, and the implications that they have for the Clinch River Breeder Reactor Plant (CPBRP) Steam Generator System (SGS). Consequently, programs are being implemented which will: 1) investigate the corrosion mechanisms which may be present in the CRBRP SGS; 2) assure steam generator integrity under design and anticipated off-normal water quality conditions; and 3) assure that the design water quality levels are maintained at all times. However, in order to understand the approach being used to examine this potential problem, it is first necessary to look at the CRBRP SGS and the corrosion mechanisms which may be present

  5. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987

  6. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K. [Oak Ridge National Lab., TN (United States); Appellanis, S.M.; Jimenez, B.D. [Puerto Rico Univ., San Juan (Puerto Rico); Huq, M.V. [Connecticut Dept. of Environmental Protection, Hamden, CT (United States); Meyers-Schone, L.J. [Frankfurter, Gross-Gerau (Germany); Mohrbacher, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Olsen, C.R. [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.; Stout, J.G. [Cincinnati Univ., OH (United States)

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  7. Data management for the Clinch River Breeder Reactor Plant Project by use of document status and hold systems

    International Nuclear Information System (INIS)

    Hunt, C.S.; Beck, A.E.; Akhtar, M.S.

    1982-01-01

    This paper describes the development, framework, and scope of the Document Status System and the Document Hold System for the Clinch River Breeder Reactor Plant Project. It shows how data are generated at five locations and transmitted to a central computer for processing and storage. The resulting computerized data bank provides reports needed to perform day-to-day management and engineering planning. Those reports also partially satisfy the requirements of the Project's Quality Assurance Program

  8. Internal fluid flow management analysis for Clinch River Breeder Reactor Plant sodium pumps

    International Nuclear Information System (INIS)

    Cho, S.M.; Zury, H.L.; Cook, M.E.; Fair, C.E.

    1978-12-01

    The Clinch River Breeder Reactor Plant (CRBRP) sodium pumps are currently being designed and the prototype unit is being fabricated. In the design of these large-scale pumps for elevated temperature Liquid Metal Fast Breeder Reactor (LMFBR) service, one major design consideration is the response of the critical parts to severe thermal transients. A detailed internal fluid flow distribution analysis has been performed using a computer code HAFMAT, which solves a network of fluid flow paths. The results of the analytical approach are then compared to the test data obtained on a half-scale pump model which was tested in water. The details are presented of pump internal hydraulic analysis, and test and evaluation of the half-scale model test results

  9. Ecological risk assessment in a large river-reservoir. 1: Introduction and background

    International Nuclear Information System (INIS)

    Cook, R.B.; Suter, G.W. II; Sain, E.R.

    1999-01-01

    The US Department of Energy initiated a remedial investigation of the Clinch River/Poplar Creek system Superfund Site in 1989. This site, located in eastern Tennessee near Oak Ridge, consists of 70 river kilometers and 40 km 2 of surface area. The purpose of this study was to evaluate the nature and extent of contamination, perform an ecological and human health risk assessment, and evaluate possible remedial alternatives. This introductory article summarizes the environmental setting, the contamination history, and the study approach and provides some general results of the site characterization. Subsequent papers in this series describe the ecological risks to fish, piscivorous and insectivorous wildlife, and benthic invertebrates

  10. Lessons learned from the licensing process for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Dickson, P.W.; Clare, G.H.

    1991-01-01

    This paper presents the experience of licensing a specific liquid-metal fast breeder reactor (LMFBR), the Clinch River Breader Reactor Plant (CRBRP). It was a success story in that the licensing process was accomplished in a very short time span. The actions of the applicant and the actions of the US Nuclear Regulatory Commission (NRC) in response are presented and discussed to provide guidance to future efforts to license unconventional reactors. The history is told from the perspective of the authors. As such, some of the reasons given for success or lack of success are subjective interpretations. Nevertheless, the authors' positions provided them an excellent viewpoint to make these judgements. During the second phase of the licensing process, they were the CRBRP Technical Director and the Licensing Manager, respectively, for the Westinghouse Electric Corporation, the prime contractor for the reactor plant

  11. Protected air-cooled condenser for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Louison, R.; Boardman, C.E.

    1981-01-01

    The long term residual heat removal for the Clinch River Breeder Reactor Plant (CRBRP) is accomplished through the use of three protected air-cooled condensers (PACC's) each rated at 15M/sub t/ following a normal or emergency shutdown of the reactor. Steam is condensed by forcing air over the finned and coiled condenser tubes located above the steam drums. The steam flow is by natural convection. It is drawn to the PACC tube bundle for the steam drum by the lower pressure region in the tube bundle created from the condensing action. The concept of the tube bundle employs a unique patented configuration which has been commercially available through CONSECO Inc. of Medfore, Wisconsin. The concept provides semi-parallel flow that minimizes subcooling and reduces steam/condensate flow instabilities that have been observed on other similar heat transfer equipment such as moisture separator reheaters (MSRS). The improved flow stability will reduce temperature cycling and associated mechanical fatigue. The PACC is being designed to operate during and following the design basis earthquake, depressurization from the design basis tornado and is housed in protective building enclosure which is also designed to withstand the above mentioned events

  12. The Clinch River Breeder Reactor Plant: an analysis of the impacts of its in-migrant construction workers on local public services. Final report

    International Nuclear Information System (INIS)

    Braid, R.B. Jr.; Kyles, S.D.

    1977-05-01

    The socioeconomic impact study identifies certain impacts which are projected to occur to local public services in each of 14 Tennessee communities in the Oak Ridge-Knoxville area during the construction of the Clinch River Breeder Reactor Plant. Various in-migration scenarios are utilized, and detailed qualitative and quantitative analyses of each public service are undertaken. Per capita in-migrant cost-revenue impacts are calculated for each community in each in-migration scenario

  13. Joining of Aluminium Alloy Sheets by Rectangular Mechanical Clinching

    International Nuclear Information System (INIS)

    Abe, Y.; Mori, K.; Kato, T.

    2011-01-01

    A mechanical clinching has the advantage of low running costs. However, the joint strength is not high. To improve the maximum load of the joined sheets by a mechanical clinching, square and rectangular mechanical clinching were introduced. In the mechanical clinching, the two sheets are mechanically joined by forming an interlock between the lower and upper sheets by the punch and die. The joined length with the interlock was increased by the rectangular punch and die. The deforming behaviours of the sheets in the mechanical clinching were investigated, and then the interlock in the sheets had distribution in the circumference of the projection. Although the interlocks were formed in both projection side and diagonal, the interlock in the diagonal was smaller because of the long contact length between the lower sheet and the die cavity surface. The maximum load of the joined sheets by the rectangular mechanical clinching was two times larger than the load by the round mechanical clinching.

  14. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  15. Three-dimensional finite-element analysis of the cellular convection phenomena in the Clinch River Breeder Reactor Plant prototype pump

    International Nuclear Information System (INIS)

    Silver, A.H.; Lee, J.Y.

    1983-01-01

    Cellular convection was studied rigorously during the development of the Clinch River Breeder Reactor Plant (CRBRP) Program Pumps. This paper presents the development of a three-dimensional finite-element heat transfer model which accounts for the cellular convection phenomena. A buoyancy driven cellular convection flow pattern is introduced in the annulus region between the upper inner structure and the pump tank. Steady-state thermal data were obtained for several test conditions for argon gas pressures up to 93 psig (741 kPa) and sodium operating temperatures to 1000 0 F (811 0 K). Test temperature distributions on the pump tank and inner structure were correlated with numerical results and excellent agreement was obtained

  16. Modeling and analysis of the unprotected loss-of-flow accident in the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Morris, E.E.; Dunn, F.E.; Simms, R.; Gruber, E.E.

    1985-01-01

    The influence of fission-gas-driven fuel compaction on the energetics resulting from a loss-of-flow accident was estimated with the aid of the SAS3D accident analysis code. The analysis was carried out as part of the Clinch River Breeder Reactor licensing process. The TREAT tests L6, L7, and R8 were analyzed to assist in the modeling of fuel motion and the effects of plenum fission-gas release on coolant and clad dynamics. Special, conservative modeling was introduced to evaluate the effect of fission-gas pressure on the motion of the upper fuel pin segment following disruption. For the nominal sodium-void worth, fission-gas-driven fuel compaction did not adversely affect the outcome of the transient. When uncertainties in the sodium-void worth were considered, however, it was found that if fuel compaction occurs, loss-of-flow driven transient overpower phenomenology could not be precluded

  17. Safety evaluation report related to the construction of the Clinch River Breeder Reactor Plant. Docket No. 50-537. Suppl. 1

    International Nuclear Information System (INIS)

    1983-05-01

    Since the preparation of the Safety Evaluation Report the Advisory Committee on Reactor Safeguards considered the Clinch River construction permit license application at its 276th meeting and subsequently issued a favorable report, dated April 19, 1983 to the Commission (See Appendix I of this report). Additional documents associated with the application have been reviewed and a number of meetings have been held with the applicants. These events and documents are identified in Appendix E to this supplement. This supplement, SSER-1, to the Safety Evaluation Report, provides an evaluation of additional information received from the applicants since preparation of the SER regarding previously identified outstanding review items, and our response to the comments made by the Advisory Committee on Reactor Safeguards in its report

  18. Construction and operation of Clinch River Breeder Reactor Plant, docket no. 50-537, Oak Ridge, Roane County, Tennessee

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Construction and operation of the Clinch River Breeder Reactor Plant (CRBRP) in Oak Ridge, Tennessee are proposed. The CRBRP would use a liquid-sodium-cooled fast-breeder reactor to produce 975 megawatts of thermal energy (MWt) with the initial core loading of uranium- and plutonium-mixed oxide fuel. This heat would be transferred by heat exchangers to nonradioactive sodium in an intermediate loop and then to a steam cycle. A steam turbine generator would use the steam to produce 380 megawatts of electrical capacity (MWe). Future core design might result in gross power ratings of 1,121 MWt and 439 MWe. Exhaust steam from the turbine generator would be cooled in condensers using two mechanical draft cooling towers. The principal benefit would be the demonstration of the LMFBR concept for commercial use. Electricity generated would be a secondary benefit. Other impacts and effects are discussed

  19. Comparison of oxide- and metal-core behavior during CRBRP [Clinch River Breeder Reactor Plant] station blackout

    International Nuclear Information System (INIS)

    Polkinghorne, S.T.; Atkinson, S.A.

    1986-01-01

    A resurrected concept that could significantly improve the inherently safe response of Liquid-Metal cooled Reactors (LMRs) during severe undercooling transients is the use of metallic fuel. Analytical studies have been reported on for the transient behavior of metal-fuel cores in innovative, inherently safe LMR designs. This paper reports on an analysis done, instead, for the Clinch River Breeder Reactor Plant (CRBRP) design with the only innovative change being the incorporation of a metal-fuel core. The SSC-L code was used to simulate a protected station blackout accident in the CRBRP with a 943 MWt Integral Fast Reactor (IFR) metal-fuel core. The results, compared with those for the oxide-fueled CRBRP, show that the margin to boiling is greater for the IFR core. However, the cooldown transient is more severe due to the faster thermal response time of metallic fuel. Some additional calculations to assess possible LMR design improvements (reduced primary system pressure losses, extended flow coastdown) are also discussed. 8 refs., 13 figs., 2 tabs

  20. Wear of Shaped Surfaces of PVD Coated Dies for Clinching

    Directory of Open Access Journals (Sweden)

    Miroslav Džupon

    2017-11-01

    Full Text Available A clinching method that uses a simple toolset consisting of a punch and a die, is utilized for joining lightweight materials. This paper is aimed at investigating the wear of the die cavity of a clinching tool. A clinching tool with a specially shaped cavity was used for joining thin hot-dip galvanized steel sheets. Various types of physical vapour deposition (PVD coatings such as ZrN, CrN and TiCN were deposited on the shaped surface of the die using Lateral Rotating Arc-Cathodes technology. Hot-dip galvanized steel sheets were used for testing the clinching tool. The material properties of PVD coatings that were deposited on the shaped part of the clinching die were evaluated. Finite Element Analysis was used to localize the area of the shaped part of the die and the part of surface area of the cylindrical die cavity of ϕ 5.0 mm, in which high contact pressure values were predicted. The prediction of the start of the wear cycle was verified experimentally by the clinching of 300 samples of hot-dip galvanized steel sheets. Unlike the CrN and ZrN coatings, the TiCN coating remained intact on the entire surface of the die.

  1. Contaminant characterization of sediment and pore-water in the Clinch River and Poplar Creek

    International Nuclear Information System (INIS)

    Levine, D.A.; Harris, R.A.; Campbell, K.R.; Hargrove, W.W.; Rash, C.D.

    1995-01-01

    Sediment and pore-water samples were collected from 80 locations in the Clinch River and Poplar Creek system to characterize concentrations and spatial distribution of contaminants for use in ecological risk assessment. Sediment cores were collected at each site and the top 15 cm was analyzed to represent the biologically active zone. Sediment for pore-water extraction was collected in large volumes using a Ponar grab sampler. Pore-water was extracted from this sediment using centrifugation, All samples were analyzed for metals (including methyl mercury), organics, and radiological constituents. Additionally, sediment was analyzed for physical properties: particle size distribution, density, and porosity. Sediment and pore-water were also analyzed for total organic carbon and nitrogen and ammonia levels. Sediment and pore-water were also analyzed for total organic carbon and nitrogen and ammonia levels. Sediment and pre-water results indicate that there are several areas where concentrations of a variety of contaminants are high enough to causes ecological effects. These locations in the river are immediately downstream from know sources of Contamination from on-site DOE facilities. East Fork Poplar Creek is a source of several metals, including mercury, cadmium, chromium, and copper. Mitchell Branch is a source of number of metals, uranium isotopes, technetium-99, and several PAHs. There are two clear sources of arsenic and selenium to the system, one in Poplar Creek and one in Melton Hill Reservoir, both related to past disposal of coal-ash. High concentrations in sediments did not always coincide with high concentrations in pore-water for the same sites and contaminants. This appears to be related to particle size of the sediment and total organic carbon

  2. Geometrical Optimization Of Clinch Forming Process Using The Response Surface Method

    International Nuclear Information System (INIS)

    Oudjene, M.; Ben-Ayed, L.; Batoz, J.-L.

    2007-01-01

    The determination of optimum tool shapes in clinch forming process is needed to achieve the required high quality of clinch joints. The design of the tools (punch and die) is crucial since the strength of the clinch joints is closely correlated to the tools geometry. To increase the strength of clinch joints, an automatic optimization procedure is developed. The objective function is defined in terms of the maximum value of the tensile force, obtained by separation of the sheets. Feasibility constraints on the geometrical parameters are also taken into account. First, a Python Script is used to generate the ABAQUS finite element model, to run the computations and post-process results, which are exported in an ASCII file. Then, this ASCII file is read by a FORTRAN program, in which the response surface approximation and SQP algorithm are implemented. The results show the potential interest of the developed optimization procedure towards the improvement of the strength of the clinch forming joints to tensile loading

  3. Supplement to Final Environmental Statement related to construction and operation of Clinch River Breeder Reactor Plant, Docket No. 50-537

    International Nuclear Information System (INIS)

    1982-10-01

    In February 1977, the Office of Nuclear Reactor Regulation issued a Final Environmental Statement (FES) (NUREG-0139) related to the construction and operation of the proposed Clinch River Breeder Reactor Plant (CRBRP). Since the FES was issued, additional data relative to the site and its environs have been collected, several modifications have been made to the CRBRP design, and its fuel cycle, and the timing of the plant construction and operation has been affected in accordance with deferments under the DOE Liquid Metal Fast Breeder Reactor (LMFBR) program. These changes are summarized and their environmental significance is assessed in this document. The reader should note that this document generally does not repeat the substantial amount of information in the FES which is still current; hence, the FES should be consulted for a comprehensive understanding of the staff's environmental review of the CRBRP project

  4. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    International Nuclear Information System (INIS)

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on 90 Sr, 3 H, and 137 Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides

  5. Natural Remediation at Savannah River Site

    International Nuclear Information System (INIS)

    Lewis, C. M.; Van Pelt, R.

    2002-01-01

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  6. Influence of Tool Shape on Hole Clinching for Carbon Fiber-Reinforced Plastic and SPRC440

    Directory of Open Access Journals (Sweden)

    Seung-Hun Lee

    2014-04-01

    Full Text Available Carbon fiber-reinforced plastic (CFRP is a lightweight material that can potentially replace structural steel components in automobiles. The hole-clinching process is a mechanical clinching technique for joining brittle or low-ductility materials, such as CFRP, with ductile materials. In this study, the influence of tool shape on the hole-clinching process for CFRP and SPRC440 was investigated using FE-analysis and experiments. The parameters of the tool shape investigated were the punch corner radius and the punch diameter. The geometrical interlocking shapes of hole-clinched joints were characterized by neck thickness and undercut. Based on the desired joint strength of 2.5 kN, hole-clinching tools were designed on the basis of the relationship between joint strength and geometrical interlocking. FE-analysis and hole-clinching experiments were performed with the designed hole-clinching tools to investigate the geometrical interlocking shape as well as joinability, including neck fracture, undercut, and hole expansion, resulting from changes in tool parameters. Joint strength was evaluated to verify the effectiveness of hole clinching by a single lap shear test.

  7. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01

    This field sampling and analysis (S & A) plan has been developed as part of the Department of Energy`s (DOE`s) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S & A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S & A plan; the scope and implementation of the first 2 years of effort of the S & A plan and includes recent information about contaminants of concern, organization of S & A activities, interactions with other programs, and quality assurance specific to the S & A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan.

  8. Technological aspects of manufacturing and numerical modelling of clinch-adhesive joints

    CERN Document Server

    Sadowski, Tomasz; Golewski, Przemysław

    2015-01-01

    This short book describes the basic technological aspects involved in the creation of purely clinch and clinch-adhesive joints made of different types of adherent materials and employing different joining technologies. Basic parameters that need to be taken into account in the design process are also presented, while a comparison of experimental testing of the hybrid joint with simple clinching for a combination of different joining materials underlines the advantages of opting for hybrid joints. The book’s conclusions will facilitate the practical application of this new fastening technology.

  9. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01

    This field sampling and analysis (S ampersand A) plan has been developed as part of the Department of Energy's (DOE's) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S ampersand A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S ampersand A plan; the scope and implementation of the first 2 years of effort of the S ampersand A plan and includes recent information about contaminants of concern, organization of S ampersand A activities, interactions with other programs, and quality assurance specific to the S ampersand A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan

  10. Converging on the Clinch River: the politics of the US breeder reactor program

    International Nuclear Information System (INIS)

    Tench, H.G.

    1981-01-01

    For decades the development of nuclear technologies, including the fast breeder, was controlled by the Atomic Energy Commission, the Joint Committee on Atomic Energy, and the nuclear industry, the three pillars of the nuclear technoscience network, the analysis of the formation, culture, growth, and disruption of the network sets the stage for the study of the fast breeder, a program conceived by the scientific estate and carried along and nurtured by the administrative and political estates of the nuclear technoscience network, the early chapters delineate the dimensions of the network. The relationships and influence of its actors, and its unique and secretive culture. The cooperative-client politics of the breeder's deployment ended when the program, for years protected within the interstices of the network, emerged from this protected environment into the larger political system, where it became the subject of Washington's entrepreneurial politics. Under these changed circumstances progress on the LMFBR came to a virtual standstill. Nevertheless, the LMFBR survived the turbulent seventies, when energy and the environment dominate the political agenda, because remnants of the nuclear technoscience network in the executive branch, in Congress, and in the private sector retained sufficient power to prevent the breeder's death. This case study of the politics of the breeder's deployment addresses the dilemma of the experts, their role in the decision-making process as well as the problem of uncertainty within the framework of network theory. This perspective allows for the examination of the multifaceted controversy over the deployment of the fast breeder in the United States, a national debate that eventually converged on the Clinch River

  11. Numerical Investigation of Springback in Mechanical Clinching Process

    Directory of Open Access Journals (Sweden)

    Mohanna Eshtayeh

    2017-12-01

    Full Text Available In this work, a numerical investigation was conducted to study the springback phenomena in the mechanical clinching process. The springback values were calculated using finite element simulations and it was found that these values depend strongly on the strength of the materials. A Taguchi optimization method was used to determine the optimal parameters affecting springback. However, in the case of materials with low tensile strength, determining parameters affecting springback becomes difficult. Implicit and explicit simulations of clinching joints using the springback analysis show that the distance between the joint sheets becomes almost zero after stress recovery.

  12. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  13. Site suitability report in the matter of Clinch River Breeder Reactor Plant. Docket No. 50-537. Revision to March 4, 1977 report

    International Nuclear Information System (INIS)

    1982-06-01

    In March 1977, the Office of Nuclear Reactor Regulation issued its Site Suitability Report (SSR) for the proposed Clinch River Breeder Plant (CRBRP). That SSR documents the result of the staff's evaluation of the suitability of the proposed CRBRP site for a facility of the general size and type as the CRBRP from the standpoint of radiological health and safety considerations. The staff concluded in that SSR that the proposed CRBRP site is suitable for such a facility. Since the SSR was issued, several modifications have been made to the CRBRP design, additional data related to the site and its environs have been collected, and the Fast Flux Test Facility, a technological precursor to the CRBRP, has been completed and has commenced operation. In addition, new emergency planning requirements have been promulgated by the staff. This report is an update of the March 1977 SSR that reflects these matters and discusses them in terms of the previous staff conclusion regarding the suitability of the proposed CRBRP site

  14. Remedial measures at the short-term regulated rivers

    International Nuclear Information System (INIS)

    Soimakallio, H.

    1995-01-01

    Building up and producing hydro power causes environmental effects, which are directed at the geomorfology, hydrology, water quality, organisms and landscape of the water system. To reduce and eliminate these various effects there are available an abundance of technical remedial measures, many of which contribute to several effects at the same time. In Finland a lot of remedial measures have been carried out at voluntary or obligatory bases. The information concerning remedial measures implemented in large build-up rivers were collected as a part of the study of the effects of the short-term regulation of hydro power plants. Material for the study was collected via literature, postal inquiry and terrain visits. Measures handled in the study were protection and reinforcement of shores, boating projects, submerged weirs, improvement of water turnover, fishery, clearing of peat rafts and stubs, landscaping, maintaining ice roads and shaping river banks. Nowadays planning and implementation of the remedial measures varies greatly depending on the nature and extent of the project. Large projects, which are more expensive, are naturally planned more carefully and comprehensively than simple routine measures. Also the quality of follow-up of the sites changes and the main portion of the information is received through terrain checks and direct feed-back from the users of the water system. In the future there is a need for model plans of the different routine measures. Also a systemic method to evaluate and compare different actions is needed to help decision making and to solve possible conflicts between different interests. Fishery, which is generally managed well, must in the future utilize better possibilities offered by other measures. According to the study there is no particular need to develop the follow-up systems. However, if the follow-up information is going to be used to develop the measures further, more systematic systems are needed for follow-up. (author)

  15. Mechanical clinching process stress and strain in the clinching of EN-AW5754 (AlMg3, and EN AW-5019 (AlMg5 metal plates

    Directory of Open Access Journals (Sweden)

    J. Cumin

    2018-01-01

    Full Text Available This paper presents the results of Finite Element Method numerical simulation performed onEN-AW5754(AlMg3, EN AW-5019 (AlMg5 plates subjected to mechanical clinching. The goal was to observe differences between aluminum plates in the same tool; and to determine the possibility of using the constructed tool for the clinching of Al-Al material combinations. This tool construction is to be produced and tested in laboratory conditions, to elaborate prospective results, and reach additional conclusions.

  16. CASE STUDY CRITIQUE; UPPER CLINCH CASE STUDY

    Science.gov (United States)

    Case study critique: Upper Clinch case study (from Research on Methods for Integrating Ecological Economics and Ecological Risk Assessment: A Trade-off Weighted Index Approach to Integrating Economics and Ecological Risk Assessment). This critique answers the questions: 1) does ...

  17. Summary performance assessment of in situ remediation technologies demonstrated at Savannah River

    International Nuclear Information System (INIS)

    Rosenberg, N.D.; Robinson, B.A.; Birdsell, K.H.; Travis, B.J.

    1994-06-01

    The Office of Technology Development (OTD) in the Department of Energy's (DOE) Office of Environmental Restoration and Waste Management is investigating new technologies for ''better, faster, cheaper, safer'' environmental remediation. A program at DOE's Savannah River site was designed to demonstrate innovative technologies for the remediation of volatile organic compounds (VOCs) at nonarid sites. Two remediation technologies, in situ air stripping and in situ bioremediation--both using horizontal wells, were demonstrated at the site between 1990--1993. This brief report summarizes the conclusions from three separate modeling studies on the performance of these technologies

  18. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs

  19. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  20. Utilization of brewery wastewater for culturing yeast cells for use in river water remediation.

    Science.gov (United States)

    Chang, Su-Yun; Sun, Jing-Mei; Song, Shu-Qiang; Sun, Bao-Sheng

    2012-01-01

    Successful in situ bio-augmentation of contaminated river water involves reducing the cost of the bio-agent. In this study, brewery wastewater was used to culture yeast cells for degrading the COD(Cr) from a contaminated river. The results showed that 15 g/L of yeast cells could be achieved after being cultured in the autoclaved brewery wastewater with 5 mL/L of saccharified starch and 9 g/L of corn steep liquor. The COD(Cr) removal efficiency was increased from 22% to 33% when the cells were cultured using the mentioned method. Based on the market price of materials used in this method, the cost of the medium for remediating 1 m3 of river water was 0.0076 US dollars. If the additional cost of field implementation is included, the total cost is less than 0.016 US dollars for treating 1 m3 of river water. The final cost was dependent on the size of remediation: the larger the scale, the lower the cost. By this method, the nutrient in the brewery wastewater was reused, the cost of brewery wastewater treatment was saved and the cost of the remediation using bio-augmentation was reduced. Hence, it is suggested that using brewery wastewater to culture a bio-agent for bio-augmentation is a cost-effective method.

  1. Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-10-01

    This report provides responses to US Environmental Protection Agency Region IV EPA-M and Tennessee Department of Environment and Conservation Oversite Division (TDEC-O) comments on report ORNL/ER-58, Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Waste Area Grouping (WAG) 2 consists of the White Oak Creek (WOC) drainage system downgradient of the major ORNL WAGs in the WOC watershed. A strategy for the remedial investigation (RI) of WAG2 was developed in report ES/ER-14 ampersand Dl, Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This strategy takes full advantage of WAG2's role as an integrator of contaminant releases from the ORNL WAGs in the WOC watershed, and takes full advantage of WAG2's role as a conduit for contaminants from the ORNL site to the Clinch River. The strategy calls for a multimedia environmental monitoring and characterization program to be conducted in WAG2 while upgradient contaminant sources are being remediated. This monitoring and characterization program will (1) identify and quantify contaminant fluxes, (2) identify pathways of greatest concern for human health and environmental risk, (3) improve conceptual models of contaminant movement, (4) support the evaluation of remedial alternatives, (5) support efforts to prioritize sites for remediation, (6) document the reduction in contaminant fluxes following remediation, and (7) support the eventual remediation of WAG2. Following this strategy, WAG2 has been termed an ''integrator WAG,'' and efforts in WAG2 over the short term are directed toward supporting efforts to remediate the contaminant ''source WAGS'' at ORNL

  2. Numerical modeling of mechanical behavior of clinch connections at breaking out and shearing

    Directory of Open Access Journals (Sweden)

    Berezhnoi Dmitri V.

    2017-01-01

    Full Text Available This article describes an approach to constructing the defining relationships between increment of true stresses and true deformations, with considering the contact interaction of elastoplastic deformed bodies among each other. Within the framework of finite element method, solving these problems in case of “breaking out” and “shearing” in the clinch joint, the stress fields in the zone of the clinch connection are defined, and recommendations are given for realizing the process of their creation.

  3. Cost benefit analysis of remediation alternatives for controlling the flux of strontium-90 into the Columbia River

    International Nuclear Information System (INIS)

    Gustafson, F.W.; Todd, M.E.

    1993-09-01

    The release of large volumes of water to waste disposal cribs at the Hanford Site's 100-N Area caused contaminants, principally strontium-90, to be carried toward the Columbia River through the groundwater. Since shutdown of the N Reactor, these releases have been discontinued, although small water flows continue to be discharged to the 1325-N crib. Most of the contamination which is now transported to the river is occurring as a result of the natural groundwater movement. The contaminated groundwater at N Springs flows into the river through seeps and springs along the river's edge. An expedited response action (ERA) has been proposed to eliminate or restrict the flux of strontium-90 into the river. A cost benefit analysis of potential remedial alternatives was completed that recommends the alternative which best meets given selection criteria prescribed by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The methodology used for evaluation, cost analysis, and alternative recommendation is the engineering evaluation/cost analysis (EE/CA). Complete remediation of the contaminated groundwater beneath 100-N Area was not a principal objective of the analysis. The objective of the cost benefit analysis was to identify a remedial alternative that optimizes the degree of benefit produced for the costs incurred

  4. Waste area Grouping 2 Phase I remedial investigation: Sediment and Cesium-137 transport modeling report

    International Nuclear Information System (INIS)

    Clapp, R.B.; Bao, Y.S.; Moore, T.D.; Brenkert, A.L.; Purucker, S.T.; Reece, D.K.; Burgoa, B.B.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow-up information to the Phase I Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that may present immediate risk to public health at the Clinch River and ecological risk within WAG 2 at ORNL. A sixth report, on groundwater, in the series documenting WAG 2 RI Phase I results were part of project activities conducted in FY 1996. The five reports that complete activities conducted as part of Phase I of the Remedial Investigation (RI) for WAG 2 are as follows: (1) Waste Area Grouping 2, Phase I Task Data Report: Seep Data Assessment, (2) Waste Area Grouping 2, Phase I Task Data Report: Tributaries Data Assessment, (3) Waste Area Grouping 2, Phase I Task Data Report: Ecological Risk Assessment, (4) Waste Area Grouping 2, Phase I Task Data Report: Human Health Risk Assessment, (5) Waste Area Grouping 2, Phase I Task Data Report: Sediment and 137 Cs Transport Modeling In December 1990, the Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory was issued (ORNL 1990). The WAG 2 RI Plan was structured with a short-term component to be conducted while upgradient WAGs are investigated and remediated, and a long-term component that will complete the RI process for WAG 2 following remediation of upgradient WAGs. RI activities for the short-term component were initiated with the approval of the Environmental Protection Agency, Region IV (EPA), and the Tennessee Department of Environment and Conservation (TDEC). This report presents the results of an investigation of the risk associated with possible future releases of 137 Cs due to an extreme flood. The results are based on field measurements made during storms and computer model simulations

  5. Groundwater remediation of hexavalent chromium along the Columbia River at the Hanford site in Washington state, USA - 59030

    International Nuclear Information System (INIS)

    Foss, Dyan L.; Charboneau, Briant L.

    2012-01-01

    The U.S. Department of Energy Hanford Site, formerly used for nuclear weapons production, encompasses 1500 square kilometers in southeast Washington State along the Columbia River. A principle threat to the river are the groundwater plumes of hexavalent chromium (Cr(VI)), which affect approximately 9.8 square kilometers, and 4.1 kilometers of shoreline. Cleanup goals are to stop Cr(VI) from entering the river by the end of 2012 and remediate the groundwater plumes to the drinking water standards by the end of 2020. Five groundwater pump-and-treat systems are currently in operation for the remediation of Cr(VI). Since the 1990's, over 13.6 billion L of groundwater have been treated; over 1, 435 kg of Cr(VI) have been removed. This paper describes the unique aspects of the site, its environmental setting, hydrogeology, groundwater-river interface, riverine hydraulic effects, remediation activities completed to date, a summary of the current and proposed pump-and-treat operations, the in situ redox manipulation barrier, and the effectiveness of passive barriers, resins, and treatability testing results of calcium polysulfide, bio-stimulation, and electrocoagulation, currently under evaluation. (authors)

  6. Phase I remedial investigation report of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Miller, D.E.

    1995-07-01

    This report presents the activities and findings of the first phase of a three-phase remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, and updates the scope and strategy for WAG-2-related efforts. WAG 2 contains White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake, White Oak Creek Embayment on the Clinch River, and the associated floodplain and subsurface environment. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This report includes field activities completed through October 1992. The remediation of WAG 2 is scheduled to follow the cessation of contaminant input from hydrologically upgradient WAGs. While upgradient areas are being remediated, the strategy for WAG 2 is to conduct a long-term monitoring and investigation program that takes full advantage of WAG 2's role as an integrator of contaminant fluxes from other ORNL WAGs and focuses on four key goals: (1) Implement, in concert with other programs, long-term, multimedia environmental monitoring and tracking of contaminants leaving other WAGs, entering WAG 2, and being transported off-site. (2) Provide a conceptual framework to integrate and develop information at the watershed-level for pathways and processes that are key to contaminant movement, and so support remedial efforts at ORNL. (3) Provide periodic updates of estimates of potential risk (both human health and ecological) associated with contaminants accumulating in and moving through WAG 2 to off-site areas. (4) Support the ORNL Environmental Restoration Program efforts to prioritize, remediate, and verify remedial effectiveness for contaminated sites at ORNL, through long-term monitoring and continually updated risk assessments

  7. HISTORICAL MONITORING OF BIOMARKERS OF PAH EXPOSURE OF BROWN BULLHEAD IN THE REMEDIATED BLACK RIVER AND THE CUYAHOGA RIVER, OHIO

    Science.gov (United States)

    Biomarkers of exposure to chemical contamination were measured in brown bullhead from a heavily PAH contaminated section of the Black River, Ohio, during and immediately after remedial sediment dredging in 1990-1991, and in follow-up visits in 1993 and 1998. Biomarker levels of ...

  8. The Clinch Bend Regional Industrial Site and economic development opportunities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.

  9. Zn (II) Removal from River Water Samples of Sembrong, Johor State, Malaysia by Electrokinetic Remediation

    Science.gov (United States)

    Zaidi, E.; Husna, MNF; Shakila, A.; Azhar, ATS; Arif, AM; Norshuhaila, MS

    2017-08-01

    Heavy metals pollution has become one of the most serious environmental problems today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. Even many physical, chemical and biological treatment processes have been proposed to remove heavy metals from river water, the use of these treatment processes are not efficient and relatively costly. This study focused on the potential application of electrokinetic (EK) remediation in Sembrong River water to remove zinc (Zn2+). The physicochemical and biological parameters and water quality index (WQI) of Sembrong River water was characterized. The electrokinetic remediation experiments were performed by controlling pH, and electric density on voltage were observed and investigated. The results indicated that all physicochemical and biological parameters of Sembrong River complied with the standard discharged limit set by the Department of Environment (DOE). However, suspended solids (SS) and pH can be categorized as Class III according to INWQS. The best performance of 88% efficiency of zinc can be achieved EK experiment run at a fixed voltage of 30 V at pH 5.14 after 60 min of the process operate. This technology may be proposed for faster and eco-friendly removal of heavy metals in the environment.

  10. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    Science.gov (United States)

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  11. Bioassay responses and effects on benthos after pilot remediations in the delta of the rivers Rhine and Meuse

    International Nuclear Information System (INIS)

    Besten, Pieter J. den; Brink, Paul J. van den

    2005-01-01

    Chemical and biological monitoring was carried out for 5 years following pilot remediations at two locations in the Rhine-Meuse delta. The remediations consisted of partial excavation of the contaminated sediments, followed by applying a clean layer of sandy material on top. After the remediation, a new silty sediment top layer was formed exhibiting a lower toxicity in five sediment/sediment pore water bioassays. Compared to the unremediated sites, lower metal and PAH concentrations were found at the remediated sites, but in one location at the same time elevated HCH, PCB and HCB levels were recorded. One year after the remediation, the differences became smaller, although effects-based classification showed that the remediated site showed a higher quality up to the last year. In both remediated sites a rapid recolonization of nematodes, oligochaetes and chironomids was observed, while the recolonization by bivalves was slower. A few years after the remediation the differences decrease. - Capping contaminated sediments can be an effective remediation measure in two large river deltas

  12. Bioassay responses and effects on benthos after pilot remediations in the delta of the rivers Rhine and Meuse

    Energy Technology Data Exchange (ETDEWEB)

    Besten, Pieter J. den [Institute for Inland Water Management and Waste Water Treatment (RIZA), Ministry of Transport, Public Works and Water Management, PO Box 17, 8200 AA Lelystad (Netherlands)]. E-mail: p.dbesten@riza.rws.minvenw.nl; Brink, Paul J. van den [Alterra Green World Research, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen (Netherlands)

    2005-07-15

    Chemical and biological monitoring was carried out for 5 years following pilot remediations at two locations in the Rhine-Meuse delta. The remediations consisted of partial excavation of the contaminated sediments, followed by applying a clean layer of sandy material on top. After the remediation, a new silty sediment top layer was formed exhibiting a lower toxicity in five sediment/sediment pore water bioassays. Compared to the unremediated sites, lower metal and PAH concentrations were found at the remediated sites, but in one location at the same time elevated HCH, PCB and HCB levels were recorded. One year after the remediation, the differences became smaller, although effects-based classification showed that the remediated site showed a higher quality up to the last year. In both remediated sites a rapid recolonization of nematodes, oligochaetes and chironomids was observed, while the recolonization by bivalves was slower. A few years after the remediation the differences decrease. - Capping contaminated sediments can be an effective remediation measure in two large river deltas.

  13. Remediating and Monitoring White Phosphorus Contamination at Eagle River Flats (Operable Unit C), Fort Richardson, Alaska

    National Research Council Canada - National Science Library

    Walsh, M. E; Racine, C. H; Collins, C. M; Walsh, M. R; Bailey, R. N

    2001-01-01

    .... Army Engineer District, Alaska, and U.S. Army Alaska, Public Works, describing the results of research, monitoring, and remediation efforts addressing the white phosphorus contamination in Eagle River Flats, an 865-ha estuarine salt marsh...

  14. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming.

    Science.gov (United States)

    Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia

    2016-07-13

    This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.

  15. Metal contamination and post-remediation recovery in the Boulder River watershed, Jefferson County, Montana

    Science.gov (United States)

    Unruh, Daniel M.; Church, Stanley E; Nimick, David A.; Fey, David L.

    2009-01-01

    The legacy of acid mine drainage and toxic trace metals left in streams by historical mining is being addressed by many important yet costly remediation efforts. Monitoring of environmental conditions frequently is not performed but is essential to evaluate remediation effectiveness, determine whether clean-up goals have been met, and assess which remediation strategies are most effective. Extensive pre- and post-remediation data for water and sediment quality for the Boulder River watershed in southwestern Montana provide an unusual opportunity to demonstrate the importance of monitoring. The most extensive restoration in the watershed occurred at the Comet mine on High Ore Creek and resulted in the most dramatic improvement in aquatic habitat. Removal of contaminated sediment and tailings, and stream-channel reconstruction reduced Cd and Zn concentrations in water such that fish are now present, and reduced metal concentrations in streambed sediment by a factor of c. 10, the largest improvement in the district. Waste removals at the Buckeye/Enterprise and Bullion mine sites produced limited or no improvement in water and sediment quality, and acidic drainage from mine adits continues to degrade stream aquatic habitat. Recontouring of hillslopes that had funnelled runoff into the workings of the Crystal mine substantially reduced metal concentrations in Uncle Sam Gulch, but did not eliminate all of the acidic adit drainage. Lead isotopic evidence suggests that the Crystal mine rather than the Comet mine is now the largest source of metals in streambed sediment of the Boulder River. The completed removal actions prevent additional contaminants from entering the stream, but it may take many years for erosional processes to diminish the effects of contaminated sediment already in streams. Although significant strides have been made, additional efforts to seal draining adits or treat the adit effluent at the Bullion and Crystal mines would need to be completed to

  16. Ecological risk assessment in a large river-reservoir. 2: Fish community

    International Nuclear Information System (INIS)

    Suter, G.W. II; Barnthouse, L.W.; Efroymson, R.A.; Jager, H.

    1999-01-01

    This paper summarizes the assessment of risks to fishes in the Clinch River Operable Unit due to contaminants released by the US Department of Energy's activities on its Oak Ridge Reservation in Tennessee. This paper focuses on the most contaminated area, the Poplar Creek (PC) embayment. The assessment is of interest because of its use of five distinct lines of evidence: fish community surveys, fish body burdens, toxicity tests of ambient waters, suborganismal bioindicators, and single chemical toxicity tests. None of these lines of evidence provided unambiguous evidence of a significant risk, but the surveys indicated that the fish community in PC was depauperate, polychlorinated biphenyl body burdens may have been at toxic levels in catfish, one of the three tests of ambient water showed clear toxicity, some of the indicators were indicative of toxic effects, and concentrations that have been toxic in the laboratory were detected periodically. Interpretation was further complicated by upstream contamination of both the Clinch River and PC. The risk characterization was performed by evaluating each line of evidence separately and then weighing the evidence using an ecoepidemiological approach

  17. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2016-07-01

    Full Text Available This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.

  18. Cost benefit of caustic recycle for tank waste remediation at the Hanford and Savannah River Sites

    International Nuclear Information System (INIS)

    DeMuth, S.

    1998-01-01

    The potential cost savings due to the use of caustic recycle used in conjunction with remediation of radioactive underground storage tank waste, is shown in a figure for the Hanford and Savannah River sites. Two cost savings estimates for each case have been made for Hanford, and one cost savings estimate for each case have been made for Hanford, and one cost savings estimate for each case has been made for the Savannah River site. This is due to the Hanford site remediation effort being less mature than that of Savannah River; and consequently, a range of cost savings being more appropriate for Hanford. This range of cost savings (rather than a ingle value) for each case at Hanford is due to cost uncertainties related to the LAW immobilization operation. Caustic recycle Case-1 has been defined as the sodium required to meet al identified caustic needs for the entire Site. Case-2 has been defined as the maximum sodium which can be separated from the low activity waste without precipitation of Al(OH) 3 . It has been determined that the potential cost savings at Hanford ranges from $194 M to $215 M for Case-1, and $293 M to $324 M for Case-2. The potential cost savings at Savannah River are $186 M for Case-1 and $281 M for Case-2. A discussion of the uncertainty associated with these cost savings estimates can be found in the Discussion and Conclusions section

  19. Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology.

    Science.gov (United States)

    Sun, Yanmei; Wang, Shiwei; Niu, Junfeng

    2018-06-01

    Microbes play important roles during river remediation and the interaction mechanism illustration between microorganisms and sewage is of great significance to improve restoration technology. In this study, micro-nano bubble and submerged resin floating bed composite technology (MBSR) was firstly used to restore two black and stinking urban rivers. After restoration, the water pollution indices such as dissolved oxygen (DO), ammonia nitrogen (NH 4 + -N), total phosphorous (TP), chemical oxygen demand (COD Cr ), water clarity, and the number of facial coliform were significantly improved. Microbial community composition and relative abundance both varied and more aerobic microbes emerged after remediation. The microbial changes showed correlation with DO, NH 4 + -N, TP and COD Cr of the rivers. In summary, the MBSR treatment improved the physiochemical properties of the two black and stinking urban rivers probably through oxygen enrichment of micro-nano bubble and adsorption of submerged resin floating bed, which thereby stimulated functional microbes to degrade pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Shoemaker, B.A.; Hinzman, R.L.

    1993-02-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions

  1. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L. A.; Adams, S. M.; Ashwood, T. L.; Blaylock, B. G.; Greeley, M. S.; Loar, J. M.; Peterson, M. J.; Ryon, M. G.; Smith, J. G.; Southworth, G. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Div.; Shoemaker, B. A. [Oak Ridge K-25 Site, TN (United States); Hinzman, R. L. [Oak Ridge Research Inst., TN (United States)

    1993-02-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  2. Research in Support of Remediation Activities at the Savannah River Site

    International Nuclear Information System (INIS)

    Seaman, J.C.; B.B. Looney and M.K. Harris

    2007-01-01

    The USDOE Savannah River Site (SRS), an 803-km 2 (310-mile 2 ) facility located south of Aiken, SC on the upper Atlantic Coastal Plain and bounded to the west by the Savannah River, was established in the 1950s for the production and refinement of nuclear materials. To fulfill this mission during the past 50 years SRS has operated five nuclear reactors, two large chemical separation areas, waste disposal facilities (landfills, waste ponds, waste tanks, and waste stabilization), and a large number of research and logistics support facilities. Contaminants of concern (COC) resulting from site operations include chlorinated solvents, radionuclides, metals, and metalloids, often found as complex mixtures that greatly complicate remediation efforts when compared with civilian industries. The objective of this article is to provide a description of the lithology and hydrostratigraphy of the SRS, as well as a brief history of site operations and research activities as a preface to the current special section of Vadose Zone Journal (VZJ) dedicated to SRS, focusing mainly on issues that are unique to the USDOE complex. Contributions to the special section reflect a diverse range of topics, from hydrologic tracer experiments conducted both within the vadose and saturated zones to studies specifically aimed at identifying geochemical processes controlling the migration and partitioning of specific contaminants (e.g., TCE, 137 Cs, U, and Pu) in SRS subsurface environments. Addressing the diverse environmental challenges of the SRS provides a unique opportunity to conduct both fundamental and applied research across a range of experimental scales. Hence, the SRS has been a pioneering force in several areas of environmental research and remediation, often through active interdisciplinary collaboration with researchers from other USDOE facilities, academic and federal institutions, and commercial entities

  3. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    International Nuclear Information System (INIS)

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated

  4. Evaluating a 5-year metal contamination remediation and the biomonitoring potential of a freshwater gastropod along the Xiangjiang River, China.

    Science.gov (United States)

    Li, Deliang; Pi, Jie; Zhang, Ting; Tan, Xiang; Fraser, Dylan J

    2018-05-16

    Effective remediation of heavy metal pollution in aquatic systems is desired in many regions, but it requires integrative assessments of sediments, water, and biota that can serve as robust biomonitors. We assessed the effects of a 5-year metal contamination remediation along the Xiangjiang River, China, by comparing concentrations of trace metals in water and surface sediments between 2010-2011 and 2016. We also explored the trace metal biomonitoring potential of a freshwater gastropod (Bellamya aeruginosa). Metal concentrations in water (means and ranges) dropped over time to within permissible limits of drinking water guidelines set by China, USEPA, and WHO in 2016. Although sediment means and ranges of Cd, Pb, Zn, and Mn also diminished with remediation, those for Cr and Cu slightly increased, and all six metals retained concentrations higher than standards set by China. All metals in sediments could also be associated with anthropogenic inputs using a hierarchical clustering analysis, and they generate high potential ecological risks based on several indices, especially for Cd and As. The bio-sediment accumulation factors of all measured trace metals in gastropod soft tissues and shells were lower than 1.0, except for Ca. Trace metal contents in gastropods were positively correlated with those in water and surface sediments for As (soft tissues) and Cr (shells). Collectively, our results do not yet highlight strong beneficial effects of 5-year remediation and clearly illustrate the heavy metal pollution remaining in Xiangjiang River sediment. Additional physical, chemical, and biological measurements should be implemented to improve sediment quality. We further conclude that gastropod soft tissues and shells can be suitable biomonitors of spatial differences in some heavy metals found within river sediments (e.g., As, Cr).

  5. Ecological risk assessment in a large river-reservoir. 8: Experimental study of the effects of polychlorinated biphenyls on reproductive success in mink

    International Nuclear Information System (INIS)

    Halbrook, R.S.; Aulerich, R.J.; Bursian, S.J.; Lewis, L.

    1999-01-01

    As a component of an ecological risk assessment of Poplar Creek (located on the Oak Ridge Reservation [ORR]) and the Clinch River (a large river-reservoir system), fish from Poplar Creek, the Clinch River, and Atlantic Ocean were fed to ranch mink to evaluate reproductive success. Five diets, each composed of 75% fish and 25% normal ranch mink chow, were prepared. Two diets served as reference diets and contained 75% Atlantic Ocean fish or 75% Clinch River fish collected above the ORR. The fish portion of the remaining three diets contained 25, 50, and 75% fish collected from Poplar Creek and 50, 25, and 0% ocean fish, respectively. Five mink groups (eight females and two males each) were each fed one of the prepared diets for 196 days. Polychlorinated biphenyl concentrations were determined in diets and various mink tissues, ethoxyresorufin-O-deethylase (EROD) activity was determined in liver tissue, and reproductive success was evaluated. Concentrations of PCB were greatest in the diet composed of 75% Poplar Creek fish and in tissues from mink fed this diet and their offspring. There was a trend toward decreased adult female and kit weights and reduced mean litter size in mink fed diets containing 75% Poplar Creek fish; however, at 6 weeks of age, kit survival was similar among diet groups. Liver EROD activity significantly increased in adult female mink fed 50 and 75% Poplar Creek fish diets. Estimated dietary concentrations of PCBs were similar to or slightly lower than concentrations associated with adverse effects in experimentally dosed mink. Mercury (Hg) concentrations previously reported in these same mink were below that associated with adverse effects, and there was no indication of additive or synergistic effects from exposure to PCBs plus Hg. It is unlikely that population-level reproductive effects would be observed in mink consuming fish from Poplar Creek on the ORR

  6. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah

    International Nuclear Information System (INIS)

    Matthews, M.L.; Alkema, K.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement

  7. Modifications to the remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Green River, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    Modifications to the water resources protection strategy detailed in the remedial action plan for the Green River, Utah, disposal site are presented. The modifications are based on new information, including ground water quality data collected after remedial action was completed and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The modifications will result in compliance with the U.S. EPA proposed ground water standards (52 FR 36000 (1987))

  8. Post remedial ecological recovery in the east branch of the Finniss River: fish and decapods

    International Nuclear Information System (INIS)

    Twining, J.R.

    2002-01-01

    This paper reports on the recovery of fish and decapod fauna in the East Branch (EB) of the Finniss River following the remediation of the Rum Jungle mine site in the mid 1980s. These results show a substantial recovery in fish and decapod occurrence within the EB below the Rum Jungle mine site subsequent to remediation. Whereas only two species of fish, and no decapods, were observed alive prior to remediation, up to seven species of fish and two decapod species have now been seen living in the stream. The penetration towards the mine has also increased with M. nigrans now occurring to within 1 km downstream of the site. The mobility of many taxa in the wet/dry tropics has evolved to allow for rapid recruitment, particularly into ephemeral streams such as the EB. Hence, the recovery probably reflects both the reduced toxicity of the stream, as well as the ecological robustness of the fish and decapod fauna to the dramatic seasonal variation. Hence, the ecological risk presented by the currently reduced contaminant levels is still higher than would be accepted for an undisturbed system. Further reductions in contaminant loads are required to improve this situation

  9. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs

  10. REACH-ER: a tool to evaluate river basin remediation measures for contaminants at the catchment scale

    Science.gov (United States)

    van Griensven, Ann; Haest, Pieter Jan; Broekx, Steven; Seuntjens, Piet; Campling, Paul; Ducos, Geraldine; Blaha, Ludek; Slobodnik, Jaroslav

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good status' by 2015. However, it is a major challenge for river basin managers to meet this requirement in river basins with a high population density as well as intensive agricultural and industrial activities. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded water bodies. For this purpose, a generic collaborative management tool ‘REACH-ER' is being developed that can be used by stakeholders, citizens and water managers to evaluate the ecological and economical effects of different remedial actions on waterbodies. The tool is built using databases from large scale models simulating the hydrological dynamics of the river basing and sub-basins, the costs of the measures and the effectiveness of the measures in terms of ecological impact. Knowledge rules are used to describe the relationships between these data in order to compute the flux concentrations or to compute the effectiveness of measures. The management tool specifically addresses nitrate pollution and pollution by organic micropollutants. Detailed models are also used to predict the effectiveness of site remedial technologies using readily available global data. Rules describing ecological impacts are derived from ecotoxicological data for (mixtures of) specific contaminants (msPAF) and ecological indices relating effects to the presence of certain contaminants. Rules describing the cost-effectiveness of measures are derived from linear programming models identifying the least-cost combination of abatement measures to satisfy multi-pollutant reduction targets and from multi-criteria analysis.

  11. Numerical Analysis Of The Resistance To Pullout Test Of Clinched Assemblies Of Thin Metal Sheets

    International Nuclear Information System (INIS)

    Jomaa, Moez; Billardon, Rene

    2007-01-01

    This paper presents the finite element analysis of the resistance of a clinch point to pullout test -that follows the numerical analysis of the forming process of the point-. The simulations have been validated by comparison with experimental evidences. The influence on the numerical predictions of various computation and process parameters have been evaluated

  12. The Dnieper River Aquatic System Radioactive Contamination; Long-tern Natural Attenuation And Remediation History

    Science.gov (United States)

    Voitsekhovych, Oleg; Laptev, Genadiy; Kanivets, Vladimir; Konoplev, Alexey

    2013-04-01

    Near 27 year passed after the Chernobyl Accident, and the experience gained to study radionuclide behavior in the aquatic systems and to mitigate water contamination are still pose of interest for scientists, society and regulatory austerities. There are different aspects of radionuclide transport in the environment were studied since the Chernobyl fallout in 1986 covered the river catchments, wetlands, river, lakes/reservoirs and reached the Black Sea. The monitoring time series data set and also data on the radionuclides behavior studies in the water bodies (river, lakes and the Black Sea) are available now in Ukraine and other affected countries. Its causation analyses, considering the main geochemical, physical and chemical and hydrological process, governing by radionuclide mobility and transport on the way from the initially contaminated catchments, through the river-reservoir hydrological system to the Black Sea can help in better understanding of the main factors governing be the radionuclide behavior in the environment. Radionuclide washout and its hydrological transport are determined speciation of radionuclides as well as soil types and hydrological mode and also geochemistry and landscape conditions at the affected areas. Mobility and bioavailability of radionuclides are determined by ratio of radionuclide chemical forms in fallout and site-specific environmental characteristics determining rates of leaching, fixation/remobilization as well as sorption-desorption of mobile fraction (its solid-liquid distribution). In many cases the natural attenuation processes governing by the above mentioned processes supported by water flow transportation and sedimentation played the key role in self-rehabilitation of the aquatic ecosystems. The models developed during post-Chernobyl decade and process parameters studies can help in monitoring and remediation programs planed for Fukusima Daichi affected watersheds areas as well. Some most important monitoring data

  13. Preliminary assessment of the radiological impact for individual waste management areas at the Oak Ridge National Laboratory: Status report

    International Nuclear Information System (INIS)

    Sears, M.B.

    1987-09-01

    This study estimates the radiological impact (i.e., the potential doses) for individual waste management areas at the Oak Ridge National Laboratory and ranks the areas for remedial action based on the off-site doses that result from these discharges to White Oak Creek. Dose estimates are given for the drinking water pathway based on known discharges from White Oak Dam. Estimates are also made of doses for eating fish caught in the Clinch River near the confluence with White Oak Creek. The results of a search for data concerning the discharges of 90 Sr, 3 H, 137 Cs, and 60 Co from individual waste management areas are presented. A qualitative assessment is presented, and areas are ranked for remedial investigation based on the available information. 29 refs., 8 figs., 45 tabs

  14. Remediation of contaminated areas. An overview of international guidance

    DEFF Research Database (Denmark)

    Jensen, Per Hedemann

    1999-01-01

    techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps:-characterisation of relevant contaminated sites -identification and characterisation of relevant...... contaminated with radioactive materials as a result of the operation of these installations. The areasconsidered for remedial measures include contaminated land areas, rivers and sediments in rivers, lakes, and sea areas. Criteria for clean-up of contaminated land and criteria for protection of the public...

  15. Quality assurance/quality control summary report on phase 2 of the Clinch River remedial investigation at the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, S.K.; Anderson, H.M.; Benson, S.B.; Bevelhimer, M.S.; Brandt, C.C.; Chavannes, C.M.; Cook, R.B.; Evans, D.A.; Ford, C.J.; Harris, R.A.; Horwedel, B.M.; Jackson, B.L.

    1996-12-01

    Quality assurance (QA) objectives for Phase 2 were that (1) scientific data generated would withstand scientific and legal scrutiny; (2) data would be gathered using appropriate procedures for sample collection, sample handling and security, chain of custody, laboratory analyses, and data reporting; (3) data would be of known precision and accuracy; and (4) data would meet data quality objectives defined in the Phase 2 Sampling and Analysis Plan. A review of the QA systems and quality control (QC) data associated with the Phase 2 investigation is presented to evaluate whether the data were of sufficient quality to satisfy Phase 2 objectives. The data quality indicators of precision, accuracy, representativeness, comparability, completeness, and sensitivity were evaluated to determine any limitations associated with the data. Data were flagged with qualifiers that were associated with appropriate reason codes and documentation relating the qualifiers to the reviewer of the data. These qualifiers were then consolidated into an overall final qualifier to represent the quality of the data to the end user. In summary, reproducible, precise, and accurate measurements consistent with CRRI objectives and the limitations of the sampling and analytical procedures used were obtained for the data collected in support of the Phase 2 Remedial Investigation.

  16. Quality assurance/quality control summary report on phase 2 of the Clinch River remedial investigation at the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Holladay, S.K.; Anderson, H.M.; Benson, S.B.; Bevelhimer, M.S.; Brandt, C.C.; Chavannes, C.M.; Cook, R.B.; Evans, D.A.; Ford, C.J.; Harris, R.A.; Horwedel, B.M.; Jackson, B.L.

    1996-12-01

    Quality assurance (QA) objectives for Phase 2 were that (1) scientific data generated would withstand scientific and legal scrutiny; (2) data would be gathered using appropriate procedures for sample collection, sample handling and security, chain of custody, laboratory analyses, and data reporting; (3) data would be of known precision and accuracy; and (4) data would meet data quality objectives defined in the Phase 2 Sampling and Analysis Plan. A review of the QA systems and quality control (QC) data associated with the Phase 2 investigation is presented to evaluate whether the data were of sufficient quality to satisfy Phase 2 objectives. The data quality indicators of precision, accuracy, representativeness, comparability, completeness, and sensitivity were evaluated to determine any limitations associated with the data. Data were flagged with qualifiers that were associated with appropriate reason codes and documentation relating the qualifiers to the reviewer of the data. These qualifiers were then consolidated into an overall final qualifier to represent the quality of the data to the end user. In summary, reproducible, precise, and accurate measurements consistent with CRRI objectives and the limitations of the sampling and analytical procedures used were obtained for the data collected in support of the Phase 2 Remedial Investigation

  17. Pollutants' Release, Redistribution and Remediation of Black Smelly River Sediment Based on Re-Suspension and Deep Aeration of Sediment.

    Science.gov (United States)

    Zhu, Lin; Li, Xun; Zhang, Chen; Duan, Zengqiang

    2017-04-01

    Heavily polluted sediment is becoming an important part of water pollution, and this situation is particularly acute in developing countries. Sediment has gradually changed from being the pollution adsorbent to the release source and has influenced the water environment and public health. In this study, we evaluated the pollutant distribution in sediment in a heavily polluted river and agitated the sediment in a heavily polluted river to re-suspend it and re-release pollutants. We found that the levels of chemical oxygen demand (COD), NH₄⁺-N, total nitrogen (TN), and total phosphorus (TP) in overlying water were significantly increased 60 min after agitation. The distribution of the pollutants in the sediment present high concentrations of pollutants congregated on top of the sediment after re-settling, and their distribution decreased with depth. Before agitation, the pollutants were randomly distributed throughout the sediment. Secondly, deep sediment aeration equipment (a micro-porous air diffuser) was installed during the process of sedimentation to study the remediation of the sediment by continuous aeration. The results revealed that deep sediment aeration after re-suspension significantly promoted the degradation of the pollutants both in overlying water and sediment, which also reduced the thickness of the sediment from 0.9 m to 0.6 m. Therefore, sediment aeration after suspension was efficient, and is a promising method for sediment remediation applications.

  18. Integrated program management for major nuclear decommissioning and environmental remediation projects - 59068

    International Nuclear Information System (INIS)

    Lehew, John

    2012-01-01

    Document available in abstract form only. Full text of publication follows: CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy's (DOE) contractor responsible for the safe, environmental cleanup of the Hanford Sites Central Plateau, sections of the Columbia River Corridor and the Hanford Reach National Monument. The 586-square-mile Hanford Site is located along the Columbia River in southeastern Washington, U.S.A. A plutonium production complex, housing the largest volume of radioactive and contaminated waste in the nation, with nine nuclear reactors and associated processing facilities, Hanford played a pivotal role in the nation's defense for more than 40 years, beginning in the 1940's with the Manhattan Project. Today, under the direction of the DOE, Hanford is engaged in one of the world's largest environmental cleanup project. The Plateau Remediation Contract is a 10-year project paving the way for closure of the Hanford Site. The site through its location, climate, geology and proximity to the Columbia River in combination with the results of past nuclear operations presents a highly complex environmental remediation challenge. The complexity is not only due to the technical issues associated with decommissioning nuclear facilities, remediating soil contamination sites, dispositioning legacy waste and fuel materials and integrating these with the deep vadose zone and groundwater remediation

  19. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  20. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental impacts associated with establishing future land-use objectives for the US Department of Energy's Hanford Site. Impact analysis is performed by examining the consequences (primarily from remediation activities) of the actions determined necessary to achieve a desired future land-use objective. It should be noted that site-specific decisions regarding remediation technologies and remediation activities would not be made by this document, but rather by processes specified in the Comprehensive Environmental Response, Compensation and Liability Act of 1980 and the Resource Conservation and Recovery Act of 1976. To facilitate the establishment of future land-use objectives, the Hanford Site was divided into four geographic areas: (1) Columbia River; (2) reactors on the river; (3) central plateau; (4) all other areas. The future land-use alternatives considered in detail for each of the geographic areas are as follows: Columbia River--unrestricted and restricted; reactors on the river--unrestricted and restricted; central plateau--exclusive; all other areas--restricted. A No-Action Alternative also is included to provide a baseline against which the potential impacts of the proposed action can be assessed

  1. Remediation of SRS Basins by In Situ Stabilization/Solidification

    International Nuclear Information System (INIS)

    Ganguly, A.

    1999-01-01

    In the late summer of 1998, the Savannah River Site began remediation of two radiologically contaminated basins using in situ stabilization. These two high-risk, unlined basins contain radiological contaminants, which potentially pose significant risks to human health and the environment. The selected remedy involves in situ stabilization/solidification of the contaminated wastes (basin and pipeline soils, pipelines, vegetation, and other debris) followed by installation of a low permeability soil cover

  2. Remediating Contaminated Sediments in the Ashtabula Harbor as Part of the Ashtabula River Area of Concern: A Collaboration Success Story

    International Nuclear Information System (INIS)

    Diggs, I.W.; Case, J.L.; Rule, R.W.; Snyder, M.

    2009-01-01

    The U.S. Army Corps of Engineers, Buffalo District (USACE), in close collaboration with the USEPA and members of an Ashtabula, Ohio, stakeholder advocacy group, were able to achieve major success in mitigating ecological impacts from contaminated sediments deposited in the lower Ashtabula River and Ashtabula Harbor after years of effort to obtain the federal funding needed to do so. The river and harbor were subject to unregulated discharges of hazardous chemicals, heavy metals, and low-level radiological contaminants from decades of operations by a variety of industrial, manufacturing, processing and production activities located near or adjacent to the river and harbor areas. Conditions in the ecosystem in and around the lower portion of the river deteriorated to the point that it was designated a Great Lakes Area of Concern (AOC) in 1983. The advocacy group known as the Ashtabula River Partnership (ARP), facilitated through efforts by both USACE and USEPA, developed an innovative plan to remediate the Ashtabula River AOC by conducting a two-phase project, completed with combined funding authorized under the Great Lakes Legacy Act (GLLA) of 2002, and Section 312(a) of the Water Resources Development Act (WRDA) of 1990. Removal of nearly 527,000 m 3 of contaminated sediments from the AOC would significantly reduce the contaminant source term and produce favorable conditions for re-establishing ecosystem balance. This would also be the first project in the nation completed by USACE under its authority to perform environmental dredging covered by WRDA Section 312(a). (authors)

  3. Characterisation of the impacts of pre- and post- remedial contaminant loads from the Rum Jungle on riparian vegetation and fishes of the Finniss River system

    International Nuclear Information System (INIS)

    Jeffree, R.A.

    2002-01-01

    The status of the riparian vegetation and fish biodiversity in the Finniss River (FR) system is compared before and after remediation at the Rum Jungle (RJ) mine site. Whereas observations recorded during pre-remedial field studies in 1974 indicate no obvious effects of mine effluents on the riparian vegetation in the FR, the impacts in the Eeast Branch were severe. The tolerance to Cu that has been measured in one fish species (Gale et al., submitted) suggests the possibility that the exposure of the fish community to contaminant loadings over more than four decades may have led to the development of tolerance that may also contribute to the ecological recovery that has been observed

  4. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management.

    Science.gov (United States)

    Nie, Zeyu; Wu, Xiaodong; Huang, Haomin; Fang, Xiaomin; Xu, Chen; Wu, Jianyu; Liang, Xinqiang; Shi, Jiyan

    2016-05-01

    Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, 60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works.

  5. VALUING ACID MINE DRAINAGE REMEDIATION IN WEST VIRGINIA: A HEDONIC MODELING APPROACH

    Science.gov (United States)

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD). Appalachian states have an especially large number of contaminated streams and rivers, and the USGS places AMD as the primary source...

  6. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Hinzman, R.L.; Shoemaker, B.A.

    1993-04-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP is based on results of biological monitoring conducted from 1986 to 1992 and discussions held on November 12, 1992, between staff of Martin Marietta Energy Systems, Inc. (Oak Ridge National Laboratory and the K-25 Site), and the Tennessee Department of Environment and Conservation, Department of Energy Oversight Division. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions

  7. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R. (Oak Ridge National Lab., TN (United States)); Hinzman, R.L. (Oak Ridge Research Inst., TN (United States)); Shoemaker, B.A. (Oak Ridge K-25 Site, TN (United States))

    1993-04-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP is based on results of biological monitoring conducted from 1986 to 1992 and discussions held on November 12, 1992, between staff of Martin Marietta Energy Systems, Inc. (Oak Ridge National Laboratory and the K-25 Site), and the Tennessee Department of Environment and Conservation, Department of Energy Oversight Division. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  8. Groundwater Remediation in a Floodplain Aquifer at Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dave [Navarro Research and Engineering; Miller, David [Navarro Research and Engineering; Kautsky, Mark [U. S. Department of Energy, Office of Legacy Management; Dander, David [Navarro Research and Engineering; Nofchissey, Joni [Navajo Nation Division of Natural Resources

    2016-03-06

    A uranium- and vanadium-ore-processing mill operated from 1954 to 1968 within the Navajo Nation near Shiprock, New Mexico. By September 1986, all tailings and structures on the former mill property were encapsulated in a disposal cell built on top of two existing tailings piles on the Shiprock site (the site) [1]. Local groundwater was contaminated by multiple inorganic constituents as a result of the milling operations. The U.S. Department of Energy (DOE) took over management of the site in 1978 as part of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The DOE Office of Legacy Management currently manages ongoing activities at the former mill facility, including groundwater remediation. Remediation activities are designed primarily to reduce the concentrations and total plume mass of the mill-related contaminants sulfate, uranium, and nitrate. In addition to contaminating groundwater in alluvial and bedrock sediments directly below the mill site, ore processing led to contamination of a nearby floodplain bordering the San Juan River. Groundwater in a shallow alluvial aquifer beneath the floodplain is strongly influenced by the morphology of the river channel as well as changing flows in the river, which provides drainage for regional runoff from the San Juan Mountains of Colorado. As part of a recent study of the floodplain hydrology, a revised conceptual model was developed for the alluvial aquifer along with an updated status of contaminant plumes that have been impacted by more than 10 years of groundwater pumping for site remediation purposes. Several findings from the recent study will be discussed here.

  9. [Ecological characteristics of phytoplankton in Suining tributary under bio-remediation].

    Science.gov (United States)

    Liu, Dongyan; Zhao, Jianfu; Zhang, Yalei; Ma, Limin

    2005-04-01

    Based on the analyses of phytoplankton community in the treated and untreated reaches of Suining tributary of Suzhou River, this paper studied the effects of bio-remediation on phytoplankton. As the result of the remediation, the density and Chl-a content of phytoplankton in treated reach were greatly declined, while the species number and Shannon-Wiener diversity index ascended obviously. The percentage of Chlorophyta and Baeillariophyta ascended, and some species indicating medium-and oligo-pollution were found. All of these illustrated that bio-remediation engineering might significantly benefit to the improvement of phytoplankton community structure and water quality.

  10. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1993-08-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ''may affect'' the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA)

  11. White Oak Creek embayment sediment retention structure: The Oak Ridge model in action

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Kimmel, B.L.; Page, D.G.; Hudson, G.R.; Wilkerson, R.B.; Zocolla, M.

    1992-01-01

    White Oak Creek is the major surface-water drainage through the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL). Samples taken from the lower portion of the creek revealed high levels of Cesium-137, and lower levels of Cobalt-60 in near-surface sediment. Other contaminants present in the sediment included: lead, mercury, chromium, and PCBS. In October 1990, DOE, US Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (DEC) agreed to initiate a time-critical removal action in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to prevent transport of the contaminated sediments into the Clinch River system. This paper discusses the environmental, regulatory, design, and construction issues that were encountered in conducting the remediation work

  12. White Oak Creek embayment sediment retention structure design and construction

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Kimmell, B.L.; Page, D.G.; Wilkerson, R.B.; Hudson, G.R.; Kauschinger, J.L.; Zocolla, M.

    1994-01-01

    White Oak Creek is the major surface water drainage throughout the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL). Samples taken from the lower portion of the creek revealed high levels of Cesium 137 and lower level of Cobalt 60 in near surface sediment. Other contaminants present in the sediment included: lead, mercury, chromium, and PCBs. In October 1990, DOE, US Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC) agreed to initiate a time critical removal action in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to prevent the transport of the contaminated sediments into the Clinch River system. This paper discusses the environmental, regulatory, design, and construction issues that were encountered in conducting the remediation work

  13. Technology implementation and cleanup progress at Savannah River site

    International Nuclear Information System (INIS)

    Papouchado, L.M.

    1996-01-01

    The integrated high level waste treatment system at Savannah River has started up and the process of converting 34 million gallons of liquid waste to glass and saltstone is in its initial phase. New waste disposal vaults and startup of several other facilities such as the Consolidated Incinerator Facility and a mixed waste vitrification facility will help completion of the integrated system to treat and dispose of SRS wastes. Technology was utilized from industry, other laboratories, or was developed at the Savannah River Technology Center if it was not available. Many SRTC developments involved academia and other labs. SRS also has over 400 waste sites (400 acres) in its characterization/remediation program. To date over 90 acres were remediated (23 percent) and by 1997 we plan to remediate 175 acres or 44 percent. Thirteen groundwater facility treatment sites will be in operation by 1997. SRS has provided and continues to provide unique test platforms for testing innovative remediation, characterization and monitoring technologies. We are currently testing DNAPL characterization and remediation and an in-situ Inorganic remediation technique for ground water

  14. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Alkema, K. [Utah Dept. of Health, Salt Lake City, UT (United States). Environmental Health Div.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  15. Radioactive Tank Waste Remediation Focus Area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    In February 1991, DOE's Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina

  16. Cover gas seals. 11 - FFTF-LMFBR seal-test program, January-March 1974

    International Nuclear Information System (INIS)

    Kurzeka, W.; Oliva, R.; Welch, F.

    1974-01-01

    The objectives of this program are to: (1) conduct static and dynamic tests to demonstrate or determine the mechanical performance of full-size (cross section) FFTF fuel transfer machine and reactor vessel head seals intended for use in a sodium vapor - inert gas environment, (2) demonstrate that these FFTF seals or new seal configuration provide acceptable fission product and cover gas retention capabilities at LMFBR Clinch River Plant operating environmental conditions other than radiation, and (3) develop improved seals and seal technology for the LMFBR Clinch River Plant to support the national objective to reduce all atmospheric contaminations to low levels

  17. Modifications to the Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah

    International Nuclear Information System (INIS)

    1991-10-01

    This modification to the Green River Final Remedial Action Plan (FRAP) represents the changes made to the document in accordance with a joint agreement between the US Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) outlined in a letter dated August 7, 1991. As specified in this letter, methylene chloride will no longer be analyzed in groundwater samples collected from on-site monitor wells. All references to methylene chloride sampling have been deleted from the FRAP, as indicated by the pages in Section 2.0 of this document

  18. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Volume 1 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental impacts associated with establishing future land-use objectives for the US Department of Energy's Hanford Site. Impact analysis is performed by examining the consequences (primarily from remediation activities) of the actions determined necessary to achieve a desired future land-use objective. It should be noted that site-specific decisions regarding remediation technologies and remediation activities would not be made by this document, but rather by processes specified in the Comprehensive Environmental Response, Compensation and Liability Act of 1980 and the Resource Conservation and Recovery Act of 1976. To facilitate the establishment of future land-use objectives, the Hanford Site was divided into four geographic areas: (1) Columbia River; (2) reactors on the river; (3) central plateau; (4) all other areas. The future land-use alternatives considered in detail for each of the geographic areas are as follows: Columbia River--unrestricted and restricted; reactors on the river--unrestricted and restricted; central plateau--exclusive; all other areas--restricted. A No-Action Alternative also is included to provide a baseline against which the potential impacts of the proposed action can be assessed

  19. Remedial technology and characterization development at the SRS F/H Retention Basins using the DOE SAFER methodology

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.; Kuelske, K.J.

    1994-01-01

    The Streamlined Approach For Environmental Restoration (SAFER) is a strategy used to accelerate and improve the environmental assessment and remediation of the F/H Retention Basins at the Savannah River Site (SRS). TMs strategy combines the data quality objectives (DQO) process and the observational approach to focus on data collection and converge on a remedial action early. This approach emphasizes stakeholder involvement throughout the Remedial Investigation/Feasibility Study (RI/FS) process. The SAFER methodology is being applied to the characterization, technology development, and remediation tasks for the F/H Retention Basins. This ''approach was initiated in the scoping phase of these projects through the involvment of major stakeholders; Department of Energy (DOE)-Savannah River Field Office, DOE-Headquarters, Westinghouse Savannah River Company, United States Environmental Protection Agency (EPA) Region IV, and the state of South Carolina Department of Health and Environmental Control (SCDHEC), in the development of the Remedial Investigation (RI) workplans. A major activity that has been initiated is the development and implementation of a phase I workplan to identify preliminary contaminants of concern (pCOCs). A sampling plan was developed and approved by the major stakeholders for preliminary characterization of wastes remaining in the F/H Retention Basins. The involvement of stakeholders, development of a site conceptual model, development of remedial objectives for probable conditions, identification of the problem and reasonable deviations, and development of initial decision rules in the planning stages will ensure that preliminary data needs are identified and obtained prior to the initiation of the assessment and implementation phases of the projects resulting in the final remediation of the sites in an accelerated and more cost effective manner

  20. Project Strategy For The Remediation And Disposition Of Legacy Transuranic Waste At The Savannah River Site, South Carolina, USA

    International Nuclear Information System (INIS)

    Rodriguez, M.

    2010-01-01

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing

  1. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ``may affect`` the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA).

  2. Biofilm formation and microbial community analysis of the simulated river bioreactor for contaminated source water remediation.

    Science.gov (United States)

    Xu, Xiang-Yang; Feng, Li-Juan; Zhu, Liang; Xu, Jing; Ding, Wei; Qi, Han-Ying

    2012-06-01

    The start-up pattern of biofilm remediation system affects the biofilm characteristics and operating performances. The objective of this study was to evaluate the performances of the contaminated source water remediation systems with different start-up patterns in view of the pollutants removal performances and microbial community succession. The operating performances of four lab-scale simulated river biofilm reactors were examined which employed different start-up methods (natural enrichment and artificial enhancement via discharging sediment with influent velocity gradient increase) and different bio-fillers (Elastic filler and AquaMats® ecobase). At the same time, the microbial communities of the bioreactors in different phases were analyzed by polymerase chain reaction, denaturing gradient gel electrophoresis, and sequencing. The pollutants removal performances became stable in the four reactors after 2 months' operation, with ammonia nitrogen and permanganate index (COD(Mn)) removal efficiencies of 84.41-94.21% and 69.66-76.60%, respectively. The biomass of mature biofilm was higher in the bioreactors by artificial enhancement than that by natural enrichment. Microbial community analysis indicated that elastic filler could enrich mature biofilm faster than AquaMats®. The heterotrophic bacteria diversity of biofilm decreased by artificial enhancement, which favored the ammonia-oxidizing bacteria (AOB) developing on the bio-fillers. Furthermore, Nitrosomonas- and Nitrosospira-like AOB coexisted in the biofilm, and Pseudomonas sp., Sphaerotilus sp., Janthinobacterium sp., Corynebacterium aurimucosum were dominant in the oligotrophic niche. Artificial enhancement via the combination of sediment discharging and influent velocity gradient increasing could enhance the biofilm formation and autotrophic AOB enrichment in oligotrophic niche.

  3. VALUING ACID MINE DRAINAGE REMEDIATION OF IMPAIRED WATERWAYS IN WEST VIRGINIA: A HEDONIC MODELING APPROACH

    Science.gov (United States)

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD), the metal rich runoff flowing primarily from abandoned mines and surface deposits of mine waste. AMD can lower stream and river pH ...

  4. LMFBR fuel analysis. Task A: oxide fuel dynamics. Final report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Dhir, V.K.; Hauss, B.; Kastenberg, W.E.; Saqui, R.; Sun, Y.H.; Wong, K.

    1976-11-01

    The report summarizes the results of studies conducted in support of the U.S. Nuclear Regulatory Commission's review of the Preliminary Safety Analysis Report for the Clinch River Breeder Reactor. In particular it deals with three aspects of the unprotected transient overpower accident. The first aspect is the response of the Clinch River Breeder Reactor to low reactivity insertion rates. Second, the investigation of a new method for computing the time, place and mode of fuel pin failure is studied. Lastly, the question of post-failure, fuel freezing, and plate-out is addressed. Several areas of uncertainty in the analysis of these accidents is also discussed

  5. Analysis of the TREAT loss-of-flow tests L6 and L7 using SAS3D

    International Nuclear Information System (INIS)

    Morris, E.E.; Simms, R.; Gruber, E.E.

    1985-01-01

    The TREAT loss-of-flow tests L6 and L7 have been analyzed using the SAS3D accident analysis code. The impetus for the analysis was the need for experimentally supported fuel motion modeling in whole core accident studies performed in support of licensing of the Clinch River Breeder Reactor Project. The input prescription chosen for the SAS3D/SLUMPY fuel motion model gave reasonable agreement with the test results. Tests L6 and L7, each conducted with a cluster of three fuel pins, were planned to simulate key events in the loss-of-flow accident scenario for the Clinch River homogeneous reactor

  6. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  7. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  8. VALUING ACID MINE DRAINAGE REMEDIATION IN WEST VIRGINIA: A HEDONIC MODELING APPROACH INCORPORATING GEOGRAPHIC INFORMATION SYSTEMS

    Science.gov (United States)

    States with active and abandoned mines face large private and public costs to remediate damage to streams and rivers from acid mine drainage (AMD). Appalachian states have an especially large number of contaminated streams and rivers, and the USGS places AMD as the primary source...

  9. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  10. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    International Nuclear Information System (INIS)

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.' different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  11. Pre- and post-remediation characterization of acid-generating fluvial tailings material

    Science.gov (United States)

    Smith, Kathleen S.; Walton-Day, Katherine; Hoal, Karin O.; Driscoll, Rhonda L.; Pietersen, K.

    2012-01-01

    The upper Arkansas River south of Leadville, Colorado, USA, contains deposits of fluvial tailings from historical mining operations in the Leadville area. These deposits are potential non-point sources of acid and metal contamination to surface- and groundwater systems. We are investigating a site that recently underwent in situ remediation treatment with lime, fertilizer, and compost. Pre- and post-remediation fluvial tailings material was collected from a variety of depths to examine changes in mineralogy, acid generation, and extractable nutrients. Results indicate sufficient nutrient availability in the post-remediation near-surface material, but pyrite and acid generation persist below the depth of lime and fertilizer addition. Mineralogical characterization performed using semi-quantitative X-ray diffraction and quantitative SEM-based micro-mineralogy (Mineral Liberation Analysis, MLA) reveal formation of gypsum, jarosite, and complex coatings surrounding mineral grains in post-remediation samples.

  12. Assessing remediation of contaminated sediments using multiple biological endpoints: sediment toxicity, food web tissue contamination, biotic condition and DNA damage.

    Science.gov (United States)

    The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission’s Great Lakes Water Quality Agreement. A sediment remediation project took place in the lower 14.2 km of the river where urban and industrial activitie...

  13. Polychlorinated biphenyls (PCBs) in a river ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Bremle, G

    1997-03-01

    In the Emaan River, in southeast Sweden, contaminated sediment was a source of PCB, the largest deposits of it being found in a small lake connected to the river: lake Jaernsjoen, the sediment of which contained about 400 kg of PCB. The concentration of PCB in the water and in the fish was more elevated downstream from the lake than at upstream sites. Lake Jaernsjoen was cleaned up by dredging during 1993 and 1994. The dredged sediment, estimated to contain over 95% of the PCB in the lake, was deposited in a landfill. During the cleanup action, the concentration of PCB downstream from the lake did not become higher than before. The PCB concentration in the air around the landfill increased in the vicinity and during construction of the landfill. After closure of the landfill by a layer placed on top of it, the PCB concentration in the air fell to background levels. No increase in the PCB concentration in the ground water around the landfill as a result of the remedial action could be detected. In the summer of 1996, nearly two years after remediation had been completed, an investigation of the PCB concentration in the fish of the river system was conducted. This investigation was a repetition of one made in 1991, prior to remediation. It showed that after remediation the concentration of PCB in one-year old fish in Lake Jaernsjoen was halved. The concentration of PCB in fish upstream was also lower, probably because of the decrease in overall background contamination. 155 refs, 13 figs

  14. Water quality monitoring report for the White Oak Creek Embayment

    International Nuclear Information System (INIS)

    Ford, C.J.; Wefer, M.T.

    1993-01-01

    Water quality monitoring activities that focused on the detection of resuspended sediments in the Clinch River were conducted in conjunction with the White Oak Creek Embayment (WOCE) time-critical Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to construct a sediment-retention structure at the mouth of White Oak Creek (WOC). Samples were collected by use of a 24-h composite sampler and through real-time water grab sampling of sediment plumes generated by the construction activities. Sampling stations were established both at the WOC mouth, immediately adjacent to the construction site, and at K-1513, the Oak Ridge K-25 Site drinking water intake approximately 9.6 km downstream in the Clinch River. Results are described

  15. Kashechewan First Nation St. Andrews School oil remediation project: a case study

    International Nuclear Information System (INIS)

    Gable, S. W.

    1997-01-01

    Case study of the remediation of an oil seepage into a school building in a First Nations community, on the shores of the Albany River, in the James Bay region of northern Ontario, was discussed. The spill has created significant health hazards as manifested by nausea, vomiting and severe headaches among both students and teachers. Investigation determined that the O-ring fittings of the pipe joints, used during the installation of the oil pipeline linking the above-ground oil tank farm and the school building, were unsuitable for the intended use. They subsequently failed, allowing heating oil to leak from the pipes along the building and migrating into the gymnasium. A variety of remediation alternatives have been considered. The remedial actions taken include: in-situ containment using an impermeable membrane with passive venting and continuous air quality monitoring for the area below the recreation complex, excavation to create draining trenches, replacement of contaminated soil around the building and from the building to the river, and installation of a clay collar and oil/water separator in each drain line. The work was completed in January 1996. To date, all systems function satisfactorily

  16. Preliminary screening analysis of the off-site environment downstream of the US Department of Energy Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1990-01-01

    Operations and waste disposal activities at the Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge Gaseous Diffusion Plant (ORGDP), located on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) in eastern Tennessee, have introduced airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams that ultimately drain into the Clinch River. Previously reported concentrations of radionuclides, metals, and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of contaminants of possible concern to the protection of human health and the environment. A preliminary screening was conducted of contaminants in the off-site surface water environments downstream of the DOE ORR. This screening analysis represents part of a scoping phase of the Clinch River Resource Conservation and Recovery Facilities Investigation (CRRFI). The purpose of this preliminary screening analysis is to use existing data on off-site contaminant concentrations to identify and prioritize potential contaminants of concern for further evaluation and investigation. The primary objective of this screening analysis is to ensure that CRRFI sampling and analysis efforts focus on those contaminants that may possibly contribute to human health or environmental risk. 8 refs., 3 figs., 6 tabs

  17. Effect of remediation on growth parameters, grain and dry matter ...

    African Journals Online (AJOL)

    The effectiveness of cow dung, poultry manure, NPK (mineral fertilizers) and municipal waste compost which were the easily accessible materials in the remediation of crude oil polluted soils in Ogoni, Rivers state was assessed using soybean as a test crop. A simple factorial field experiment arranged into a randomized ...

  18. Monthly report No. 9 (September, October, and November 1977) of INTERATOM representative to Westinghouse Hanford Co., Richland, Washington (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, H.

    1977-11-30

    The following topics are mentioned: alternate breeder fuel cycles (Shippingport Light Water Breeder Reactor), Clinch River Breeder Reactor status, FFTF status, LMFBR component development, and PLBR status. (DG)

  19. A weight of evidence approach for assessing remediation of contaminated sediments using food web tissue contamination, biotic condition and DNA damage

    Science.gov (United States)

    The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the city of Toledo. The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission. In 2009-2010 a sediment remediation pro...

  20. Needs for reactivity anomaly monitoring in CRBRP

    International Nuclear Information System (INIS)

    Bullock, J.B.

    1975-01-01

    Two general classifications of reactivity anomalies are defined and explicit design criteria and operational philosophy for an anomaly monitoring system for the Clinch River Breeder Reactor are presented. (JWR)

  1. Engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1981-08-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Green River site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Green River, Utah. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors

  2. Application of optimization modeling to groundwater remediation at US Department of Energy facilities

    International Nuclear Information System (INIS)

    Bakr, A.A.; Dal Santo, D.J.; Smalley, R.C.; Phillips, E.C.

    1988-01-01

    This paper outlines and explores the fundamentals of the current strategies for groundwater hydraulic and quality management modeling and presents a scheme for the application of such strategies to DOE facilities. The discussion focuses on the DOE-Savannah River Operations (DOE-SR) facility. Remediation of contaminated groundwater at active and abandoned waste disposal sites has become a major element of environmental programs. Traditional groundwater remediation programs (e.g., pumping and treatment) may not represent optimal water quality management strategies at sites to be remediated. Complex, interrelated environmental (geologic/geohydrologic), institutional, engineering, and economic conditions at a site may require a more comprehensive management strategy. Groundwater management models based on the principles of operations research have been developed and used to determine optimal management strategies for water resources needs and for hypothetical remediation programs. Strategies for groundwater remediation programs have ranged from the simple removal of groundwater to complex, hydraulic gradient control programs involving groundwater removal, treatment, and recharge

  3. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.

    1998-10-02

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  4. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    International Nuclear Information System (INIS)

    Palmer, E.

    1998-01-01

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina

  5. Scale-dependent variability of as and Heavy metals in a river elbe floodplain

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, Dana; Kiersch, Kristian; Baum, Christel; Mueller, Robert; Jandl, Gerald; Leinweber, Peter [Institute for Land Use, University of Rostock, Rostock (Germany); Meissner, Ralph [UFZ, Helmholtz Centre for Environmental Research, Department of Soil Physics, Falkenberg (Germany)

    2011-04-15

    The River Elbe has been one of the worst polluted major rivers of Europe. For designing a successful remediation strategy of the floodplain soils the spatial variation in total concentrations and bioavailability of pollutants must be known, and the remediation efficiency should be monitored. The obtained data present the ''status quo'' which is a baseline for evaluating the medium-term effects of the phytoremediation with fast-growing willows established in the flood channel. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Estimated radiological doses to the maximumly exposed individual and downstream populations from releases of tritium, strontium-90, ruthenium-106, and cesium-137 from White Oak Dam

    International Nuclear Information System (INIS)

    Little, C.A.; Cotter, S.J.

    1980-01-01

    Concentrations of tritium, 90 Sr, 106 Ru, and 137 Cs in the Clinch River for 1978 were estimated by using the known 1978 releases of these nuclides from the White Oak Dam and diluting them by the integrated annual flow rate of the Clinch River. Estimates of 50-year dose commitment to a maximumly exposed individual were calculated for both aquatic and terestrial pathways of exposure. The maximumly exposed individual was assumed to reside at the mouth of White Oak Creek where it enters the Clinch River and obtain all foodstuffs and drinking water at that location. The estimated total-body dose from all pathways to the maximumly exposed individual as a result of 1978 releases was less than 1% of the dose expected from natural background. Using appropriate concentrations of to subject radionuclides diluted downstream, the doses to populations residing at Harriman, Kingston, Rockwood, Spring City, Soddy-Daisy, and Chattanooga were calculated for aquatic exposure pathways. The total-body dose estimated for aquatic pathways for the six cities was about 0.0002 times the expected dose from natural background. For the pathways considered in this report, the nuclide which contributed the largest fraction of dose was 90 Sr. The largest dose delivered by 90 Sr was to the bone of the subject individual or community

  7. Bioavailability of mercury in contaminated Oak Ridge watershed and potential remediation of river/runoff/storm water by an aquatic plant - 16319

    International Nuclear Information System (INIS)

    Su, Yi; Han, Fengxiang X.; Chen, Jian; Xia, Yunju; Monts, David L.

    2009-01-01

    Historically as part of its national security mission, the U.S. Department of Energy's Y-12 National Security Facility in Oak Ridge, TN, USA acquired a significant fraction of the world's supply of elemental mercury. During the 1950's and 1960's, a large amount of elemental mercury escaped confinement and is still present in the buildings and grounds of the Y-12 Facility and in the Y-12 Watershed. Because of the adverse effects of elemental mercury and mercury compounds upon human health, the Oak Ridge Site is engaged in an on-going effort to monitor and remediate the area. The main thrust of the Oak Ridge mercury remediation effort is currently scheduled for implementation in FY09. In order to more cost effectively implement those extensive remediation efforts, it is necessary now to obtain an improved understanding of the role that mercury and mercury compounds play in the Oak Ridge ecosystem. Most recently, concentrations of both total mercury and methylmercury in fish and water of lower East Fork Poplar Creek (LEFPC) of Oak Ridge increased although the majority of mercury in the site is mercury sulfide. This drives the US DOE and the Oak Ridge Site to study the long-term bioavailability of mercury and speciation at the site. The stability and bioavailability of mercury sulfide as affected by various biogeochemical conditions -presence of iron oxides have been studied. We examined the kinetic rate of dissolution of cinnabar from Oak Ridge soils and possible mechanisms and pathways in triggering the most recent increase of mercury solubility, bioavailability and mobility in Oak Ridge site. The effects of pH and chlorine on oxidative dissolution of cinnabar from cinnabar-contaminated Oak Ridge soils is discussed. On the other hand, aquatic plants might be good candidate for phyto-remediate contaminated waste water and phyto-filtration of collective storm water and surface runoff and river. Our greenhouse studies on uptake of Hg by water lettuce (Pistia stratiotes

  8. The remediation of abandoned workings of a mining area in Ningxiang uranium mine

    International Nuclear Information System (INIS)

    Liu Yaochi; Zhou Xinghuo; Liu Bing

    2004-01-01

    The typical mining under buildings and river was used in a mining area of Ningxiang uranium mine. After the mining ended, 32.1% of the 2.68 m 3 abandoned workings did not fill because of limitation of the cut-and-fill mining method at that time. To remedy this, the mine used new filling methods. After the remedial action, the filling coefficient of pits reached 100%, and that of tunnels reached 86%. It can be proved by the monitoring data that the subsiding of surface has been effectively controlled at the abandoned workings

  9. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 7, contains cost estimate information for a monitored retrievable storage (MRS) facility. Cost estimates are for onsite improvements, waste storage, and offsite improvements for the Clinch River Site

  10. SRS Burial Ground Complex: Remediation in Progress

    International Nuclear Information System (INIS)

    Griffin, M.; Crapse, B.; Cowan, S.

    1998-01-01

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities

  11. To fail is human: remediating remediation in medical education.

    Science.gov (United States)

    Kalet, Adina; Chou, Calvin L; Ellaway, Rachel H

    2017-12-01

    Remediating failing medical learners has traditionally been a craft activity responding to individual learner and remediator circumstances. Although there have been moves towards more systematic approaches to remediation (at least at the institutional level), these changes have tended to focus on due process and defensibility rather than on educational principles. As remediation practice evolves, there is a growing need for common theoretical and systems-based perspectives to guide this work. This paper steps back from the practicalities of remediation practice to take a critical systems perspective on remediation in contemporary medical education. In doing so, the authors acknowledge the complex interactions between institutional, professional, and societal forces that are both facilitators of and barriers to effective remediation practices. The authors propose a model that situates remediation within the contexts of society as a whole, the medical profession, and medical education institutions. They also outline a number of recommendations to constructively align remediation principles and practices, support a continuum of remediation practices, destigmatize remediation, and develop institutional communities of practice in remediation. Medical educators must embrace a responsible and accountable systems-level approach to remediation if they are to meet their obligations to provide a safe and effective physician workforce.

  12. Groundwater flow in the Venice lagoon and remediation of the Porto Marghera industrial area (Italy)

    Science.gov (United States)

    Beretta, Giovanni Pietro; Terrenghi, Jacopo

    2017-05-01

    This study aims to determine the groundwater flow in a large area of the Venice (northeast Italy) lagoon that is under great anthropogenic pressure, which is influencing the regional flow in the surficial aquifer (about 30 m depth). The area presents several elements that condition the groundwater flow: extraction by means of drainage pumps and wells; tidal fluctuation; impermeable barriers that define part of the coastline, rivers and artificial channels; precipitation; recharge, etc. All the elements were studied separately, and then they were brought together in a numerical groundwater flow model to estimate the impact of each one. Identification of the impact of each element will help to optimise the characteristics of the Porto Marghera remediation systems. Longstanding industrial activity has had a strong impact on the soil and groundwater quality, and expensive and complex emergency remediation measures in problematic locations have been undertaken to ensure the continuity of industrial and maritime activities. The land reclamation and remediation works withdraw 56-74% of the water budget, while recharge from the river accounts for about 21-48% of the input. Only 21-42% of groundwater in the modelled area is derived from natural recharge sources, untouched by human activity. The drop of the piezometric level due to the realization of the upgradient impermeable barrier can be counteracted with the reduction of the pumping rate of the remediation systems.

  13. MINET: transient analysis of fluid-flow and heat-transfer networks

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Guppy, J.G.; Nepsee, T.C.

    1983-01-01

    MINET, a computer code developed for the steady-state and transient analysis of fluid-flow and heat-transfer networks, is described. The code is based on a momentum integral network method, which offers significant computational advantages in the analysis of large systems, such as the balance of plant in a power-generating facility. An application is discussed in which MINET is coupled to the Super System Code (SSC), an advanced generic code for the transient analysis of loop- or pool-type LMFBR systems. In this application, the ability of the Clinch River Breeder Reactor Plant to operate in a natural circulation mode following an assumed loss of all electric power, was assessed. Results from the MINET portion of the calculations are compared against those generated independently by the Clinch River Project, using the DEMO code

  14. Cost effectiveness of in situ bioremediation at Savannah River

    International Nuclear Information System (INIS)

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In situ bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the Savannah River Integrated Demonstration is tricloroethylene (TCE) a volatile organic compound (VOC). A 384-day test run at Savannah River, sponsored by the US Department of Energy (DOE), Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In situ bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biological process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted airstream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given these data, the cost effectiveness of this new technology can be evaluated

  15. Third annual environmental restoration monitoring and assessment report for FY 1994 of the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Clapp, R.B.; Watts, J.A.; Guth, M.A.S. [eds.

    1994-09-01

    This report summarizes the salient features of the annual efforts of environmental monitoring, field investigations, and assessments conducted to support the Environmental Restoration (ER) Program at the Oak Ridge National Laboratory (ORNL). This report focuses on the watershed scale, providing an ORNL site-wide perspective on types, distribution, and transport of contamination. The results presented are used to enhance the conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This information forms a basis for prioritizing sites and for selecting, implementing, and evaluating remedial actions. This report summarizes the efforts of the Waste Area Grouping (WAG) 2 and Site Investigations (SI) Project. WAG 2 is the lower portion of the White Oak Creek system which drains the major contaminated sites at ORNL and discharges to the Clinch River where public access is allowed. The Remedial Investigation Plan (DOE 1992) for WAG 2 includes a long-term multimedia environmental monitoring effort that takes advantage of WAG 2`s role as an integrator and the major conduit of contaminants from the ORNL site. During FY 1992, the remedial investigation activities were integrated with a series of environmental monitoring and SI activities at ORNL that address pathways and processes important for contaminant movement to gain a more integrated perspective of contamination movement at the watershed scale.

  16. Third annual environmental restoration monitoring and assessment report for FY 1994 of the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Clapp, R.B.; Watts, J.A.; Guth, M.A.S.

    1994-09-01

    This report summarizes the salient features of the annual efforts of environmental monitoring, field investigations, and assessments conducted to support the Environmental Restoration (ER) Program at the Oak Ridge National Laboratory (ORNL). This report focuses on the watershed scale, providing an ORNL site-wide perspective on types, distribution, and transport of contamination. The results presented are used to enhance the conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This information forms a basis for prioritizing sites and for selecting, implementing, and evaluating remedial actions. This report summarizes the efforts of the Waste Area Grouping (WAG) 2 and Site Investigations (SI) Project. WAG 2 is the lower portion of the White Oak Creek system which drains the major contaminated sites at ORNL and discharges to the Clinch River where public access is allowed. The Remedial Investigation Plan (DOE 1992) for WAG 2 includes a long-term multimedia environmental monitoring effort that takes advantage of WAG 2's role as an integrator and the major conduit of contaminants from the ORNL site. During FY 1992, the remedial investigation activities were integrated with a series of environmental monitoring and SI activities at ORNL that address pathways and processes important for contaminant movement to gain a more integrated perspective of contamination movement at the watershed scale

  17. Geographic Place Names, GNIS data for Atkinson, Bacon, Ben Hill, Berrien, Brantley, Brooks, Charlton, Clinch, Coffee, Cook, Echols, Irwin, Lanier, Lowndes, Pierce, Tift, Turner, Ware counties., Published in 1999, 1:7200 (1in=600ft) scale, Southern Georgia Regional Commission.

    Data.gov (United States)

    NSGIC Regional | GIS Inventory — Geographic Place Names dataset current as of 1999. GNIS data for Atkinson, Bacon, Ben Hill, Berrien, Brantley, Brooks, Charlton, Clinch, Coffee, Cook, Echols, Irwin,...

  18. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  19. Bioassay responses and effects on benthos after pilot remediations in the delta of the rivers Rhine and Meuse

    NARCIS (Netherlands)

    Besten, den P.J.; Brink, van den P.J.

    2005-01-01

    Chemical and biological monitoring was carried out for 5 years following pilot remediations at two locations in the Rhine-Meuse delta. The remediations consisted of partial excavation of the contaminated sediments, followed by applying a clean layer of sandy material on top. After the remediation, a

  20. A synopsis of environmental horizontal wells at the Savannah River Site

    International Nuclear Information System (INIS)

    Denham, M.E.; Lombard, K.H.

    1995-01-01

    Seven horizontal wells for environmental remediation were installed at the Savannah River Site as part of an Integrated Demonstration Project sponsored by the Department of Energy's Office of Technology Development. The wells were used to demonstrate innovative remediation systems for the clean up of chlorinated organic solvent contamination in groundwater and the vadose zone. The wells were installed in four demonstrations of different horizontal drilling technologies. A short-radius petroleum industry technology, a modified petroleum industry technology (using a down-hole motor), a utility industry technology, and a river crossing technology were demonstrated. The goals of the demonstrations were to show the utility of horizontal wells in environmental remediation and further development of the technology required to install these wells. From the first demonstration in 1988 to the latest in 1991, there was significant evolution in horizontal drilling technology. The main technical challenges in the first demonstration were directional control during drilling and borehole instability. Through advancement of the technology these problems were overcome and did not affect the last demonstration. Those considering the use of horizontal wells for environmental remediation will benefit from the knowledge gained from these demonstrations

  1. Environmental summary of the F- and H-area seepage basins groundwater remediation project, Savannah River site

    International Nuclear Information System (INIS)

    Friday, G.P.

    1997-01-01

    This report summarizes the results of nearly 70 investigations of the baseline environment, describes the remedial action, and identifies constituents of interest that pose potential risk to human health and the environment. It also proposes an approach for evaluating the effectiveness of the remedial action

  2. Demonstration of risk-based decision analysis in remedial alternative selection and design

    International Nuclear Information System (INIS)

    Evans, E.K.; Duffield, G.M.; Massmann, J.W.; Freeze, R.A.; Stephenson, D.E.

    1993-01-01

    This study demonstrates the use of risk-based decision analysis (Massmann and Freeze 1987a, 1987b) in the selection and design of an engineering alternative for groundwater remediation at a waste site at the Savannah River Site, a US Department of Energy facility in South Carolina. The investigation focuses on the remediation and closure of the H-Area Seepage Basins, an inactive disposal site that formerly received effluent water from a nearby production facility. A previous study by Duffield et al. (1992), which used risk-based decision analysis to screen a number of ground-water remediation alternatives under consideration for this site, indicated that the most attractive remedial option is ground-water extraction by wells coupled with surface water discharge of treated effluent. The aim of the present study is to demonstrate the iterative use of risk-based decision analysis throughout the design of a particular remedial alternative. In this study, we consider the interaction between two episodes of aquifer testing over a 6-year period and the refinement of a remedial extraction well system design. Using a three-dimensional ground-water flow model, this study employs (1) geostatistics and Monte Carlo techniques to simulate hydraulic conductivity as a stochastic process and (2) Bayesian updating and conditional simulation to investigate multiple phases of aquifer testing. In our evaluation of a remedial alternative, we compute probabilistic costs associated with the failure of an alternative to completely capture a simulated contaminant plume. The results of this study demonstrate the utility of risk-based decision analysis as a tool for improving the design of a remedial alternative through the course of phased data collection at a remedial site

  3. Monitoring remediation of trichloroethylene using a chemical fiber optic sensor: Field studies

    International Nuclear Information System (INIS)

    Colston, B.W.; Brown, S.B.; Langry, K.; Daley, P.; Milanovich, F.P.

    1994-06-01

    Current US Department of Energy (DOE) policy requires characterization and subsequent remediation of areas where trichloroethylene (TCE) has been discharged into the soil and groundwater. Technology that allows trace quantities of this contaminant to be measured in situ on a continuous basis is needed. Fiber optic chemical sensors offer a promising low cost solution. Field tests of such a fiber optic chemical sensor for TCE have recently been completed. Sensors have been used to measure TCE contamination at Savannah River Site (SRS) and Lawrence Livermore National Laboratory Site 300 (S300) in the groundwater and vadose zones. Both sites are currently undergoing remediation processes

  4. Finite strain anisotropic elasto-plastic model for the simulation of the forming and testing of metal/short fiber reinforced polymer clinch joints at room temperature

    Science.gov (United States)

    Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.

    2017-10-01

    There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.

  5. An appraisal of river erosion mitigation in the Niger Delta

    International Nuclear Information System (INIS)

    Aban, T. K. S.; Omuso, W. O.

    1999-01-01

    River erosion processes in the Niger Delta and the effectiveness of locally applied remedial measures is appraised, using information on channel geometry, flow velocity distribution, soil type, stratification, bank height and steepness, state of compaction, together with pool level variation in river channels. High flow velocity and bank height were identified as the major erosion causative factors. Local responses towards erosion mitigation have involved structural methods to varying degree of success. River training has been recommended as a long - term regional approach to mitigate river bank erosion. However, in the short -term revetments, concrete and sheets piles may be applied cautiously

  6. Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Hamonts, K.; Ryngaert, A.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. As biotransformation of CAHs in the impacted river sediments might be an effective remediation strategy, we investigated the determinants of the microbial community structure of eutrophic,

  7. Response, remediation and risk management of a crude oil pipeline spill

    International Nuclear Information System (INIS)

    Rose, P.A.; Livingstone, W.R.

    1997-01-01

    A light crude oil spill occurred along a section of pipeline near the bank of a major river of a southern Alberta community in December of 1995. Crude oil was observed at ground surface over an area of 2,000 sq m at the top of the river slope. It had also migrated down slope through the subgrade soils and along the groundwater table toward the river. The initial emergency response measures included removing and disposing of oil-stained vegetation and snow, and the containment and recovery of free oil pooled on the ground surface. Other measures included the drilling of test holes and boreholes and the installation of groundwater monitoring and recovery wells. It was determined that phase-separated crude oil had accumulated at the water table within the flood plain sediments near the river. The water was remediated on-site to Canadian drinking water quality standards. The zone of impacted water was effectively captured, and ground water quality steadily improved

  8. The Finnis River. A natural laboratory of mining impact- past, present and future

    International Nuclear Information System (INIS)

    Markich, S.J.; Jeffree, R.A.

    2002-03-01

    The Rum Jungle uranium-copper mine in tropical northern Australia has been a source of acid rock drainage contaminants since the 1950s, which have had adverse impacts on the receiving waters of the Finniss River. Mine site remediation began in 1982 followed by long-term monitoring of water quality and flow, based on daily measurements within the Finniss River system. A decade or more after the initiation of these remedial activities, a set of investigations have been completed that have measured the post-remedial ecological status of the Finniss River system, relative to this environmental benchmark. These studies have also been complemented by studies on various other ecological endpoints. Moreover, the Finniss River system has provided unique opportunities for broader scientific goals to be pursued. Because it has been so well-monitored, it can be viewed as a natural laboratory to investigate the impacts of acid rock drainage on tropical freshwater biodiversity. The scientific papers presented at this symposium address a broad spectrum of issues that are directly related to environmental sustainability and mining. The topics range across future contaminant scenarios and their predicted ecological impacts, the various metrics used to assess ecological detriment to biodiversity, the abilities of laminated biological structures to act as archives of pollution history, and also spin-off applications in environmental and wildlife management. Furthermore, the participation of many stakeholders in open discussion during the symposium provided an important set of views and opinions on the needs for future studies in the Finniss River system

  9. The Finnis River. A natural laboratory of mining impact- past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Markich, S J; Jeffree, R A [eds.

    2002-03-01

    The Rum Jungle uranium-copper mine in tropical northern Australia has been a source of acid rock drainage contaminants since the 1950s, which have had adverse impacts on the receiving waters of the Finniss River. Mine site remediation began in 1982 followed by long-term monitoring of water quality and flow, based on daily measurements within the Finniss River system. A decade or more after the initiation of these remedial activities, a set of investigations have been completed that have measured the post-remedial ecological status of the Finniss River system, relative to this environmental benchmark. These studies have also been complemented by studies on various other ecological endpoints. Moreover, the Finniss River system has provided unique opportunities for broader scientific goals to be pursued. Because it has been so well-monitored, it can be viewed as a natural laboratory to investigate the impacts of acid rock drainage on tropical freshwater biodiversity. The scientific papers presented at this symposium address a broad spectrum of issues that are directly related to environmental sustainability and mining. The topics range across future contaminant scenarios and their predicted ecological impacts, the various metrics used to assess ecological detriment to biodiversity, the abilities of laminated biological structures to act as archives of pollution history, and also spin-off applications in environmental and wildlife management. Furthermore, the participation of many stakeholders in open discussion during the symposium provided an important set of views and opinions on the needs for future studies in the Finniss River system.

  10. 300-FF-1 remedial design report/remedial action work plan

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes.

  11. 300-FF-1 remedial design report/remedial action work plan

    International Nuclear Information System (INIS)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes

  12. Savannah River Technology Center. Monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: thermal cycling absorption process, development of new alloys, ion exchange, oxalate precipitation, calcination, environmental research, remedial action, ecological risk assessments, chemical analysis of salt cakes, natural phenomena hazards assessment, and sampling of soils and groundwater.

  13. Seasonal and temporal evolution of nutrient composition of pastures grown on remediated and non remediated soils affected by trace element contamination (Guadiamar Valley, SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Madejon, P.; Dominguez, M. T.; Murillo, J. M.

    2010-07-01

    Elevated trace element concentrations in soils can affect the solubility and uptake of essential elements, resulting in nutrient deficiencies in plant tissues. The present paper deals with nutrient composition of pastures established on polluted and remediated soils (Green Corridor of the Guadiamar river Valley), in order to check the potential nutritional disorders that could derive from the soil pollution. In addition, nutrient composition of a representative grass, Cynodon dactylon, collected in 1999 and 2008 was compared in remediated and non-remediated sites of the polluted area. In general, nutrient concentrations of pastures were similar or even higher in polluted sites compared to control sites. Therefore, the estimated potential ingestion of main nutrients by horses (the most abundant animals in the area) was also greater in the polluted and remediated soils and covered their nutritional requirements (more than 300 (N), 70 (S), 35 (P), 400 (K), 175 (Ca) and 30 (Mg) mg kg{sup -}1 body weight day {sup -}1 in spring and autumn). Temporal evolution of nutrients and physiological ratios (N/S, Ca/P, K/Na, K/Ca+Mg) in C. dactylon showed a significant variation from 1999 to 2008, especially in the non-remediated area, leading to a recovery of the nutritional quality of this grass. The reasonable nutritional quality of pastures and the absence of negative interactions between nutrients and trace elements seem to indicate a stabilisation of soil pollutants in the affected area. (Author) 41 refs.

  14. Patterns of sediment accumulation in Watts Bar Reservoir based on 137Cesium

    International Nuclear Information System (INIS)

    Brandt, C.C.; Rose, K.A.; Cook, R.B.; Dearstone, K.C.; Brenkert, A.L.; Olsen, C.R.

    1991-01-01

    The US Department of Energy has recently undertaken an environmental restoration program designed to achieve remediation of hazardous materials released from the Oak Ridge Reservation (ORR). The distribution of 137 Cs was investigated in sediments from Watts Barr Reservoir and the Clinch River as a possible marker for other contaminants released from the ORR. We have performed additional analyses on the data gathered for this study to investigate possible relationships between 137 Cs accumulation and reservoir characteristics. We found that 137 Cs deposition correlates with sedimentation rate, and soft mud layers of cores have higher 137 Cs levels than sandy mud or eroded soils. No correlation was found with water depth, distance from shore or distance from release source, but it is important to note the data were not collected to test for these effects. We estimate Watts Barr Reservoir contains 267 Ci of 137 Cs, with 7% of this total in the top 16 cm of sediment, and potentially available for biological accumulation. 2 refs

  15. Management of legacy spent nuclear fuel wastes at the Chalk River Laboratories: operating experience and progress towards waste remediation

    International Nuclear Information System (INIS)

    Cox, D.S.; Bainbridge, I.B.; Greenfield, K.R.

    2006-01-01

    AECL has been managing and storing a diversity of spent nuclear fuel, arising from operations at its Chalk River Laboratories (CRL) site over more than 50 years. A subset of about 22 tonnes of research reactor fuels, primarily metallic uranium, have been identified as a high priority for remediation, based on monitoring and inspection that has determined that these fuels and their storage containers are corroding. This paper describes the Fuel Packaging and Storage (FPS) project, which AECL has launched to retrieve these fuels from current storage, and to emplace them in a new above-ground dry storage system, as a prerequisite step to decommissioning some of the early-design waste storage structures at CRL. The retrieved fuels will be packaged in a new storage container, and subjected to a cold vacuum drying process that will remove moisture, and thereby reduce the extent of future corrosion and degradation. The FPS project will enable improved interim storage to be implemented for legacy fuels at CRL, until a decision is made on the ultimate disposition of legacy fuels in Canada. (author)

  16. Preliminary analysis of the transient overpower accident for CRBRP. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Frank, M.V.

    1975-07-01

    A preliminary analysis of the transient overpower accident for the Clinch River Breeder Reactor Plant (CRBRP) is presented. Several uncertainties in the analysis and the estimation of ramp rates during the transition to disassembly are discussed. The major conclusions are summarized

  17. Environmental impact of differently remediated hard coal overburden and tailings dumps a few decades after remediation

    International Nuclear Information System (INIS)

    Willscher, S.; Felix, M.; Sohr, A.

    2010-01-01

    Coal mining in the Saxony region of Germany has caused heavy metal and arsenic pollution in adjacent groundwater and surface waters. Coal waste dumping sites are leaching heavy metals and metalloids in the form of fine precipitates into local rivers. This paper studied the different remediation strategies used at 3 different dump sites in the area. The aim of the study was to determine the environmental impact of the dumps and evaluate the long-term effects of remediation measures. The dumps consisted of coarse to fine-grained materials from former processing activities, and contained pyrite in varying concentrations. Samples from different depth as well as groundwater samples were taken from the sites and investigated for their mechanical, geological, geochemical, biogeochemical, and physico-chemical characteristics. Seepage formation rates and contaminant loads at the dump sites were compared. The study showed that the revegetation of dump surfaces can help to prevent against erosion, but cannot prevent acid mine drainage (AMD) generation. The additional seals and covers placed at 2 of the dumps resulted in a high reduction of seepage waters, and almost no acidification of dump materials. 5 refs., 1 fig.

  18. Waste minimization opportunities at the U.S. Uranium Mill Tailings Remedial Action (UMTRA) Project, Rifle, Colorado, site

    International Nuclear Information System (INIS)

    Hartmann, G.L.; Arp, S.; Hempill, H.

    1993-01-01

    At two uranium mill sites in Rifle, Colorado, the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is removing uranium mill tailings and contaminated subgrade soils. This remediation activity will result in the production of groundwater contaminated with uranium, heavy metals, ammonia, sulfates, and total dissolved solids (TDS). The initial remediation plan called for a wastewater treatment plant for removal of the uranium, heavy metals, and ammonia, with disposal of the treated water, which still includes the sulfates and TDSS, to the Colorado River. The National Pollutant Discharge Elimination (NPDES) permit issued by the Colorado Department of Health for the two Rifle sites contained more restrictive discharge limits than originally anticipated. During the detailed review of alternate treatment systems to meet these more restrictive limits, the proposed construction procedures were reviewed emphasizing the methods to minimize groundwater production to reduce the size of the water treatment facility, or to eliminate it entirely. It was determined that with changes to the excavation procedures and use of the contaminated groundwater for use in dust suppression at the disposal site, discharge to the river could be eliminated completely

  19. Stream remediation following a gasoline spill

    International Nuclear Information System (INIS)

    Owens, E.H.; Reiter, G.A.; Challenger, G.

    2000-01-01

    On June 10, 1999, a pipe ruptured on the Olympic Pipe Line causing the release, explosion and fire of up to one million litres of gasoline in Bellingham, Washington. It affected approximately 5 km of the Whatcom Creek ecosystem. Following the incident, several concurrent activities in the source area and downstream occurred. This paper discussed the remediation of the affected stream bed sections. During the period July 6 - August 16, an interagency project was implemented. It involved mechanical, manual, and hydraulic in-situ treatment techniques to remove the gasoline from the stream bed and the banks. In addition, a series of controlled, hydraulic flushes were conducted. The sluice or control gates at the head of the Whatcom Creek were opened each night, and bigger flushes took place before and after the treatments. Simultaneously, water and sediment were sampled and analysed. The data obtained provided information on the state of the initial stream water and stream sediment and on the effects that the remediation had had. The residual gasoline was successfully removed from the sediments and river banks in six weeks. No downstream movement of the released gasoline towards Bellingham was detected. 3 refs., 2 tabs., 11 figs

  20. Ability of salt marsh plants for TBT remediation in sediments.

    Science.gov (United States)

    Carvalho, Pedro N; Basto, M Clara P; Silva, Manuela F G M; Machado, Ana; Bordalo, A A; Vasconcelos, M Teresa S D

    2010-07-01

    The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions. The influence of H. portulacoides on degradation of the butyltin compounds was assessed in two different ways: (1) a 9-month ex situ study carried out in a site of Sado River estuary, center of Portugal, which used polluted sediments collected at other nonvegetated site from the same estuary; and (2) a 12-month laboratorial study, using both plant and sediment collected at a relatively clean site of Cávado River estuary, north of Portugal, the sediment being doped with TBT, DBT, and MBT at the beginning of the experiment. The role of both S. fruticosa and S. maritima on TBT remediation in sediments was evaluated in situ, in salt marshes from Marim channel of Ria Formosa lagoon, south of Portugal, which has large areas colonized by each one of these two plants. For estimation of microbial abundance, total cell counts of sediment samples were enumerated by the DAPI direct count method. Butyltin analyses in sediment were performed using a method previously validated, which consisted of headspace solid-phase micro-extraction combined with gas chromatography-mass spectrometry after in situ ethylation (with tetraethylborate). Sediments colonized both ex situ and at lab by H. portulacoides displayed TBT levels about 30% lower than those for nonvegetated sediments with identical initial composition, after 9-12 months of plant exposure. In addition, H. portulacoides showed to be able of stimulating bacterial growth in the plant rhizosphere, which probably included degraders of TBT. In the in situ study, which compared the levels of TBT, DBT, and MBT in nonvegetated sediment and in sediments colonized by either S. maritima or S. fruticosa from the same area, TBT and DBT were only

  1. Environmental remediation activities at the Ningyo-toge Uranium Mine, Japan

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Taki, Tomohiro

    2011-01-01

    Ningyo-toge Uranium Mine is subject to the environmental remediation. The main purposes are to take measures to ensure the radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. The Mill Tailings Pond in the Ningyo-toge Uranium Mine has deposited mining waste and impounded water as a buffer reservoir before it is transferred to the Water Treatment Facility. It is located at the upstream of the water-source river, and therefore, for the environmental remediation, the highest priority has been put to it among many facilities in the Mine. So far, basic concept has been examined and planning has been carried out for the remediation. Also, a great number of data has been acquired, and using the data, some remediation activities have already begun, including designing for the upstream part of the Mill Tailings Pond. According to the current plan, the Mill Tailings Pond will be covered by capping following dewatering and compressing of mill tailings. The capping is composed of 'radon barrier' for lowering radon-gas dissipation and dose rate, and its protection layer. Natural materials are planned to be used for the capping to alleviate the future maintenance. After capping, data will be accumulated to verify the effectiveness of the capping, and if proved effective, it will be utilized for the capping of the downstream part. (author)

  2. Record of Decision Remedial Alternative Selection for the Gunsite 113 Access Road (631-24G) Operable Unit: Final Action

    International Nuclear Information System (INIS)

    Palmer, E.

    1997-01-01

    This decision document presents the selected remedial action for the Gunsite 113 Access Road Unit located at the Savannah River Site near Aiken, SC. The selected action was developed in accordance with CERCLA, as amended, and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The selected remedy satisfies both CERCLA and RCRA 3004(U) requirements. This decision is based ont he Administrative Record File for this specific RCRA/CERCLA Unit

  3. Mechanical and physical properties of 2 1/4 Cr--1 Mo steel in support of CRBRP steam generator design

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Williams, R.K.; Klueh, R.L.; Hebble, T.L.

    1975-01-01

    Mechanical and physical property tests on annealed 2 1 / 4 Cr-1 Mo steel were conducted in an effort to define behavior in support of the design of the Clinch River Breeder Reactor Plant (CRBRP) steam generator design. Interim empirical expressions and/or data are reported from the results of tensile, creep, fatigue, creep-fatigue, subcritical crack growth, thermal conductivity, thermal diffusivity, and thermal expansion tests and analysis. These expressions cover behavior, where appropriate, over a range of temperatures from 25 to as high as 700 0 C. Comparisons between thermal conductivity and diffusivity values and those found in the American Society of Mechanical Engineers (ASME) Code indicated that the new values were significantly higher than those found presently in the Code. The importance and complexity of obtaining valid mechanical and physical properties for the Clinch River Breeder Reactor Plant (CRBRP) steam generator are discussed. (U.S.)

  4. Experience with remediating radiostrontium-contaminated ground water and surface water with versions of AECL's CHEMIC process

    International Nuclear Information System (INIS)

    Vijayan, S.

    2006-01-01

    Numerous approaches have been developed for the remediation of radiostrontium ( 90 Sr) contaminated ground water and surface water. Several strontium-removal technologies have been assessed and applied at AECL's (Atomic Energy of Canada Limited) Chalk River Laboratories. These include simple ion exchange (based on non-selective natural zeolites or selective synthetic inorganic media), and precipitation and filtration with or without ion exchange as a final polishing step. AECL's CHEMIC process is based on precipitation-microfiltration and ion-exchange steps. This paper presents data related to radiostrontium removal performance and other operational experiences including troubleshooting with two round-the-clock, pilot-scale water remediation plants based on AECL's CHEMIC process at the Chalk River Laboratories site. These plants began operation in the early 1990s. Through optimization of process chemistry and operation, high values for system capability and system availability factors, and low concentrations of 90 Sr in the discharge water approaching drinking water standard can be achieved. (author)

  5. River crossing: combining basic hydraulics with pipe protection

    Energy Technology Data Exchange (ETDEWEB)

    Carnicero, Martin [TGN Transportadora de Gas del Norte, Buenos Aires (Argentina). Integrity Dept.], e-mail: Martin.Carnicero@tgn.com.ar

    2009-07-01

    As a complement to the paper presented in 2003 (IBP505-03 River crossings: a decision making scheme for the execution of protection works), this paper is about sharing the experience collected during the following 6 years, regarding the performance of remediation works. At that time, alternatives were presented for erosion control in river beds (free spanning, unburied and buried pipe), river banks (curves and meanders), flood plains, river diversions through the right of way, and rivers subject to debris flow. While developing a solution, basic hydraulic principles must be taken into consideration, keeping in mind that the primary objective is to protect a pipeline. For each of the typical solutions discussed in the 2003 paper, there will be an example with a brief theoretical explanation, a conceptual justification of the solution adopted, and recommendations for construction details which become critical for the success of the projects implemented. (author)

  6. Reactor enclosure. BRC meeting presentation

    International Nuclear Information System (INIS)

    Fisch, J.W.

    1975-01-01

    The latest status of key components of the Reactor Enclosure System of the Clinch River Breeder Reactor Plant is described. Areas where there have been notable design changes or significant design detail maturity in the six months since the last BRC presentation are highlighted. (auth)

  7. World-first PRB remediation system

    International Nuclear Information System (INIS)

    Mundle, Keely

    2013-01-01

    Full text: The permeable reactive barrier (PRB) project in question was a former waste control site at Bellevue in Western Australia, which burned down in 2001. The fire and the site's historic use as a liquid waste treatment plant created a plume of contaminated groundwater as well as a secondary offsite plume of chlorinated solvents. Damage from the fire and historical use caused the contamination to extend 200m downgradient of the site, under several nearby parcels of land and migrating in the direction of the nearby Helena River. Two areas of chlorinated solvents were identified as residual dense non-aqueous phase liquid (DNAPL) in the unsaturated zone, including concentrations of trichloroethene (TCE) at 1000 micrograms per litre (μg/L) in groundwater, which needed to be reduced to concentrations of around 330μg/L before the groundwater discharged into the river. Complete source removal of DNAPL contamination - such as TCE - in the environment can be difficult and costly. Partial source removal of the contamination may not have a significant impact on the extent of the plume but may reduce its longevity. Treatment of the contaminant plume is more achievable and allows for more time to develop an effective source remediation solution if it is required. Zero-valent iron (ZVI), a non-toxic granular material placed in PRBs, has been proven to be successful in removing a broad range of contaminants, including many chlorinated solvents such as TCE. In a ZVI-based PRB, the system uses the natural groundwater flow to channel contaminants to an engineered treatment area. As groundwater passes through the PRB, contaminants are treated in the barrier and remediated water flows out the other side. There are two primary pathways for the dechlorination of chlorinated ethenes in ZVI PRBs: beta-elimination and hydrogenolysis. Experiments have shown the dominant degradation pathway is p-elimination. This pathway is preferred as it results in the chlorinated ethene

  8. Evaluation of remedial alternative of a LNAPL plume utilizing groundwater modeling

    International Nuclear Information System (INIS)

    Johnson, T.; Way, S.; Powell, G.

    1997-01-01

    The TIMES model was utilized to evaluate remedial options for a large LNAPL spill that was impacting the North Platte River in Glenrock, Wyoming. LNAPL was found discharging into the river from the adjoining alluvial aquifer. Subsequent investigations discovered an 18 hectare plume extended across the alluvium and into a sandstone bedrock outcrop to the south of the river. The TIMES model was used to estimate the LNAPL volume and to evaluate options for optimizing LNAPL recovery. Data collected from recovery and monitoring wells were used for model calibration. A LNAPL volume of 5.5 million L was estimated, over 3.0 million L of which is in the sandstone bedrock. An existing product recovery system was evaluated for its effectiveness. Three alternative recovery scenarios were also evaluated to aid in selecting the most cost-effective and efficient recovery system for the site. An active wellfield hydraulically upgradient of the existing recovery system was selected as most appropriate to augment the existing system in recovering LNAPL efficiently

  9. U.S. LMFBR steam generators materials considerations and waterside chemistry issues

    Energy Technology Data Exchange (ETDEWEB)

    Spalaris, C N

    1975-07-01

    This report describes the materials and waterside chemistry topics most relevant to the steam generator system for the Clinch River Breeder Reactor Plant. Development programs necessary to support or confirm design and plant operating conditions are summarized, together with selected test results obtained to date. (author)

  10. U.S. LMFBR steam generators materials considerations and waterside chemistry issues

    International Nuclear Information System (INIS)

    Spalaris, C.N.

    1975-01-01

    This report describes the materials and waterside chemistry topics most relevant to the steam generator system for the Clinch River Breeder Reactor Plant. Development programs necessary to support or confirm design and plant operating conditions are summarized, together with selected test results obtained to date. (author)

  11. 76 FR 62259 - Endangered and Threatened Wildlife and Plants; Partial 90-Day Finding on a Petition To List 404...

    Science.gov (United States)

    2011-10-06

    ... electronic mail, a petition from the Center for Biological Diversity (CBD), Alabama Rivers Alliance, Clinch... electronic mail to Noah Greenwald at CBD, we acknowledged receipt of the Petition. On May 10, 2010, we... the petition. Crystal Darter (Crystallaria asprella) The crystal darter is a slender, cigar-shaped...

  12. Evaluating the Effects of the Kingston Fly Ash Release on Fish Reproduction: Spring 2009 - 2010 Studies

    Energy Technology Data Exchange (ETDEWEB)

    Greeley Jr, Mark Stephen [ORNL; Adams, Marshall [ORNL; McCracken, Kitty [ORNL

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits from the spill extended 4 miles upstream of the facility to Emory River mile 6 and downstream to Tennessee River mile 564 ({approx}8.5 miles downstream of the confluence of the Emory River with the Clinch River, and {approx}4 miles downstream of the confluence of the Clinch River with the Tennessee River). A byproduct of coal combustion, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be harmful to biological systems. The ecological effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to come from elevated levels of certain metals in the ash, particularly selenium, on fish reproduction and fish early life stages (Lemly 1993; Besser and others 1996). The ovaries of adult female fish in a lake contaminated by coal ash were reported to have an increased frequency of atretic oocytes (dead or damaged immature eggs) and reductions in the overall numbers of developing oocytes (Sorensen 1988) associated with elevated body burdens of selenium. Larval fish exposed to selenium through maternal transfer of contaminants to developing eggs in either contaminated bodies of water (Lemly 1999) or in experimental laboratory exposures (Woock and others 1987, Jezierska and others 2009) have significantly increased incidences of developmental abnormalities. Contact of fertilized eggs and developing embryos to ash in water and sediments may also pose an additional risk to the early life stages of exposed fish populations through direct uptake of metals and other ash constituents (Jezierska and others 2009). The establishment and maintenance of fish populations is intimately associated

  13. Lower Three Runs Remediation Safety Preparation Strategy - 13318

    International Nuclear Information System (INIS)

    Mackay, Alexander; Fryar, Scotty; Doane, Alan

    2013-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site. It is a large blackwater stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 20 mile stretch of Lower Three Runs Stream that narrows and provides a limited buffer of US DOE property along the stream and flood-plain. Based on data collected during the years 2009 and 2010 under American Recovery and Re-investment Act funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. In agreement with the Environmental Protection Agency and the South Carolina Department of Health and Environmental Control, three areas were identified for remediation [1] (SRNS April 2012). A comprehensive safety preparation strategy was developed for safe execution of the LTR remediation project. Contract incentives for safety encouraged the contractor to perform a complete evaluation of the work and develop an implementation plan to perform the work. The safety coverage was controlled to ensure all work was observed and assessed by one person per work area within the project. This was necessary due to the distances between the fence work and three transects being worked, approximately 20 miles. Contractor Management field observations were performed along with DOE assessments to ensure contractor focus on safe performance of the work. Dedicated ambulance coverage for remote worker work activities was provided. This effort was augmented with

  14. Lower Three Runs Remediation Safety Preparation Strategy - 13318

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, Alexander; Fryar, Scotty; Doane, Alan [United States Department of Energy, Building 730-B, Aiken, SC 29808 (United States)

    2013-07-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site. It is a large blackwater stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 20 mile stretch of Lower Three Runs Stream that narrows and provides a limited buffer of US DOE property along the stream and flood-plain. Based on data collected during the years 2009 and 2010 under American Recovery and Re-investment Act funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. In agreement with the Environmental Protection Agency and the South Carolina Department of Health and Environmental Control, three areas were identified for remediation [1] (SRNS April 2012). A comprehensive safety preparation strategy was developed for safe execution of the LTR remediation project. Contract incentives for safety encouraged the contractor to perform a complete evaluation of the work and develop an implementation plan to perform the work. The safety coverage was controlled to ensure all work was observed and assessed by one person per work area within the project. This was necessary due to the distances between the fence work and three transects being worked, approximately 20 miles. Contractor Management field observations were performed along with DOE assessments to ensure contractor focus on safe performance of the work. Dedicated ambulance coverage for remote worker work activities was provided. This effort was augmented with

  15. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Fix, N.J.

    2008-01-01

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff

  16. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  17. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Loar, J.M.; Amano, H.; Jimenez, B.D.; Kitchings, J.T.; Meyers-Schoene, L.; Mohrbacher, D.A.; Olsen, C.R.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986

  18. Recommendations on the proposed Monitored Retrievable Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Following the Department of Energy's announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE's primary and secondary sites, were invited to participate in the state's review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor's Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

  19. Recommendations on the proposed Monitored Retrievable Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Following the Department of Energy`s announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE`s primary and secondary sites, were invited to participate in the state`s review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor`s Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

  20. Flow Induced Vibration Program at Argonne National Laboratory

    Science.gov (United States)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  1. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J. M. [ed.; Adams, S. M.; Blaylock, B. G.; Boston, H. L.; Frank, M. L.; Garten, C. T.; Houston, M. A.; Kimmel, B. L.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.; Stewart, A. J.; Walton, B. T.; Berry, J. B.; Talmage, S. S. [Oak Ridge National Lab., TN (United States); Amano, H. [JAERI, Tokai Res., Establishment, Ibari-Ken (Japan); Jimenez, B. D. [School of Pharmacy, Univ. of Puerto Rico (San Juan); Kitchings, J. T. [ERCE, Denver, CO (United States); Meyers-Schoene, L. [Advanced Sciences, Inc., Fernald, OH (United States); Mohrbacher, D. A. [Univ. of Tennessee, Knoxville, TN (United States); Olsen, C. R. [USDOE Office of Energy Research, Washington, DC (United States). Office of Health and Environmental Research

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  2. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998

    International Nuclear Information System (INIS)

    Wein, G.; Rosier, B.

    1998-01-01

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs

  3. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wein, G.; Rosier, B.

    1998-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  4. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997

    International Nuclear Information System (INIS)

    Wein, G.; Rosier, B.

    1997-01-01

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs

  5. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wein, G.; Rosier, B.

    1997-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  6. Solar One demolition and remediation

    International Nuclear Information System (INIS)

    Wallace, G.L.

    1995-01-01

    Solar One was designed to demonstrate the feasibility of generating electrical energy from solar power using a central receiver concept. An array of heliostats focused sunlight onto a central receiver, which superheated water to produce steam. Although Solar One was successful, the oil-based Thermal Storage System (TSS), used to store heat energy for power generation at night, was not efficient. When the TSS was demolished for the installation of a more efficient molten salt system, a major effort was made to salvage or recycle all of its equipment and materials. During TSS demolition, approximately 7 tons of aluminum shielding and 205 tons of steel were salvaged as scrap metal; 200 tons of concrete was used for erosion protection along the Mohave River banks; 150,000 gallons of oil was recycled and 100 tons of equipment was salvaged for use at other facilities. During remediation, approximately 9,000 tons of oil contaminated sand, gravel and soil was recycled into approximately 10,000 tons of asphalt concrete and used to pave a nearby 5-acre parking lot at Barstow College. This not only reduced project remediation costs, but also met environmental requirements and provided a much needed community service. Of the estimated 11,864 tons of equipment and material from the TSS, less than 1% was disposed of at a landfill

  7. An introduction to geographic information systems as applied to a groundwater remediation program

    International Nuclear Information System (INIS)

    Hammock, J.K.; Lorenz, R.

    1989-01-01

    While the attention to environmental issues has grown over the past several years, so has the focus on groundwater protection. Addressing the task of groundwater remediation often involves a large-scale program with numerous wells and enormous amounts of data. This data must be manipulated and analyzed in an efficient manner for the remediation program to be truly effective. Geographic Information System's (GIS) have proven to be an extremely effective tool in handling and interpreting this type of groundwater information. The purpose of this paper is to introduce the audience to GIS technology, describe how it is being used at the Savannah River Site (SRS) to handle groundwater data and demonstrate how it may be used in the corporate Westinghouse environment

  8. Improving estimation of phytoplankton isotopic values from bulk POM samples in rivers

    Science.gov (United States)

    Background/Questions/MethodsResponses of phytoplankton to excessive nutrients in rivers cause many ecological problems, including harmful algal blooms, hypoxia and even food web collapse, posing serious risks to fish and human health. Successful remediation requires identificati...

  9. Overview of Chromium Remediation Technology Evaluations At The Hanford Site, Richland Washington

    Science.gov (United States)

    Morse, J. G.; Hanson, J. P.

    2009-12-01

    This paper will present an overview of the different technologies and the results to date for optimizing and improving the remediation of Cr+6 in the soil and groundwater at the Hanford Site. The Hanford Site, par of the U.S. Department of Energy's (DOE)nuclear weapons complex, encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach.) Reactors were located along the Hanford Reach as part of the production process. Sodium dichromate was used as a corrosion inhibitor in the cooling water for the reactors. As a result chromium (Cr+6) is present in the soil and groundwater. Since the mid 90's interim groundwater pump and treat systems have been in place to try and contain or mitigate the migration of contaminated groundwater into the Columbia River. The primary concern being the protection of aquatic spawning habitat for salmon and other species. In order to improve the effectiveness of the remedial actions a number of different technologies have been evaluated and/or deployed. These include, permeable reactive barriers, in-situ bio-stimulation, in-situ chemical reduction, zero-valent iron injection and evaluation of improved above ground treatment technologies. An overview of the technologies and results to date are presented.

  10. Factors for assessment of human health risk associated with remedial action at hazardous waste sites

    International Nuclear Information System (INIS)

    Stephenson, D.E.; King, C.M.; Looney, B.B.; Holmes, W.G.; Gordon, D.E.

    1985-01-01

    A risk assessment strategy that is cost effective and minimized human health risks was developed for closure of hazardous waste sites at the Savannah River Plant. The strategy consists of (1) site characterization, (2) contaminant transport modeling, and (3) determination of relative merits of alternative remedial actions according to the degree of health protection they provide

  11. Large shift in source of fine sediment in the upper Mississippi River

    Science.gov (United States)

    Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; Parker, G.

    2011-01-01

    Although sediment is a natural constituent of rivers, excess loading to rivers and streams is a leading cause of impairment and biodiversity loss. Remedial actions require identification of the sources and mechanisms of sediment supply. This task is complicated by the scale and complexity of large watersheds as well as changes in climate and land use that alter the drivers of sediment supply. Previous studies in Lake Pepin, a natural lake on the Mississippi River, indicate that sediment supply to the lake has increased 10-fold over the past 150 years. Herein we combine geochemical fingerprinting and a suite of geomorphic change detection techniques with a sediment mass balance for a tributary watershed to demonstrate that, although the sediment loading remains very large, the dominant source of sediment has shifted from agricultural soil erosion to accelerated erosion of stream banks and bluffs, driven by increased river discharge. Such hydrologic amplification of natural erosion processes calls for a new approach to watershed sediment modeling that explicitly accounts for channel and floodplain dynamics that amplify or dampen landscape processes. Further, this finding illustrates a new challenge in remediating nonpoint sediment pollution and indicates that management efforts must expand from soil erosion to factors contributing to increased water runoff. ?? 2011 American Chemical Society.

  12. Evaluation of select trade-offs between ground-water remediation and waste minimization for petroleum refining industry

    International Nuclear Information System (INIS)

    Andrews, C.D.; McTernan, W.F.; Willett, K.K.

    1996-01-01

    An investigation comparing environmental remediation alternatives and attendant costs for a hypothetical refinery site located in the Arkansas River alluvium was completed. Transport from the land's surface to and through the ground water of three spill sizes was simulated, representing a base case and two possible levels of waste minimization. Remediation costs were calculated for five alternative remediation options, for three possible regulatory levels and alternative site locations, for four levels of technology improvement, and for eight different years. It is appropriate from environmental and economic perspectives to initiate significant efforts and expenditures that are necessary to minimize the amount and type of waste produced and disposed during refinery operations; or conversely, given expected improvements in technology, is it better to wait until remediation technologies improve, allowing greater environmental compliance at lower costs? The present work used deterministic models to track a light nonaqueous phase liquid (LNAPL) spill through the unsaturated zone to the top of the water table. Benzene leaching from LNAPL to the ground water was further routed through the alluvial aquifer. Contaminant plumes were simulated over 50 yr of transport and remediation costs assigned for each of the five treatment options for each of these years. The results of these efforts show that active remediation is most cost effective after a set point or geochemical quasi-equilibrium is reached, where long-term improvements in technology greatly tilt the recommended option toward remediation. Finally, the impacts associated with increasingly rigorous regulatory levels present potentially significant penalties for the remediation option, but their likelihood of occurrence is difficult to define

  13. Gender difference in walleye PCB concentrations persists following remedial dredging

    Science.gov (United States)

    Madenjian, Charles P.; Jude, David J.; Rediske, Richard R.; O'Keefe, James P.; Noguchi, George E.

    2009-01-01

    Eleven male walleyes (Sander vitreus) and 10 female walleyes from the Saginaw Bay (Lake Huron) population were caught during the spawning run at Dow Dam (Midland, Michigan) in the Tittabawassee River during April 1996, and individual whole-fish polychlorinated biphenyl (PCB) determinations were made. Total PCB concentrations averaged 7.95 and 3.17??mg/kg for males and females, respectively. As part of the Natural Resource Damage Assessment remediation process, contaminated sediments from the Saginaw River, the main tributary to Saginaw Bay, were removed during 2000 and 2001. Total PCB concentrations of 10 male and 10 female walleyes caught at Dow Dam during April 2007 averaged 1.58 and 0.55??mg/kg, respectively. Thus, dredging of the Saginaw River appeared to be effective in reducing PCB concentrations of Saginaw Bay adult walleyes, as both males and females decreased in PCB concentration by more than 80% between 1996 and 2007. However, the ratio of male PCB concentration to female PCB concentration did not decline between 1996 and 2007. This persistent gender difference in PCB concentrations was apparently due to a gender difference in habitat utilization coupled with a persistent spatial gradient in prey fish PCB concentrations from the Saginaw River to Lake Huron.

  14. UMTRA water sampling and analysis plan, Green River, Utah

    International Nuclear Information System (INIS)

    Papusch, R.

    1993-12-01

    The purpose of this water sampling and analysis plan (WSAP) is to provide a basis for groundwater and surface water sampling at the Green River Uranium Mill Tailing Remedial Action (UMTRA) Project site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations

  15. Deep Vadose Zone Applied Field Research Center: Transformational Technology Development For Environmental Remediation

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Gephart, Roy E.; Johnson, Timothy C.; Chronister, Glen B.; Gerdes, Kurt D.; Chamberlain, Skip; Marble, Justin; Ramirez, Rosa

    2011-01-01

    DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of each organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.

  16. Interim action record of decision remedial alternative selection: TNX area groundwater operable unit

    International Nuclear Information System (INIS)

    Palmer, E.R.

    1994-10-01

    This document presents the selected interim remedial action for the TNX Area Groundwater Operable Unit at the Savannah River Site (SRS), which was developed in accordance with CERCLA of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and to the extent practicable, the National Oil and Hazardous Substances Pollution contingency Plan (NCP). This decision is based on the Administrative Record File for this specific CERCLA unit

  17. Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site

    Science.gov (United States)

    Morse, J. G.; Wellman, D. M.; Gephart, R.

    2010-12-01

    The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U

  18. Ethyl lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by Autochthonous Willow (Salix x aureo-pendula CL 'J1011') in the lower reaches of the Yangtze River

    International Nuclear Information System (INIS)

    Li Jiahua; Sun Yuanyuan; Yin Ying; Ji Rong; Wu Jichun; Wang Xiaorong; Guo Hongyan

    2010-01-01

    In order to explore a practical approach to the remediation of the cadmium (Cd)-contaminated soil in the lower reaches of the Yangtze River, we evaluated the effects of a local willow (Salix x aureo-pendula CL 'J1011') of absorbing, accumulating, and translocating Cd; and assessed the potential of chelator ethylenediaminetetraacetic acid (EDTA) in combination with ethyl lactate for enhancing the efficiency of the willow in removing Cd in two water-culture growth chamber trials and a field one. The willow showed a high tolerance to Cd in growth chamber trial 1 where the Cd concentration in the medium reached up to 25 mg L -1 medium, and the bioaccumulation factors (BAFs) of the shoots for Cd rose from 3.8 to 7.4 as the Cd concentration in the medium was elevated from 5 to 25 mg L -1 medium. In growth chamber trial 2, the average Cd removal rates in two treatments with EDTA and ethyl lactate (molar ratios of EDTA to ethyl lactate = 68/39 and 53.5/53.5, respectively) reached 0.71 mg d -1 pot -1 for the duration of Day 5-8 and 0.59 mg d -1 pot -1 for that of Day 8-11, which were 5- and 4-fold of their counterparts in the control, respectively. In the field trial, for the remediational duration of 45 days, three treatments-willow alone, willow combined with EDTA, and willow combined with EDTA and ethyl lactate-led to decreases in the Cd concentration in soil by 5%, 20%, and 29%, respectively; increases in that in the leaves by 14.6%, 56.7%, and 146.5%, respectively; and increases in that in the stems by 15.6%, 41.2%, and 87.4%, respectively, compared to their counterparts on Day 0. These results indicate that EDTA combined with ethyl lactate significantly enhanced the efficiency of willow in removing Cd from the soil. Therefore, a phytoextration system consisting of the autochthonous willow, EDTA, and ethyl lactate has high potential for the remediation of the Cd-polluted soil in the lower reaches of the Yangtze River.

  19. Ethyl lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by autochthonous willow (Salix x aureo-pendula CL 'J1011') in the lower reaches of the Yangtze River.

    Science.gov (United States)

    Li, Jiahua; Sun, Yuanyuan; Yin, Ying; Ji, Rong; Wu, Jichun; Wang, Xiaorong; Guo, Hongyan

    2010-09-15

    In order to explore a practical approach to the remediation of the cadmium (Cd)-contaminated soil in the lower reaches of the Yangtze River, we evaluated the effects of a local willow (Salix x aureo-pendula CL 'J1011') of absorbing, accumulating, and translocating Cd; and assessed the potential of chelator ethylenediaminetetraacetic acid (EDTA) in combination with ethyl lactate for enhancing the efficiency of the willow in removing Cd in two water-culture growth chamber trials and a field one. The willow showed a high tolerance to Cd in growth chamber trial 1 where the Cd concentration in the medium reached up to 25 mg L(-1) medium, and the bioaccumulation factors (BAFs) of the shoots for Cd rose from 3.8 to 7.4 as the Cd concentration in the medium was elevated from 5 to 25 mg L(-1) medium. In growth chamber trial 2, the average Cd removal rates in two treatments with EDTA and ethyl lactate (molar ratios of EDTA to ethyl lactate=68/39 and 53.5/53.5, respectively) reached 0.71 mg d(-1) pot(-1) for the duration of Day 5-8 and 0.59 mg d(-1) pot(-1) for that of Day 8-11, which were 5- and 4-fold of their counterparts in the control, respectively. In the field trial, for the remediational duration of 45 days, three treatments-willow alone, willow combined with EDTA, and willow combined with EDTA and ethyl lactate-led to decreases in the Cd concentration in soil by 5%, 20%, and 29%, respectively; increases in that in the leaves by 14.6%, 56.7%, and 146.5%, respectively; and increases in that in the stems by 15.6%, 41.2%, and 87.4%, respectively, compared to their counterparts on Day 0. These results indicate that EDTA combined with ethyl lactate significantly enhanced the efficiency of willow in removing Cd from the soil. Therefore, a phytoextration system consisting of the autochthonous willow, EDTA, and ethyl lactate has high potential for the remediation of the Cd-polluted soil in the lower reaches of the Yangtze River. Copyright 2010 Elsevier B.V. All rights

  20. Declining metal levels at Foundry Cove (Hudson River, New York): Response to localized dredging of contaminated sediments

    International Nuclear Information System (INIS)

    Mackie, Joshua A.; Natali, Susan M.; Levinton, Jeffrey S.; Sanudo-Wilhelmy, Sergio A.

    2007-01-01

    This study examines the effectiveness of remediating a well-recognized case of heavy metal pollution at Foundry Cove (FC), Hudson River, New York. This tidal freshwater marsh was polluted with battery-factory wastes (1953-1979) and dredged in 1994-1995. Eight years after remediation, dissolved and particulate metals (Cd, Co, Cu, Pb, Ni, and Ag) were found to be lower than levels in the lower Hudson near New York City. Levels of metals (Co, Ni, Cd) on suspended particles were comparatively high. Concentrations of surface sediment Cd throughout the marsh system remain high, but have decreased both in the dredged and undredged areas: Cd was 2.4-230 mg/kg dw of sediment in 2005 vs. 109-1500 mg/kg in the same area in 1983. The rate of tidal export of Cd from FC has decreased by >300-fold, suggesting that dredging successfully stemmed a major source of Cd to the Hudson River. - Dredging of a hotspot of metal-contaminated sediment is associated with a recognizable local and river-wide decline in cadmium in the Hudson River, New York

  1. Development of a sitewide groundwater remediation strategy at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Goswami, D.

    1996-01-01

    Over 440 km 2 (170 mi 2 ) of groundwater beneath the Hanford Site are contaminated by hazardous and radioactive waste, out of which almost half is over state and federal drinking water standards. In addition to the complicated nature of these plumes, remediation is further obscured by limited application of available technologies and hydrogeologic information. This paper briefly describes the processes used by the Washington State Department of Ecology (Ecology), U.S. Environmental Protection Agency, and U.S. Department of Energy (USDOE) in developing a sitewide groundwater remediation strategy for Hanford and its outcome. As an initial approach to sitewide groundwater remediation, the strategy is to remediate the major plumes found in the reactor areas (100 Area) adjacent to the Columbia River and contain the major plumes found in the Central Plateau region (200 Area). This approach was based mainly on the qualitative risk, stakeholder's and tribe's values, and available technical feasibility. The strategy emphasizes the use of existing treatment and extraction technology for the remediation of groundwater in combination with proposed and existing site infrastructure. This work is being performed in parallel with ongoing risk and other feasibility activities. Under this strategy, innovative technologies being developed are in the areas of dense nonaqueous phase liquid identification and recovery, and problems associated with strontium-90, cesium-137, and plutonium in the vadose zone and groundwater. The final remediation strategy alternatives remain a product of risk assessment, technical feasibility, site use scenario, and cost consideration. In order to develop a strategy for the final cleanup, several issues such as aquifer restoration, natural attenuation, potential contamination of groundwater from the tank farms and from the existing contamination source in the vadose zone must be looked in detail in conjuction with public and stakeholder's values

  2. River Protection Project FY 2000 Multi Year Work Plan Summary

    International Nuclear Information System (INIS)

    LENSEIGNE, D.L.

    1999-01-01

    The River Protection Project (RPP), formerly the Tank Waste Remediation System (TWRS), is a major part of the U.S. Department of Energy's (DOE) Office of River Protection (ORP). The ORP was established as directed by Congress in Section 3139 of the Strom Thurmond National Defense Authorization Act for Fiscal Year (FY) 1999. The ORP was established to elevate the reporting and accountability for the RPP to the DOE-Headquarters level. This was done to gain Congressional visibility and obtain support for a major $10 billion high-level liquid waste vitrification effort

  3. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    geographically dispersed community is united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource.

  4. Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    None available

    1999-07-29

    On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

  5. Geomaterials: their application to environmental remediation

    Directory of Open Access Journals (Sweden)

    Hirohisa Yamada, Kenji Tamura, Yujiro Watanabe, Nobuo Iyi and Kazuya Morimoto

    2011-01-01

    Full Text Available Geomaterials are materials inspired by geological systems originating from the billion years long history of the Earth. This article reviews three important classes of geomaterials. The first one is smectites—layered silicates with a cation-exchange capacity. Smectites are useful for removing pollutants and as intercalation compounds, catalysts and polymer nanocomposites. The second class is layered double hydroxides (LDHs. They have an anion-exchange capacity and are used as catalysts, catalyst precursors, sorbents and scavengers for halogens. The third class of geomaterials is zeolites—microporous materials with a cation-exchange capacity which are used for removing harmful cations. Zeolite composites with LDHs can absorb ammonium and phosphate ions in rivers and lakes, whereas zeolite/apatite composites can immobilize the radioactive iodine. These geomaterials are essential for environmental remediation.

  6. Geomaterials: their application to environmental remediation

    Science.gov (United States)

    Yamada, Hirohisa; Tamura, Kenji; Watanabe, Yujiro; Iyi, Nobuo; Morimoto, Kazuya

    2011-01-01

    Geomaterials are materials inspired by geological systems originating from the billion years long history of the Earth. This article reviews three important classes of geomaterials. The first one is smectites—layered silicates with a cation-exchange capacity. Smectites are useful for removing pollutants and as intercalation compounds, catalysts and polymer nanocomposites. The second class is layered double hydroxides (LDHs). They have an anion-exchange capacity and are used as catalysts, catalyst precursors, sorbents and scavengers for halogens. The third class of geomaterials is zeolites—microporous materials with a cation-exchange capacity which are used for removing harmful cations. Zeolite composites with LDHs can absorb ammonium and phosphate ions in rivers and lakes, whereas zeolite/apatite composites can immobilize the radioactive iodine. These geomaterials are essential for environmental remediation. PMID:27877455

  7. Use of technical and economic analysis for optimizing technology selection and remedial design for contaminated sites

    International Nuclear Information System (INIS)

    Hardisty, P.E.; Brown, A.

    1996-01-01

    The decision to remediate a contaminated site can be seen from the macroeconomic and microeconomic viewpoints. Macroeconomics can be used to plan and account for the overall cost of pollution as part of a firm's production, and thus make overall decisions on the real cost of pollution and the level of clean-up which may be called for. Valuation of damaged resources, option values and intrinsic worth is an important part of this process. Once the decision to remediate has been taken, the question becomes how best to remediate. Microeconomic analysis deals with providing efficient allocative decisions for reaching specified goals. it is safe to say that cost is one of the single most important factors in site clean-up decision making. A basic rule of remediation is often taken to be the maximization of contaminant mass removed per dollar spent. However, remediation may also be governed by other objectives and constraints. In some situations, minimization of time, rather than cost, could be the constraint. Or perhaps the objective could be to achieve a set level of clean-up for the lowest possible cost, even if a large program would result in unit-cost reductions. Evaluation of the economics of a clean-up project is directly linked to the objectives of the site owner, and the constraints within which the remediation is to be performed. Economic analysis of remedial options for containment of a 350,000 L hydrocarbon spill migrating through fractured rock into a river in Alberta, Canada, clear direction to the site owner

  8. History of the water chemistry for the few tube test model

    International Nuclear Information System (INIS)

    Moss, S.A.; Simpson, J.L.

    1979-09-01

    The water chemistry activities carried out in support of the Few Tube Test are described. This test was conducted to provide design confirmation data for the Clinch River Breeder Reactor Project (CRBRP) steam generators. Proposed CRBRP chemistry was followed; all volatile treatment (AVT) of water was carried out with on-line monitoring capability

  9. GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD, SITE WASHINGTON, USA - 11507

    International Nuclear Information System (INIS)

    Smoot, J.L.; Biebesheimer, F.H.; Eluskie, J.A.; Spiliotopoulos, A.; Tonkin, M.J.; Simpkin, T.

    2011-01-01

    The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km 2 (2.7 mi 2 ) with concentrations greater than 20 (micro)g/L. Concentrations range from 60,000 (micro)g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 (micro)g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 (micro)g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

  10. Temporary septic holding tank at the 100-C remedial action support facility -- Engineering report

    International Nuclear Information System (INIS)

    Jackson, G.J.

    1996-08-01

    The primary mission of the Hanford Site from 1943 to 1990 was to produce nuclear materials for national defense. Waste disposal activities associated with this mission resulted in the creation of more than 1,000 waste sites contaminated with radioactive and chemically hazardous constituents. Investigation and remediation of these waste sites is governed by the Tri-Party Agreement. The agreement grouped the waste sites into 78 operable units, each of which was to be investigated and remediated separately. The 100 C Remedial Action Support Facility will be required near the 105-C Reactor to support the 105-C Interim Storage Project. This project is part of the decommissioning of the eight surplus reactor buildings along the Columbia River in the 100 Area. This facility, will be a temporary, modular building sized to provide office and work space for the supervisors, engineers, and technicians assigned to the project and engaged in the associated field work. This report describes the project location, geology and potential flooding, design criteria, operations, and maintenance

  11. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene

    1999-01-01

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra water...

  12. Occurrence of perchloroethylene in surface water and fish in a river ecosystem affected by groundwater contamination.

    Science.gov (United States)

    Wittlingerová, Zdena; Macháčková, Jiřina; Petruželková, Anna; Zimová, Magdalena

    2016-03-01

    Long-term monitoring of the content of perchloroethylene (PCE) in a river ecosystem affected by groundwater contamination was performed at a site in the Czech Republic. The quality of surface water was monitored quarterly between 1994 and 2013, and fish were collected from the affected ecosystem to analyse the content of PCE in their tissue in 1998, 2011 and 2012. Concentrations of PCE (9-140 μg/kg) in the tissue of fish collected from the contaminated part of the river were elevated compared to the part of the river unaffected by the contamination (ND to 5 μg/kg PCE). The quality of surface water has improved as a result of groundwater remediation during the evaluated period. Before the remedial action, PCE concentrations ranged from 30 to 95 μg/L (1994-1997). Following commencement of remedial activities in September 1997, a decrease in the content of PCE in the surface water to 7.3 μg/L (1998) and further to 1 μg/L (2011) and 1.1 μg/L (2012) led to a progressive decrease in the average concentration of PCE in the fish muscle tissue from 79 μg/kg (1998) to 24 (2011) and 30 μg/kg (2012), respectively. It was determined that the bioconcentration of PCE does not have a linear dependence because the decrease in contamination in the fish muscle tissue is not directly proportional to the decrease in contamination in the river water. The observed average bioconcentration factors were 24 and 28 for the lower concentrations of PCE and 11 for the higher concentrations of PCE in the river. In terms of age, length and weight of the collected fish, weight had the greatest significance for bioconcentration, followed by the length, with age being evaluated as a less significant factor.

  13. The use of horizontal wells for subsurface soil and aquifer remediation

    International Nuclear Information System (INIS)

    May, D.W.

    1994-01-01

    The use of directionally controlled horizontal drilling for environmental restoration had its genesis in 1988 when two horizontal remediation wells were drilled at the Savannah River Nuclear Facility near Aiken, South Carolina. Since that time, horizontal remediation wells have been drilled at several Department of Energy and Department of Defense sites as well as on several commercial sites across the country. Directional drilling technology applied to ''Near Surface Horizontal Environmental Drilling'' comes from the oil and gas industry, the utility/pipeline river crossing industry and to a lesser extent the mining industry. Rig designs vary from very small track or wheel mounted rigs using 10 feet (3 meters) drill pipe and having less than 2,500 ft. lb. (3,400 N-m) of torque and 15,000 lb. (67 kN) of push/pull force to extremely large trailer mounted rigs with torques exceeding 60,000 ft. lb. (81,400 N-m) and over 500,000 lb. (2,200 kN) of pull. Vertical depths of horizontal wells drilled to-date have exceeded 250 feet (75 m), but the great majority of contaminant plumes are located at depths of less than 50 feet (15 m). Horizontal well displacements have exceeded 1000 feet (300 m) but most of the projects cover less than 400 feet (120 m). Wells can be drilled ''blind'' (terminate in the earth) or exit back up the earth on the other side of the plume from the drill rig

  14. Supervising Scientist for the Alligator Rivers Region Annual Report 1996-1997

    International Nuclear Information System (INIS)

    1997-01-01

    Lyell Remediation Research and Demonstration Program. The Kakadu Region Social Impact Study (KRSIS) examined the social and cultural impacts on Aboriginal people of the Kakadu region of the various developments in the region over the last 20 years. The program of encouraging best practice environmental management in the mining industry continued through sponsorship of research and training on strategic environmental issues in mining, and the production of 'best practice' booklets and databases. The Supervising Scientist was given responsibility for a new government initiative to remedy degraded river systems in Tasmania - the Tasmanian Regional Environmental Remediation Program. Provision of environmental services in the Indian Ocean Territories continued under contract to the Territories Office

  15. Physics calculations for the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Kalimullah; Kier, P.H.; Hummel, H.H.

    1977-06-01

    Calculations of distributions of power and sodium void reactivity, unvoided and voided Doppler coefficients and steel and fuel worths have been performed using diffusion theory and first-order perturbation theory for the LWR discharge Pu-fueled CRBR at BOL, the FFTF-grade Pu-fueled CRBR at BOL and for the beginning and end of equilibrium cycle of the LWR-Pu-fueled CRBR. The results of the burnup and breeding ratio calculations performed for obtaining the reactor compositions during the equilibrium cycle are also reported. Effects of sodium and steel contents on the distributions of sodium void reactivity and steel worth have also been studied. Errors and uncertainties in the reactivity coefficients due to cross-sections and the two-dimensional geometric representations of the reactor used in the calculations have also been estimated. Comparisons of the results with those in the CRBR PSAR are also discussed

  16. Remediation of contaminated areas. An overview of international guidance

    International Nuclear Information System (INIS)

    Hedemann Jensen, Per

    1999-05-01

    The work described in this report has been performed as a part of the RESTRAT Project FI4P-CT95-0021a (PL 950128) co-funded by the Nuclear Fission Safety Programme of the European Commission. The RESTRAT project has the overall objective of developing generic methodologies for ranking restoration techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps: characterisation of relevant contaminated sites; identification and characterisation of relevant restoration techniques; assessment of the radiological impact; development and application of a selection methodology for restoration options; formulation of generic conclusions and development of a manual. The project is intended to apply to situations in which sites with nuclear installations have been contaminated with radioactive materials as a result of the operation of these installations. The areas considered for remedial measures include contaminated land areas, rivers and sediments in rivers, lakes, and sea areas. Criteria for clean-up of contaminated land and criteria for protection of the public against chronic exposure are being developed by Advisory Groups and Task Groups within the International Atomic Energy Agency (IAEA) and the International Commission on Radiological Protection (ICRP). This work has been reviewed and a status as of the beginning of 1998 is given. For illustrative purposes , the basic radiation protection principles of justification and optimisation have been applied to derive generic action levels for clean-up of residential areas contaminated with radioactive materials. These generic action levels are based upon cost-benefit analyses that include avertable doses and monetary costs of clean-up. (au)

  17. Remediation of contaminated areas. An overview of international guidance

    Energy Technology Data Exchange (ETDEWEB)

    Hedemann Jensen, Per

    1999-05-01

    The work described in this report has been performed as a part of the RESTRAT Project FI4P-CT95-0021a (PL 950128) co-funded by the Nuclear Fission Safety Programme of the European Commission. The RESTRAT project has the overall objective of developing generic methodologies for ranking restoration techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps: characterisation of relevant contaminated sites; identification and characterisation of relevant restoration techniques; assessment of the radiological impact; development and application of a selection methodology for restoration options; formulation of generic conclusions and development of a manual. The project is intended to apply to situations in which sites with nuclear installations have been contaminated with radioactive materials as a result of the operation of these installations. The areas considered for remedial measures include contaminated land areas, rivers and sediments in rivers, lakes, and sea areas. Criteria for clean-up of contaminated land and criteria for protection of the public against chronic exposure are being developed by Advisory Groups and Task Groups within the International Atomic Energy Agency (IAEA) and the International Commission on Radiological Protection (ICRP). This work has been reviewed and a status as of the beginning of 1998 is given. For illustrative purposes , the basic radiation protection principles of justification and optimisation have been applied to derive generic action levels for clean-up of residential areas contaminated with radioactive materials. These generic action levels are based upon cost-benefit analyses that include avertable doses and monetary costs of clean-up. (au) 3 tabs., 4 ills., 10 refs. (Internet)

  18. Remedial action at the Green River uranium mill tailings site, Green River, Utah: Environmental assessment

    International Nuclear Information System (INIS)

    1988-07-01

    The inactive Green River uranium mill tailings site is one mile southeast of Green River, Utah. The existing tailings pile is within the floodplain boundaries of the 100-year and 500-year flood events. The 48-acre designated site contains eight acres of tailings, the mill yard and ore storage area, four main buildings, a water tower, and several small buildings. Dispersion of the tailings has contaminated an additional 24 acres surrounding the designated site. Elevated concentrations of molybdenum, nitrate, selenium, uranium, and gross alpha activity exceed background levels and the proposed US Environmental Protection Agency (EPA) maximum concentration limits in the groundwater in the unconsolidated alluvium and in the shallow shales and limestones beneath the alluvium at the mill tailings site. The contamination is localized beneath, and slightly downgradient of, the tailings pile. The proposed action is to relocate the tailings and associated contaminated materials to an area 600 feet south of the existing tailings pile where they would be consolidated into one, below-grade disposal cell. A radon/infiltration barrier would be constructed to cover the stabilized pile and various erosion control measures would be taken to ensure the long-term stability of the stabilized pile. 88 refs., 12 figs., 20 tabs

  19. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at Hanford, WA

    International Nuclear Information System (INIS)

    Thompson, K.M.; Petersen, Scott W.; Fruchter, Jonathan S.; Ainsworth, Calvin C.; Vermeul, Vince R.; Wellman, Dawn M.; Szecsody, Jim E.; Truex, Michael J.; Amonette, James E.; Long, Philip E.

    2007-01-01

    Nine projects have been recently selected by the US Department of Energy (EM-22) to address groundwater contaminant migration at the Hanford Site. This paper summarizes the background and objectives of these projects. Five of the selected projects are targeted at hexavalent chromium contamination in Hanford 100 Area groundwater. These projects represent an integrated approach towards identifying the source of hexavalent chromium contamination in the Hanford 100-D Area and treating the groundwater contamination. Currently, there is no effective method to stop strontium-90 associated with the riparian zone sediments from leaching into the river. Phytoremediation may be a possible way to treat this contamination. Its use at the 100-N Area will be investigated. Another technology currently being tested for strontium-90 contamination at the 100-N Area involves injection (through wells) of a calcium-citrate-phosphate solution, which will precipitate apatite, a natural calcium-phosphate mineral. Apatite will adsorb the strontium-90, and then incorporate it as part of the apatite structure, isolating the strontium-90 contamination from entering the river. This EM-22 funded apatite project will develop a strategy for infiltrating the apatite solution from ground surface or a shallow trench to provide treatment over the upper portion of the contaminated zone, which is unsaturated during low river stage.

  20. Remediation of a large contaminated reactor cooling reservoir: Resolving and environmental/regulatory paradox

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A.: Gladden, J.B.; Hickey, H.M.; Jones, M.P.; Mackey, H.E.; Mayer, J.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Doswell, A. [USDOE, Washington, DC (United States)

    1994-05-01

    This paper presents a case study of a former reactor cooling water reservoir, PAR Pond, located Savannah River Site. PAR Pond, a 2640 acre, man-made reservoir was built in 1958 and until 1988, received cooling water from two DOE nuclear production reactors, P and R. The lake sediments were contaminated with low levels of radiocesium (CS-137) and transuranics in the late 1950s and early 1960s because of leaking fuel elements. Elevated levels of mercury accumulated in the sediments from pumping water from the Savannah River to maintain a full pool. PAR Ponds` stability, size, and nutrient content made a significant, unique, and highly studied ecological resource for fish and wildlife populations until it was partially drained in 1991 due to a depression in the downslope of the earthen dam. The drawdown, created 1340 acres of exposed, radioactively contaminated sediments along 33 miles of shoreline. This led US EPA to declare PAR Pond as a CERCLA operable unit subject to remediation. The drawdown also raised concerns for the populations of aquatic plants, fish, alligators, and endangered species and increased the potential for off-site migration of contaminated wildlife from contact with the exposed sediments. Applicable regulations, such as NEPA and CERCLA, require wetland loss evaluations, human health and ecological risk assessments, and remediation feasibility studies. DOE is committed to spending several million dollars to repair the dam for safety reasons, even though the lake will probably not be used for cooling purposes. At the same time, DOE must make decisions whether to refill and expend additional public funds to maintain a full pool to reduce the risks defined under CERCLA or spend hundreds of millions in remediation costs to reduce the risks of the exposed sediments.

  1. Remediation of a large contaminated reactor cooling reservoir: Resolving an environmental/regulatory paradox

    International Nuclear Information System (INIS)

    Marcy, B.C.; Doswell, A.C.; Bowers, J.A.; Gladden, J.B.; Hickey, H.M.; Jones, M.P.; Mackey, H.E.; Mayer, J.J.

    1994-01-01

    This is a case study of a former reactor cooling water reservoir, PAR Pond, located at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina. PAR Pond, a 2,640 acre, man-made reservoir was built in 1958 and until 1988, received cooling water from two DOE nuclear production reactors, P and R. The lake sediments were contaminated with low levels of mercury accumulated in the sediments from pumping water from the Savannah River. PAR Ponds' stability, size, and nutrient content made a significant, unique, and highly studied ecological resource for fish and wildlife populations in the southeast until it was partially drained in 1991 for safety reasons, to about one-third of its historic volume. The drawdown created 1340 acres of exposed, radioactively contaminated sediments along 33 miles of shoreline. EPA declared PAR Pond as a CERCLA operable unit subject to remediation. The drawdown also raised concerns for the populations of aquatic plants, fish, alligators, and endangered species and increased the potential for off-site migration of contaminated wildlife. Because of the paradox of this ecologically valuable, yet contaminated ecosystem, the lake's future ecological and operational management is uncertain. Applicable regulations, such as NEPA and CERCLA, require wetland loss evaluations, human health and ecological risk assessments, and remediation feasibility studies. DOE is committed to spending several million dollars to repair the dam for safety reasons, even though the lake will probably not be used for cooling purposes. At the same time, DOE must make decisions whether to refill and expend additional public funds to maintain a full pool to reduce the risks defined under CERCLA or spend hundreds of millions in remediation costs. This case represents the types of issues and conflicts that will need to be addressed within the DOE complex and globally as nuclear production facilities are transitioned to inactive status

  2. Applying the Taguchi method to river water pollution remediation strategy optimization.

    Science.gov (United States)

    Yang, Tsung-Ming; Hsu, Nien-Sheng; Chiu, Chih-Chiang; Wang, Hsin-Ju

    2014-04-15

    Optimization methods usually obtain the travel direction of the solution by substituting the solutions into the objective function. However, if the solution space is too large, this search method may be time consuming. In order to address this problem, this study incorporated the Taguchi method into the solution space search process of the optimization method, and used the characteristics of the Taguchi method to sequence the effects of the variation of decision variables on the system. Based on the level of effect, this study determined the impact factor of decision variables and the optimal solution for the model. The integration of the Taguchi method and the solution optimization method successfully obtained the optimal solution of the optimization problem, while significantly reducing the solution computing time and enhancing the river water quality. The results suggested that the basin with the greatest water quality improvement effectiveness is the Dahan River. Under the optimal strategy of this study, the severe pollution length was reduced from 18 km to 5 km.

  3. Ethyl lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by Autochthonous Willow (Salix x aureo-pendula CL 'J1011') in the lower reaches of the Yangtze River

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiahua [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Sun Yuanyuan [State Key Laboratory of Pollution Control and Resource Reuse, Department of Hydrosciences, Nanjing University, Nanjing 210093 (China); Yin Ying; Ji Rong [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Wu Jichun [State Key Laboratory of Pollution Control and Resource Reuse, Department of Hydrosciences, Nanjing University, Nanjing 210093 (China); Wang Xiaorong [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Guo Hongyan, E-mail: hyguo@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2010-09-15

    In order to explore a practical approach to the remediation of the cadmium (Cd)-contaminated soil in the lower reaches of the Yangtze River, we evaluated the effects of a local willow (Salix x aureo-pendula CL 'J1011') of absorbing, accumulating, and translocating Cd; and assessed the potential of chelator ethylenediaminetetraacetic acid (EDTA) in combination with ethyl lactate for enhancing the efficiency of the willow in removing Cd in two water-culture growth chamber trials and a field one. The willow showed a high tolerance to Cd in growth chamber trial 1 where the Cd concentration in the medium reached up to 25 mg L{sup -1} medium, and the bioaccumulation factors (BAFs) of the shoots for Cd rose from 3.8 to 7.4 as the Cd concentration in the medium was elevated from 5 to 25 mg L{sup -1} medium. In growth chamber trial 2, the average Cd removal rates in two treatments with EDTA and ethyl lactate (molar ratios of EDTA to ethyl lactate = 68/39 and 53.5/53.5, respectively) reached 0.71 mg d{sup -1}pot{sup -1} for the duration of Day 5-8 and 0.59 mg d{sup -1}pot{sup -1} for that of Day 8-11, which were 5- and 4-fold of their counterparts in the control, respectively. In the field trial, for the remediational duration of 45 days, three treatments-willow alone, willow combined with EDTA, and willow combined with EDTA and ethyl lactate-led to decreases in the Cd concentration in soil by 5%, 20%, and 29%, respectively; increases in that in the leaves by 14.6%, 56.7%, and 146.5%, respectively; and increases in that in the stems by 15.6%, 41.2%, and 87.4%, respectively, compared to their counterparts on Day 0. These results indicate that EDTA combined with ethyl lactate significantly enhanced the efficiency of willow in removing Cd from the soil. Therefore, a phytoextration system consisting of the autochthonous willow, EDTA, and ethyl lactate has high potential for the remediation of the Cd-polluted soil in the lower reaches of the Yangtze River.

  4. Sulfate Reduction Remediation of a Metals Plume Through Organic Injection

    International Nuclear Information System (INIS)

    Phifer, M.A.

    2003-01-01

    Laboratory testing and a field-scale demonstration for the sulfate reduction remediation of an acidic/metals/sulfate groundwater plume at the Savannah River Site has been conducted. The laboratory testing consisted of the use of anaerobic microcosms to test the viability of three organic substrates to promote microbially mediated sulfate reduction. Based upon the laboratory testing, soybean oil and sodium lactate were selected for injection during the subsequent field-scale demonstration. The field-scale demonstration is currently ongoing. Approximately 825 gallons (3,123 L) of soybean oil and 225 gallons (852 L) of 60 percent sodium lactate have been injected into an existing well system within the plume. Since the injections, sulfate concentrations in the injection zone have significantly decreased, sulfate-reducing bacteria concentrations have significantly increased, the pH has increased, the Eh has decreased, and the concentrations of many metals have decreased. Microbially mediated sulfate reduction has been successfully promoted for the remediation of the acidic/metals/sulfate plume by the injection of soybean oil and sodium lactate within the plume

  5. Mercury issues related to NPDES and the CERCLA watershed project at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this document is to present the current understanding of the issues and options surrounding compliance with the current National Pollutant Discharge Elimination System (NPDES) permit conditions. This is a complicated issue that directly impacts, and will be directly impacted by, ongoing CERCLA activities in Lower East Fork Poplar Creek and the Clinch River/Poplar Creek. It may be necessary to reconstitute the whole and combine actions and decisions regarding the entire creek (origin to confluence with the Clinch River) to develop a viable long-term strategy that meets regulatory goals and requirements as well as those of DOE's 10-Year Plan and the new watershed management permitting approach. This document presents background information on the Reduction of Mercury in Plant Effluents (RMPE) and NPDES programs insofar as it is needed to understand the issues and options. A tremendous amount of data has been collected to support the NPDES/RMPE and CERCLA programs. These data are not presented, although they may be referenced and conclusions based on them may be presented, as necessary, to support discussion of the options

  6. Flow Induced Vibration Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1984-01-01

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse

  7. Topical Day on Site Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, H [ed.

    1996-09-18

    Ongoing activities at the Belgian Nuclear Research Centre relating to site remediation and restoration are summarized. Special attention has been paid to the different phases of remediation including characterization, impact assessment, evaluation of remediation actions, and execution of remediation actions.

  8. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  9. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    International Nuclear Information System (INIS)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS)

  10. Strategy paper. Remedial design/remedial action 100 Area. Revision 2

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1995-10-01

    This strategy paper identifies and defines the approach for remedial design and remedial action (RD/RA) for source waste sites in the 100 Area of the Hanford Site, located in southeastern Washington State. This paper provides the basis for the US Department of Energy (DOE) to assess and approve the Environmental Restoration Contractor's (ERC) approach to RD/RA. Additionally, DOE is requesting review/agreement from the US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) on the strategy presented in this document in order to expedite remedial activities

  11. Incorporation of phenomenological uncertainties in probabilistic safety analysis - application to LMFBR core disruptive accident energetics

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, B; Theofanous, T G; Rumble, E T; Atefi, B

    1984-08-01

    This report describes a method for quantifying frequency and consequence uncertainty distribution associated with core disruptive accidents (CDAs). The method was developed to estimate the frequency and magnitude of energy impacting the reactor vessel head of the Clinch River Breeder Plant (CRBRP) given the occurrence of hypothetical CDAs. The methodology is illustrated using the CRBR example.

  12. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    International Nuclear Information System (INIS)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities

  13. Superfund record of decision (EPA Region 10): Teledyne Wah Chang, Albany, OR. (first remedial action), December 1989

    International Nuclear Information System (INIS)

    1989-01-01

    The Teledyne Wah Chang (TWC) site, in Millersburg, Oregon, is an active plant used to produce nonferrous metals and products. The site consists of a 110-acre plant site, which contains the plant's former sludge ponds, and a 115-acre farm site, which contains four active wastewater sludge ponds. Portions of the TWC site are within the Willamette River's 100- and 500-year flood plain. The Wah Chang Corporation began operating a U.S. Bureau of Mines zirconium metal sponge pilot plant under contract with the U.S. Atomic Energy Commission in 1956. Additional facilities were subsequently built near the plant beginning in 1957 to produce nonferrous metals and products. The Lower River Solids Pond (LRSP) and Schmidt Lake sludge pond, which stored wastewater generated from the plant operations, are being addressed by this remedial action. The sludge in both the LRSP and Schmidt Lake contains heavy metals, organic compounds, and trace levels of radionuclides. The selected remedial action for the site includes excavation of 85,000 cubic yards of sludge with partial solidification of the sludge, followed by offsite disposal in a permitted solid waste landfill

  14. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2006-09-19

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  15. Applying the Taguchi Method to River Water Pollution Remediation Strategy Optimization

    Directory of Open Access Journals (Sweden)

    Tsung-Ming Yang

    2014-04-01

    Full Text Available Optimization methods usually obtain the travel direction of the solution by substituting the solutions into the objective function. However, if the solution space is too large, this search method may be time consuming. In order to address this problem, this study incorporated the Taguchi method into the solution space search process of the optimization method, and used the characteristics of the Taguchi method to sequence the effects of the variation of decision variables on the system. Based on the level of effect, this study determined the impact factor of decision variables and the optimal solution for the model. The integration of the Taguchi method and the solution optimization method successfully obtained the optimal solution of the optimization problem, while significantly reducing the solution computing time and enhancing the river water quality. The results suggested that the basin with the greatest water quality improvement effectiveness is the Dahan River. Under the optimal strategy of this study, the severe pollution length was reduced from 18 km to 5 km.

  16. Remediation of Centre Pier, Port Hope, Ontario: Historical, Logistical, Regulatory and Technical Challenges - 13118

    International Nuclear Information System (INIS)

    Ferguson Jones, Andrea; Case, Glenn; Lawrence, Dave

    2013-01-01

    Centre Pier is a 3.9 ha property owned by the Commissioners of the Port Hope Harbour in the Municipality of Port Hope, Ontario, Canada. It is centrally located on the Port Hope waterfront and is bounded on the west by the Port Hope Harbour, on the east by the Ganaraska River, on the south by Lake Ontario, and on the north by a railway corridor. The property is currently leased by the Commissioners of the Port Hope Harbour to the Cameco Corporation which owns the four onsite building that are used as warehouse space for their uranium conversion facility located on the western side of the Harbour. Remediation of this site forms part of the Port Hope Project being undertaken by Atomic Energy of Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). Soil impacts include radiological, metals and petroleum hydrocarbons resulting from long term historical industrial use. Radiological impacts in soil extend across most of the site primarily within the upper metre of fill. Metals-contaminated soil is present across the entire site in the underlying fill material. The metals-contaminated fill extends to a maximum depth of 2.0 m below grade at the north end of the site which is underlain by peat. However, the metals-contaminated soil could extend to the top of the bedrock on the remainder of the site. Based on the elevation of the bedrock in the adjacent river and Harbour Basin, the metals-contaminated soil may extend to a depth of 5.6 m or 6.5 m below existing grade. Petroleum-contaminated soil is present on the southeast side of the site, where a storage tank farm was previously located. Challenges include: - The complex history of the site both relating to site use and Pier construction. Pier development began in the 1800's and was undertaken by many different entities. Modifications and repairs were made over the years resulting in several different types of Pier walls and fill that must be considered

  17. Remediation of Centre Pier, Port Hope, Ontario: Historical, Logistical, Regulatory and Technical Challenges - 13118

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson Jones, Andrea [MMM Group Limited, 100 Commerce Valley Drive West, Thornhill, Ontario, L3T 0A1 (Canada); Case, Glenn [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario, L1A 3S4 (Canada); Lawrence, Dave [Public Works and Government Services Canada, 115 Toronto Road, Port Hope, Ontario, L1A 3S4 (Canada)

    2013-07-01

    Centre Pier is a 3.9 ha property owned by the Commissioners of the Port Hope Harbour in the Municipality of Port Hope, Ontario, Canada. It is centrally located on the Port Hope waterfront and is bounded on the west by the Port Hope Harbour, on the east by the Ganaraska River, on the south by Lake Ontario, and on the north by a railway corridor. The property is currently leased by the Commissioners of the Port Hope Harbour to the Cameco Corporation which owns the four onsite building that are used as warehouse space for their uranium conversion facility located on the western side of the Harbour. Remediation of this site forms part of the Port Hope Project being undertaken by Atomic Energy of Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). Soil impacts include radiological, metals and petroleum hydrocarbons resulting from long term historical industrial use. Radiological impacts in soil extend across most of the site primarily within the upper metre of fill. Metals-contaminated soil is present across the entire site in the underlying fill material. The metals-contaminated fill extends to a maximum depth of 2.0 m below grade at the north end of the site which is underlain by peat. However, the metals-contaminated soil could extend to the top of the bedrock on the remainder of the site. Based on the elevation of the bedrock in the adjacent river and Harbour Basin, the metals-contaminated soil may extend to a depth of 5.6 m or 6.5 m below existing grade. Petroleum-contaminated soil is present on the southeast side of the site, where a storage tank farm was previously located. Challenges include: - The complex history of the site both relating to site use and Pier construction. Pier development began in the 1800's and was undertaken by many different entities. Modifications and repairs were made over the years resulting in several different types of Pier walls and fill that must be

  18. Restoring the Lost Rivers of Washington: Can a city's hydrologic past inform its future?

    OpenAIRE

    Millay, Curtis A.

    2005-01-01

    Washington, D.C., like many older U.S. cities, suffers the woes of rapid urbanization and aging infrastructure. The cityâ s combined sewer and stormwater system dumps millions of gallons of raw sewage into the Anacostia and Potomac Rivers over 70 times annually during significant rain events. While many groups, both public and private, attempt to clean the river, billions of dollars are still necessary over several years to remedy the combined sewer overfl ow (CSO) problem alone. Current pla...

  19. Guide to using Multiple Regression in Excel (MRCX v.1.1) for Removal of River Stage Effects from Well Water Levels

    Energy Technology Data Exchange (ETDEWEB)

    Mackley, Rob D.; Spane, Frank A.; Pulsipher, Trenton C.; Allwardt, Craig H.

    2010-09-01

    A software tool was created in Fiscal Year 2010 (FY11) that enables multiple-regression correction of well water levels for river-stage effects. This task was conducted as part of the Remediation Science and Technology project of CH2MHILL Plateau Remediation Company (CHPRC). This document contains an overview of the correction methodology and a user’s manual for Multiple Regression in Excel (MRCX) v.1.1. It also contains a step-by-step tutorial that shows users how to use MRCX to correct river effects in two different wells. This report is accompanied by an enclosed CD that contains the MRCX installer application and files used in the tutorial exercises.

  20. Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This progress report covers activities for the period January 1 - March 31, 1995 on project concerning 'Hazardous Materials in Aquatic Environments of the Mississippi River Basin.' The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl

  1. Remediation by in-situ solidification/stabilisation of Ardeer landfill, Scotland

    International Nuclear Information System (INIS)

    Wyllie, M.; Esnault, A.; Barker, P.

    1997-01-01

    The Ardeer Landfill site at ICI Explosives factory on the west coast of Scotland had been a repository for waste from the site for 40 years. In order to safeguard the local environment ICI Explosives, with approval of Local Authorities and the Clyde River Purification Board put into action a programme of investigation and planning which culminated in the in-situ treatment of 10,000 m3 of waste within the landfill by a deep mixing method using the open-quotes Colmixclose quotes system. The paper describes in varying degrees of detail the remediation from investigation to the execution of the in-situ stabilisation and presents the post construction monitoring results

  2. Willingness to pay for environmental improvements in hydropower regulated rivers

    International Nuclear Information System (INIS)

    Kataria, Mitesh

    2009-01-01

    This paper uses a choice experiment to estimate how Swedish households value different environmental improvements for the hydropower regulated rivers. We obtained clear evidence that Swedish households have preferences for environmental improvement in hydropower regulated waters, at least when the cost is relatively low. Remedial measures that improve the conditions for all of the included environmental attributes i.e. fish, benthic invertebrates, river-margin vegetation and birds were found to have a significant welfare increasing impact. The results can be of value for the implementation of the Water Framework Directives in Sweden, which aims to reform the use of all surface water and ground water in the member states. (author)

  3. Evaluation of metals, metalloids, and ash mixture toxicity using sediment toxicity testing.

    Science.gov (United States)

    Stojak, Amber; Bonnevie, Nancy L; Jones, Daniel S

    2015-01-01

    In December 2008, a release of 4.1 million m(3) of coal ash from the Tennessee Valley Authority Kingston Fossil Plant occurred. Ash washed into the Emory River and migrated downstream into the Clinch and Tennessee Rivers. A Baseline Ecological Risk Assessment evaluated risks to ecological receptors from ash in the river system post-dredging. This article describes the approach used and results from sediment toxicity tests, discussing any causal relationships between ash, metals, and toxicity. Literature is limited in the realm of aquatic coal combustion residue (CCR) exposures and the potential magnitude of effects on benthic invertebrates. Sediment samples along a spectrum of ash content were used in a tiered toxicity testing approach and included a combination of 10 day sediment toxicity acute tests and longer-term, partial life cycle "definitive" tests with 2 species (Hyalella azteca and Chironomus dilutus). Arsenic, and to a lesser extent Se, in the ash was the most likely toxicant causing observed effects in the laboratory toxicity tests. Sites in the Emory River with the greatest statistical and biologically significant effects had As concentrations in sediments twice the probable effects concentration of 33 mg/kg. These sites contained greater than 50% ash. Sites with less than approximately 50% ash in sediments exhibited fewer significant toxic responses relative to the reference sediment in the laboratory. The results discussed here present useful evidence of only limited effects occurring from a worst-case exposure pathway. These results provided a valuable line of evidence for the overall assessment of risks to benthic invertebrates and to other ecological receptors, and were crucial to risk management and development of project remediation goals. © 2014 SETAC.

  4. Nutrient mitigation in a temporary river basin.

    Science.gov (United States)

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Cooper, David; Kassotaki, Elissavet

    2014-04-01

    We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The 'total daily maximum load' approach is used to estimate the nutrient flux status by flow class, indicating that almost 60% of the river network fails to meet nitrogen criteria and 50% phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs.

  5. EVALUATING THE EFFECTS OF FLY ASH EXPOSURE ON FISH EARLY LIFE STAGES: FATHEAD MINNOW EMBRYO-LARVAL TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Greeley Jr, Mark Stephen [ORNL; Elmore, Logan R [ORNL; McCracken, Kitty [ORNL

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the

  6. Functional remediation components: A conceptual method of evaluating the effects of remediation on risks to ecological receptors.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Bunn, Amoret; Downs, Janelle; Jeitner, Christian; Pittfield, Taryn; Salisbury, Jennifer

    2016-01-01

    Governmental agencies, regulators, health professionals, tribal leaders, and the public are faced with understanding and evaluating the effects of cleanup activities on species, populations, and ecosystems. While engineers and managers understand the processes involved in different remediation types such as capping, pump and treat, and natural attenuation, there is often a disconnect between (1) how ecologists view the influence of different types of remediation, (2) how the public perceives them, and (3) how engineers understand them. The overall goal of the present investigation was to define the components of remediation types (= functional remediation). Objectives were to (1) define and describe functional components of remediation, regardless of the remediation type, (2) provide examples of each functional remediation component, and (3) explore potential effects of functional remediation components in the post-cleanup phase that may involve continued monitoring and assessment. Functional remediation components include types, numbers, and intensity of people, trucks, heavy equipment, pipes, and drill holes, among others. Several components may be involved in each remediation type, and each results in ecological effects, ranging from trampling of plants, to spreading invasive species, to disturbing rare species, and to creating fragmented habitats. In some cases remediation may exert a greater effect on ecological receptors than leaving the limited contamination in place. A goal of this conceptualization is to break down functional components of remediation such that managers, regulators, and the public might assess the effects of timing, extent, and duration of different remediation options on ecological systems.

  7. Electrokinetic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrián; Ottosen, Lisbeth M.

    2007-01-01

    Important process parameters to optimize in electrokinetic soil remediation are those influencing remediation time and power consumption since these directly affect the cost of a remediation action. This work shows how the electrokinetic remediation (EKR) process could be improved by implementing...... bipolar electrodes in the porous material. The bipolar electrodes in EKR meant two improvements: (1) a shorter migration pathway for the contaminant, and (2) an increased electrical conductivity in the remediation system. All together the remediation proceeded faster with lower electrical resistance than...... in similar experiments but without the bipolar electrodes. The new electrokinetic remediation design was tested on copper mine tailings with different applied electric fields, remediation times and pre-treatment. The results showed that the copper removal was increased from 8% (applying 20V for 8 days...

  8. Remediating Remediation: From Basic Writing to Writing across the Curriculum

    Science.gov (United States)

    Faulkner, Melissa

    2013-01-01

    This article challenges faculty members and administrators to rethink current definitions of remediation. First year college students are increasingly placed into basic writing courses due to a perceived inability to use English grammar correctly, but it must be acknowledged that all students will encounter the need for remediation as they attempt…

  9. An evaluation of seasonal change in Benthic Macroinvertebrate community composition in the east branch of the Finniss River

    International Nuclear Information System (INIS)

    Edwards, C.

    2002-01-01

    Rum Jungle is an abandoned uranium-copper mine responsible for acid rock drainage into the surface waters of the intermittent East Branch and the channel of the Finniss Rivers. Prior to large-scale remediation in the mid 1980s, the East Branch was biologically dead for 8.5 km downstream to the confluence with the Finniss River, and suffered substantial ecological impairment for a further 15 km downstream. Recent studies suggest some recovery in fish diversity and abundance in the Finniss River, but only minor recovery in the macroinvertebrate fauna of the East Branch

  10. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

  11. Interim storage of sodium in ferritic steel tanks at ambient temperature

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1994-01-01

    Sodium tanks originally fabricated for elevated temperature service in the Clinch River Breeder Reactor Plant (CRBRP) will be used to store sodium removed from the Fast Flux Test Facility (FFTF) in the Sodium Storage Facility (SSF) at ambient temperature. This report presents an engineering review to confirm that protection against brittle fracture of the ferritic steel tanks is adequate for the intended service

  12. Simulant-material experimental investigation of flow dynamics in the CRBR Upper-Core Structure

    International Nuclear Information System (INIS)

    Wilhelm, D.; Starkovich, V.S.; Chapyak, E.J.

    1982-09-01

    The results of a simulant-material experimental investigation of flow dynamics in the Clinch River Breeder Reactor (CRBR) Upper Core Structure are described. The methodology used to design the experimental apparatus and select test conditions is detailed. Numerous comparisons between experimental data and SIMMER-II Code calculations are presented with both advantages and limitations of the SIMMER modeling features identified

  13. Remedial measures against high levels of radioisotopes in aquatic ecosystems

    International Nuclear Information System (INIS)

    Voitsekhovitch, O.; Haakanson, L.

    2000-01-01

    This Annex has been prepared within the framework of the Aquatic Working Group of the co-ordinated Research Programme on Validation of the Environmental Model Predictions (VAMP). The main objectives of this Annex are: (1) To provide an outline of a broad set of remedial measures and strategies tested and suggested for aquatic systems to speed up the recovery after the nuclear accident at Chernobyl in April 1986. This Report covers case studies from rivers and lakes and includes results from field and laboratory experiments, as well as measures directed at reducing radioisotopes in food by different food preparation procedures in the home. (2) To provide results from selected case studies, focusing on general, strategic results rather than site-specific details. (3) To provide conclusions which specifically address practical matters concerning how to select remedial measures in different situations, how to avoid inefficient measures, and to suggest important areas for future research. (4) To provide an analysis of the concept of lake sensitivity using both empirical and modelled data. One and the same fallout may give rise to very different radionuclide concentrations in water and biota depending on the characteristics of the lake and its catchment

  14. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    . Population rate of waste water treatment is 67 % in the total catchment area. Assumption case of 100% WWT was simulated and the result suggests that connection to public sewer system with WWTP is effective potential measure. TN emission in the Tone is higher than it in the Mur. Emission per capita is almost same level for both basin areas. Though the personal pollution stresses same as European basin area, the basin has huge population and activities to support their daily life. Agricultural activity and urban structure have great impacts on N emission and on the river water quality. Possible remedy for river pollution is construction of sewer system with waste water treatment. Agricultural activity is potential betterment factor. Comparison of Mur, Tone and assumption cases

  15. Remediation of 20,000 m3 of hydrocarbon-impacted soil at a former well site using the biopile process

    Energy Technology Data Exchange (ETDEWEB)

    Bedard, G. [Biogenie Inc., Calgary, AB (Canada)

    2006-07-01

    The remediation of 20,000 m{sup 3} of hydrocarbon-impacted soil at a former well site using the biopile process was discussed. The site involved was an abandoned site located southwest from Red Deer, Alberta in an agricultural area. The presentation provided background on the site history and discussed an additional site assessment. The objectives of this assessment were to complete the delineation of the hydrocarbon plume; confirm the depth of impact identified in a previous environmental assessment; and, select the most efficient remediation strategy. The presentation also discussed findings of the Environmental Services Association (ESA). Site specific challenges that were addressed included proximity of land owners; lease slopes to a nearby river; large volume of impacted material; depth of impact; limited space available on-site; high concentrations of petroleum hydrocarbons (PHCs); segregation of impacted soil; and winter installation and start-up. The proposed strategy and its advantages as well as the methodology for the remediation strategy were all discussed. 5 tabs., 5 figs.

  16. Second annual report of the Environmental Restoration Monitoring and Assessment Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Clapp, R.B.; Watts, J.A.

    1993-09-01

    This report summarizes the salient features of the annual efforts of environmental monitoring and field investigations conducted to support the Environmental Restoration (ER) Program at the Oak Ridge National Laboratory (ORNL). This report focuses on the watershed scale, striving to provide an ORNL site-wide perspective on types, distribution, and transport of contamination. Results are used to enhance the conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This report summarizes the efforts of the Waste Area Grouping (WAG) 2 and Site Investigations (SI) program. WAG 2 is the lower portion of the White Oak Creek (WOC) system which drains the major contaminated sites at ORNL and discharges to the Clinch River where public access is allowed. The remedial investigation for WAG 2 includes a long-term multimedia environmental monitoring effort that takes advantage of WAG 2's role as an integrator and conduit of contaminants from the ORNL site. This report also includes information from other site-specific remedial investigations and feasibility studies (RI/FS) for contaminated sites at ORNL and data from other ongoing monitoring programs conducted by other organizations [e.g., the National Pollutant Discharge Elimination System (NPDES) compliance monitoring conducted by the Environmental Surveillance and Protection Section]. This information is included to provide an integrated basis to support ER decision making. This report summarizes information gathered through early 1993. Annual data, such as annual discharges of contaminants, are reported for calendar year 1992

  17. In-situ treatment of a mixed hydrocarbon plume through a permeable reactive barrier and enhanced bio-remediation

    International Nuclear Information System (INIS)

    Aglietto, I.; Bretti, L.L.

    2005-01-01

    Groundwater is frequently polluted with mixtures of contaminants that are amenable to different types of remediation. One example is the combination of petroleum hydrocarbons (mostly BTEX) and chlorinated solvents (chlorinated ethenes and propanes), as it occurs in the groundwater beneath the industrial site that is the objective of the present case study. The site is located in Italy near a main river (Arno), which is supposed to be the final recipient of the contamination and where a possible exposure might take place. The aim of the treatment is the plume containment within the site boundaries in order to avoid further migration of the contaminants towards the river. The design of the remediation system was based on an extensive site characterization that included - but was not limited to - the following information: geological and geochemical, microbiological and hydrological data, together with analytical data (i.e. contaminant concentrations). Pilot tests were also implemented in order to collect the necessary parameters for the full-scale treatment design and calibration. The site was contaminated by a mixed plume of more than 30 different contaminants, ranging from BTEX, to MTBE, to PAH, to chlorinated solvents. The concentration peaks were in the order of 1-100 mg/l for each contaminant. Petroleum hydrocarbons are quickly degradable through oxidative mechanisms (especially aerobic biodegradation), whereas fully-chlorinated compounds are only degradable via reductive pathways. A mixed plume of both types of contaminants therefore requires a combined approach with the application of different treatment technologies. The remediation strategy elaborated combines a permeable reactive barrier (PRB) in a funnel and gate configuration for the down-gradient plume containment, with the enhanced bio-remediation of the contaminants for the control of the plume boundaries and for the abatement of the concentration peaks. Pilot tests were carried out in order to assess

  18. Remediation plans in family medicine residency

    Science.gov (United States)

    Audétat, Marie-Claude; Voirol, Christian; Béland, Normand; Fernandez, Nicolas; Sanche, Gilbert

    2015-01-01

    Abstract Objective To assess use of the remediation instrument that has been implemented in training sites at the University of Montreal in Quebec to support faculty in diagnosing and remediating resident academic difficulties, to examine whether and how this particular remediation instrument improves the remediation process, and to determine its effects on the residents’ subsequent rotation assessments. Design A multimethods approach in which data were collected from different sources: remediation plans developed by faculty, program statistics for the corresponding academic years, and students’ academic records and rotation assessment results. Setting Family medicine residency program at the University of Montreal. Participants Family medicine residents in academic difficulty. Main outcome measures Assessment of the content, process, and quality of remediation plans, and students’ academic and rotation assessment results (successful, below expectations, or failure) both before and after the remediation period. Results The framework that was developed for assessing remediation plans was used to analyze 23 plans produced by 10 teaching sites for 21 residents. All plans documented cognitive problems and implemented numerous remediation measures. Although only 48% of the plans were of good quality, implementation of a remediation plan was positively associated with the resident’s success in rotations following the remediation period. Conclusion The use of remediation plans is well embedded in training sites at the University of Montreal. The residents’ difficulties were mainly cognitive in nature, but this generally related to deficits in clinical reasoning rather than knowledge gaps. The reflection and analysis required to produce a remediation plan helps to correct many academic difficulties and normalize the academic career of most residents in difficulty. Further effort is still needed to improve the quality of plans and to support teachers.

  19. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    In response to the needs of its Member States, the International Atomic Energy Agency (IAEA) has published many documents covering different aspects of remediation of contaminated environments. These documents range from safety fundamentals and safety requirements to technical documents describing remedial technologies. Almost all the documents on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a document related to accidents, namely the IAEA TRS No. 363 'Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides'. Since the publication of TRS 363, there has been a considerable increase in relevant information. In response, the IAEA initiated the development of a new document, which incorporated new knowledge obtained during last 20 years, lessons learned and subsequent changes in the regulatory framework. The new document covers all aspects related to the environmental remediation from site characterisation to a description of individual remedial actions and decision making frameworks, covering urban, agricultural, forest and freshwater environments. Decisions taken to commence remediation need to be based on an accurate assessment of the amount and extent of contamination in relevant environmental compartments and how they vary with time. Major aspects of site characterisation intended for remediation are described together with recommendations on effective sampling programmes and data compilation for decision making. Approaches for evaluation of remedial actions are given in the document alongside the factors and processes which affect their implementation for different environments. Lessons learned following severe radiation accidents indicate that remediation should be considered with respect to many different

  20. Some Similarities and Differences Between Compositions Written by Remedial and Non-Remedial College Freshmen.

    Science.gov (United States)

    House, Elizabeth B.; House, William J.

    The essays composed by 84 remedial and 77 nonremedial college freshmen were analyzed for some features proposed by Mina Shaughnessy as being characteristic of basic writers. The students were enrolled in either a beginning remedial class (098), a class at the next level of remediation (099), or a regular English class (101). The essays were…

  1. Object reasoning for waste remediation

    International Nuclear Information System (INIS)

    Pennock, K.A.; Bohn, S.J.; Franklin, A.L.

    1991-08-01

    A large number of contaminated waste sites across the United States await size remediation efforts. These sites can be physically complex, composed of multiple, possibly interacting, contaminants distributed throughout one or more media. The Remedial Action Assessment System (RAAS) is being designed and developed to support decisions concerning the selection of remediation alternatives. The goal of this system is to broaden the consideration of remediation alternatives, while reducing the time and cost of making these considerations. The Remedial Action Assessment System is a hybrid system, designed and constructed using object-oriented, knowledge- based systems, and structured programming techniques. RAAS uses a combination of quantitative and qualitative reasoning to consider and suggest remediation alternatives. The reasoning process that drives this application is centered around an object-oriented organization of remediation technology information. This paper describes the information structure and organization used to support this reasoning process. In addition, the paper describes the level of detail of the technology related information used in RAAS, discusses required assumptions and procedural implications of these assumptions, and provides rationale for structuring RAAS in this manner. 3 refs., 3 figs

  2. Uranium Mill Tailings Remedial Action Project Annual Environmental Monitoring Report calendar year 1992: Volume 1

    International Nuclear Information System (INIS)

    1993-01-01

    This report describes environmental monitoring and compliance at eight UMTRA sites where remedial action was underway during 1992 and at the ten sites that were complete at the end of 1992. Volume I contains information for Ambrosia Lake, NM; Cannonsburg/Burrell, PA; Durango, CO; Falls City, TX; Grand Junction, CO; Green River, UT; and Gunnison, CO. Each site report contains a site description, compliance summary, environmental program information, environmental radiological and non-radiological program information, water resources protection, and quality assurance information

  3. Uranium Mill Tailings Remedial Action Project Annual Environmental Monitoring Report calendar year 1992: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-31

    This report describes environmental monitoring and compliance at eight UMTRA sites where remedial action was underway during 1992 and at the ten sites that were complete at the end of 1992. Volume I contains information for Ambrosia Lake, NM; Cannonsburg/Burrell, PA; Durango, CO; Falls City, TX; Grand Junction, CO; Green River, UT; and Gunnison, CO. Each site report contains a site description, compliance summary, environmental program information, environmental radiological and non-radiological program information, water resources protection, and quality assurance information.

  4. Temporary septic holding tank at the 100-C remedial action restroom facility -- Engineering report

    International Nuclear Information System (INIS)

    Jackson, G.J.

    1996-10-01

    The primary mission of the Hanford Site from 1943 to 1990 was to produce nuclear materials for national defense. Waste disposal activities associated with this mission resulted in the creation of more than 1,000 waste sites contaminated with radioactive and chemically hazardous constituents. Investigation and remediation of these waste sites is governed by the Tri-Party Agreement. The agreement grouped the waste sites into 78 operable units, each of which was to be investigated and remediated separately. The 100-C Remedial Action Restroom Trailer Facility will be required near the 105-C Reactor to support the 105-C Interim Storage Project. This project is part of the decommissioning of the eight surplus reactor buildings along the Columbia River in the 100 Area. This facility will be a temporary, modular building sized to provide restroom facilities for the supervisors, engineers, technicians, and craft personnel assigned to the project and engaged in the associated field work. This facility will be a temporary, modular building sized to provide restroom facilities for the supervisors, engineers, technicians, and raft personnel assigned to the project and engaged in the associated field work. The paper describes the project location, geology and flooding potential, design criteria, and operations and maintenance

  5. Conflicts in River Management: A Conservationist's Perspective on Sacramento River Riparian Habitats—Impacts, Threats, Remedies, Opportunities, and Consensus

    Science.gov (United States)

    Richard Spotts

    1989-01-01

    The Sacramento River's historic riparian habitats have been reduced by over 98 percent due to cumulative, adverse human activities. These activities continue to jeopardize the remaining riparian habitats. The results of these trends is more endangered species conflicts and listings, coupled with less fish, beautiful scenery, and other resource values. This paper...

  6. Savannah River Site RCRA/CERCLA/NEPA integrated investigation case study

    International Nuclear Information System (INIS)

    Clark, D.R.; Thomas, R.; Wilson, M.P.

    1992-01-01

    The Savannah River Site (SRS) is a US Department of Energy facility placed on the Superfund National Priority List in 1989. Numerous past disposal facilities and contaminated areas are undergoing the integrated regulatory remediation process detailed in the draft SRS Federal Facility Agreement. This paper will discuss the integration of these requirements by highlighting the investigation of the D-Area Burning/Rubble Pits, a typical waste unit at SRS

  7. USGS Activities at Lake Roosevelt and the Upper Columbia River

    Science.gov (United States)

    Barton, Cynthia; Turney, Gary L.

    2010-01-01

    Lake Roosevelt (Franklin D. Roosevelt Lake) is the impoundment of the upper Columbia River behind Grand Coulee Dam, and is the largest reservoir within the Bureau of Reclamation's Columbia Basin Project (CBP). The reservoir is located in northeastern Washington, and stretches 151 miles from Grand Coulee Dam north to the Canadian border. The 15-20 miles of the Columbia River downstream of the border are riverine and are under small backwater effects from the dam. Grand Coulee Dam is located on the mainstem of the Columbia River about 90 miles northwest of Spokane. Since the late 1980s, trace-element contamination has been known to be widely present in Lake Roosevelt. Trace elements of concern include arsenic, cadmium, copper, lead, mercury, and zinc. Contaminated sediment carried by the Columbia River is the primary source of the widespread occurrence of trace-element enrichment present in Lake Roosevelt. In 2001, the U.S. Environmental Protection Agency (EPA) initiated a preliminary assessment of environmental contamination of the Lake Roosevelt area (also referred to as Upper Columbia River, UCR site, or UCR/LR site) and has subsequently begun remedial investigations of the UCR site.

  8. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    Science.gov (United States)

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  9. Long-term surveillance plan for the Green River, Utah, disposal site

    International Nuclear Information System (INIS)

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  10. 200-UP-1 groundwater remedial design/remedial action work plan. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This 200-UP-1 remedial design report presents the objective and rationale developed for the design and implementation of the selected interim remedial measure for the 200-UP-1 Operable Unit, located in the 200 West Area of the Hanford Site

  11. Genealogy Remediated

    DEFF Research Database (Denmark)

    Marselis, Randi

    2007-01-01

    Genealogical websites are becoming an increasingly popular genre on the Web. This chapter will examine how remediation is used creatively in the construction of family history. While remediation of different kinds of old memory materials is essential in genealogy, digital technology opens new...... possibilities. Genealogists use their private websites to negotiate family identity and hereby create a sense of belonging in an increasingly complex society. Digital technologies enhance the possibilities of coorporation between genealogists. Therefore, the websites are also used to present archival...

  12. Preliminary physics calculations for the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Kalimullah.

    1975-01-01

    Calculations of sodium void, fuel, and clad worths, power distribution, and control rod worths have been carried out for an R-Z model of the CRBR, using diffusion theory and first-order perturbation theory for material worths. The power distribution and control rod worths have also been calculated in two-dimensional triangular mesh geometry. The present results are preliminary because of inaccuracy of the reactor model and the cross sections used, but the final results are not expected to be greatly different. (U.S.)

  13. Assessment of radiation exposure and evaluation of remedial measures for the uranium mining and milling area of Mailuu Suu, Kyrgyzstan

    International Nuclear Information System (INIS)

    Vandenhove, Hildegarde; Sweeck, Lieve; Clerc, Jean-Jacques; Aitaliev, Anarkul

    2006-01-01

    The area of the town of Mailuu Suu, Kyrgyzstan, is polluted by radionuclides and heavy metals in tailing dumps and heaps resulting from the historic exploitation of uranium mines. Radioactive substances are stored in 23 tailings and 10 heaps situated along the Mailuu Suu River. The stability of many tailings is at risk. Attention is mostly directed to Tailing 3, because of its important radionuclide inventory and since threatened by the borders of a major landslide. In the frame of a European Commission-TACIS funded project, a radiological monitoring programme was set up and a radiological assessment was performed for critical group members living in the city of Mailuu Suu, located downstream the tailings, or in the village of Kara Agach, partially located on a uranium mine-waste dump. The actual radiological situation is of no immediate concern for most of the population of Mailuu Suu. The actual external exposure and exposure from radon are, respectively, around 1.2 mSv a -1 and 5 mSv a -1 , at both locations. Ingestion dose was negligible for a critical group member living at Mailuu Suu. At Kara Agach, however, under the hypothesis that all food and fodder is cultivated locally, exposure from ingestion is much higher (∼10-30 mSv a -1 ). Additional dose from irrigation with Mailuu Suu river water is small in actual conditions ( -1 ). However, there is an important possibility that, triggered by an earthquake or a landslide, (part of the) tailing(s) content may be directed to the river Mailuu Suu. In case the content of Tailing 3 is thrust to river, calculated maximum doses are 45 and 77 mSv a -1 for an adult and a child, respectively, for an assumed exposure duration of 2 years. To impede the consequences of a potential disaster, under the TACIS project different remedial options were evaluated for Tailing 3 including in situ stabilisation and tailing translocation. Also more global remedial options for the Mailuu Suu River valley were proposed (translocation

  14. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  15. Bacterial Pollution in River Waters and Gastrointestinal Diseases

    Directory of Open Access Journals (Sweden)

    Lilia Rodríguez-Tapia

    2017-05-01

    Full Text Available Currently, one of Mexico’s most severe environmental problems is the high levels of pollution of many of its rivers. The present article focuses on the relationship between total coliform bacteria levels and the increase of human digestive tract diseases in the highly polluted Atoyac River in the central Mexican states of Puebla and Tlaxcala. Pollution has become a potential health hazard for people living in nearby river communities. Based on data collected from six of the most contaminated riverside municipalities, two environmental models were developed taking into consideration the health of the entire population, not simply that of its individual members. Such models estimate a health-disease function that confirm the link between Atoyac River pollution and the incidence of gastrointestinal diseases. The causal relation between pollution and gastrointestinal disease incentivizes the creation of epidemiological and public health programs aimed at reducing the environmental health impact of the pollution associated with the Atoyac River. The results presented here are the first of their kind of this river and will serve as basis for future research exploring other similarly contaminated riparian communities. As the causes of pollution are directly related to the economic development and population growth of the region, further research should be conducted for prevention of diseases, educational programs, water remediation and conservation programs that will have a positive impact on the quality of life of the population presently at risk.

  16. Bacterial Pollution in River Waters and Gastrointestinal Diseases.

    Science.gov (United States)

    Rodríguez-Tapia, Lilia; Morales-Novelo, Jorge A

    2017-05-04

    Currently, one of Mexico's most severe environmental problems is the high levels of pollution of many of its rivers. The present article focuses on the relationship between total coliform bacteria levels and the increase of human digestive tract diseases in the highly polluted Atoyac River in the central Mexican states of Puebla and Tlaxcala. Pollution has become a potential health hazard for people living in nearby river communities. Based on data collected from six of the most contaminated riverside municipalities, two environmental models were developed taking into consideration the health of the entire population, not simply that of its individual members. Such models estimate a health-disease function that confirm the link between Atoyac River pollution and the incidence of gastrointestinal diseases. The causal relation between pollution and gastrointestinal disease incentivizes the creation of epidemiological and public health programs aimed at reducing the environmental health impact of the pollution associated with the Atoyac River. The results presented here are the first of their kind of this river and will serve as basis for future research exploring other similarly contaminated riparian communities. As the causes of pollution are directly related to the economic development and population growth of the region, further research should be conducted for prevention of diseases, educational programs, water remediation and conservation programs that will have a positive impact on the quality of life of the population presently at risk.

  17. Mold: Cleanup and Remediation

    Science.gov (United States)

    ... National Center for Environmental Health (NCEH) Cleanup and Remediation Recommend on Facebook Tweet Share Compartir On This ... CDC and EPA on mold cleanup, removal and remediation. Cleanup information for you and your family Homeowner’s ...

  18. UTILIZING INNOVATIVE TECHNOLOGIES FOR ENVIRONMENTAL CLEAN-UP AT SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Bergren, C.

    2009-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units and facilities that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  19. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    International Nuclear Information System (INIS)

    Tippets, F.E.

    1975-01-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  20. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Tippets, F E

    1975-07-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  1. 77 FR 30352 - Forest River, Inc., Denial of Petition for Decision of Inconsequential Noncompliance

    Science.gov (United States)

    2012-05-22

    ...: Forest River estimates that a total of approximately 2,741 model year 2009-2011 R-Pod model travel..., to exempt it from providing recall notification of noncompliance as required by 49 U.S.C. 30118 and remedying the recall noncompliance as required by 49 U.S.C. 30120, should be granted. Comments The agency...

  2. Strategy paper. Remedial design/remedial action 100 Area. Revision 1

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1995-07-01

    The purpose of this planning document is to identify and define the approach for remedial design and remedial action (RD/RA) in the 100 Area of the Hanford Site, located in southeastern Washington State. Additionally, this document will support the Hanford Site Environmental Restoration Contract (ERC) team, the US Department of Energy (DOE), and regulatory agencies in identifying and agreeing upon the complete process for expedited cleanup of the 100 Area

  3. Electrodialytic Remediation of Copper Mine Tailings

    DEFF Research Database (Denmark)

    Hansen, H.K.; Rojo, A.; Ottosen, L.M.

    2012-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields.......This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields....

  4. MGP site remediation: Working toward presumptive remedies

    International Nuclear Information System (INIS)

    Larsen, B.R.

    1996-01-01

    Manufactured Gas Plants (MGPs) were prevalent in the United States during the 19th and first half of the 20th centuries. MGPs produced large quantities of waste by-products, which varied depending on the process used to manufacture the gas, but most commonly were tars and polynuclear aromatic hydrocarbons. There are an estimated 3,000 to 5,000 abandoned MGP sites across the United States. Because these sites are not concentrated in one geographic location and at least three different manufacturing processes were used, the waste characteristics are very heterogeneous. The question of site remediation becomes how to implement a cost-effective remediation with the variety of cleanup technologies available for these sites. Because of the significant expenditure required for characterization and cleanup of MGP sites, owners and regulatory agencies are beginning to look at standardizing cleanup technologies for these sites. This paper discusses applicable cleanup technologies and the attitude of state regulatory agencies towards the use of presumptive remedies, which can reduce the amount of characterization and detailed analysis necessary for any particular site. Additionally, this paper outlines the process of screening and evaluating candidate technologies, and the progress being made to match the technology to the site

  5. Site remediation: The naked truth

    International Nuclear Information System (INIS)

    Calloway, J.M.

    1991-01-01

    The objective of any company faced with an environmental site remediation project is to perform the cleanup effectively at the lowest possible cost. Today, there are a variety of techniques being applied in the remediation of sites involving soils and sludges. The most popular include: stabilization, incineration, bioremediation and off-site treatment. Dewatering may also play an integral role in a number of these approaches. Selecting the most cost-effective technique for remediation of soils and sludges can be a formidable undertaking, namely because it is often difficult to quantify certain expenses in advance of the project. In addition to providing general cost guidelines for various aspects of soil and sludge remediation, this paper will show how some significant cost factors can be affected by conditions related to specific remediation projects and the cleanup technology being applied

  6. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  7. Remedial action and waste disposal project: 100-B/C remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Cislo, G.B.

    1996-06-01

    The Readiness Evaluation Plan presents the methodology used to assess the readiness of the 100-B/C Remedial Action Project. The 100 Areas Remedial Action Project will remediate the 100 Areas liquid waste site identified in the Interim Action Record of Decision for the 100- BC-1, 100-DR-1, and 100-HR-1 Operable Units. These sites are located in the 100 Area of the Hanford Site in Richland, Washington

  8. Thermal soil remediation

    International Nuclear Information System (INIS)

    Nelson, D.

    1999-01-01

    The environmental properties and business aspects of thermal soil remediation are described. Thermal soil remediation is considered as being the best option in cleaning contaminated soil for reuse. The thermal desorption process can remove hydrocarbons such as gasoline, kerosene and crude oil, from contaminated soil. Nelson Environmental Remediation (NER) Ltd. uses a mobile thermal desorption unit (TDU) with high temperature capabilities. NER has successfully applied the technology to target heavy end hydrocarbon removal from Alberta's gumbo clay in all seasons. The TDU consist of a feed system, a counter flow rotary drum kiln, a baghouse particulate removal system, and a secondary combustion chamber known as an afterburner. The technology has proven to be cost effective and more efficient than bioremediation and landfarming

  9. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

  10. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  11. Columbia River System Operation Review final environmental impact statement. Appendix S: U.S. Fish and Wildlife Service Coordination Act Report

    International Nuclear Information System (INIS)

    1995-11-01

    This document constitutes the report of the US Fish and Wildlife Service (FWS) relating to the proposed Columbia River System Operation Review (SOR). The SOR proposed alternative consists of a number of specific water management manipulations and new management targets for operating the network of existing Federal Columbia River Power System dams and facilities. This report, therefore, presents a broader, ecosystem planning and management approach for evaluating and resolving those operational and biological uncertainties. Potential mitigation, enhancement and restoration actions associated with the preferred alternative will require an adaptive implementation approach. At the present time and as further changes anticipated in SOR operations occur, the complete, ecosystemwide, synergistic effects of the operation of the current Federal Columbia River Power System cannot be adequately ascertained. However, the initial elements of ecosystem-based remedies are presented in Sections 4 and 5 of this report. These remedies are intended to stimulate action to help conserve distressed fish and wildlife populations, while furthering understanding of the impacts of the SOR preferred alternative on the ecosystem. This Coordination Act Report is the first attempt to integrate fish and wildlife mitigation, enhancement, recovery and restoration needs with the proposed action and the existing Federal Columbia River Power System

  12. Temporary septic holding tank at the 100-C remedial action restroom facility -- Engineering report. Revision 1

    International Nuclear Information System (INIS)

    Jackson, G.J.

    1996-10-01

    The primary mission of the Hanford Site from 1943 to 1990 was to produce nuclear materials for national defense. Waste disposal activities associated with this mission resulted in the creation of more than 1,000 waste sites contaminated with radioactive and chemically hazardous constituents. Investigation and remediation of these waste sites is governed by the Tri-Party Agreement. The 100-C Remedial Action Restroom Trailer Facility will be required near the 105-C Reactor to support the 105-C Interim Storage Project. This project is part of the decommissioning of the eight surplus reactor buildings along the Columbia River in the 100 Area. This facility will be a temporary, modular building sized to provide restroom facilities for the supervisors, engineers, technicians, and raft personnel assigned to the project and engaged in the associated field work. This paper describes the geology and flooding potential, design criteria, operations, and maintenance

  13. Remedial action and waste disposal project -- 300-FF-1 remedial action readiness assessment plan

    International Nuclear Information System (INIS)

    April, J.G.; Carlson, R.A.; Greif, A.A.; Johnson, C.R.; Orewiler, R.I.; Perry, D.M.; Plastino, J.C.; Roeck, F.V.; Tuttle, B.G.

    1997-04-01

    This Readiness Assessment Plan presents the methodology used to assess the readiness of the 300-FF-1 Remedial Action Project. Remediation involves the excavation, treatment if applicable, and final disposal of contaminated soil and debris associated with the waste sites in the 300-FF-1 Operable Unit. The scope of the 300-FF-1 remediation is to excavate, transport, and dispose of contaminated solid from sites identified in the 300-FF-1 Operable Unit

  14. Assessing sustainable remediation frameworks using sustainability principles.

    Science.gov (United States)

    Ridsdale, D Reanne; Noble, Bram F

    2016-12-15

    The remediation industry has grown exponentially in recent decades. International organizations of practitioners and remediation experts have developed several frameworks for integrating sustainability into remediation projects; however, there has been limited attention to how sustainability is approached and operationalized in sustainable remediation frameworks and practices - or whether sustainability plays any meaningful role at all in sustainable remediation. This paper examines how sustainability is represented in remediation frameworks and the guidance provided for practical application. Seven broad sustainability principles and review criteria are proposed and applied to a sample of six international remediation frameworks. Not all review criteria were equally satisfied and none of the frameworks fully met all criteria; however, the best performing frameworks were those identified as sustainability remediation frameworks. Intra-generational equity was addressed by all frameworks. Integrating social, economic and biophysical components beyond triple-bottom-line indicators was explicitly addressed only by the sustainable remediation frameworks. No frameworks provided principle- or rule-based guidance for dealing with trade-offs in sustainability decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Risk-based remediation: Approach and application

    International Nuclear Information System (INIS)

    Frishmuth, R.A.; Benson, L.A.

    1995-01-01

    The principle objective of remedial actions is to protect human health and the environment. Risk assessments are the only defensible tools available to demonstrate to the regulatory community and public that this objective can be achieved. Understanding the actual risks posed by site-related contamination is crucial to designing cost-effective remedial strategies. All to often remedial actions are overdesigned, resulting in little to no increase in risk reduction while increasing project cost. Risk-based remedial actions have recently been embraced by federal and state regulators, industry, government, the scientific community, and the public as a mechanism to implement rapid and cost-effective remedial actions. Emphasizing risk reduction, rather than adherence to ambiguous and generic standards, ensures that only remedial actions required to protect human health and the environment at a particular site are implemented. Two sites are presented as case studies on how risk-based approaches are being used to remediate two petroleum hydrocarbon contaminated sites. The sites are located at two US Air Force Bases, Wurtsmith Air Force Base (AFB) in Oscoda, Michigan and Malmstrom AFB in Great Falls, Montana

  16. Cost considerations in remediation and disposal

    International Nuclear Information System (INIS)

    Dance, J.T.; Huddleston, R.D.

    1999-01-01

    Opportunities for assessing the costs associated with the reclamation and remediation of sites contaminated by oilfield wastes are discussed. The savings can be maximized by paying close attention to five different aspects of the overall site remediation and disposal process. These are: (1) highly focused site assessment, (2) cost control of treatment and disposal options, (3) value added cost benefits, (4) opportunities to control outside influences during the remedial process, and (5) opportunities for managing long-term liabilities and residual risk remaining after the remedial program is completed. It is claimed that addressing these aspects of the process will ultimately lower the overall cost of site remediation and waste disposal

  17. Multiscale Modeling of Radioisotope Transfers in Watersheds, Rivers, Reservoirs and Ponds of Fukushima Prefecture

    Science.gov (United States)

    Zheleznyak, M.; Kivva, S.; Nanba, K.; Wakiyama, Y.; Konoplev, A.; Onda, Y.; Gallego, E.; Papush, L.; Maderych, V.

    2015-12-01

    The highest densities of the radioisotopes in fallout from the Fukushima Daiichi NPP in March 2011 were measured at the north eastern part of Fukushima Prefecture. The post-accidental aquatic transfer of cesium -134/137 includes multiscale processes: wash-off from the watersheds in solute and with the eroded soil, long-range transport in the rivers, deposition and resuspension of contaminated sediments in reservoirs and floodplains. The models of EU decision support system RODOS are used for predicting dynamics of 137Cs in the Fukushima surface waters and for assessing efficiency of the remediation measures. The transfer of 137Cs through the watershed of Niida River was simulated by DHSVM -R model that includes the modified code of the distributed hydrological and sediment transport model DHSVM (Lettenmayer, Wigmosta et al.) and new module of radionuclide transport. DHSMV-R was tested by modelling the wash-off from the USLE experimental plots in Fukushima prefecture. The model helps to quantify the influence of the differentiators of Fukushima and Chernobyl watersheds, - intensity of extreme precipitation and steepness of watershed, on the much higher values of the ratio "particulated cesium /soluted cesium" in Fukushima rivers than in Chernobyl rivers. Two dimensional model COASTOX and three dimensional model THREETOX are used to simulate the fate of 137Cs in water and sediments of reservoirs in the Manogawa River, Otagawa River, Mizunashigawa River, which transport 137Cs from the heavy contaminated watersheds to the populated areas at the Pacific coast. The modeling of the extreme floods generated by typhoons shows the resuspension of the bottom sediments from the heavy contaminated areas in reservoirs at the mouths of inflowing rivers at the peaks of floods and then re-deposition of 137Cs downstream in the deeper areas. The forecasts of 137Cs dynamics in bottom sediments of the reservoirs were calculated for the set of the scenarios of the sequences of the high

  18. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  19. [Cognitive remediation and nursing care].

    Science.gov (United States)

    Schenin-King, Palmyre; Thomas, Fanny; Braha-Zeitoun, Sonia; Bouaziz, Noomane; Januel, Dominique

    2016-01-01

    Therapies based on cognitive remediation integrate psychiatric care. Cognitive remediation helps to ease cognitive disorders and enable patients to improve their day-to-day lives. It is essential to complete nurses' training in this field. This article presents the example of a patient with schizophrenia who followed the Cognitive Remediation Therapy programme, enabling him to access mainstream employment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Plant-based remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dharmendra Kumar (ed.) [Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium). Radiological Impact and Performance Assessment Division

    2013-11-01

    A valuable source of information for scientists in the field of environmental pollution and remediation. Describes the latest biotechnological methods for the treatment of contaminated soils. Includes case studies and protocols. Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.

  1. The effects of acidic mine drainage from historical mines in the Animas River watershed, San Juan County, Colorado—What is being done and what can be done to improve water quality?

    Science.gov (United States)

    Church, Stanley E.; Owen, Robert J.; Von Guerard, Paul; Verplanck, Philip L.; Kimball, Briant A.; Yager, Douglas B.

    2007-01-01

    Historical production of metals in the western United States has left a legacy of acidic drainage and toxic metals in many mountain watersheds that are a potential threat to human and ecosystem health. Studies of the effects of historical mining on surface water chemistry and riparian habitat in the Animas River watershed have shown that cost-effective remediation of mine sites must be carefully planned. of the more than 5400 mine, mill, and prospect sites in the watershed, ∼80 sites account for more than 90% of the metal loads to the surface drainages. Much of the low pH water and some of the metal loads are the result of weathering of hydrothermally altered rock that has not been disturbed by historical mining. Some stream reaches in areas underlain by hydrothermally altered rock contained no aquatic life prior to mining.Scientific studies of the processes and metal-release pathways are necessary to develop effective remediation strategies, particularly in watersheds where there is little land available to build mine-waste repositories. Characterization of mine waste, development of runoff profiles, and evaluation of ground-water pathways all require rigorous study and are expensive upfront costs that land managers find difficult to justify. Tracer studies of water quality provide a detailed spatial analysis of processes affecting surface- and ground-water chemistry. Reactive transport models were used in conjunction with the best state-of-the-art engineering solutions to make informed and cost-effective remediation decisions.Remediation of 23% of the high-priority sites identified in the watershed has resulted in steady improvement in water quality. More than $12 million, most contributed by private entities, has been spent on remediation in the Animas River watershed. The recovery curve for aquatic life in the Animas River system will require further documentation and long-term monitoring to evaluate the effectiveness of remediation projects implemented.

  2. Sediment remediation of the Hespeler Mill Pond, Cambridge, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Angeloni, D.; Eby, M.; Jarvis, S.; Martin, P. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada)]. E-mail: danielle.angeloni@earthtech.ca

    2002-06-15

    'Full text:' Low dissolved oxygen levels and large accumulated sediment remediation alternatives were examined to assemble the Hespeler Mill Pond, Cambridge (HMP) into a healthier and more desirable recreational area in the City of Cambridge. The theory that a large amount of sediment has been deposited into the HMP from the Speed River upstream over a number of years predicts the depressed oxygen levels, high nutrient-loading rates and the odour problems in the summer months. The initial phase in the remediation plan for this project involved extensive background research and investigation. The focus was on determining the characteristics of the sediment and the history of the pond, to ultimately decide if the sediment was the source of the issues. Dissolved oxygen field tests and sediment sampling were conducted to get information on the magnitude of the problem and the environmental hazards potentially present in the pond. The pond was modelled utilising the Streeter-Phelps oxygen-sag model to predict the oxygen deficit. Biochemical Oxygen Demand (BOD{sub 5}) testing was completed to determine the oxygen demand in the pond. These tests were conducted by using water samples obtained from various sample points at the pond. The proposed solution is a combined dredging and aeration approach. Mechanical dredging using a clamshell bucket and the installation of aerators is expected to solve the dissolved oxygen and water quality issues. (author)

  3. Groundwater Radioiodine: Prevalence, Biogeochemistry, And Potential Remedial Approaches

    International Nuclear Information System (INIS)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-01-01

    Iodine-129 ( 129 I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site 129 I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional 129 I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more 129 I waste in seven years than presently exists at the two facilities containing the largest 129 I inventories, (∼146 Ci 129 I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand 129 I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. 129 I is among the key risk drivers at all DOE nuclear disposal facilities where 129 I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that 129 I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define 129 I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L 129 I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the former Yucca Mountain disposal facilities. The objectives of this report are to: (1

  4. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23

    Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the

  5. What history reveals about Forge River pollution on Long Island, New York's south shore.

    Science.gov (United States)

    Swanson, R Lawrence; Brownawell, B; Wilson, Robert E; O'Connell, Christine

    2010-06-01

    Fifty years ago, the Forge River and Moriches Bay, of Long Island's south shore lagoonal system, achieved notoriety when their polluted conditions were alluded to in a report of the US President's Science Advisory Committee (1965). The Woods Hole Oceanographic Institution investigated the bay throughout the 1950s, identifying duck farming as the cause of "objectionable", "highly contaminated" conditions of these waters. Much has changed: duck farming declined; the river was dredged to remove polluted sediments, improve navigation; and barrier island inlets stabilized. Yet, the river remains seasonally eutrophic. Why? This paper reviews what occurred in the Forge River watershed. While governments aggressively curtailed the impacts of duck pollution, they failed to manage development and sewage pollution. The Forge experience indicates that watershed management is a continuing governmental responsibility as development accelerates. Otherwise, we will always be looking for that instantaneous remediation that is usually not affordable and is socially contentious.

  6. The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers

    Science.gov (United States)

    Caitcheon, Gary G.; Olley, Jon M.; Pantus, Francis; Hancock, Gary; Leslie, Christopher

    2012-05-01

    The tropics of northern Australia have received relatively little attention with regard to the impact of soil erosion on the many large river systems that are an important part of Australia's water resource, especially given the high potential for erosion when long dry seasons are followed by intense wet season rain. Here we use 137Cs concentrations to determine the erosion processes supplying sediment to two major northern Australian Rivers; the Daly River (Northern Territory), and the Mitchell River (Queensland). We also present data from five sediment samples collected from a 100 km reach of the Cloncurry River, a major tributary of the Flinders River (Queensland). Concentrations of 137Cs in the surface soil and subsurface (channel banks and gully) samples were used to derive 'best fit' probability density functions describing their distributions. These modelled distributions are then used to estimate the relative contribution of these two components to the river sediments. Our results are consistent with channel and gully erosion being the dominant source of sediment, with more than 90% of sediment transported along the main stem of these rivers originating from subsoil. We summarize the findings of similar studies on tropical Australian rivers and conclude that the primary source of sediment delivered to these systems is gully and channel bank erosion. Previously, as a result of catchment scale modelling, sheet-wash and rill erosion was considered to be the major sediment source in these rivers. Identifying the relative importance of sediment sources, as shown in this paper, will provide valuable information for land management planning in the region. This study also reinforces the importance of testing model predictions before they are used to target investment in remedial action.

  7. DOE'S remedial action assurance program

    International Nuclear Information System (INIS)

    Welty, C.G. Jr.; Needels, T.S.; Denham, D.H.

    1984-10-01

    The formulation and initial implementation of DOE's Assurance Program for Remedial Action are described. It was initiated in FY 84 and is expected to be further implemented in FY 85 as the activities of DOE's Remedial Action programs continue to expand. Further APRA implementation will include additional document reviews, site inspections, and program office appraisals with emphasis on Uranium Mill Tailings Remedial Action Program and Surplus Facilities Management Program

  8. Remediation of spatial processing disorder (SPD).

    Science.gov (United States)

    Graydon, Kelley; Van Dun, Bram; Tomlin, Dani; Dowell, Richard; Rance, Gary

    2018-05-01

    To determine the efficacy of deficit-specific remediation for spatial processing disorder, quantify effects of remediation on functional listening, and determine if remediation is maintained. Participants had SPD, diagnosed using the Listening in Spatialised Noise-Sentences test. The LiSN and Learn software was provided as auditory training. Post-training, repeat LiSN-S testing was conducted. Questionnaires pre- and post-training acted as subjective measures of remediation. A late-outcome assessment established long-term effects of remediation. Sixteen children aged between 6;3 [years; months] and 10;0 completed between 20 and 146 training games. Post-training LiSN-S improved in measures containing spatial cues (p ≤ 0.001) by 2.0 SDs (3.6 dB) for DV90, 1.8 SDs for SV90 (3.2 dB), 1.4 SDs for spatial advantage (2.9 dB) and 1.6 SDs for total advantage (3.3 dB). Improvement was also found in the DV0 condition (1.4 dB or 0.5 SDs). Post-training changes were not significant in the talker advantage measure (1.0 dB or 0.4 SDs) or the SV0 condition (0.3 dB or 0.1 SDs). The late-outcome assessment demonstrated improvement was maintained. Subjective improvement post-remediation was observed using the parent questionnaire. Children with SPD had improved ability to utilise spatial cues following deficit-specific remediation, with the parent questionnaire sensitive to remediation. Effects of the remediation also appear to be sustained.

  9. Fuel particles in the Chernobyl cooling pond: current state and prediction for remediation options

    International Nuclear Information System (INIS)

    Bulgakov, A.; Konoplev, A.; Smith, J.; Laptev, G.; Voitsekhovich, O.

    2009-01-01

    During the coming years, a management and remediation strategy for the Chernobyl cooling pond (CP) will be implemented. Remediation options include a controlled reduction in surface water level of the cooling pond and stabilisation of exposed sediments. In terrestrial soils, fuel particles deposited during the Chernobyl accident have now almost completely disintegrated. However, in the CP sediments the majority of 90 Sr activity is still in the form of fuel particles. Due to the low dissolved oxygen concentration and high pH, dissolution of fuel particles in the CP sediments is significantly slower than in soils. After the planned cessation of water pumping from the Pripyat River to the Pond, significant areas of sediments will be drained and exposed to the air. This will significantly enhance the dissolution rate and, correspondingly, the mobility and bioavailability of radionuclides will increase with time. The rate of acidification of exposed bottom sediments was predicted on the basis of acidification of similar soils after liming. Using empirical equations relating the fuel particle dissolution rate to soil and sediment pH allowed prediction of fuel particle dissolution and 90 Sr mobilisation for different remediation scenarios. It is shown that in exposed sediments, fuel particles will be almost completely dissolved in 15-25 years, while in parts of the cooling pond which remain flooded, fuel particle dissolution will take about a century

  10. 46 CFR 298.41 - Remedies after default.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Remedies after default. 298.41 Section 298.41 Shipping... Defaults and Remedies, Reporting Requirements, Applicability of Regulations § 298.41 Remedies after default... governing remedies after a default, which relate to our rights and duties, the rights and duties of the...

  11. Record of Decision Remedial Alternative Selection for the D-Area Burning/Rubble Pits (431-D and 431-1D)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Mason, J.T.

    1997-02-01

    The D-Area Burning/Rubble Pits (DBRP) (431-D and 431-1D) Waste Unit is listed as a Resource Conservation and Recovery Act (RCRA) 3004(U) Solid Waste Management Unit/Comprehensive Environmental Response Compensation and Liability Act (CERCLA) unit in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS). This decision document presents the selected remedial alternative for the DBRP located at the SRS in Aiken, South Carolina.

  12. Superfund record of decision (EPA Region 4): Savannah River Site (USDOE) D-Area Oil Seepage Basin (631-G), Aiken, SC, August 14, 1998

    International Nuclear Information System (INIS)

    1999-03-01

    The D-Area Oil Seepage Basin (D-Area OSB) Operable Unit (OU) is listed as a Resource Conservation and Recovery Act (RCRA) 3004(u) Solid Waste Management Unit/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) unit in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS). No Action is the selected remedy for shallow soil, surface water and sediment, because no constituents of concern (COCs) were identified for them in the RCRA Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA). The selected remedy for D-Area OSB groundwater is Alternative GW-2: Natural Attenuation/Groundwater Mixing Zone (GWMZ) with Institutional Controls

  13. 32 CFR 310.47 - Civil remedies.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Civil remedies. 310.47 Section 310.47 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Privacy Act Violations § 310.47 Civil remedies. In addition to specific remedial...

  14. LCA of Soil and Groundwater Remediation

    DEFF Research Database (Denmark)

    Søndergaard, Gitte Lemming; Owsianiak, Mikolaj

    2018-01-01

    Today, there is increasing interest in applying LCA to support decision-makers in contaminated site management. In this chapter, we introduce remediation technologies and associated environmental impacts, present an overview of literature findings on LCA applied to remediation technologies...... and present methodological issues to consider when conducting LCAs within the area. Within the field of contaminated site remediation , a terminology distinguishing three types of environmental impacts: primary, secondary and tertiary, is often applied. Primary impacts are the site-related impacts due...... and efficiency of remediation, which are important for assessment or primary impacts; (ii) robust assessment of primary impacts using site-specific fate and exposure models; (iii) weighting of primary and secondary (or tertiary) impacts to evaluate trade-offs between life cycle impacts from remediation...

  15. Policy and Strategies for Environmental Remediation

    International Nuclear Information System (INIS)

    2015-01-01

    In the environmental remediation of a given site, concerned and interested parties have diverse and often conflicting interests with regard to remediation goals, the time frames involved, reuse of the site, the efforts necessary and cost allocation. An environmental remediation policy is essential for establishing the core values on which remediation is to be based. It incorporates a set of principles to ensure the safe and efficient management of remediation situations. Policy is mainly established by the national government and may become codified in the national legislative system. An environmental remediation strategy sets out the means for satisfying the principles and requirements of the national policy. It is normally established by the relevant remediation implementer or by the government in the case of legacy sites. Thus, the national policy may be elaborated in several different strategies. To ensure the safe, technically optimal and cost effective management of remediation situations, countries are advised to formulate an appropriate policy and strategies. Situations involving remediation include remediation of legacy sites (sites where past activities were not stringently regulated or adequately supervised), remediation after emergencies (nuclear and radiological) and remediation after planned ongoing operation and decommissioning. The environmental policy involves the principles of justification, optimization of protection, protection of future generations and the environment, efficiency in the use of resources, and transparent interaction with stakeholders. A typical policy will also take into account the national legal framework and institutional structure and applicable international conventions while providing for the allocation of responsibilities and resources, in addition to safety and security objectives and public information and participation in the decision making process. The strategy reflects and elaborates the goals and requirements set

  16. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies

  17. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  18. Hazardous materials in aquatic environments of the Mississippi River Basin

    International Nuclear Information System (INIS)

    1993-01-01

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy's programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993

  19. IAEA Expert Remediation Mission to Japan Issues Preliminary Report

    International Nuclear Information System (INIS)

    2013-01-01

    food safety measures has protected consumers and improved consumer confidence in farm produce. A comprehensive programme to monitor fresh water sources such as rivers, lakes and ponds is ongoing, including extensive food monitoring of both wild and cultivated freshwater fish. The Mission encouraged the Japanese government to strengthen its efforts to explain to the public that an additional individual radiation dose of 1 millisievert per year (mSv/y), which it has announced as a long-term goal, cannot be achieved in a short time by decontamination work alone. In remediation situations, with appropriate consideration of the prevailing circumstances, any level of individual radiation dose in the range of 1 to 20 mSv/y is acceptable and in line with international standards and the recommendations of the relevant international organisations such as the IAEA, International Commission on Radiological Protection (ICRP), United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR) and World Health Organisation (WHO). The Mission encouraged the relevant institutions in Japan to assess the role that the Nuclear Regulation Authority (NRA) could play in the independent review of the remediation activities, particularly those required for the long term. The Mission also encouraged the relevant organisations to conduct safety assessments of the facilities and activities for the long-term management of contaminated materials, and to allow for their independent review. The Mission Team acknowledged that the Japanese authorities have implemented a practical option for remediating the region's extensive forest areas, taking a limited approach by removing material under the trees in a 20-meter buffer strip adjacent to residences, farmland and public spaces. It recommended concentrating efforts on areas that bring the greatest benefit in reducing doses to the public, while avoiding damage to the ecological functioning of the forest where possible. The 16-person team

  20. Lessons Learned from Environmental Remediation Programmes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-15

    Several remediation projects have been developed to date, and experience with these projects has been accumulated. Lessons learned span from non-technical to technical aspects, and need to be shared with those who are beginning or are facing the challenge to implement environmental remediation works. This publication reviews some of these lessons. The key role of policy and strategies at the national level in framing the conditions in which remediation projects are to be developed and decisions made is emphasized. Following policy matters, this publication pays attention to the importance of social aspects and the requirement for fairness in decisions to be made, something that can only be achieved with the involvement of a broad range of interested parties in the decision making process. The publication also reviews the funding of remediation projects, planning, contracting, cost estimates and procurement, and issues related to long term stewardship. Lessons learned regarding technical aspects of remediation projects are reviewed. Techniques such as the application of cover systems and soil remediation (electrokinetics, phytoremediation, soil flushing, and solidification and stabilization techniques) are analysed with respect to performance and cost. After discussing soil remediation, the publication covers issues associated with water treatment, where techniques such as ‘pump and treat’ and the application of permeable barriers are reviewed. Subsequently, there is a section dedicated to reviewing briefly the lessons learned in the remediation of uranium mining and processing sites. Many of these sites throughout the world have become orphaned, and are waiting for remediation. The publication notes that little progress has been made in the management of some of these sites, particularly in the understanding of associated environmental and health risks, and the ability to apply prediction to future environmental and health standards. The publication concludes

  1. Lessons Learned from Environmental Remediation Programmes

    International Nuclear Information System (INIS)

    2014-01-01

    Several remediation projects have been developed to date, and experience with these projects has been accumulated. Lessons learned span from non-technical to technical aspects, and need to be shared with those who are beginning or are facing the challenge to implement environmental remediation works. This publication reviews some of these lessons. The key role of policy and strategies at the national level in framing the conditions in which remediation projects are to be developed and decisions made is emphasized. Following policy matters, this publication pays attention to the importance of social aspects and the requirement for fairness in decisions to be made, something that can only be achieved with the involvement of a broad range of interested parties in the decision making process. The publication also reviews the funding of remediation projects, planning, contracting, cost estimates and procurement, and issues related to long term stewardship. Lessons learned regarding technical aspects of remediation projects are reviewed. Techniques such as the application of cover systems and soil remediation (electrokinetics, phytoremediation, soil flushing, and solidification and stabilization techniques) are analysed with respect to performance and cost. After discussing soil remediation, the publication covers issues associated with water treatment, where techniques such as ‘pump and treat’ and the application of permeable barriers are reviewed. Subsequently, there is a section dedicated to reviewing briefly the lessons learned in the remediation of uranium mining and processing sites. Many of these sites throughout the world have become orphaned, and are waiting for remediation. The publication notes that little progress has been made in the management of some of these sites, particularly in the understanding of associated environmental and health risks, and the ability to apply prediction to future environmental and health standards. The publication concludes

  2. Approaches for assessing sustainable remediation

    DEFF Research Database (Denmark)

    Søndergaard, Gitte Lemming; Binning, Philip John; Bjerg, Poul Løgstrup

    Sustainable remediation seeks to reduce direct contaminant point source impacts on the environment, while minimizing the indirect cost of remediation to the environment, society and economy. This paper presents an overview of available approaches for assessing the sustainability of alternative...... remediation strategies for a contaminated site. Most approaches use multi-criteria assessment methods (MCA) to structure a decision support process. Different combinations of environmental, social and economic criteria are employed, and are assessed either in qualitative or quantitative forms with various...... tools such as life cycle assessment and cost benefit analysis. Stakeholder involvement, which is a key component of sustainable remediation, is conducted in various ways. Some approaches involve stakeholders directly in the evaluation or weighting of criteria, whereas other approaches only indirectly...

  3. Historical and Retrospective Survey of Monitored Natural Attenuation: A Line of Inquiry Supporting Monitored Natural Attenuation and Enhanced Passive Remediation of Chlorinated Solvents

    International Nuclear Information System (INIS)

    LOONEY, BB.

    2004-01-01

    As requested by the Savannah River Technology Center, Groundwater Services, Inc. (GSI), has conducted a historical analysis of Monitored Natural Attenuation (MNA) application at chlorinated solvent sites. The objective of the analysis was to document trends, characteristics, successes, and barriers in the use of MNA as a remedy at chlorinated solvent sites. The analysis consisted of the following: (1) a review of recent literature regarding application of natural attenuation at chlorinated solvent sites, (2) a review of regulatory and industry guidance directing evaluation and implementation of MNA as a remedy at chlorinated solvent sites, and (3) a historical survey distributed to MNA experts, which requested data relating to the evaluation and implementation of MNA at chlorinated solvent sites

  4. Effect of Remediation Parameters on in-Air Ambient Dose Equivalent Rates When Remediating Open Sites with Radiocesium-contaminated Soil.

    Science.gov (United States)

    Malins, Alex; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko

    2016-10-01

    Calculations are reported for ambient dose equivalent rates [H˙*(10)] at 1 m height above the ground surface before and after remediating radiocesium-contaminated soil at wide and open sites. The results establish how the change in H˙*(10) upon remediation depends on the initial depth distribution of radiocesium within the ground, on the size of the remediated area, and on the mass per unit area of remediated soil. The remediation strategies considered were topsoil removal (with and without recovering with a clean soil layer), interchanging a topsoil layer with a subsoil layer, and in situ mixing of the topsoil. The results show the ratio of the radiocesium components of H˙*(10) post-remediation relative to their initial values (residual dose factors). It is possible to use the residual dose factors to gauge absolute changes in H˙*(10) upon remediation. The dependency of the residual dose factors on the number of years elapsed after fallout deposition is analyzed when remediation parameters remain fixed and radiocesium undergoes typical downward migration within the soil column.

  5. Herbal remedies and supplements for weight loss

    Science.gov (United States)

    Weight loss - herbal remedies and supplements; Obesity - herbal remedies; Overweight - herbal remedies ... health care provider. Nearly all over-the-counter supplements with claims of weight-loss properties contain some ...

  6. Long-term surveillance plan for the Green River, Utah disposal site. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  7. Long-Term Changes in the Water Quality and Macroinvertebrate Communities of a Subtropical River in South China

    Directory of Open Access Journals (Sweden)

    Kun Li

    2014-12-01

    Full Text Available Subtropical rivers support a highly diverse array of benthic macroinvertebrates. In this study, by combining historical data and new data, we identified specific changes in the Guanlan River, in South China, from 1981 to 2011, and evaluated the effectiveness of an ecological restoration project under highly polluted conditions. From 1981 to 2011, the water quality in the Guanlan River underwent three major stages. With the deterioration of water quality, there was an overall decrease in the species number of macroinvertebrates in the Guanlan River, an increase in macroinvertebrate density, and a reduction of the biodiversity, and a reduction of functional feeding groups. In 2011, after five years of comprehensive remediation, the Guanlan River was somewhat improved. Macroinvertebrate biodiversity in the middle reach of the Guanlan River, where a key ecological restoration engineering project was implemented, did not differ significantly from other sites. This finding indicates that the effectiveness of ecological restoration measures in highly polluted rivers, particularly at the reach-scale, is very limited and even ineffective.

  8. Effects of coal-mine discharges on the quality of the Stonycreek River and its tributaries, Somerset and Cambria counties, Pennsylvania

    Science.gov (United States)

    Williams, Donald R.; Sams, James I.; Mulkerrin, Mary E.

    1996-01-01

    This report describes the results of a study by the U.S. Geological Survey, done in cooperation with the Somerset Conservation District, to locate and sample abandoned coal-mine discharges in the Stonycreek River Basin, to prioritize the mine discharges for remediation, and to determine the effects of the mine discharges on water quality of the Stonycreek River and its major tributaries. From October 1991 through November 1994, 270 abandoned coal-mine discharges were located and sampled. Discharges from 193 mines exceeded U.S. Environmental Protection Agency effluent standards for pH, discharges from 122 mines exceeded effluent standards for total-iron concentration, and discharges from 141 mines exceeded effluent standards for total-manganese concentration. Discharges from 94 mines exceeded effluent standards for all three constituents. Only 40 mine discharges met effluent standards for pH and concentrations of total iron and total manganese.A prioritization index (PI) was developed to rank the mine discharges with respect to their loading capacity on the receiving stream. The PI lists the most severe mine discharges in a descending order for the Stonycreek River Basin and for subbasins that include the Shade Creek, Paint Creek, Wells Creek, Quemahoning Creek, Oven Run, and Pokeytown Run Basins.Passive-treatment systems that include aerobic wetlands, compost wetlands, and anoxic limestone drains (ALD's) are planned to remediate the abandoned mine discharges. The successive alkalinity-producing-system treatment combines ALD technology with the sulfate reduction mechanism of the compost wetland to effectively remediate mine discharge. The water quality and flow of each mine discharge will determine which treatment system or combination of treatment systems would be necessary for remediation.A network of 37 surface-water sampling sites was established to determine stream-water quality during base flow. A series of illustrations show how water quality in the mainstem

  9. New Mexico English Remediation Taskforce Report

    Science.gov (United States)

    New Mexico Higher Education Department, 2016

    2016-01-01

    In March, 2016, the state of New Mexico established a Remediation Task Force to examine remediation reform efforts across the state's higher education institutions. On March 11, the Task Force met for the "New Mexico Corequisite Remediation at Scale Policy Institute" in order to learn about the results of the latest national reform…

  10. Remediation: Higher Education's Bridge to Nowhere

    Science.gov (United States)

    Complete College America, 2012

    2012-01-01

    The intentions were noble. It was hoped that remediation programs would be an academic bridge from poor high school preparation to college readiness. Sadly, remediation has become instead higher education's "Bridge to Nowhere." This broken remedial bridge is travelled by some 1.7 million beginning students each year, most of whom will…

  11. Species differences in contaminants in fish on and adjacent to the Oak Ridge Reservation, Tennessee

    International Nuclear Information System (INIS)

    Burger, Joanna; Campbell, K.R.

    2004-01-01

    Risks to humans and other organisms from consuming fish have become a national concern in the USA. In this paper, we examine the concentrations of 137 Cs, arsenic, beryllium, cadmium, lead, mercury, and selenium in three species of fish from two river reaches adjacent to the US Department of Energy's Oak Ridge Reservation in Tennessee. We were interested in whether there were species and locational differences in radiocesium and metal concentrations and whether concentrations were sufficiently high to pose a potential health risk to humans or other receptors. Striped bass (Morone saxatilis) were significantly larger than white bass (M. chrysops), and crappie (Pomoxis spp.) were the smallest fish. Lead was significantly lower in striped bass, mercury was significantly higher in striped bass, and selenium was significantly higher in white bass compared to the other species. There were no other species differences in contaminants. White bass, the only species that was sufficiently abundant for a comparison, had significantly higher concentrations of cadmium, lead, and selenium in fillets from the Clinch River and significantly higher concentrations of mercury in fillets from Poplar Creek. The low concentrations of most contaminants in fish from the Clinch River do not appear to present a risk to humans or other consumers, although mercury concentrations in striped bass ranged as high as 0.79 ppm, well above the 0.5-ppm action level for human consumption of some US states

  12. Proceedings of the remediation technologies symposium 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This conference provided a forum to discuss the remediation of contaminated sites. It was attended by all industry sectors that have an interest in learning about technical issues in environmental remediation research and the latest innovations in soil and groundwater remediation and industrial pollutant treatments. Cost effective in-situ and ex-situ soil reclamation strategies were presented along with groundwater and surface water remediation strategies. The diversified sessions at this conference were entitled: regulatory update; Montreal Centre of Excellence in Brownfields Rehabilitation; soil and groundwater remediation through the Program of Energy Research and Development at Environment Canada; technology from the Netherlands; bioremediation; hydrocarbons; in-situ remediation; phytoremediation; salt management; unique locations; and, miscellaneous issues. Some areas and case studies covered in the presentations included: biological and non-biological treatments; thermal desorption; encapsulation; natural attenuation; multi-phase extraction; electrochemical remediation; and membrane technology. The conference featured 63 presentations, of which 23 have been catalogued separately for inclusion in this database. tabs., figs.

  13. Proceedings of the remediation technologies symposium 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This conference provided a forum to discuss the remediation of contaminated sites. It was attended by all industry sectors that have an interest in learning about technical issues in environmental remediation research and the latest innovations in soil and groundwater remediation and industrial pollutant treatments. Cost effective in-situ and ex-situ soil reclamation strategies were presented along with groundwater and surface water remediation strategies. The diversified sessions at this conference were entitled: regulatory update; Montreal Centre of Excellence in Brownfields Rehabilitation; soil and groundwater remediation through the Program of Energy Research and Development at Environment Canada; technology from the Netherlands; bioremediation; hydrocarbons; in-situ remediation; phytoremediation; salt management; unique locations; and, miscellaneous issues. Some areas and case studies covered in the presentations included: biological and non-biological treatments; thermal desorption; encapsulation; natural attenuation; multi-phase extraction; electrochemical remediation; and membrane technology. The conference featured 63 presentations, of which 23 have been catalogued separately for inclusion in this database. tabs., figs

  14. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Vlaming, V. de [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States)]. E-mail: vldevlaming@ucdavis.edu; DiGiorgio, C. [Department of Water Resources, P.O. Box 942836, Sacramento, CA 94236 (United States); Fong, S. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Deanovic, L.A. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Paz Carpio-Obeso, M. de la [Colorado River Basin Region Water Quality Control Board, 73-720 Fred Waring Drive, Suite 100, Palm Desert, CA 92260 (United States); Miller, J.L. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Miller, M.J. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Richard, N.J. [Division of Water Quality, State Water Resources Control Board, 1001 I Street, Sacramento, CA 95814 (United States)

    2004-11-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California.

  15. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    International Nuclear Information System (INIS)

    Vlaming, V. de; DiGiorgio, C.; Fong, S.; Deanovic, L.A.; Paz Carpio-Obeso, M. de la; Miller, J.L.; Miller, M.J.; Richard, N.J.

    2004-01-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California

  16. Integrated remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Dykes, R.S.; Howles, A.C.

    1992-01-01

    Remediation of sites contaminated with petroleum hydrocarbons and other organic chemicals frequently focuses on a single phase of the chemical in question. This paper describes an integrated approach to remediation involving selection of complimentary technologies designed to create a remedial system which achieves cleanup goals in affected media in the shortest possible time consistent with overall environmental protection

  17. Report on water quality, sediment and water chemistry data for water and sediment samples collected from source areas to Melton Hill and Watts Bar reservoirs

    International Nuclear Information System (INIS)

    Tomaszewski, T.M.; Bruggink, D.J.; Nunn, D.L.

    1995-01-01

    Contamination of surface water and sediments in the Clinch River and Watts Bar Reservoir (CR/WBR) system as a result of past and present activities by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR) and also activities by non-ORR facilities are being studied by the Clinch River Environmental Restoration Program (CR-ERP). Previous studies have documented the presence of heavy metals, organics, and radionuclides in the sediments of reservoirs in the vicinity. In support of the CR-ERP, during the summer of 1991, TVA collected and evaluated water and sediment samples from swimming areas and municipal water intakes on Watts Bar Reservoir, Melton Hill Reservoir and Norris Reservoir, which was considered a source of less-contaminated reference or background data. Despite the numerous studies, until the current work documented by this report, relatively few sediment or water samples had been collected by the CR-ERP in the immediate vicinity of contaminant point sources. This work focused on water and sediment samples taken from points immediately downstream from suspected effluent point sources both on and off the ORR. In August and September, 1994, TVA sampled surface water and sediment at twelve locations in melton Hill and Watts Bar Reservoirs

  18. Statement of Roy F. Pruett, Mayor, City of Oak Ridge, TN

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Thank you very much, Mr. Chairman, and Members of the Committee. My name is Roy Pruett, mayor of the city of Oak Ridge, TN, and an executive committee member on the Clinch River MRS task force. It is my pleasure to be here today to testify before this distinguished Committee and present the findings of the Clinch River task force as they relate to subtitle C of the Nuclear Waste Policy Act of 1982, and to the Department of Energy proposal on the Monitored Retrievable Storage facility, the MRS. I represent the city of Oak Ridge, which has been selected for the primary and the first alternative for the siting of an integrated MRS facility for the preparation and packaging of high-level nuclear waste and spent reactor fuel. Of civic and governmental leaders, we concluded that an MRS could safely be built and operated in Oak Ridge. We further concluded, however, that the facility would not be generally perceived as being safe unless the recommendations of the task force were adopted to address concerns and help mitigate impact. Indeed the MRS would not be viewed as a net economic benefit to the site's community, the region, or the State of Tennessee without such appropriate conditions

  19. French uranium mining sites remediation

    International Nuclear Information System (INIS)

    Roche, M.

    2002-01-01

    Following a presentation of the COGEMA's general policy for the remediation of uranium mining sites and the regulatory requirements, the current phases of site remediation operations are described. Specific operations for underground mines, open pits, milling facilities and confining the milled residues to meet long term public health concerns are detailed and discussed in relation to the communication strategies to show and explain the actions of COGEMA. A brief review of the current remediation situation at the various French facilities is finally presented. (author)

  20. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  1. Radon remediation in irish schools

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: Commencing in 1998, the Radiological Protection Institute of Ireland carried out radon measurements in 3826 schools in the Republic of I reland on behalf of the Irish Department of Education and Science (D.E.S.). This represents approximately 97% of all schools in the country. Approximately 25% (984) schools had radon concentrations above the Irish national schools Reference Level for radon of 200 Bq/m 3 and required remedial work. The number of individual rooms with radon concentrations above 200 Bq/m 3 was 3020. Remedial work in schools commenced in early 2000. In general schools with maximum radon concentrations in the range 200 -400 Bq/m 3 in one or more rooms were remediated through the installation of passive systems such as an increase in permanent background ventilation mainly wall vents and trickle vents in windows. Schools with maximum radon concentrations greater than 400 Bq/m 3 were usually remediated through the provision of active systems mainly fan assisted sub -slab de pressurization or where this was not possible fan assisted under floor ventilation. The cost of the remedial programme was funded by central Government. Active systems were installed by specialized remedial contractors working to the specifications of a radon remedial expert appointed by the D.E.S. to design remedial systems for affected schools. Schools requiring increased ventilation were granted aided 190 pounds per affected room and had to organize the work themselves. In most schools radon remediation was successful in reducing existing radon concentrations to below the Reference Level. Average radon concentration reduction factors for sub-slab de pressurization systems and fan assisted fan assisted under floor ventilation ranged from 5 to 40 with greater reduction rates found at higher original radon concentrations. Increasing ventilation in locations with moderately elevated radon concentrations (200 - 400 Bq/m 3 ) while not as effective as active systems produced on

  2. The benefits from environmental remediation

    International Nuclear Information System (INIS)

    Falck, W.E.

    2002-01-01

    Environmental remediation projects inevitably take place against a backdrop of overall social goals and values. These goals can include, for example, full employment, preservation of the cultural, economic and archaeological resources, traditional patterns of land use, spiritual values, quality of life factors, biological diversity, environmental and socio-economic sustainability, protection of public health. Different countries will have different priorities, linked to the overall set of societal goals and the availability of resources, including funding, man-power and skills. These issues are embedded within both a national and local socio-cultural context, and will shape the way in which the remediation process is structured in any one country. The context will shape both the overall objectives of a remediation activity within the framework of competing societal goals, as well as generate constraints on the decision making process. Hence, the overall benefit of a remediation project is determined by its overall efficiency and effectiveness within the given legal, institutional, and governance framework, under the prevailing socio-economic boundary conditions, and balancing technology performance and risk reduction with fixed or limited budgetary resources, and is not simply the result of the technical remediation operation itself. (author)

  3. Long-term surveillance plan for the Green River, Utah disposal site. Revision 2

    International Nuclear Information System (INIS)

    1998-07-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out

  4. International experience in tailings pond remediation

    Energy Technology Data Exchange (ETDEWEB)

    MacG. Robertson, A. [Robertson GeoConsultants Ltd., Vancouver (Canada)

    2001-07-01

    Tailings pond remediation is required primarily on mine closure. While mining is an ancient industry, requirement for mine facility remediation is a comparatively new development. Requirement for remediation has come about partly as a result of mans awareness of the environmental impacts of mining and his desire to minimize this, partly, as a result of the ever-increasing scale and production rates of tailings generation and the resulting increased environmental impacts and safety risks. The paper starts with a review of the evolution of mans intolerance of environmental impacts from tailings production and the assignment of liability to remediate such impacts. Many of the tailings ponds currently undergoing remediation were designed and constructed using methods and technology that would be considered inappropriate for new impoundments being designed and developed today. The paper reviews the history of tailings impoundment design and construction practice and the resulting inherent deficiencies that must be remediated. Current practices and future trends in tailings pond remediation are reviewed. The evolution of regulatory requirements is not only in terms of technical and safety criteria, but also in terms of financial and political risk. Perhaps the most substantive driver of risk management is today the requirement for corporate governance at mining company board level and oversight of new project development in the underdeveloped countries by the large financial institutions responsible for funding projects. Embarrassment in the public eye and punishment in the stock markets for poor environmental and safety performance is driving the need for efficient and effective risk management of potential impacts and the remediation to avoid these. A basis for practical risk management is described. (orig.)

  5. International experience in tailings pond remediation

    International Nuclear Information System (INIS)

    Robertson, A.MacG.

    2001-01-01

    Tailings pond remediation is required primarily on mine closure. While mining is an ancient industry, requirement for mine facility remediation is a comparatively new development. Requirement for remediation has come about partly as a result of mans awareness of the environmental impacts of mining and his desire to minimize this, partly, as a result of the ever-increasing scale and production rates of tailings generation and the resulting increased environmental impacts and safety risks. The paper starts with a review of the evolution of mans intolerance of environmental impacts from tailings production and the assignment of liability to remediate such impacts. Many of the tailings ponds currently undergoing remediation were designed and constructed using methods and technology that would be considered inappropriate for new impoundments being designed and developed today. The paper reviews the history of tailings impoundment design and construction practice and the resulting inherent deficiencies that must be remediated. Current practices and future trends in tailings pond remediation are reviewed. The evolution of regulatory requirements is not only in terms of technical and safety criteria, but also in terms of financial and political risk. Perhaps the most substantive driver of risk management is today the requirement for corporate governance at mining company board level and oversight of new project development in the underdeveloped countries by the large financial institutions responsible for funding projects. Embarrassment in the public eye and punishment in the stock markets for poor environmental and safety performance is driving the need for efficient and effective risk management of potential impacts and the remediation to avoid these. A basis for practical risk management is described. (orig.)

  6. LMFBR fuel analysis. Task C. Reliability aspects of LMFBRs. Final report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Apostolakis, G.E.; Cave, L.; Epler, E.P.; Ilberg, D.; Kastenberg, W.E.

    1976-11-01

    The reliability program which was established for the Clinch River Fast Breeder Reactor Project is reviewed. The review reveals several problems and uncertainties which need to be appropriately addressed by the reliability program. The main problems are stated to be the choice of the reliability criterion, the prospects of attaining high reliabilities of systems and critical structures, the role of external phenomena as well as the verification by tests and the reliability assurance program

  7. Evaluation of the influence of seismic restraint characteristics on breeder reactor piping systems

    International Nuclear Information System (INIS)

    Mello, R.M.; Pollono, L.P.

    1979-01-01

    For the Clinch River Breeder Reactor Plant (CRBRP) heat transport system piping within the reactor containment building, dynamic analyses of the piping loops have been performed to study the effect of restraint stiffness on the dynamic behavior of the piping. In addition, analysis and testing of typical CRBRP restraint system components have been performed for the purpose of quantifying and verifying the basic characteristics of the restraints used in the piping system dynamic analysis

  8. Maintenance and repair aspects of the steam generator modules for the United States' LMFBR demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, R W

    1975-07-01

    This paper describes the main considerations relating to the field maintenance and repair of the steam generator modules for the Clinch River Breeder Reactor Plant and the development approaches being employed for some of the critical elements of these operations. In particular, the approach to plant chemical cleaning of the waterside of the modules and the approach to recovery from leaks between the water and sodium sides of the modules are discussed. (author)

  9. Exploding the myths about the fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.

    1979-01-01

    This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.

  10. CRBRP design and test results for fuel handling systems, plugs, and seals

    International Nuclear Information System (INIS)

    Berg, G.E.

    1977-01-01

    The fuel handling system and reactor rotating plugs for the Clinch River Breeder Reactor Plant (CRBRP) are based primarily on existing technology and, in many respects, follow the concept developed for the Fast Flux Test Facility (FFTF). The equipment and the development programs initiated to verify its performance are described. Test results obtained from the development program, and the extent to which these results verified original design selections, or suggested potential improvements, are discussed

  11. Maintenance and repair aspects of the steam generator modules for the United States' LMFBR demonstration plant

    International Nuclear Information System (INIS)

    Devlin, R.W.

    1975-01-01

    This paper describes the main considerations relating to the field maintenance and repair of the steam generator modules for the Clinch River Breeder Reactor Plant and the development approaches being employed for some of the critical elements of these operations. In particular, the approach to plant chemical cleaning of the waterside of the modules and the approach to recovery from leaks between the water and sodium sides of the modules are discussed. (author)

  12. Program management strategies for following EPA guidance for remedial design/remedial action at DOE sites

    International Nuclear Information System (INIS)

    Hopper, J.P.; Chew, J.R.; Kowalski, T.E.

    1991-01-01

    At the US Department of Energy (DOE) facilities, environmental restoration is being conducted in accordance with Federal Facilities Compliance Agreements (or Interagency Agreements). These agreements establish a cooperative working relationship and often define roles, responsibilities and authorities for conduct and oversight of the Remedial Action Programs. The US Environmental Protection Agency (EPA) has guidelines on how to initiate and perform remedial actions for sites they are remediating under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) as amended by the Superfund Amendments and Re-Authorization Act (SARA). This paper addresses some of the difference and commonalities between the DOE project management procedures and EPA guidance documents. This report covers only the RD/RA phase of environmental restoration. On the surface, there are many apparent differences between the DOE and EPA project management processes. Upon closer review, however, many of the differences are the result of applying different terminology to the same phase of a project. By looking for the similarities in the two processes rather than hunting for differences, many communication problems are avoided. Understanding both processes also aids in figuring out when, how and to what extent EPA should participate in the RD/RA phase for DOE lead cleanup activities. The DOE Remedial Design and Remedial Action process is discussed in a stepwise manner and compared to the EPA process. Each element of the process is defined. Activities common to both the EPA and DOE are correlated. The annual DOE budget cycle for remediation projects and the four-year cycle for appropriation of remediation funds are discussed, and the constraints of this process examined. DOE orders as well as other requirements for RD/RA activities are summarized and correlated to EPA regulations where this is possible

  13. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  14. Remediation of sites with dispersed radioactive contamination

    International Nuclear Information System (INIS)

    2004-01-01

    To respond to the needs of Member States, the IAEA launched an environmental remediation project to deal with the problems of radioactive contamination worldwide. The IAEA environmental remediation project includes an IAEA Coordinated Research Project, as well as the participation of IAEA experts in concrete remediation projects when requested by individual Member States. The IAEA has prepared several documents dedicated to particular technical or conceptual areas, including documents on the characterization of contaminated sites, technical and non-technical factors relevant to the selection of a preferred remediation strategy and technique, overview of applicable techniques for environmental remediation,, options for the cleanup of contaminated groundwater and planning and management issues. In addition, a number of other IAEA publications dealing with related aspects have been compiled under different IAEA projects; these include TECDOCs on the remediation of uranium mill tailings, the decontamination of buildings and roads and the characterization of decommissioned sites. Detailed procedures for the planning and implementation of remedial measures have been developed over the past decade or so. A critical element is the characterization of the contamination and of the various environmental compartments in which it is found, in order to be able to evaluate the applicability of remediation techniques. The chemical or mineralogical form of the contaminant will critically influence the efficiency of the remediation technique chosen. Careful delineation of the contamination will ensure that only those areas or volumes of material that are actually contaminated are treated. This, in turn, reduces the amount of any secondary waste generated. The application of a remediation technique requires holistic studies examining the technical feasibility of the proposed measures, including analyses of their impact. Consequently, input from various scientific and engineering

  15. Site remediation techniques in India: a review

    International Nuclear Information System (INIS)

    Anomitra Banerjee; Miller Jothi

    2013-01-01

    India is one of the developing countries operating site remediation techniques for the entire nuclear fuel cycle waste for the last three decades. In this paper we intend to provide an overview of remediation methods currently utilized at various hazardous waste sites in India, their advantages and disadvantages. Over the years the site remediation techniques have been well characterized and different processes for treatment, conditioning and disposal are being practiced. Remediation Methods categorized as biological, chemical or physical are summarized for contaminated soils and environmental waters. This paper covers the site remediation techniques implemented for treatment and conditioning of wastelands arising from the operation of nuclear power plant, research reactors and fuel reprocessing units. (authors)

  16. Proceedings of the remediation technologies symposium 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference provided an opportunity for industry, practitioners, researchers and regulators to discuss technical issues in environmental remediation research and the latest innovations in soil and groundwater remediation. Cost effective in-situ and ex-situ soil reclamation strategies were presented along with groundwater and surface water remediation strategies in 13 sessions entitled: hydrocarbon contamination; salt management; liability management; chemical oxidation; light non-aqueous phase liquids (LNAPL); Montreal Center of Excellence in Brownfields Rehabilitation; Alberta government updates; phytoremediation; natural attenuation; Lake Wabamun; ex-situ remediation; in-situ remediation; and, miscellaneous issues. Technological solutions for erosion control and water clarification were highlighted. The conference featured 52 presentations, of which 17 have been catalogued separately for inclusion in this database. tabs., figs.

  17. Groundwater remediation in the Straz leaching operation

    International Nuclear Information System (INIS)

    Novak, J.

    2001-01-01

    The locality affected by consequences of the chemical mining of the uranium during underground leaching 'in situ' is found in the area of the Czech Republic in the northeastern part of the Ceska Lipa district. In the contribution the complex groundwater remediation project is discussed. First, the risks of the current state are expressed. Then the alternatives of remediation of the both Cenomanian and Turonian aquifers are presented. Evaluation of the remediation alternatives with the view to the time-consumption, economy, ecology and the elimination of unacceptable risks for the population and environment is done. Finally, the present progress of remediation and the conception of remediation of chemical mining on deposit of Straz pod Ralskem are presented. (orig.)

  18. ICDF Complex Remedial Action Report

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  19. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Hansen, Lene

    1997-01-01

    It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective......It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective...

  20. DOE's Assurance Program for Remedial Action (APRA)

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Welty, C.G. Jr.; Needels, T.S.

    1985-01-01

    The US Department of Energy's (DOE) Office of Operational Safety (OOS) is presently developing and implementing the Assurance Program for Remedial Action (APRA) to overview DOE's Remedial Action programs. APRA's objective is to ensure the adequacy of environmental, safety and health (ES and H) protection practices within the four DOE Remedial Action programs: Grand Junction Remedial Action Program (GJRAP), Uranium Mill Tailings Remedial Action Program (UMTRAP), Formerly Utilized Sites Remedial Action Program (FUSRAP), and Surplus Facilities Management Program (SFMP). APRA encompasses all ES and H practices of DOE and its contractors/subcontractors within the four Remedial Action programs. Specific activities of APRA include document reviews, selected site visits, and program office appraisals. Technical support and assistance to OOS is being provided by APRA contractors in the evaluation of radiological standards and criteria, quality assurance measures, radiation measurements, and risk assessment practices. This paper provides an overview of these activities and discusses program to date, including the roles of OOS and the respective contractors. The contractors involved in providing technical support and assistance to OOS are Aerospace Corporation, Oak Ridge Associated Universities, and Pacific Northwest Laboratory

  1. Remedial action of radium contaminated residential properties

    International Nuclear Information System (INIS)

    White, D.; Eng, J.

    1986-01-01

    Since November 1983, the New Jersey Department of Environmental Protection (NJDEP) and the US Environmental Protection Agency (USEPA) have been in the process of identifying properties in Montclair, Glen Ridge and West Orange, New Jersey, which were built over radium contaminated soil landfilled areas. Elevated indoor radon concentrations prompted the Centers for Disease Control (CDC) to issue a health advisory which included permanent remediation of radon progeny levels in excess of 0.02 Working Levels within two years of discovery. In order to expedite remedial action, NJDEP undertook a ten million dollar cleanup program. Remedial Action at the 12 residential properties encountered some unanticipated problems despite the efforts of numerous government agencies and their contractors to characterize the contamination as much as possible prior to remediation. Some of the unanticipated issues include contamination from other radionuclides, underestimation of removal volumes, and controversy over the transportation and disposal of the radium contaminated soil at a commercial facility in Nevada. This paper will review the approach taken by NJDEP to the remedial action for radium contaminated soil, discuss some of the issues encountered during the remedial action, and provide post remedial action data

  2. DOE's Assurance Program for Remedial Action (APRA)

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Welty, C.G. Jr.; Needels, T.S.

    1984-10-01

    The US Department of Energy's (DOE) Office of Operational Safety (OOS) is presently developing and implementing the Assurance Program for Remedial Action (APRA) to overview DOE's Remedial Action programs. APRA's objective is to ensure the adequacy of environmental, safety and health (ES and H) protection practices within the four DOE Remedial Action programs: Grand Junction Remedial Action Program (GJRAP), Uranium Mill Tailings Remedial Action Program (UMTRAP), Formerly Utilized Sites Remedial Action Program (FUSRAP), and Surplus Facilities Management Program (SFMP). APRA encompasses all ES and H practices of DOE and its contractors/subcontractors within the four Remedial Action programs. Specific activities of APRA include document reviews, selected site visits, and program office appraisals. Technical support and assistance to OOS is being provided by APRA contractors in the evaluation of radiological standards and criteria, quality assurance measures, radiation measurements, and risk assessment practices. This paper provides an overview of these activities and discusses progress to date, including the roles of OOS and the respective contractors. The contractors involved in providing technical support and assistance to OOS are Aerospace Corporation, Oak Ridge Associated Universities, and Pacific Northwest Laboratory

  3. Electrodialytic Remediation of Different Cu-Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Hansen, Lene

    1999-01-01

    Based on characterization of a polluted soil a proper desorbing agent to be added to the soil before the remediation can be found. The desorbing agent can improve the remediation according to both energy consumption and duration of the action......Based on characterization of a polluted soil a proper desorbing agent to be added to the soil before the remediation can be found. The desorbing agent can improve the remediation according to both energy consumption and duration of the action...

  4. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK

    International Nuclear Information System (INIS)

    Shepherd, Thomas J.; Chenery, Simon R.N.; Pashley, Vanessa; Lord, Richard A.; Ander, Louise E.; Breward, Neil; Hobbs, Susan F.; Horstwood, Matthew; Klinck, Benjamin A.; Worrall, Fred

    2009-01-01

    High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.

  5. Electrodialytic remediation of solid waste

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted solid waste is a method that combines the technique of electrodialysis with the electromigration of ions in the solid waste. Results of laboratory scale remediation experiments of soil are presented and considerations are given on how to secure...

  6. Sustainability: A new imperative in contaminated land remediation

    International Nuclear Information System (INIS)

    Hou, Deyi; Al-Tabbaa, Abir

    2014-01-01

    Highlights: • Reviewed the emerging green and sustainable remediation movement in the US and Europe. • Identified three sources of pressures for emphasizing sustainability in the remediation field. • Presented a holistic view of sustainability considerations in remediation. • Developed an integrated framework for sustainability assessment and decision making. - Abstract: Land is not only a critical component of the earth's life support system, but also a precious resource and an important factor of production in economic systems. However, historical industrial operations have resulted in large areas of contaminated land that are only slowly being remediated. In recent years, sustainability has drawn increasing attention in the environmental remediation field. In Europe, there has been a movement towards sustainable land management; and in the US, there is an urge for green remediation. Based on a questionnaire survey and a review of existing theories and empirical evidence, this paper suggests the expanding emphasis on sustainable remediation is driven by three general factors: (1) increased recognition of secondary environmental impacts (e.g., life-cycle greenhouse gas emissions, air pollution, energy consumption, and waste production) from remediation operations, (2) stakeholders’ demand for economically sustainable brownfield remediation and “green” practices, and (3) institutional pressures (e.g., social norm and public policy) that promote sustainable practices (e.g., renewable energy, green building, and waste recycling). This paper further argues that the rise of the “sustainable remediation” concept represents a critical intervention point from where the remediation field will be reshaped and new norms and standards will be established for practitioners to follow in future years. This paper presents a holistic view of sustainability considerations in remediation, and an integrated framework for sustainability assessment and decision making

  7. Remediating a design tool

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Rädle, Roman; Klokmose, Clemens N.

    2018-01-01

    digital sticky notes setup. The paper contributes with a nuanced understanding of what happens when remediating a physical design tool into digital space, by emphasizing focus shifts and breakdowns caused by the technology, but also benefits and promises inherent in the digital media. Despite users......' preference for creating physical notes, handling digital notes on boards was easier and the potential of proper documentation make the digital setup a possible alternative. While the analogy in our remediation supported a transfer of learned handling, the users' experiences across technological setups impact......Sticky notes are ubiquitous in design processes because of their tangibility and ease of use. Yet, they have well-known limitations in professional design processes, as documentation and distribution are cumbersome at best. This paper compares the use of sticky notes in ideation with a remediated...

  8. A co-metabolic approach to groundwater remediation

    International Nuclear Information System (INIS)

    Palumbo, A.V.; Boerman, P.A.; Herbes, S.E.; White, D.C.; Strandberg, G.W.; Donaldson, T.L.; Lucero, A.J.; Jennings, H.L.; Phelps, T.J.; White, D.C.

    1991-01-01

    In support of the US Department of Energy's (DOE) Integrated Demonstration (Cleanup of Organics in Soils and Groundwater at Non-arid Sites) at the Savannah River Site (SRS), Oak Ridge National Laboratory (ORNL) and the University of Tennessee (UT) are involved in demonstrations of the use of methanotrophs in bioreactors for remediation of contaminated groundwater. In preparation for a field demonstration at ORNL's K-25 Site in Oak Ridge, Tennessee, ORNL is conducting batch experiments, is operating a number of bench-scale bioreactors, has designed pretreatment systems, and has modified a field-scale bioreactor provided by the Air Force Engineering and Services Center for use at the site. UT is operating benchscale bioreactors with the goal of determining the stability of a trichloroethylene-degrading methanotrophic consortia during shifts in operating conditions (e.g. pH, nutrient inputs, and contaminant mixtures). These activities are all aimed at providing the knowledge base necessary for successful treatment of contaminated groundwater at the SRS and K-25 sites as well as other DOE sites

  9. A co-metabolic approach to groundwater remediation

    International Nuclear Information System (INIS)

    Palumbo, A.V.; Boerman, P.A.; Strandberg, G.W.; Donaldson, T.L.; Jennings, H.L.; Lucero, A.J.; Herbes, S.E.; Phelps, T.J.; White, D.C.

    1991-01-01

    In support of the US Department of Energy's (DOE) Integrated Demonstration (Cleanup of Organics in Soils and Groundwater at Non-arid Sites) at the Savannah River Site (SRS), Oak Ridge National Laboratory (ORNL) and the University of Tennessee (UT) are involved in demonstrations of the use of methanotrophs in bioreactors for remediation of contaminated groundwater. In preparation for a field demonstration at ORNL's K-25 Site in Oak Ridge, Tennessee, ORNL is conducting batch experiments, is operating a number of bench-scale bioreactors, has designed pretreatment systems, and has modified a field-scale bioreactor provided by the Air Force Engineering and Services Center for use at the site. UT is operating bench-scale bioreactors with the goal of determining the stability of a trichloroethylene-degrading methanotrophic consortia during shifts in operating conditions (e.g. pH, nutrient inputs, and contaminant mixtures). These activities are all aimed at providing the knowledge base necessary for successful treatment of contaminated groundwater at the SRS and K-25 sites as well as other DOE sites. 18 refs., 1 fig. , 1 tab

  10. Alternative Remedies

    Science.gov (United States)

    ... Home › Aging & Health A to Z › Alternative Remedies Font ... medical treatment prescribed by their healthcare provider. Using this type of alternative therapy along with traditional treatments is ...

  11. Case study of an approved corrective action integrating active remediation with intrinsic remediation

    International Nuclear Information System (INIS)

    Teets, D.B.; Guest, P.R.; Blicker, B.R.

    1996-01-01

    Parsons Engineering Science, Inc., performed UST removals and/or site assessments at UST system locations at a former US Air Force Base (AFB) in Denver, Colorado. Four UST systems, incorporating 17 USTs, were located within the petroleum, oils, and lubricants bulk storage yard (POL Yard) of the former AFB. During the tank removals and subsequent site investigations, petroleum hydrocarbon contamination was found in soils at each site. Significant releases from two of the UST systems resulted in a dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) plume in the groundwater, and smear-zone contamination of soils beneath the majority of the POL Yard. Because of the close proximity of the UST systems, and the presence of the groundwater plume beneath the POL Yard, a corrective action plan (CAP) was prepared that encompassed all four UST systems. An innovative, risk-based CAP integrated active remediation of petroleum-contaminated soils with intrinsic remediation of groundwater. A natural attenuation evaluation for the dissolved BTEX was performed to demonstrate that natural attenuation processes are providing adequate remediation of groundwater and to predict the fate of the groundwater plume. BTEX concentrations versus distance were regressed to obtain attenuation rates, which were then used to calculate BTEX degradation rates using a one-dimensional, steady-state analytical solution. Additionally, electron acceptor concentrations in groundwater were compared to BTEX concentrations to provide evidence that natural attenuation of BTEX compounds was occurring. The natural attenuation evaluation was used in the CAP to support the intrinsic remediation with long-term monitoring alternative for groundwater, thereby avoiding the installation of an expensive groundwater remediation system

  12. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation.

    Science.gov (United States)

    Juracek, K E; Drake, K D

    2016-10-01

    Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  13. Mining-related sediment and soil contamination in a large Superfund site: Characterization, habitat implications, and remediation

    Science.gov (United States)

    Juracek, Kyle E.; Drake, K. D.

    2016-01-01

    Historical mining activity (1850–1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  14. CENTRAL PLATEAU REMEDIATION

    International Nuclear Information System (INIS)

    ROMINE, L.D.

    2006-01-01

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress

  15. Savannah River Site Footprint Reduction Results under the American Recovery and Reinvestment Act - 13302

    Energy Technology Data Exchange (ETDEWEB)

    Flora, Mary [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Angelia [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States); Pope, Robert [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, managed and operated by Savannah River Nuclear Solutions. Construction of SRS began in the early 1950's to enhance the nation's nuclear weapons capability. Nuclear weapons material production began in the early 1950's, eventually utilizing five production reactors constructed to support the national defense mission. Past operations have resulted in releases of hazardous constituents and substances to soil and groundwater, resulting in 515 waste sites with contamination exceeding regulatory thresholds. More than 1,000 facilities were constructed onsite with approximately 300 of them considered radiological, nuclear or industrial in nature. In 2003, SRS entered into a Memorandum of Agreement with its regulators to accelerate the cleanup using an Area Completion strategy. The strategy was designed to focus cleanup efforts on the 14 large industrial areas of the site to realize efficiencies of scale in the characterization, assessment, and remediation activities. This strategy focuses on addressing the contaminated surface units and the vadose zone and addressing groundwater plumes subsequently. This approach streamlines characterization and remediation efforts as well as the required regulatory documentation, while enhancing the ability to make large-scale cleanup decisions. In February 2009, Congress approved the American Reinvestment and Recovery Act (ARRA) to create jobs and promote economic recovery. At SRS, ARRA funding was established in part to accelerate the completion of environmental remediation and facility deactivation and decommissioning (D and D). By late 2012, SRS achieved 85 percent footprint reduction utilizing ARRA funding by accelerating and coupling waste unit remediation with D and D of remnant facilities. Facility D and D activities were sequenced and

  16. Remedial action and waste disposal project: 100-DR-1 remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Calverley, C.

    1996-08-01

    This plan presents the method used to assess the readiness of the 100- DR-1 Remedial Action Project. Remediation of the 100-D sites (located on the Hanford Site) involves the excavation (treatment if applicable) and final disposal of contaminated soil and debris associated with the high-priority waste sites in the 100 Areas

  17. RCRA corrective action ampersand CERCLA remedial action reference guide

    International Nuclear Information System (INIS)

    1994-07-01

    This reference guide provides a side-by-side comparison of RCRA corrective action and CERCLA Remedial Action, focusing on the statutory and regulatory requirements under each program, criterial and other factors that govern a site's progress, and the ways in which authorities or requirements under each program overlap and/or differ. Topics include the following: Intent of regulation; administration; types of sites and/or facilities; definition of site and/or facility; constituents of concern; exclusions; provisions for short-term remedies; triggers for initial site investigation; short term response actions; site investigations; remedial investigations; remedial alternatives; clean up criterial; final remedy; implementing remedy; on-site waste management; completion of remedial process

  18. Model of the PCB and mercury exposure of mink and great blue heron inhabiting the off-site environment downstream from the US Department of Energy Oak Ridge Reservation

    International Nuclear Information System (INIS)

    MacIntosh, D.L.

    1992-09-01

    This report presents a pair of wildlife exposure models developed for use in investigating the risks to wildlife of releases of mercury and PCBS. The species modeled are the great blue heron and mink The models may be used to estimate the exposure experienced by mink and herons, to help establish remedial action goals and to identify research needs. Because mercury and PCBs bioaccumulate through dietary uptake, the models simulate the food webs supporting the two species. Sources of contaminants include surface water, sediment, sediment pore water, and soil. The model are stochastic equilibrium models. Two types of variance in the input parameters are distinguished: stochastic variance among individual mink and herons and ignorance concerning true parameter values. The variance in the output due to stochastic parameters indicates the expected variance among the receptors. The variance due to ignorance indicates the extent to which the model outputs could be unpaved by additional sampling and measurement. The results of the models were compared to concentrations measured in great blue heron eggs and nestlings from colonies on the Clinch and Tennessee Rivers. The predicted concentrations agreed well with the measured concentrations. In addition, the variances in measured values among individuals was approximately equal to the total stochastic variance predicted by the models

  19. Model of the PCB and mercury exposure of mink and great blue heron inhabiting the off-site environment downstream from the US Department of Energy Oak Ridge Reservation. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    MacIntosh, D.L. [Indiana Univ., Bloomington, IN (United States). School of Public and Environmental Affairs; Suter, G.W. II; Hoffman, F.O. [Oak Ridge National Lab., TN (United States)

    1992-09-01

    This report presents a pair of wildlife exposure models developed for use in investigating the risks to wildlife of releases of mercury and PCBS. The species modeled are the great blue heron and mink The models may be used to estimate the exposure experienced by mink and herons, to help establish remedial action goals and to identify research needs. Because mercury and PCBs bioaccumulate through dietary uptake, the models simulate the food webs supporting the two species. Sources of contaminants include surface water, sediment, sediment pore water, and soil. The model are stochastic equilibrium models. Two types of variance in the input parameters are distinguished: stochastic variance among individual mink and herons and ignorance concerning true parameter values. The variance in the output due to stochastic parameters indicates the expected variance among the receptors. The variance due to ignorance indicates the extent to which the model outputs could be unpaved by additional sampling and measurement. The results of the models were compared to concentrations measured in great blue heron eggs and nestlings from colonies on the Clinch and Tennessee Rivers. The predicted concentrations agreed well with the measured concentrations. In addition, the variances in measured values among individuals was approximately equal to the total stochastic variance predicted by the models.

  20. Model of the PCB and mercury exposure of mink and great blue heron inhabiting the off-site environment downstream from the US Department of Energy Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    MacIntosh, D.L. (Indiana Univ., Bloomington, IN (United States). School of Public and Environmental Affairs); Suter, G.W. II; Hoffman, F.O. (Oak Ridge National Lab., TN (United States))

    1992-09-01

    This report presents a pair of wildlife exposure models developed for use in investigating the risks to wildlife of releases of mercury and PCBS. The species modeled are the great blue heron and mink The models may be used to estimate the exposure experienced by mink and herons, to help establish remedial action goals and to identify research needs. Because mercury and PCBs bioaccumulate through dietary uptake, the models simulate the food webs supporting the two species. Sources of contaminants include surface water, sediment, sediment pore water, and soil. The model are stochastic equilibrium models. Two types of variance in the input parameters are distinguished: stochastic variance among individual mink and herons and ignorance concerning true parameter values. The variance in the output due to stochastic parameters indicates the expected variance among the receptors. The variance due to ignorance indicates the extent to which the model outputs could be unpaved by additional sampling and measurement. The results of the models were compared to concentrations measured in great blue heron eggs and nestlings from colonies on the Clinch and Tennessee Rivers. The predicted concentrations agreed well with the measured concentrations. In addition, the variances in measured values among individuals was approximately equal to the total stochastic variance predicted by the models.

  1. Remediation and production of low-sludge high-level waste glasses

    International Nuclear Information System (INIS)

    Ramsey, W.G.; Brown, K.G.; Beam, D.C.

    1994-01-01

    High-level radioactive sludge will constitute 24-28 oxide weight percent of the high-level waste glass produced at the Savannah River Site. A recent melter campaign using non-radioactive, simulated feed was performed with a sludge content considerably lower than 24 percent. The resulting glass was processed and shown to have acceptable durability. However, the durability was lower than predicted by the durability algorithm. Additional melter runs were performed to demonstrate that low sludge feed could be remediated by simply adding sludge oxides. The Product Composition Control System, a computer code developed to predict the proper feed composition for production of high-level waste glass, was utilized to determine the necessary chemical additions. The methodology used to calculate the needed feed additives, the effects of sludge oxides on glass production, and the resulting glass durability are discussed

  2. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section

  3. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  4. 40 CFR 761.61 - PCB remediation waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB remediation waste. 761.61 Section... PROHIBITIONS Storage and Disposal § 761.61 PCB remediation waste. This section provides cleanup and disposal options for PCB remediation waste. Any person cleaning up and disposing of PCBs managed under this section...

  5. Regional economic impact assessment: Evaluating remedial alternatives for the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Harrison, David; Coughlin, Conor; Hogan, Dylan; Edwards, Deborah A; Smith, Benjamin C

    2018-01-01

    The present paper describes a methodology for evaluating impacts of Superfund remedial alternatives on the regional economy in the context of a broader sustainability evaluation. Although economic impact methodology is well established, some applications to Superfund remedial evaluation have created confusion because of seemingly contradictory results. This confusion arises from failure to be explicit about 2 opposing impacts of remediation expenditures: 1) positive regional impacts of spending additional money in the region and 2) negative regional impacts of the need to pay for the expenditures (and thus forgo other expenditures in the region). The present paper provides a template for economic impact assessment that takes both positive and negative impacts into account, thus providing comprehensive estimates of net impacts. The paper also provides a strategy for identifying and estimating major uncertainties in the net impacts. The recommended methodology was applied at the Portland Harbor Superfund Site, located along the Lower Willamette River in Portland, Oregon, USA. The US Environmental Protection Agency (USEPA) developed remedial alternatives that it estimated would cost up to several billion dollars, with construction durations possibly lasting decades. The economic study estimated regional economic impacts-measured in terms of gross regional product (GRP), personal income, population, and employment-for 5 of the USEPA alternatives relative to the "no further action" alternative. Integr Environ Assess Manag 2018;14:32-42. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  6. Screening Assessment of Radionuclide Migration in Groundwater from the “Dneprovskoe” Tailings Impoundment (Dneprodzerzhynsk City) and Evaluation of Remedial Options

    Energy Technology Data Exchange (ETDEWEB)

    Skalskyi, O.; Bugai, D. [Institute of Geological Sciences, National Academy of Sciences of Ukraine (Ukraine); Ryazantsev, V. [State Nuclear Regularity Committee of Ukraine, Kiev (Ukraine)

    2014-05-15

    The paper presents results of mathematical modeling of the hydrogeological conditions at the “Dneprovskoe” (“D”) tailings impoundment –object of the former industrial association of “Pridneprovsky Chemical Plant”, which contains uranium ore processing wastes. This radioactively polluted site is located in a densely populated region (at the outskirts of Dneprodzerginsk City) near the major watercourse of the Ukraine — Dnieper River.The mathematical modeling utilized Visual Modflow (for groundwater flow) and Ecolego (Facilia AB, Sweden) radioecology modeling software (for radionuclide transport).Modeling results indicate the possibility of essential radioactive contamination in future of the phreatic aquifer in alluvial deposits between the “D” tailings and the Dnieper River (mainly due to migration of uranium). Therefore long-term management strategies should preclude water usage from the aquifer in the zone of the in-fluence of the “D” tailings. Filtration discharge of uranium to the Dnepr River does not represent a significant risk due to large dilution by surface waters. The important modeling conclusion is that besides the uranium ore processing wastes inside the tailings, the major source of radionuclide migration to groundwater is represented by contaminated geological deposits below the tailings. This last source was formed due to leakage of wastewaters during the operational period of the “D” tailings (1954–1968). Therefore an exemption and re-disposal of wastes from the “D” tailings to a more safe storage location (proposed by some remedial plans) will not provide significant benefit from the viewpoint of minimizing of radionuclide transport to the groundwater and Dnieper River (especially in short-and medium-term perspective). The rational remedial strategy for the “D” tailings is conservation of tailing wastes in-situ by means of specially designed “zero flux” soil screen, which would minimize infiltration of

  7. Histologic, immunologic and endocrine biomarkers indicate contaminant effects in fishes of the Ashtabula River.

    Science.gov (United States)

    Iwanowicz, Luke R; Blazer, Vicki S; Hitt, Nathaniel P; McCormick, Stephen D; DeVault, David S; Ottinger, Christopher A

    2012-01-01

    The use of fish as sentinels of aquatic ecosystem health is a biologically relevant approach to environmental monitoring and assessment. We examined the health of the Ashtabula River using histologic, immunologic, and endocrine biomarkers in brown bullhead (BB; Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) and compared fish collected from a reference site (Conneaut Creek). Seasonal analysis was necessary to distinguish differences in fish between the two rivers. Overall BB from the Ashtabula River had a lower condition factor and significantly more macrophage aggregates than those from the reference site. Reduced bactericidal and cytotoxic-cell activity was observed in anterior kidney leukocytes from both BB and largemouth bass from the Ashtabula River. Lower plasma thyroxine and triiodo-L-thyronine in both species in the Ashtabula River indicated disruption of the thyroid axis. Differences in physiological biomarker responses were supported by body burden chemical concentrations when data were analyzed on a seasonal basis. The use of two fish species added a level of rigor that demonstrated biological effects were not exclusive to a single species. The results provide strong evidence that contaminants have affected fish in the Ashtabula River, a Great Lakes Area of Concern, and provide a baseline by which to evaluate remediation activities.

  8. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse

    2008-01-01

    This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. A newly designed remediation cell, where the solids were kept in suspension by airflow, was tested. The results show that electric current could remove copper from suspended tailings...... efficiency from 1% to 80% compared to experiments with no stirring but with the same operational conditions. This showed the crucial importance of having the solids in suspension and not settled during the remediation....

  9. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    Energy Technology Data Exchange (ETDEWEB)

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  10. Remediation in Practicing Physicians: Current and Alternative Conceptualizations.

    Science.gov (United States)

    Bourgeois-Law, Gisèle; Teunissen, Pim W; Regehr, Glenn

    2018-04-24

    Suboptimal performance in practicing physicians is a decades-old problem. The lack of a universally accepted definition of remediation, the paucity of research on best remediation practices, and the ongoing controversy regarding the institutional responsibility for enacting and overseeing this activity suggests that the remediation of physicians is not merely a difficult problem to solve, but a problem that the community does not grapple with meaningfully. Undoubtedly, logistical and political considerations contribute to this state of affairs; however, other underlying conceptual issues may also play a role in the medical profession's difficulties in engaging with the challenges around remediation.Through a review of the medical education and other literatures, the authors examined current conceptualizations of both remediation itself and the individual being remediated, as well as how the culture of medicine influences these conceptions. The authors explored how conceptualizations of remediation and the surrounding culture might affect not only the medical community's ability to support, but also its willingness to engage with physicians in need of remediation.Viewing remediation as a means of supporting practice change-rather than as a means of redressing gaps in knowledge and skill-might be a useful alternative conceptualization, providing a good place to start exploring new avenues of research. However, moving forward will require more than simply a reconceptualizion of remediation; it will also necessitate a change in how the community views its struggling members and a change in the medical culture that currently positions professional autonomy as the foundational premise for individual practice improvement.

  11. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords

  12. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  13. Remediation of PAH-contaminated soil using Achromobacter sp

    International Nuclear Information System (INIS)

    Cutright, T.J.; Lee, S.

    1994-01-01

    Several technologies have the potential to effectively remediate soil contaminated with polycyclic aromatic hydrocarbons (PAHs): solvent extraction, coal-oil agloflotation, supercritical extraction, and bioremediation. Due to the cost effectiveness and in-situ treatment capabilities of bioremediation, studies were conducted to determine the efficiency of Achromobacter sp. to remediate an industrial contaminated soil sample. Specifically, the use of three different mineral salt solutions in conjunction with the Achromobacter sp. was investigated. The molecular identification of the contaminants and their respective levels after remediation were determined using a Hewlett-Packard 1050 HPLC. Preliminary results show a 92% remediation for the use of two of the mineral salt solutions after 20 days' treatment. After 8 weeks, the remediation efficiency reached 99%. Bioremediation was also critically compared to the other potential remediation technologies

  14. Key Principles of Superfund Remedy Selection

    Science.gov (United States)

    Guidance on the primary considerations of remedy selection which are universally applicable at Superfund sites. Key guidance here include: Rules of Thumb for Superfund Remedy Selection and Role of the Baseline Risk Assessment.

  15. Comparison of different ecological remediation methods for removing nitrate and ammonium in Qinshui River, Gonghu Bay, Taihu Lake.

    Science.gov (United States)

    Wang, Hao; Li, Zhengkui; Han, Huayang

    2017-01-01

    Ecological remediation is one of the most practical methods for removing nutrients from river ecosystems. In this study, transformation and fate of nitrate and ammonium among four different ecological restoration treatments were investigated by stable 15 N isotope pairing technique combined with quantitative polymerase chain reaction and high-throughput sequencing technology. The results of 15 N mass-balance model showed that there were three ways to the fate of nitrogen: precipitated in the sediment, absorbed by Elodea nuttallii (E. nuttallii), and consumed by microbial processes (denitrification and anaerobic ammonium oxidation (anammox)). The results shown that the storage of 15 NH 4 + in sediments was about 1.5 times as much as that of 15 NO 3 - . And much more 15 NH 4 + was assimilated by E. nuttallii, about 2 times as much as 15 NO 3 - . Contrarily, the rate of microbial consuming 15 NO 3 - was higher than converting 15 NH 4 + . As for the group with 15 NO 3 - added, 29.61, 45.26, 30.66, and 51.95 % were accounted for 15 N-labeled gas emission. The proportions of 15 NH 4 + loss as 15 N-labeled gas were 16.06, 28.86, 16.93, and 33.09 % in four different treatments, respectively. Denitrification and anammox were the bacterial primary processes in N 2 and N 2 O production. The abundances of denitrifying and anammox functional genes were relatively higher in the treatment with E. nuttallii-immobilized nitrogen cycling bacteria (E-INCB) assemblage technology applied. Besides, microbial diversity increased in the treatment with E. nuttallii and INCB added. The 15 NO 3 - removal rates were 35.27, 49.42, 50.02, and 65.46 % in four different treatments. And the removal rates of 15 NH 4 + were 24, 34.38, 48.84, and 57.74 % in treatments A, B, C, and D, respectively. The results indicated that E-INCB assemblage technology could significantly promote the nitrogen cycling and improve nitrogen removal efficiency.

  16. Optimization of intermediate heat exchangers for sodium cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Barratt, R.O.; Cox, J.; Beith, R.M.V.

    1978-01-01

    Design evolution of the Intermediate Heat Exchanger for the U.S. Fast Breeder Programme is traced from the initial FFTF through to the Clinch River Designs and anticipated onward Commercial Plant Concepts. Supporting development work is outlined. Technical merits of certain features, such as sine wave tube banks and replaceable tube banks (in-situ), are weighed up against quantified cost advantages with simpler arrangements. Future design trends are outlined which will lead eventually to fully optimised designs. (author)

  17. TRANSWRAP II: problem definition manual

    International Nuclear Information System (INIS)

    Knittle, D.E.

    1981-02-01

    The TRANSWRAP II computer code, written in Fortran IV and described in this Problem Definition Manual, was developed to analytically predict the magnitude of pressure pulses of large scale sodium-wate reactions in LMFBR secondary systems. It is currently being used for the Clinch River Breeder Reactor Program. The code provides the options, flexibility and features necessary to consider any system configuration. The code methodology has been validated with the aid of extensive sodium-water reaction test programs

  18. Seismic criteria studies and analyses. Quarterly progress report No. 3. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-03

    Information is presented concerning the extent to which vibratory motions at the subsurface foundation level might differ from motions at the ground surface and the effects of the various subsurface materials on the overall Clinch River Breeder Reactor site response; seismic analyses of LMFBR type reactors to establish analytical procedures for predicting structure stresses and deformations; and aspects of the current technology regarding the representation of energy losses in nuclear power plants as equivalent viscous damping.

  19. Alignment and operability analysis of a vertical sodium pump

    International Nuclear Information System (INIS)

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump

  20. Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, William R.; Lumetta, Gregg J.; Johnson, Michael E.; Poirier, Micheal R.; Thompson, Major C.; Suggs, Patricia C.; Machara, N.

    2011-01-13

    The U.S. Department of Energy (DOE) is responsible for retrieving, immobilizing, and disposing of radioactive waste that has been generated during the production of nuclear weapons in the United States. The vast bulk of this waste material is stored in underground tanks at the Savannah River Site in South Carolina and the Hanford Site in Washington State. The general strategy for treating the radioactive tank waste consists of first separating the waste into high-level and low-activity fractions. This initial partitioning of the waste is referred to as pretreatment. Following pretreatment, the high-level fraction will be immobilized in a glass form suitable for disposal in a geologic repository. The low-activity waste will be immobilized in a waste form suitable for disposal at the respective site. This paper provides a review of recent developments in the application of pretreatment technologies to the processing of the Hanford and Savannah River radioactive tank wastes. Included in the review are discussions of 1) solid/liquid separations methods, 2) cesium separation technologies, and 3) other separations critical to the success of the DOE tank waste remediation effort. Also included is a brief discussion of the different requirements and circumstances at the two DOE sites that have in some cases led to different choices in pretreatment technologies.

  1. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    International Nuclear Information System (INIS)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-01-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  2. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    Energy Technology Data Exchange (ETDEWEB)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  3. In Situ Monitoring of Groundwater Contamination Using the Kalman Filter For Sustainable Remediation

    Science.gov (United States)

    Schmidt, F.; Wainwright, H. M.; Faybishenko, B.; Denham, M. E.; Eddy-Dilek, C. A.

    2017-12-01

    Sustainable remediation - based on less intensive passive remediation and natural attenuation - has become a desirable remediation alternative at contaminated sites. Although it has a number of benefits, such as reduced waste and water/energy usage, it carries a significant burden of proof to verify plume stability and to ensure insignificant increase of risk to public health. Modeling of contaminant transport is still challenging despite recent advances in numerical methods. Long-term monitoring has, therefore, become a critical component in sustainable remediation. However, the current approach, which relies on sparse groundwater sampling, is problematic, since it could miss sudden significant changes in plume behavior. A new method is needed to combine existing knowledge about contaminant behavior and latest advances in in situ groundwater sensors. This study presents an example of the effective use of the Kalman filter approach to estimate contaminant concentrations, based on in situ measured water quality parameters (e.g. electrical conductivity and pH) along with the results of sparse groundwater sampling. The Kalman filter can effectively couple physical models and data correlations between the contaminant concentrations and in situ measured variables. We aim (1) to develop a framework capable of integrating different data types to provide accurate contaminant concentration estimates, (2) to demonstrate that these results remain reliable, even when the groundwater sampling frequency is reduced, and (3) to evaluate the future efficacy of this strategy using reactive transport simulations. This framework can also serve as an early warning system for detecting unexpected plume migration. We demonstrate our approach using historical and current groundwater data from the Savannah River Site (SRS) F-Area Seepage Basins to estimate uranium and tritium concentrations. The results show that the developed method can provide reliable estimates of contaminant

  4. Savannah River Site plan for performing maintenance in Federal Facility Agreement areas (O and M Plan)

    International Nuclear Information System (INIS)

    Morris, D.R.

    1996-01-01

    The Savannah River Site was placed on the National Priority List (NPL) in December 1989 and became subject to comprehensive remediation in accordance with CERCLA. The FFA, effective August 16, 1993, establishes the requirements for Site investigation and remediation of releases and potential releases of hazardous substances, and interim status corrective action for releases of hazardous wastes or hazardous constituents. It was determined that further direction was needed for the Operating Departments regarding operation and maintenance activities within those areas listed in the FFA. The Plan for Performing Maintenance (O and M Plan) provides this additional direction. Section 4.0 addresses the operation and maintenance activities necessary for continued operation of the facilities in areas identified as RCRA/CERCLA Units or Site Evaluation Areas. Certain types of the O and M activity could be construed as a remedial or removal action. The intent of this Plan is to provide direction for conducting operation and maintenance activities that are not intended to be remedial or removal actions. The Plan identifies the locations of the units and areas, defines intrusive O and M activities, classifies the intrusive activity as either minor or major, and identifies the requirements, approvals, and documentation necessary to perform the activity in a manner that is protective of human health and the environment; and minimizes any potential impact to any future removal and remedial actions

  5. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report

  6. Remediation strategy, capping construction and ongoing monitoring for the mill tailings pond, Ningyo-Toge uranium mine, Japan

    International Nuclear Information System (INIS)

    Hiroshi Saito; Tomihiro Taki

    2013-01-01

    Ningyo-toge Uranium Mine is subject to the environmental remediation. The main purposes are to take measures to ensure the radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. The Yotsugi Mill Tailings Pond in the Ningyo-toge Uranium Mine has deposited mining waste and impounded water as a buffer reservoir before it is transferred to the Water Treatment Facility. It is located at the upstream of the water-source river and as the impact on its environment in case of earthquake is estimated significant, the highest priority has been put to it among mine-related facilities in the Mine. So far, basic concept has been examined and a great number of data has been acquired, and using the data, some remediation activities have already done, including capping construction for the upstream part of the Mill Tailings Pond. The capping is to reduce rainwater penetration to lower the burden of water treatment, and to reduce radon exhalation and dose rates. Only natural materials are used to alleviate the future maintenance. Data, including settlement amount and underground temperature is now being acquired and accumulated to verify the effectiveness of the capping, and used for the future remediation of the Downstream with revision of its specifications if necessary. (authors)

  7. Biological technologies for the remediation of co-contaminated soil.

    Science.gov (United States)

    Ye, Shujing; Zeng, Guangming; Wu, Haipeng; Zhang, Chang; Dai, Juan; Liang, Jie; Yu, Jiangfang; Ren, Xiaoya; Yi, Huan; Cheng, Min; Zhang, Chen

    2017-12-01

    Compound contamination in soil, caused by unreasonable waste disposal, has attracted increasing attention on a global scale, particularly since multiple heavy metals and/or organic pollutants are entering natural ecosystem through human activities, causing an enormous threat. The remediation of co-contaminated soil is more complicated and difficult than that of single contamination, due to the disparate remediation pathways utilized for different types of pollutants. Several modern remediation technologies have been developed for the treatment of co-contaminated soil. Biological remediation technologies, as the eco-friendly methods, have received widespread concern due to soil improvement besides remediation. This review summarizes the application of biological technologies, which contains microbial technologies (function microbial remediation and composting or compost addition), biochar, phytoremediation technologies, genetic engineering technologies and biochemical technologies, for the remediation of co-contaminated soil with heavy metals and organic pollutants. Mechanisms of these technologies and their remediation efficiencies are also reviewed. Based on this study, this review also identifies the future research required in this field.

  8. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hulstrom, L.

    2011-02-07

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  9. River water remediation using pulsed corona, pulsed spark or ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Izdebski, T.; Dors, M. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Mizeraczyk, J. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Gdynia Maritime Univ., Morska (Poland). Dept. of Marine Electronics

    2010-07-01

    The most common reason for epidemic formation is the pollution of surface and drinking water by wastewater bacteria. Pathogenic microorganisms that form the largest part of this are fecal bacteria, such as escherichia coli (E. coli). Wastewater treatment plants reduce the amount of the fecal bacteria by 1-3 orders of magnitude, depending on the initial number of bacteria. There is a lack of data on waste and drinking water purification by the electrohydraulic discharges method, which causes the destruction and inactivation of viruses, yeast, and bacteria. This paper investigated river water cleaning from microorganisms using pulsed corona, spark discharge and ozonization. The paper discussed the experimental setup and results. It was concluded that ozonization is the most efficient method of water disinfection as compared with pulsed spark and pulsed corona discharges. The pulsed spark discharge in water was capable of killing all microorganism similarly to ozonization, but with much lower energy efficiency. The pulsed corona discharge was found to be the less effective method of water disinfection. 21 refs., 4 figs.

  10. Hood River Monitoring and Evaluation Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Vaivoda, Alexis

    2004-02-01

    The Hood River Production Program Monitoring and Evaluation Project is co-managed by the Confederated Tribes of Warm Springs (CTWSRO) and the Oregon Department of Fish and Wildlife. The program is divided up to share responsibilities, provide efficiency, and avoid duplication. From October 2002 to September 2003 (FY 03) project strategies were implemented to monitor, protect, and restore anadromous fish and fish habitat in the Hood River subbasin. A description of the progress during FY 03 is reported here. Additionally an independent review of the entire program was completed in 2003. The purpose of the review was to determine if project goals and actions were achieved, look at critical uncertainties for present and future actions, determine cost effectiveness, and choose remedies that would increase program success. There were some immediate changes to the implementation of the project, but the bulk of the recommendations will be realized in coming years.

  11. Technologies for remediating radioactively contaminated land

    International Nuclear Information System (INIS)

    Pearl, M.

    2000-01-01

    This paper gives an overview of technologies that can be used for the remediation of radioactively contaminated ground. There are a wide variety of techniques available -most have established track records for contaminated ground, though in general many are only just being adapted to use for radioactively contaminated ground. 1) Remediation techniques for radioactively contaminated ground involve either removal of the contamination and transfer to a controlled/contained facility such as the national LLW repository at Drigg, or 2) immobilization, solidification and stabilization of the contamination where the physical nature of the soil is changed, or an 'agent' is added to the soil, to reduce the migration of the contaminants, or 3) isolation and containment of the contaminated ground to reduce contaminant migration and control potential detrimental effects to human health. Where contamination has to be removed, ex situ and in situ techniques are available which minimize the waste requiring disposal to an LLW repository. These techniques include: 1) detector-based segregation 2) soil washing by particle separations 3) oil washing with chemical leaching agents 4) electro remediation 5) phyto remediation. Although many technologies are potentially applicable, their application to the remediation of a specific contaminated site is dependent on a number of factors and related to detailed site characterization studies, results from development trials and BPEO (best practicable environmental option) studies. Those factors considered of particular importance are: 1) the clean-up target 2) technical feasibility relative to the particular site, soil and contaminant characteristics, and time frame 3) site infrastructure arrangements and needs, the working life of the site and the duration of institutional care 4) long-term monitoring arrangements for slow remedial techniques or for immobilization and containment techniques 5) validation of the remediation 6) health and

  12. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses....... The first as in-situ or on-site treatment when there is no requirement for fast remediation, as the removal rate of the heavy metals are dependent on the distance between the electrodes (everything else equal) and in such application the electrode spacing must have a certain distance (often meters......). In the stirred setup it is possible to shorten the transport route to few mm and to have a faster and continuous process. The present paper for the first time reports a direct comparison of the two options. The remediation of the stirred suspension showed faster than remediation of the water saturated soil even...

  13. Remediation of spent block in Uvanas deposit

    International Nuclear Information System (INIS)

    Nurgaziev, M.A.; Iskakov, M.M.

    2012-01-01

    In 2007 by 'Kazatomprom' and 'Mining company' board decision, the branch of 'Mining company', 'Steppe ore management body' is reorganized in structure subdivision, the basic activity of which is organization and carrying out remediation works on spent blocks of PSV uranium deposit. In 2002 works are completed on OVOS for operating deposits Uvanas, Kanjugan, Northern Karamurun and Eastern Minkuduk. The results of present work were reported in IAEA conference. The working project 'Remediation of spent blocks of PSV uranium deposit PV-17 polygon of Steppe ore management body' approved in 2005 was developed for carrying out the remediation works. Works funding were carried out from liquidation fund of the current deposit established in accordance with the Republic of Kazakhstan law 'About interior and interior use'. Deposits remediation is the part of deposit operation life cycle which obliges to operate deposits with minimum expenditures for remediation.

  14. Uniroyal Chemical`s remediation project meets or exceeds expectations

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1997-11-01

    Recent remedial actions taken by Uniroyal Chemical Ltd at their Elmira, Ontario, plant have been considered. The company has been manufacturing a wide range of organic chemicals at this plant for use in agriculture and in the plastics and rubber industries since 1942. Historically, wastes were disposed of on-site, which while common practice at the time, caused soil and water contamination by N-nitrosodimethylamine (NDMA), volatile organic compounds such as benzene, toluene, and chlorobenzene, aniline, mercaptobenzothiazole and basic compounds such as ammonia. The local hydrogeology is fairly complex and consists of several aquifers and aquitards of which the Upper Aquifer (UA) and the Municipal Aquifer (MA) have been the primary concern. They have supplied all or part of the drinking water for the Kitchener-Waterloo area and the town of Elmira. After an extensive feasibility study, the decision was made to install shallow extension wells, and a system to treat the groundwater to acceptable criteria to discharge the treated water to the river system. Development of the system, which besides ten extraction wells includes a tertiary treatment process for UV oxidation, was described. The system has been in operation since January 1997. It affords 95 to 98 per cent of containment efficiency, 99 per cent ammonia removal, and 99.97 per cent of NDMA removal. Effluent requirements have been consistently met for all 18 primary contaminants, and no groundwater is being discharged into the river system.

  15. Herbal remedies: issues in licensing and economic evaluation.

    Science.gov (United States)

    Ashcroft, D M; Po, A L

    1999-10-01

    In recent years, the use of alternative therapies has become widespread. In particular, there has been a resurgence in the public's demand for herbal remedies, despite a lack of high-quality evidence to support the use of many of them. Given the increasing pressures to control healthcare spending in most countries, it is not surprising that attention is being focused on the cost effectiveness of herbal remedies. We address the question of whether there is sufficient information to enable the assessment of the cost effectiveness of herbal remedies. In so doing, we discuss the current state of play with several of the more high-profile alternative herbal remedies [Chinese medicinal herbs for atopic eczema, evening primrose oil, ginkgo biloba, hypericum (St John's wort)] and some which have made the transition from being alternative to being orthodox remedies. We use historical context to discuss, on the one hand, the increasing commodification of herbal remedies and on the other, the trend towards greater regulatory control and licensing of alternative herbal remedies. We argue that unless great care is exercised, these changes are not necessarily in the best interests of patients. In order to identify cost-effective care, we need reliable information about the costs as well as the efficacy and safety of the treatments being assessed. For most alternative therapies, such data are not available. We believe that studies to gather such data are long overdue. Whilst we argue strongly in favour of control of some herbal remedies, we urge caution with the trend towards licensing of all herbal remedies. We argue that the licensing of those herbal remedies with equivocal benefits and few risks, as evidenced by a long history of safe use, increases barriers to entry and increases societal healthcare costs.

  16. Phase II, Title I engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    International Nuclear Information System (INIS)

    1977-12-01

    An engineering assessment was performed of the problems resulting from the existence of radioactive uranium mill tailings at the Green River site, Utah. Services included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations , the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 123 thousand tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The three alternative actions presented are dike stabilization, fencing, on- and off-site decontamination and maintenance (Option I); improvements in the stabilization cover and diking plus cleanup of the site and Browns Wash, and realignment of Browns Wash (Option II); and addition of stabilization cover to a total of 2 ft, realignment of Browns Wash and placement of additional riprap, on-site cleanup and drainage improvements (Option III). All options include remedial action at off-site structures. Cost estimates for the three options range from $700,000 to $926,000

  17. Bioremediation of PAHs contaminated river sediment by an integrated approach with sequential injection of co-substrate and electron acceptor: Lab-scale study

    International Nuclear Information System (INIS)

    Liu, Tongzhou; Zhang, Zhen; Dong, Wenyi; Wu, Xiaojing; Wang, Hongjie

    2017-01-01

    In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO 3 − ) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO 3 − injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods. - Highlights: • Sequential addition of acetate and NO 3 − removed PAHs and mitigated sediment odor. • Acetate is a suitable co-substrate used for PAHs degradation in river sediment. • NO 3 − Injection was effective for sediment odor and blackish appearance mitigation. • Integrated method is suggested in complicated real case with multi-remedial target. - Sequential addition of co-substrate and electron acceptor was capable of effectively removing PAHs and addressing sediment odorous problem and blackish appearance.

  18. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2006-11-14

    This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

  19. Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee.

    Science.gov (United States)

    Ruhl, Laura; Vengosh, Avner; Dwyer, Gary S; Hsu-Kim, Heileen; Deonarine, Amrika; Bergin, Mike; Kravchenko, Julia

    2009-08-15

    An investigation of the potential environmental and health impacts in the immediate aftermath of one of the largest coal ash spills in U.S. history at the Tennessee Valley Authority (TVA) Kingston coal-burning power plant has revealed three major findings. First the surface release of coal ash with high levels of toxic elements (As = 75 mg/kg; Hg = 150 microg/kg) and radioactivity (226Ra + 228Ra = 8 pCi/g) to the environment has the potential to generate resuspended ambient fine particles (risk to local communities. Second, leaching of contaminants from the coal ash caused contamination of surface waters in areas of restricted water exchange, but only trace levels were found in the downstream Emory and Clinch Rivers due to river dilution. Third, the accumulation of Hg- and As-rich coal ash in river sediments has the potential to have an impact on the ecological system in the downstream rivers by fish poisoning and methylmercury formation in anaerobic river sediments.

  20. Model based estimation of sediment erosion in groyne fields along the River Elbe

    International Nuclear Information System (INIS)

    Prohaska, Sandra; Jancke, Thomas; Westrich, Bernhard

    2008-01-01

    River water quality is still a vital environmental issue, even though ongoing emissions of contaminants are being reduced in several European rivers. The mobility of historically contaminated deposits is key issue in sediment management strategy and remediation planning. Resuspension of contaminated sediments impacts the water quality and thus, it is important for river engineering and ecological rehabilitation. The erodibility of the sediments and associated contaminants is difficult to predict due to complex time depended physical, chemical, and biological processes, as well as due to the lack of information. Therefore, in engineering practice the values for erosion parameters are usually assumed to be constant despite their high spatial and temporal variability, which leads to a large uncertainty of the erosion parameters. The goal of presented study is to compare the deterministic approach assuming constant critical erosion shear stress and an innovative approach which takes the critical erosion shear stress as a random variable. Furthermore, quantification of the effective value of the critical erosion shear stress, its applicability in numerical models, and erosion probability will be estimated. The results presented here are based on field measurements and numerical modelling of the River Elbe groyne fields.

  1. The Aftermath of Remedial Math: Investigating the Low Rate of Certificate Completion among Remedial Math Students

    Science.gov (United States)

    Bahr, Peter Riley

    2013-01-01

    Nationally, a majority of community college students require remedial assistance with mathematics, but comparatively few students who begin the remedial math sequence ultimately complete it and achieve college-level math competency. The academic outcomes of students who begin the sequence but do not complete it are disproportionately unfavorable:…

  2. ACTIVE CAPPING TECHNOLOGY - NEW APPROACHES FOR IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Paller, M.; Roberts, J.

    2012-02-13

    This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.

  3. Waste minimization applications at a remediation site

    International Nuclear Information System (INIS)

    Allmon, L.A.

    1995-01-01

    The Fernald Environmental Management Project (FEMP) owned by the Department of Energy was used for the processing of uranium. In 1989 Fernald suspended production of uranium metals and was placed on the National Priorities List (NPL). The site's mission has changed from one of production to environmental restoration. Many groups necessary for producing a product were deemed irrelevant for remediation work, including Waste Minimization. Waste Minimization does not readily appear to be applicable to remediation work. Environmental remediation is designed to correct adverse impacts to the environment from past operations and generates significant amounts of waste requiring management. The premise of pollution prevention is to avoid waste generation, thus remediation is in direct conflict with this premise. Although greater amounts of waste will be generated during environmental remediation, treatment capacities are not always available and disposal is becoming more difficult and costly. This creates the need for pollution prevention and waste minimization. Applying waste minimization principles at a remediation site is an enormous challenge. If the remediation site is also radiologically contaminated it is even a bigger challenge. Innovative techniques and ideas must be utilized to achieve reductions in the amount of waste that must be managed or dispositioned. At Fernald the waste minimization paradigm was shifted from focusing efforts on source reduction to focusing efforts on recycle/reuse by inverting the EPA waste management hierarchy. A fundamental difference at remediation sites is that source reduction has limited applicability to legacy wastes but can be applied successfully on secondary waste generation. The bulk of measurable waste reduction will be achieved by the recycle/reuse of primary wastes and by segregation and decontamination of secondary wastestreams. Each effort must be measured in terms of being economically and ecologically beneficial

  4. Passive remediation strategies for petroleum contaminated sites

    International Nuclear Information System (INIS)

    Everett, L.G.; Cullen, S.J.; Eccles, L.A.

    1991-01-01

    The US EPA is becoming increasingly aware of costs and the limited success of existing remediation strategies. Research teams within the US EPA believe that if passive remediation can be successfully demonstrated, it is a candidate for best available technology. Passive remediation, however, must be demonstrated through the use of monitoring techniques, which demonstrate: contaminants are not moving in the dissolved, adsorbed or free product phase; and contamination is biodegrading in-place. This paper presents a concise monitoring and analysis strategy for passive remediation. Specifically, the paper presents the accuracy, precision and operating range of neutron moderation techniques as a low cost, real-time screening tool to measure the migration of the dissolved phase in soil moisture, the stabilized adsorbed phase and free product movement. In addition, the paper identifies the capillary pressure range through which the dissolved phase will move and identifies techniques for satisfying the risk analysis that movement is not taking place. The rationale for passive remediation taking place is confirmed through a discussion of gas ratios associated with bacterial assimilation of hydrocarbons. Gas ratios which are relatively constant above ground are highly inverted in the subsurface at contamination sites. The use of frequent screening of a vertical geologic profile using least cost techniques and the infrequent analysis of soil gas ratios provides the required data upon which the public will accept passive remediation as best available technology at a particular site. The paper points out that neutron moderation is a high candidate vadose zone monitoring device and identifies alternative techniques using resistivity and dielectric constants, which are in the developmental stage. The economic implications for passive remediation are enormous relative to the excavation and remediation strategies which are currently in use

  5. Developing a disposal and remediation plan

    International Nuclear Information System (INIS)

    Messier, T.S.

    1999-01-01

    The environmental release of wastes generated by the upstream oil and gas industry in Alberta can result in polluted soil and groundwater at several facilities across the province. Responsibility for decommissioning upstream oil and gas facilities falls under the jurisdiction of the Alberta Energy and Utilities Board (EUB) and Alberta Environmental Protection (AEP). This paper outlines a protocol that can serve as a framework for the development of a plan to dispose of oilfield waste and to remediate related contaminated soils. The components involved in developing a disposal and remediation plan for oilfield wastes are: (1) identifying the potential source of pollution and oilfield waste generation, (2) characterizing oilfield wastes, (3) determining the nature and extent of soil and groundwater pollution, (4) preparing a remedial action plan, (5) assessing the viability of various remediation options, and (6) preparing health and safety plan. 12 refs., 2 tabs., 2 figs

  6. REAL TIME DATA FOR REMEDIATION ACTIVITIES (11505)

    International Nuclear Information System (INIS)

    Brock, C.T.

    2011-01-01

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  7. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  8. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  9. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  10. Hanford sitewide grounwater remediation - supporting technical information

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-05-01

    The Hanford Sitewide Groundwater Remediation Strategy was issued in 1995 to establish overall goals for groundwater remediation on the Hanford Site. This strategy is being refined to provide more detailed justification for remediation of specific plumes and to provide a decision process for long-range planning of remediation activities. Supporting this work is a comprehensive modeling study to predict movement of the major site plumes over the next 200 years to help plan the remediation efforts. The information resulting from these studies will be documented in a revision to the Strategy and the Hanford Site Groundwater Protection Management Plan. To support the modeling work and other studies being performed to refine the strategy, this supporting technical information report has been produced to compile all of the relevant technical information collected to date on the Hanford Site groundwater contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, and description of the contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, description of the contaminant plumes, rate of movement based on the conceptual model and monitoring data, risk assessment, treatability study information, and current approach for plume remediation

  11. Foreword Special Issue on Electrokinetic remediation

    NARCIS (Netherlands)

    Loch, J.P.G.; Lima, A.T.

    2012-01-01

    Since the first symposium on Electro-remediation (EREM) in 1997 at the École des Mines d’Albi, in Albi, France, much international attention, interest and progress have been generated in the science and technology of electro-remediation of contaminated soils, sediments and construction

  12. Remediation of the Maxey Flats Site

    International Nuclear Information System (INIS)

    1990-01-01

    This report describes issues associated with remedial action of Maxey Flats, a low-level radioactive waste disposal site from 1963-1977, located in Fleming County, Kentucky. Present remedial action alternatives being considered are discussed along with emergency plans, ground water monitoring plans, and budgets

  13. Remediating MGP brownfields

    International Nuclear Information System (INIS)

    Larsen, B.R.

    1997-01-01

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example

  14. CRBRP structural and thermal margin beyond the design base

    International Nuclear Information System (INIS)

    Strawbridge, L.E.

    1979-01-01

    Prudent margins beyond the design base have been included in the design of Clinch River Breeder Reactor Plant to further reduce the risk to the public from highly improbable occurrences. These margins include Structural Margin Beyond the Design Base to address the energetics aspects and Thermal Margin Beyond the Design Base to address the longer term thermal and radiological consequences. The assessments that led to the specification of these margins are described, along with the experimental support for those assessments. 8 refs

  15. Design and development of the CRBRP ex-vessel transfer machine

    International Nuclear Information System (INIS)

    Jones, C.E. Jr.

    1977-01-01

    The Reactor Refueling System (RRS) for the Clinch River Breeder Reactor Project (CRBRP) uses the Ex-Vessel Transfer Machine (EVTM) for transferring core assemblies outside the reactor vessel. The design of the Ex-Vessel Transfer Machine (EVTM) and its gantry-trolly for the CRBRP is discussed. The development tests required for the design are presented, in conjunction with the impact of the test results on the design. The impact of the increased seismic requirements on the design are also presented

  16. The proceduralisation of data protection remedies under EU data protection law : Towards a more effective and data subject-oriented remedial system?

    NARCIS (Netherlands)

    Galetta, Antonella; de Hert, Paul

    2015-01-01

    The proceduralisation of data protection remedies under EU data protection law: towards a more effective and data subject-oriented remedial system?
The right to remedy breaches of data protection is laid down in both Directive 95/46/EC (Art. 22) and the Council of Europe Data Protection Convention

  17. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  18. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  19. Remediation of problematic residents--A national survey.

    Science.gov (United States)

    Bhatti, Nasir I; Ahmed, Aadil; Stewart, Michael G; Miller, Robert H; Choi, Sukgi S

    2016-04-01

    Despite careful selection processes, residency programs face the challenge of training residents who fall below minimal performance standards. Poor performance of a resident can endanger both patient safety and the reputation of the residency program. It is important, therefore, for a program to identify such residents and implement strategies for their successful remediation. The purpose of our study was to gather information on evaluation and remediation strategies employed by different otolaryngology programs. Cross-sectional survey. We conducted a national survey, sending a questionnaire to the program directors of 106 otolaryngology residency programs. We collected information on demographics of the program, identification of problematic residents, and remediation strategies. The response rate was 74.5%, with a 2% cumulative incidence of problematic residents in otolaryngology programs during the past 10 years. The most frequently reported deficiencies of problematic residents were unprofessional behavior with colleagues/staff (38%), insufficient medical knowledge (37%), and poor clinical judgment (34%). Personal or professional stress was the most frequently identified underlying problem (70.5%). Remediation efforts included general counseling (78%), frequent feedback sessions (73%), assignment of a mentor (58%), and extra didactics (47%). These remediation efforts failed to produce improvement in 23% of the identified residents, ultimately leading to their dismissal. The apparent deficiencies, underlying causes, and remediation strategies vary among otolaryngology residency programs. Based on the results of this survey, we offer recommendations for the early identification of problematic residents and a standardized remediation plan. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Development of a waste minimization plan for a Department of Energy remedial action program: Ideas for minimizing waste in remediation scenarios

    International Nuclear Information System (INIS)

    Hubbard, Linda M.; Galen, Glen R.

    1992-01-01

    Waste minimization has become an important consideration in the management of hazardous waste because of regulatory as well as cost considerations. Waste minimization techniques are often process specific or industry specific and generally are not applicable to site remediation activities. This paper will examine ways in which waste can be minimized in a remediation setting such as the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program, where the bulk of the waste produced results from remediating existing contamination, not from generating new waste. (author)