WorldWideScience

Sample records for climate making energy

  1. Integrating climate change adaptation in energy planning and decision-making - Key challenges and opportunities

    DEFF Research Database (Denmark)

    Olhoff, Anne; Olsen, Karen Holm

    2011-01-01

    management framework is used as the basis for identifying key challenges and opportunities to enhance the integration of climate change adaptation in energy planning and decision-making. Given its importance for raising awareness and for stimulating action by planners and decision-makers, emphasis is placed......Energy systems are significantly vulnerable to current climate variability and extreme events. As climate change becomes more pronounced, the risks and vulnerabilities will be exacerbated. To date, energy sector adaptation issues have received very limited attention. In this paper, a climate risk...... barriers to integration of climate risks and adaptive responses in energy planning and decision making. Both detailed assessments of the costs and benefits of integrating adaptation measures and rougher ‘order of magnitude’ estimates would enhance awareness raising and momentum for action....

  2. Make Markets Work for Climate

    International Nuclear Information System (INIS)

    2006-11-01

    In developing countries with rapidly growing economies, energy consumption will more than triple by 2030. This will require more than 8 trillion euros in investments in energy in these countries. The way these investments are made will be crucial in determining whether greenhouse gas emissions will rise proportionately. By creating a worldwide, lucrative market for clean technologies, countries can use the money they set aside for fighting climate change to stimulate large-scale private investment in clean energy production and efficient energy consumption. A well-functioning market ensures that money is invested where it will be the most cost-effective and will have the greatest impact in helping to solve a generally recognised problem. This also means making sure that innovations get to the market, so as to take advantage of economies of scale. The conference on 16 and 17 October 2006 in Amsterdam was the official start of the collaboration of governments, business and financial institutions to Make Markets Work for Climate. At the conference it was underlined that coordinated strategies are needed for international financial institutions, private banks, private investors and governments. Business and governments stand shoulder to shoulder in shaping the much needed actions on climate change. The participants agreed that potentially profitable opportunities exist for investment in commercial technologies in developing countries, especially aimed at energy efficiency. An enabling environment is needed in developing countries to attract funds for clean energy. Attention should be paid to less-developed countries. They have difficulty profiting from the current CDM market and are unable to compete on the technology learning curve. In order to make markets work for climate there is a strong need for long-term continuity in the carbon market beyond 2012. Governments need to create stable incentives for business to invest in clean energy technologies. Business is ready

  3. Summer Center for Climate, Energy, and Environmental Decision Making (SUCCEED)

    Science.gov (United States)

    Klima, K.; Hoss, F.; Welle, P.; Larkin, S.

    2013-12-01

    Science, Technology, and Math (STEM) fields are responsible for more than half of our sustained economic expansion, and over the past 25 years the science and engineering workforce has remained at over 5% of all U.S. jobs. However, America lags behind other nations when it comes to STEM education; globally, American students rank 23th in math and 31st in science. While our youngest students show an interest in STEM subjects, roughly 40% of college students planning to major in STEM switch to other subjects. Women and minorities, 50% and 43% of school-age children, are disproportionally underrepresented in STEM fields (25% and 15%, respectively). Studies show that improved teacher curriculum combined with annual student-centered learning summer programs can promote and sustain student interest in STEM fields. Many STEM fields appear superficially simple, and yet can be truly complex and controversial topics. Carnegie Mellon University's Center for Climate and Energy Decision Making focuses on two such STEM fields: climate and energy. In 2011, we created SUCCEED: the Summer Center for Climate, Energy, and Environmental Decision Making. SUCCEED consisted of two pilot programs: a 2-day workshop for K-12 teacher professional development and a free 5-day summer school targeted at an age gap in the university's outreach, students entering 10th grade. In addition to teaching lessons climate, energy, and environment, the program aimed to highlight different STEM careers so students could better understand the breadth of choices available. SUCCEED, repeated in 2012, was wildly successful. A pre/post test demonstrated a significant increase in understanding of STEM topics. Furthermore, SUCCEED raised excitement for STEM; teachers were enthusiastic about accurate student-centered learning plans and students wanted to know more. To grow these efforts, an additional component has been added to the SUCCEED 2013 effort: online publicly available curricula. Using the curricula form

  4. The Europeanization of German energy and climate policies. New forms of policy-making and EU multi-level-governance

    International Nuclear Information System (INIS)

    Fischer, Severin

    2015-01-01

    The Energy Transition (''Energiewende'') is one of the hot topics of the political debate in Germany for some years. As a consequence of ongoing European integration, EU level politics have gained growing importance. The focus of this study is on the interaction of German and EU energy and climate policies. How have German actors influenced EU policy-making processes and in how far are EU policies relevant for national policy-making in Germany? Three case studies look at processes in the fields of electricity market regulation, renewable energy policy and climate protection between 2007 and 2013.

  5. A tool for design decision making - zero energy residential buildings in hot humid climates

    NARCIS (Netherlands)

    Attia, S.G.

    2012-01-01

    In this thesis, the development and evaluation of a simulation-based decision aid for Net Zero Energy Buildings (NZEBs) design, ZEBO, was explored. The thesis investigates the ability to achieve informed decision making for NZEB design, in hot climate. Four main questions were posed. Firstly, how to

  6. Climate saver atomic energy?

    International Nuclear Information System (INIS)

    1992-12-01

    According to the Schleswig-Holstein Land government nuclear power phaseout is compatible with measures designed to protect world climate. Only efforts aimed at quickly reducing energy demand by means of thermal insulation, energy conservation techniques, cogeneration systems and application of renewable energies are necessary. The Schleswig-Holstein energy concept is given as an example of making possible a worldwide carbon dioxide reduction. (DG) [de

  7. Combating Climate Change with Energy Efficiency - How to Make It Work

    International Nuclear Information System (INIS)

    Bukarica, V.

    2016-01-01

    COP21 agreement raised the awareness of the widest international community on an urgent need to act and deliver results that would mitigate adverse consequences of climate change. Energy efficiency is once again declared as the most readily available, rapid and cost-effective way to achieve desired greenhouse gases reductions. However, although significant efforts are made worldwide to put sound energy efficiency policies in place, the desired results in terms of saved kWh, and consequently in terms of reduced tonnes of CO2 emitted, are missing. The paper investigates and explains the reasons behind this energy efficiency policy failure, known as energy efficiency gap, by using examples from current energy efficiency and other policies in Croatia. The first reason is in the lack of understanding of energy efficiency market, the analysis of which needs to be a starting point in policy making. Selection of policy instruments needs to be based on feedback from those that are actually intended to implement them, i.e. participatory approach needs to be mainstreamed in policy making as it will reveal the reality of the implementing environment (existing attitudes, experienced brakes and desired levers). Secondly, there is generally insufficient knowledge about policy instruments impacts (both potential and achieved). Evaluation of expected impacts of a certain policy instrument needs to be realistic taking into account time needed for target group to fully adopt the instrument and utilise it to the highest level envisaged by the policy. And the last, reason for energy efficiency policy failure is to be found in continuously neglecting benefits of improved energy efficiency beyond energy savings. Energy efficiency requires genuine not declarative commitment that will integrate it in all other policy spheres. It is essential to start treating energy efficiency not as an end (i.e. as a policy for itself), but as a means to achieve multiple social, economic and environmental

  8. Energy for climate in Europe. An assessment of energy policies with climate-relevance. The LinkS Project.

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Audun; Knudsen, Joergen K.; Jacobsen, Gerd B.

    2011-07-01

    The LinkS project aims at providing a better linkage between perspectives and projections for global climate policy development and regional energy systems, by linking relevant modelling tools. The present report provides a specific focus on energy policy measures within the EY with climate relevance. The EU has in recent years aimed at reinforcing the linkage between the climate and energy policies, both at strategic and operational levels. The EU has pledged itself to reduce its greenhouse gas (GHG) emissions with 8 percent by 2008-12 as compared to the 1990 level, and by 20 percent by 2020 as compared to the as compared to the 2005 level. The EU-27 reduced it GHG emissions with 11,3 percent in 1990-2008. The 2020-target, however, will require stronger efforts and energy is a key sector: The EU has decided that 20 percent of the energy must be renewable, and that the energy usage in 2020 is to be 20 per sent more efficient than in 2005. A number of policy strategies, measures and legislation are formulated to fulfil these targets. In order to highlight the potential of these measures, this report specifically addresses the drivers and limitations given the existing decision-making structures in the EU. The methodology employed is mainly qualitative, based on document analysis and a review of secondary literature. Climate-change mitigation is in principle based on supra-national decision-making, but unanimity among all Eu Member States is still required in critical issues related to the energy sector. In addition, the national follow-up of the targets constitutes a particular challenge. This is here illustrated by the cases of Denmark and Norway. Energy policy is also substantially characterised by several conflicting interests between the Member States, resulting in diverging policy priorities. It is, therefore, an open question whether the EU will succeed in fulfilling its 20/20/20 percent targets by 2020, and will be the actual role of energy within the climate

  9. Interactions of Policies for Renewable Energy and Climate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper explores the relationships between climate policy and renewable energy policy instruments. It shows that, even where CO2 emissions are duly priced, specific incentives for supporting the early deployment of renewable energy technologies are justified by the steep learning curves of nascent technologies. This early investment reduces costs in the longer term and makes renewable energy affordable when it needs to be deployed on a very large scale to fully contribute to climate change mitigation and energy security. The paper also reveals other noteworthy interaction effects of climate policy and renewable policy instruments on the wholesale electricity prices in deregulated markets, which open new areas for future research.

  10. The Europeanization of German energy and climate policies. New forms of policy-making and EU multi-level-governance; Die Europaeisierung der deutschen Energie- und Klimapolitik. Neue Formen der Politikgestaltung und Steuerung im EU-Mehrebenensystem

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Severin

    2015-01-23

    The Energy Transition (''Energiewende'') is one of the hot topics of the political debate in Germany for some years. As a consequence of ongoing European integration, EU level politics have gained growing importance. The focus of this study is on the interaction of German and EU energy and climate policies. How have German actors influenced EU policy-making processes and in how far are EU policies relevant for national policy-making in Germany? Three case studies look at processes in the fields of electricity market regulation, renewable energy policy and climate protection between 2007 and 2013.

  11. Climate and energy

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The dossier on Climate and Energy encompasses contributions addressing the following topics: Climate research in Germany, perspectives of the energy of the future; Energy-conserving building design, construction and retrofitting; Companies developing ecological awareness and ecological performance; World population, energy consumption and greenhouse gas abatement; On the uncertainty involved in political evaluation of the global climate change; Economic aspects of the carbon dioxide issue; Ozone - polar stratospheres - clouds and ozone hole; Ozone - vertical ozone distribution in the antarctic region; Sudden climate change; Sulfate aerosols and climate change; Symptoms of the global climate change; IKARUS - greenhouse gas abatement strategies; Energy from fossil fuels; Renewable energy sources; Nuclear fusion; Is there a chance for nuclear energy?; Least-cost planning leading to energy-conserving power plants; Pleading for a sustainable energy economy; Why we both love and destroy nature. The concluding two contributions are interviews highlighting two statements: We will persist in our intention to achieve the declared objectives for greenhouse gas abatement, and: We cannot do without nuclear energy. (RHM) [de

  12. City-Level Energy Decision Making. Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Alexandra [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Day, Megan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doris, Elizabeth [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mathur, Shivani [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Donohoo-Vallett, Paul [U.S. Department of Energy, Washington, DC (United States)

    2015-07-08

    The Cities-LEAP technical report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities, explores how a sample of cities incorporates data into making energy-related decisions. This report provides the foundation for forthcoming components of the Cities-LEAP project that will help cities improve energy decision making by mapping specific city energy or climate policies and actions to measurable impacts and results.

  13. Making Homes Part of the Climate Solution: Policy Options To Promote Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Chandler, Jess [Georgia Institute of Technology; Lapsa, Melissa Voss [ORNL; Ally, Moonis [Oak Ridge National Laboratory (ORNL)

    2009-06-01

    In the area of energy efficiency, advanced technologies combined with best practices appear to afford not only large, but also cost-effective options to conserve energy and reduce greenhouse gas emissions (McKinsey & Company, 2007). In practice, however, the realization of this potential has often proven difficult. Progress appears to require large numbers of individuals to act knowledgeably, and each individual must often act with enabling assistance from others. Even when consumer education is effective and social norms are supportive, the actions of individuals and businesses can be impeded by a broad range of barriers, many of which are non-technical in nature. Title XVI of the Energy Policy Act of 2005 included a mandate to examine barriers to progress and make recommendations in this regard. A detailed report on barriers as well as the National strategy for overcoming barriers met this requirement (Brown et al, 2008; CCCSTI, 2009). Following up on this mandate, the U.S. Climate Change Technology Program (CCTP) chose to focus next on the development of policy options to improve energy efficiency in residential buildings, with supporting analysis of pros and cons, informed in part by behavioral research. While this work is sponsored by CCTP, it has been undertaken in coordination with DOE's Building Technologies Program and Office of Electricity Delivery and Energy Reliability.

  14. Energy Choices and Climate Change: A New Interactive Feature on Windows to the Universe

    Science.gov (United States)

    Gardiner, L. S.; Russell, R. M.; Ward, D.; Johnson, R. M.; Henderson, S.; Foster, S. Q.

    2009-12-01

    We have developed a new, self-paced online module to foster understanding of how choices made about energy production and energy use affect greenhouse gas emissions and climate change. The module, entitled “Energy Choices and Climate Change” is available on Windows to the Universe (www.windows.ucar.edu), an extensive educational Web site used by over 20 million people each year. “Energy Choices and Climate Change” provides a new way to look at issues related to energy and climate change, emphasizing the climate implications of the choices we make. “Energy Choices and Climate Change” allows users to explore two different scenarios through which they make decisions about energy production or use. In the “Ruler of the World” scenario, the user is given the authority to make decisions about the mix of energy sources that will be used worldwide with the aim of reducing emissions while meeting global energy demand and monitoring costs and societal implications. In “The Joules Family” scenario, the user makes decisions about how to change the way a hypothetical family of four uses energy at home and for transportation with the aim of reducing the family’s carbon emissions and fossil fuel use while keeping costs less than long-term savings. While this module is intended for a general public audience, an associated teacher’s guide provides support for secondary educators using the module with students. Windows to the Universe is a project of the University Corporation for Atmospheric Research Office of Education and Outreach. Funding for the Energy Choices and Climate Change online module was provided by the National Center for Atmospheric Research.

  15. Challenges to a climate stabilizing energy future

    International Nuclear Information System (INIS)

    Green, C.; Dilmaghani, M.; Baksi, S.

    2007-01-01

    The paper surveys the major challenges to stabilizing the atmospheric CO 2 concentration. Climate change, and policies to deal with it, is viewed as an energy problem. The energy problem stems from the fact that no combination of carbon-free energies is currently capable of displacing fossil fuels as the main sources of the world's base load energy requirements. The paper provides rough estimates of the amount of carbon-free energy required to stabilize climate, the potential contribution of 'conventional' carbon-free energies, the contribution of renewable energies, and the size of an 'advanced energy technology gap'. The findings indicate that stabilizing CO 2 concentration will require a long-term commitment to research, develop, and eventually deploy new energy sources and technologies including hydrogen. The paper suggests that the role of technology is what makes stabilizing CO 2 concentration economically feasible. In this respect energy technology and economics are complementary, with advances in the former requiring something more than a reliance on market-based instruments, such as carbon taxes and emission permits. The analysis has implications for the credibility of commitments to target climate change-related factors such as CO 2 emissions.(author)

  16. Challenges to a climate stabilizing energy future

    International Nuclear Information System (INIS)

    Green, Chris; Baksi, Soham; Dilmaghani, Maryam

    2007-01-01

    The paper surveys the major challenges to stabilizing the atmospheric CO 2 concentration. Climate change, and policies to deal with it, is viewed as an energy problem. The energy problem stems from the fact that no combination of carbon-free energies is currently capable of displacing fossil fuels as the main sources of the world's base load energy requirements. The paper provides rough estimates of the amount of carbon-free energy required to stabilize climate, the potential contribution of 'conventional' carbon-free energies, the contribution of renewable energies, and the size of an 'advanced energy technology gap'. The findings indicate that stabilizing CO 2 concentration will require a long-term commitment to research, develop, and eventually deploy new energy sources and technologies including hydrogen. The paper suggests that the role of technology is what makes stabilizing CO 2 concentration economically feasible. In this respect energy technology and economics are complementary, with advances in the former requiring something more than a reliance on market-based instruments, such as carbon taxes and emission permits. The analysis has implications for the credibility of commitments to target climate change-related factors such as CO 2 emissions

  17. Energy security and climate change : a Canadian primer

    International Nuclear Information System (INIS)

    Gonick, C.

    2007-01-01

    This book addresses the reality of climate change and peak oil, and emphasizes the need to make the transition from carbon energies to renewable energies. The book is a compilation of 18 leading authorities' work on energy use and its impact on the environment. Various solutions and sustainable alternatives to carbon energy are proposed. The book links fossil fuels, including oil sands, as a major cause of climate change. The book also addresses other topical issues, such as the nuclear revival, the U.S. energy act and electricity, carbon trading, and energy security in Canada. The authors emphasize the need to act in a proactive way to ensure a sustainable future. refs.

  18. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  19. NASA Earth Observations Informing Energy Management Decision Making

    Science.gov (United States)

    Eckman, Richard; Stackhouse, Paul

    2017-01-01

    The Energy Sector is experiencing increasing impacts from severe weather and shifting climatic trends, as well as facing a changing political climate, adding uncertainty for stakeholders as they make short- and long-term planning investments. Climate changes such as prolonged extreme heat and drought (leading to wildfire spread, for example), sea level rise, and extreme storms are changing the ways that utilities operate. Energy infrastructure located in coastal or flood-prone areas faces inundation risks, such as damage to energy facilities. The use of renewable energy resources is increasing, requiring more information about their intermittency and spatial patterns. In light of these challenges, public and private stakeholders have collaborated to identify potential data sources, tools, and programmatic ideas. For example, utilities across the country are using cutting-edge technology and data to plan for and adapt to these changes. In the Federal Government, NASA has invested in preliminary work to identify needs and opportunities for satellite data in energy sector application, and the Department of Energy has similarly brought together stakeholders to understand the landscape of climate vulnerability and resilience for utilities and others. However, have these efforts improved community-scale resilience and adaptation efforts? Further, some communities are more vulnerable to climate change and infrastructure impacts than others. This session has two goals. First, panelists seek to share existing and ongoing efforts related to energy management. Second, the session seeks to engage with attendees via group knowledge exchange to connect national energy management efforts to local practice for increased community resilience.

  20. Climate, greenhouse effect, energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    The book has sections on the sun as energy source, the earth climate and it's changes and factors influencing this, the greenhouse effect on earth and other planets, greenhouse gases and aerosols and their properties and importance, historic climate and paleoclimate, climatic models and their uses and limitations, future climate, consequences of climatic changes, uncertainties regarding the climate and measures for reducing the greenhouse effect. Finally there are sections on energy and energy resources, the use, sources such as fossil fuels, nuclear power, renewable resources, heat pumps, energy storage and environmental aspects and the earth magnetic field is briefly surveyed

  1. Climate Information Needs for Financial Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Paul [American Meteorological Society, Washington, DC (United States)

    2013-11-19

    Climate Information Needs for Financial Decision Making (Final Report) This Department of Energy workshop award (grant #DE-SC0008480) provided primary support for the American Meteorological Society’s study on climate information needs for financial decision making. The goal of this study was to help advance societal decision making by examining the implications of climate variability and change on near-term financial investments. We explored four key topics: 1) the conditions and criteria that influence returns on investment of major financial decisions, 2) the climate sensitivity of financial decisions, 3) climate information needs of financial decision makers, and 4) potential new mechanisms to promote collaboration between scientists and financial decision makers. Better understanding of these four topics will help scientists provide the most useful information and enable financial decision makers to use scientific information most effectively. As a result, this study will enable leaders in business and government to make well-informed choices that help maximize long-term economic success and social wellbeing in the United States The outcomes of the study include a workshop, which brought together leaders from the scientific and financial decision making communities, a publication of the study report, and a public briefing of the results to the policy community. In addition, we will present the results to the scientific community at the AMS Annual Meeting in February, 2014. The study results were covered well by the media including Bloomberg News and E&E News. Upon request, we also briefed the Office of Science Technology Policy (OSTP) and the Council on Environmental Quality (CEQ) on the outcomes. We presented the results to the policy community through a public briefing in December on Capitol Hill. The full report is publicly available at www.ametsoc.org/cin. Summary of Key Findings The United States invests roughly $1.5 trillion U.S. dollars (USD) in

  2. Making Climate Change Visceral Through the Arts

    Science.gov (United States)

    Bilodeau, C.

    2016-12-01

    Through their affective power, the arts offer a more visceral understanding of our global crisis and have a greater potential to inspire people to take action than scientific data alone. In this talk, I will look at three projects that use art to translate scientific data into sensory experiences, galvanize communities around visions of a positive future, and make climate change relevant to our lives. Jill Pelto's work makes science visible. A recent graduate from the University of Maine, Pelto practices what she calls glaciogenic art. As an artist and scientist, she uses her creative skills to communicate information about extreme environmental issues. Pelto's watercolors merge scientific data commonly found on graphs with the interpretation of that data in the form of illustrations. The result is an immediate understanding of the science and its implications. The Land Art Generator Initiative provides a platform for artists, architects, landscape architects, and other creatives working with engineers and scientists to bring forward human-centered solutions for sustainable energy infrastructures that enhance the city as works of public art while cleanly powering thousands of homes. Land Art Generator works are optimistic reminders that there is still time to make positive changes. Climate Change Theatre Action was a series of 100 readings and performances of climate change plays, poems and songs, written by writers from all six continents, presented in over 25 countries in support of the United Nations 2015 Paris Climate Conference. Events ranged from informal readings in classrooms to fully-staged performances, and often included presentations and/or panel conversations with scientists. The project reached people from all walks of life (including homeless youth and refugees) and had a powerful impact on audiences.

  3. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sarah L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hotchkiss, Elizabeth L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bilello, Daniel E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Watson, Andrea C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growing electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.

  4. Climate change and energy policies in Shanghai: A multilevel governance perspective

    International Nuclear Information System (INIS)

    Francesch-Huidobro, Maria

    2016-01-01

    Highlights: • Multilevel governance is a useful framework to understand how resources, tasks and power are distributed for decision making. • Shifts in national climate and energy policy mandate local governments to develop climate change and energy policies. • Local governments have greater autonomy for incorporating climate and energy issues into development goals. • Climate mitigation and energy policy is dominated by hierarchical governance. - Abstract: Despite growing interest in China’s response to climate change and energy security, studies undertaken at the subnational level are rare. In the context of the multilevel governance paradigm, this article examines the governance of climate change and energy policy in Shanghai, a rapidly growing Chinese megacity highly vulnerable to the effects of climate change. Although the energy and carbon intensity of Shanghai’s economy have fallen significantly since China launched its economic reforms, overall carbon emissions in the municipality continue to rise. Through examining the Shanghai case, this article argues that Chinese subnational climate mitigation policy is dominated by hierarchical governance arrangements. Nevertheless, shifts in national climate and energy policy since 2007 have mandated provincial-level governments, including Shanghai, to develop their own climate and energy policies while offering greater local autonomy for incorporating climate and energy issues into development goals: is this attributable to a decentred form of multilevel governance? The article concludes that Shanghai’s climate mitigation and energy policy is dominated by hierarchical governance whereby policies are ‘downloaded’ from the central government. Perspectives for other cities and insights for policymakers are discussed.

  5. Energy Design Guidelines for High Performance Schools: Arctic and Subarctic Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Arctic and Subarctic Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in arctic and subarctic climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  6. Energy and Climate Change (Executive Summary)

    International Nuclear Information System (INIS)

    World Energy Council

    2007-01-01

    The world needs urgently to develop a coherent and practical approach to reducing greenhouse gas (ghg) emissions. Energy professionals from across the world have been examining climate change policies to see what works in promoting sustainable development. The Intergovernmental Panel on Climate Change has recently confirmed that the evidence for global warming is unequivocal and the Stern Report has argued that early action to combat climate change makes economic sense. However, existing efforts are clearly insufficient - most countries with targets under Kyoto Protocol are not on track to meeting them and many countries do not have Kyoto targets. As a result, ghg emissions are still rising and are forecast to go on doing so for decades to come. The problem is not a lack of policies to deal with climate change - some thousands of policies have been introduced, both by countries within the Kyoto system and those outside, and the effort is under way to develop a successor to the Kyoto Protocol. Yet so far those policies are not proving adequate to the scale of the problem. There is a pressing need to understand why they are failing and to implement measures that are more effective in reducing emissions, particularly from the energy sector, which accounts for around two thirds of total ghg emissions. The WEC has therefore undertaken a Study of Energy and Climate Change, drawing on the collective experience and resources of energy professionals worldwide. It has looked in detail at the impact of existing climate change measures and how effective they have been in promoting sustainable development, using the criteria of the three A's - accessibility (to affordable energy); acceptability (of the energy sources used, particularly in environmental terms); and availability (how secure and reliable are those sources?). It is important to remember that sustainable development is not only about the environment - policies which fail to contribute to economic and social

  7. Climate change helplessness and the (de)moralization of individual energy behavior.

    Science.gov (United States)

    Salomon, Erika; Preston, Jesse L; Tannenbaum, Melanie B

    2017-03-01

    Although most people understand the threat of climate change, they do little to modify their own energy conservation behavior. One reason for this gap between belief and behavior may be that individual actions seem unimpactful and therefore are not morally relevant. This research investigates how climate change helplessness-belief that one's actions cannot affect climate change-can undermine the moralization of climate change and personal energy conservation. In Study 1, climate change efficacy predicted both moralization of energy use and energy conservation intentions beyond individual belief in climate change. In Studies 2 and 3, participants read information about climate change that varied in efficacy message, that is, whether individual actions (e.g., using less water, turning down heat) make a difference in the environment. Participants who read that their behavior made no meaningful impact reported weaker moralization and intentions (Study 2), and reported more energy consumption 1 week later (Study 3). Moreover, effects on intentions and actions were mediated by changes in moralization. We discuss ways to improve climate change messages to foster environmental efficacy and moralization of personal energy use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Climate change and energy options. Decision making in the midst of uncertainty

    International Nuclear Information System (INIS)

    Steinfeld, J.I.

    2001-01-01

    Understanding the world's natural systems, and how our own activities may be affecting those systems, are crucial for the long-term well-being of our society and of all the inhabitants of this world. One of the most complex of these is the global climate system. The nature and extent of significant alterations to the global climate system due to increasing emissions of greenhouse gases (GHG), resulting from human activity such as energy production and manufacturing processes, is still the subject of considerable uncertainty and, indeed, controversy. However, the possible consequent effects on ecological systems and human society may be of such profound gravity, that continuing research into the causes and effects of climate change, and development of viable technology solutions for mitigation of these effects, are essential. Understanding the global climate system, determining how our activities may be influencing it, and taking responsible actions to protect it for future generations, may be among the greatest challenges that humanity has ever faced

  9. Effective climate-energy solutions, escape routes and peak oil

    International Nuclear Information System (INIS)

    Bergh, Jeroen C.J.M. van den

    2012-01-01

    Many well-intended climate-energy strategies are ineffective in the absence of serious environmental regulation. This holds, among others, for direct support of clean energy, voluntary energy conservation, technical standards on a limited set of products, unilateral stringent carbon pricing, and awaiting peak oil as a climate strategy. All of these suffer from “escape routes” that indirectly increase CO 2 emissions and thus make the original strategy ineffective. On the other hand, environmental regulation alone may lead to a myopia-bias, stimulating early dominance of cost-effective technologies and a focus on incremental innovations associated with such technologies rather than on radical innovations. Although adopting a partial viewpoint keeps the analysis simple, we urgently need a more inclusive systems perspective on climate solutions. This will allow the formulation of an effective climate policy package that addresses the various escape routes. - Highlights: ► Many well-intended climate-energy strategies are ineffective because of escape routes. ► In this context the relationship between peak oil and climate policy receives attention. ► Environmental regulation alone creates myopia-bias, the resolution of which requires technology-specific policies. ► To formulate an effective climate policy package an inclusive systems perspective is needed.

  10. Making the Climate Count: Climate Policy Integration and Coherence in Finland

    OpenAIRE

    Kivimaa, Paula; Mickwitz, Per

    2009-01-01

    Tackling climate change in Finland and other industrialised countries requires major changes in production processes and consumption patterns. These changes will not take place unless climate change becomes a crucial factor in general and sector-specific policy-making. In this report climate policy integration in Finland is studied at different levels of policy-making: at the national level, regionally in Kymenlakso and the Metropolitan Area, as well as in the city of Helsinki and the town of...

  11. Energy security and climate change concerns: Triggers for energy policy change in the United States?

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Guri, E-mail: guri.bang@cicero.uio.n [CICERO - Center for International Climate and Environmental Research Oslo, P.O. Box 1129, 0318 Oslo (Norway)

    2010-04-15

    Why is it so difficult to change the energy policy status quo away from dependence on fossil fuels when the need to become less dependent on imported oil seems to be generally accepted by US politicians? In recent energy debates in the House and Senate, references to climate change and energy security were frequently used as a rationale for the need for energy policy change. But policymakers were not in agreement about what policy programs would be the best alternative or what goals the programs were to achieve in terms of addressing energy security or climate change, or both at the same time. The paper explores whether putting energy security and climate change on the decision making agenda simultaneously helped craft a political compromise in the 110th Congress-the Energy Independence and Security Act of 2007, and points out how the political institutions of the US structured interaction and affected policy outcome, and ultimately the chance of changing the energy policy status quo.

  12. Energy security and climate change concerns. Triggers for energy policy change in the United States?

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Guri [CICERO - Center for International Climate and Environmental Research Oslo, P.O. Box 1129, 0318 Oslo (Norway)

    2010-04-15

    Why is it so difficult to change the energy policy status quo away from dependence on fossil fuels when the need to become less dependent on imported oil seems to be generally accepted by US politicians? In recent energy debates in the House and Senate, references to climate change and energy security were frequently used as a rationale for the need for energy policy change. But policymakers were not in agreement about what policy programs would be the best alternative or what goals the programs were to achieve in terms of addressing energy security or climate change, or both at the same time. The paper explores whether putting energy security and climate change on the decision making agenda simultaneously helped craft a political compromise in the 110th Congress - the Energy Independence and Security Act of 2007, and points out how the political institutions of the US structured interaction and affected policy outcome, and ultimately the chance of changing the energy policy status quo. (author)

  13. Energy security and climate change concerns: Triggers for energy policy change in the United States?

    International Nuclear Information System (INIS)

    Bang, Guri

    2010-01-01

    Why is it so difficult to change the energy policy status quo away from dependence on fossil fuels when the need to become less dependent on imported oil seems to be generally accepted by US politicians? In recent energy debates in the House and Senate, references to climate change and energy security were frequently used as a rationale for the need for energy policy change. But policymakers were not in agreement about what policy programs would be the best alternative or what goals the programs were to achieve in terms of addressing energy security or climate change, or both at the same time. The paper explores whether putting energy security and climate change on the decision making agenda simultaneously helped craft a political compromise in the 110th Congress-the Energy Independence and Security Act of 2007, and points out how the political institutions of the US structured interaction and affected policy outcome, and ultimately the chance of changing the energy policy status quo.

  14. Energies-climate review (Panorama energies-climate) - issue 2013

    International Nuclear Information System (INIS)

    Goubet, Cecile; Beriot, Nicolas; Daurian, Aurelien; Vieillefosse, Alice; Ducastelle, Julien; Le Guen, Solenn; Strang, Axel; Courtois, Sophie; Brender, Pierre; Guibert, Olivier de; Croquette, Gilles; Simiu, Diane; Venturini, Isabelle; Hesske, Philip; Oriol, Louise; Louati, Sami; Cadin, Didier; Korman, Bernard; Defays, Julien; Balian, Armelle; Guichaoua, Sabine; Isoard, Vivien; Lamy, Jean-michel; Pelce, Frederic; Fondeville, Louis; Baumont, Thierry; Triquet, Olivier; Mouloudi, Fadwa; Quintaine, Thierry; Reizine, Stanislas; Pertuiset, Thomas; Caron, Antoine; Blanchard, Sidonie; Timsit, Isabelle; Lewis, Florian; Ducouret, Melanie; Leclercq, Martine; Derville, Isabelle; Grenon, Georgina; Thomas, Julien; Oeser, Christian; Thouin, Catherine; Dumiot, Jacques-Emmanuel; Rondeau, Claudine; Menager, Yann; Barber, Nicolas; Weill, Jonathan; Furois, Timothee; Thomines, Marie; Brunet-Lecomte, Helene; Boutot, Romary; Strang, Axel; Giraud, Jean; Thomas, Julien; Oeser, Christian; Perrette, Lionel; Breda, Willy; Panetier, Vincent; Miraval, Bruno; Delaugerre, Frederique; Leinekugel Le Cocq, Thibaut; Lemaire, Yves; Thabet, Soraya

    2013-01-01

    This issue first analyses what is at stake with energy transition: struggle against climate change, management of energy demand and promotion of energy efficiency, struggle against energy poverty, development of technologies for tomorrow's energy system. It discusses France's position within its European and international environment: European energy-climate objectives, world context of oil and gas markets, European electricity markets, imports and exports, energy bill. It presents and analyses the situation of the oil and gas sector in France: hydrocarbon exploration and production in France, refining activities, substitution fuels, oil infrastructures, oil product retailing, and gas infrastructures. It then presents the French electric system (electricity production, electricity transport and distribution grids and networks, electric system safety) and the industrial sectors involved in de-carbonated energy production: biomass, wind energy, sea energy, geothermal energy, hydroelectricity, nuclear energy, photovoltaic and thermodynamic solar energy. It addresses the industrial sectors involved in a better use of energy: dynamic control of smart energy systems (smart grids, hydrogen, energy storage), CO 2 capture and storage, de-carbonated vehicle and its ecosystem. The last part addresses oil product prices, gas prices, electricity prices, the energy tax system, and the arrangements and costs of the support to renewable energy production

  15. To make a competitiveness lever out of energy transition

    International Nuclear Information System (INIS)

    Bellamy, Gilles; Ben Brahim, Hedi; Berger, Raphael; Servan, Thibault; Dassa, Francois; Dreyer, Iana; Leger, Sebastien; Maneville, Frederic de; Perez, Yannick; Rosier, Philippe; Rusquec, Jean du; Tlili, Cecile; Tran Thiet, Jean-Paul

    2012-11-01

    This note focuses of the major challenges for the French energy sector within a context of continuous cost increase, and outlines the central role of Europe to face the energy challenges. The authors state proposals under three main themes: a better management of energy consumption, a support to the emergence of new competitive industrial sectors without weakening the existing ones, and make the Europe of energy progress. The authors address the challenge of energy cost increase (a traditionally efficient French energy mix but with costs to increase in the future, a weak energy performance, a financial and regulatory framework not favourable to investments and innovation), discuss the European energy policy which, according to them, lacks ambition (a policy unbalanced by the prevalence of the climate issue, a national independence in contradiction with increasing interdependencies) and then make their proposals

  16. The Value of Seasonal Climate Forecasts in Managing Energy Resources.

    Science.gov (United States)

    Brown Weiss, Edith

    1982-04-01

    Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the management of energy supply, even if the forecasts were more reliable and detailed than at present.On the other hand, reliable forecasts could be useful to state and local governments both as a signal to adopt long-term measures to increase the efficiency of energy use and to initiate short-term measures to reduce energy demand in anticipation of a weather-induced energy crisis.To be useful for these purposes, state governments would need better data on energy demand patterns and available energy supplies, staff competent to interpret climate forecasts, and greater incentive to conserve. The use of seasonal climate forecasts is not likely to be constrained by fear of legal action by those claiming to be injured by a possible incorrect forecast.

  17. Climate and Southern Africa's Water-Energy-Food Nexus

    Science.gov (United States)

    Conway, D.; Osborn, T.; Dorling, S.; Ringler, C.; Lankford, B.; Dalin, C.; Thurlow, J.; Zhu, T.; Deryng, D.; Landman, W.; Archer van Garderen, E.; Krueger, T.; Lebek, K.

    2014-12-01

    Numerous challenges coalesce to make Southern Africa emblematic of the connections between climate and the water-energy-food nexus. Rainfall and river flows in the region show high levels of variability across a range of spatial and temporal scales. Physical and socioeconomic exposure to climate variability and change is high, for example, the contribution of electricity produced from hydroelectric sources is over 30% in Madagascar and Zimbabwe and almost 100% in the DRC, Lesotho, Malawi, and Zambia. The region's economy is closely linked with that of the rest of the African continent and climate-sensitive food products are an important item of trade. Southern Africa's population is concentrated in regions exposed to high levels of hydro-meteorological variability, and will increase rapidly over the next four decades. The capacity to manage the effects of climate variability tends, however, to be low. Moreover, with climate change annual precipitation levels, soil moisture and runoff are likely to decrease and rising temperatures will increase evaporative demand. Despite high levels of hydro-meteorological variability, the sectoral and cross-sectoral water-energy-food linkages with climate in Southern Africa have not been considered in detail. Lack of data and questionable reliability are compounded by complex dynamic relationships. We review the role of climate in Southern Africa's nexus, complemented by empirical analysis of national level data on climate, water resources, crop and energy production, and economic activity. Our aim is to examine the role of climate variability as a driver of production fluctuations in the nexus, and to improve understanding of the magnitude and temporal dimensions of their interactions. We first consider national level exposure of food, water and energy production to climate in aggregate economic terms and then examine the linkages between interannual and multi-year climate variability and economic activity, focusing on food and

  18. Enabling Responsible Energy Decisions: What People Know, Want to Know, and Need to Know about Climate Change

    Science.gov (United States)

    PytlikZillig, L. M.; Tomkins, A. J.; Harrington, J. A.

    2012-12-01

    As part of a broader regional effort focused on climate change education and rural communities, this paper focuses on a specific effort to understand effective approaches to two presumably complementary goals: The goal of increasing knowledge about climate change and climate science in a community, and the goal of having communities use climate change and climate science information when making decisions. In this paper, we explore the argument that people do not need or want to know about climate change, in order to make responsible and sustainable energy decisions. Furthermore, we hypothesize that involvement in making responsible and sustainable energy decisions will increase openness and readiness to process climate science information, and thus increase learning about climate change in subsequent exposures to such information. Support for these hypotheses would suggest that rather than encouraging education to enable action (including engagement in attempts to make responsible decisions), efforts should focus on encouraging actions first and education second. To investigate our hypotheses, we will analyze and report results from efforts to engage residents from a medium-sized Midwestern city to give input on future programs involving sustainable energy use. The engagement process (which will not be complete until after the AGU deadline) involves an online survey and an optional face-to-face discussion with city officials and experts in energy-related areas. The online survey includes brief information about current local energy programs, questions assessing knowledge of climate change, and an open-ended question asking what additional information residents need in order to make good decisions and recommendations concerning the energy programs. To examine support for our hypotheses, we will report (1) relationships between subjective and objective knowledge of climate science and willingness to attend the face-to-face discussion about the city's energy decisions

  19. How Useful Are Climate Projections for Adaptation Decision Making?

    Science.gov (United States)

    Smith, J. B.; Vogel, J. M.

    2011-12-01

    Decision making is often portrayed as a linear process that assumes scientific knowledge is a necessary precursor to effective policy and is used directly in policy making. Yet, in practice, the use of scientific information in decision making is more complex than the linear model implies. The use of climate projections in adaptation decision making is a case in point. This paper briefly reviews efforts by some decision makers to understand climate change risks and to apply this knowledge when making decisions on management of climate sensitive resources and infrastructure . In general, and in spite of extensive efforts to study climate change at the regional and local scale to support decision making, few decisions outside of adapting to sea level rise appear to directly apply to climate change projections. A number of U.S. municipalities and states, including Seattle, New York City, Phoenix, and the States of California and Washington, have used climate change projections to assess their vulnerability to various climate change impacts. Some adaptation decisions have been made based on projections of sea level rise, such as change in location of infrastructure. This may be because a future rise is sea level is virtually certain. In contrast, decision making on precipitation has been more limited, even where there is consensus on likely changes in sign of the variable. Nonetheless, decision makers are adopting strategies that can be justified based on current climate and climate variability and that also reduce risks to climate change. A key question for the scientific community is whether improved projections will add value to decision making. For example, it remains unclear how higher-resolution projections can change decision making as long as the sign and magnitude of projections across climate models and downscaling techniques retains a wide range of uncertainty. It is also unclear whether even better information on the sign and magnitude of change would

  20. Climate energy policy. How a great irritation makes the themes climate and energy inseperably; Klimergiepolitik. Wie eine grosse Verwirrung die Themen Klima und Energie unzertrennlich macht

    Energy Technology Data Exchange (ETDEWEB)

    Stalder, Meinhard

    2012-07-01

    The focus of the book under consideration is the equalization of the politically and economically closely interconnected issues carbon, climate and energy. Since the Neolithic Age, more carbon was released worldwide by clearing of forests than by consumption of fossil energy sources. In the good old time, nearly 15% of the bread cereals is fed to horses. The perfect energy source was found by means of the upcoming petroleum industry. Already the First World War was decided by petroleum. The Second World War anyway. Also thereafter, two oil crises and two Gulf Wars kept us in suspense. Petroleum is there sufficiently, but it becomes expensive increasingly. Instead of working on the reduction of energy costs such as in the year 1979, not our appetite but the exhaust gases are pilloried. Thereby the report of the International Panel on Climate Change contains a lot of technical faults. Its content is technically motivated and became an end in itself in the meantime. At the end, it is no longer about carbon dioxide but about 'coal'. This is because, behind all pseudo-science there is a sophisticated system which annually collects 100 billion dollar worldwide and distributes this fair beyond the impoverished nations of this world.

  1. Etude Climat no. 36 'Regional Climate - Air - Energy Plans: a tool for guiding the energy and climate transition in French regions'

    International Nuclear Information System (INIS)

    De Charentenay, Jeremie; Leseur, Alexia; Bordier, Cecile

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: The Regional Climate-Air-Energy Plan (SRCAE - Schema Regional Climat-Air-Energie) was introduced by the Grenelle II legislation. The Plans are co-authored by the State through its decentralised services and the 'Conseil Regionaux' (regional councils) with the objective to guide climate and energy policy in the 26 French regions through to 2020 and 2050. Starting from an assessment of regional greenhouse gas (GHG) emissions, the SRCAE establishes energy transition scenarios based on the sectoral and structural guidelines that constitute the principal framework of the regional strategy. This report offers a detailed analysis of the strategies chosen by the various Regions for a successful transition to low-carbon energy sources, via the study of eleven SRCAEs that were opened to public consultation before the end of July 2012 (Alsace, Aquitaine, Auvergne, Bourgogne, Centre, Champagne-Ardenne, Ile-de-France, Midi-Pyrenees, Nord-Pas de Calais, Picardie and Rhone-Alpes regions). The wide range of methodologies used by the Regions, both to draw up their inventories of GHG emissions and for their scenarios, means that a quantitative comparison between regions or against the national objectives is not possible. Nevertheless, the report establishes a typology of regions and identifies policies that are common to all regions and those chosen in response to local characteristics. Certain guidelines could be applied by other regions of the same type, or could feed into discussions at national level. The report also indicates that the SRCAEs go beyond the competencies of the Regions, highlighting the role of local, national and European decision-making in the success of a regional energy transition. Particular attention was paid to the building and transport sectors, often identified as having the largest potential for reducing

  2. NGO and industry perspectives on energy and climate change policies

    International Nuclear Information System (INIS)

    Hornung, R.

    2002-01-01

    This paper highlighted the clear contradiction between projected business as usual energy development in Canada and its climate change commitments. It was cautioned that these contradictions can only be resolved by actively incorporating climate change considerations into energy policies and by making efforts to promote energy efficiency and investment in renewable energy technologies. Canada's commitments to the Kyoto Protocol seem to be inconsistent with the ongoing policy of exporting greater amounts of oil and gas to the United States. In the short-term, the author advocates the ratification of the Kyoto Protocol and supports the debate on how the cost of meeting greenhouse gas commitments should be distributed, and how they can be minimized

  3. Renewable Energy Deployment as Climate Change Mitigation in Nigeria

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya

    2016-10-01

    Full Text Available The scientific evidence of climate change as a result of greenhouse gas emissions which causes ozone layer depletion is becoming increasingly obvious and clear. Findings revealed that energy from the fossil fuel is the major source of greenhouse emission which destroys the environment and makes it unhealthy for living beings. In Nigeria, conventional energy (oil and gas with gas flaring has the highest percentage of 52% and liquid fuel of 32% of carbon dioxide (CO2 respectively. This sector contributes revenue of over 70% to Nigeria’s economy and generates an average total 21.8% of greenhouse gas emission. In Nigeria, there is a much more potential for share renewables with 15.4% of total energy production and 8.6 % of energy consumption. In reality with global environmental concern, Nigeria’s carbon dioxide emissions have increased with energy production and consumption. The Integrated Renewable Energy Master Plan of 2008 projects a 26.7% renewable energy contribution to the Nigeria’s energy use and this is expected to reduce CO2 and greenhouse gas emissions at 38% by2025. Nigeria has not been playing significant role by reducing emissions of greenhouse gases. This paper highlights Nigeria’s climate change situation and penetration requirements for various renewable energy deployments as mitigating instrument for climate change towards healthy and productive environment.

  4. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  5. Modeling for climate change in the aspect of nuclear energy priority: Nuclear power energy-based convergence social-humanity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Systemix Global Co. Ltd., Seoul, (Korea, Republic of)

    2015-05-15

    Following the industry expansion, the energy consumptions have increased steeply, which have produced the global warming in our lives by carbon production energies. This climate change has provoked significant natural disasters which have damaged to social as well economic matters. Considering the non-carbon production which is the major factor of global warming, nuclear energy is a newly spotlighted source as the green energy source. The climate change factor is affected by the carbon productions made by humans. Then, the nuclear energy increasing rate with the climate change factor affects to the temperature change which is expressed by annual anomaly. Fig. 6 is the protocol for climate change investigation incorporated with the nuclear industry where the climate factor like the temperature is an important index to find out the priority of nuclear energy. The increased environmental pollutions can give the expanding of nuclear energy due to the carbon gas of fossil fuels. This study showed the effectiveness of the nuclear energy by the simulations. The seasonal climate disaster like the very cold winter and very hot summer can increase the necessity of nuclear energy development which could appeal to the general public persons as well as the politicians. So, it is important for the nuclear energy manager to make people understand the importance of the nuclear energy comparing to the oil or coal fuels. The regeneration energy has been considered as the alternative source.

  6. Addressing climate and energy misconceptions - teaching tools offered by the Climate Literacy and Energy Awareness Network (CLEAN)

    Science.gov (United States)

    Gold, A. U.; Ledley, T. S.; Kirk, K. B.; Grogan, M.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Niepold, F.; Howell, C.; Lynds, S. E.

    2011-12-01

    Despite a prevalence of peer-reviewed scientific research and high-level reports by intergovernmental agencies (e.g., IPCC) that document changes in our climate and consequences for human societies, the public discourse regards these topics as controversial and sensitive. The chasm between scientific-based understanding of climate systems and public understanding can most easily be addressed via high quality, science-based education on these topics. Well-trained and confident educators are required to provide this education. However, climate science and energy awareness are complex topics that are rapidly evolving and have a great potential for controversy. Furthermore, the interdisciplinary nature of climate science further increases the difficulty for teachers to stay abreast of the science and the policy. Research has shown that students and educators alike hold misconceptions about the climate system in general and the causes and effects of climate change in particular. The NSF-funded CLEAN Pathway (http://cleanet.org) as part of the National Science Digital Library (http://www.nsdl.org) strives to address these needs and help educators address misconceptions by providing high quality learning resources and professional development opportunities to support educators of grade levels 6 through 16. The materials focus on teaching climate science and energy use. The scope and framework of the CLEAN Pathway is defined by the Essential Principles of Climate Science (CCSP, 2009) and the Energy Literacy Principles recently developed by the Department of Energy. Following this literacy-based approach, CLEAN helps with developing mental models to address misconceptions around climate science and energy awareness through a number of different avenues. These are: 1) Professional development opportunities for educators - interactive webinars for secondary teachers and virtual workshops for college faculty, 2) A collection of scientifically and pedagogically reviewed, high

  7. How to make energy transition a lever for competitiveness

    International Nuclear Information System (INIS)

    Bellamy, Gilles; Ben Brahim, Hedi; Berger, Raphael; Dassa, Francois; Dreyer, Iana; Leger, Sebastien; Maneville, Frederic de; Perez, Yannick; Rosier, Philippe; Rusquec, Jean du; Servan, Thibault; Tlili, Cecile; Tran Thiet, Jean-Paul

    2012-11-01

    This note examines the major challenges faced by the energy sector in France in a context of continuous cost increase, of lack of domestic production, of high public expenses for the development of renewable energies, of low energy performance, of financial and regulatory framework which does not favour investments. It also highlights the central role of Europe to face these challenges although the European energy policy still lacks ambition, and is still dominated by the climate issue. It formulates a set of propositions about three main axes: a better management of energy consumption, a promotion of new emerging competitive industrial sectors without weakening the sectors of excellence France possesses in the field of energy, and to make the Europe of energy progress

  8. Climate sensitivity of marine energy

    International Nuclear Information System (INIS)

    Harrison, G.P.; Wallace, A.R.

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversion: where the resource is constrained, production and economic performance may suffer; alternatively, stormier climates may create survival issues. Here, a relatively simple sensitivity study is used to quantify how changes in mean wind speed - as a proxy for wider climate change - influence wind and wave energy production and economics. (author)

  9. Farmer Decision-Making for Climate Adaptation

    Science.gov (United States)

    Lubell, M.; Niles, M.; Salerno, J.

    2015-12-01

    This talk will provide an overview of several studies of how farmers make decisions about climate change adaptation and mitigation. A particular focus will be the "limiting factors hypothesis", which argues that farmers will respond to the climate variables that usually have the largest impact on their crop productivity. For example, the most limiting factor in California is usually water so how climate change affects water will be the largest drive of climate adaptation decisions. This basic idea is drawn from the broader theory of "psychological distance", which argue that human decisions are more attuned to ideas that are psychologically closer in space, time, or other factors. Empirical examples come from California, New Zealand, and Africa.

  10. Architecture, energy and climate

    DEFF Research Database (Denmark)

    Lauring, Michael

    2010-01-01

    Architecture has always had to relate to climatic conditions while providing shelter from the sun, the rain, the winds or the cold. This is a main purpose of buildings: To establish an indoor climate different from the outdoor. In the Nordic countries fuels for heating buildings has been a vital...... necessity almost as basic as food and water, and lack of wood has caused illness and migration - scarcity of energy is not a new topic either [Kjærgaard]. The new aspects are that human civilization is in danger of causing severe global climate changes, secondly that we can foresee using up the global non......-renewable reserves of oil, gas and uranium, both aspects capable of pulling the carpet under human civilization itself as we know it. The huge energy consumption especially in the northern hemisphere is closely linked to industrialization, and the response from those aware of energy and climate problems has in some...

  11. Climate and Energy Policy in Hungary

    Directory of Open Access Journals (Sweden)

    Maria Csete

    2012-02-01

    Full Text Available The energy problem has been redefined as one of the most important elements of sustainable development by climate change, adaptation and mitigation. Meeting energy needs is always a current issue in Hungary, irrespective of climate change because of the country’s high dependency on oil and gas imports, limited opportunities to replace them with domestic production, and the pollution associated with using fossil energy sources. Increasing effectiveness and saving energy can provide relatively short-term solutions with bearable costs and a relatively quick return on investment. The aim of the present paper is to give an overview about the climate and energy policy in Hungary with a special focus on the new energy strategy. Energy policy has a pivotal role in the economic recovery plan of the Hungarian government. The National Energy Strategy 2030 taking shape in Hungary takes climate policy into account with respect to adaptation and mitigation and lists renewable energy sources as the second most important tool for achieving strategic goals. As in most countries, it is also possible in Hungary to introduce climate strategy measures with zero social costs. The expedient management of climate change requires the combination of prevention, adaptation and dissemination initiatives. Strategies must meet a dual requirement: they must face the economic risks associated with premature measures, while also considering the adverse effects of delay.

  12. Climate - Greenhouse effect - Energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    This book explains what is understood by climate systems and the concept of greenhouse effect. It also gives a survey of the world's energy consumption, energy reserves and renewable energy sources. Today, 75 - 80 per cent of the world's energy consumption involves fossil fuel. These are the sources that cause the CO 2 emissions. What are the possibilities of reducing the emissions? The world's population is increasing, and to provide food and a worthy life for everybody we have to use more energy. Where do we get this energy from without causing great climate changes and environmental changes? Should gas power plants be built in Norway? Should Swedish nuclear power plants be shut down, or is it advisable to concentrate on nuclear power, worldwide, this century, to reduce the CO 2 emissions until the renewable energy sources have been developed and can take over once the petroleum sources have been depleted? The book also discusses the global magnetic field, which protects against particle radiation from space and which gives rise to the aurora borealis. The book is aimed at students taking environmental courses in universities and colleges, but is also of interest for anybody concerned about climate questions, energy sources and living standard

  13. The power of science economic research and European decision-making : the case of energy and environment policies

    CERN Document Server

    Rossetti di Valdalbero, Domenico

    2010-01-01

    This book highlights the interaction between science and politics and between research in economics and European Union policy-making. It focuses on the use of Quantitative tools, Top-down and Bottom-up models in up-stream European decision-making process through five EU policy case studies: energy taxation, climate change, energy efficiency, renewable energy, and internalisation of external costs.

  14. Energy and climate policy in Europe; Energie- und Klimapolitik in Europa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This is a publication of the Baden-Wuerttemberg state center of political education (Landeszentrale fuer Politische Bildung Baden-Wuerttemberg) on energy policy and climate policy in Europe. It discusses the following aspects: Assured supply of energy and climate policy - incompatible goals? Climate policy and energy policy in a global system; Legitimation of the EU by successful energy policy and climate policy; Emission trading: Selling of indulgences or successful instrument? Energy policy in Europe after 1945; From a beacon of hope to a phase-out model? The future of nuclear power; The future of renewable energy sources in Europe. (orig./RHM)

  15. Climate Leadership webinar on Integrating Energy and Climate Risk Management

    Science.gov (United States)

    Allergan, a multi-specialty healthcare company and pharmaceutical manufacturer, discusses how it manages climate and energy risks, how these areas are linked, and how energy and climate management strategies pervade critical business decisions.

  16. Health, Energy Efficiency and Climate Change

    Science.gov (United States)

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  17. Resolution on the program energy-climate; Resolution sur le paquet energie-climat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This document presents the resolutions proposed in the resolution proposition n. 1261 and concerning the european Commission program on the energy policies and the climate change. Twelve resolution are presented on the energy sources development, the energy efficiency, the energy economy and the carbon taxes. (A.L.B.)

  18. Climate-Energy Nexus

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, Gary; Gentry, Randall; Zhuang, Jie

    2010-07-01

    The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit future cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of methodology

  19. File 'Energy-climate actions in Sweden'

    International Nuclear Information System (INIS)

    2009-01-01

    In a first part, this publication briefly presents some basic data and information on Sweden (geography, population, economy, administrative organisation, powers of local authorities, local finances), the Swedish 'energy profile' (consumption, intensity, imports and exports), greenhouse gas emissions (total and per sector), and the energy-climate strategy (impacts of climate change, national climatic strategy, national measures, action framework for local authorities). The second part addresses one of these action frameworks, the Klimatkommunernas network. It describes this network, its objectives, and possibilities for communities to join it. It describes its activities: information, publication of a strategic document of climate-energy actions for municipalities, examples of projects. The third part presents experiments performed by different local communities (Kristianstad, Vaexjoe, Malmoe, and Lund). For each of them are presented: the energy strategy (objectives, strategy, adaptation, energy-climate follow-up, application and actual measures), and some specific measures. These specific examples can be integrated systems based on biogas and biomass, a zero fossil fuel objective with the use of renewable energies for heat and cold production, for electricity production and to improve energy efficiency, to promote green fuels in transports, to reduce the impact of transports on climate, a sustainable town planning, environmental management. Some features are then highlighted in the adopted approach for these examples: a systemic, collaborative, participative and communicative approach

  20. Energy savings in drastic climate change policy scenarios

    International Nuclear Information System (INIS)

    Isoard, Stephane; Wiesenthal, Tobias

    2005-01-01

    This paper reports a climate change policy scenario compatible with long-term sustainable objectives set at EU level (6th Environment Action Plan). By setting ambitious targets for GHG emissions reduction by 2030, this normative scenario relies on market-based instruments and flexible mechanisms. The integrated policy that is simulated (i.e. addressing energy, transport, agriculture and environmental impacts) constitutes a key outlook for the next 5-year report of the European Environment Agency (EEA). This scenario highlights what it would take to drastically curb EU GHG emissions and how much it might cost. The findings show that such a 'deep reduction' climate policy could work as a powerful catalyst for (1) substantial energy savings, and (2) promoting sustainable energy systems in the long term. The implications of this policy lever on the energy system are many-fold indeed, e.g. a substantial limitation of total energy demand or significant shifts towards energy and environment-friendly technologies on the supply side. Clear and transparent price signals, which are associated with market-based instruments, appear to be a key factor ensuring sufficient visibility for capital investment in energy efficient and environment-friendly options. Finally it is suggested that market-based policy options, which are prone to lead to win-win situations and are of particular interest from an integrated policy-making perspective, would also significantly benefit from an enhanced energy policy framework

  1. Experts' conference on the Climate and Energy Contribution

    International Nuclear Information System (INIS)

    2009-06-01

    This document first proposes the White Paper prepared for the experts' conference. After a presentation of the Emission Trading System (ETS), this paper highlights the benefit of the introduction of economical instruments rather than regulatory instruments to promote the reduction of greenhouse gas emissions. It underlines the distinction between the proposed 'climate-energy contribution' (or carbon tax) and the Cambridge tax. Then, it describes how to implement such a contribution, i.e. how to define its base, and how to relate it with existing taxes. Some graphs compare the tax rates on fuels, gas and domestic oil in European countries. The paper then defines what the field of application of the contribution could be, how to make this contribution more efficient, and what could be its economical consequences. Then, the document proposes the text of Michel Rocard's intervention on the stakes of conference on this climate-energy contribution

  2. Turning the big knob: an evaluation of the use of energy policy to modulate future climate impacts

    International Nuclear Information System (INIS)

    Pielke, R.A. Jnr.; Klein, R.; Sarewitz, D.

    2000-01-01

    Conventional wisdom on climate change policy is straightforward: reducing greenhouse gas emissions will avoid the increased frequency and magnitude of climate impacts on environment and society that might occur if emissions are not controlled. The proponents of conventional wisdom widely consider energy policy to be the main policy tool available to decision makers to intentionally modulate future climate impacts. In this paper we challenge the notion that policy makers should intentionally use energy policy to modulate future climate impacts. The paper argues that policy makers may well make large changes in energy policy (and future emissions) without significantly affecting future climate impacts. In other words, even if a theoretical case could be made that energy policy could be used intentionally to modulate future climate, other factors will play a larger role in creating future impact.y and are arguably more amenable to policy change. To illustrate this conclusion, the paper presents a sensitivity analysis under the assumptions of the Intergovernmental Panel on Climate Change for the case of tropical cyclones. One implication of the paper's conclusions is that policy responses to extreme weather events should be decoupled from considerations of energy policy. This decoupling is not intended to diminish either the importance of responding to climate change or of energy policy. Rather, it is to emphasise that there are many responses under the rubric of adaptation that could play a much greater role in reducing societal vulnerability to losses. One of the implications of this change is that scientific uncertainty need not stand in the way of effective action because the measures proposed make sense under any future climate scenario. (author)

  3. Coping with climate change and China's wind energy sustainable development

    Directory of Open Access Journals (Sweden)

    De-Xin He

    2016-03-01

    Full Text Available Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from “large wind power country” to “strong wind power country”, opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.

  4. Intersects between Land, Energy, Water and the Climate System

    Science.gov (United States)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy

  5. Climate change and energy demand

    International Nuclear Information System (INIS)

    Hengeveld, H.G.

    1991-01-01

    Climate and weather events affect energy demand in most economic sectors. Linear relationships exist between consumption and heating degree days, and peak electricity demand increases significantly during heat waves. The relative magnitudes of demand changes for a two times carbon dioxide concentration scenario are tabulated, illustrating heating degree days and cooling degree days for 5 Prairie locations. Irrigation, water management, crop seeding and harvesting and weed control are examples of climate-dependent agricultural activities involving significant energy use. The variability of summer season liquid fuel use in the agricultural sector in the Prairie provinces from 1984-1989 shows a relationship between agricultural energy use and regional climate fluctuations. 4 refs., 2 figs., 1 tab

  6. Point Climat no. 26 'Regional Climate - Air - Energy Plans at the heart of the debate on the energy transition'

    International Nuclear Information System (INIS)

    Bordier, Cecile; Leseur, Alexia

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: On the eve of the introduction of the environmental assessment procedure for planning documents, almost all Regional Climate - Air - Energy Plans have now been published. This Climate Brief assesses regional climate strategies, which rely on significant commitment from those involved, including citizens by changing their behaviour, companies by improving their energy efficiency and the banking sector through financial support. Identification of these challenges and areas for action will feed into the national debate on energy transition which began last autumn

  7. The European framework for energy and climate policies

    International Nuclear Information System (INIS)

    Helm, Dieter

    2014-01-01

    European energy and climate change policy rests on two main pillars: the internal energy market (IEM), and the climate change package (CCP). The IEM aimed at third party access and unbundling, neglecting the physical infrastructure and the basis for asset valuations and hence the harmonisation of network charges. The Commission plans to complete the IEM by 2014—almost a quarter of a century after embarking on the policy. Yet even if all the IEM directives are implemented, the EU will remain far from a single competitive market. The CCP was grounded on short term targets (the 2020-20-20 programme) on the assumption that fossil fuel prices would rise, making renewables competitive, and hence yielding a competitive advantage to the EU. The EUETS was intended to lead the way to a global trading system and an international agreement at Copenhagen. The EU has reduced the production of carbon emissions, but only as a result of de-industrialisation and slow growth, and at the expense of rising carbon consumption. Renewables have not led to green growth, but rather to a further eroding of competitiveness. The EUETS price has collapsed. In order for the EU to put the IEM and the CCP back on track, both need to be radically reconsidered. The IEM requires a refocusing on physical infrastructure, common accounting rules and an EU-wide approach to capacity markets and renewables trading. The CCP requires a refocusing on carbon consumption, on limiting the dash-for-coal, and on future rather than current renewables. - Highlights: • The design of the internal energy market. • The design of the climate change package. • The interaction between the internal energy market and the climate change package. • Required reforms

  8. Climate sensitivity of marine energy

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversi...

  9. China's strategy for energy development and climate change mitigation

    International Nuclear Information System (INIS)

    He Jiankun; Yu Zhiwei; Zhang Da

    2012-01-01

    In recent years, China has made great efforts in energy saving and carbon emission reduction by pushing forward domestic sustainable development along with global climate change mitigation. The efforts have paid off with a dramatic decrease in carbon intensity. Nevertheless, China is still confronted with tough challenges in emission control due to the fast pace of industrialization, large total historical emission and high growth rate of emissions. Therefore, China should give priority to energy saving by improving energy efficiency and sectoral structure adjustment and upgrade, and develop sustainable and renewable energy to optimize energy mix and its carbon content. China should continue to regard significant reduction of energy intensity and carbon intensity as the main objective in the near future, strive to achieve peak emissions around 2030, and realize a relatively sharp emissions reduction by 2050 in order to address climate change to meet the goal of making the warming less than 2°. During the 12th Five Year Plan (FYP), China will further strengthen measures to control the amount of energy consumption, establish a statistics, accounting and evaluation system of carbon emissions, and promote a market-based carbon emissions trading mechanism to facilitate the low-carbon transformation of China's economy. - Highlights: ► This paper studies China's strategy for energy development and climate change mitigation. ► We suggest that China should focus on reducing the energy intensity and carbon intensity of GDP, and optimization of energy mix in the near term. ► In the long term, China should achieve the peak emission around 2030, and realize a relative sharp emission reduction by 2050. ► The paper also concludes some important measures which China should take during the 12th Five-Year-Plan (2011–2015).

  10. Plugging the Energy Efficiency Gap with Climate Finance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The role of International Financial Institutions (IFIs) and the Green Climate Fund to realise the potential of energy efficiency in developing countries. This report examines the current role of climate finance in funding EE projects and the potential to channel funds to relevant EE projects in developing countries under the new Green Climate Fund (GCF). The objectives of the report are to examine: 1) the share of climate finance currently being channelled to energy efficiency measures, and 2) how the design of climate finance can better facilitate energy efficiency projects. Improving energy efficiency (EE) can deliver a range of benefits such as improved air quality, enhanced economic competitiveness and, at the national scale, a higher degree of energy security. Significant improvements in energy efficiency in developing countries could provide greater opportunity for economic growth while also providing broader access to energy and related services even from limited energy resources. However, several barriers limit the scaling-up of funding of EE projects in developing countries (some are common also to developed countries). The report focuses primarily on public climate finance flows from 'north' to 'south', probing the current use of funds from multi-lateral development banks (MDBs), bi-lateral financial institutions (BFIs) and carbon markets for energy efficiency projects and the design of the future climate financial mechanisms such as the Green Climate Fund to encourage energy efficiency improvements in developing countries.

  11. Modelling the effects of climate change on the energy system-A case study of Norway

    International Nuclear Information System (INIS)

    Seljom, Pernille; Rosenberg, Eva; Fidje, Audun; Haugen, Jan Erik; Meir, Michaela; Rekstad, John; Jarlset, Thore

    2011-01-01

    The overall objective of this work is to identify the effects of climate change on the Norwegian energy system towards 2050. Changes in the future wind- and hydro-power resource potential, and changes in the heating and cooling demand are analysed to map the effects of climate change. The impact of climate change is evaluated with an energy system model, the MARKAL Norway model, to analyse the future cost optimal energy system. Ten climate experiments, based on five different global models and six emission scenarios, are used to cover the range of possible future climate scenarios and of these three experiments are used for detailed analyses. This study indicate that in Norway, climate change will reduce the heating demand, increase the cooling demand, have a limited impact on the wind power potential, and increase the hydro-power potential. The reduction of heating demand will be significantly higher than the increase of cooling demand, and thus the possible total direct consequence of climate change will be reduced energy system costs and lower electricity production costs. The investments in offshore wind and tidal power will be reduced and electric based vehicles will be profitable earlier. - Highlights: → Climate change will make an impact on the Norwegian energy system towards 2050. → An impact is lower Norwegian electricity production costs and increased electricity export. → Climate change gives earlier profitable investments in electric based vehicles. → Climate change reduces investments in offshore wind and tidal power.

  12. Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution

    International Nuclear Information System (INIS)

    Vliet, Oscar van; Krey, Volker; McCollum, David; Pachauri, Shonali; Nagai, Yu; Rao, Shilpa; Riahi, Keywan

    2012-01-01

    We use the MESSAGE model to examine multiple dimensions of sustainable development for three Asian regions in a set of scenarios developed for the Asian Modelling Exercise. Using climate change mitigation as a starting point for the analysis, we focus on the interaction of climate and energy with technology choice, energy security, energy access, and air pollution, which often have higher policy priority than climate change. Stringent climate policies drive the future energy supply in Asia from being dominated by coal and oil to a more diversified system based mostly on natural gas, coal with CCS, nuclear and renewable energy. The increase in diversity helps to improve the energy security of individual countries and regions. Combining air pollution control policies and universal energy access policies with climate policy can further help to reduce both outdoor and indoor air pollution related health impacts. Investments into the energy system must double by 2030 to achieve stringent climate goals, but are largely offset by lower costs for O and M and air pollution abatement. Strong focus on end-use efficiency also helps lowering overall total costs and allows for limiting or excluding supply side technologies from the mitigation portfolio. Costs of additional energy access policies and measures are a small fraction of total energy system costs. - Highlights: ► Half of added investments in energy offset by lower costs for O and M and air pollution. ► Costs for achieving universal energy access much smaller than energy system costs. ► Combined emissions and access policies further reduce air pollution impacts on health. ► Strong focus on end-use efficiency allows for more flexibility on energy sources. ► Stringent climate policy can improve energy security of Asian regions.

  13. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    Science.gov (United States)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of

  14. ESCAPE. Energy Security and ClimAte Policy Evaluation

    International Nuclear Information System (INIS)

    Kessels, J.R.; Bakker, S.J.A.

    2005-05-01

    Climate change and energy supply security policy are currently not integrated in most countries, despite possible synergies. The ESCAPE approach suggests that linking climate change policy with security of energy supply could improve climate change policy at both a national and international level. The report explores the interaction between policies of energy security and climate change and the options of inclusion of energy security issues into national and international post-2012 climate negotiations. It emphasises the importance of the US in this regard and takes a close look at US energy policy documents. It appears that current US energy policy is not directed towards reducing its reliance on imported fossil fuel, even though the government has a strong preference for this. This study shows that measures to reduce import dependency are mostly synergetic with climate policy and gives some options that can be implemented. On an international level, linkages of energy security into post-2012 climate policy may be possible in sectoral bottom-up approaches or technology frameworks. As well, inclusion of a security of supply criterion in international emission trading instruments may provide potential benefits

  15. The comparison of the energy performance of hotel buildings using PROMETHEE decision-making method

    Directory of Open Access Journals (Sweden)

    Vujosevic Milica L.

    2016-01-01

    Full Text Available Annual energy performance of the atrium type hotel buildings in Belgrade climate conditions are analysed in this paper. The objective is to examine the impact of the atrium on the hotel building’s energy needs for space heating and cooling, thus establishing the best design among four proposed alternatives of the hotels with atrium. The energy performance results are obtained using EnergyPlus simulation engine, taking into account Belgrade climate data and thermal comfort parameters. The selected results are compared and the hotels are ranked according to certain criteria. Decision-making process that resulted in the ranking of the proposed alternatives is conducted using PROMETHEE method and Borda model. The methodological approach in this research includes the creation of a hypothetical model of an atrium type hotel building, numerical simulation of energy performances of four design alternatives of the hotel building with an atrium, comparative analysis of the obtained results and ranking of the proposed alternatives from the building’s energy performance perspective. The main task of the analysis is to examine the influence of the atrium, with both its shape and position, on the energy performance of the hotel building. Based on the results of the research it can be to determine the most energy efficient model of the hotel building with atrium for Belgrade climate condition areas. [Projekat Ministarstva nauke Republike Srbije: Spatial, Environmental, Energy and Social aspects of the Developing Settlements and Climate Change - Mutual Impacts

  16. Communicating climate information: travelling through the decision-making process

    International Nuclear Information System (INIS)

    Stoverinck, F.; Dubois, G.; Amelung, B.

    2013-01-01

    Climate change forces society to adapt. Adaptation strategies are preferably based on the best available climate information. Climate projections, however, often inform adaptation strategies after being interpreted once or several times. This process affects the original message put forward by climate scientists when presenting the basic climate projections, in particular regarding uncertainties. The nature of this effect and its implications for decision-making are as yet poorly understood. This paper explores the nature and consequences of a) the communication tools used by scientists and experts, and b)changes in the communicated information as it travels through the decision-making process. It does so by analysing the interpretative steps taken in a sample of 25 documents, pertaining to the field of public policies for climate change impact assessment and adaptation strategies. Five phases in the provisioning of climate information are distinguished: pre-existing knowledge (i.e. climate models and data), climate- change projection, impact assessment, adaptation strategy, and adaptation plan. Between the phases, climate information is summarized and synthesised in order to be passed on. The results show that in the sample information on uncertainty is under-represented: e.g. studies focus on only one scenario, and/or disregard probability distributions. In addition, visualization tools are often used ineffectively, leading to confusion and unintended interpretations. Several recommendations are presented. A better training of climatologists to communication issues, but also a training to climatology for decision makers are required, as well as more cautious and robust adaptation strategies, accounting for the uncertainty inherent to climate projections. (authors)

  17. Green paper on energy and climate change

    International Nuclear Information System (INIS)

    Peters, R.; Whitmore, J.; Shariff, N.

    2005-11-01

    This green paper was created by the Canadian Environmental Network to initiate a dialogue on climate change and energy issues. Recommendations for energy strategies for Canada beyond 2012 were presented. An overview of recent climate science was presented, as well as various stabilization scenarios needed to prevent further climate change. A review of global energy trends working for and against action to prevent climate change was also provided. It was suggested that the stabilization of greenhouse gas (GHG) concentrations can only be achieved when the United States and large developing economies such as China, India and Brazil transform themselves into renewable-energy based economies. Renewable energy and energy efficiency must play a central role in future climate change regimes. It was suggested that nuclear power cannot be considered as an option to reduce GHGs due to its high cost, and on-going public concerns over long-term waste disposal, fuel-cycle health and safety. A viable global framework for stabilizing GHG concentrations built on the current regimes of the United Nations Framework Convention on Climate Change and the Kyoto Protocol was recommended. It was suggested that richer industrialized nations must take the lead by pursuing absolute reductions and providing assistance to developing nations for mitigation and adaptation to climate change. It was recommended that developing nations should contribute to global mitigation efforts by pursuing low-carbon intensity development paths, and that effective climate change policies must address the economic barriers faced by developing nations. Other recommendations included a regulatory regime for major energy producers and users incorporating progressively lower GHG emission targets; the elimination of all subsidies for the fossil fuel and nuclear fuel-cycle and power industries; the adoption of a national renewable energy strategy; the implementation of a national energy conservation and efficiency

  18. Climate Change Adaptation and Mitigation in Ecosystems - Benefits, Barriers and Decision‐Making

    DEFF Research Database (Denmark)

    Møller, Lea Ravnkilde

    ) -Simulation of decision and reaction patterns in relation to the belief in future climate changes and trajectory of decisions when knowledge about future climate is gradually increased (Paper 4. Simulation of Optimal Decision‐Making under the Impacts of Climate Change) Overall, the PhD thesis concludes...... the uncertainty about the actual benefits of adaptation and mitigation of climate change and complicates the process of deciding how to act. Paper 3 provides a more in‐depth empirical analysis of actual decision‐making, considering rural Nepalese households dependent on agricultural production. Paper 3 finds...... to consider long‐term strategies. This underlines the importance of linking development with the fight against climate change in order to secure increased freedom of action for the world’s poorest, thereby increasing their ability to adapt and make optimal decisions for the future. Because climate change...

  19. The energy report - Energy-climate preservation - 100% Renewable energy by 2050

    International Nuclear Information System (INIS)

    Singer, Stephan; Denruyter, Jean-Philippe; Jeffries, Barney; Gibbons, Owen; Hendrix, Ellen; Hiller, Martin; McLellan, Richard; Pols, Donald; Allott, Keith; Anderson, Jason; Baker, Bryn; Battle, Jessica; Blom, Esther; Caught, Kellie; Clough, Kirsty; Chatterjee, Keya; Duveau, Thomas; Elliott, Wendy; Emfel, Magnus; Englum, Lynn; Fabbri, Mariangiola; Geneen, Bart; Gray, Ian; Gritsevich, Inna; Van de Gronden, Johan; Guerraoui, May; Hart, Piers; Hartmann, Joerg; Hofstetter, Patrick; Holland, Richard; Hou, Yanli; Ibrahim, Nora; Kaszewski, Andrea; Kiianmaa, Sampsa; Kokorin, Alexey; Lifeng, Li; Lockley, Pete; Maassen, Paul; Masako, Yosuke; McLaughlin, David; Mathe, Laszlo; McLellan, Elisabeth; Von Mirbach, Martin; Ogorzalek, Kevin; Orr, Stuart; Perrin, Mireille; Pollard, Duncan; Randriambola, Voahirana; Rast, Georg; Roberntz, Peter; Senga, Rafael; Sinha, Shirish; Steindlegger, Gerald; Taylor, Rod; Valencia, Ivan; Vitali, Arianna; Willstedt, Heikki; Woul, Mattias de; Worthington, Richard; Yamagishi, Naoyuki; Boufflers, Jean-Philippe; Gilbert, Olivier; Marsily, Anne de; Graaf, Reinier de; Baird, Laura; Merkeley, Tanner; D'Amico, Federico; Christensen, Vilhelm; McPhee, Amelia

    2011-01-01

    WWF has a vision of a world that is powered by 100 per cent renewable energy sources by the middle of this century. Unless we make this transition, the world is most unlikely to avoid predicted escalating impacts of climate change. But is it possible to achieve 100 per cent renewable energy supplies for everyone on the planet by 2050? WWF called upon the expertise of respected energy consultancy Ecofys to provide an answer to this question. In response, Ecofys has produced a bold and ambitious scenario - which demonstrates that it is technically possible to achieve almost 100 per cent renewable energy sources within the next four decades. The Ecofys scenario raises a number of significant issues and challenges. The Energy Report investigates the most critically important political, economic, environmental and social choices and challenges, and encourages their further debate. How are we going to provide for all of the world's future needs, on energy, food, fibre, water and others, without running into such huge issues as: conflicting demands on land/water availability and use; rising, and in some cases, unsustainable consumption of commodities; nuclear waste; and regionally appropriate and adequate energy mixes? The world needs to seriously consider what will be required to transition to a sustainable energy future, and to find solutions to the dilemmas raised in this report. Answering these challenges - the solutions to the energy needs of current and future generations is one of the most important, challenging and urgent political tasks ahead

  20. Climate-responsive design: A framework for an energy concept design-decision support tool for architects using principles of climate-responsive design

    Directory of Open Access Journals (Sweden)

    Remco Looman

    2017-01-01

    Full Text Available In climate-responsive design the building becomes an intermediary in its own energy housekeeping, forming a link between the harvest of climate resources and low energy provision of comfort. Essential here is the employment of climate-responsive building elements, defined as structural and architectural elements in which the energy infrastructure is far-reaching integrated. This thesis presents the results of research conducted on what knowledge is needed in the early stages of the design process and how to transfer and transform that knowledge to the field of the architect in order for them to successfully implement the principles of climate-responsive design. The derived content, form and functional requirements provide the framework for a design decision support tool. These requirements were incorporated into a concept tool that has been presented to architects in the field, in order to gain their feedback. Climate-responsive design makes the complex task of designing even more complex. Architects are helped when sufficient information on the basics of climate-responsive design and its implications are provided as informative support during decision making in the early design stages of analysis and energy concept development. This informative support on climate-responsive design should address to different design styles in order to be useful to any type of architects. What is defined as comfortable has far-reaching implications for the way buildings are designed and how they operate. This in turn gives an indication of the energy used for maintaining a comfortable indoor environment. Comfort is not a strict situation, but subjective. Diversity is appreciated and comfort is improved when users have the ability to exert influence on their environment. Historically, the provision of comfort has led to the adoption of mechanical climate control systems that operate in many cases indifferent from the building space and mass and its environment

  1. Energy conservation in the earth's crust and climate change.

    Science.gov (United States)

    Mu, Yao; Mu, Xinzhi

    2013-02-01

    Among various matters which make up the earth's crust, the thermal conductivity of coal, oil, and oil-gas, which are formed over a long period of geological time, is extremely low. This is significant to prevent transferring the internal heat of the earth to the thermal insulation of the surface, cooling the surface of the earth, stimulating biological evolution, and maintaining natural ecological balance as well. Fossil energy is thermal insulating layer in the earth's crust. Just like the function of the thermal isolation of subcutaneous fatty tissue under the dermis of human skin, it keeps the internal heat within the organism so it won't be transferred to the skin's surface and be lost maintaining body temperature at low temperatures. Coal, oil, oil-gas, and fat belong to the same hydrocarbons, and the functions of their thermal insulation are exactly the same. That is to say, coal, oil, and oil-gas are just like the earth's "subcutaneous fatty tissue" and objectively formed the insulation protection on earth's surface. This paper argues that the human large-scale extraction of fossil energy leads to damage of the earth's crust heat-resistant sealing, increasing terrestrial heat flow, or the heat flow as it is called, transferring the internal heat of the earth to Earth's surface excessively, and causing geotemperature and sea temperature to rise, thus giving rise to global warming. The reason for climate warming is not due to the expansion of greenhouse gases but to the wide exploitation of fossil energy, which destroyed the heat insulation of the earth's crust, making more heat from the interior of the earth be released to the atmosphere. Based on the energy conservation principle, the measurement of the increase of the average global temperature that was caused by the increase of terrestrial heat flow since the Industrial Revolution is consistent with practical data. This paper illustrates "pathogenesis" of climate change using medical knowledge. The

  2. Biomass Energy | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Biomass Energy Biomass Energy Biomass from local sources can be key to a campus climate action plan biomass may fit into your campus climate action plan. Campus Options Considerations Sample Project Related biomass fuels for energy does not add to the net amount of carbon in the atmosphere. This is because the

  3. Climate change decision-making: Model & parameter uncertainties explored

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.; Linville, C.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.

  4. Integrating global energy and climate governance: The changing role of the International Energy Agency

    International Nuclear Information System (INIS)

    Heubaum, Harald; Biermann, Frank

    2015-01-01

    Despite the long-recognized interlinkages between global energy consumption and climate change, there has historically been only limited policy interaction, let alone integration, between the two fields. This compartmentalization is mirrored in scholarship, where much research has focused on the fragmentation of, respectively, global energy and global climate governance, but only little has been said about how these fields might be integrated. Our analysis of the International Energy Agency’s (IEA) changing activities in recent years shows that governance integration – both within global energy governance and between global energy and climate governance – is now happening. The IEA has broadened its portfolio to embrace the full spectrum of energy issues, including renewable energy and climate change; it has built and is expanding key partnerships with both the UN climate convention and the International Renewable Energy Agency (IRENA); and it has become an authoritative advocate for the inter-related goals of a low-carbon transition and climate change mitigation. We show that these developments are not the result of a top-down plan, but have rather emerged through the Agency’s various efforts to pursue its energy-centric mandate in a fast-changing global policy environment. - Highlights: • Assesses integration between global energy and global climate governance. • Analyzes organizational change in the IEA and its impact on governance integration. • Discusses recent activities and advocacy by the IEA in relation to climate change.

  5. Making it personal: Diversity and deliberation in climate adaptation planning

    Directory of Open Access Journals (Sweden)

    Roopali Phadke

    2015-01-01

    Full Text Available The vulnerabilities and health burdens of climate change fall disproportionately upon lower income communities and communities of color. Yet the very groups who are most affected by climate change impacts are least likely to be involved in climate adaptation discussions. These communities face critical barriers to involvement including historical disenfranchisement, as well as a sense that climate change is distant and not personally relevant. Boundary organizations are increasingly playing an important role in bringing science to bear on policy decision-making with respect to climate change adaptation, an issue fraught with political and ideological tensions. Our project aimed to engage underrepresented communities in climate change adaptation decision-making using a neighborhood consensus conference model developed and tested in several diverse districts of Saint Paul, Minnesota. Our partnership, a “linked chain” of boundary organizations, devised a neighborhood consensus conference model to present best-available climate data as tangible, place-based scenarios. In so doing, we made climate change “personal” for those who remain outside of climate change planning discourses and opened an opportunity for them to assess their community’s vulnerabilities and communicate their priorities for public investment. Our neighborhood-based model built trust and social capital with local residents and allowed us to bring new voices into conversations around climate change adaptation concerns and priorities. We believe this work will have a long term impact on local climate adaptation planning decisions.

  6. Uncertainties and insufficiencies: making sense of climate adaption

    Energy Technology Data Exchange (ETDEWEB)

    Toesse, Sunniva Eikeland

    2012-11-01

    The scientist papers show, first, that climate scientists are concerned about the relevance of their research and engage in practices, even though they may, in a sense, be criticized for taking the relevance for granted. They work hard to communicate their research, even this proves uncomfortable for them personally. Secondly, these first two papers have displayed a potential challenge for climate science communication and translation: climate skeptics. The scientists' fear is that people will be confused by the climate skeptics' misleading messages about the state of climate research. A related concern may be whether the way climate scientists shape their communication efforts to avoid 'sceptic attacks', in some way inhibit translation of climate knowledge? The user papers, on the other hand, show that to potential users of climate science knowledge, the knowledge is not obviously relevant. Furthermore, there are many factors - existing institutional context, professional identities and ideas about science and climate science, and aspects of the available science information - that shape the way in which evaluate relevance. Furthermore, scientists are not particularly central in these evaluations. There is, thus, an asymmetry between the scientist's engagement with relevance and the way users evaluate the relevance of climate science knowledge. How can we make sense of this? (Author)

  7. Climate changes and energy safety in Brazil

    International Nuclear Information System (INIS)

    Schaeffer, Roberto; Szklo, Alexandre Salem; Lucena, Andre Frossard Pereira de; Souza, Raquel Rodrigues de; Borba, Bruno Soares Moreira Cesar; Costa, Isabella Vaz Leal da; Pereira Junior, Amaro Olimpio; Cunha, Sergio Henrique F. da

    2008-01-01

    The possible effects of climate changes on the supply and demand of energy in the country are analyzed. The goal is to evaluate how the Brazilian energy system planned for 2030 would face the climate new conditions projected for the period of 2071 a 2100. The study also points out energy policy measurements which can be adopted to relief the negative impacts

  8. Evaluation of climate change impacts on energy demand

    DEFF Research Database (Denmark)

    Taseska, Verica; Markovska, Natasa; Callaway, John M.

    2012-01-01

    change and the energy demand in Macedonia. The analyses are conducted using the MARKAL (MARKet ALlocation)-Macedonia model, with a focus on energy demand in commercial and residential sectors (mainly for heating and cooling). Three different cases are developed: 1) Base Case, which gives the optimal...... electricity production mix, taking into account country’s development plans (without climate change); 2) Climate Change Damage Case, which introduces the climate changes by adjusting the heating and cooling degree days inputs, consistent with the existing national climate scenarios; and 3) Climate Change...... Adaptation Case, in which the optimal electricity generation mix is determined by allowing for endogenous capacity adjustments in the model. This modeling exercise will identify the changes in the energy demand and in electricity generation mix in the Adaptation Case, as well as climate change damages...

  9. Energy infrastructure in India: Profile and risks under climate change

    International Nuclear Information System (INIS)

    Garg, Amit; Naswa, Prakriti; Shukla, P.R.

    2015-01-01

    India has committed large investments to energy infrastructure assets-power plants, refineries, energy ports, pipelines, roads, railways, etc. The coastal infrastructure being developed to meet the rising energy imports is vulnerable to climate extremes. This paper provides an overview of climate risks to energy infrastructures in India and details two case studies – a crude oil importing port and a western coast railway transporting coal. The climate vulnerability of the port has been mapped using an index while that of the railway has been done through a damage function for RCP 4.5.0 and 8.5 scenarios. Our analysis shows that risk management through adaptation is likely to be very expensive. The system risks can be even greater and might adversely affect energy security and access objectives. Aligning sustainable development and climate adaptation measures can deliver substantial co-benefits. The key policy recommendations include: i) mandatory vulnerability assessment to future climate risks for energy infrastructures; ii) project and systemic risks in the vulnerability index; iii) adaptation funds for unmitigated climate risks; iv) continuous monitoring of climatic parameters and implementation of adaptation measures, and iv) sustainability actions along energy infrastructures that enhance climate resilience and simultaneously deliver co-benefits to local agents. -- Highlights: •Climate risks to energy infrastructures adversely impact energy security. •Case studies of a port and a railway show their future climate change vulnerability. •Managing climate-induced risks through preventive adaptation policies

  10. Energy Revolution Against Climate Change

    International Nuclear Information System (INIS)

    Potocnik, V.

    2007-01-01

    Energy revolution is taking place in the world with objective to mitigate consequences of evident climate change, caused mostly by emissions of the greenhouse gases from combustion of fossil fuels (coal, oil and natural gas). The principal elements of the energy revolution are decrease in energy consumption by increase in energy efficiency and substitution of fossil fuels by renewable energies, supported by 'clean' fossil fuels and nuclear energy. (author)

  11. Energy security and climate policy. Assessing interactions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-28

    World energy demand is surging. Oil, coal and natural gas still meet most global energy needs, creating serious implications for the environment. One result is that CO2 emissions, the principal cause of global warming, are rising. This new study underlines the close link between efforts to ensure energy security and those to mitigate climate change. Decisions on one side affect the other. To optimise the efficiency of their energy policy, OECD countries must consider energy security and climate change mitigation priorities jointly. The book presents a framework to assess interactions between energy security and climate change policies, combining qualitative and quantitative analyses. The quantitative analysis is based on the development of energy security indicators, tracking the evolution of policy concerns linked to energy resource concentration. The 'indicators' are applied to a reference scenario and CO2 policy cases for five case-study countries: The Czech Republic, France, Italy, the Netherlands, and the United Kingdom. Simultaneously resolving energy security and environmental concerns is a key challenge for policy makers today. This study helps chart the course.

  12. Building energy efficiency in different climates

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Tsang, C.L.; Yang Liu

    2008-01-01

    Energy simulation was conducted for office buildings in the five major climate zones - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter - in China using DOE-2.1E. The primary aim was to investigate the thermal and energy performance of office buildings with centralised heating, ventilation and air conditioning plants in the major climatic zones in China. The computed results were analysed in three aspects - heating load, cooling load and the corresponding building energy consumption. The building peak monthly heating load varied from 142 MW h (1033 MW h cooling) in Hong Kong to 447 MW h (832 MW h cooling) in Harbin. It was also found that passive solar designs could have large energy savings potential in the severe cold and cold climates. In Harbin, the window solar component helped lower the annual building heating load by 650 MW h. Internal loads (lighting and office equipment) and part load operations of fans and pumps also played a significant role in the overall building energy efficiency. This paper presents the work, its findings and energy efficiency implications

  13. The impact of climate change on the European energy system

    International Nuclear Information System (INIS)

    Dowling, Paul

    2013-01-01

    Climate change can affect the economy via many different channels in many different sectors. The POLES global energy model has been modified to widen the coverage of climate change impacts on the European energy system. The impacts considered are changes in heating and cooling demand in the residential and services sector, changes in the efficiency of thermal power plants, and changes in hydro, wind (both on- and off-shore) and solar PV electricity output. Results of the impacts of six scenarios on the European energy system are presented, and the implications for European energy security and energy imports are presented. Main findings include: demand side impacts (heating and cooling in the residential and services sector) are larger than supply side impacts; power generation from fossil-fuel and nuclear sources decreases and renewable energy increases; and impacts are larger in Southern Europe than in Northern Europe. There remain many more climate change impacts on the energy sector that cannot currently be captured due to a variety of issues including: lack of climate data, difficulties translating climate data into energy-system-relevant data, lack of detail in energy system models where climate impacts act. This paper does not attempt to provide an exhaustive analysis of climate change impacts in the energy sector, it is rather another step towards an increasing coverage of possible impacts. - Highlights: • Expanded coverage of climate change impacts on European energy system. • Demand side impacts are larger than supply side impacts. • Power from fossil and nuclear sources decreases, renewable energy increases. • Impacts are larger in Southern Europe than in Northern Europe. • Synergies exist between climate change mitigation and climate change adaptation

  14. EU energy and climate change strategy

    International Nuclear Information System (INIS)

    Graça Carvalho, Maria da

    2012-01-01

    This paper will summarise the European Strategy for Energy and Climate Change. In current international negotiations Europe has proposed a 20% reduction in GHG (greenhouse gases) in the developed countries by 2020 or 30% should there be an international agreement in the domain. However it is important to define measures to achieve the targets. One of the principal tools is to improve energy efficiency under the energy efficiency action plan, which will help to achieve a 20% energy saving by 2020. On the other hand, the amount of energy from renewable sources consumed in Europe will have to rise from its current level of 8.5%–20% by 2020. These are ambitious but achievable targets. Nonetheless, these can only be achieved through strong investment in areas of the knowledge triangle which strengthens research and innovation in the energy sector in Europe. The paper covers European Energy and Climate Change Policy, the European Strategic Energy Technology plan, the consequences of the Lisbon Treaty, European and national Road maps to a low carbon economy, the Energy Efficiency Plan for 2011 and finishes with a brief consideration of the EU’s energy infrastructure priorities. -- Highlights: ► This paper summarises the European Strategy for Energy and Climate Change. ► Reduction of GHG emissions by 30%-international agreement or −20% without agreement. ► Use of 20% of renewable energies by 2020. ► Increase of energy efficiency of 20% by 2020. ► Consolidating of the internal energy market.

  15. White book for the conference of experts on the climate-energy contribution

    International Nuclear Information System (INIS)

    2009-01-01

    This publication discusses the main questions raised by the creation of a climate-energy contribution which aims at better taking into account the costs generated by degradations of the environment. It discusses the stakes and justifications of this contribution within the frame of emission reduction objectives and of the Emission Trading Scheme, and outlines the benefit of economic tools with respect to regulation. It discusses how to implement this contribution, how to define its base, whether existing taxes on fossil energies will have the expected effects and how to hinge these existing taxes on the climate-energy contribution. It discusses what would be the scope of application of the contribution, what should be its level and how it should change in time, how to support it and make it more efficient. It discusses its macro-economical consequences, notably by referring to the Swedish example

  16. Imaginary politics: Climate change and making the future

    Directory of Open Access Journals (Sweden)

    Manjana Milkoreit

    2017-11-01

    Full Text Available Climate change places major transformational demands on modern societies. Transformations require the capacity to collectively envision and meaningfully debate realistic and desirable futures. Without such a collective imagination capacity and active deliberation processes, societies lack both the motivation for change and guidance for decision-making in a certain direction of change. Recent arguments that science fiction can play a role in societal transformation processes is not yet supported by theory or empirical evidence. Advancing the argument that fiction can support sustainability transformations, this paper makes four contributions. First, building on the imaginary concept, I introduce and define the idea of socio-climatic imaginaries. Second, I develop a theory of imagination as linked cognitive-social processes that enable the creation of collectively shared visions of future states of the world. This theory addresses the dynamics that bridge imagination processes in the individual mind and collective imagining that informs social and political decision-making. Third, emphasizing the political nature of creating and contesting imaginaries in a society, I introduce the role of power and agency in this theory of collective imagination. I argue that both ideational and structural power concepts are relevant for understanding the potential societal influence of climate fiction. Finally, the paper illuminates these different forms of transformational power and agency with two brief case studies: two climate fiction novels. I contrast a dystopian and utopian science fiction novel – Paolo Bacigalupi’s The Water Knife (2015 and Kim Stanley Robinson's Green Earth (2015. The two books are very similar in their power/agency profile, but the comparison provides initial insights into the different roles of optimistic and pessimistic future visions.

  17. Examining Challenges Related to the Production of Actionable Climate Knowledge for Adaptation Decision-Making: A Focus on Climate Knowledge System Producers

    Science.gov (United States)

    Ernst, K.; Preston, B. L.; Tenggren, S.; Klein, R.; Gerger-Swartling, Å.

    2017-12-01

    Many challenges to adaptation decision-making and action have been identified across peer-reviewed and gray literature. These challenges have primarily focused on the use of climate knowledge for adaptation decision-making, the process of adaptation decision-making, and the needs of the decision-maker. Studies on climate change knowledge systems often discuss the imperative role of climate knowledge producers in adaptation decision-making processes and stress the need for producers to engage in knowledge co-production activities and to more effectively meet decision-maker needs. While the influence of climate knowledge producers on the co-production of science for adaptation decision-making is well-recognized, hardly any research has taken a direct approach to analyzing the challenges that climate knowledge producers face when undertaking science co-production. Those challenges can influence the process of knowledge production and may hinder the creation, utilization, and dissemination of actionable knowledge for adaptation decision-making. This study involves semi-structured interviews, focus groups, and participant observations to analyze, identify, and contextualize the challenges that climate knowledge producers in Sweden face as they endeavor to create effective climate knowledge systems for multiple contexts, scales, and levels across the European Union. Preliminary findings identify complex challenges related to education, training, and support; motivation, willingness, and culture; varying levels of prioritization; professional roles and responsibilities; the type and amount of resources available; and professional incentive structures. These challenges exist at varying scales and levels across individuals, organizations, networks, institutions, and disciplines. This study suggests that the creation of actionable knowledge for adaptation decision-making is not supported across scales and levels in the climate knowledge production landscape. Additionally

  18. Climate-smart technologies. Integrating renewable energy and energy efficiency in mitigation and adaptation responses

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Mannke, Franziska; Schulte, Veronika [Hamburg Univ. of Applied Sciences (Germany). Faculty of Life Sciences; Mohee, Romeela; Surroop, Dinesh (eds.) [Mauritius Univ., Reduit (Mauritius). Chemical and Environmental Engineering Dept.

    2013-11-01

    Explores the links between climate change and technologies. Relates to the links between renewable energy and climate change. Documents and promotes a collection of experiences from island nations. Has a strong international focus and value to developing countries. The book addresses the perceived need for a publication with looks at both, climate smart technologies and the integration of renewable energy and energy efficiency in mitigation and adaptation responses. Based on a set of papers submitted as part of the fifth on-line climate conference (CLIMATE 2012) and a major conference on renewable energy on island States held in Mauritius in 2012, the book provides a wealth of information on climate change strategies and the role of smart technologies. The book has been produced in the context of the project ''Small Developing Island Renewable Energy Knowledge and Technology Transfer Network'' (DIREKT), funded by the ACP Science and Technology Programme, an EU programme for cooperation between the European Union and the ACP region.

  19. Climate warming and perception of energy resources

    International Nuclear Information System (INIS)

    Boy, Daniel

    2014-06-01

    Drawing from a set of surveys, the aim of the present paper is to identify elements concerning the representations of climate change, the relation of which with daily energy use is not always clear. More precisely, in the field of energy consumption, several surveys allow a more precise vision of the interest for renewable energies and of the relationship between nuclear energy and society. The annual surveys carried out for more than ten years by ADEME (environment and energy mastering agency) allow a diachronic view of the evolution of climate change perception and of political events which have influenced it. The interpretation of the results points out the sensitivity of climate change perception to events, and particularly to political hazards. The renewable energies mirage has tended to fade with the numerous current debates. The adhesion of French public opinion to nuclear energy remains significant as, even after the Fukushima accident, a majority of individuals investigated are in favor of this still contested source of energy, including by people with high scientific literacy. Nevertheless, the energy issue, and particularly when it comes to nuclear energy, has become strongly politicized. (author)

  20. Modeling Uncertainty and the Economics of Climate Change. Recommendations for Robust Energy Policy

    International Nuclear Information System (INIS)

    Haurie, A.; Tavoni, M.; Van der Zwaan, B.C.C.

    2011-01-01

    This special issue is meant to gather front-edge research and innovative analysis in the modeling of uncertainty related to the economics of climate change. The focus is notably on advancements in probabilistic integrated assessment modeling and stochastic analysis of climate futures. The possibility to use non-probabilistic economic methods to treat uncertainty in global or regional dynamic climate change models is explored as well. Given the intimate link between climate change and the nature of mankind's energy production and consumption system, this special issue also proffers direct practical recommendations for energy decision making at the global, regional, and national levels. The special issue originated from a series of research tasks carried out under the PLANETS project, funded by the European Commission under its 7th Framework Programme and co-coordinated by the Fondazione Eni Enrico Mattei (FEEM) and the Energy research Centre of the Netherlands (ECN). This project, accomplished in 2010, had, as main focus, how to incorporate uncertainty when carrying out numerical analysis of climate and energy policies. A special PLANETS session was organized during the 2010 edition of the International Energy Workshop (IEW 2010, Royal Institute of Technology, Stockholm), which generated broad expert discussion on both methodology and policy-related issues. The recognition of the importance of these topics and the diversity of approaches undertaken, plus a concern over them becoming fragmented in the literature, constituted the motivation to edit this special issue gathering the generated material in one orchestrated publication. Several contributions, in the form of 12 papers, have been brought together with the aim of providing a comprehensive overview of some of the main recent developments in the modeling of uncertainty in the economics of climate change. We categorize these 12 articles in five distinct domains in hybrid integrated assessment EEE (Energy

  1. Modeling Uncertainty and the Economics of Climate Change. Recommendations for Robust Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    Haurie, A. [ORDECSYS, Geneva (Switzerland); Tavoni, M. [Princeton University, Princeton, NJ (United States); Van der Zwaan, B.C.C. [Policy Studies Department, Energy research Centre of the Netherlands ECN, Amsterdam (Netherlands)

    2011-07-15

    This special issue is meant to gather front-edge research and innovative analysis in the modeling of uncertainty related to the economics of climate change. The focus is notably on advancements in probabilistic integrated assessment modeling and stochastic analysis of climate futures. The possibility to use non-probabilistic economic methods to treat uncertainty in global or regional dynamic climate change models is explored as well. Given the intimate link between climate change and the nature of mankind's energy production and consumption system, this special issue also proffers direct practical recommendations for energy decision making at the global, regional, and national levels. The special issue originated from a series of research tasks carried out under the PLANETS project, funded by the European Commission under its 7th Framework Programme and co-coordinated by the Fondazione Eni Enrico Mattei (FEEM) and the Energy research Centre of the Netherlands (ECN). This project, accomplished in 2010, had, as main focus, how to incorporate uncertainty when carrying out numerical analysis of climate and energy policies. A special PLANETS session was organized during the 2010 edition of the International Energy Workshop (IEW 2010, Royal Institute of Technology, Stockholm), which generated broad expert discussion on both methodology and policy-related issues. The recognition of the importance of these topics and the diversity of approaches undertaken, plus a concern over them becoming fragmented in the literature, constituted the motivation to edit this special issue gathering the generated material in one orchestrated publication. Several contributions, in the form of 12 papers, have been brought together with the aim of providing a comprehensive overview of some of the main recent developments in the modeling of uncertainty in the economics of climate change. We categorize these 12 articles in five distinct domains in hybrid integrated assessment EEE (Energy

  2. Achieving stringent climate targets. An analysis of the role of transport and variable renewable energies using energy-economy-climate models

    Energy Technology Data Exchange (ETDEWEB)

    Pietzcker, Robert Carl

    2014-07-01

    technologies photovoltaics (PV) and concentrating solar power (CSP) in REMIND confirms the dominant role of these variable renewable energies for the decarbonization of the power sector. Recent cost reductions have brought PV to cost-competitiveness in regions with high midday electricity demand and high solar irradiance. The representation of system integration costs in REMIND is found to have significant impact on the competition between PV and CSP in the model: the low integration requirements of CSP equipped with thermal storage and hydrogen co-firing make CSP competitive at high shares of variable renewable energies, which leads to substantial deployment of both PV and CSP in low stabilization scenarios. A cross-model study of transport sector decarbonization confirms the earlier finding that the transport sector is not very reactive to intermediate carbon price levels: Until 2050, transport decarbonization lags 10-30 years behind the decarbonization of other sectors, and liquid fuels dominate the transport sector. In the long term, however, transportation does not seem to be an insurmountable barrier to stringent climate targets: As the price signals on CO{sub 2} increase further, transport emissions can be reduced substantially - if either hydrogen fuel cells or electromobility open a route to low-carbon energy carriers, or second generation biofuels (possibly in combination with CCS) allow the use of liquid-based transport modes with low emissions. The last study takes up the fundamental question of this thesis and analyses the trade-off between the stringency of a climate target and the resulting techno-economic requirements and costs. We find that transforming the global energy-economy system to keep a two-thirds likelihood of limiting global warming to below 2 C is achievable at moderate economic implications. This result is contingent on the near-term implementation of stringent global climate policies and full availability of several technologies that are still in

  3. Changing Climates. The Role of Renewable Energy in a Carbon-Constrained World. A Paper Prepared for REN21

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, J.; Denton, F.; Garg, A.; Kamel, S.; Pacudan, R. [UNEP Risoe Centre on Energy, Climate and Sustainable Development URC, Roskilde (Denmark); Usher, E. [UNEP Energy Unit, Paris (France)

    2005-12-15

    The current paper on renewable energy and climate change is focused on the key characteristics of the climate change challenge, the intergovernmental action to address the challenge, and how current and future renewable energy projects can contribute to global carbon mitigation and adaptation efforts at the local level. The report presents the current and possible different future contributions that renewable energy can make. This is based on analysis of different authoritative global scenarios and their underlying assumptions, and is aimed at providing guidance on what would be required in terms of policy decisions and technological developments if renewable energy is going to significantly mitigate climate change. Although the focus is particularly on climate change and the opportunities for renewable energy, other issues are closely interlinked. Reducing GHG emissions by introducing more renewable energy, for example, will also have positive impacts on the security of energy supply, while potentially compounding the need for investment capital. The report begins with the current global energy demand and the contribution of renewable energy to meeting that demand. Next, different key internationally recognised energy development scenarios are presented from the Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA), together with selected policy scenarios of very different specific options to mitigate climate change and stabilize CO2 levels in the range of 450-550 ppm. These scenarios are presented with both high and limited penetrations of renewable energy, along with discussions of underlying assumptions leading to these different results, including comparisons of projected technology costs. Existing policies worldwide to promote renewable energy are then analysed for their relative efficiency and results. Guidance is presented on the possible policy tools governments can use to move from the stipulated &apos

  4. Global Energy Transitions and the Challenge of Climate Change

    International Nuclear Information System (INIS)

    Riahi, K.

    2008-01-01

    Global emissions of greenhouse-gases have increased markedly as a result of human activities since pre-industrial times. This increase in emissions has lead to unequivocal global warming, which is evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level. Reducing the risk of irreversible climate impacts requires thus the mitigation of global GHG emissions aiming at the long-term stabilization of atmospheric GHG concentrations. Achieving this goal translates into the need of reducing emissions to virtually zero over long time-frames. Yet international agreement on a long-term climate policy target remains a distant prospect, due to both scientific uncertainty and political disagreement on the appropriate balance between mitigation costs and reduced risks of dangerous impacts. At the same time, growing emissions of greenhouse gases continue to increase the amount of climate change we are committed to over the long term. Over the next few decades, these growing emissions may make some potentially desirable long term goals unattainable. Recent analysis conducted at IIASA indicates the need of major energy transitions over the next few decades. For example, staying below the target suggested by the European Union of 2 C warming (with just a 50% likelihood) will require the massive deployment of zero-carbon energy by 2050, and a tippling of the contribution of zero-carbon energy globally to more than 60% by that time. Although there are large uncertainties with respect to the deployment of individual future technologies, there is strong evidence that no single mitigation measure alone would be sufficient for achieving the stabilization of GHG concentrations at low levels. A wide portfolio of technologies across all GHG-intensive sectors is needed for cost-effective emissions reductions. The bulk of these emissions reductions would need to come from the energy sector, with

  5. Resolution on the program energy-climate

    International Nuclear Information System (INIS)

    2008-01-01

    This document presents the resolutions proposed in the resolution proposition n. 1261 and concerning the european Commission program on the energy policies and the climate change. Twelve resolution are presented on the energy sources development, the energy efficiency, the energy economy and the carbon taxes. (A.L.B.)

  6. Making sense of climate change

    International Nuclear Information System (INIS)

    2002-01-01

    Climate change has always occurred naturally but at a pace to which the earth has adapted well. Now, due to human activities like energy utilization and waste disposal, the earth is heating up much faster than earlier. Ecosystems, water resources, food sources, health, and human settlements are getting adversely affected. Floods and droughts are increasing, glaciers are melting, and disease is spreading. The problem is serious and it is time to act. Global consensus has been agreements; mitigation initiatives have been undertaken; hopes are up. The aim of this book is to raise the awareness of secondary school students about climate change and its impacts while enhancing their understanding of global responses. It includes a chapter specific to Indian conditions. Lucidly written and illustrated with anecdotes and visuals, this handbook will catalyse young minds into greater awareness, concern, and, hopefully, remedial action on this global threat

  7. Make way for the climate. National adaptation strategy. The policy paper

    International Nuclear Information System (INIS)

    2007-11-01

    The policy paper is a background document of the interdepartmental memorandum 'Make way for climate', in which the outline is described for a national strategy for adaptation to the consequences of climate change. [mk] [nl

  8. A Unique Climate and Energy Policy - Key Problems and Possible Solutions

    International Nuclear Information System (INIS)

    Granic, G.

    2016-01-01

    This paper analyses problems of independent application of climate and energy policy. In order to accomplish the goals from The Paris Climate Agreement, an agreement about the goals and measures for climate preservation from 2015, a unique climate and energy policy is suggested, as well as the measures for the implementation of it. To achieve no CO2 and GHG emissions in the energy sector, to have it be completely market based, energy efficient and technologically approved, a unique climate and energy policy is a necessary option and the only viable option to accomplish previously agreed climate goals.(author).

  9. The Haute-Normandie Climate Air Energy Regional Scheme - Synthesis

    International Nuclear Information System (INIS)

    2016-01-01

    This regional public and planning document (SRCAE) first proposes a regional diagnosis in terms of energetic situation, climatic situation, air quality situation, building condition (in terms of energy), transports (characteristics of regional transport, of person and goods transport), industries and enterprises (important role of oil and chemical activities, low level of renewable and recovery energies), agriculture and forest, renewable energies (biomass and wastes, wind energy, solar photovoltaic, hydroelectricity, renewable heat production), and territory vulnerability in front of climate change. The second part states objectives and orientations: definition of scenarios, and of sector-based objectives (in the building, transport, agricultural, and industrial sectors, in the development of renewable energies, and in terms of adaptation to climate change). Synthetic approaches are then stated in relationship with different challenges related to sustainable behaviours and consumption, promotion of professions related to energy transition, diffusion of good practices in the fields of energy efficiency and emission reduction, sustainable land development, promotion of environmental mutations for the regional economy, innovation to face climate and energy challenges, development of renewable energies, anticipation of the adaptation to climate change, and SRCAE follow-up and assessment. Sheets of definitions of objectives are given for each sector. A synthetic version of this study is provided

  10. Quantifying conditional risks for water and energy systems using climate information

    Science.gov (United States)

    Lall, U.

    2016-12-01

    There has been a growing recognition of the multi-scale spatio-temporal organization of climate dynamics, and its implications for predictable, structured risk exposure to populations and infrastructure systems. At the most base level is an understanding that there are some identifiable climate modes, such as ENSO, that are associated with such outcomes. This has led to the emergence of a small cottage industry of analysts who relate different "climate indices" to specific regional outcomes. Such efforts and the associated media interest in these simplified "stories" have led to an increasing appreciation of the phenomenon, and some formal and informal efforts at decision making using such information. However, as was demonstrated through the 2014-16 El Nino forecasting season, many climate scientists over-emphasized the potential risks, while others cautioned the media as to the caveats and uncertainties associated with assuming that the forecasts of ENSO and the expected teleconnections may pan out. At least in certain sectors and regions, significant efforts or expectations as to outcomes were put in place, and some were beneficial, while others failed to manifest. Climate informed predictions for water and energy systems can be thought of as efforts to infer conditional distributions of specific outcomes given information on climate state. Invariably, the climate state may be presented as a very high dimensional spatial set of variables, with limited temporal sampling, while the water and energy attributes may be regional and constitute a much smaller dimension. One may, of course, be interested in the fact that the same climate state may lead to synchronous positive and negative effects across many locations, as may be expected under mid-latitude stationary and transient wave interaction. In this talk, I will provide examples of a few modern statistical and machine learning tools that allow a decomposition of the high dimensional climate state and its relation

  11. US views on climate change and nuclear energy

    International Nuclear Information System (INIS)

    Ferguson, C.D.

    2009-01-01

    The US approach to both nuclear energy and climate change can be summarized in two words: risk management. Unpacking the layers of risk management, however, requires understanding the characteristics of the US electricity market and the influences that federal and state governments have on that market. The fi rst set of issues to understand is that electric utilities in the USA are relatively risk averse, increasingly subject to competition, acutely aware of their accountability to stock investors and relatively lacking in the large capital needed to build nuclear power plants. Chief executive officers (CEOs) of utilities know that their companies' long term financial futures ride on the decisions that they make today about what types of power plants to build because of the plants' decades long lifetimes. John Rowe, CEO of Exelon, the US based utility with the largest number of nuclear reactors, expressed this point directly: 'cost is fundamental'. Many other CEOs are receptive to countering climate change, but not at the risk of hurting the US economy. This is the prevailing perception among many US business leaders. In contrast, some experts have argued that on balance such efforts could help the economy and would mitigate catastrophic climate change effects. The bottom line is that the USA can choose to pay in the near term or delay longer - with potentially graver consequences - to address climate change

  12. An attempt to assess the energy related climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Iotova, A [Bulgarian Academy of Sciences, Sofia (Bulgaria). National Inst. of Meteorology and Hydrology

    1996-12-31

    A lot of efforts are directed now to study the interactions between energy and climate because of their significant importance for our planet. Globally, energy related emissions of Greenhouse Gases (GHGs) contribute for atmospheric warming. On regional level, where it is more difficult to determine concrete direction of climate variability and change, the role of energy remains considerable being not so direct as in the case of emissions` impact. Still there is essential necessity for further analyses and assessments of energy related climate variations and change in order to understand better and to quantify the energy - climate relations. In the presentation an attempt is made to develop approach for assessment of energy related climate variations on regional level. For this purpose, data and results from the research within Bulgarian Case Study (BCS) in the DECADES Inter-Agency Project framework are used. Considering the complex nature of the examined interconnections and the medium stage of the Study`s realisation, at the moment the approach can be presented in conceptual form. Correspondingly, the obtained results are illustrative and preliminary

  13. An attempt to assess the energy related climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Iotova, A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). National Inst. of Meteorology and Hydrology

    1995-12-31

    A lot of efforts are directed now to study the interactions between energy and climate because of their significant importance for our planet. Globally, energy related emissions of Greenhouse Gases (GHGs) contribute for atmospheric warming. On regional level, where it is more difficult to determine concrete direction of climate variability and change, the role of energy remains considerable being not so direct as in the case of emissions` impact. Still there is essential necessity for further analyses and assessments of energy related climate variations and change in order to understand better and to quantify the energy - climate relations. In the presentation an attempt is made to develop approach for assessment of energy related climate variations on regional level. For this purpose, data and results from the research within Bulgarian Case Study (BCS) in the DECADES Inter-Agency Project framework are used. Considering the complex nature of the examined interconnections and the medium stage of the Study`s realisation, at the moment the approach can be presented in conceptual form. Correspondingly, the obtained results are illustrative and preliminary

  14. Does climate policy lead to relocation with adverse effects for GHG emissions or not? A first assessment of the spillovers of climate policy for energy intensive industry

    International Nuclear Information System (INIS)

    Oikonomou, V.; Patel, M.; Worrell, E.

    2004-12-01

    Energy-intensive industries play a special role in climate policy. World-wide, industry is responsible for about 50% of greenhouse gas emissions. The emission intensity makes these industries an important target for climate policy. At the same time these industries are particularly vulnerable if climate policy would lead to higher energy costs, and if they would be unable to offset these increased costs. The side effects of climate policy on GHG emissions in foreign countries are typically referred to as 'spillovers'. Negative spillovers reduce the effectiveness of a climate policy, while positive spillovers increase its effectiveness. This paper provides a review of the literature on the spillover effects of climate policy for carbon intensive industries. Reviews of past trends in production location of energy-intensive industries show an increased share of non-Annex 1 countries. However, this trend is primarily driven by demand growth, and there is no empirical evidence for a role of environmental policy in these development patterns. In contrast, climate models do show a strong carbon leakage of emissions from these industries. Even though that climate policy may have a more profound impact than previous environmental policies, the results of the modelling are ambiguous. The energy and carbon intensity of energy-intensive industries is rapidly declining in most developing countries, and reducing the 'gap' between industrialized and developing countries. Still, considerable potential for emission reduction exists, both in developing and industrialized countries. Technology development is likely to deliver further reductions in energy use and CO2 emissions. Despite the potential for positive spillovers in the energy-intensive industries, none of the models used in the analysis of spillovers of climate policies has an endogenous representation of technological change for the energy-intensive industries. This underlines the need for a better understanding of

  15. Energy climate study. Energy assessment, Greenhouse gas emission assessment, Analysis of vulnerability to climate change, Courses of mitigation and adaptation actions. Full report + Appendices + Restitution of the Energy-Climate Study, September 17, 2012

    International Nuclear Information System (INIS)

    2012-01-01

    After a brief presentation of Le Mans region, a presentation of the study (context, scope, methodology), and a recall of challenges related to energy and to climate, this study reports a situational analysis and a discussion of development perspectives for energy production on the concerned territory, an assessment of energy consumptions and of greenhouse gas emissions by the different sectors, and a study of territory vulnerability to climate change (methodology, territory characteristics, climate scenarios, vulnerability assessment). It discusses lessons learned from energy and greenhouse gas emission assessments (social-economic stakes, territory strengths and weaknesses, perspectives for action). It discusses the implementation of these issues within a territorial planning document, and the perspective of elaboration of a territorial climate energy plan. An appendix reports an assessment of the potential of development of the different renewable energies (hydroelectric, solar photovoltaic and thermal, wind, wood, methanization, and other processes like waste valorisation, geothermal, and heat networks). Another appendix reports the precise assessment of greenhouse gas emissions on the territory. The next appendix proposes detailed descriptions of scenarios for the implementation of the issue of greenhouse gas emissions within the territorial planning document. The last appendix contains Power Point presentations of the study

  16. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Gonzalez Jimenez, A.

    2002-01-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO 2 emissions. (Author)

  17. Climate change, energy, sustainability and pavements

    CERN Document Server

    Gopalakrishnan, Kasthurirangan; Harvey, John

    2014-01-01

    Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently.  To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world.  As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design,

  18. (Un)certainty in climate change impacts on global energy consumption

    Science.gov (United States)

    van Ruijven, B. J.; De Cian, E.; Sue Wing, I.

    2017-12-01

    Climate change is expected to have an influence on the energy sector, especially on energy demand. For many locations, this change in energy demand is a balance between increase of demand for space cooling and a decrease of space heating demand. We perform a large-scale uncertainty analysis to characterize climate change risk on energy consumption as driven by climate and socioeconomic uncertainty. We combine a dynamic econometric model1 with multiple realizations of temperature projections from all 21 CMIP5 models (from the NASA Earth Exchange Global Daily Downscaled Projections2) under moderate (RCP4.5) and vigorous (RCP8.5) warming. Global spatial population projections for five SSPs are combined with GDP projections to construct scenarios for future energy demand driven by socioeconomic change. Between the climate models, we find a median global increase in climate-related energy demand of around 24% by 2050 under RCP8.5 with an interquartile range of 18-38%. Most climate models agree on increases in energy demand of more than 25% or 50% in tropical regions, the Southern USA and Southern China (see Figure). With respect to socioeconomic scenarios, we find wide variations between the SSPs for the number of people in low-income countries who are exposed to increases in energy demand. Figure attached: Number of models that agree on total climate-related energy consumption to increase or decrease by more than 0, 10, 25 or 50% by 2050 under RCP8.5 and SSP5 as result of the CMIP5 ensemble of temperature projections. References1. De Cian, E. & Sue Wing, I. Global Energy Demand in a Warming Climate. (FEEM, 2016). 2. Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16, 3309-3314 (2012).

  19. The new European Energy Union - Toward a consistent EU energy and climate policy? A report for the French Commissariat General a la Strategie et a la Prospective

    International Nuclear Information System (INIS)

    Roques, Fabien

    2014-01-01

    In his opening statement in the European Parliament in July 2014, the new European Commission President Jean-Claude Juncker highlighted 10 key priorities for his mandate. One of these consists in 'reform(ing) and reorganis(ing) Europe's energy policy into a new European Energy Union'. Does this imply that this Energy Union will mark the beginning of a new approach toward European energy policy, or is it merely a re-framing of the debate? We argue in this paper that the new Energy Union will need a radically new approach to European energy and climate policy. A sound European energy and climate policy should be based on a set of well-defined objectives, and rely on well-articulated instruments to deliver in the most efficient way on these objectives. The current European energy and climate policy framework has major flaws on both fronts. The paper does not aim to provide a comprehensive list of the issues at stake with European energy and climate policy, which would be a daunting task, and builds on previous work conducted for the for the Commissariat General a la Strategie et a la Prospective (CGSP) in 2013.5 Instead, we focus on some key areas with the objective to make a series of concrete proposals for reform. This paper takes a practitioners' perspective, recognizing that a 'first best' economic approach is often not practical, and therefore putting forward policy recommendations which recognize the policy and institutional constraints that characterize European policy making. We start by discussing issues with the European Commission (EC) energy and climate policy objectives, and then suggest some potential reforms to the regulatory framework to deliver on these objectives. We successively cover in session 2 and 3 the policy levers for decarbonization and for security of supply, before discussing the necessary changes to the power market framework. We conclude by discussing how the financing and governance challenges associated

  20. Policy making and energy infrastructure change: A Nigerian case study of energy governance in the electricity sector

    International Nuclear Information System (INIS)

    Edomah, Norbert; Foulds, Chris; Jones, Aled

    2017-01-01

    This paper focusses on investigating the underlying mechanisms and influences of the policy decision making process and how it affects and impacts the governance of the Nigerian energy industry, and energy infrastructure provisions. In-depth semi-structured interviews were used; all interviewees had been involved, directly or indirectly, in energy infrastructure policy decisions in Nigeria. Five key themes subsequently emerged as salient intra-country induced influences that were affecting the governance and performance of the Nigerian energy sector: (1) competencies – i.e. practical knowledge of energy policy making; (2) expectations – i.e. past, present, and forecasted future expectations from the energy industry; (3) legislation – i.e. institutionalized (and unwritten) rules/procedures; (4) future visions – i.e. future vision of the energy industry/energy market; (5) recruiting experts – i.e. recruiting new energy and public policy makers. In addition, three major inter-country induced influences were also identified: (1) the changing dynamics of international and foreign aid; (2) the United Nations Sustainable Development Goals; and (3) the Paris Agreements on Climate Change. The paper concludes by highlighting the policy implications of these influences, and the consequences for policy makers in the governance of the energy industry in ensuring a secured energy future. - Highlights: • Unclear energy policies pose a business risk to current and future investors. • Our energy future is threatened by unsystematic recruitment into the policy space. • Some energy governance challenges reflect incompetence in energy legislation. • Nigerian energy transition was shaped by historical policy dynamics and structures.

  1. Bringing solutions to big challenges. Energy - climate - technology (ECT)

    International Nuclear Information System (INIS)

    2008-01-01

    The conference contains 45 presentations within the sections integrated policy and strategic perspectives on energy, climate change and technology, energy efficiency with prospects and measures, climate change and challenges for offshore energy and technology, possibilities for technology utilization, nuclear technology developments including some papers on thorium utilization, ethics of energy resource use and climate change, challenges and possibilities for the Western Norway and sustainability and security in an ECT-context. Some economic aspects are discussed as well. 16 of the 45 papers have been indexed for the database (tk)

  2. Many-objective robust decision making for water allocation under climate change

    NARCIS (Netherlands)

    Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E.

    2017-01-01

    Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large

  3. Think globally, act locally? Local climate change and energy policies in Sweden and the UK

    International Nuclear Information System (INIS)

    Collier, U.; Loefstedt, R.E.

    1997-01-01

    While climate change is obviously a global environmental problem, there is nevertheless potential for policy initiatives at the local level. Although the competences of local authorities vary between countries, they all have some responsibilities in the crucial areas of energy and transport policy. This paper examines local competences in Sweden and the UK and looks at the responses to the climate change issue by six local authorities, focussing on energy related developments. The points of departure are very different in the two countries. Swedish local authorities are much more independent than UK ones, especially through the ownership of local energy companies. Yet, UK local authorities are relatively active in the climate change domain, at least in terms of drawing up response strategies, which they see as an opportunity for reasserting their role, after a long period of erosion of their powers. Furthermore, there is more scope for action in the UK, as in Sweden many potential measures, especially in the energy efficiency field, have already been taken. However, in both countries climate change is only a relatively marginal area of local environmental policy making and the political will, as well as the financial resources, for more radical measures are often absent. (Author)

  4. Co-producing resilient solutions to climate change: Bridging the gap between science and decision-making around nexus issues

    Science.gov (United States)

    Howarth, C.

    2016-12-01

    The nexus represents a multi-dimensional means of scientific enquiry encapsulating the complex and non-linear interactions between water, energy, food, environment with the climate, and wider implications for society. These resources are fundamental for human life but are negatively affected by climate change. Methods of analysis, which are currently used, were not built to represent complex systems and are insufficiently equipped to understand positive and negative externalities generated by interactions among different stakeholders involved in the nexus. In addition misalignment between the science that scientists produce and the evidence decision-makers need leads to a range of complexities within the science-policy interface. Adopting a bottom-up, participative approach, the results of five themed workshops organized in the UK (focusing on: shocks and hazards, infrastructure, local economy, governance and governments, finance and insurance) featuring 80 stakeholders from academia, government and industry allow us to map perceptions of opportunities and challenges of better informing decision making on climate change when there is a strong disconnect between the evidence scientists provide and the actions decision makers take. The research identified key areas where gaps could be bridged between science and action and explores how a knowledge co-production approach can help identify opportunities for building a more effective and legitimate policy agenda to face climate risks. Concerns, barriers and opportunities to better inform decision making centred on four themes: communication and collaboration, decision making processes, social and cultural dimensions, and the nature of responses to nexus shocks. In so doing, this analysis provides an assessment of good practice on climate decision-making and highlights opportunities for improvement to bridge gaps in the science-policy interface

  5. No energy security without climate security

    International Nuclear Information System (INIS)

    Hiller, M.

    2006-06-01

    WWF urges the G8 nations to embark on a serious global 'Climate and Energy Security Plan' akin in dimension to the Marshall plan after the Second World War. The plan would aim at dramatically augmenting energy efficiency measures and renewable energy sources within the next five years

  6. Exploring elementary students’ understanding of energy and climate change

    Directory of Open Access Journals (Sweden)

    Colin BOYLAN

    2008-10-01

    Full Text Available As environmental changes become a significant societal issue, elementary science curriculaneed to develop students’ understanding about the key concepts of energy and climate change.For teachers, developing quality learning experiences involves establishing what theirstudents’ prior understanding about energy and climate change are. A survey was developed toexplore what elementary students know and understand about renewable and non-renewablesources of energy and their relationship to climate change issues. The findings from thissurvey are reported in this paper.

  7. Three empirical essays on consumer behavior related to climate change and energy

    Science.gov (United States)

    Jacobsen, Grant Douglas

    This dissertation consists of three essays. All of the chapters address a topic in the area of household and consumer behavior related to climate change or energy. The first chapter is titled "The Al Gore Effect: An Inconvenient Truth and Voluntary Carbon Offsets". This chapter examines the relationship between climate change awareness and household behavior by testing whether Al Gore's documentary An Inconvenient Truth caused an increase in the purchase of voluntary carbon offsets. The analysis shows that in the two months following the film's release, zip codes within a 10-mile radius of a zip code where the film was shown experienced a 50 percent relative increase in the purchase of voluntary carbon offsets. The second chapter is titled "Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida". The analysis shows that Florida's energy-code change that took effect in 2002 is associated with a 4-percent decrease in electricity consumption and a 6-percent decrease in natural-gas consumption in Gainesville, FL. The estimated private payback period for the average residence is 6.4 years and the social payback period ranges between 3.5 and 5.3 years. The third chapter in this dissertation is titled "Do Environmental Offsets Increase Demand for Dirty Goods? Evidence from Residential Electricity Demand". This study evaluates the relationship between green products and existing patterns of consumer behavior by examining the relationship between household enrollment in a green electricity program and consumption of residential electricity. The results suggest there are two different types of green consumers. One type makes a small monthly donation and partially views the donation as a substitute for a previously existing pattern of green behavior, in this case, energy conservation. The other type makes a larger monthly donation and views the donation as a way to make strictly additional improvements in environmental quality.

  8. Urban climate and energy demand interaction in Northern Eurasia

    Science.gov (United States)

    Kasilova, E. V.; Ginzburg, A. S.; Demchenko, P. F.

    2017-11-01

    The regional and urban climate change in Northern Eurasia is one of the main challenges for sustainable development of human habitats situated in boreal and temperate areas. The half of primary energy is spent for space heating even under quite a mild European climate. Implementation of the district heating in urban areas is currently seen as one of the key conditions of sustainable development. The clear understanding of main problems of the urban climateenergy demand interaction is crucial for both small towns and megacities. The specific features of the urban energy systems in Finland, Russia and China under the changing climate conditions were studied. Regional manifestations of the climate change were examined. The climate projections were established for urban regions of the Northern Eurasia. It was shown that the climate warming is likely to continue intensively there. History and actual development trends were discussed for the urban district heating systems in Russia, China and Finland. Common challenges linked with the climate change have been identified for the considered areas. Adaptation possibilities were discussed taking into account climate-energy interactions.

  9. Warming impact on energy use of HVAC system in buildings of different thermal qualities and in different climates

    International Nuclear Information System (INIS)

    Kharseh, Mohamad; Altorkmany, Lobna; Al-Khawaj, Mohammed; Hassani, Ferri

    2014-01-01

    Highlights: • Improving TQBE reduces heating load, while it might increase cooling load. • Warming impact on energy use of HVAC varies from one climate to another. • Warming impact on energy use of HVAC depends on building’s thermal quality. • In mild climate, warming does not have a significant impact on energy use of HVAC. - Abstract: In order to combat climate change, energy use in the building must be further reduced. Heating ventilation and air conditioning (HVAC) systems in residential buildings account for considerable fraction of global energy consumption. The potential contribution the domestic sector can make in reducing energy consumption is recognized worldwide. The driving energy of HVACs depends on the thermal quality of the building envelope (TQBE) and outside temperature. Definitely, building regulations are changing with the time toward reduce the thermal loads of buildings. However, most of the existing residential buildings were built to lower TQBE. For instant, 72% of residential dwellings in the 15-EU were built before 1972. To investigate the impact of warming on driving energy of HVACs of a residential building a computer model was developed. Three climate categories/cities were considered, i.e. Stockholm (cold), Istanbul (mild), and Doha (hot). In each city, two buildings were modeled: one was assumed to be built according to the current local buildings regulations (standard TQBE), while the anther was built to lower TQBE. The simulations were run for present and future (in 2050) outdoor designing conditions. The calculations show that the impact of the warming on annual driving energy of HVACs (reduction or increase) depends very much on the climate category and on the TQBE. Based on the climate and TQBE, the change in annual HVACs energy varies from −7.4% (in cold climate) to 12.7% (in hot climate). In mild climate, it was shown that the warming does not have significant impact on annual HVACs energy. Improving the TQBE can

  10. Energy upgrading measures improve also indoor climate

    DEFF Research Database (Denmark)

    Foldbjerg, Peter; Knudsen, Henrik Nellemose

    2014-01-01

    A new survey shows that the economy is what motivates Danish owners of single-family houses the most to start energy upgrading, and that improved indoor climate is also an important factor. After the upgrading, homeowners experience both improved economy and indoor climate. In a strategy...... to increase the number of homeowners who venture into a major energy upgrading of their house, the demonstrated positive side effects, more than energy savings, should be included in the communication to motivate homeowners. The barriers should be reduced by “taking the homeowners by the hand” and helping...... them to choose relevant energy-saving solutions as well as clarifying the financial consequences and opportunities....

  11. Climate change policy is an energy problem

    International Nuclear Information System (INIS)

    Green, C.; Lightfoot, H.D.

    1999-01-01

    In an important respect the climate change (global warming) problem is an energy problem. Any policy aimed at substantially reducing greenhouse gas (GHG) emissions will require large amounts of carbon free energy as substitutes for fossil fuels. No conceivable rates of improvement in energy efficiency and/or changes in lifestyles will obviate the need for vast amounts of carbon free energy if GHG emissions are to be reduced and the atmospheric concentration of carbon eventually stabilized. Where will such large amounts of carbon free energy come from? The renewable energies (solar, wind, biomass) are dilute and enormously land-using. Their potential contribution is seemingly limited in a world in which competing demands for land for food production, living space, leisure activities, ecological preserve, and natural resource production are increasing. Nuclear energy is controversial (fission) or problematic (fusion). Fuel cells require hydrogen which must be produced using some other form of energy. Tapping the earth's mantle with its vast amount of geothermal energy may be a future possibility. The present limitations of existing alternatives to fossil fuels suggest climate change policy should focus to a greater extent on what 'can' be done, rather than the present emphasis on what 'should' be done. Once refocused, the aim of climate policy should be to spur a decades long search for and development of new carbon free energy sources and technologies capable of displacing fossil fuels and of eventually meeting the world's baseload energy requirements. (author)

  12. Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency

    Science.gov (United States)

    Petrone, C.

    2017-12-01

    Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.

  13. Making sense of climate risk information: The case of future indoor climate risks in Swedish churches

    Directory of Open Access Journals (Sweden)

    Gustaf Leijonhufvud

    2016-01-01

    Full Text Available Organizations and institutions managing built heritage have to make use of increasingly detailed, elaborate and complex climate change impact assessments. It is a challenge to determine how, when and by whom climate predictions should be translated into risk estimates usable for decision-making. In this paper results from the Climate for Culture project are used to study how heritage decision-makers interpret future indoor climate-related risks to Swedish churches. Different sets of risk maps were presented to ten engineers, ten building conservators and five experts on indoor climate related risks. Interviews were used to understand how the interviewees made sense of the presented information and if they associated it with a perceived need for adaptation. The results show that the risks were interpreted and assessed largely dependent on their pre-understanding and familiarity with the individual risks. The magnitude of change and the lack of uncertainty estimates were subordinate to the overall impression of the information as being credible and salient. The major conclusion is that the dissemination of risk information, also from projects which at the outset have aimed at producing knowledge relevant for end-users, should be both customized and tested in collaborative efforts by stakeholders and scientists.

  14. Combating climate change: How nuclear science and technology are making a difference

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2015-01-01

    Climate change is the biggest environmental challenge of our time. As governments around the world prepare to negotiate a legally binding, universal agreement on climate at the United Nations Climate Change Conference in Paris at the end of the year, it is important that the contributions that nuclear science and technology can make to combating climate change are recognized. Nuclear science, including nuclear power, can play a significant role in both climate change mitigation and adaptation.

  15. Optimization of Domestic-Size Renewable Energy System Designs Suitable for Cold Climate Regions

    Science.gov (United States)

    Akpan, Itoro Etim; Sasaki, Masafumi; Endoh, Noboru

    Five different kinds of domestic-size renewable energy system configurations for very cold climate regions were investigated. From detailed numerical modeling and system simulations, it was found that the consumption of fuel oil for the auxiliary boiler in residential-type households can almost be eliminated with a renewable energy system that incorporates photovoltaic panel arrays for electricity generation and two storage tanks: a well-insulated electric water storage tank that services the hot water loads, and a compact boiler/geothermal heat pump tank for room heating during very cold seasons. A reduction of Greenhouse Gas Emissions (GHG) of about 28% was achieved for this system compared to an equivalent conventional system. The near elimination of the use of fuel oil in this system makes it very promising for very cold climate regions in terms of energy savings because the running cost is not so dependent on the unstable nature of global oil prices.

  16. Teaching About The Nexus of Energy, Water and Climate Through Traditional Games

    Science.gov (United States)

    Hall, M. K.; Mayhew, M. A.; Kaminsky, A.

    2011-12-01

    Getting to a sustainable energy economy, while conserving water resources and mitigating climate change, will involve myriad choices. Thus, it is important that the American public have an improved science-based understanding to form a strong basis for decision-making and to understand the trade-offs. To address this need, we are developing compelling, resource management style games that convey the intimate inter-relationships among energy demand, water consumption, and climate change and the importance of these inter-relationships to society. We have developed a card game with the help of professional game developer and an advisory group consisting of high school students and scientists involved with different aspects of energy-climate-water research as well as experts from the energy utilities and regulatory sectors. We have developed the card game based on real world data on energy production and consumption, regional climate information, and knowledge of emerging technologies that would mitigate the demand for energy, consumption of water with energy production, or climate change. The game is being played within the setting of our Cafe Scientifique program, now in its fifth year of serving high school age teens. One of the important aspects of the game is to find the right balance of energy output for various sources, water use by these sources, and amount of "pollution" generated (CO2 impacting climate, but also other kinds, such a radioactive waste and ground water contamination). Each player acts as "governor" of a specific region of the country, and no region has an a priori advantage. At the same time, it is important that the energy-water-pollution values we use correspond as closely as possible to real-world values. Data gathered from a combination of focus groups, surveys, and observations strongly suggest that this game, grounded in real life problems, stimulates authentic, meaningful learning. There is also some evidence that if games, such as this

  17. Complementarity among climate related energy sources: Sensitivity study to climate characteristics across Europe

    Science.gov (United States)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Raynaud, Damien; Borga, Marco; Vautard, Robert

    2015-04-01

    Climate related energy sources like solar-power, wind-power and hydro-power are important contributors to the transitions to a low-carbon economy. Past studies, mainly based on solar and wind powers, showed that the power from such energy sources fluctuates in time and space following their driving climatic variables. However, when combining different energy sources together, their intermittent feature is smoothed, resulting to lower time variability of the produced power and to lower storage capacity required for balancing. In this study, we consider solar, wind and hydro energy sources in a 100% renewable Europe using a set of 12 regions following two climate transects, the first one going from the Northern regions (Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from the oceanic climate (West of France, Galicia) to the continental one (Romania, Belorussia). For each of those regions, we combine wind and solar irradiance data from the Weather Research and Forecasting Model (Vautard et al., 2014), temperature data from the European Climate Assessment & Dataset (Haylock et al., 2008) and runoff from the Global Runoff Data Center (GRDC, 1999) for estimating solar-power, wind-power, run-of-the-river hydro-power and the electricity demand over a time period of 30 years. The use of this set of 12 regions across Europe allows integrating knowledge about time and space variability for each different energy sources. We then assess the optimal share of each energy sources, aiming to decrease the time variability of the regional energy balance at different time scales as well as the energy storage required for balancing within each region. We also evaluate how energy transport among regions contributes for smoothing out both the energy balance and the storage requirement. The strengths of this study are i) to handle with run-of-the-river hydro power in addition to wind and solar energy sources and ii) to carry out this analysis

  18. Climate Change: Making the Best Use of Scientific Information

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Climate science regularly makes headlines in the media, usually after an extreme weather event or a disaster, or in the wake of campaigns by think tanks about the science of climate change. In this presentation, I discuss four specific challenges that are posed to climate scientist when communicating with the public: (i) The widening gap between the scientific literacy of the public and the communication literacy of the scientists; (ii), the multiplicity of scientific information conduits; (iii), information of, and under, uncertainty; and (iv), the requirement to be precise without using technical language. It turns out that these challenges are quite generic to science communication. Climate scientists have learned from the regular international assessments they perform under the auspices of the Intergovernmental Panel on Climate Change and have accumulated a collective experience of more than 20 years. In this presentation I discuss the most important lessons learned from this experience and their relevant...

  19. Grenelle de l'Environnement: the climate-energy assessment

    International Nuclear Information System (INIS)

    2010-01-01

    After having recalled the main principles of the French 'Grenelle de l'Environnement' environmental policy (integration of cost for climate and biodiversity in large project choices) and discussed the articulation with international and European challenges (international negotiations, EU ETS, adjustment taxes), this report presents and discusses the different commitments, objectives, demands and adopted measures in different sectors: buildings, transports, energy management, development of renewable energies, climate-energy contribution, agriculture, regions and urban planning

  20. Climate and Offshore Energy Resources.

    Science.gov (United States)

    1980-12-30

    SECuRITY CL.ASSIPIcaTIoN OF, TIns PA@elm VaeVa CLMATE ANID OFFSHORE ENERGY RESOUACES A distinguished group of government officials, scientists, engineers...about the mech- anisms of climatic systems, and gaining a better understanding of the impact of climatic change on human resources.* He continued by...atmospheric constit- uents, but he particularly emphasized " changes " in C02. He suggested that the atmospheric conditions may be better now than they were half

  1. Global energy efficiency governance in the context of climate politics

    International Nuclear Information System (INIS)

    Gupta, J.; Ivanova, A.

    2009-01-01

    This paper argues that energy efficiency and conservation is a noncontroversial, critical, and equitable option for rich and poor alike. Although there is growing scientific and political consensus on its significance as an important option at global and national level, the political momentum for taking action is not commensurate with the potential in the sector or the urgency with which measures need to be taken to deal with climate change. The current global energy (efficiency) governance framework is diffuse. This paper submits that there are four substantive reasons why global governance should play a complementary role in promoting energy efficiency worldwide. Furthermore, given that market mechanisms are unable to rapidly mobilize energy efficiency projects and that there are no clear vested interests in this field which involves a large number of actors, there is need for a dedicated agency to promote energy efficiency and conservation. This paper provides an overview of energy efficiency options presented by IPCC, the current energy efficiency governance structure at global level, and efforts taken at supranational and national levels, and makes suggestions for a governance framework.

  2. North American energy relationships : clean energy and climate action : a North American collaboration : draft paper for discussion

    International Nuclear Information System (INIS)

    Russell, D.

    2009-12-01

    This paper discussed energy and climate policies and programs aimed at reducing greenhouse gas (GHG) emissions in North America. The aim of the study was to determine how energy production and use will impact policy responses to climate change and the development of clean energy technologies. Energy sectors in Canada, the United States and Mexico were outlined, and the relationships between the different countries and their energy systems were discussed. Energy policy drivers and infrastructure in each of the 3 countries were also discussed. The influence of energy security on energy trading, clean energy technology, and climate change policy was also investigated in order to identify barriers to future cooperation between the countries. Emerging areas of cooperation were outlined. Potential climate policy scenarios were reviewed, and the implications of a more highly integrated North American energy and climate policy were discussed. The study indicated that increased linkages between the Canadian and United States systems are likely in the future. 62 refs., 11 tabs., 7 figs.

  3. Abstract Collection of 25th Forum: Energy Day in Croatia: A Unique Energy and Climate Policy in Open Energy Market - A Year After COP 21

    International Nuclear Information System (INIS)

    2016-01-01

    Implement an Energy Policy in Light of new EU Guidelines for the year 2030; 2015, EU Energy Policy After 21st Conference of the Parties to the UN Framework Convention on Climate Change (COP21); and this years' Forum subject is: 2016, A Unique Energy and Climate Policy in Open Energy Market - A year After COP21. From the subjects, above, the complexity of energy development is visible and it will further increase in the future. Energy future preoccupies the entire energy and international community. To face different problems, such as: climate change and increasing of energy demand, terrorist and war threats, technological development that doesn't always provide all the answers, poverty and needs of underdeveloped countries, it is necessary to have a stronger international coordination in searching for long-term solutions that can make energy development less uncertain and to reduce the risks that are involved. Technological development is one of the possible answers to energy problems, but is not the only answer. Increasing energy efficiency is a social challenge that surpasses the technology problem. Accepting locations for building new energy plants is also a social challenge. Energy industry is a synergy of different factors: climate preservation, energy market, infrastructure that enables good connection, resource diversification, bigger use of renewable energy sources, energy efficiency. The only energy systems that are secure are the ones with a proper balance. A unique energy and climate policy is the solution to the problems facing energy industry and a proper direction for energy development. Croatia has made its first significant step. Energy and climate preservation are a part of one ministry, which helps creating a unique energy and climate policy. That is a necessary step, but it is not enough for accomplishing a successful energy policy. For a successful energy policy, a synergy of legislation and measures adopted is essential.(author)

  4. Abstract Collection of 24th Forum: Energy Day in Croatia: EU Energy Policy after 21st Conference of the Parties to the UN Framework Convention on Climate Changes

    International Nuclear Information System (INIS)

    2015-01-01

    not the same, the level of technical development is not the same, the level of standard and energy consumption is not the same, the level of energy production is not the same and the economic power of every country is not the same. These disparities make the fundamental problem of the potential agreement, especially of the one that would be binding and especially if it would be agreed that there would be sanctions for not holding up to the agreement. Negotiations on climate changes indirectly open the broader question on international economic relations, redistribution of added value and relations between developed and undeveloped, wealthy and poor societies. The question for all of us and the entire international community remains, in which extent will there be readiness to make the first step towards society that is more just. Refugee crisis shows us that the readiness for such extent is still very modest. The Forum will deal with the questions of climate policy implementation, which are becoming fundamental in the EU, where the obligations in the period until 2050 is defined. Evidently severe consequences of the inconsistent and inefficient policy regarding the renewable energy sources need to be defined with new mechanisms, less political influence and the return to market-based relations in energy sector. Thank you all for the preparation of your papers and presentations for this Forum. I hope that they will contribute to understanding of the problem and in the search of new relations in the realization of climate policy. (author)

  5. Energy and Climate. Bridging the Geopolitical Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Slingerland, S.; Van den Heuvel, S.

    2009-07-01

    Climate change is a 'hot' subject as an international political topic, and finding more superlatives about climate change after last year' presentation of Al Gore's Inconvenient Truths is difficult. At the 2009 UN Climate Change Conference in Copenhagen a successor has to be found to the present Kyoto Protocol. It is now generally recognized that man-made greenhouse gas emissions have a detrimental effect on the global climate, and emissions seem to increase even more rapidly than when the most pessimistic climate change scenarios are taken into account.1 Fossil energy use is mainly responsible for these emissions. However, despite increasing worldwide recognition that climate change is indeed a serious global problem and mounting rhetoric from political leaders, there is still little evidence that the fundamental changes needed to prevent the potential dangers of climate change are being addressed. This chapter argues that there are at least three geopolitical gaps that need to be closed in order to reach an effective agreement in Copenhagen in 2009. The gaps are closely related to the global political and economic structure of energy supply and demand. They concern a divide, firstly between the United States and Europe, secondly between industrialised and developing countries, and thirdly between fossil fuel exporting and importing countries.

  6. Energy and Climate. Bridging the Geopolitical Gaps

    International Nuclear Information System (INIS)

    Slingerland, S.; Van den Heuvel, S.

    2009-01-01

    Climate change is a 'hot' subject as an international political topic, and finding more superlatives about climate change after last year' presentation of Al Gore's Inconvenient Truths is difficult. At the 2009 UN Climate Change Conference in Copenhagen a successor has to be found to the present Kyoto Protocol. It is now generally recognized that man-made greenhouse gas emissions have a detrimental effect on the global climate, and emissions seem to increase even more rapidly than when the most pessimistic climate change scenarios are taken into account.1 Fossil energy use is mainly responsible for these emissions. However, despite increasing worldwide recognition that climate change is indeed a serious global problem and mounting rhetoric from political leaders, there is still little evidence that the fundamental changes needed to prevent the potential dangers of climate change are being addressed. This chapter argues that there are at least three geopolitical gaps that need to be closed in order to reach an effective agreement in Copenhagen in 2009. The gaps are closely related to the global political and economic structure of energy supply and demand. They concern a divide, firstly between the United States and Europe, secondly between industrialised and developing countries, and thirdly between fossil fuel exporting and importing countries.

  7. Climate and energy use in glazed spaces

    Energy Technology Data Exchange (ETDEWEB)

    Wall, M.

    1996-11-01

    One objective of the thesis has been to elucidate the relationship between building design and the climate, thermal comfort and energy requirements in different types of glazed spaces. Another object has been to study the effect of the glazed spaces on energy requirements in adjacent buildings. It has also been the object to develop a simple calculation method for the assessment of temperatures and energy requirements in glazed spaces. The research work has mainly comprised case studies of existing buildings with glazed spaces and energy balance calculations using both the developed steady-state method and a dynamic building energy simulation program. Parameters such as the geometry of the building, type of glazing, orientation, thermal inertia, airtightness, ventilation system and sunshades have been studied. These parameters are of different importance for each specific type of glazed space. In addition, the significance of each of these parameters varies for different types of glazed spaces. The developed calculation method estimates the minimum and mean temperature in glazed spaces and the energy requirements for heating and cooling. The effect of the glazed space on the energy requirement of the surrounding buildings can also be estimated. It is intended that the method should be applied during the preliminary design stage so that the effect which the design of the building will have on climate and energy requirement may be determined. The method may provide an insight into how glazed spaces behave with regard to climate and energy. 99 refs

  8. Games That Teach Concepts Around the Nexus of Energy, Water, and Climate

    Science.gov (United States)

    Mayhew, M. A.; Hall, M.; Balaban, S.

    2013-12-01

    the game. The second game, Challenge and Persuade, is as simple as Thirst for Power is complex. It involves two card decks, the first containing a set of adjectives, the second having cards containing a series of facts, each in some way related to the inter-dependency of energy, water, and climate. Players take turns being the 'Judge,' who calls out the adjective on a drawn card. Other players must make up an argument based on information in three drawn 'fact' cards and using the adjective. The player with the best argument as determined by the Judge wins the round. The first player to win three rounds wins the game. This game can become quite riotous. Teenage players have called the nexus games 'informative, intellectual, and fun.' The games can be played in a variety of settings, from play at home on family game night to use in the classroom as an adjunct to an Earth and Environmental Science, Geography, or Government course. The games are being commercially distributed. For further information about them go to http://www.isenm.org/games.

  9. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States.

    Science.gov (United States)

    Pryor, S C; Barthelmie, R J

    2011-05-17

    The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.

  10. Energy, world should not chose nuclear energy to fight against climatic change. Nuclear and climatic change

    International Nuclear Information System (INIS)

    Besson, S.

    2007-06-01

    This document proposes an abstract of the conclusions of an expert group, the Oxford Research Group, which criticizes the today boost in favor of the electricity from nuclear energy. They explain that the nuclear energy should not be a solution for the fight against the climatic change. (A.L.B.)

  11. Climate impacts on extreme energy consumption of different types of buildings.

    Science.gov (United States)

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  12. World Energy Outlook Special Report 2013: Redrawing the Energy Climate Map

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Governments have decided collectively that the world needs to limit the average global temperature increase to no more than 2°C and international negotiations are engaged to that end. Yet any resulting agreement will not emerge before 2015 and new legal obligations will not begin before 2020. Meanwhile, despite many countries taking new actions, the world is drifting further and further from the track it needs to follow. The energy sector is the single largest source of climate-changing greenhouse-gas emissions and limiting these is an essential focus of action. The World Energy Outlook has published detailed analysis of the energy contribution to climate change for many years. But, amid major international economic preoccupations, there are worrying signs that the issue of climate change has slipped down the policy agenda. This Special Report seeks to bring it right back on top by showing that the dilemma can be tackled at no net economic cost.

  13. European Union Climate Change Policy: in the nexus of internal policy-making and itnernational negotiations

    OpenAIRE

    Cao, Hui

    2012-01-01

    The aim of the dissertation is to examine the European Union s climate policy in the nexus of domestic policy-making and international negotiations. I firstly test the EU s internal climate policy-making by applying the rational choice institutionalism on the model of institution and preference affect EU s policy outcomes and conclude that: as the EU has a convergent preference, the EU s unique decision-making procedure, the entrepreneurship and EU s membership had been driving EU s climate...

  14. Three essays on decision-making in energy policy

    Science.gov (United States)

    Wendling, Zachary Ann

    This dissertation examines three issues surrounding decision-making in energy policy. Over the past decade, technological advances in horizontal drilling and hydraulic fracturing have allowed the economical extraction of natural gas and petroleum from shale basins. Thus far, natural gas has been produced from shale at a commercial scale only in certain American States and Canadian Provinces, though potential shale plays exist elsewhere in North America and the world. Whether, how, and to what extent SGD diffuses to new shale basins and jurisdictions will depend on several questions about energy policy. The first chapter examines the potential for SGD in the European Union. Among EU institutions, the European Parliament has been the strongest proponent for regulation of SGD, preferring a balance between environmental protection and opportunities for economic development, energy security, and climate mitigation. Analysis of roll call voting on SGD in the Seventh European Parliament shows that ideological preferences are the primary explanation of voting behavior, followed by national interests in decarbonization. Prospects for further regulatory action are discussed. ? The second chapter takes a closer look at the potential of shale gas to facilitate decarbonization in the electricity sector. Proponents of SGD have claimed that high carbon fossil fuels can be immediately phased out and replaced in the short term by power plants that burn cheap, abundant natural gas, which emits half the greenhouse gasses over a well-to-wire life cycle. A value of information analysis examines the conditions under which this may be so and quantifies how valuable it would be to have perfect information about uncertain parameters in a cost function characterizing the global electricity sector. The third chapter is describes a new tool of policy analysis, the Indiana Scalable Energy-Economy Model (IN-SEEM). State and local governments have played an increasing role in energy and climate

  15. Nuclear energy - the future climate

    International Nuclear Information System (INIS)

    Ash, Eric Sir

    2000-01-01

    In June 1999, a report entitled Nuclear Energy-The Future Climate was published and was the result of a collaboration between the Royal Society and the Royal Academy of Engineering. The report was the work of a group of nine people, made up of scientists, engineers and an economist, whose purpose was to attempt a new and objective look at the total energy scene and specifically the future role of nuclear energy. This paper discusses the findings of that report. (author)

  16. Sensitivity of wave energy to climate change

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Wave energy will have a key role in meeting renewable energy targets en route to a low carbon economy. However, in common with other renewables, it may be sensitive to changes in climate resulting from rising carbon emissions. Changes in wind patterns are widely anticipated and this will ultimately alter wave regimes. Indeed, evidence indicates that wave heights have been changing over the last 40 years, although there is no proven link to global warming. Changes in the wave climate will impa...

  17. Is climate change-centrism an optimal policy making strategy to set national electricity mixes?

    International Nuclear Information System (INIS)

    Vázquez-Rowe, Ian; Reyna, Janet L.; García-Torres, Samy; Kahhat, Ramzy

    2015-01-01

    Highlights: • The impact of climate-centric policies on other environmental impacts is uncertain. • Analysis of changing electricity grids of Peru and Spain in the period 1989–2013. • Life Cycle Assessment was the selected sustainability method to conduct the study. • Policies targeting GHG reductions also reduce air pollution and toxicity. • Resource usage, especially water, does not show the same trends as GHG emissions. - Abstract: In order to combat the threat of climate change, countries have begun to implement policies which restrict GHG emissions in the electricity sector. However, the development of national electricity mixes should also be sensitive to resource availability, geo-political forces, human health impacts, and social equity concerns. Policy focused on GHG goals could potentially lead to adverse consequences in other areas. To explore the impact of “climate-centric” policy making on long-term electricity mix changes, we develop two cases for Peru and Spain analyzing their changing electricity grids in the period 1989–2013. We perform a Life Cycle Assessment of annual electricity production to catalogue the improvements in GHG emissions relative to other environmental impacts. We conclude that policies targeting GHG reductions might have the co-benefit of also reducing air pollution and toxicity at the expense of other important environmental performance indicators such as water depletion. Moreover, as of 2013, both countries generate approximately equal GHG emissions per kWh, and relatively low emission rates of other pollutants compared to nations of similar development levels. Although climate-centric policy can lead to some positive environmental outcomes in certain areas, energy policy-making should be holistic and include other aspects of sustainability and vulnerability.

  18. Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Edenhofer, O. (Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)); Pichs Madruga, R. (Centro de Investigaciones de la Economia Mundial (CIEM), Hanoi (Viet Nam)); Sokona, Y. (African Climate Policy Centre, United Nations Economic Commission for Africa, Addis Ababa (Ethiopia)) (and others)

    2012-07-01

    Climate change is one of the great challenges of the 21st century. Its most severe impacts may still be avoided if efforts are made to transform current energy systems. Renewable energy sources have a large potential to displace emissions of greenhouse gases from the combustion of fossil fuels and thereby to mitigate climate change. If implemented properly, renewable energy sources can contribute to social and economic development, to energy access, to a secure and sustainable energy supply, and to a reduction of negative impacts of energy provision on the environment and human health. This Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) impartially assesses the scientific literature on the potential role of renewable energy in the mitigation of climate change for policymakers, the private sector, academic researchers and civil society. It covers six renewable energy sources - bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. The authors also compare the levelized cost of energy from renewable energy sources to recent non-renewable energy costs. (Author)

  19. The 21st century population-energy-climate nexus

    International Nuclear Information System (INIS)

    Jones, Glenn A.; Warner, Kevin J.

    2016-01-01

    World population is projected to reach 10.9 billion by 2100, yet nearly one-fifth of the world's current 7.2 billion live without access to electricity. Though universal energy access is desirable, a significant reduction in fossil fuel usage is required before mid-century if global warming is to be limited to <2 °C. Here we quantify the changes in the global energy mix necessary to address population and climate change under two energy-use scenarios, finding that renewable energy production (9% in 2014) must comprise 87–94% of global energy consumption by 2100. Our study suggests >50% renewable energy needs to occur by 2028 in a <2 °C warming scenario, but not until 2054 in an unconstrained energy use scenario. Given the required rate and magnitude of this transition to renewable energy, it is unlikely that the <2 °C goal can be met. Focus should be placed on expanding renewable energy as quickly as possible in order to limit warming to 2.5–3 °C. - Highlights: •World population growth, energy scarcity, and climate are interrelated issues. •Non-renewable energy sources are projected to peak around mid-century. •Renewable energy must provide 50+% of total energy by 2028 to maintain <2 °C warming goal. •Renewable energy must provide 87+% of total energy by 2100 regardless of climate concerns.

  20. Mexican energy and climate change policies in a North American context

    International Nuclear Information System (INIS)

    Bauer, M.E.

    2002-01-01

    A review of Mexican energy and climate change policies was presented with reference to the implications for Mexico regarding energy supply, security and climate change policies. Mexico's development and energy indicators are considerably behind those of Canada and the United States, but its greenhouse gas emissions are also low in comparison. Mexican energy consumption and gross domestic product levels per capita are far below those of the United States and Canada. Although Mexico, a signatory of the United Nations Framework Convention on Climate Change and the Kyoto Protocol, is not obligated to commit itself to any target greenhouse gas emissions, it has implemented an active climate change policy that promotes energy efficiency, fuel substitution, development of alternative energy sources, forest conservation and reforestation, and climate change research. The author concluded that in addition to constitutional reform, a fully integrated North American energy market would need physical connections for electricity and natural gas. 4 figs

  1. Making Sustainable Energy Choices: Insights on the Energy/Water/Land Nexus

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    This periodic publication summarizes insights from the body of NREL analysis work. In this issue of Analysis Insights, we examine the implications of our energy choices on water, land use, climate, developmental goals, and other factors. Collectively, NREL's work helps policymakers and investors understand and evaluate energy choices within the complex web of connections, or nexus, between energy, water, and land.

  2. Climate impacts on extreme energy consumption of different types of buildings.

    Directory of Open Access Journals (Sweden)

    Mingcai Li

    Full Text Available Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382. The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  3. Wind and Solar Energy Role in the Achievement of EU Climate Policy After 2020

    International Nuclear Information System (INIS)

    Knezevic, S.

    2016-01-01

    This paper grades the possible role of solar and wind energy in the generation of electricity after 2020. The development of those energy sources will be defined by the climate policy implemented based on the last year's Paris Climate Agreement, but also by the existing initiatives of the European Commission (2030 climate and energy framework and 2050 low-carbon economy). Additionally, electricity generation from RES is observed through the decrease of dependency on the import of fossil fuels outside of the EU. According to the report of the International Renewable Energy Agency (IRENA), the biggest share of RES power plants, after hydro power plants, in EU are wind and solar power plants. Both wind and sun are constantly available resources, but with variable specific power, which makes the maximal generation dependent on the time of day and/or weather (wind, clouds). Future increase of wind and solar energy has to be observed from various perspectives as to properly grade it for the next period, until 2020. Therefore, this paper considers the following, intertwined aspects: Maturity of wind and solar technologies and future trends, Price of electricity generation from wind and solar power plants, with an analysis of price decreasing trends; Possibilities of power energy system and measures for the acceptance of wind and solar power plants; Integrative approach to all forms and transformations of electricity; Market integration of RES - aspirations towards free trade(author).

  4. Making the Earth to Life Connection Using Climate Change

    Science.gov (United States)

    Haine, D. B.; Berbeco, M.

    2016-12-01

    From ocean acidification to changes in air quality to shifts in the range of disease vectors, there are many opportunities for educators to make the earth science to life science connection by incorporating the impacts of climate change on organisms and entire ecosystems and by describing how living organisms impact climate. NCSE's study in Science found that 86% of life science teachers are teaching climate, but few admit they have any formal climate science training. This session will introduce activities we developed that utilize the 2014 National Climate Assessment, data visualizations, technology tools and models to allow students to explore the evidence that climate change is impacting life. Translating the NCA into classroom activities is an approach that becomes more pertinent with the advent of the Next Generation Science Standards (NGSS). Using the NCA and the NGSS we demonstrate strategies for weaving the concept of climate change into an already packed life science curriculum by enhancing rather than displacing content and ultimately promoting integration of science and engineering practices into instruction. Since the fall of 2014 we have engaged approximately 200 K-12 educators at local, state, regional and national teacher professional development events. Here we will summarize what we have learned from science teachers about how they address life science impacts of climate change and we will summarize evaluation data to inform future efforts to engage life science educators in light of the recent USGCRP Climate and Health Assessment and the upcoming 4th National Climate Assessment.

  5. Energy policy design and China’s local climate governance

    DEFF Research Database (Denmark)

    Ting, Guan; Delman, Jørgen

    2017-01-01

    This study probes into climate policy design at city level in China, with Hangzhou’s energy efficiency and renewable energy policies between 2005 and 2014 as a case. The study applies a political action arena approach to accentuate the importance of different normative preferences behind climate...

  6. The effects of climate change on heating energy consumption of office buildings in different climate zones in China

    Science.gov (United States)

    Meng, Fanchao; Li, Mingcai; Cao, Jingfu; Li, Ji; Xiong, Mingming; Feng, Xiaomei; Ren, Guoyu

    2017-06-01

    Climate plays an important role in heating energy consumption owing to the direct relationship between space heating and changes in meteorological conditions. To quantify the impact, the Transient System Simulation Program software was used to simulate the heating loads of office buildings in Harbin, Tianjin, and Shanghai, representing three major climate zones (i.e., severe cold, cold, and hot summer and cold winter climate zones) in China during 1961-2010. Stepwise multiple linear regression was performed to determine the key climatic parameters influencing heating energy consumption. The results showed that dry bulb temperature (DBT) is the dominant climatic parameter affecting building heating loads in all three climate zones across China during the heating period at daily, monthly, and yearly scales (R 2 ≥ 0.86). With the continuous warming climate in winter over the past 50 years, heating loads decreased by 14.2, 7.2, and 7.1 W/m2 in Harbin, Tianjin, and Shanghai, respectively, indicating that the decreasing rate is more apparent in severe cold climate zone. When the DBT increases by 1 °C, the heating loads decrease by 253.1 W/m2 in Harbin, 177.2 W/m2 in Tianjin, and 126.4 W/m2 in Shanghai. These results suggest that the heating energy consumption can be well predicted by the regression models at different temporal scales in different climate conditions owing to the high determination coefficients. In addition, a greater decrease in heating energy consumption in northern severe cold and cold climate zones may efficiently promote the energy saving in these areas with high energy consumption for heating. Particularly, the likely future increase in temperatures should be considered in improving building energy efficiency.

  7. Changing Climates. The Role of Renewable Energy in a Carbon-Constrained World. A Paper Prepared for REN21

    International Nuclear Information System (INIS)

    Christensen, J.; Denton, F.; Garg, A.; Kamel, S.; Pacudan, R.; Usher, E.

    2005-12-01

    The current paper on renewable energy and climate change is focused on the key characteristics of the climate change challenge, the intergovernmental action to address the challenge, and how current and future renewable energy projects can contribute to global carbon mitigation and adaptation efforts at the local level. The report presents the current and possible different future contributions that renewable energy can make. This is based on analysis of different authoritative global scenarios and their underlying assumptions, and is aimed at providing guidance on what would be required in terms of policy decisions and technological developments if renewable energy is going to significantly mitigate climate change. Although the focus is particularly on climate change and the opportunities for renewable energy, other issues are closely interlinked. Reducing GHG emissions by introducing more renewable energy, for example, will also have positive impacts on the security of energy supply, while potentially compounding the need for investment capital. The report begins with the current global energy demand and the contribution of renewable energy to meeting that demand. Next, different key internationally recognised energy development scenarios are presented from the Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA), together with selected policy scenarios of very different specific options to mitigate climate change and stabilize CO2 levels in the range of 450-550 ppm. These scenarios are presented with both high and limited penetrations of renewable energy, along with discussions of underlying assumptions leading to these different results, including comparisons of projected technology costs. Existing policies worldwide to promote renewable energy are then analysed for their relative efficiency and results. Guidance is presented on the possible policy tools governments can use to move from the stipulated 'business

  8. Hybrid modeling to support energy-climate policy: Effects of feed-in tariffs to promote renewable energy in Portugal

    International Nuclear Information System (INIS)

    Proença, Sara; St Aubyn, Miguel

    2013-01-01

    Feed-in tariffs have been the main policy instrument applied in Portugal for the promotion of electricity produced from renewable energy sources under the EU Directives on energy and climate regulation. In this paper, we provide an empirical impact assessment of the economic and environmental effects of Portugal's FITs policy to promote RES-E generation. Impact assessment of policy instruments plays a crucial role on decision-making process. For numerical simulations, we make use of a hybrid top-down/bottom-up general equilibrium modeling approach, which represents a reliable tool to analyze the complex interactions between economic, energy, and environmental issues related to energy policies. Numerical simulations confirm the empirical evidence that the FITs policy implemented by Portugal was both an effective and a cost-efficient way to increase the generation of electricity from renewable energy sources and thus to achieve the national RES-E target of 45% in 2010. Results show relatively modest macroeconomic impacts indicating potentially low economic adjustment costs. From an environmental perspective, the deployment of renewable energy source results in significant carbon emissions reductions. - Highlights: ► We provide an impact assessment of Portugal's FITs policy to promote RES-E generation. ► For numerical simulations, we make use of a hybrid top-down/bottom-up general equilibrium model. ► Portugal's FITs policy proved to be a cost-efficient way to increase generation of renewable electricity. ► Results show relatively modest macroeconomic effects indicating potentially low economic adjustment costs. ► The deployment of renewable energy sources results in significant carbon emission reductions

  9. The 2030 framework for climate and energy policies

    Energy Technology Data Exchange (ETDEWEB)

    Woersdoerfer, Mechthild [Directorate-General for Energy European Commission, Brussels (Belgium)

    2015-05-01

    In the light of experiences and lessons learnt from current energy and climate policies and the changing economic and energy market context, the Commission proposed a new framework for climate and energy policies for the period until 2030 on which the European Council reached an agreement on October 24, 2014. The framework is structured around four headline targets: a binding EU level target for domestic reduction of greenhouse gas emissions of at least 40 % compared to 1990 levels; a binding EU level target for the share of renewable energy of at least 27 %; an indicative EU level target for energy efficiency improvements of at least 27 % and an objective for electricity interconnections of 15 % in 2030.

  10. The 2030 framework for climate and energy policies

    International Nuclear Information System (INIS)

    Woersdoerfer, Mechthild

    2015-01-01

    In the light of experiences and lessons learnt from current energy and climate policies and the changing economic and energy market context, the Commission proposed a new framework for climate and energy policies for the period until 2030 on which the European Council reached an agreement on October 24, 2014. The framework is structured around four headline targets: a binding EU level target for domestic reduction of greenhouse gas emissions of at least 40 % compared to 1990 levels; a binding EU level target for the share of renewable energy of at least 27 %; an indicative EU level target for energy efficiency improvements of at least 27 % and an objective for electricity interconnections of 15 % in 2030.

  11. Fuel choice, nuclear energy, climate and carbon

    International Nuclear Information System (INIS)

    Shpyth, A.

    2012-01-01

    For the second time since the start of commercial nuclear electricity generation, an accident has the world wondering if uranium will be among the future fuel choices in electricity production. Unfortunate when one considers the low-carbon footprint of this energy option. An accident involving a nuclear power plant, or more appropriately the perceived risks associated with an accident at a nuclear power plant, is but one of the issues that makes the impact assessment process related to nuclear energy projects challenging. Other aspects, including the time scales associated with their siting, licensing, operation and decommissioning, also contribute to the challenge. Strategic environmental assessments for future fuel choices in electricity generation, particularly ones that consider the use of life cycle assessment information, would allow for the effective evaluation of the issues identified above. But more importantly from an impact assessment perspective, provide for a comparative assertion for public disclosure on the environmental impacts of fuel choice. This would provide the public and government decision makers with a more complete view of the role nuclear energy may be able to play in mitigating the climate and carbon impacts of increased electricity production, and place issues of cost, complexity and scale in a more understandable context.

  12. GAIA - A New Approach To Decision Making on Climate Disruption Issues

    Science.gov (United States)

    Paxton, L. J.; Weiss, M.; Schaefer, R. K.; Swartz, W. H.; Nix, M.; Strong, S. B.; Fountain, G. H.; Babin, S. M.; Pikas, C. K.; Parker, C. L.; Global Assimilation of InformationAction

    2011-12-01

    GAIA - the Global Assimilation of Information for Action program - provides a broadly extensible framework for enabling the development of a deeper understanding of the issues associated with climate disruption. The key notion of GAIA is that the global climate problem is so complex that a "system engineering" approach is needed in order to make it understandable. The key tenet of system engineering is to focus on requirements and to develop a cost-effective process for satisfying those requirements. To demonstrate this approach we focused first on the impact of climate disruption on public health. GAIA is described in some detail on our website (http://gaia.jhuapl.edu). Climate disruption is not just a scientific problem; one of the key issues that our community has is that of translating scientific results into knowledge that can be used to make informed decisions. In order to support decision makers we have to understand their issues and how to communicate with them. In this talk, we describe how we have built a community of interest that combines subject matter experts from diverse communities (public health, climate change, government, public policy, industry, etc) with policy makers and representatives from industry to develop, on a "level playing field", an understanding of each other's points of view and issues. The first application of this technology was the development of a workshop on Climate, Climate Change and Public Health held April 12-14, 2011. This paper describes our approach to going beyond the workshop environment to continue to engage the decision maker's community in a variety of ways that translate abstract scientific data into actionable information. Key ideas we will discuss include the development of social media, simulations of global/national/local environments affected by climate disruption, and visualizations of the monetary and health impacts of choosing not to address mitigation or adaptation to climate disruption.

  13. Climate-induced hotspots in surface energy fluxes from 1948 to 2000

    International Nuclear Information System (INIS)

    Sheng Li; Liu Shuhua; Liu Heping

    2010-01-01

    Understanding how land surfaces respond to climate change requires knowledge of land-surface processes, which control the degree to which interannual variability and mean trends in climatic variables affect the surface energy budget. We use the latest version of the Community Land Model version 3.5 (CLM3.5), which is driven by the latest updated hybrid reanalysis-observation atmospheric forcing dataset constructed by Princeton University, to obtain global distributions of the surface energy budget from 1948 to 2000. We identify climate change hotspots and surface energy flux hotspots from 1948 to 2000. Surface energy flux hotspots, which reflect regions with strong changes in surface energy fluxes, reveal seasonal variations with strong signals in winter, spring, and autumn and weak ones in summer. Locations for surface energy flux hotspots are not, however, fully linked with those for climate change hotspots, suggesting that only in some regions are land surfaces more responsive to climate change in terms of interannual variability and mean trends.

  14. Blackout: coal, climate and the last energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Heinberg, R. [Post Carbon Institute in California, CA (United States)

    2009-07-15

    Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

  15. Renewable energy and climate change

    CERN Document Server

    Quaschning, Volker

    2010-01-01

    This dazzling introductory textbook encompasses the full range of today's important renewable energy technologies. Solar thermal, photovoltaic, wind, hydro, biomass and geothermal energy receive balanced treatment with one exciting and informative chapter devoted to each. As well as a complete overview of these state-of-the-art technologies, the chapters provide: clear analysis on their development potentials; an evaluation of the economic aspects involved; concrete guidance for practical implementation; how to reduce your own energy waste. If we do not act now to stop climate change, the cons.

  16. Space-time dependence between energy sources and climate related energy production

    Science.gov (United States)

    Engeland, Kolbjorn; Borga, Marco; Creutin, Jean-Dominique; Ramos, Maria-Helena; Tøfte, Lena; Warland, Geir

    2014-05-01

    The European Renewable Energy Directive adopted in 2009 focuses on achieving a 20% share of renewable energy in the EU overall energy mix by 2020. A major part of renewable energy production is related to climate, called "climate related energy" (CRE) production. CRE production systems (wind, solar, and hydropower) are characterized by a large degree of intermittency and variability on both short and long time scales due to the natural variability of climate variables. The main strategies to handle the variability of CRE production include energy-storage, -transport, -diversity and -information (smart grids). The three first strategies aim to smooth out the intermittency and variability of CRE production in time and space whereas the last strategy aims to provide a more optimal interaction between energy production and demand, i.e. to smooth out the residual load (the difference between demand and production). In order to increase the CRE share in the electricity system, it is essential to understand the space-time co-variability between the weather variables and CRE production under both current and future climates. This study presents a review of the literature that searches to tackle these problems. It reveals that the majority of studies deals with either a single CRE source or with the combination of two CREs, mostly wind and solar. This may be due to the fact that the most advanced countries in terms of wind equipment have also very little hydropower potential (Denmark, Ireland or UK, for instance). Hydropower is characterized by both a large storage capacity and flexibility in electricity production, and has therefore a large potential for both balancing and storing energy from wind- and solar-power. Several studies look at how to better connect regions with large share of hydropower (e.g., Scandinavia and the Alps) to regions with high shares of wind- and solar-power (e.g., green battery North-Sea net). Considering time scales, various studies consider wind

  17. From macroeconomics of energy-climate policies to the convergence between climate and development

    International Nuclear Information System (INIS)

    Mathy, Sandrine

    2016-01-01

    After a brief presentation of her research curriculum, an indication of her various publications and contributions to conferences, the author presents her expertise works and her participation to national and international projects such as: Fairness in the post-2030 climatic regime, Towards an energetic autonomy in island and isolated territories, scenarios under a carbon constraint, comparative analysis of tools of implementation of multilateral agreements on the environment, mechanism for a clean development and domestic measures, Deep De-carbonation Pathway Project or DDPP, EncilowCarb engaging civil society in low carbon scenarios, climate and development or how to re-conciliate environmental constraints and national development policies, Developmental additionnality of the Clean Development Mechanism and public aid to development. In the next part, she proposes an overview of her research works by distinguishing two directions: a macro-economic analysis of climate policies integrating second raw elements (Imaclim-R France), and strategies of struggle against climate change integrated into development policies. In a third part, she discusses research perspectives regarding energy transition and natural resources, mankind in the energy transition, and the citizen (scenarios, democracy and energy transition) [fr

  18. Smart energy strategies. Meeting the climate change challenge

    International Nuclear Information System (INIS)

    2008-01-01

    This book published by the Energy Science Center (ESC) at the Swiss Federal Institute of Technology (ETH) in Zurich presents a wide selection of reports on how the challenge of dealing with climate change can be met. The 69 reports included cover a wide range of topics ranging from traffic modelling, biofuels and electrification of power trains, through demand-side management, electricity production and distribution and life cycle assessment, to the integration of wind power and renewable energy technologies. Also, climate policy matters are dealt with as are nano-technology applications in the energy area and the integration of energy conversion and production processes and waste management

  19. Smart energy strategies. Meeting the climate change challenge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This book published by the Energy Science Center (ESC) at the Swiss Federal Institute of Technology (ETH) in Zurich presents a wide selection of reports on how the challenge of dealing with climate change can be met. The 69 reports included cover a wide range of topics ranging from traffic modelling, biofuels and electrification of power trains, through demand-side management, electricity production and distribution and life cycle assessment, to the integration of wind power and renewable energy technologies. Also, climate policy matters are dealt with as are nano-technology applications in the energy area and the integration of energy conversion and production processes and waste management.

  20. Incorporating stakeholders' preferences for ex ante evaluation of energy and climate policy interactions. Development of a Multi Criteria Analysis weighting methodology

    International Nuclear Information System (INIS)

    Grafakos, S.; Zevgolis, D.; Oikonomou, V.

    2008-03-01

    Evaluation of energy and climate policy interactions is a complex issue which has not been addressed systematically. Multi Criteria Decision Analysis (MCDA) evaluation processes have been applied widely to different policy and decision cases as they have the ability to cope with high complexity, by structuring and analyzing the policy problem in a transparent and systematic way. Criteria weights elicitation techniques are developed within the framework of MCDA to integrate stakeholders' preferential information in the decision making and evaluation process. There are variant methods to determine criteria weights which can be used in various ways for different policy evaluation purposes. During decision making, policy makers and relevant stakeholders implicitly or explicitly express their relative importance between the evaluation criteria by assigning weighting factors to them. More particular, climate change policy problems lack a simple, transparent and structured way to incorporate stakeholders' views and values. In order to incorporate stakeholders' weighting preferences into an ex ante evaluation of climate change and energy policy instruments interaction, an integrative constructive weighting methodology has been developed. This paper presents the main characteristics of evaluation of energy and climate policy interactions, the reasoning behind the development of the weighting tool, its main theoretical and functional characteristics and the results of its application to obtain and incorporate stakeholders' preferences on energy and climate change policy evaluation criteria. The weighting method that has been elaborated and applied to derive stakeholders' preferences for criteria weights is a combination of pair wise comparisons and ratio importance weighting methods. Initially introduces the stakeholders to the evaluation process through a warming up holistic approach for ranking the criteria and then requires them to express their ratio relative importance

  1. Potential energy consumption reduction of automotive climate control systems

    International Nuclear Information System (INIS)

    Nielsen, Filip; Uddheim, Åsa; Dalenbäck, Jan-Olof

    2016-01-01

    Highlights: • Twenty-on energy saving measures for vehicle interior climate were evaluated. • Few single energy saving measures could reduce the energy use significantly. • The operation of the system in intermediate conditions determines the energy use. • Required heating/cooling of passenger compartment had small effect on energy use. - Abstract: In recent years fuel consumption of passenger vehicles has received increased attention by customers, the automotive industry, regulatory agencies and academia. One area which affect the fuel consumption is climate control systems. Twenty-one energy saving measures were evaluated regarding the total energy use for vehicle interior climate using simulation. Evaluated properties were heat flow into the passenger compartment, electrical and mechanical work. The simulation model included sub models of the passenger compartment, air-handling unit, Air Conditioning (AC) system, engine and engine cooling system. A real-world representative test cycle, which included tests in cold, intermediate and warm conditions, was used for evaluation. In general, few single energy saving measures could reduce the energy use significantly. The measures with most potential were increased blower efficiency with a reduction of 46% of the electrical work and increased AC-system disengage temperature with a reduction of 27% of the mechanical work. These results show that the operation of the climate control system had a large effect on the energy use, especially compared to the required heating and cooling of the passenger compartment. As a result energy saving measures need to address how heating and cooling is generated before reducing the heat flow into the passenger compartment.

  2. Response of corn markets to climate volatility under alternative energy futures.

    Science.gov (United States)

    Diffenbaugh, Noah S; Hertel, Thomas W; Scherer, Martin; Verma, Monika

    2012-07-01

    Recent price spikes(1,2) have raised concern that climate change could increase food insecurity by reducing grain yields in the coming decades(3,4). However, commodity price volatility is also influenced by other factors(5,6), which may either exacerbate or buffer the effects of climate change. Here we show that US corn price volatility exhibits higher sensitivity to near-term climate change than to energy policy influences or agriculture-energy market integration, and that the presence of a biofuels mandate enhances the sensitivity to climate change by more than 50%. The climate change impact is driven primarily by intensification of severe hot conditions in the primary corn-growing region of the US, which causes US corn price volatility to increase sharply in response to global warming projected over the next three decades. Closer integration of agriculture and energy markets moderates the effects of climate change, unless the biofuels mandate becomes binding, in which case corn price volatility is instead exacerbated. However, in spite of the substantial impact on US corn price volatility, we find relatively small impact on food prices. Our findings highlight the critical importance of interactions between energy policies, energy-agriculture linkages, and climate change.

  3. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    Science.gov (United States)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    treatment works. This analysis is achieved through development of an empirical model utilising historical climatic data in conjunction with low, medium and high emission IPCC climate scenarios using the HADCM3 global climate model across a baseline condition and two further time steps. Results highlight projected alterations in flow rates together with the potential for increases in the frequency and persistence of drought/flooding events and the resulting impacts on future energy recovery. Critical climate change limits are also identified indicating the tolerable ranges within which hydropower recovery is financially viable, thus allowing for more informed decision making across potential sites.

  4. Urban drainage design and climate change adaptation decision making

    DEFF Research Database (Denmark)

    Zhou, Qianqian

    response impacts in the context of hydrological extremes are considered while the added intangible values (e.g. recreational amenities due to a nice blue-green neighbourhood) of adaptation options are often ignored or underestimated. In order to facilitate the development and implementation of water...... the benefits of provision of positive environmental values and the preservation of water resources. It is found that neglecting intangible values in climate adaptation assessment can easily bias the decision making; the reframed approach hence provide an important tool for assessment of additional benefits...... and costs of such innovative solutions. The thesis points towards an integrated framework for urban drainage adaptation design considering climate change effects and adaptation benefits and costs. The case studies show how the proposed framework can be utilized to manage the anticipated climate change risks...

  5. Economy-Energy-Climate Interaction. The Model Wiagem

    International Nuclear Information System (INIS)

    Kemfert, C.

    2001-09-01

    This paper presents an integrated economy-energy-climate model WIAGEM (World Integrated Assessment General Equilibrium Model) which incorporates economic, energetic and climatic modules in an integrated assessment approach. In order to evaluate market and non-market costs and benefits of climate change WIAGEM combines an economic approach with a special focus on the international energy market and integrates climate interrelations by temperature changes and sea level variations. WIAGEM bases on 25 world regions which are aggregated to 11 trading regions and 14 sectors within each region. The representation of the economic relations is based on an intertemporal general equilibrium approach and contains the international markets for oil, coal and gas. The model incorporates all greenhouse gases (GHG) which influence the potential global temperature, the sea level variation and the assessed probable impacts in terms of costs and benefits of climate change. Market and non market damages are evaluated due to the damage costs approaches of Tol (2001). Additionally, this model includes net changes in GHG emissions from sources and removals by sinks resulting from land use change and forest activities. This paper describes the model structure in detail and outlines some general results, especially the impacts of climate change. As a result, climate change impacts do matter within the next 50 years, developing regions face high economic losses in terms of welfare and GDP losses. The inclusion of sinks and other GHG changes results significantly

  6. Climate change helplessness and the (de)moralization of individual energy behavior

    OpenAIRE

    Salomon, Erika; Preston, Jesse; Tannenbaum, Melanie B.

    2017-01-01

    Although most people understand the threat of climate change, they do little to modify their own energy conservation behavior. One reason for this gap between belief and behavior may be that individual actions seem un-impactful and therefore are not morally relevant. This research investigates how climate change helplessness—belief that one’s actions cannot affect climate change—can undermine the moralization of climate change and personal energy conservation. In Study 1, climate change effic...

  7. Integrated energy and climate program without nuclear power

    International Nuclear Information System (INIS)

    Haller, W.

    2007-01-01

    Under the German EU Council presidency, the European Union adopted an ambitious climate protection program in spring this year which has consequences for the entire energy sector. A fair system of burden sharing is currently being sought on the level of the European Union. However, the German federal government does not wait for that agreement to be reached, but has added to the clearcut EU plans in order to achieve more climate protection. At the closed meeting of the federal cabinet in Meseberg on August 23-24, 2007, the key points of an integrated energy and climate program were adopted. The unprecedented set of measures comprises 30 points. In many cases, legal measures are required for implementation, which implies a heavy workload facing the federal government and parliament. A major step forward is seen in the federal government's intention to preserve the international competitiveness of the producing sector and energy-intensive industries also under changed framework conditions. The imperative guiding principle must be that care should take precedence over speed. European or worldwide solutions must be found for all measures, be it energy efficiency or climate protection, and all countries must be involved because, otherwise, specific measures taken by individual states will be ineffective. (orig.)

  8. A framework for modeling adaptive forest management and decision making under climate change

    DEFF Research Database (Denmark)

    Yousefpour, Rasoul; Temperli, Christian; Jacobsen, Jette Bredahl

    2017-01-01

    optimal for a certain climate change scenario. We describe four stylized types of decision-making processes that differ in how they (1) take into account uncertainty and new information on the state and development of the climate and (2) evaluate alternative management decisions: the “no......-change,” the “reactive,” the “trend-adaptive,” and the “forward-looking adaptive” decision-making types. Accordingly, we evaluate the experiences with alternative management strategies and recent publications on using Bayesian optimization methods that account for different simulated learning schemes based on varying......Adapting the management of forest resources to climate change involves addressing several crucial aspects to provide a valid basis for decision making. These include the knowledge and belief of decision makers, the mapping of management options for the current as well as anticipated future...

  9. Climate change and energy policies, coal and coalmine methane in China

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ming [3E and T International, Suite 1506, Building No. 10, Luo Ma Shi Street, Xuanwu District, Beijing 100052 (China)], E-mail: ming.yang7@gmail.com

    2009-08-15

    The Chinese government has made many energy policies on coal, and coalmine methane (CMM) use. However, not all of these policies have effects or positive impacts. For example, it has been quite a few years since the national government made policies to encourage coalmine methane power to be sold to the grid. Practice showed that not any kilowatt of electricity was sold from a coalmine methane power plant to the grid in Sichuan and Guizhou Provinces as of December 2008. The objectives of this paper are to review and evaluate the Chinese government energy and climate policies that are related to coal and coalmine methane, analyze relevant policy barriers, and make recommendations to overcome these barriers and avoid policy failures. This paper provides the literature review, challenges, resources, policies and other updated information on China's CMM recovery and utilization. The paper concludes that China needs to further reform its energy and environment management system, engage provincial governments in CMM capture and use activities, and provide incentives to qualified engineers and skilled workers to work in remote coal mining areas. This paper transfers key messages to policy makers for them to make better CMM capture and use policies.

  10. Climate change and energy policies, coal and coalmine methane in China

    International Nuclear Information System (INIS)

    Yang Ming

    2009-01-01

    The Chinese government has made many energy policies on coal, and coalmine methane (CMM) use. However, not all of these policies have effects or positive impacts. For example, it has been quite a few years since the national government made policies to encourage coalmine methane power to be sold to the grid. Practice showed that not any kilowatt of electricity was sold from a coalmine methane power plant to the grid in Sichuan and Guizhou Provinces as of December 2008. The objectives of this paper are to review and evaluate the Chinese government energy and climate policies that are related to coal and coalmine methane, analyze relevant policy barriers, and make recommendations to overcome these barriers and avoid policy failures. This paper provides the literature review, challenges, resources, policies and other updated information on China's CMM recovery and utilization. The paper concludes that China needs to further reform its energy and environment management system, engage provincial governments in CMM capture and use activities, and provide incentives to qualified engineers and skilled workers to work in remote coal mining areas. This paper transfers key messages to policy makers for them to make better CMM capture and use policies.

  11. The Paris-Nairobi climate initiative. Access to clean energy for all in Africa and countries vulnerable to climate change. Access to energy, sustainable development and climate change

    International Nuclear Information System (INIS)

    2011-01-01

    The first part of this report highlights the importance of a universal access to energy, the role of public policies and renewable energies, the need to implement sustainable economic models for energy services, and indicates the major objectives and essential actions for these purposes. The second part outlines the weakness of electricity production in Africa, the degradation of the energy mix balance, the vulnerability to climate change, and the fact that Africa, like other countries vulnerable to climate change, possess huge and unexploited renewable energy resources (biomass, hydroelectricity, geothermal, solar, wind). The third part proposes an approach to energy services by developing sustainable cooking, supplying energy to support rural development and to poles of economic growth, by developing sustainable cities (notably in transports and buildings), and by developing national and regional electricity grids. The last part addresses the issue of energy financing in developing countries

  12. Energy infrastructure in India: Profile and risks under climate change

    DEFF Research Database (Denmark)

    Garg, Amit; Naswa, Prakriti; Shukla, P.R.

    2015-01-01

    risks to energy infrastructures in India and details two case studies - a crude oil importing port and a western coast railway transporting coal. The climate vulnerability of the port has been mapped using an index while that of the railway has been done through a damage function for RCP 4.5.0 and 8.......5 scenarios. Our analysis shows that risk management through adaptation is likely to be very expensive. The system risks can be even greater and might adversely affect energy security and access objectives. Aligning sustainable development and climate adaptation measures can deliver substantial co......-benefits. The key policy recommendations include: i) mandatory vulnerability assessment to future climate risks for energy infrastructures; ii) project and systemic risks in the vulnerability index; iii) adaptation funds for unmitigated climate risks; iv) continuous monitoring of climatic parameters...

  13. Risk benefits of climate-friendly energy supply options

    International Nuclear Information System (INIS)

    Hirschberg, S.; Burgherr, P.

    2003-01-01

    One of the central goals of sustainable development is the reduction of Greenhouse Gas (GHG) emissions. This is needed in order to prevent the anticipated climate change, and the potentially serious consequences for human beings and the environment. Energy supply systems constitute the dominant contributors to GHG emissions. This paper examines three illustrative emission scenarios for world-wide energy supply in the 21 st Century. These scenarios, including the associated GHG and major pollutant emissions, were chosen from a set established by the Intergovernmental Panel on Climate Change (IPCC). Using the emissions as a starting point, and based on recent findings concerning the impact on the environment and the financial costs resulting from global climate change on the one hand, and regional air pollution on the other hand, the present work provides estimates of the scenario-dependent, world-wide cumulative damage. The fossil-intensive reference scenario leads to overall damages which correspond to very substantial losses in Gross Domestic Product (GDP), and which widely exceed the damages caused by the scenarios reflecting climate-friendly policies. Generally, the somewhat speculative estimates of the GHG-specific damages are much less significant than damages to human health and the environment caused by the major air pollutants. This means that the secondary benefits of climate-friendly, energy-supply options, i.e. those which avoid the impacts due to air pollution, alone justify strategies protecting the climate. (author)

  14. Regional Analysis of Energy, Water, Land and Climate Interactions

    Science.gov (United States)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Climate information for the application of solar energy

    International Nuclear Information System (INIS)

    Robles-Gil, S.

    1997-01-01

    In view of population growth, industrialization and urbanization which provoked increasing energy demand there has been an increasing interest in developing new technologies that use various renewable energy sources and have less environmental impact, such as solar, wind, tidal and biomass. Solar energy is one of the energy resources with a wide geographical distribution. Nowadays, its contribution to the world's energy supply is very small, but it is considered an important long term option which will satisfy, together with conventional energy sources, the future energy needs of the world. The main objective of this work is to report the actual uses of the principal types of solar energy systems, based on their climatic, technological and economical context. This is to improve the dissemination of information on the application of climate knowledge and data, especially by national meteorological services, with the purpose to improve the planning, design and operation of solar energy systems, as well as facilitate their more widespread use

  16. Climate information for the wind energy industry in the Mediterranean Region

    Science.gov (United States)

    Calmanti, Sandro; Davis, Melanie; Schmidt, Peter; Dell'Aquila, Alessandro

    2013-04-01

    According to the World Wind Energy Association the total wind generation capacity worldwide has come close to cover 3% of the world's electricity demand in 2011. Thanks to the enormous resource potential and the relatively low costs of construction and maintenance of wind power plants, the wind energy sector will remain one of the most attractive renewable energy investment options. Studies reveal that climate variability and change pose a new challenge to the entire renewable energy sector, and in particular for wind energy. Stakeholders in the wind energy sector mainly use, if available, site-specific historical climate information to assess wind resources at a given project site. So far, this is the only source of information that investors (e.g., banks) are keen to accept for decisions concerning the financing of wind energy projects. However, one possible wind energy risk at the seasonal scale is the volatility of earnings from year to year investment. The most significant risk is therefore that not enough units of energy (or megawatt hours) can be generated from the project to capture energy sales to pay down debt in any given quarter or year. On the longer time scale the risk is that a project's energy yields fall short of their estimated levels, resulting in revenues that consistently come in below their projection, over the life of the project. The nature of the risk exposure determines considerable interest in wind scenarios, as a potential component of both the planning and operational phase of a renewable energy project. Fundamentally, by using climate projections, the assumption of stationary wind regimes can be compared to other scenarios where large scale changes in atmospheric circulation patterns may affect local wind regimes. In the framework of CLIM-RUN EU FP7 project, climate experts are exploring the potential of seasonal to decadal climate forecast techniques (time-frame 2012-2040) and regional climate scenarios (time horizon 2040+) over the

  17. Egypt's energy planning and management in view of the commitments to the framework convention on climate change

    International Nuclear Information System (INIS)

    Emara, A.G.S.; Rashad, S.M.

    1996-01-01

    Egypt has a rapidly growing population and per capita energy demand. As a signatory of the Framework Convention on Climate Change Egypt is making all efforts to comply with the obligations of the Convention. This paper summarizes the efforts carried out in the field of electricity generation and consumption. Plans implemented to improve energy efficiency and to achieve switching to non-carbon energy resources, such as solar, wind and biomass power, are outlined. (author). 6 refs, 1 fig., 2 tabs

  18. Energy security of supply under EU climate policies

    International Nuclear Information System (INIS)

    Groenenberg, H.; Wetzelaer, B.J.H.W.

    2006-12-01

    The implications of various climate policies for the security of supply in the EU-25 were investigated. The security of supply was quantified using the Supply/Demand (S/D) Index. This index aggregates quantitative information on a country's energy system into one single figure. It takes a value between 0 and 100, with higher values indicating a more secure energy system. The S/D Index was calculated for the year 2020 based on the information in a series of policy scenarios, including a baseline (S/D Index 50.7), an energy efficiency scenario (53.8), two renewable energy scenarios (52.6 and 53.3) and two scenarios with combined policies (55.9 and 55.6).The S/D Index proved a useful indicator for assessing the implications of climate policies for the security of supply. As climate policies become more stringent, CO2 index fall, and the S/D index increases. The magnitude of the changes in the two indices is not always similar however. Major falls in CO2 indices in the order of 20% for two scenarios with combined energy efficiency and renewable energy polices lead to less noteworthy improvements in the associated S/D indices. Nevertheless, this combination of policies leads to the greatest improvements in the security of supply

  19. Climate change, energy, sustainability and pavements

    International Nuclear Information System (INIS)

    Gopalakrishnan, Kasthurirangan; Steyn, Wynand JvdM; Harvey, John

    2014-01-01

    Provides an integrated perspective on understanding the impacts of climate change, energy and sustainable development on transportation infrastructure systems. Presents recent technological innovations and emerging concepts in the field of green and sustainable transportation infrastructure systems with a special focus on highway and airport pavements. Written by leading experts in the field. Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges.

  20. Climate change, energy, sustainability and pavements

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Kasthurirangan [Iowa State Univ., Ames, IA (United States). Dept. of Civil, Construction and Environmental Engineering; Steyn, Wynand JvdM [Pretoria Univ. (South Africa). Dept. of Civil Engineering; Harvey, John (ed.) [California Univ., Davis, CA (United States). Dept. of Civil and Environmental Engineering

    2014-07-01

    Provides an integrated perspective on understanding the impacts of climate change, energy and sustainable development on transportation infrastructure systems. Presents recent technological innovations and emerging concepts in the field of green and sustainable transportation infrastructure systems with a special focus on highway and airport pavements. Written by leading experts in the field. Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges.

  1. Urban drainage design and climate change adaptation decision making

    Energy Technology Data Exchange (ETDEWEB)

    Qianqian Zhou

    2012-10-15

    adaptation actions (e.g. formulation of an appropriate service level). Furthermore, the risk-based economic approach enables an assessment and comparison of the expected benefits (due to saved flood damage) and corresponding costs of different adaptation measures. This gives more detailed insights into the pros and cons of different adaptation options, thus helping to optimize the efficiency and performance of urban drainage adaptation design. The thesis investigates impacts of uncertainties associated with not only the hydrological conditions (e.g. design intensities, climate change impacts), but also the present and future vulnerability conditions (e.g. impacts on assets). This enables a complete assessment of effects of various uncertainties in the climate change assessment process. Furthermore, in the study, two types of uncertainties are distinguished: 1) the overall uncertainty of an individual adaptation scenario, which may influence the choice of action; and 2) the marginal uncertainty between adaptation alternatives in order for a direct comparison of their efficiency once a decision of action is taken. Based on assessments of the two types of uncertainties, it is found that although climate change adaptation assessment is often associated with large uncertainties, it is still possible to identify robust adaptation options based on calculated marginal uncertainties. This is because that the uncertainties related to costing of floods and magnitude of climate impacts will be levelled out when comparing adaptation alternatives. In addition, a sensitivity analysis is also incorporated in the framework to assess the relative contribution of inherent uncertainties in the assessment. This allows an identification of critical/important uncertainties that matter for decision making and also provides a guide for further efforts to improve decision making in relation to climate change adaptation. Traditionally, assessment of climate change adaptation is based on conventional

  2. Climate and southern Africa's water-energy-food nexus

    Science.gov (United States)

    Conway, Declan; van Garderen, Emma Archer; Deryng, Delphine; Dorling, Steve; Krueger, Tobias; Landman, Willem; Lankford, Bruce; Lebek, Karen; Osborn, Tim; Ringler, Claudia; Thurlow, James; Zhu, Tingju; Dalin, Carole

    2015-09-01

    In southern Africa, the connections between climate and the water-energy-food nexus are strong. Physical and socioeconomic exposure to climate is high in many areas and in crucial economic sectors. Spatial interdependence is also high, driven, for example, by the regional extent of many climate anomalies and river basins and aquifers that span national boundaries. There is now strong evidence of the effects of individual climate anomalies, but associations between national rainfall and gross domestic product and crop production remain relatively weak. The majority of climate models project decreases in annual precipitation for southern Africa, typically by as much as 20% by the 2080s. Impact models suggest these changes would propagate into reduced water availability and crop yields. Recognition of spatial and sectoral interdependencies should inform policies, institutions and investments for enhancing water, energy and food security. Three key political and economic instruments could be strengthened for this purpose: the Southern African Development Community, the Southern African Power Pool and trade of agricultural products amounting to significant transfers of embedded water.

  3. Climate change, energy and sustainability: lessons from the Toronto-Niagara region

    International Nuclear Information System (INIS)

    Chiotti, Q.

    2001-01-01

    It is widely recognized in the discourse on global environmental change that anthropogenic activities, and particularly the combustion of fossil fuels, are having a discernible impact on the earth's climate. Concern over a looming environmental crisis has led to an international response, initially with the United Nations Framework Convention on Climate Change (UNFCCC) in 1992, followed by the Kyoto Protocol in 1997. Much of the national debate on climate change has focused predominantly on the technological options to reduce greenhouse gas (GHG) emissions, and more directly on the costs associated with taking mitigation actions. However this focus has come at the expense of not fully considering other dimensions of climate change, specifically the costs associated with climate change impacts and effects, the costs of adaptation actions, and the co-benefits for environment and health that could result from GHG plus related emission reductions. This is perhaps most apparent in the discourse on climate change and energy, especially in regards to electricity generation, where there is greater attention directed at the implications of climate change policies rather than the actual impacts and effects arising from climate change. In this paper it is argued that the issue of climate change and energy needs to be examined within a broader conceptual framework. Situating climate change and electricity generation within this broader context is essential in developing a sustainable energy system. The paper is organized into four sections. In section one, the conceptual framework is described, highlighting the importance of considering all dimensions of climate change (vulnerability, co-benefits and costs) in developing a sustainable energy system. Section two focuses more directly upon the relationship between climate change impacts and the energy sector, specifically in terms of generation (nuclear, hydro, fossil fuel, and alternatives), distribution and transmission

  4. Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives

    Directory of Open Access Journals (Sweden)

    Christopher A. Scott

    2015-08-01

    Full Text Available The current accelerated growth in demand for energy globally is confronted by water-resource limitations and hydrologic variability linked to climate change. The global spatial and temporal trends in water requirements for energy development and policy alternatives to address these constraints are poorly understood. This article analyzes national-level energy demand trends from U.S. Energy Information Administration data in relation to newly available assessments of water consumption and life-cycle impacts of thermoelectric generation and biofuel production, and freshwater availability and sectoral allocations from the U.N. Food and Agriculture Organization and the World Bank. Emerging, energy-related water scarcity flashpoints include the world’s largest, most diversified economies (Brazil, India, China, and USA among others, while physical water scarcity continues to pose limits to energy development in the Middle East and small-island states. Findings include the following: (a technological obstacles to alleviate water scarcity driven by energy demand are surmountable; (b resource conservation is inevitable, driven by financial limitations and efficiency gains; and (c institutional arrangements play a pivotal role in the virtuous water-energy-climate cycle. We conclude by making reference to coupled energy-water policy alternatives including water-conserving energy portfolios, intersectoral water transfers, virtual water for energy, hydropower tradeoffs, and use of impaired waters for energy development.

  5. Climatic threat, energy crisis, and illusions of a nuclear revival

    International Nuclear Information System (INIS)

    2008-10-01

    While considering the example of the French nuclear reactor fleet, and while indicating various data concerning energy savings, CO 2 emissions, energy consumption in France and in other European countries, and also the occurrence of incidents in nuclear plants, this publication discusses the context of a climatic crisis, energy crisis, and of a possible nuclear revival boosted by the decreasing use of fossil energies to comply with the objective of reduction of greenhouse gases. It discusses the relationship a nuclear revival would have with climate change, with energy safety and with energy transition

  6. The future of energy and climate

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  7. A framework for modeling adaptive forest management and decision making under climate change

    Directory of Open Access Journals (Sweden)

    Rasoul Yousefpour

    2017-12-01

    Full Text Available Adapting the management of forest resources to climate change involves addressing several crucial aspects to provide a valid basis for decision making. These include the knowledge and belief of decision makers, the mapping of management options for the current as well as anticipated future bioclimatic and socioeconomic conditions, and the ways decisions are evaluated and made. We investigate the adaptive management process and develop a framework including these three aspects, thus providing a structured way to analyze the challenges and opportunities of managing forests in the face of climate change. We apply the framework for a range of case studies that differ in the way climate and its impacts are projected to change, the available management options, and how decision makers develop, update, and use their beliefs about climate change scenarios to select among adaptation options, each being optimal for a certain climate change scenario. We describe four stylized types of decision-making processes that differ in how they (1 take into account uncertainty and new information on the state and development of the climate and (2 evaluate alternative management decisions: the "no-change," the "reactive," the "trend-adaptive," and the "forward-looking adaptive" decision-making types. Accordingly, we evaluate the experiences with alternative management strategies and recent publications on using Bayesian optimization methods that account for different simulated learning schemes based on varying knowledge, belief, and information. Finally, our proposed framework for identifying adaptation strategies provides solutions for enhancing forest structure and diversity, biomass and timber production, and reducing climate change-induced damages. They are spatially heterogeneous, reflecting the diversity in growing conditions and socioeconomic settings within Europe.

  8. US energy agency making progress

    Science.gov (United States)

    2017-07-01

    The Advanced Research Projects Agency-Energy (ARPA-E) has the ability to make significant contributions to energy research but must be allowed time to do so, according to a report by the US National Academies of Sciences, Engineering and Medicine.

  9. Making it work : a Saskatchewan perspective on climate change policy

    International Nuclear Information System (INIS)

    2002-10-01

    The government of Saskatchewan supports many of the objectives and principles of the Kyoto Protocol and has undertaken several significant actions to reduce greenhouse gas emissions. This report outlines Saskatchewan's expectations for an effective and fair approach to climate change. The Canadian Prime Minister plans to ask Parliament to approve ratification of the Kyoto Protocol by the end of 2002. However, until the Saskatchewan government sees the federal climate change plan, it will not support the Kyoto emissions reduction target and the Kyoto time frame because the impact on the province is not known. Saskatchewan is very vulnerable to the effects of climate change because of its large agriculture and forest sectors, and is looking for a fair, equitable federal climate change plan that will include significant federal funding assistance. The province is committed to taking action on climate change but is not willing to have its citizens and industries pay a disproportionate price compared to other Canadians. The measures taken thus far by Saskatchewan include: the development of public education initiatives, development of new technology to dispose of carbon dioxide, development of strategies to help adapt to climate change, the development of biological sinks for carbon dioxide in agricultural soils and forests, and the implementation of energy conservation and renewable energy projects. This paper outlines 19 features that Saskatchewan feels should be included in the national plan to address climate change. Among the suggestions is the national plan should respect provincial jurisdictions, and it should also recognize the fact that eventually Canada will need to reduce its greenhouse gas emissions to levels well below those required by Kyoto. The plan should also enable Canadians to achieve both environmental and economic benefits

  10. Climate change impacts on wind energy resources in northern Europe

    International Nuclear Information System (INIS)

    Pryor, S.C.; Barthelmie, R.J.; Kjellstroem, E.

    2005-01-01

    Energy is a fundamental human need. Heat, light and transport for individuals combined with the needs of industry have created a demand for energy which for the last 100-200 years has been met largely through consumption of fossil fuels leading to altered atmospheric composition and modification of the global climate. These effects will be realised on local scales affecting not just temperature and precipitation but also wind, radiation and other parameters. Annual mean wind speeds and wind energy density over northern Europe were significantly higher at the end of twentieth century than during the middle portion of that century, with the majority of the change being focused on the winter season. To address questions regarding possible future wind climates we employ dynamical and empirical downscaling techniques that seek to take coarse resolution output from General Circulation Models (GCM), run to provide scenarios of future climate, and develop higher resolution regional wind climates. Analyses of the wind climate during the historical record indicate that both the dynamical approach and the empirical approach are capable of generating accurate, robust and quantitative assessments of the wind climate and energy density in northern Europe, and hence that they may be of great utility to those seeking financing for, or risk management of, wind farms in the face of climate uncertainty. The synthesis of application of these downscaling tools to climate projections for northern Europe is that there is no evidence of major changes in the wind energy resource. However, more research is required to quantify the uncertainties in developing these projections and to reduce those uncertainties. Further work should also be conducted to assess the validity of these downscaling approaches in other geographical locations. (BA)

  11. PROPOSALS REGARDING CLIMATE CHANGE AND ENERGY FOR 2030

    Directory of Open Access Journals (Sweden)

    MARIA POPESCU

    2015-03-01

    Full Text Available Climate policies are fundamental for the future of our planet, while a truly European energy policy is a key factor for our competitiveness.It`s mandatory a new European energy policy which must accept the real energetic motivations regarding sustainability and greenhouse gas, security of supply and dependence on imports, competitiveness and efficient functioning of the internal energy market. An ambitious target of 40% reduction in emissions of greenhouse gases for 2030 is the cornerstone of the most efficient in terms of cost on our path towards a low-carbon dioxide. And at least 27% target for renewable energy is an important signal to investors to provide stability, boost green jobs and support security of supply. Using renewable energy sources (wind, solar and photovoltaic, biomass and biofuels, geothermal and heat pumps undeniably contributes to limiting climate change. In addition, it helps to secure energy supplies and to create and increase employment in Europe, thanks to increasing local energy production and consumption.

  12. Climate change and energy: The implications for the Spanish case

    International Nuclear Information System (INIS)

    Perez Arriaga, J. I.

    2007-01-01

    This paper examines the mutual implications between the climate change problem and the actual energy-at-a-crossroads situation of the unsustainable world energy model. The implications for the Spanish case are studied as a case example. The paper provides a brief review of the scientific evidence on climate change, analyzes the causes of the present energy dilemma and characterizes the problem to be addressed. The principal challenge for the future climate regime is to identify the nature and level of commitment that will provide sufficient incentives for all countries, with such a diversity of interests. The paper also exposes the most plausible framework for the future climate regime, the basic components of such a regime, the role to be played by the major stake holders and some guidelines for future negotiations. (Author)

  13. Energy Balance, Climate, and Life - Work of M. Budyko

    Science.gov (United States)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  14. Energy Balance, Climate, and Life \\-- Work of M. Budyko

    Science.gov (United States)

    Cahalan, R. F.

    2003-12-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at the age of 81 in St. Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth's biosphere.

  15. Including climate change in energy investment decisions

    International Nuclear Information System (INIS)

    Ybema, J.R.; Boonekamp, P.G.M.; Smit, J.T.J.

    1995-08-01

    To properly take climate change into account in the analysis of energy investment decisions, it is required to apply decision analysis methods that are capable of considering the specific characteristics of climate change (large uncertainties, long term horizon). Such decision analysis methods do exist. They can explicitly include evolving uncertainties, multi-stage decisions, cumulative effects and risk averse attitudes. Various methods are considered in this report and two of these methods have been selected: hedging calculations and sensitivity analysis. These methods are applied to illustrative examples, and its limitations are discussed. The examples are (1a) space heating and hot water for new houses from a private investor perspective and (1b) as example (1a) but from a government perspective, (2) electricity production with an integrated coal gasification combined cycle (ICGCC) with or without CO 2 removal, and (3) national energy strategy to hedge for climate change. 9 figs., 21 tabs., 42 refs., 1 appendix

  16. Energy and Climate Change. The Policy of the Bush Administration and the American Public Debate

    International Nuclear Information System (INIS)

    Noel, Pierre; Reiner, David

    2008-01-01

    In its oil and energy security policy, the Bush Administration has shown a willingness to serve industrial and regional interests while relying on rhetoric of crisis - energy crisis and national security crisis. The 'Bush energy plan' of stimulating internal energy production by weakening environmental and other regulations has failed politically. In climate change policy, the Bush Administration decided not to sign the Kyoto protocol as well as not to regulate greenhouse gas emissions in the U.S. This policy has had far reaching adverse consequences for the Bush Administration, in both domestic and foreign politics. The Administration has failed at making its technology-only approach accepted as a credible alternative to regulating emissions

  17. Report on broad reconsiderations. Part 1. Energy and Climate

    International Nuclear Information System (INIS)

    2009-04-01

    In twenty policy areas various working groups have studied variants that can lead to a 20% budget cut in the government budgets of the Netherlands, which must be realized in 2015. The aim of the reconsiderations is to use less government means to realize the same results, or even better results if possible. The broad reconsideration in the field of energy and climate focuses on the expenditure for renewable energy and energy efficiency, mitigating (inter)national climate policy and fiscal benefits. This report addresses six policy variants. [nl

  18. Climate change and energy policies, coal and coalmine methane in China

    Energy Technology Data Exchange (ETDEWEB)

    Ming Yang [3E& amp; T International, Beijing (China)

    2009-08-15

    The Chinese government has made many energy policies on coal, and coalmine methane (CMM) use. However, not all of these policies have effects or positive impacts. For example, it has been quite a few years since the national government made policies to encourage coalmine methane power to be sold to the grid. Practice showed that not one kilowatt of electricity was sold from a coalmine methane power plant to the grid in Sichuan and Guizhou Provinces as of December 2008. This paper reviews and evaluates the Chinese government energy and climate policies that are related to coal and coalmine methane, analyzes relevant policy barriers, and makes recommendations to overcome these barriers and avoid policy failures. The paper provides a literature review, challenges, resources, policies and other updated information on China's CMM recovery and utilization. The paper concludes that China needs to further reform its energy and environment management system, engage provincial governments in CMM capture and use activities, and provide incentives to qualified engineers and skilled workers to work in remote coal mining areas. This paper transfers key messages to policy makers for them to make better CMM capture and use policies. 15 refs., 3 figs., 3 tabs.

  19. Climate change and energy policies, coal and coalmine methane in China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [3E and T International, Suite 1506, Building No. 10, Luo Ma Shi Street, Xuanwu District, Beijing 100052 (China)

    2009-08-15

    The Chinese government has made many energy policies on coal, and coalmine methane (CMM) use. However, not all of these policies have effects or positive impacts. For example, it has been quite a few years since the national government made policies to encourage coalmine methane power to be sold to the grid. Practice showed that not any kilowatt of electricity was sold from a coalmine methane power plant to the grid in Sichuan and Guizhou Provinces as of December 2008. The objectives of this paper are to review and evaluate the Chinese government energy and climate policies that are related to coal and coalmine methane, analyze relevant policy barriers, and make recommendations to overcome these barriers and avoid policy failures. This paper provides the literature review, challenges, resources, policies and other updated information on China's CMM recovery and utilization. The paper concludes that China needs to further reform its energy and environment management system, engage provincial governments in CMM capture and use activities, and provide incentives to qualified engineers and skilled workers to work in remote coal mining areas. This paper transfers key messages to policy makers for them to make better CMM capture and use policies. (author)

  20. Climate change adaptation in the Canadian energy sector : workshop report

    International Nuclear Information System (INIS)

    2009-01-01

    This workshop on climate change adaptation in the Canadian energy sector was conducted in order to develop a climate change work plan for the Council of Energy Ministers (CEM) as well as to develop awareness and dialogue within Canada's energy sector. Industry members and government officials identified findings from recent assessment reports on climate change adaptation and discussed ways in which the international oil and gas industry is currently adapting its operations and technologies to ensure continuing safety and risk mitigation. The use of hydrological models to forecast the potential impacts of climate change was discussed, and the drivers of climate change adaptation were reviewed. A total of 26 topics were identified, 13 of which were prioritized for group discussions based on their impact and urgency. The following 5 topics were finally identified as top priority topics: (1) climate change adaptation science, (2) co-ordinated local, provincial, national, and international policies, (3) information sharing and knowledge transfer, (4) aging infrastructure and increasing demand, and (5) market mechanisms for adaptation. Four presentations were given during the initial portion of the workshop. 4 tabs., 1 fig

  1. Energy and economic savings using geothermal heat pumps in different climates

    International Nuclear Information System (INIS)

    Morrone, Biagio; Coppola, Gaetano; Raucci, Vincenzo

    2014-01-01

    Highlights: • Numerical study on 20 years Ground Source Heat Pumps (GSHPs) operation is achieved. • Increase in ground temperature due to GSHP can occur during 20 years operation. • Economical and GHG savings using GSHP show divergent trends for different climates. - Abstract: A technical and economic feasibility study is performed on residential buildings, heated and cooled by geothermal heat pumps (GHPs) equipped with energy piles. The analysis is carried out for two different climate locations and building energy needs, which have been evaluated following the current European standard ISO 13790. The energy pile system performance coupled with the GHP has been numerically calculated by using the PILESIM2 software over 20 years of operation. The Primary Energy Saving (PES) indices were calculated comparing the actual GHPs systems with traditional cooling and heating systems, together with their sensitivity to thermal and cooling loads for two different climate locations. Also, economic savings and greenhouse gases (GHG) reduction have been calculated resulting from the GHPs use. The results show that in mild climates, where the GHPs are mainly used as HP, the annual average temperature of the ground around the energy piles can increase up to about 10 °C after many years of operation, whereas in cold climates the increase is nearly negligible. Thus, the economical profit of GHPs is more difficult to achieve in mild climates than in cold ones. Conversely, GHG emission reduction is found to be larger in mild climates than in cold ones

  2. World Energy Outlook Special Report 2013: Redrawing the Energy Climate Map (Executive Summary)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Governments have decided collectively that the world needs to limit the average global temperature increase to no more than 2 °C and international negotiations are engaged to that end. Yet any resulting agreement will not emerge before 2015 and new legal obligations will not begin before 2020. Meanwhile, despite many countries taking new actions, the world is drifting further and further from the track it needs to follow. The energy sector is the single largest source of climate-changing greenhouse-gas emissions and limiting these is an essential focus of action. The World Energy Outlook has published detailed analysis of the energy contribution to climate change for many years. But, amid major international economic preoccupations, there are worrying signs that the issue of climate change has slipped down the policy agenda. This Special Report seeks to bring it right back on top by showing that the dilemma can be tackled at no net economic cost.

  3. Opinion survey on energy and climate in 2013

    International Nuclear Information System (INIS)

    Martin, Jean-Philippe

    2013-08-01

    This issue comments the results of a survey on the opinion of French people on the reality of climate change (for the whole population and with respect to age), on the opinion of French people on nuclear energy (in relationship with the opinion on climate change, globally in terms of benefit or drawback with evolution of the opinion since 1994), on the feeling of having suffered from the cold during the winter of 2012-2013, on the dwelling temperature in winter, and on the opinion on energy price

  4. Major economies Forum on energy and climate

    International Nuclear Information System (INIS)

    2009-01-01

    The Major Economies Forum is intended to facilitate an open dialogue among major developed and developing economies, help generate the political leadership necessary to achieve a successful outcome at the United Nations climatic change conference in Copenhagen, and advance the exploration of concrete initiatives and joint ventures that increase the supply of clean energy while cutting greenhouse gas emissions. The Forum's second preparatory meeting was held in Paris in May 2009, mainly focused on greenhouse gas emissions reduction actions and objectives, the diffusion of clean technologies, the financing of activities for climate protection and adaptation to climatic change impacts

  5. The forest products industry at an energy/climate crossroads

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Baek, Youngsun

    2010-01-01

    Transformational energy and climate policies are being debated worldwide that could have significant impact upon the future of the forest products industry. Because woody biomass can produce alternative transportation fuels, low-carbon electricity, and numerous other 'green' products in addition to traditional paper and lumber commodities, the future use of forest resources is highly uncertain. Using the National Energy Modeling System (NEMS), this paper assesses the future of the forest products industry under three possible U.S. policy scenarios: (1) a national renewable electricity standard, (2) a national policy of carbon constraints, and (3) incentives for industrial energy efficiency. In addition, we discuss how these policy scenarios might interface with the recently strengthened U.S. renewable fuels standards. The principal focus is on how forest products including residues might be utilized under different policy scenarios, and what such market shifts might mean for electricity and biomass prices, as well as energy consumption and carbon emissions. The results underscore the value of incentivizing energy efficiency in a portfolio of energy and climate policies in order to moderate electricity and biomass price escalation while strengthening energy security and reducing CO 2 emissions. - Research highlights: →Transformational energy and climate policies such as a national renewable electricity standard, a national policy of carbon constraints, and incentives for industrial energy efficiency could have significant impact upon the future of the forest products industry. →Each policy scenario reduces CO 2 emissions over time, compared to the business-as-usual forecast, with the carbon constrained policy producing the largest decline. As a package, the three policies together could cut CO 2 emissions from the electricity sector by an estimated 41% by 2030. →This study underscores the value of incentivizing energy efficiency in a portfolio of energy and

  6. Energy Saving Potential of PCMs in Buildings under Future Climate Conditions

    Directory of Open Access Journals (Sweden)

    Abdo Abdullah Ahmed Gassar

    2017-11-01

    Full Text Available Energy consumption reduction under changing climate conditions is a major challenge in buildings design, where excessive energy consumption creates an economic and environmental burden. Improving thermal performance of the buildings through support applying phase change material (PCM is a promising strategy for reducing building energy consumption under future climate change. Therefore, this study aims to investigate the energy saving potentials in buildings under future climate conditions in the humid and snowy regions in the hot continental and humid subtropical climates of the east Asia (Seoul, Tokyo and Hong Kong when various PCMs with different phase change temperatures are applied to a lightweight building envelope. Methodology in this work is implemented in two phases: firstly, investigation of energy saving potentials in buildings through inclusion of three types of PCMs with different phase temperatures into the building envelop separately and use weather file in the present (2017; and, secondly, evaluation of the effect of future climate change on the performance of PCMs by analyzing energy saving potentials of PCMs with 2020, 2050 and 2080 weather data. The results show that the inclusion of PCM into the building envelope is a promising strategy to increase the energy performance in buildings during both heating and cooling seasons in Seoul, Tokyo and Hong Kong under future climate conditions. The energy savings achieved by using PCMs in those regions are electricity savings of 4.48–8.21%, 3.81–9.69%, and 1.94–5.15%, and gas savings of 1.65–16.59%, 7.60–61.76%, and 62.07–93.33% in Seoul, Tokyo and Hong Kong, respectively, for the years 2017, 2020, 2050 and 2080. In addition, BioPCM and RUBITHERMPCM are the most efficient for improving thermal performance and saving energy in buildings in the tested regions and years.

  7. Energy and climate protection management, the key to higher energy efficiency in communities; Energie- und Klimaschutzmanagement. Der Schluessel zu mehr Energieeffizienz in Kommunen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    The brochure explains the dena energy and climate protection management concepts and presents tools for long-term reduction of energy consumption in communities. It presents valuable information for better organization of internal processes in community administrations and for the management of energy efficiency measures. The dena energy and climate protection management concept is developed in cooperation with model communities of different sizes since 2010. All interested communities can use this brochure as a guide for initiating effective climate protection measures.

  8. Building synergies between climate change mitigation and energy poverty alleviation

    International Nuclear Information System (INIS)

    Ürge-Vorsatz, Diana; Tirado Herrero, Sergio

    2012-01-01

    Even though energy poverty alleviation and climate change mitigation are inextricably linked policy goals, they have remained as relatively disconnected fields of research inquiry and policy development. Acknowledging this gap, this paper explores the mainstream academic and policy literatures to provide a taxonomy of interactions and identify synergies and trade-offs between them. The most important trade-off identified is the potential increase in energy poverty levels as a result of strong climate change action if the internalisation of the external costs of carbon emissions is not offset by efficiency gains. The most significant synergy was found in deep energy efficiency in buildings. The paper argues that neither of the two problems – deep reductions in GHG emissions by mid-century, and energy poverty eradication – is likely to be solved fully on their own merit, while joining the two policy goals may provide a very solid case for deep efficiency improvements. Thus, the paper calls for a strong integration of these two policy goals (plus other key related benefits like energy security or employment), in order to provide sufficient policy motivation to mobilise a wide-scale implementation of deep energy efficiency standards. - Highlights: ► A taxonomy of interactions between climate change and energy poverty is offered. ► Energy poverty levels may increase as a result of strong climate change action. ► However, strong synergies are offered by deep improvements of energy efficiency. ► Access to modern energy carriers is a key requirement in developing countries. ► Sufficiently solving both problems requires the integration of policy goals.

  9. Monitoring Top-of-Atmosphere Radiative Energy Imbalance for Climate Prediction

    Science.gov (United States)

    Lin, Bing; Chambers, Lin H.; Stackhouse, Paul W., Jr.; Minnis, Patrick

    2009-01-01

    Large climate feedback uncertainties limit the prediction accuracy of the Earth s future climate with an increased CO2 atmosphere. One potential to reduce the feedback uncertainties using satellite observations of top-of-atmosphere (TOA) radiative energy imbalance is explored. Instead of solving the initial condition problem in previous energy balance analysis, current study focuses on the boundary condition problem with further considerations on climate system memory and deep ocean heat transport, which is more applicable for the climate. Along with surface temperature measurements of the present climate, the climate feedbacks are obtained based on the constraints of the TOA radiation imbalance. Comparing to the feedback factor of 3.3 W/sq m/K of the neutral climate system, the estimated feedback factor for the current climate system ranges from -1.3 to -1.0 W/sq m/K with an uncertainty of +/-0.26 W/sq m/K. That is, a positive climate feedback is found because of the measured TOA net radiative heating (0.85 W/sq m) to the climate system. The uncertainty is caused by the uncertainties in the climate memory length. The estimated time constant of the climate is large (70 to approx. 120 years), implying that the climate is not in an equilibrium state under the increasing CO2 forcing in the last century.

  10. Fostering climate dialogue by introducing students to uncertainty in decision-making

    Science.gov (United States)

    Addor, N.; Ewen, T.; Johnson, L.; Coltekin, A.; Derungs, C.; Muccione, V.

    2014-12-01

    Uncertainty is present in all fields of climate research, spanning from climate projections, to assessing regional impacts and vulnerabilities to adaptation policy and decision-making. The complex and interdisciplinary nature of climate information, however, makes the decision-making process challenging. This process is further hindered by a lack of institutionalized dialogue between climate researchers, decision-makers and user groups. Forums that facilitate such dialogue would allow these groups to actively engage with each other to improve decisions. In parallel, introducing students to these challenges is one way to foster such climate dialogue. We present the design and outcome of an innovative workshop-seminar series we convened at the University of Zurich to demonstrate the pedagogical importance of such forums. An initial two-day workshop brought together 50 participants, including bachelor, master and PhD students and academic staff, and nine speakers from academia, industry, government, and philanthropy. The main objectives were to provide participants with tools to communicate uncertainty in their current or future research projects, to foster exchange between practitioners, students and scientists from different backgrounds and finally to expose students to multidisciplinary collaborations and real-world problems involving decisions under uncertainty. An opinion survey conducted before and after the workshop enabled us to observe changes in participants' perspectives on what information and tools should be exchanged between researchers and decision-makers to better address uncertainty. Responses demonstrated a marked shift from a pre-workshop vertical conceptualization of researcher-user group interaction to a post-workshop horizontal mode: in the former, researchers were portrayed as bestowing data-based products to decision-makers, while in the latter, both sets of actors engaged in frequent communication, exchanging their needs and expertise. Drawing

  11. Play, Make, Know, Keep up, Watch, Dream, and Teach: A Kids-eye View of Climate Change

    Science.gov (United States)

    Fisher, D. K.; Leon, N.; Fitzpatrick, A. J.; Jackson, R.; Greene, M. P.

    2012-12-01

    No matter the subject, the best way of dealing with doubters or deniers is to present the scientific evidence in a clear, concise, non-threatening, and compelling way. NASA's Climate Kids website--written for upper-elementary age kids and their teachers and parent--explains the basic science behind the evidence that Earth's climate is changing much more rapidly than can be accounted for by natural cycles, and that human activity is responsible. Climate science is complex, and most non-scientists are in what, for some, is the uncomfortable position of accepting scientists at their word. For young children, this is not the best approach to learning. They need to learn to think critically and evaluate the evidence for themselves. Climate Kids debuted in January 2011. It was redesigned and reorganized this year. From the beginning, educator feedback has been very positive. Teachers are grateful to have these difficult concepts simplified, yet still comprehensively covered to present the compelling evidence for anthropogenic global warming and its current and predicted effects. Climate Kids explains the "big questions" of climate science simply and clearly, giving teachers a valuable resource to supplement the science units they normally teach. The site extends science lessons in a very specific way, presenting understandable, real-world examples of scientific evidence of the changes happening on our planet. The new site design organizes content by topic and by type of presentation. Topics are shown in a left-side menu. They are Weather & Climate, Air, Ocean, Fresh Water, Carbon Travels (carbon cycle), Energy, Plants & Animals, and Technology. Presentation types are shown in a top menu. They are Play games, Make stuff (hands-on activities), Know your world (answers to big questions), Catch the latest (climate-related news), Watch videos, Dream of a career (profiles of individuals in green careers), and Teach climate science (resources for educators and parents). So, for

  12. Many-objective robust decision making for water allocation under climate change.

    Science.gov (United States)

    Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E

    2017-12-31

    Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large rivers. The framework was applied to the Pearl River basin (PRB), China where sufficient flow to the delta is required to reduce saltwater intrusion in the dry season. Before identifying and assessing robust water allocation plans for the future, the performance of ten state-of-the-art MOEAs (multi-objective evolutionary algorithms) is evaluated for the water allocation problem in the PRB. The Borg multi-objective evolutionary algorithm (Borg MOEA), which is a self-adaptive optimization algorithm, has the best performance during the historical periods. Therefore it is selected to generate new water allocation plans for the future (2079-2099). This study shows that robust decision making using carefully selected MOEAs can help limit saltwater intrusion in the Pearl River Delta. However, the framework could perform poorly due to larger than expected climate change impacts on water availability. Results also show that subjective design choices from the researchers and/or water managers could potentially affect the ability of the model framework, and cause the most robust water allocation plans to fail under future climate change. Developing robust allocation plans in a river basin suffering from increasing water shortage requires the researchers and water managers to well characterize future climate change of the study regions and vulnerabilities of their tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Vulnerability, impacts and adaptation : climate information needs for energy managers

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, M. [Environment Canada, Fredericton, NB (Canada). Adaptation and Impacts Research Division

    2007-07-01

    The future potential of hydropower and the vulnerability of the energy sector in Canada and North America was discussed with particular reference to climate information needs for managers regarding vulnerability, impacts and adaptation. The presentation discussed power line climate design criteria as well as a case study of the 1998 ice storm. Power output at Niagara Falls and on the St. Lawrence River were presented. Fossil fuels, electricity, renewable energy, transmission and transportation, and extreme climate and energy were discussed. Charts were provided to depict the 2001 heat wave and power demand; a summary of climate scenario requirements; the mean electricity demand and mean temperature during 1994 to 2000 in Ontario; runoff sensitivity; and accumulated freezing rain and transmission lines during the January ice storm of 1998. A chart on sources of uncertainty was also provided with reference to measurement error; variability; model structure; and scaling and aggregation. tabs., figs.

  14. Vulnerability, impacts and adaptation : climate information needs for energy managers

    International Nuclear Information System (INIS)

    Mirza, M.

    2007-01-01

    The future potential of hydropower and the vulnerability of the energy sector in Canada and North America was discussed with particular reference to climate information needs for managers regarding vulnerability, impacts and adaptation. The presentation discussed power line climate design criteria as well as a case study of the 1998 ice storm. Power output at Niagara Falls and on the St. Lawrence River were presented. Fossil fuels, electricity, renewable energy, transmission and transportation, and extreme climate and energy were discussed. Charts were provided to depict the 2001 heat wave and power demand; a summary of climate scenario requirements; the mean electricity demand and mean temperature during 1994 to 2000 in Ontario; runoff sensitivity; and accumulated freezing rain and transmission lines during the January ice storm of 1998. A chart on sources of uncertainty was also provided with reference to measurement error; variability; model structure; and scaling and aggregation. tabs., figs

  15. Would science serve decision-making to adapt the impact of climate change? Introduction to Climate Change Adaptation – scientific evidence, assessment framework and decision-making

    Directory of Open Access Journals (Sweden)

    Gin-Rong Liu Peiwen Lu

    2017-01-01

    Full Text Available We live in challenging times with a heightened sense of uncertainty and unpredictability. Climate change, with its impact on disruptive events as well as gradual trends, has been addressed in scientific studies and become increasingly important in policymaking. This rises up a great need on scientific integration and knowledge transformation. The Taiwan Integrated Research Programme on Climate Change Adaptation Technology (TaiCCAT is formed under this concern. Directing by the Ministry of Science and Technology (MOST, it carries a strong intention to explore and to conduct adequate knowledge of climate change and adaptation strategies for decision-making supports. The TaiCCAT highly recommends the approach of cross-disciplinary collaboration from environmental studies to adaptation governance. The result can therefore be more contributive to reflect the complexity of the changing world.

  16. The new energy challenges: climate, economy, geopolitics; Les nouveaux defis de l'energie: climat, economie, geopolitique

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, J.M. [Paris-Dauphine Univ., 75 - Paris (France); Aoun, M.C.; Campaner, N.; Cruciani, M.; Geoffron, P.; Gubaidullin, A.; Hristova, I.; Keppler, J.H.; Lautier, D.; Mandil, C.; Meritet, S.; Ouedraogo, N.; Rouhier, S.; Salaun, F.; Simon, Y.; Zaleski, C.P

    2009-07-01

    Oil, coal and natural gas, three polluting and non-renewable energies, supply more than 80% of the World daily energy consumption. Today, the scientific community has acknowledged the responsibility of this consumption on the global warming which may have dramatic impacts on physical, economical, social and political equilibria of our planet. Climate has become a public resource which belongs to everybody, the management of which should be done collectively and prospectively. However, the nation-states defend their wealth, their immediate interest without globalization and long-term outlook. This book treats of the new energy challenges under their regional and global aspects. This allows to better understand the dynamics of a multipolar world. Each region of the world has its own specificity, its capital of natural resources, its history, its own level of economic development, and its vulnerability with respect to climate change. For hundreds of million people, priority is given to the economic growth and wealth generation, but such a priority is synonymous of rise of the energy consumption and increase of greenhouse gas emissions. This opposition between 'more energy' and 'less emissions' is source of new economical and geopolitical tensions. Only a reinforcement of the world governance can solve these contradictions by the affirmation of a solidarity between populations, and for the first time, between generations. (J.S.)

  17. Balancing energy, development and climate priorities in India. Current trends and future projections

    International Nuclear Information System (INIS)

    Shukla, P.R.; Garg, A.; Dhar, S.; Halsnaes, K.

    2007-09-01

    This report gives a short introduction to the project: Projecting future energy demand: Balancing development, energy and climate priorities in large developing countries. Furthermore, the report analyses Indian energy, development and climate change, followed by an assessment of cross-country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. The focus is on the energy sector policies that mainstream climate interests within development choices. (BA)

  18. Regional Energy Demand Responses To Climate Change. Methodology And Application To The Commonwealth Of Massachusetts

    International Nuclear Information System (INIS)

    Amato, A.D.; Ruth, M.; Kirshen, P.; Horwitz, J.

    2005-01-01

    Climate is a major determinant of energy demand. Changes in climate may alter energy demand as well as energy demand patterns. This study investigates the implications of climate change for energy demand under the hypothesis that impacts are scale dependent due to region-specific climatic variables, infrastructure, socioeconomic, and energy use profiles. In this analysis we explore regional energy demand responses to climate change by assessing temperature-sensitive energy demand in the Commonwealth of Massachusetts. The study employs a two-step estimation and modeling procedure. The first step evaluates the historic temperature sensitivity of residential and commercial demand for electricity and heating fuels, using a degree-day methodology. We find that when controlling for socioeconomic factors, degree-day variables have significant explanatory power in describing historic changes in residential and commercial energy demands. In the second step, we assess potential future energy demand responses to scenarios of climate change. Model results are based on alternative climate scenarios that were specifically derived for the region on the basis of local climatological data, coupled with regional information from available global climate models. We find notable changes with respect to overall energy consumption by, and energy mix of the residential and commercial sectors in the region. On the basis of our findings, we identify several methodological issues relevant to the development of climate change impact assessments of energy demand

  19. Regional Energy Demand Responses To Climate Change. Methodology And Application To The Commonwealth Of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Amato, A.D.; Ruth, M. [Environmental Policy Program, School of Public Policy, University of Maryland, 3139 Van Munching Hall, College Park, MD (United States); Kirshen, P. [Department of Civil and Environmental Engineering, Tufts University, Anderson Hall, Medford, MA (United States); Horwitz, J. [Climatological Database Consultant, Binary Systems Software, Newton, MA (United States)

    2005-07-01

    Climate is a major determinant of energy demand. Changes in climate may alter energy demand as well as energy demand patterns. This study investigates the implications of climate change for energy demand under the hypothesis that impacts are scale dependent due to region-specific climatic variables, infrastructure, socioeconomic, and energy use profiles. In this analysis we explore regional energy demand responses to climate change by assessing temperature-sensitive energy demand in the Commonwealth of Massachusetts. The study employs a two-step estimation and modeling procedure. The first step evaluates the historic temperature sensitivity of residential and commercial demand for electricity and heating fuels, using a degree-day methodology. We find that when controlling for socioeconomic factors, degree-day variables have significant explanatory power in describing historic changes in residential and commercial energy demands. In the second step, we assess potential future energy demand responses to scenarios of climate change. Model results are based on alternative climate scenarios that were specifically derived for the region on the basis of local climatological data, coupled with regional information from available global climate models. We find notable changes with respect to overall energy consumption by, and energy mix of the residential and commercial sectors in the region. On the basis of our findings, we identify several methodological issues relevant to the development of climate change impact assessments of energy demand.

  20. Etude Climat no. 38 'The economic tools of Chinese climate and energy policy at the time of the at the time of the 12. five-year plan'

    International Nuclear Information System (INIS)

    Zhou, Di; Delbosc, Anais

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: The largest developing country and the main source of GHG emissions in the world, China has undertaken in its 12. five-year plan (2011-2015) to strengthen the strategy initiated in the 11. five-year plan. It proposes making the Chinese economy more flexible - hence its change of name to five-year 'guide'-, particularly through increased use of market instruments. This change applies across all fields, including energy and climate policies. Economic instruments are especially expected to help achieve the 2020 strategic energy and climate objectives which China committed to at the Copenhagen Conference in 2009. The five-year plan forms a programmatic document requiring translation into law to develop details of the measures required to achieve the objectives set out. Following the publication of the 12. five-year plan, the Chinese central government therefore introduced a series of regulations to promote energy conservation and reduction of greenhouse gas (GHG) emissions, including at a regional and sectoral level. Local governments are particularly expected to participate, by incorporating progress in achieving their climate and energy policy objectives into the system of administrative appraisal. In relation to energy policy, the economic tools put in place exist side by side with pre-existing administrative tools and remain subject to very strong administrative control. They concern the adjustment of both the production pattern - reinforcement of exchanges of production rights and renewable energy production quotas - and the structure of energy consumption - market for energy savings certificates coordinated at a regional level. In terms of climate policy, the Chinese government is testing a range of instruments, including market and taxation mechanisms. The 12. five-year plan notably includes the development of a

  1. The Moving Target of Climate Mitigation: Examples from the Energy Sector in California

    Science.gov (United States)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2016-12-01

    In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.

  2. Nuclear power, climate change and energy security: Exploring British public attitudes

    Energy Technology Data Exchange (ETDEWEB)

    Corner, Adam; Venables, Dan [School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT (United Kingdom); Spence, Alexa [School of Psychology/Horizon Digital Economy Research, University of Nottingham (United Kingdom); Poortinga, Wouter [Welsh School of Architecture, Cardiff University (United Kingdom); School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT (United Kingdom); Demski, Christina [School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT (United Kingdom); Pidgeon, Nick, E-mail: pidgeonn@cardiff.ac.uk [School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT (United Kingdom)

    2011-09-15

    Public attitudes towards nuclear power in the UK have historically been deeply divided, but as concern about climate change and energy security has exerted an increasing influence on British energy policy, nuclear power has been reframed as a low-carbon technology. Previous research has suggested that a significant proportion of people may 'reluctantly accept' nuclear power as a means of addressing the greater threat of climate change. Drawing on the results of a national British survey (n=1822), the current study found that attitudes towards nuclear remain divided, with only a minority expressing unconditional acceptance. In general, people who expressed greater concern about climate change and energy security and possessed higher environmental values were less likely to favour nuclear power. However, when nuclear power was given an explicit 'reluctant acceptance' framing - allowing people to express their dislike for nuclear power alongside their conditional support - concerns about climate change and energy security became positive predictors of support for nuclear power. These findings suggest that concern about climate change and energy security will only increase acceptance of nuclear power under limited circumstances-specifically once other (preferred) options have been exhausted. - Highlights: > We report data from 2005 to 2010 of British attitudes towards nuclear power and climate change. > Changes in attitudes over the time period were relatively modest. > British population remained relatively divided on nuclear power in 2010. > Concern about climate change was negatively related to evaluations of nuclear power. > Different framings of the issue alter the balance of support for nuclear power.

  3. Nuclear power, climate change and energy security: Exploring British public attitudes

    International Nuclear Information System (INIS)

    Corner, Adam; Venables, Dan; Spence, Alexa; Poortinga, Wouter; Demski, Christina; Pidgeon, Nick

    2011-01-01

    Public attitudes towards nuclear power in the UK have historically been deeply divided, but as concern about climate change and energy security has exerted an increasing influence on British energy policy, nuclear power has been reframed as a low-carbon technology. Previous research has suggested that a significant proportion of people may 'reluctantly accept' nuclear power as a means of addressing the greater threat of climate change. Drawing on the results of a national British survey (n=1822), the current study found that attitudes towards nuclear remain divided, with only a minority expressing unconditional acceptance. In general, people who expressed greater concern about climate change and energy security and possessed higher environmental values were less likely to favour nuclear power. However, when nuclear power was given an explicit 'reluctant acceptance' framing - allowing people to express their dislike for nuclear power alongside their conditional support - concerns about climate change and energy security became positive predictors of support for nuclear power. These findings suggest that concern about climate change and energy security will only increase acceptance of nuclear power under limited circumstances-specifically once other (preferred) options have been exhausted. - Highlights: → We report data from 2005 to 2010 of British attitudes towards nuclear power and climate change. → Changes in attitudes over the time period were relatively modest. → British population remained relatively divided on nuclear power in 2010. → Concern about climate change was negatively related to evaluations of nuclear power. → Different framings of the issue alter the balance of support for nuclear power.

  4. Collaborative use of geodesign tools to support decision-making on adaptation to climate change

    NARCIS (Netherlands)

    Eikelboom, T.; Janssen, R.

    2017-01-01

    Spatial planners around the world need to make climate change adaptation plans. Climate adaptation planning requires combining spatial information with stakeholder values. This study demonstrates the potential of geodesign tools as a mean to integrate spatial analysis with stakeholder participation

  5. Potential impacts of climate change on the built environment: ASHRAE climate zones, building codes and national energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Kumar, Jitendra [ORNL; Hoffman, Forrest M. [ORNL

    2017-10-01

    Statement of the Problem: ASHRAE releases updates to 90.1 “Energy Standard for Buildings except Low-Rise Residential Buildings” every three years resulting in a 3.7%-17.3% increase in energy efficiency for buildings with each release. This is adopted by or informs building codes in nations across the globe, is the National Standard for the US, and individual states elect which release year of the standard they will enforce. These codes are built upon Standard 169 “Climatic Data for Building Design Standards,” the latest 2017 release of which defines climate zones based on 8, 118 weather stations throughout the world and data from the past 8-25 years. This data may not be indicative of the weather that new buildings built today, will see during their upcoming 30-120 year lifespan. Methodology & Theoretical Orientation: Using more modern, high-resolution datasets from climate satellites, IPCC climate models (PCM and HadGCM), high performance computing resources (Titan) and new capabilities for clustering and optimization the authors briefly analyzed different methods for redefining climate zones. Using bottom-up analysis of multiple meteorological variables which were the subject matter, experts selected as being important to energy consumption, rather than the heating/cooling degree days currently used. Findings: We analyzed the accuracy of redefined climate zones, compared to current climate zones and how the climate zones moved under different climate change scenarios, and quantified the accuracy of these methods on a local level, at a national scale for the US. Conclusion & Significance: There is likely to be a significant annual, national energy and cost (billions USD) savings that could be realized by adjusting climate zones to take into account anticipated trends or scenarios in regional weather patterns.

  6. Designing planning and reporting for good governance of the EU's post-2020 climate and energy goals

    International Nuclear Information System (INIS)

    Sartor, Oliver; Colombier, Michel; Spencer, Thomas

    2015-10-01

    The European Union has agreed climate and energy goals for 2030. These objectives include, among others: reduce greenhouse gas emissions by at least 40%; increase the share of renewable energy to at least 27% of total final energy consumption; improve the efficiency of energy consumption by at least 27-30%. But while the targets are clear, what remains less clear is how the EU is to ensure that they are collectively achieved by its 28 Member States and how the actions Member States take to meet their goals by 2030 can be made consistent with Europe's more ambitious, climate objectives to reduce emissions by 80-95% by 2050. This paper puts forward a proposal for a new European Energy Union 'governance mechanism' that attempts to answer these questions, taking into account the priorities of different Member States in the current European context. The EU's 2020 Climate and Energy Package could assign legally-binding national targets to Member States for different aspects of their energy systems, such as for renewable energy, because these targets, although ambitious, remained at the margins of the national energy mix. But as the low-carbon transition makes progress, the changes required to national energy mixes become more fundamental and structural, and national competencies become increasingly important in defining the strategic direction of the energy sector and decarbonization strategies. However, it is also crucial that Member State's nationally determined strategies are consistent with the EU's overarching climate and energy goals, both to 2030 and 2050, and that their progress on key areas of EU relevance and competency can be effectively monitored. Doing this will require a more nuanced approach to governing EU climate policy than the two extremes that are currently presented in the debate: either a) a set of top-down, legally binding targets for all aspects of Energy Union, or b) a harmonised but ultimately very weak planning and reporting instrument with no

  7. State-of-the-Art Climate Predictions for Energy Climate Services

    Science.gov (United States)

    Torralba-Fernandez, Veronica; Davis, Melanie; Doblas-Reyes, Francisco J.; Gonzalez-Reviriego, Nube

    2015-04-01

    Climate predictions tailored to the energy sector represent the cutting edge in climate sciences to forecast wind power generation. At seasonal time scales, current energy practices use a deterministic approach based on retrospective climatology, but climate predictions have recently been shown to provide additional value. For this reason, probabilistic climate predictions of near surface winds can allow end users to take calculated, precautionary action with a potential cost savings to their operations. As every variable predicted in a coupled model forecast system, the prediction of wind speed is affected by biases. To overcome this, two different techniques for the post-processing of ensemble forecasts are considered: a simple bias correction and a calibration method. The former is based on the assumption that the reference and predicted distributions are well approximated by a normal distribution. The latter is a calibration technique which inflates the model variance, and the inflation of the ensemble is required in order to obtain a reliable outcome. Both methods use the "one-year out" cross-validated mode, and they provide corrected forecasts with improved statistical properties. The impact of these bias corrections on the quality of the ECMWF S4 predictions of near surface wind speed during winter is explored. To offer a comprehensive picture of the post-processing effect on the forecast quality of the system, it is necessary to use several scoring measures: rank histograms, reliability diagrams and skill maps. These tools are essential to assess different aspects of the forecasts, and to observe changes in their properties when the two methods are applied. This study reveals that the different techniques to correct the predictions produce a statistically consistent ensemble. However, the operations performed on the forecasts decrease their skill which correspond to an increase in the uncertainty. Therefore, even though the bias correction is fundamental

  8. The European Union climate and energy package. Assessment and perspectives for 2030

    International Nuclear Information System (INIS)

    Gautier, Celia; Loiseaux, Damien

    2014-03-01

    After having presented the three pillars of the climate and energy package of the European Union, this publication recalls the genesis of its adoption and its components in the 2009 package (directives on the European carbon market, on renewable energies, on CO 2 capture and storage). It indicates and comments the objectives of the package by 2020 (reduction of emissions, share of renewable energies, reduction of energy consumption, share of renewable energies in transports). It proposes an assessment of the 2009 climate and energy package in terms of objectives, presents a status of the package implementation (notably in France and in Germany), outlines its benefits (for the European society and economy, impacts at the world level, fragile development of renewable energies), and drawbacks (insufficient objective, ETS dysfunction, impact of the economic crisis, lack of integration of package policies and energy and tax policies, limitations of directives on products and sub-sectors, imported emissions as the undetected stowaway). It reports the recommendations of the Action Climat network to strengthen the action on climate before 2020 and for the package by 2030

  9. Report of a Policy Forum: Weather, Climate, and Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-01

    The report of a policy forum on Weather, Climate, and Energy presents findings and recommendations that, if implemented, could position the energy sector, the providers of weather and climate science and services, and energy consumers to mange more cooperatively and effectively the production, distribution, and consumption of electrical power and fossil fuels. Recent U.S. experience with a series of energy shortages encouraged the AMS Atmospheric Policy Program to join with the University of Oklahoma in the development of a forum to address the issues connected with responding to those shortages. Nearly 100 representatives from the public, private, and academic portions of the energy production sector, the meteorological community, political and corporate leaders, weather risk management analysts, and policy makers met on October 16-17, 2001 to discuss these policy issues.

  10. Nuclear Energy's Role in Mitigating Climate Change and Air Pollution

    International Nuclear Information System (INIS)

    2013-01-01

    Energy experts expect energy demand to rise dramatically in the 21st century, especially in developing countries, where today, over one billion people have no access to modern energy services. Meeting global energy demand will require a 75% expansion in primary energy supply by 2050. If no steps are taken to reduce emissions, the energy-related CO 2 emissions would nearly double in the same period. The increased levels of this greenhouse gas in the atmosphere could raise average global temperatures 3 o C or more above pre-industrial levels, which may trigger the dangerous anthropogenic interference with the climate system, which the United Nations Framework Convention on Climate Change seeks to prevent.

  11. Climate-responsive design : A framework for an energy concept design-decision support tool for architects using principles of climate-responsive design

    NARCIS (Netherlands)

    Looman, R.H.J.

    2017-01-01

    In climate-responsive design the building becomes an intermediary in its own energy housekeeping, forming a link between the harvest of climate resources and low-energy provision of comfort. Essential here is the employment of climate-responsive building elements; structural and architectural

  12. Addressing the trade-climate change-energy nexus: China's explorations in a global governance landscape

    OpenAIRE

    Monkelbaan, Joachim

    2014-01-01

    We have arrived at a critical juncture when it comes to understanding the numerous ways in which trade interacts with climate change and energy (trade-climate-energy nexus). Trade remains crucial for the sustainable development of the world's greatest trading nation: China. After clarifying the linkages within the trade, climate change and energy nexus, this article delves into China's specific needs and interests related to trade, climate change and energy. Then it explores the ways in which...

  13. Revisiting the generation and interpretation of climate models experiments for adaptation decision-making (Invited)

    Science.gov (United States)

    Ranger, N.; Millner, A.; Niehoerster, F.

    2010-12-01

    Traditionally, climate change risk assessments have taken a roughly four-stage linear ‘chain’ of moving from socioeconomic projections, to climate projections, to primary impacts and then finally onto economic and social impact assessment. Adaptation decisions are then made on the basis of these outputs. The escalation of uncertainty through this chain is well known; resulting in an ‘explosion’ of uncertainties in the final risk and adaptation assessment. The space of plausible future risk scenarios is growing ever wider with the application of new techniques which aim to explore uncertainty ever more deeply; such as those used in the recent ‘probabilistic’ UK Climate Projections 2009, and the stochastic integrated assessment models, for example PAGE2002. This explosion of uncertainty can make decision-making problematic, particularly given that the uncertainty information communicated can not be treated as strictly probabilistic and therefore, is not an easy fit with standard decision-making under uncertainty approaches. Additional problems can arise from the fact that the uncertainty estimated for different components of the ‘chain’ is rarely directly comparable or combinable. Here, we explore the challenges and limitations of using current projections for adaptation decision-making. We report the findings of a recent report completed for the UK Adaptation Sub-Committee on approaches to deal with these challenges and make robust adaptation decisions today. To illustrate these approaches, we take a number of illustrative case studies, including a case of adaptation to hurricane risk on the US Gulf Coast. This is a particularly interesting case as it involves urgent adaptation of long-lived infrastructure but requires interpreting highly uncertain climate change science and modelling; i.e. projections of Atlantic basin hurricane activity. An approach we outline is reversing the linear chain of assessments to put the economics and decision-making

  14. Climate science informs participatory scenario development and applications to decision making in Alaska

    Science.gov (United States)

    Welling, L. A.; Winfree, R.; Mow, J.

    2012-12-01

    Climate change presents unprecedented challenges for managing natural and cultural resources into the future. Impacts are expected to be highly consequential but specific effects are difficult to predict, requiring a flexible process for adaptation planning that is tightly coupled to climate science delivery systems. Scenario planning offers a tool for making science-based decisions under uncertainty. The National Park Service (NPS) is working with the Department of the Interior Climate Science Centers (CSCs), the NOAA Regional Integrated Science and Assessment teams (RISAs), and other academic, government, non-profit, and private partners to develop and apply scenarios to long-range planning and decision frameworks. In April 2012, Alaska became the first region of the NPS to complete climate change scenario planning for every national park, preserve, and monument. These areas, which collectively make up two-thirds of the total area of the NPS, are experiencing visible and measurable effects attributable to climate change. For example, thawing sea ice, glaciers and permafrost have resulted in coastal erosion, loss of irreplaceable cultural sites, slope failures, flooding of visitor access routes, and infrastructure damage. With higher temperatures and changed weather patterns, woody vegetation has expanded into northern tundra, spruce and cedar diebacks have occurred in southern Alaska, and wildland fire severity has increased. Working with partners at the Alaska Climate Science Center and the Scenario Network for Alaska Planning the NPS integrates quantitative, model-driven data with qualitative, participatory techniques to scenario creation. The approach enables managers to access and understand current climate change science in a form that is relevant for their decision making. Collaborative workshops conducted over the past two years grouped parks from Alaska's southwest, northwest, southeast, interior and central areas. The emphasis was to identify and connect

  15. Changing Climate in the MENA Means Changing Energy Needs

    Directory of Open Access Journals (Sweden)

    Adam Fenech

    2015-12-01

    by the 2050s (2041-2070.These preliminary results should assist the MENA Region in planning its energy needs and its needs forrenewable energy through increasing the understanding of how climate has impacted the region in thepast, and how climate will impact in the future. 

  16. Teaching to the Next Generation Science Standards with Energy, Climate, and Water Focused Games

    Science.gov (United States)

    Mayhew, M. A.; Hall, M.; Civjan, N.

    2015-12-01

    We produced two fun-to-play card games with the theme, The Nexus of Energy, Water, and Climate, that directly support teaching to the NGSS. In the games, players come to understand how demand for energy, water use, and climate change are tightly intertwined. Analysis by scientists from the national laboratories ensured that the games are reflect current data and research. The games have been tested with high school and informal science educators and their students and have received a formal evaluation. The games website http://isenm.org/games-for-learning shows how the games align with the NGSS, the Common Core, and the NRC's Strands of Science Learning. It also contains an extensive collection of accessible articles on the nexus to support use of the games in instruction. Thirst for Power is a challenging resource management game. Players, acting as governors of regions, compete to be the first to meet their citizens' energy needs. A governor can choose from a variety of carbon-based or renewable energy sources, but each source uses water and has an environmental—including climate change—impact. Energy needs must be met using only the water resources allocated to the region and without exceeding the environmental impact limit. "ACTION" cards alter game play and increase competition. Challenge and Persuade is a game of scientific argumentation, using evidence on nexus-related fact cards. Players must evaluate information, develop fact-based arguments, and communicate their findings. One card deck contains a set of adjectives, a second a series of fact cards. Players use their fact cards to make the best argument that aligns with an adjective selected by the "Judge". Players take turns being the "Judge," who determines who made the best argument. The games particularly align with NGSS elements: Connections to Engineering, Technology, and Application of Science. Players come to understand the science and engineering behind many energy sources and their impacts

  17. An international comparison of four polycentric approaches to climate and energy governance

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.sg [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2011-06-15

    Drawing from work on governance, this article explores four programs and policies that respond in some way to the challenges induced by climate change and modern energy use. Relying primarily on original data collected from research interviews and field research in seven countries along with four case studies, the article notes that polycentric approaches - those that mix scales (such as local/national or national/global), mechanisms (such as subsidies, tax credits, and mandates), and actors (such as government regulators, business stakeholders, and members of civil society) - can foster equity, inclusivity, information, accountability, organizational multiplicity, and adaptability that result in the resolution of climate and energy related problems. After explaining its case selection and research methods, defining climate and energy governance, and conceptualizing polycentrism, the study explores cases related to electricity supply in Denmark, ethanol production in Brazil, small-scale renewable energy in Bangladesh, and off-grid energy use in China. It concludes by highlighting how polycentrism may enhance effective climate and energy governance, but that further research is needed to fully substantiate that claim. - Highlights: > Polycentric governance systems mix scales, mechanisms, and actors. > Polycentric systems can foster equity, inclusivity, and information. > They can also promote accountability, organizational multiplicity, and adaptability. > Polycentrism thus has much promise in climate and energy related problems.

  18. An international comparison of four polycentric approaches to climate and energy governance

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2011-01-01

    Drawing from work on governance, this article explores four programs and policies that respond in some way to the challenges induced by climate change and modern energy use. Relying primarily on original data collected from research interviews and field research in seven countries along with four case studies, the article notes that polycentric approaches - those that mix scales (such as local/national or national/global), mechanisms (such as subsidies, tax credits, and mandates), and actors (such as government regulators, business stakeholders, and members of civil society) - can foster equity, inclusivity, information, accountability, organizational multiplicity, and adaptability that result in the resolution of climate and energy related problems. After explaining its case selection and research methods, defining climate and energy governance, and conceptualizing polycentrism, the study explores cases related to electricity supply in Denmark, ethanol production in Brazil, small-scale renewable energy in Bangladesh, and off-grid energy use in China. It concludes by highlighting how polycentrism may enhance effective climate and energy governance, but that further research is needed to fully substantiate that claim. - Highlights: → Polycentric governance systems mix scales, mechanisms, and actors. → Polycentric systems can foster equity, inclusivity, and information. → They can also promote accountability, organizational multiplicity, and adaptability. → Polycentrism thus has much promise in climate and energy related problems.

  19. Draft legislation aimed at creating a climate-energy contribution - Nr 1317

    International Nuclear Information System (INIS)

    Sas, Eva; Rugy, Francois de; Pompili, Barbara; Baupin, Denis; Auroi, Danielle; Alauzet, Eric; Abeille, Laurence; Allain, Brigitte; Attard, Isabelle; Bonneton, Michele; Cavard, Christophe; Coronado, Sergio; Lambert, Francois-Michel; Mamere, Noel; Massonneau, Veronique; Molac, Paul; Pompili, Barbara; Roumegas, Jean-Louis

    2013-01-01

    After having discussed the motivations of this draft legislation (necessary energy saving, drawbacks of radioactive wastes, climate change and energy crisis), this document presents a set of articles which respectively address the following topics: indication of energy consumptions (including nuclear electricity) submitted to the climate-energy contribution, indication of energetic product dealers who pay this contribution, determination of the contribution by the Parliament, pay-back to households of the contribution paid by households, creation of 'energy transition cheques', information of the consumer on his contribution

  20. The Costs of Climate Change

    Science.gov (United States)

    Guo, Jason

    2018-03-01

    This research paper talks about the economic costs of climate change, as well as the costs involved in responding to climate change with alternative fuels. This paper seeks to show that climate change, although seemingly costly in the short run, will both save future generations trillions of dollars and serve as a good economic opportunity. Scientists have long argued that the fate of humanity depends on a shift towards renewable energy. However, this paper will make clear that there is also an economic struggle. By embracing alternative fuels, we will not only lessen the danger and the frequency of these natural disasters but also strengthen the world’s financial state. Although a common argument against responding to climate change is that it is too expensive to make the switch, this research shows that in the future, it will save millions of lives and trillions of dollars. The only question left for policymakers is whether they will grasp this energy source shift.

  1. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    Science.gov (United States)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  2. Democratic energy policy making

    International Nuclear Information System (INIS)

    Tronconi, P.A.

    1991-01-01

    The author stresses the need for greater public participation, in particular, by organized labour in the role of organizer-coordinator, in the creation and implementation of local and regional clean energy-environmental protection programs. These would conform to innovative national strategies which would adapt the traditional short-sighted economic growth-energy use models still used by many industrialized countries, to current global requirements - that of harmonized global development and environmental protection to satisfy present needs without compromising the capacity of future generations, of developing, as well as, developed countries, to satisfy their own needs. With reference energy policies of Italy, heavily dependent on oil and gas imports, the author points out the strategic importance and technical-economic feasibility of energy conservation. He then makes suggestions on how to overcome past failures, due primarily to excessive bureaucracy and scarce investment, in the realization of effective energy conservation programs

  3. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  4. A review of renewable energy sources, sustainability issues and climate change mitigation

    Directory of Open Access Journals (Sweden)

    Phebe Asantewaa Owusu

    2016-12-01

    Full Text Available The world is fast becoming a global village due to the increasing daily requirement of energy by all population across the world while the earth in its form cannot change. The need for energy and its related services to satisfy human social and economic development, welfare and health is increasing. Returning to renewables to help mitigate climate change is an excellent approach which needs to be sustainable in order to meet energy demand of future generations. The study reviewed the opportunities associated with renewable energy sources which includes: Energy Security, Energy Access, Social and Economic development, Climate Change Mitigation, and reduction of environmental and health impacts. Despite these opportunities, there are challenges that hinder the sustainability of renewable energy sources towards climate change mitigation. These challenges include Market failures, lack of information, access to raw materials for future renewable resource deployment, and our daily carbon footprint. The study suggested some measures and policy recommendations which when considered would help achieve the goal of renewable energy thus to reduce emissions, mitigate climate change and provide a clean environment as well as clean energy for all and future generations.

  5. Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania

    International Nuclear Information System (INIS)

    Streimikiene, Dalia; Baležentis, Tomas; Kriščiukaitienė, Irena

    2012-01-01

    Lithuania has developed several important climate change mitigation policy documents however there are no attempts in Lithuania to develop local climate change mitigation policies or to decentralize climate change mitigation policy. Seeking to achieve harmonization and decentralization of climate change mitigation and energy policies in Lithuania the framework for local climate change mitigation strategy need to be developed taking into account requirements, targets and measures set in national climate change mitigation and energy policy documents. The paper will describe how national climate change mitigation and energy policies can be implemented via local energy and climate change mitigation plans. The aim of the paper is to analyze the climate change mitigation policy and its relationship with policies promoting sustainable energy development in Lithuania and to present a framework for local approaches to climate change mitigation in Lithuania, in the context of the existing national and supra-national energy, climate change, and rural development policies. - Highlights: ► The framework for local energy action plans is offered. ► The structural support possibilities are assessed with respect to the Lithuanian legal base. ► The proposals are given for further promotion of sustainable energy at the local level.

  6. Porte de Gascogne region - Energy-climate profile. Study of the potential in renewable energy and in energy management in five communes of the Porte de Gascogne region

    International Nuclear Information System (INIS)

    2013-03-01

    After a presentation of the studied territory, a recall of challenges related to climate change, a discussion of the role of Climate-Air-Energy Regional Schemes (SRCAE), this study reports an analysis of the territory vulnerability to climate change under different aspects (climate, biodiversity, water, agriculture, built environment, soil erosion, others). It draws the energy-climate profile of the region in terms of energy consumption and of vulnerability. These issues are then addressed per sector (housing, tertiary, agriculture, industry, transports, wastes, good consumption, tourism). Energy production is analysed (renewable energies, solar thermal, photovoltaic, wood, biomass, biogas, geothermal, combustion, bio-fuel). Scenarios are defined for energy saving, reduction of greenhouse gas emissions, renewable energy production, and carbon storage. An action plan is then defined. A second document reports studies of energy consumption, heritage, possibilities of development of renewable energies, and possibilities of development of positive energy building in the case of five communes (Fleurance, Gimont, Lectoure, Saint-Clar, and Samatan)

  7. Energy policy after 2020 : Economic arguments to pursue energy policy for non-climate related reasons

    NARCIS (Netherlands)

    Kocsis, V.; Koutstaal, P.; Tieben, B.; van Hout, M.; Hof, B.

    2012-01-01

    This research investigates the contribution of sustainable energy policy and energy saving policy to the public goals of energy policy in the Netherlands. Not surprisingly current discussion about sustainable energy policy focus on the contribution of energy policy to the goals of climate policy,

  8. Indoor climate in renovated and energy retrofitted social housing

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Jensen, Ole Michael

    2016-01-01

    The need for energy retrofitting of the Danish single-family houses is massive, especially for the high proportion of single-family houses built in the 1960s and 1970s. But even though the potential benefits are many, only few families embark on a major energy retrofit. There may be many reasons...... for this. An obvious one may be limited knowledge of non-energy benefits, e.g. in relation to the indoor climate. The objective of this study was to explain this limited effort to save energy by identifying barriers and incentives among house owners in relation to energy retrofitting of one’s own house....... Moreover, it was investigated among house owners, who had carried out energy retrofitting, whether a number of factors, including the perceived indoor climate, became better or worse after retrofitting. A questionnaire survey was carried out among 1,990 house owners in a municipality north of Copenhagen...

  9. Do colder and hotter climates make richer societies more, but poorer societies less, happy and altruistic?

    NARCIS (Netherlands)

    Van de Vliert, E; Huang, X; Parker, PM

    Physiological needs for thermal comfort, nutritional comfort, and healthiness make colder and hotter climates more demanding than more temperate climates. Affluence may help to meet those thermal demands. Two country-level studies indeed show that thermal demands (colder and hotter climates) and

  10. A New Wave of European Climate and Energy Policy: Towards a 2030 Framework

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Gina

    2013-06-11

    Against a complex, challenging, and often contradictory background, the EU is currently trying to decide what kind of climate and energy regime it wants and needs in the post-2020 period. Should it replicate the formula of the 2008 Climate and Energy Package to 2030 and beyond? Or are there other pathways that may prove more effective or politically palatable? The European Commission has recently published a consultation paper on a 2030 climate and energy framework and enormous efforts are being expended in Brussels and across the Member States as stakeholders work to shape to terms of the debate. This policy brief attempts to provide an understanding of the current debates and to illuminate the key challenges in designing a new wave of European climate policy. It first sets out the current EU energy and climate framework and discusses progress made to date, before going on to outline a range of key challenges in the design of a 2030 framework. This is the fourth in a series of Environment Nexus policy briefs by experts in the field of climate, energy, agriculture and water.

  11. European Climate - Energy Security Nexus. A model based scenario analysis

    International Nuclear Information System (INIS)

    Criqui, Patrick; Mima, Silvana

    2011-01-01

    In this research, we have provided an overview of the climate-security nexus in the European sector through a model based scenario analysis with POLES model. The analysis underline that under stringent climate policies, Europe take advantage of a double dividend in its capacity to develop a new cleaner energy model and in lower vulnerability to potential shocks on the international energy markets. (authors)

  12. Using "Making Sense of Climate Science Denial" MOOC videos in a college course

    Science.gov (United States)

    Schuenemann, K. C.; Cook, J.

    2015-12-01

    The Massive Open Online Course (MOOC) "Denial101x: Making Sense of Climate Science Denial" teaches students to make sense of the science and respond to climate change denial. The course is made up of a series of short, myth-debunking lecture videos that can be strategically used in college courses. The videos and the visuals within have proven a great resource for an introductory college level climate change course. Methods for using the videos in both online and in-classroom courses will be presented, as well as student reactions and learning from the videos. The videos introduce and explain a climate science topic, then paraphrase a common climate change myth, explain why the myth is wrong by identifying the characteristic of climate denial used, and concludes by reinforcing the correct science. By focusing on common myths, the MOOC has made an archive of videos that can be used by anyone in need of a 5-minute response to debunk a myth. By also highlighting five characteristics of climate denial: fake experts, logical fallacies, impossible expectations, cherry picking, and conspiracy theories (FLICC), the videos also teach the viewer the skills they need to critically examine myths they may encounter in the real world on a variety of topics. The videos also include a series of expert scientist interviews that can be used to drive home points, as well as put some faces to the science. These videos are freely available outside of the MOOC and can be found under the relevant "Most used climate myths" section on the skepticalscience.com webpage, as well as directly on YouTube. Discover ideas for using videos in future courses, regardless of discipline.

  13. Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050

    International Nuclear Information System (INIS)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy sectors. The methodologies used in two academic scenarios, IDA 2050 and CEESA, are compared. The main differences in the methodologies of IDA 2050 and CEESA are found in the estimation of future biomass potential, transport demand assessment, and a trial to examine future power grid in an electrical engineering perspective. The above-mentioned methodologies are compared in an evolutionary perspective to determine if the methodologies reflect the complex reality well. The results of the scenarios are also assessed within the framework of “radical technological change” in order to show which future scenario assumes more radical change within five dimensions of technology; technique, knowledge, organization, product, and profit. -- Highlights: ► Three future scenarios for Danish future in 2050 are compared. ► All of these scenarios suggest the same solutions for the future with minor differences. ► There are differences in methodologies for IDA 2050 and CEESA such as biomass, transport, and power grid. ► The contents of scenarios are assessed which scenario assume more radical technological change in the future.

  14. Old Wine in New Bottles? Does Climate Policy Determine Bilateral Development Aid for Renewable Energy and Energy Efficiency?

    Directory of Open Access Journals (Sweden)

    Axel Michaelowa

    2011-05-01

    Full Text Available Published by Palgrave MacmillanSince the UN Conference on Environment and Development in Rio de Janeiro in 1992 bilateral and multilateral donors have stressed that development assistance has increasingly been oriented towards climate-friendly interventions. With respect to energy aid, this should lead to a substantial increase in projects related to renewable energy and energy efficiency. Given a new database of hundreds of thousands of bilateral development assistance projects, we can assess whether such a reorientation has indeed taken place. We find that, contrary to expectations, the share of bilaterally-funded renewable energy and energy efficiency projects did not increase over the period from 1980 to 2008. This share fluctuated greatly, following the price of oil, peaking with the second oil crisis of the early 1980s. The impacts of global climate policy treaties are minor or inexistent. ‘Traditional’ renewable energies such as hydro and geothermal declined, while “new” renewables showed two peaks in the early 1980s and late 1990s. Differences between donor countries are huge. Several countries, including climate sceptics such as the US and Australia, but also the UK and Switzerland, saw a consistent decline. The self-proclaimed climate pioneers such as Germany, the Netherlands, Norway and Sweden show peaks related to both the oil crises and international climate policy. Only in Austria, Denmark, Finland and Spain can ‘new’ climate mitigation development assistance be found.

  15. Innovative energy technologies in energy-economy models: assessing economic, energy and environmental impacts of climate policy and technological change in Germany.

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.

    2007-04-18

    Energy technologies and innovation are considered to play a crucial role in climate change mitigation. Yet, the representation of technologies in energy-economy models, which are used extensively to analyze the economic, energy and environmental impacts of alternative energy and climate policies, is rather limited. This dissertation presents advanced techniques of including technological innovations in energy-economy computable general equilibrium (CGE) models. New methods are explored and applied for improving the realism of energy production and consumption in such top-down models. The dissertation addresses some of the main criticism of general equilibrium models in the field of energy and climate policy analysis: The lack of detailed sectoral and technical disaggregation, the restricted view on innovation and technological change, and the lack of extended greenhouse gas mitigation options. The dissertation reflects on the questions of (1) how to introduce innovation and technological change in a computable general equilibrium model as well as (2) what additional and policy relevant information is gained from using these methodologies. Employing a new hybrid approach of incorporating technology-specific information for electricity generation and iron and steel production in a dynamic multi-sector computable equilibrium model it can be concluded that technology-specific effects are crucial for the economic assessment of climate policy, in particular the effects relating to process shifts and fuel input structure. Additionally, the dissertation shows that learning-by-doing in renewable energy takes place in the renewable electricity sector but is equally important in upstream sectors that produce technologies, i.e. machinery and equipment, for renewable electricity generation. The differentiation of learning effects in export sectors, such as renewable energy technologies, matters for the economic assessment of climate policies because of effects on international

  16. Compressed Air Energy Storage in Offshore Grids

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten; Crotogino, Fritz; Donadei, Sabine

    2011-01-01

    management framework is used as the basis for identifying key challenges and opportunities to enhance the integration of climate change adaptation in energy planning and decision-making. Given its importance for raising awareness and for stimulating action by planners and decision-makers, emphasis is placed......Energy systems are significantly vulnerable to current climate variability and extreme events. As climate change becomes more pronounced, the risks and vulnerabilities will be exacerbated. To date, energy sector adaptation issues have received very limited attention. In this paper, a climate risk...... barriers to integration of climate risks and adaptive responses in energy planning and decision making. Both detailed assessments of the costs and benefits of integrating adaptation measures and rougher ‘order of magnitude’ estimates would enhance awareness raising and momentum for action....

  17. Overcoming Barriers: Tailoring Climate Education for Latino and non-Latino Citizen to Impact Decision Making

    Science.gov (United States)

    Estrada, M.; Boudrias, M. A.; Silva-Send, N. J.; Gershunov, A.; Anders, S.

    2013-12-01

    Culture has been shown to be an important determinant of Latino/Hispanic American environmental attitudes (Schultz, Unipan, & Gamba, 2000), which might help to explain the underrepresentation of Latinos in the U.S. 'environmental' movement. With shifting U.S. demographics, however, there is increased urgency to understand how Latinos integrate into the community that is concerned and literate about climate change. As part of the Climate Education Partners (CEP) work in San Diego, we investigated how to address this ethnic group disparity. In this paper, we describe a study of how climate change science knowledge relates to Latino and Non-Latino citizen (a) engagement in conservation behaviors and (b) more informed decision-making. Drawing upon previous work on the Tripartite Integration Model of Social Influence (TIMSI) (Estrada et al., 2011), we hypothesized that climate change knowledge that promotes efficacy (i.e., a sense that one can do something) would relate to greater engagement in conservation behaviors and more informed decision-making (both common of community members concerned about climate change). To test this model, 1001 San Diego residence participated in a telephone survey in which the attitudes towards climate change were assessed using '6 Americas' segmentation (Leiserowitz et al., 2011), in addition to climate change science knowledge, efficacy, values, and engagement in weekly and yearly climate change friendly behaviors (e.g., conservation, transportation, community engagement behaviors). Results showed that there were significant differences in the 6 America segmentation distributions, knowledge, efficacy and behavioral engagement with Latinos significantly more concerned than Non-Latinos, and reporting greater knowledge, efficacy and engagement in behaviors. However, data from both groups showed support for the TIMSI theoretical framework, such that efficacy mediated the relationship between climate change knowledge and behavior. Thus, for

  18. Possible consequences of climate change on the Swedish energy sector - impacts, vulnerability and adaptation

    International Nuclear Information System (INIS)

    Gode, Jenny; Axelsson, Johan; Eriksson, Sara; Holmgren, Kristina; Hovsenius, Gunnar; Kjellstroem, Erik; Larsson, Per; Lundstroem, Love; Persson, Gunn

    2007-06-01

    The events of recent years clearly demonstrate the far-reaching consequences of extreme weather situations on the energy system, particularly in the case of severe damage to transmission lines in connection with violent storms. Many climate researchers predict an increase in extreme weather events. Against this background, in 2005 Elforsk initiated this project where the aim has been to examine how climate change can affect plant operation, production conditions and energy usage patterns, how undesirable consequences can be predicted and what long-term measures may be necessary. Another central objective has been to bring about a dialogue between climate researchers, energy consultants/engineers and buyers for the energy industry. The inclusion of both positive and negative consequences has been an important ambition of the project. One key aspect of the project has been to develop climate scenarios for the next 20-25 years that describe possible changes in climate variables with relevance for the energy system. Based on these and literature studies, contact with experts and internal assessments, an analysis has been made of the possible impacts on hydropower, wind power, biofuel supply, natural gas supply, the power transmission network and energy usage. The project findings, which have also been discussed at a workshop with representatives from the energy industry, did not reveal any acute need for adaptation aside from those measures already being taken, for example to make the transmission system less vulnerable to weather conditions. Furthermore, the results indicate increased production potential for both hydropower and wind power. The production potential for hydropower stations from the Dalaelven River northwards would appear to increase by 2-10%. Estimates for the southern watercourses are less certain, but the production potential may decrease. Since around 80% of the country's hydropower is produced in the northern watercourses, this indicates an

  19. Negawatt manifesto - Making energy transition a success

    International Nuclear Information System (INIS)

    Salomon, Thierry; Jedliczka, Marc; Marignac, Yves; Hessel, Stephane; Lovins, Amory

    2012-01-01

    For ten years, the Negawatt association has taken a fresh look at our ways of consuming and producing energy. After the realisation of its 2011 scenario, the association has wished to complete this work with a reflexion full of ideas and operational measures and addressed to all citizens and to decision-makers. This manifesto describes with pedagogy and lucidity a possible and desirable path to get out of our energy and climate crises. Contents: 1 - Energy in crisis; 2 - Energy in its all forms; 3 - From the approach to the scenario: preparing the energy transition; 4 - Buildings and energy transition; 5 - Key-sectors of the transition: transports, industry and agriculture; 6 - Advent of renewable energies; 7 - From the nuclear twilight to the renewable dawn; 8 - Costs and benefits of the energy transition; 9 - The 'true value' of energy; 10 - From the status time to the action one. A series of 26 graphs summarizes the Negawatt approach. (J.S.)

  20. A discrete-continuous choice model of climate change impacts on energy

    International Nuclear Information System (INIS)

    Morrison, W.N.; Mendelsohn, R.

    1998-01-01

    This paper estimates a discrete-continuous fuel choice model in order to explore climate impacts on the energy sector. The model is estimated on a national data set of firms and households. The results reveal that actors switch from oil in cold climates to electricity and natural gas in warm climates and that fuel-specific expenditures follow a U-shaped relationship with respect to temperature. The model implies that warming will increase American energy expenditures, reflecting a sizable welfare damage

  1. Assessment of Climate Air Energy Regional Schemes in Burgundy and in Franche-Comte - Intermediate review on June 27, 2017. Burgundy Climate Air Energy Regional Scheme. Project, Scheme, Appendix to the SRCAE - Wind regional scheme of Burgundy, synthesis, opinion of the Burgundy CESER. Territorial Climate Energy Plan - Program of actions, Plenary session of the November 25, 2013. Climate Air Energy Regional Scheme - Franche-Comte SRCAE

    International Nuclear Information System (INIS)

    2011-09-01

    A first report proposes an assessment of the various aspects addressed by the Climate Air Energy Regional Schemes (SRCAE) of Burgundy and Franche-Comte: global aspects, and aspects related to adaptation to climate change, to air quality, to land planning, to the building sector, to mobility, to good transports, to agriculture, to forest, to industry and craft, to renewable energies, and to ecological responsibility. A synthetic presentation of the Burgundy scheme is proposed, and then an extended version which contains a description of the situation, an analysis of the regional potential, and a definition of orientations for the same above-mentioned aspects. A document more particularly addresses wind energy: role of wind energy in the energy mix of the region, role of small installations, wind energy potential, challenges and constraints (heritage and landscapes, natural environment, technical constraints), identification of areas of interest for wind energy projects, qualitative objectives. Documents published by the regional economic, social and environmental Council (CESER) of Burgundy are then proposed: a contribution to the Climate Air Energy Regional Scheme, a discussion and a presentation of a program of actions for the Climate Energy Territorial Plan (a large number of sheets of presentation of actions is proposed). The last document presents the Franche-Comte regional scheme: overview of regional knowledge on climate, air quality and environmental issues, challenges and potential per activity sector (transports and development, building, agriculture, industry, renewable energy production), definition of orientations and objectives for axes of action

  2. Climate, air and energy - Release 2015 - Key figures

    International Nuclear Information System (INIS)

    2016-05-01

    After an indication of some remarkable key figures (general data, data about office building, housing, industries, renewable energies, wastes, transports, agriculture and forests, and households, indication of some French and European objectives for 2020 and 2030), and a table containing indications of some international official texts (Kyoto protocol and its amendment, European directives) and of their content and scope (bio-fuels in transports, energy efficiency, buildings, labelling and eco-design, transports, renewable energies, energy and climate, greenhouse gas emissions and adaptation, air quality, wastes), and national texts (laws, plans) regarding the same issues, this publication presents figures and data under the form of graphs and tables to illustrate their evolution. They are general data on energy consumptions and intensities (data per sector and per country in Europe), markets and jobs related to renewable energies, certificates of energy saving, greenhouse gas emissions and climate change, regional data for France. The other chapters present large sets of graphs and tables of relevant data concerning housing buildings, office buildings, transports, industries, agriculture and forests, renewable energies and heat networks, wastes, and households. Generally, these data are presented in terms of evolution since the 1970's or the 1990's. They propose a detailed analytical point of view of the various energy and energy-related issues in these different sectors and fields

  3. Wind energy under cold climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-03-01

    There is an increasing interest in wind energy production under different climatic conditions, among them cold climate and icing conditions. More and more wind turbines are being installed in cold climates and even adapted technology has been developed for that environment. Various national activities are going on in at least Finland, Canada, Italy, Sweden, etc. and international collaboration has been carried out within the European Union's Non-nuclear energy programme. Wind turbine operation is affected by both the cold temperatures and the formation of ice on the blades and the supporting structure. Cold temperatures can be handled by material selections known in other technical fields but to prevent icing, new techniques have to be - and have been - developed. Icing affects the reliability of anemometers, which concerns both turbine control and resource estimation, and changes the aerodynamics of the blades, which eventually stops the turbine. In addition, occasional icing events can locally affect public safety. The development of applied technology has entered some different paths and different solutions are tried out. As the applications are entering a commercial phase, these is a request to gather the experiences and monitor the reliability in a form that can be utilised by developers, manufactureres, consultants and other tenderers. The Topical Experts Meeting will focus on site classification, operational experiences, modelling and mesurements of ice induced loads and safety aspects. (EHS)

  4. Renewable Energy, Climate Action and Resilient Societies: Accelerating the Global and Local Paradigm Shift

    International Nuclear Information System (INIS)

    Spencer, Thomas; Levai, David; Wang, Xin

    2017-07-01

    This report has been commissioned by a group of foundations in G20 countries, which have come together under the F20 platform in order to engage with the issue of climate change and sustainability in the context of the G20. The report analyzes the emerging energy transition towards efficient and renewable energy systems at global level and in specific G20 countries. On the basis of this analysis, and of the country specific case-studies that have also been conducted in the report, it provides recommendations for foundations and the G20 aimed at enhancing climate change mitigation and sustainability. Key Messages: 1. The global transition to renewable energy systems is underway and accelerating, driven by a combination of policy interventions, very rapid innovation, particularly the fall in renewable electricity costs, and changing societal priorities in many areas, such as the importance being placed on clean air, green industrial development, and investments in local communities. 2. This transition creates tremendous opportunities for countries and companies to ramp-up a new kind of job creation and economic development based on renewable, efficient energy systems. At the same time, countries and actors, who do not anticipate the shift, could be left behind and lose out economically. The good news is that the necessary tools are there. The main question is whether the social and political will for change can be developed and harnessed at the speed and scope required. 3. An economic shift on the scale and speed required to mitigate climate change cannot be achieved solely from the 'top-down'; it can only be implemented with the buy-in and participation of civil society. Worrying trends of inequality, economic disruption, and the fragmentation and fractiousness of public discourse make obtaining this social buy-in all the more difficult. Civil society must thus be seen as an essential partner of policies to drive a new paradigm of sustainable economic development

  5. Promoting India's development: energy security and climate security are convergent goals

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, Gupta [Los Alamos National Laboratory; Shankar, Harihar [Los Alamos National Laboratory; Joshi, Sunjoy [INDIA

    2009-01-01

    This paper investigates three aspects of the energy-climate challenges faced by India. First, we examine energy security in light of anticipated growth in power generation in response to the national goal of maintaining close to 10% growth in GDP. Second, we examine possible options for mitigation and adaptation to climate change for India that it can take to the coming Copenhagen meeting on climate change. Lastly, we introduce an open web based tool for analyzing and planning global energy systems called the Global Energy Observatory (GEO).

  6. Advice on a long-term strategy on energy and climate change

    International Nuclear Information System (INIS)

    2006-06-01

    A study was conducted to examine how climate change would affect Canada's economy and environment, with a focus on what a low carbon future might look like for Canada over the next 45 years. Two questions formed the basis of this research that examined how Canada can protect and enhance its national interest with regard to energy and climate change issues between now and the mid-twenty first century and what Canada currently needs to do in order to achieve this. A scenario was developed as part of this study in order to demonstrate one way in which Canada can achieve a significant reduction in energy related GHG emissions by 2050. For illustrative purposes, it was necessary to have a quantifiable definition of what a significant reduction would look like, and therefore, it was decided that a long-term domestic reduction of energy-related GHG emissions by 60 per cent by 2050 would be used as it is roughly consistent with similar targets adopted or being considered by other OECD countries. The scope of this analysis covered energy-related GHG emissions such as carbon dioxide, methane and nitrous oxide that result from the production and consumption of fossil fuels. The paper provided a summary of key findings from the study and discussed Canada's unique environmental challenges. Study characteristics, scope of the analysis and assumptions were also identified. A 60 per cent GHG reduction wedge diagram was provided to illustrate the scenario under consideration. Strategic priorities were also presented identifying where transformations will need to occur. These priorities include energy efficiency improvements, carbon capture and sequestration in the oil and gas sector, and electricity generation. The paper also provided several conclusions and next steps. One of the principal conclusions was that there can be a domestic solution to making significant GHG reductions by mid-century, but significant reductions can be achieved only if energy is used more efficiently and

  7. Moving toward Collective Impact in Climate Change Literacy: The Climate Literacy and Energy Awareness Network (CLEAN)

    Science.gov (United States)

    Ledley, Tamara Shapiro; Gold, Anne U.; Niepold, Frank; McCaffrey, Mark

    2014-01-01

    In recent years, various climate change education efforts have been launched, including federally (National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, National Science Foundation, etc.) and privately funded projects. In addition, climate literacy and energy literacy frameworks have been developed and…

  8. Simulation of Optimal Decision-Making Under the Impacts of Climate Change.

    Science.gov (United States)

    Møller, Lea Ravnkilde; Drews, Martin; Larsen, Morten Andreas Dahl

    2017-07-01

    Climate change causes transformations to the conditions of existing agricultural practices appointing farmers to continuously evaluate their agricultural strategies, e.g., towards optimising revenue. In this light, this paper presents a framework for applying Bayesian updating to simulate decision-making, reaction patterns and updating of beliefs among farmers in a developing country, when faced with the complexity of adapting agricultural systems to climate change. We apply the approach to a case study from Ghana, where farmers seek to decide on the most profitable of three agricultural systems (dryland crops, irrigated crops and livestock) by a continuous updating of beliefs relative to realised trajectories of climate (change), represented by projections of temperature and precipitation. The climate data is based on combinations of output from three global/regional climate model combinations and two future scenarios (RCP4.5 and RCP8.5) representing moderate and unsubstantial greenhouse gas reduction policies, respectively. The results indicate that the climate scenario (input) holds a significant influence on the development of beliefs, net revenues and thereby optimal farming practices. Further, despite uncertainties in the underlying net revenue functions, the study shows that when the beliefs of the farmer (decision-maker) opposes the development of the realised climate, the Bayesian methodology allows for simulating an adjustment of such beliefs, when improved information becomes available. The framework can, therefore, help facilitating the optimal choice between agricultural systems considering the influence of climate change.

  9. Black gold to green gold: regional energy policy and the rehabilitation of coal in response to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Drake, F. [University of Leeds, Leeds (United Kingdom). School of Geology

    2009-03-15

    Energy production has come under increasing scrutiny as concerns about energy security and climate change have risen. In the UK changes in government structure and privatisation of the electricity industry have led to the emergence of multi-level governance. This means that decisions on how to reduce carbon dioxide emissions from the electricity-generating sector should no longer be solely a national policy decision. Previous studies have sought to explore how renewable energy may develop under multi-level governance, but this paper pays attention to a traditional fossil fuel source, coal, which is still an important means of electricity generation. Coal is the most abundant fossil fuel and advocates argue that carbon capture and storage techniques could make coal 'clean', paving the way for a long-term, secure and low emission way to produce energy. This study focuses on the Yorkshire and Humber Region, which has had a long association with coal mining and looks at the implications of this as the region seeks to develop a climate change action plan and an energy strategy within the new regional governance structures. The paper argues that the regional networks developed to address climate change are influenced by existing social power structures and alliances. The region as a territorial structure becomes a useful device in promoting national priorities.

  10. Action strategy paper : climate change and energy

    Science.gov (United States)

    2008-10-01

    This strategy paper considers how the Chicago Metropolitan Agency for Planning (CMAP) might incorporate goals to reduce greenhouse gas (GHG) emissions, prepare for climate change impacts on transportation systems, and reduce energy with in the GO TO ...

  11. Review of models on energy and climate change

    International Nuclear Information System (INIS)

    Weyant, J.

    1991-01-01

    The Energy Modeling Forum recently has initiated a global climate change project. The purpose of the project is to summarize the work which has already been done on this topic and to evaluate the quality of the work. Several critical issues arise in any effort to make credible estimates of the cost of greenhouse control strategies. First, a worldwide modeling framework must be developed because carbon emissions from particular regions affect the global atmosphere. Because the data available on developing countries is quite poor at present, future efforts should focus on new data collection and modeling efforts in these regions. Second, all the major greenhouse gases - CO 2 , CFCs, methane and N 2 O - and not just carbon dioxide must be considered in future analyses. It is the overall concentration of all these different greenhouse gases in the atmosphere that ultimately will lead to global climate change. Third, an effective means for analyzing the various greenhouse gas control strategies must be developed. In order to successfully carry out the final task, a method must be developed which integrates a top-down macro-economic approach with a bottom-up process engineering approach. When implementing the macro-economic approach, one must choose plausible ranges for future economic and population growth rates. The reason for this is that even small changes in these driving factors can have huge impacts on emissions projections over the 100 or more year time frames required to address the greenhouse gas problem. The implementation of the process engineering approach requires: an accurate characterization of the costs, performance and availability of current and likely future technologies; an assessment of the likely barriers to technology transfer of both existing and new technologies, particularly from the developed to the developing countries; and an evaluation of the impact of energy prices and greenhouse gas policies on new technological development

  12. Practical guidance material for the development, energy and climate country studies

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Garg, A.; Olhoff, A.; Denton, F.

    2006-10-15

    The document is developed as part of the Development, Energy and Climate project in order to facilitate methodological consistency and the use of common assumptions in national case studies in Bangladesh, Brazil, China, India, Senegal and South Africa that are conducted as part of the project. In addition to this document the project and country studies are also based on in depth thematic work in three areas namely; 1) Development pathways and climate change; 2) Assessment of Policy Instruments in the Context of Current Market Structure, Institutional Capacities and Risks in Developing Countries; 3) Climate change impacts, vulnerability, and adaptation in the energy sector with a special emphasis given to linkages between adaptation and mitigation policies. The Development, Energy, and Climate project will identify promising energy policy options in the participating countries that are consistent with their national sustainable development objectives. The project teams from Bangladesh, Brazil, China, India, South Africa and Senegal will examine how energy sector policies can be evaluated using specific sustainable development indicators and existing analytical approaches and tools relevant to the countries. The country studies will address energy sector issues, adaptation policies, and alternative scenarios for technology penetration processes. The policy options and the sustainable development impacts of implementing these will be discussed in national stakeholder dialogues with broad participation of government, private sector and NGOs. Cross-country interactions about conceptual and common methodological issues will be covered in three thematic papers. The project will produce a synthesis of the country case studies as an input to various international processes in order to build support for approaches that integrate sustainable development, energy and climate policies. (au)

  13. Envelope as Climate Negotiator: Evaluating adaptive building envelope's capacity to moderate indoor climate and energy

    Science.gov (United States)

    Erickson, James

    Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.

  14. Local authorities in the context of energy and climate policy

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Cioccolanti, Luca; Polonara, Fabio; Brandoni, Caterina

    2012-01-01

    Several measures to boost the energy system towards a low-carbon future can be planned and implemented by local authorities, such as energy-saving initiatives in public buildings and lighting, information campaigns, and renewable energy pilot projects. This work analyzes the public administration's role in energy and climate policies by assessing carbon-lowering measures for properties and services managed directly by local governments in central Italy. Both short- and long-term schemes were considered in the analysis of local authority energy strategies. The MARKAL-TIMES energy model was applied to long-term energy planning to assess the effect of low-carbon initiatives on public-sector energy consumption up to 2030. Two energy scenarios were built, i.e. a Business As Usual (BAU) scenario based on current or soon-to-be-adopted national policies, and an Exemplary Public Scenario (EPS) including some further virtuous local policies suggested by local authorities. Our results show that a 20% primary energy reduction can be achieved with respect to the baseline year by means of short-term energy policies (5-year time span), while a primary energy saving of about 30% can be reached with longer-term energy policies (25-year time span), even after taking the increase in energy demand into account. This work goes to show the part that local governments can play in energy policy and their contribution to the achievement of climate goals. - Highlights: ► Assessment of Local Administration (LA) role in energy and climate policy. ► Analysis of both short-term and long-term carbon lowering measures. ► Use of MARKAL-TIMES model generator for long-term energy analysis. ► 20% primary energy reduction can be reached with short-term energy policies. ► 30% primary energy reduction can be reached with longer-term energy policies.

  15. Untying the Energy Knot of Supply Security, Climate Change, Economic Competitiveness: The Role of Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Bulteel, Paul; Capros, Pantelis

    2007-07-01

    In energy terms, the following decades will be dominated by the challenge of developing a low-carbon, energy-secure and competitive economy. EURELECTRIC launched a study, horizon 2030-2050, to develop a qualified vision about the role of electricity in responding to these challenges. The resulting message is a positive one: with the right policies that include a long-term visibility of carbon pricing to allow integration of climate change impacts in investments and business strategies, it is possible to substantially reduce greenhouse gas emissions without unreasonable costs to the economy, and at the same time to reduce oil and gas dependency. A focus on demand side energy-efficiency is a prerequisite. The development of renewables, of clean fossil fuel technology with carbon capture and storage, and of nuclear energy can make a low-carbon and largely oil-independent power generation mix a reality. This allows for formidable synergies with energy-efficient electro-technologies at the demand side. Two sectors are especially meaningful in this respect: the heating and cooling and road transport sectors, where heat pumps and plug-in hybrid cars respectively can make energy-efficient, oil-independent and low-carbon homes and cars a reality. Although the analysis is based on European conditions, the authors believe that it has worldwide relevance. (auth)

  16. Interactions of White Certificates for energy efficiency and other energy and climate policy instruments

    International Nuclear Information System (INIS)

    Oikonomou, V.

    2010-01-01

    The EU and its member states are developing their own policies targeting at energy supply, energy demand and environmental goals that are indirectly linked to energy use. As these policies are implemented in an already policy crowded environment, interactions of these instruments take place, which can be complementary competitive or self exclusive. As a starting point, we test White Certificates for energy efficiency improvement in the end-use sectors. Our main research questions are: (1) to provide a general explanatory framework for analyzing energy and climate policy interactions by employing suitable methods, and (2) to evaluate these methods and draw conclusions for policy makers when introducing White Certificates with other policy instruments stressing the critical condition that affect their performance. A core lesson is that when evaluating ex-ante instruments, a variety of economic and technological methods must be applied. Based on these methods, several endogenous and exogenous conditions affect the performance of White Certificates schemes with other policy instruments. Due to the innovative character of White Certificates and the uncertainty of hidden costs embedded into it, ex-ante evaluations should focus not only on the effectiveness and efficiency of the scheme, but on several other criteria which express the political acceptability and socioeconomic effects. We argue finally that White Certificates can make effective use of market forces and can assist in overcoming market barriers towards energy efficiency, and we expect that under certain preconditions, it can be integrated with other policy instruments and allows to achieve cost effectively multiple environmental objectives.

  17. Making sense of climate change risks and responses at the community level: A cultural-political lens

    Directory of Open Access Journals (Sweden)

    Ainka A. Granderson

    2014-01-01

    Full Text Available How to better assess, communicate and respond to risks from climate change at the community level have emerged as key questions within climate risk management. Recent research to address these questions centres largely on psychological factors, exploring how cognition and emotion lead to biases in risk assessment. Yet, making sense of climate change and its responses at the community level demands attention to the cultural and political processes that shape how risk is conceived, prioritized and managed. I review the emergent literature on risk perceptions and responses to climate change using a cultural-political lens. This lens highlights how knowledge, meaning and power are produced and negotiated across multiple stakeholders at the community level. It draws attention to the different ways of constructing climate change risks and suggests an array of responses at the community level. It further illustrates how different constructions of risk intersect with agency and power to shape the capacity for response and collective action. What matters are whose constructions of risk, and whose responses, count in decision-making. I argue for greater engagement with the interpretive social sciences in research, practice and policy. The interpretive social sciences offer theories and tools for capturing and problematising the ways of knowing, sense-making and mobilising around risks from climate change. I also highlight the importance of participatory approaches in incorporating the multiplicity of interests at the community level into climate risk management in fair, transparent and culturally appropriate ways.

  18. Application of global weather and climate model output to the design and operation of wind-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Judith [Climate Forecast Applications Network, Atlanta, GA (United States)

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  19. Climate-agriculture interactions and needs for policy making

    Science.gov (United States)

    Phillips, J. G.

    2010-12-01

    Research exploring climate change interactions with agriculture has evolved from simplistic “delta T” simulation experiments with crop models to work highlighting the importance of climate variability and extreme events, which characterized the negative impacts possible if no adaptation occurred. There soon followed consideration of socioeconomic factors allowing for adaptive strategies that are likely to mitigate the worst case outcomes originally projected. At the same time, improved understanding of biophysical feedbacks has led to a greater recognition of the role that agriculture plays in modifying climate, with a great deal of attention recently paid to strategies to enhance carbon sequestration in agricultural systems. Advances in models of biogeochemical cycling applied to agronomic systems have allowed for new insights into greenhouse gas emissions and sinks associated with current, conventional farming systems. Yet this work is still relatively simplistic in that it seldom addresses interactions between climate dynamics, adoption of mitigation strategies, and feedbacks to the climate system and the surrounding environment. In order for agricultural policy to be developed that provides incentives for appropriate adaptation and mitigation strategies over the next 50 years, a systems approach needs to be utilized that addresses feedbacks and interactions at field, farm and regional scales in a broader environmental context. Interactions between carbon and climate constraints on the one hand, and environmental impacts related to water, nutrient runoff, and pest control all imply a transformation of farming practices that is as of yet not well defined. Little attention has been paid to studying the implications of “alternative” farming strategies such as organic systems, intensive rotational grazing of livestock, or increases in the perennial component of farmscapes, all of which may be necessary responses to energy and other environmental constraints

  20. The new energy challenges: climate, economy, geopolitics

    International Nuclear Information System (INIS)

    Chevalier, J.M.; Aoun, M.C.; Campaner, N.; Cruciani, M.; Geoffron, P.; Gubaidullin, A.; Hristova, I.; Keppler, J.H.; Lautier, D.; Mandil, C.; Meritet, S.; Ouedraogo, N.; Rouhier, S.; Salaun, F.; Simon, Y.; Zaleski, C.P.

    2009-01-01

    Oil, coal and natural gas, three polluting and non-renewable energies, supply more than 80% of the World daily energy consumption. Today, the scientific community has acknowledged the responsibility of this consumption on the global warming which may have dramatic impacts on physical, economical, social and political equilibria of our planet. Climate has become a public resource which belongs to everybody, the management of which should be done collectively and prospectively. However, the nation-states defend their wealth, their immediate interest without globalization and long-term outlook. This book treats of the new energy challenges under their regional and global aspects. This allows to better understand the dynamics of a multipolar world. Each region of the world has its own specificity, its capital of natural resources, its history, its own level of economic development, and its vulnerability with respect to climate change. For hundreds of million people, priority is given to the economic growth and wealth generation, but such a priority is synonymous of rise of the energy consumption and increase of greenhouse gas emissions. This opposition between 'more energy' and 'less emissions' is source of new economical and geopolitical tensions. Only a reinforcement of the world governance can solve these contradictions by the affirmation of a solidarity between populations, and for the first time, between generations. (J.S.)

  1. Global energy scenarios, climate change and sustainable development

    International Nuclear Information System (INIS)

    Nakicenovic, Nebojsa

    2003-01-01

    Energy scenarios provide a framework for exploring future energy perspectives, including various combinations of technology options and their implications. Many scenarios in the literature illustrate how energy system developments may affect global change. Examples are the new emissions scenarios by the Intergovernmental Panel on Climate Change (IPCC) and the energy scenarios by the World Energy Assessment (WEA). Some of these scenarios describe energy futures that are compatible with sustainable development goals; such as improved energy efficiencies and the adoption of advanced energy supply technologies. Sustainable development scenarios are also characterized by low environmental impacts (at local, regional and global scales) and equitable allocation of resources and wealth. They can help explore different transitions toward sustainable development paths and alternative energy perspectives in general. The considerable differences in expected total energy requirements among the scenarios reflect the varying approaches used to address the need for energy services in the future and demonstrate effects of different policy frameworks, changes in human behavior and investments in the future, as well as alternative unfolding of the main scenario driving forces such as demographic transitions, economic development and technological change. Increases in research, development and deployment efforts for new energy technologies are a prerequisite for achieving further social and economic development in the world. Significant technological advances will be required, as well as incremental improvements in conventional energy technologies. In general, significant policy and behavioral changes will be needed during the next few decades to achieve more sustainable development paths and mitigate climate change toward the end of the century. (au)

  2. Creating dialogue: a workshop on "Uncertainty in Decision Making in a Changing Climate"

    Science.gov (United States)

    Ewen, Tracy; Addor, Nans; Johnson, Leigh; Coltekin, Arzu; Derungs, Curdin; Muccione, Veruska

    2014-05-01

    Uncertainty is present in all fields of climate research, spanning from projections of future climate change, to assessing regional impacts and vulnerabilities, to adaptation policy and decision-making. In addition to uncertainties, managers and planners in many sectors are often confronted with large amounts of information from climate change research whose complex and interdisciplinary nature make it challenging to incorporate into the decision-making process. An overarching issue in tackling this problem is the lack of institutionalized dialogue between climate researchers, decision-makers and user groups. Forums that facilitate such dialogue would allow climate researchers to actively engage with end-users and researchers in different disciplines to better characterize uncertainties and ultimately understand which ones are critically considered and incorporated into decisions made. We propose that the introduction of students to these challenges at an early stage of their education and career is a first step towards improving future dialogue between climate researchers, decision-makers and user groups. To this end, we organized a workshop at the University of Zurich, Switzerland, entitled "Uncertainty in Decision Making in a Changing Climate". It brought together 50 participants, including Bachelor, Master and PhD students and academic staff, and nine selected speakers from academia, industry, government, and philanthropy. Speakers introduced participants to topics ranging from uncertainties in climate model scenarios to managing uncertainties in development and aid agencies. The workshop consisted of experts' presentations, a panel discussion and student group work on case studies. Pedagogical goals included i) providing participants with an overview of the current research on uncertainty and on how uncertainty is dealt with by decision-makers, ii) fostering exchange between practitioners, students, and scientists from different backgrounds, iii) exposing

  3. Public opinion on renewable energy: The nexus of climate, politics, and economy

    Science.gov (United States)

    Olson-Hazboun, Shawn K.

    Increased use of renewable energy sources in the generation of electricity is a crucial component of transitioning to a less polluting energy system in the United States. Technologies like solar photovoltaic cells and wind turbines are being deployed at a rapid rate around the country, which means that an increasing portion of the public is becoming aware of renewable energy systems. The construction of these new industrial facilities has resulted in a variety of public reactions, positive and negative. Citizen opposition has been widely observed toward a variety of renewable energy facilities, and citizen groups can influence policy-making at the national, state, and local levels. Further research is needed to understand under what circumstances the public may take oppositional stances. To examine this topic, I analyze public perceptions of renewable energy using three different datasets. First, I used data from a survey conducted in 2014 in five communities in Utah, Wyoming, and Idaho experiencing renewable energy development (n=906). This dataset allowed me to untangle what factors help explain both individual as well as community-level variation in support for renewable energy. Second, I employed nationally representative survey data (n=13, 322) collected from 2008 to 2015 to examine the influence of a number of factors hypothesized to shape individuals' level of support for renewable energy policies including socio-demographic characteristics, political beliefs, belief in anthropogenic climate change, and nearby extractive industry activities. Last, I analyzed discourse about renewable energy in sixty-one semi-structured interviews with individuals representing various community sectors in three energy-producing rural communities in Utah. My research findings, on a whole, suggest that several place-based factors are significant in shaping public opinion about renewable energy, including community experience with renewable energy and local economic reliance on

  4. 15 local climate-energy plans: regions and districts, local leaders of the struggle against climate change

    International Nuclear Information System (INIS)

    2009-01-01

    This report presents some general information, the sectors addressed by the Climate - Energy Plan, the approaches adopted, the plan elaboration process (organisation, participation and governance, diagnosis and challenges identification, communication actions), the actions and their follow-up, the success factors and the improvement opportunities of the Climate-energy Plans elaborated and adopted by different French regions (Alsace, Aquitaine, Basse-Normandie, Champagne-Ardenne, Franche-Comte, Haute-Normandie, Languedoc-Roussillon, Limousin, Nord-Pas-de-Calais, Poitou-Charentes) and districts (Alpes Maritimes, Bas-Rhin, Eure, Seine-Maritime)

  5. Pays-de-la-Loire regional climate air energy scheme - The commitment for energy transition and climate in Pays-de-la-Loire. Environmental assessment report - Pays-de-la-Loire regional climate air energy scheme

    International Nuclear Information System (INIS)

    Galliard de Lavernee, Christian; Auxiette, Jacques; Potier, Valerie; Viroulaud, Lionel; Ganne, Maryse; Guevel, Vanina; Pineau, Christophe; Bretaud, Jean-Francois; Bertaud, Geraldine; Garnier, Patrick; Durr, Fabien; Bertron, Julien

    2013-01-01

    After a discussion of the strategic dimension of the regional climate air energy scheme (SRCAE), a first document proposes a synthetic presentation of the regional diagnosis in terms of energy consumption, greenhouse gas emissions, and renewable energy production. It discusses how to contribute to national objectives related to these issues, and gives a synthetic table of orientations. It indicates and comments areas of action for energy sobriety and efficiency and for the reduction of greenhouse gas emissions in the different sectors (agriculture, building, industry, transport and land development), for the development of renewable energies (wood-energy, methanization, wind energy, geothermal and aero-thermal energy, hydroelectricity, solar thermal and solar photovoltaic energy), for a good air quality, and for a compliance with a strategy of adaptation to climate change. A leaflet proposes a synthetic presentation of these issues (strategic orientations, regional diagnosis, and scenario by 2020). A document contains the opinion of the Environmental Authority on this scheme project. An environmental assessment report proposes a non-technical summary, a discussion of motivation for the acceptance of the SRCAE regarding objectives related to the protection of the environment, a discussion of the initial situation and perspectives of evolution of the environment, an analysis of possible noticeable effects of the SRCAE implementation, an assessment of impacts of Natura 2000, a brief discussion of measures envisaged to avoid, reduce or compensate harmful consequences of the SRCAE, and a presentation of the environmental assessment method

  6. Solar energy, architecture and climate in Colombia

    International Nuclear Information System (INIS)

    Carrillo B, J.

    1983-01-01

    In Colombia, the climatological conditions are such that with a possible serious appropriate technology to use the solar energy in the cities when the electricity rationing increases, for the illumination, the refrigeration, the electricity production, the heating, etc. The use of the solar energy is also been worth to look for a better adaptation between climate and architecture. In this sense, the article exposes some of the existent possibilities of application of the solar energy for the comfort of the habitat, possibilities of high efficiency and low cost that can be easily applicable in Colombia

  7. Energy policies avoiding a tipping point in the climate system

    International Nuclear Information System (INIS)

    Bahn, Olivier; Edwards, Neil R.; Knutti, Reto; Stocker, Thomas F.

    2011-01-01

    Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems. - Research Highlights: → Preserving the THC may require a fast and strong greenhouse gas emission reduction. → This could be achieved through strong changes in the energy mix. → Similar results would apply to any climate system tipping points.

  8. Benefit–cost analysis of non-marginal climate and energy projects

    International Nuclear Information System (INIS)

    Dietz, Simon; Hepburn, Cameron

    2013-01-01

    Conventional benefit–cost analysis incorporates the normally reasonable assumption that the policy or project under examination is marginal. Among the assumptions this entails is that the policy or project is small, so the underlying growth rate of the economy does not change. However, this assumption may be inappropriate in some important circumstances, including in climate-change and energy policy. One example is global targets for carbon emissions, while another is a large renewable energy project in a small economy, such as a hydropower dam. This paper develops some theory on the evaluation of non-marginal projects, with empirical applications to climate change and energy. We examine the conditions under which evaluation of a non-marginal project using marginal methods may be wrong, and in our empirical examples we show that both qualitative and large quantitative errors are plausible. - Highlights: • This paper develops the theory of the evaluation of non-marginal projects. • It also includes empirical applications to climate change and energy. • We show when evaluation of a non-marginal project using marginal methods is wrong

  9. Strengthening the European Union Climate and Energy Package. To build a low carbon, competitive and energy secure European Union

    International Nuclear Information System (INIS)

    Guerin, E.; Spencer, Th.

    2011-01-01

    As the EU's climate and energy goals defined in its Climate and Energy Package (CEP) are to protect the climate, to protect EU economic competitiveness, and to protect EU energy security, the authors first define these notions (time consistency, competitiveness, energy security) and stress the importance of strengthening the CEP, notably by fostering low carbon technology investment and low carbon products and services innovation. They discuss several policy recommendations for the development of a low carbon, competitive and energy secure EU. These recommendations are notably based on the strengthening of current instruments and on the implementation of new tools to reach the 20% energy efficiency target, on an increase stringency and predictability of the EU ETS, and on the use of direct public financial support to facilitate the transition towards a EU low carbon economy

  10. Distributed Energy Planning for Climate Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Stout, Sherry R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hotchkiss, Elizabeth L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Day, Megan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lee, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-01

    At various levels of government across the United States and globally climate resilient solutions are being adopted and implemented. Solutions vary based on predicted hazards, community context, priorities, complexity, and available resources. Lessons are being learned through the implementation process, which can be replicated regardless of level or type of government entity carrying out the resiliency planning. Through a number of analyses and technical support across the world, NREL has learned key lessons related to resilience planning associated with power generation and water distribution. Distributed energy generation is a large factor in building resilience with clean energy technologies and solutions. The technical and policy solutions associated with distributed energy implementation for resilience fall into a few major categories, including spatial diversification, microgrids, water-energy nexus, policy, and redundancy.

  11. Sustained Large-Scale Collective Climate Action Supported by Effective Climate Change Education Practice

    Science.gov (United States)

    Niepold, F., III; Crim, H.; Fiorile, G.; Eldadah, S.

    2017-12-01

    Since 2012, the Climate and Energy Literacy community have realized that as cities, nations and the international community seek solutions to global climate change over the coming decades, a more comprehensive, interdisciplinary approach to climate literacy—one that includes economic and social considerations—will play a vital role in knowledgeable planning, decision-making, and governance. City, county and state leaders are now leading the American response to a changing climate by incubating social innovation to prevail in the face of unprecedented change. Cities are beginning to realize the importance of critical investments to support the policies and strategies that will foster the climate literacy necessary for citizens to understand the urgency of climate actions and to succeed in a resilient post-carbon economy and develop the related workforce. Over decade of federal and non-profit Climate Change Education effective methods have been developed that can support municipality's significant educational capabilities for the purpose of strengthening and scaling city, state, business, and education actions designed to sustain and effectively address this significant social change. Looking to foster the effective and innovative strategies that will enable their communities several networks have collaborated to identify recommendations for effective education and communication practices when working with different types of audiences. U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, the National Wildlife Federation, NOAA Climate Program Office, Tri-Agency Climate Change Education Collaborative and the Climate Literacy and Energy Awareness Network (CLEAN) are working to develop a new web portal that will highlight "effective" practices that includes the acquisition and use of climate change knowledge to inform decision-making. The purpose of the web portal is to transfer effective practice to support communities to be

  12. Consultation paper : Nova Scotia's renewed energy strategy and climate change action plan

    International Nuclear Information System (INIS)

    2007-10-01

    The Nova Scotia Department of Energy is seeking to create a sustainable and prosperous Nova Scotia that is responsive to climate change. The purpose of this report was to inform public discussion around two upcoming documents, namely the renewed energy strategy focusing on broad energy policy and a climate change action plan for Nova Scotia to reduce greenhouse gas emissions. The report discussed mitigation measures, as it is closely tied with energy use. The consultation process to inform the two documents was to include public forums and direct stakeholder consultation. The report discussed Nova Scotia's strategy for dealing with climate change and the world of energy. Recent changes in energy prices, exploration, awareness, and emerging but uncertain technologies were presented. Long term planning and a review of policy changes were also addressed. The report also presented options for a renewed energy strategy and discussed air quality; energy conservation and efficiency; electricity; natural gas; energy opportunities; government action; and government intervention. Submissions were also sought as input to the discussion paper. refs., tabs., figs., appendices

  13. Impact of Climate Change on Energy Production, Distribution, and Consumption in Russia

    Science.gov (United States)

    Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.; Fedotova, E. V.

    2018-05-01

    An assessment of the overall impact of the observed and expected climatic changes on energy production, distribution, and consumption in Russia is presented. Climate model results of various complexity and evaluation data on the vulnerability of various energy production sectors to climate change are presented. It is shown that, due to the increase of air temperature, the efficiency of electricity production at thermal and nuclear power plants declines. According to the climate model results, the production of electricity at TPPs and NPPs by 2050 could be reduced by 6 billion kW h due to the temperature increase. At the same time, as a result of simulation, the expected increase in the rainfall amount and river runoff in Russia by 2050 could lead to an increase in the output of HPP by 4-6% as compared with the current level, i.e., by 8 billion kW h. For energy transmission and distribution, the climate warming will mean an increase in transmission losses, which, according to estimates, may amount to approximately 1 billion kW h by 2050. The increase of air temperature in summer will require higher energy consumption for air conditioning, which will increase by approximately 6 billion kW h by 2050. However, in total, the optimal energy consumption in Russia, corresponding to the postindustrial level, will decrease by 2050 by approximately 150 billion kW h as a result of climate- induced changes. The maximum global warming impact is focused on the heat demand sector. As a result of a decrease in the heating degree-days by 2050, the need for space heating is expected to fall by 10-15%, which will cause a fuel conservation sufficient for generating approximately 140 billion kW h of electricity. Hence, a conclusion about the positive direct impact of climate change on the Russia's energy sector follows, which is constituted in the additional available energy resource of approximately 300 billion kW h per year.

  14. Energy market reform in Europe. European energy and climate policies: achievements and challenges to 2020 and beyond

    International Nuclear Information System (INIS)

    2015-01-01

    Since the 1992 Earth Summit in Rio and the negotiation of the United Nations Framework Convention on Climate Change (UNFCCC), the European Union has consistently been at the forefront of global action to combat climate change, leading the world to a low-carbon economy. The EU has set itself greenhouse gas emission targets designed to produce an almost carbon-free economy by 2050 in order to make a major contribution to limiting the global temperature increase by the end of the century to 2 deg. C, compared to the pre-industrial average. As an interim step on the way to 2050, EU leaders in March 2007 set a number of ambitious climate and energy targets known as the '20-20-20 targets by 2020' or the 3 x 20 policy. In this, the EU committed to: - A 20% reduction in EU greenhouse gas emissions from 1990 levels; - Raising the share of EU energy consumption produced from renewable resources to 20%; and - A 20% improvement in the EU's energy efficiency. This 3 x 20 package is a part of a wider European energy strategy that aims at enhancing: - Sustainability; - Competitiveness and affordability; and - Security of supply. The EU energy and climate package has attracted criticism in the last few years, as each day brought more evidence that the policy measures had numerous unexpected, or unintended impacts on the energy markets and industry: an excess of intermittent sources of electricity causing disruption for grid operators, surplus electricity resulting in a price collapse of the wholesale electricity market, electricity price increase at retail level, exit of gas from the fuels for power generation and the advent of coal as an electricity price-setter... At the same time, it has also become evident that EU policy has failed to solve the existing EU energy imbalances in general. Ironically, after years of huge investments aimed at achieving the ambitious policy targets, a number of the objectives still seem to be a long way away. Indeed some may not even

  15. Energy-Climate Scenarios: An Adjustment after the Economic Crisis, Fukushima, Durban and... Shale Gases

    International Nuclear Information System (INIS)

    Criqui, Patrick; Mima, Silvana; Peytral, Pierre-Olivier; Simon, Jean-Christophe

    2012-01-01

    In an article published in these pages in 2011 (no. 373), Patrick Criqui presented a series of scenarios on possible energy and climate trends, taking note of the agreement on climate change signed in late 2009 at the Copenhagen Conference. He pointed out that a paradigm shift was on the cards, which would mean less use of the top-down approach - with national objectives set as a function of international objectives formulated at major conferences - and greater implementation of a bottom-up logic based on national policies put in place in the energy field and as part of the battle against global warming. On the basis of this latter logic, the authors were able to elaborate scenarios at a world level. A few days before the publication of that article, the Fukushima accident occurred in japan, lending fresh impetus to the energy debate in most of the countries using nuclear power. Does that event, combined with the persistence of the debt crisis, the increased extraction of unconventional hydrocarbons (shale oil and gas ) and the fact that international negotiations on climate change (Durban) have merely marked time, modify the projected scenarios -and, if so, to what extent ? Patrick Criqui, Silvana Mima, Pierre-Olivier Peytral and jean-Christophe Simon consider this question in detail here. They begin by examining the impact of these recent events and developments on the current energy and climate situation. Then, after reminding us of the four world energy scenarios (to a time-horizon of 2030-2050) that were developed in 2009 (together with two 'discontinuity scenarios'), they propose an updating that takes account of the perceived consequences of the change of context, stressing two crucial scenarios in particular: the probable (leading to warming in the order of 4 deg. C) and the desirable (limiting warming to 2 deg. C). Lastly, they propose various levers aimed at 'making the desirable trajectory possible' (technological agreements, economic instruments

  16. Green energy - the road to a Danish energy system without fossil fuels. Summary of the work, results and recommendations of the Danish Commission on Climate Change Policy

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    This summary report describes the main outcomes of the deliberations of the Danish Commission on Climate Change Policy. It includes a proposal for how Denmark can become independent of fossil fuels and, at the same time, meet the target of reducing greenhouse gases by 80%-95% compared with 1990. In addition, 40 specific recommendations for initiatives which will contribute to the realisation of the vision are presented. The documentation section of the overall report, which is only available in Danish, presents the Climate Commission's work in more detail, as well as a description of the comprehensive analyses on which the Climate Commission has based its recommendations. Finally, the background documents, which have been prepared at the request of the Climate Commission are available (in Danish) at the Commission's website, www.klimakommissionen.dk. We can both reduce Danish emissions of greenhouse gasses significantly, and make Denmark independent of fossil fuels. This will require a total conversion of the Danish energy system; conversion away from oil, coal and gas, which today account for more than 80% of our energy consumption, and to green energy with wind turbines and bioenergy as the most important elements. The cost of conversion may seem surprisingly low. The low cost means that not only can we maintain our present living standards, we can also have considerable economic growth, so that energy expenditures will constitute less of our budgets in the future than today. The reason the cost is not higher is primarily because we will not have to pay for overpriced fossil fuels and CO{sub 2} reductions, and we will be able to limit our energy consumption through efficiency improvements in all areas in the future. It is difficult to make predictions about the exact design of the green energy system of the future. However, in overall terms it could look like this: 1) Energy will be used far more efficiently, so that we can, for example, heat our houses

  17. Climate and Energy-Water-Land System Interactions Technical Report to the U.S. Department of Energy in Support of the National Climate Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Skaggs, Richard; Hibbard, Kathleen A.; Frumhoff, Peter; Lowry, Thomas; Middleton, Richard; Pate, Ron; Tidwell, Vincent C.; Arnold, J. G.; Averyt, Kristen; Janetos, Anthony C.; Izaurralde, Roberto C.; Rice, Jennie S.; Rose, Steven K.

    2012-03-01

    This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate.

  18. Point Climat no. 18 'Energy efficiency, renewable energy and CO2 allowances in Europe: a need for coordination'

    International Nuclear Information System (INIS)

    Berghmans, Nicolas

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: Following the adoption in 2009 of the directives for modifying the European Union Emissions Trading Scheme (EU ETS) and for promoting renewable energies, the Energy Efficiency Directive has been endorsed by the European Parliament on 11 September 2012. It will be the third major European policy that encourages reductions in CO 2 emissions, either directly or indirectly. At a time when the European Commission is reflecting on long-term reforms to the EU ETS, the magnitude of emission reductions that will be generated by other policies calls for the systematisation of assessment of climate and energy policies in order to maintain an sufficient CO 2 price to incentive mitigation action

  19. Phase Two European Energy Policy Project. European energy and climate policy - Time for something new

    International Nuclear Information System (INIS)

    Helm, Dieter

    2014-01-01

    During 2014, European energy and climate change policy has moved centre stage. The annexation of Crimea and the destabilization of Eastern Ukraine have raised tensions with Russia to levels not seen since the Cold War. The EU has responded with an energy security plan, and sanctions. Developments elsewhere have further complicated matters. In the Middle East, the rapid advances of ISIS (now called the Islamic State), the internal conflicts in Libya, the war in Gaza, and the continuing negotiations with Iran on nuclear matters suggest that early optimism about the 'Arab Spring' was at best misplaced, and chronic instability has returned. In the US, the energy revolution continues to change the geopolitics of oil and gas, with the early skepticism about the scale of the changes and the shift towards North American energy independence giving way to recognition that the changes are permanent and profound - for both global energy markets and Europe. The full implications of the end of the commodity super-cycle are both profound for European energy policy and very poorly understood. Commodity prices have tumbled, with oil prices falling below $80 a barrel. On climate change, there is almost certainly not going to be a continuation of the Kyoto style international framework after the Paris conference in December 2015. Chinese emissions per head have now exceeded those of the Europeans, and it is at last being recognized that the climate change problem is one in which China, not the EU, is centre stage. China has announced that it does not intend to cap its carbon emissions until after 2030, by which time they may peak anyway - from a very much higher base after another decade and a half of increases. The Paris conference will see a series of 'pledges' and 'commitments' very much on the pattern of the Copenhagen Accord, not the credible, enforceable legally binding measures that had been proposed at the Durban Conference of the Parties in 2011

  20. Governance and political consumerism in Finnish energy policy-making

    International Nuclear Information System (INIS)

    Ruostetsaari, Ilkka

    2009-01-01

    The research task in the study was, firstly, to analyse citizens' perceptions of the power structure underlying Finnish energy policy-making. Secondly, we analysed the role of civil society in the energy sector, addressing the question whether Finns feel that they can influence energy policy-making as citizens through general elections (civic participation) or as consumers via their own consumption choices (political consumerism). Methodologically, the study was based on postal survey conducted in 2007 among a random sample representing 18-75-year-old Finns (N=4000). According to the views expressed, the innermost core of the influence structure of Finland's energy policy-making today comprises only the Cabinet and Parliament, while the second circle is composed of energy-producer firms and big firms. The European Union, the Ministry of the Environment and the Ministry of Trade and Industry belong to the third circle of influence. The power relations in Finland's energy sector have continued particularly stable since the late 1980s despite the liberalization and globalization of the energy markets. In order to influence energy policy-making, citizens consider their own consumption choices more useful than voting in elections or contacts with MPs, authorities and energy-producing companies. The least useful devices are radical environmental activism and participation in mass demonstrations

  1. Ethical decision-making climate in the ICU: theoretical framework and validation of a self-assessment tool.

    Science.gov (United States)

    Van den Bulcke, Bo; Piers, Ruth; Jensen, Hanne Irene; Malmgren, Johan; Metaxa, Victoria; Reyners, Anna K; Darmon, Michael; Rusinova, Katerina; Talmor, Daniel; Meert, Anne-Pascale; Cancelliere, Laura; Zubek, Làszló; Maia, Paolo; Michalsen, Andrej; Decruyenaere, Johan; Kompanje, Erwin J O; Azoulay, Elie; Meganck, Reitske; Van de Sompel, Ariëlla; Vansteelandt, Stijn; Vlerick, Peter; Vanheule, Stijn; Benoit, Dominique D

    2018-02-23

    Literature depicts differences in ethical decision-making (EDM) between countries and intensive care units (ICU). To better conceptualise EDM climate in the ICU and to validate a tool to assess EDM climates. Using a modified Delphi method, we built a theoretical framework and a self-assessment instrument consisting of 35 statements. This Ethical Decision-Making Climate Questionnaire (EDMCQ) was developed to capture three EDM domains in healthcare: interdisciplinary collaboration and communication; leadership by physicians; and ethical environment. This instrument was subsequently validated among clinicians working in 68 adult ICUs in 13 European countries and the USA. Exploratory and confirmatory factor analysis was used to determine the structure of the EDM climate as perceived by clinicians. Measurement invariance was tested to make sure that variables used in the analysis were comparable constructs across different groups. Of 3610 nurses and 1137 physicians providing ICU bedside care, 2275 (63.1%) and 717 (62.9%) participated respectively. Statistical analyses revealed that a shortened 32-item version of the EDMCQ scale provides a factorial valid measurement of seven facets of the extent to which clinicians perceive an EDM climate: self-reflective and empowering leadership by physicians; practice and culture of open interdisciplinary reflection; culture of not avoiding end-of-life decisions; culture of mutual respect within the interdisciplinary team; active involvement of nurses in end-of-life care and decision-making; active decision-making by physicians; and practice and culture of ethical awareness. Measurement invariance of the EDMCQ across occupational groups was shown, reflecting that nurses and physicians interpret the EDMCQ items in a similar manner. The 32-item version of the EDMCQ might enrich the EDM climate measurement, clinicians' behaviour and the performance of healthcare organisations. This instrument offers opportunities to develop tailored ICU

  2. Making the link: climate policy and the reform of the UK construction industry

    International Nuclear Information System (INIS)

    Sorrell, Steve

    2003-01-01

    This paper explores the barriers to energy efficiency in the construction of non-domestic buildings in the UK. The source of the barriers is argued to lie in the organisation of the construction industry, including the linear design process, the reliance on cost-based competitive tendering and the incentives placed upon different actors. The consequences include oversizing of equipment, reduced quality, neglect of whole life costs and lack of integrated design. Each of these problems can usefully be interpreted using concepts from the new institutional economics. While the barriers are well known to construction industry specialists, they are relatively neglected in the academic literature on energy policy. Furthermore, conventional policy measures such as building regulations leave these barriers largely untouched. The UK construction industry is currently undergoing a series of reforms which aim to change the relationship between different actors and to achieve improvements in product quality and productivity. While these reforms have the potential to address many of the barriers, the reform agenda makes practically no reference to sustainability. This paper argues that climate policy objectives must be integrated into the reform agenda if the UK is to begin the transition to a low carbon built environment

  3. Canadian energy and climate policies: A SWOT analysis in search of federal/provincial coherence

    International Nuclear Information System (INIS)

    Fertel, Camille; Bahn, Olivier; Vaillancourt, Kathleen; Waaub, Jean-Philippe

    2013-01-01

    This paper presents an analysis of Canadian energy and climate policies in terms of the coherence between federal and provincial/territorial strategies. After briefly describing the institutional, energy, and climate contexts, we perform a SWOT analysis on the themes of energy security, energy efficiency, and technology and innovation. Within this analytical framework, we discuss the coherence of federal and provincial policies and of energy and climate policies. Our analysis shows that there is a lack of consistency in the Canadian energy and climate strategies beyond the application of market principles. Furthermore, in certain sectors, the Canadian approach amounts to an amalgam of decisions made at a provincial level without cooperation with other provinces or with the federal government. One way to improve policy coherence would be to increase the cooperation between the different jurisdictions by using a combination of policy tools and by relying on existing intergovernmental agencies. - Highlights: • We perform a SWOT analysis of the Canadian energy and climate policies. • We analyse policy coherence between federal and provincial/territorial strategies. • We show that a lack of coordination leads to a weak coherence among policies. • The absence of cooperation results in additional costs for Canada

  4. The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

    2013-08-01

    A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different

  5. Changing Energy Requirements in the Mediterranean Under Changing Climatic Conditions

    Directory of Open Access Journals (Sweden)

    George Demosthenous

    2009-09-01

    Full Text Available This study investigates the impacts of climate change on energy requirements in the Mediterranean. Energy requirements, especially for space heating and cooling, are closely linked to several weather variables, mainly air temperature. The analysis is based on daily temperature outputs from several regional climate models run at a resolution of 25 km × 25 km in the framework of EU project ENSEMBLES using the A1B emissions scenario. The impacts of changes in temperature on energy requirements are investigated using the concept of degree days, defined as the difference of mean air temperature from a base temperature. Base temperature should be chosen to coincide with the minimum energy consumption. In this way, changes in heating and cooling requirements between the reference and the future period are calculated and areas about to undergo large changes identified. These changes are calculated between a 30-year reference period 1961–1990 and a near future period 2021–2050 taking the ensemble mean of all regional climate models. The near-term future has been chosen instead of the frequently used end-of-the-century period to assist policy makers in their planning. In general, a decrease in energy requirements is projected under future milder winters and an increase under hotter summers.

  6. From black to green energy. Geopolitics of global energy transition

    International Nuclear Information System (INIS)

    Slingerland, S.; Van Geuns, L.; Van der Linde, C.

    2008-05-01

    The transition to a global low-carbon energy sector is on the agenda of policymakers in the Netherlands, Europe and world-wide. However, the way in which the international political discussion takes place makes it far from clear that such a transition will indeed take place. Conflicts of interest between climate concerns, energy security, access to energy and profits made from fossil fuels should be analysed more properly and taken into account in international energy and climate negotiations in order to prevent that an energy crisis will be the only way forward towards a low-carbon energy sector. [nl

  7. Energy and climate. A vision of the future

    International Nuclear Information System (INIS)

    Brand, Hans; Hosemann, Gerhard; Riedle, Klaus

    2013-01-01

    This book contains five lectures from the symposium of 8 November 2012. The topics and speakers were: 1. The energy turnaround in Germany - Chances and risks (DIETHARD MAGER); 2. The power supply from renewable sources and their constraints (GERHARD HEROLD); 3. What really contributes CO 2 to global warming? (HERMANN HARDE); 4. Sun and greenhouse gas - causes of climate change (FRITZ VAHRENHOLT); 5. The hydrocarbon-cycle management - secure energy and resource supply from renewable energy sources (DOMINIK ROHRMUS). [de

  8. The climate impact of future energy peat production

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Linus; Holmgren, Kristina

    2008-09-15

    The aim of this study was to estimate total greenhouse gas emissions and climate impact of different peat utilisation scenarios, using a life cycle perspective. This and previous studies show that the climate impact from energy peat utilisation is more complex than just considering the emissions at the combustion stage. There are important emissions and uptake of greenhouse gases that occur on the peatland before, during and after peat harvest. The results show that the climate impact of future peat utilisation can be significantly reduced compared to current utilisation and will be lower than the climate impact resulting from only the combustion phase. This can be achieved by choosing already drained peatlands with high greenhouse gas emissions, using a more efficient production method and by securing a low-emission after-treatment of the cutaway (e.g. afforestation)

  9. Energy and climate. Opportunities, threats, myths; Energie und Klima. Chancen, Risiken, Mythen

    Energy Technology Data Exchange (ETDEWEB)

    Luedecke, Horst-Joachim

    2013-05-01

    Germany reinvents itself with the energy policy turnaround as well as climate protection. In doing so, Germany holds a special position worldwide. The transformation of the electric power supply by wind turbines, photovoltaic power plants, biomass conversion plants and avoidance of CO{sub 2} have already been set up. What formerly employed the competent engineers, is interesting the entire society against the backdrop of current political decisions - since the electricity costs increase and a previously saved power supply are increasingly being questioned. The current energy policy turnaround and climate protection measures can only be sensible if there are benefits for the nature conservation, the security of supply with electrical power and the cost. Under this aspect, the author of the book under consideration reports on the opportunities, threats, advantages and disadvantages of the German route. The competitiveness of our country, the security against power outages, the tax burden, the cost of energy and finally the environment are at stake. The upcoming problems can not be solved by political wishful thinking but only with solid technology, economy and environmental protection.

  10. Climate and energy targets of the European Union

    International Nuclear Information System (INIS)

    Stolwijk, H.; Veenendaal, P.

    2007-01-01

    Attention is paid to two important parts of the targets for climate and energy which were determined by the European Council in March 2007 for the year 2020: (1) the impact of the emission reduction target and the correlations with the sustainable development targets; and (2) the obstacles for the European Union on the way to thar 20% renewable energy target [nl

  11. Climate policy: Bucket or drainer?

    International Nuclear Information System (INIS)

    Oikonomou, Vlasis; Patel, Martin; Worrell, Ernst

    2006-01-01

    Worldwide, industry is responsible for about 40% of greenhouse gas (GHG) emissions, making it an important target for climate policy. Energy-intensive industries may be particularly vulnerable to higher energy costs caused by climate policy. If companies cannot offset rising energy costs and would face increased competition from countries without climate policy, they may decide to relocate their industrial production to the countries without climate policy. The resulting net effect of climate policy on GHG emissions in foreign countries is typically referred to as 'carbon leakage'. Carbon leakage may lead to higher global GHG emissions due to the use of less advanced technology in less developed countries. Based on a literature review of climate policy, earlier environmental policy and analyses of historical trends, this paper assesses the carbon leakage effects of climate policy for energy-intensive industries. Reviews of past trends in production location of energy-intensive industries show an increased global production share of Non-Annex 1 countries. However, from empirical analyses we conclude that the trend is primarily driven by regional demand growth. In contrast, climate policy models show a strong carbon leakage. Even though future climate policy may have a more profound impact than environmental policies in the past, the modelling results are doubtful. Leakage generally seems to be overestimated in current models, especially as potential positive spillovers are often not included in the models. The ambiguity of the empirical analyses and the modelling results warrants further research in the importance of production factors for relocation

  12. Climate change and sustainable energy: actions and transition to a lower carbon economy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2009-01-01

    'Full text:' This presentation will address climate change and transition to a lower carbon economy in general and the importance of sustainable energy in such initiatives. The talk has two main parts. In the first part, the presenter discuss why non-fossil fuel energy options, which are diverse and range from renewables through to nuclear energy, are needed to help humanity combat climate change and transition to a lower carbon economy. Such energy options reduce or eliminate emissions of greenhouse gases and thus often form the basis of sustainable energy solutions. Nonetheless, carbon dioxide capture and sequestration may allow fossil fuels to be less carbon emitting. Sustainable energy options are not sufficient for avoiding climate change, in that they are not necessarily readily utilizable in their natural forms. Hydrogen energy systems are needed to facilitate the use of non-fossil fuels by allowing them to be converted to two main classes of energy carriers: hydrogen and select hydrogen-derived fuels and electricity. As hydrogen is not an energy resource, but rather is an energy carrier that must be produced, it complements non-fossil energy sources, which often need to be converted into more convenient forms. In addition, high efficiency is needed to allow the greatest benefits to be attained from all energy options, including non-fossil fuel ones, in terms of climate change and other factors. Efficiency improvements efforts have many dimensions, including energy conservation, improved energy management, fuel substitution, better matching of energy carriers and energy demands, and more efficiency utilization of both energy quantity and quality. The latter two concepts are best considered via the use of exergy analysis, an advanced thermodynamic tool. In the second part of the presentation, actions to address climate change more generally and to help society transition to a lower carbon economy are described. The role of sustainable energy in this

  13. Climate Policy in Terms of Open Energy Market

    International Nuclear Information System (INIS)

    Granic, G.

    2015-01-01

    This paper describes the objectives and approach to the climate policy impact analysis on the development of energy sector. The analysis included the goals for CO2 emission reduction until 2050, by sectors and in total, with reference to last 5-10 years. The analysis of energy market development in terms of CO2 emission reduction is given, and also the analysis of the final consumption for Croatia in period until 2050. The analysis of measures, of the manner in which the measures are carried out and of the potential of measures for CO2 emission reduction is presented. Estimations of economic and financial indicators for measurement implementation are given. Technological, energy, economic, organizational and institutional limitations are specifically analysed as part of objectives realisation of CO2 emission reduction, as is the risk of measurement implementation. The important parts of CO2 emission reduction policy are: technological development, expectations and possible risks of not achieving the set objectives. The important assumption of CO2 emission reduction objective realisation is institutional organisation of creation of energy policy and measurement implementation, in which the important measure is the forming of Ministry of energy, environment protection and climate change. At the end, recommendations are given, based on the performed analysis. (author).

  14. Accelerated Climate Modeling for Energy (ACME) Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Aashish [Kitware, Inc.

    2017-10-17

    Seven Department of Energy (DOE) national laboratories, Universities, and Kitware, undertook a coordinated effort to build an Earth system modeling capability tailored to meet the climate change research strategic objectives of the DOE Office of Science, as well as the broader climate change application needs of other DOE programs.

  15. Building Student Awareness of Societal Decision-Making Challenges about Energy through the Study of Earth System Data and Innovations in Energy-Related Materials Research

    Science.gov (United States)

    Zalles, D. R.; Acker, J. G.; Berding, M.

    2014-12-01

    Energy literacy requires knowledge about the trade-offs inherent in energy alternatives, about how humans use energy and have choices in how much energy to use, and about what changes to the Earth system are occurring from energy uses. It also requires collaborative decision-making skills coupled with awareness about what values we bring to the table as we negotiate solutions that serve both personal needs and the common good. Coming up with a notion of the common good requires delineating how environmental crises occurring in other parts of the world compare to our own. We also need to understand criteria for judging what might be viable solutions. This presentation describes work that SRI International is carrying out to meet these awareness-building needs. SRI educational researchers created a curriculum that immerses students in studying regional climate change data about California in comparison to global climate change. Students ponder solution energy-related strategies and impact analyses. The curriculum will be described, as will a collaboration between SRI educational researchers and materials scientists. The scientists are designing and testing technologies for producing biofuels and solar power, and for sequestering carbon from coal fired power plants. As they apply principles of science and engineering to test materials intended to meet these energy challenges, they understand that even if the tests prove successful, if there is not economic feasibility or environmental advantage, the technology may not stand as a viable solution. This educator-scientist team is using the Essential Energy Principles and Next Generation Science Standards to articulate milestones along a trajectory of energy learning. The trajectory starts with simple understandings of what energy is and what constitute our energy challenges. It ends with more the types of more sophisticated understandings needed for designing and testing energy technology solutions.

  16. Climate change, renewable energy and population impact on future energy demand for Burkina Faso build environment

    Science.gov (United States)

    Ouedraogo, B. I.

    This research addresses the dual challenge faced by Burkina Faso engineers to design sustainable low-energy cost public buildings and domestic dwellings while still providing the required thermal comfort under warmer temperature conditions caused by climate change. It was found base don climate change SRES scenario A2 that predicted mean temperature in Burkina Faso will increase by 2oC between 2010 and 2050. Therefore, in order to maintain a thermally comfortable 25oC inside public buildings, the projected annual energy consumption for cooling load will increase by 15%, 36% and 100% respectively for the period between 2020 to 2039, 2040 to 2059 and 2070 to 2089 when compared to the control case. It has also been found that a 1% increase in population growth will result in a 1.38% and 2.03% increase in carbon emission from primary energy consumption and future electricity consumption respectively. Furthermore, this research has investigated possible solutions for adaptation to the severe climate change and population growth impact on energy demand in Burkina Faso. Shading devices could potentially reduce the cooling load by up to 40%. Computer simulation programming of building energy consumption and a field study has shown that adobe houses have the potential of significantly reducing energy demand for cooling and offer a formidable method for climate change adaptation. Based on the Net Present Cost, hybrid photovoltaic (PV) and Diesel generator energy production configuration is the most cost effective local electricity supply system, for areas without electricity at present, with a payback time of 8 years when compared to diesel generator stand-alone configuration. It is therefore a viable solution to increase electricity access to the majority of the population.

  17. Understanding the influence of climate change on the embodied energy of water supply.

    Science.gov (United States)

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health

    Directory of Open Access Journals (Sweden)

    Larry E. Erickson

    2017-02-01

    Full Text Available The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce range anxiety. The costs of wind power, solar panels, and batteries are falling because of technological progress, magnitude of commercial activity, production experience, and competition associated with new trillion dollar markets. These energy and transportation transitions can have a very positive impact on health. The energy, transportation, air quality, climate change, health nexus may benefit from additional progress in developing solar powered charging infrastructure.

  19. Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health.

    Science.gov (United States)

    Erickson, Larry E; Jennings, Merrisa

    2017-01-01

    The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce range anxiety. The costs of wind power, solar panels, and batteries are falling because of technological progress, magnitude of commercial activity, production experience, and competition associated with new trillion dollar markets. These energy and transportation transitions can have a very positive impact on health. The energy, transportation, air quality, climate change, health nexus may benefit from additional progress in developing solar powered charging infrastructure.

  20. Governance and political consumerism in Finnish energy policy-making

    Energy Technology Data Exchange (ETDEWEB)

    Ruostetsaari, Ilkka [University of Turku, Turku (Finland)

    2009-01-15

    The research task in the study was, firstly, to analyse citizens' perceptions of the power structure underlying Finnish energy policy-making. Secondly, we analysed the role of civil society in the energy sector, addressing the question whether Finns feel that they can influence energy policy-making as citizens through general elections (civic participation) or as consumers via their own consumption choices (political consumerism). Methodologically, the study was based on postal survey conducted in 2007 among a random sample representing 18-75-year-old Finns (N=4000). According to the views expressed, the innermost core of the influence structure of Finland's energy policy-making today comprises only the Cabinet and Parliament, while the second circle is composed of energy-producer firms and big firms. The European Union, the Ministry of the Environment and the Ministry of Trade and Industry belong to the third circle of influence. The power relations in Finland's energy sector have continued particularly stable since the late 1980s despite the liberalization and globalization of the energy markets. In order to influence energy policy-making, citizens consider their own consumption choices more useful than voting in elections or contacts with MPs, authorities and energy-producing companies. The least useful devices are radical environmental activism and participation in mass demonstrations. (author)

  1. The energy-climate continuum lessons from basic science and history

    CERN Document Server

    Bret, Antoine

    2014-01-01

    An entertaining, highly informative introduction to the intimate linkage between the energy and climate debates Illustrates the basic science behind energy and climate with back-of-the-envelope calculations, that even non-experts can easily follow without a calculator Thus provides an access to getting an accurate feeling for orders of magnitudes from simple estimations A conversation starter for some of the most debated topics of today Compares the actual situation with historic cases of societies at a turning point and finds warning as well as encouraging examples For everyone, who wan

  2. Balancing development, energy and climate priorities in China. Current status and the way ahead

    International Nuclear Information System (INIS)

    Kejun Jiang; Xiulian Hu; Xianli Zhu; Garg, A.; Halsnaes, K.; Qiang Liu

    2007-09-01

    This report is the China Country Report of the project: Projecting future energy demand: Balancing development, energy and climate priorities in large developing economies. Under this project four country studies have been carried out, on China, India, Brazil, and South Africa respectively. The focus of this report is on the energy sector policies that mainstream climate interests within development choices. The report gives a short introduction to the project and its approach, followed by analyses of Chinese energy, development and climate change and an assessment of cross-country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. (BA)

  3. Energy demand of the German and Dutch residential building stock under climate change

    Science.gov (United States)

    Olonscheck, Mady; Holsten, Anne; Walther, Carsten; Kropp, Jürgen P.

    2014-05-01

    In order to mitigate climate change, extraordinary measures are necessary in the future. The building sector, in particular, offers considerable potential for transformation to lower energy demand. On a national level, however, successful and far-reaching measures will likely be taken only if reliable estimates regarding future energy demand from different scenarios are available. The energy demand for space heating and cooling is determined by a combination of behavioral, climatic, constructional, and demographic factors. For two countries, namely Germany and the Netherlands, we analyze the combined effect of future climate and building stock changes as well as renovation measures on the future energy demand for room conditioning of residential buildings until 2060. We show how much the heating energy demand will decrease in the future and answer the question of whether the energy decrease will be exceeded by an increase in cooling energy demand. Based on a sensitivity analysis, we determine those influencing factors with the largest impact on the future energy demand from the building stock. Both countries have national targets regarding the reduction of the energy demand for the future. We provide relevant information concerning the annual renovation rates that are necessary to reach these targets. Retrofitting buildings is a win-win option as it not only helps to mitigate climate change and to lower the dependency on fossil fuels but also transforms the buildings stock into one that is better equipped for extreme temperatures that may occur more frequently with climate change. For the Netherlands, the study concentrates not only on the national, but also the provincial level, which should facilitate directed policy measures. Moreover, the analysis is done on a monthly basis in order to ascertain a deeper understanding of the future seasonal energy demand changes. Our approach constitutes an important first step towards deeper insights into the internal dynamics

  4. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  5. Coal's role in worldwide energy supply. Reaching the climate protection goals with renewable energies and coal as a partner; Die Rolle der Kohle fuer die weltweite Energieversorgung. Klimaschutzziele erreichen mit erneuerbaren Energien und Kohle als Partner

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, Hans-Wilhelm [World Energy Council, London (United Kingdom). World Energy Resources; Thielemann, Thomas [RWE Power AG, Koeln (Germany)

    2016-04-01

    In 2014, coal covered 30 % of the global consumption of primary energy. More than 40 % of the worldwide electricity production were based on coal. This makes coal the second most important source for primary energy - after oil. Looking at the types of energy sources used for electricity production, coal ranks first, before gas and renewables. The latter two both have a share of 23 % each. Coal is thus making a key contribution to the security of energy supply and to the affordability of energy. Coal is securing the competitiveness of industry. With the use of advanced technologies, coal can contribute to the compatibility of energy supply with the goals of environmental and climate protection.

  6. Fossil fuel subsidies and the new EU Climate and Energy Governance Mechanism

    International Nuclear Information System (INIS)

    Sartor, Oliver; Spencer, Thomas

    2016-07-01

    There is currently no dedicated process to track the extent of fossil fuel subsidies, nor to ensure that Member States phase them out. This situation is inconsistent with the European Union's stated decarbonization and energy efficiency dimensions under the Energy Union. The EU is therefore in need of an alternative process for tracking and ensuring the phase-out of fossil fuel subsidies by the Member States. The new Energy Union governance mechanism presents an opportunity for creating this alternative. Providing the right price signals is essential part of the policy mix that is needed to achieve Europe's climate policy goals. Phasing out fossil fuel subsidies in the EU is an important part of aligning energy prices with the EU's climate and energy goals. Depending on how they are measured, combined fossil fuel subsidies in the EU range from 39 to over euro 200 billion per annum (European Commission, 2014). They therefore constitute a significant source of incoherence between the EU's climate mitigation and fiscal policies for energy. However, there has recently been mixed progress in addressing fossil fuel subsidies in Europe. For instance, under the Europe 2020 Strategy, Member States had committed to begin developing plans for phasing out fossil fuel subsidies by 2020. Progress on implementing these plans was supposed to be monitored under the European Semester. However, the decision was taken to remove the focus on energy and fossil fuel subsidies from the European Semester in 2015. As yet, no new system for governing the phase-out of fossil fuel subsidies has been advanced, leaving the question of fossil fuel subsidy reform in limbo. The advent of the EU's Energy Union project creates an opportunity for putting the phase-out of fossil fuel subsidies back on track in Europe. This could be done by including requirements for national goal setting on specific kinds of fossil fuel subsidies in a dedicated sub-section of the National Climate and Energy Plans

  7. Energy without Constraints?

    NARCIS (Netherlands)

    Worrell, E.

    2010-01-01

    Understanding energy use is crucial if society is to make a transformation to more sustainable production and consumption patterns, since energy use patterns are key factors in climate change, (air) pollution, and the depletion of nonrenewable resources. Measuring the sustainability of energy use

  8. Energy Use and Indoor Climate in Two Schools Before and After Deep Energy Renovation

    DEFF Research Database (Denmark)

    Rose, Jørgen; Thomsen, Kirsten Engelund; Mørck, Ove

    2013-01-01

    . The 7 buildings are being energy renovated and monitored with support from the EU-CONCERTO initiative as part of the project “Cost-effective Low-energy Advanced Sustainable So1utions – Class1”. The buildings are very different and therefore the energy renovations to take place will also vary from...... insulation of piping and improved control (Building Energy Management Systems – BEMS). This paper presents preliminary results of analysis and monitoring of energy use and indoor climate in the two public schools before and after deep energy renovation....

  9. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    Science.gov (United States)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  10. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    Science.gov (United States)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    Water-Energy-Land (WEL) Nexus management is one of those complex decision problems where holistic approach to supply-demand management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. On the other hand, climate adaptation and mitigation need to be integrated, and resource sensitive regions like Mediterranean provide ample opportunities towards that end. While the water sector plays a key role in climate adaptation, mitigation focuses on the energy and agriculture sector. Recent studies on the so-called WEL nexus confirm the potential synergies to be derived from mainstreaming climate adaptation in the water sector, while simultaneously addressing opportunities for co-management with energy (and also land use). Objective of this paper is to develop scenarios for the future imbalances in water & energy supply and demand for a water stressed Mediterranean area of Northern Spain (Catalonia) and to test the scenario based climate adaptation & mitigation strategy for WEL management policies. Resource sensitive area of Catalonia presents an interesting nexus problem to study highly stressed water demand scenario (representing all major demand sectors), very heterogeneous land use including intensive agriculture to diversified urban and industrial uses, and mixed energy supply including hydro, wind, gas turbine to nuclear energy. Different energy sectors have different water and land requirements. Inter-river basin water transfer is another factor which is considered for this area. The water-energy link is multifaceted. Energy production can affect water quality, while energy is used in water treatment and to reduce pollution. Similarly, hydropower - producing energy from water - and desalination - producing freshwater using energy - both play important role in economic growth by supplying large and secure amounts of 'green' energy or

  11. Shared and Contested Elements in Climate Plans towards a Danish Low Carbon Society

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    The industrialized countries must make efforts to reduce their climate impact through increased renewable energy capacity and energy saving efforts. The Danish government's vision about a society independent of fossil energy has initiated several Danish energy and climate plans describing visions...... should be addressed in order to align future transition efforts towards a low carbon Danish society. The renewable energy NGO plan is an energy plan, while the other plans are climate plans including non-energy related greenhouse gasses from land use changes and agricultural practices. The plans differ...

  12. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    Mitigating climate change and achieving stabilisation of greenhouse gas atmospheric concentrations will require deep reductions in global emissions of energy-related carbon dioxide emissions. Developing and disseminating new, low-carbon energy technology will thus be needed. Two previous AIXG papers have focused on possible drivers for such a profound technological change: Technology Innovation, Development and Diffusion, released in June 2003, and International Energy Technology Collaboration and Climate Change Mitigation, released in June 2004. The first of these papers assesses a broad range of technical options for reducing energy-related CO2 emissions. It examines how technologies evolve and the role of research and development efforts, alternative policies, and short-term investment decisions in making long-term options available. It considers various policy tools that may induce technological change, some very specific, and others with broader expected effects. Its overall conclusion is that policies specifically designed to promote technical change, or 'technology push', could play a critical role in making available and affordable new energy technologies. However, such policies would not be sufficient to achieve the Convention's objective in the absence of broader policies. First, because there is a large potential for cuts that could be achieved in the short run with existing technologies; and second, the development of new technologies requires a market pull as much as a technology push. The second paper considers the potential advantages and disadvantages of international energy technology collaboration and transfer for promoting technological change. Advantages of collaboration may consist of lowering R and D costs and stimulating other countries to invest in R and D; disadvantage may include free-riding and the inefficiency of reaching agreement between many actors. This paper sets the context for further discussion on the role of

  13. Twenty-second report. Energy - the changing climate

    International Nuclear Information System (INIS)

    Blundell, Tom

    2000-06-01

    This comprehensive report examines the global context in Part 1 with chapters on the radical challenge; the causes and effects of climate change; possible preventive measures; and prospects for an effective global response. Part II focuses on the United Kingdom's response with chapters on the UK's present situation and policies; reducing energy use in the manufacturing industry, commercial and public services, households, and transport sectors; alternatives to fossil fuels such as renewable sources; patterns of energy supply and use; possible UK energy balances in the year 2050; and the adoption of a long-term strategy. Key recommendations are given, and illustrative energy balances for the UK in 2050, and technical issues relating to carbon resources and removal are discussed in the appendices

  14. Energy policy and climate change

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ducroux, R.

    2001-01-01

    Twenty-two billion tonnes of carbon dioxide (CO 2 ) are released in the air each year from the burning of fossil fuels. The problem of these massive emissions of CO 2 and their climatic impact have become major scientific and political issues. Future stabilization of the atmospheric CO 2 content requires a drastic decrease of CO 2 emissions worldwide. While enhancing natural carbon sinks (reforestation, soils conservation, etc...) can only buy tune for the next decades, energy savings, CO 2 capture/storage and the development of non-fossil energy sources (hydropower, nuclear, wind power,...) can be highly beneficial. In order to secure future energy needs while stabilizing the CO 2 atmospheric concentration around 550 ppm, the ratio of the CO 2 emitted per unit of energy produced must decrease from 2.6 t CO 2 /toe to 0.5-1.1 t CO 2 /toe by 2100. In a growing world economy, now dependent on fossil fuels for 90% of its energy, this will require a vast increase in the supply of carbon-free power. Among these energy sources, hydropower and nuclear energy (operated under western safety and environmental standards) are the most readily available sources capable of supplying vast amount of energy at a competitive price. Wind power is also to be encouraged, as it is expected to approach the competitiveness threshold soon. The French example, where fossil fuel CO 2 emissions were cut by 27% in a matter of a few years (1979-1986) despite increasing energy consumption, suggests that implementing CO 2 stabilization is technically feasible at a competitive price

  15. When Organizational Identification Elicits Moral Decision-Making: A Matter of the Right Climate

    NARCIS (Netherlands)

    S. van Gils (Suzanne); M.A. Hogg (Michael A.); N. van Quaquebeke (Niels); D.L. van Knippenberg (Daan)

    2017-01-01

    textabstractTo advance current knowledge on ethical decision-making in organizations, we integrate two perspectives that have thus far developed independently: the organizational identification perspective and the ethical climate perspective. We illustrate the interaction between these perspectives

  16. Adaptation pathways: ecoregion and land ownership influences on climate adaptation decision-making in forest management

    Science.gov (United States)

    Todd A. Ontl; Chris Swanston; Leslie A. Brandt; Patricia R. Butler; Anthony W. D’Amato; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon

    2018-01-01

    Climate adaptation planning and implementation are likely to increase rapidly within the forest sector not only as climate continues to change but also as we intentionally learn from real-world examples. We sought to better understand how adaptation is being incorporated in land management decision-making across diverse land ownership types in the Midwest by evaluating...

  17. Climate: how to turn the tide?

    International Nuclear Information System (INIS)

    Neslen, Arthur; Touriel, Aubry; Loubens, Audrey; Combe, Matthieu; Danielo, Olivier

    2014-10-01

    The contributions of this publication address various topics and issues related to possible origins and consequences of climate change: biofuels used in Europe accelerate deforestation; uncertainties about the 2030 Energy-Climate package; Paris will soon know the quantity of greenhouse gas which pollutes its air; France does not phase out nuclear for its energy transition; the impacts of air pollution on agriculture; a difficult cost-benefit analysis for the IPCC; whether the warming noticed during the 1970-1990 years partially related to a natural oceanic oscillation; to drill under the ocean in order to understand the Earth; global warming make fishes more toxic; whether our planet will be submitted to apocalyptic climate changes; scientists of the Chinese Academy of Sciences announce a cooling of climate

  18. Impacts of the financial crisis on climate and energy policy. Memo

    International Nuclear Information System (INIS)

    2009-01-01

    By request of the Dutch Ministry of Housing, Spatial Planning and the Environment, the Netherlands Bureau for Economic Policy Analysis (CPB) and the Environmental Assessment Agency (PBL) have mapped the main effects of the credit crisis on Dutch climate and energy policy. This memo describes the effects of the credit crisis on the economy (question 1) and more particularly the effect on realizing the Dutch targets for 2020 for climate and energy policy as established in the policy program 'Clean and Efficient' (question 2). A distinction should be made between the short term effects (during the recession) and the longer term effects (the years after)(question 5). Moreover, the realization of the Kyoto target for 2008-2012 is addressed (question 3) as well as the question if the Dutch government can incentivise investments in climate and energy that can contribute to economic recovery in the short term (question 4) [mk] [nl

  19. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    Science.gov (United States)

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.

  20. Tendances Carbone no. 82 'A 2030 framework for climate and energy policies: CDC Climat Research's answer'

    International Nuclear Information System (INIS)

    2013-01-01

    Among the publications of CDC Climat Research, 'Tendances Carbone' bulletin specifically studies the developments of the European market for CO 2 allowances. This issue addresses the following points: To establish a climate and energy policy in the EU in 2030, CDC Climat Research addresses three main recommendations to the European Commission: (1) Establish a binding, single and ambitious CO 2 emission reduction target of at least 40% in 2030. (2) Put the EU ETS as the central and non-residual instrument aimed at promoting cost-effective reductions in Europe and other parts of the world. (3) Define a stable, predictable and flexible climate regulation to limit carbon leakage and encourage innovation. Key drivers of the European carbon price this month: - The European Parliament has adopted Back-loading: 1.85 billion EUAs will be sold at auction between now and 2015 instead of 2.75 billion; - Phase 2 compliance: a surplus of 1,742 million tonnes (excluding the aviation sector) including auctions. - Energy Efficiency Directive: 22 of the 27 Member States have forwarded indicative targets for 2020 to the European Commission; these targets will be assessed in early 2014

  1. The evolution of Chinese policies and governance structures on environment, energy and climate

    NARCIS (Netherlands)

    Tsang, S.; Kolk, A.

    2010-01-01

    Although a successor to the 1997 Kyoto Protocol has not materialised yet, the 2009 Copenhagen meeting underlined the importance of China in international debates on climate and energy. This is not only based on China’s current climate emissions, but also on its expected energy use and economic

  2. Climate change and the use of renewable energies. A challenge for land-use planning; Klimawandel und Nutzung von regenerativen Energien als Herausforderungen fuer die Raumordnung

    Energy Technology Data Exchange (ETDEWEB)

    Kufeld, Walter (ed.)

    2013-10-01

    For spatial planning and especially land-use planning, the issues of climate protection, adaptation to the impacts of climate change and the use of renewable energies represent key challenges for the 21st century. The resulting questions call for a revaluation of instruments and methods applied in land-use planning. Moreover, it is necessary to identify land-use conflicts arising from these challenges and to strive for spatially attuned solutions. In this context, land-use planning represents an important interdisciplinary tool for coordinating actions and developing an overall spatial strategy. This report summarises the findings of the Bavarian ARL working group ''Climate Change and the Use of Renewable Energies: A Challenge for Land-Use Planning''. Drawing on their backgrounds in practice and/or scientific research, the authors throw light on currently pressing challenges and their implications for planning in Bavaria. Particular emphasis is placed on the question of the contribution spatial planning can make to climate-adapted development and the implementation of the Energiewende (energy transition).

  3. Managing for climate change on protected areas: An adaptive management decision making framework.

    Science.gov (United States)

    Tanner-McAllister, Sherri L; Rhodes, Jonathan; Hockings, Marc

    2017-12-15

    Current protected area management is becoming more challenging with advancing climate change and current park management techniques may not be adequate to adapt for effective management into the future. The framework presented here provides an adaptive management decision making process to assist protected area managers with adapting on-park management to climate change. The framework sets out a 4 step process. One, a good understanding of the park's context within climate change. Secondly, a thorough understanding of the park management systems including governance, planning and management systems. Thirdly, a series of management options set out as an accept/prevent change style structure, including a systematic assessment of those options. The adaptive approaches are defined as acceptance of anthropogenic climate change impact and attempt to adapt to a new climatic environment or prevention of change and attempt to maintain current systems under new climatic variations. Last, implementation and monitoring of long term trends in response to ecological responses to management interventions and assessing management effectiveness. The framework addresses many issues currently with park management in dealing with climate change including the considerable amount of research focussing on 'off-reserve' strategies, and threats and stress focused in situ park management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 'Pivotal politics' in US energy and climate legislation

    International Nuclear Information System (INIS)

    Skodvin, Tora

    2010-01-01

    In the 110th Congress (2007-2008) legislation related to climate change was introduced at a faster pace than in any previous Congress, yet it did not result in a corresponding increase in enacted climate-related laws. A pertinent example of the political infeasibility of climate policy change in the 110th Congress is the case of tax credit extensions for production of renewable energy. While this issue in itself was uncontroversial, the extensions were only adopted in the 11th hour, after innumerable failed attempts. With an analytical point of departure in Krehbiel's theory of pivotal politics, this paper seeks to identify pivotal legislators in the case of the tax credit extensions and discusses how changes in the composition of pivotal legislators in the 111th Congress (2009-2010) may impact the prospects of moving climate legislation more generally. The analysis indicates that a majority of the legislative pivots in the case of tax credit extensions were Republican senators representing coal-producing states. In the case of climate change, however, the regional dimension is likely to be more significant for Democratic voting behaviour. Thus, the opportunity space for climate legislation in the 111th Congress remains narrow even with a reinforced Democratic majority in Congress.

  5. Expansion in Number of Parameters - Simulation of Energy and Indoor Climate in Combination with LCA

    DEFF Research Database (Denmark)

    Otovic, Aleksander; Jensen, Lotte Bjerregaard; Negendahl, Kristoffer

    The Technical University of Denmark has been carrying out research in the energy balance of buildings in relation to indoor climate for decades. The last two decades have seen a major role played by research in the field of Integrated Energy Design (IED) focusing on the earliest design phases. Th......-esteemed architectural offices in Scandinavia. The development of the real-time LCA-indoor climate- energy balance tool was funded by Nordic Built.......The Technical University of Denmark has been carrying out research in the energy balance of buildings in relation to indoor climate for decades. The last two decades have seen a major role played by research in the field of Integrated Energy Design (IED) focusing on the earliest design phases...... and engineering consultancies in Scandinavia have invested in software and interdisciplinary design teams to carry out Integrated Energy Design (IED). Legislation has been altered and simulations of indoor climate and energy balance are now required to obtain building permits. IED has been rolled out extensively...

  6. The impacts of climate change on energy: An aggregate expenditure model for the US

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, W. [Boston Univ., MA (United States); Mendelsohn, R. [Yale Univ., New Haven, CT (United States). School of Forestry and Environmental Studies

    1998-09-01

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion.

  7. The impacts of climate change on energy: An aggregate expenditure model for the US

    International Nuclear Information System (INIS)

    Morrison, W.; Mendelsohn, R.

    1998-01-01

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion

  8. Point Climat no. 29 'Managing France's energy transition while safeguarding economic competitiveness: be productive'

    International Nuclear Information System (INIS)

    Sartor, Oliver; Leguet, Benoit

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: - Is the French energy transition compatible with economic growth and a 'competitive' French economy? Our answer is 'yes, with some conditions'. - The French economy is better positioned today for a meaningful energy transition than it has been for over 40 years. At the level of the macro-economy, a steady shift to higher energy prices is now much easier without hurting economic growth than it once was. - A small percentage of energy-intensive sectors may need targeted and temporary assistance with this transition

  9. Energy and climate: the essential world cooperation

    International Nuclear Information System (INIS)

    Lesourne, J.

    2008-01-01

    Considering the double challenge of energy supply for economic development and of greenhouse gas emission management to struggle against climate change, the author identifies what can be done at different levels: between governments and households (in terms of energy costs, public transport development, information and education), between governments and firms (in terms of standards, network leakage reductions, intellectual property on new technologies), and between governments. He identifies the related objectives for the European Union, the United States of America, Japan, Russia, China, India, Brazil, the Middle-East, and Sub-Saharan Africa

  10. SLC summer 2010 university - The ocean in the climate-energy problem, urban policies. Proceedings

    International Nuclear Information System (INIS)

    2010-09-01

    This document brings together the available presentations given at the summer 2010 university of the SLC (save the climate) organization on the topics of the ocean in the climate-energy problem, and of the urban policies. Nine presentations (slides) are compiled in this document and deal with: 1 - Biofuels made from micro-algae: stakes and challenges (Olivier Bernard, Comore - INRIA /CNRS/UPMC); 2 - The energy of waves (Alain Clement, Ecole Centrale de Nantes); 3 - The sea, new source of renewable energies? (J.J. Herou, EDF CIH); 4 - Oceans acidification: the other CO 2 problem (James Orr, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE, CEA-CNRS-UVSQ); 5 - Oceans and carbon cycle (Laurent Bopp, IPSL/LSCE); 6 - Renewable marine energies (Yann-Herve De Roeck, France Energies Marines); 7 - Energy renovation of buildings (Jean-Claude Terrier, Mesac Europe); 8 - Modevur research project - Modeling of urban development, sketch of a development typology of chinese cities (Clement-Noel Douady); 9 - Urban areas in the fight against climate change: stakes, knowledge and controversies (Francois Menard, PUCA)

  11. Cost-optimal energy performance renovation measures of educational buildings in cold climate

    International Nuclear Information System (INIS)

    Niemelä, Tuomo; Kosonen, Risto; Jokisalo, Juha

    2016-01-01

    Highlights: • The proposed national nZEB target can be cost-effectively achieved in renovations. • Energy saving potential of HVAC systems is significant compared to the building envelope. • Modern renewable energy production technologies are cost-efficient and recommendable. • Improving the indoor climate conditions in deep renovations is recommendable. • Simulation-based optimization method is efficient in building performance analyzes. - Abstract: The paper discusses cost-efficient energy performance renovation measures for typical educational buildings built in the 1960s and 1970s in cold climate regions. The study analyzes the impact of different energy renovation measures on the energy efficiency and economic viability in a Finnish case study educational building located in Lappeenranta University of Technology (LUT) campus area. The main objective of the study was to determine the cost-optimal energy performance renovation measures to meet the proposed national nearly zero-energy building (nZEB) requirements, which are defined according to the primary energy consumption of buildings. The main research method of the study was simulation-based optimization (SBO) analysis, which was used to determine the cost-optimal renovation solutions. The results of the study indicate that the minimum national energy performance requirement of new educational buildings (E_p_r_i_m_a_r_y ⩽ 170 kWh/(m"2,a)) can be cost-effectively achieved in deep renovations of educational buildings. In addition, the proposed national nZEB-targets are also well achievable, while improving the indoor climate (thermal comfort and indoor air quality) conditions significantly at the same time. Cost-effective solutions included renovation of the original ventilation system, a ground source heat pump system with relatively small dimensioning power output, new energy efficient windows and a relatively large area of PV-panels for solar-based electricity production. The results and

  12. Financial impacts of UK's energy and climate change policies on commercial and industrial businesses

    International Nuclear Information System (INIS)

    Ang, Chye Peng; Toper, Bruce; Gambhir, Ajay

    2016-01-01

    This study provides a detailed case study assessment of two business sites in the UK, to understand the policy drivers of increases to their energy costs and energy bills, considering all current UK energy and climate change policies. We compare our findings to more generalised, theoretical calculations of the policy cost impact on energy costs and bills – we have found no other studies as comprehensive as ours in terms of policy coverage. We find that for one site the government has over-estimated the likely energy savings due to energy efficiency options. Such differences in estimates should be taken into account when considering the efficacy of climate change policies on future energy savings. The overall impact of energy and climate change policies on costs will be of the order 0.4% of total business costs by 2020. This provides an important metric for the near-term cost of mitigation to meet longer-term climate change goals. - Highlights: •Cumulative impacts of policies on energy prices and bills were studied. •Projected bills for one site are higher than those projected by the UK government. •Results of existing theoretical studies may not be fully representative. •Impact of policies is not considered significant with respect to competitiveness.

  13. SLC summer 2010 university - The ocean in the climate-energy problem, urban policies. Proceedings; Universite d'ete 2010 SLC - L'Ocean dans la problematique Climat-Energie, politiques urbaines. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    This document brings together the available presentations given at the summer 2010 university of the SLC (save the climate) organization on the topics of the ocean in the climate-energy problem, and of the urban policies. Nine presentations (slides) are compiled in this document and deal with: 1 - Biofuels made from micro-algae: stakes and challenges (Olivier Bernard, Comore - INRIA /CNRS/UPMC); 2 - The energy of waves (Alain Clement, Ecole Centrale de Nantes); 3 - The sea, new source of renewable energies? (J.J. Herou, EDF CIH); 4 - Oceans acidification: the other CO{sub 2} problem (James Orr, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE, CEA-CNRS-UVSQ); 5 - Oceans and carbon cycle (Laurent Bopp, IPSL/LSCE); 6 - Renewable marine energies (Yann-Herve De Roeck, France Energies Marines); 7 - Energy renovation of buildings (Jean-Claude Terrier, Mesac Europe); 8 - Modevur research project - Modeling of urban development, sketch of a development typology of chinese cities (Clement-Noel Douady); 9 - Urban areas in the fight against climate change: stakes, knowledge and controversies (Francois Menard, PUCA)

  14. Climate-specific design of tropical housing and buildings (Garissa ...

    African Journals Online (AJOL)

    design stages to make better use of passive solar energy in urban planning and building design for better indoor ... Keywords:Climatic design, Solar energy, Passive architecture, Thermal comfort, Human comfort, ARCHIPAK, Garissa, Kenya.

  15. From Hope to Uncertainty. Europe, Energy and Climate 2008-2012

    International Nuclear Information System (INIS)

    Lesourne, Jacques

    2012-01-01

    In the current context of economic and financial crisis, the attention of citizens in France, as in many other European countries, is focussed above all on economic and social questions (purchasing power, employment, housing etc.). This means that environmental considerations are increasingly down-played, as are energy issues - though to a lesser extent, given their economic impact. However, the questions of future energy prospects and combating climate change are just as pressing now as they have ever been. Some argue that they might even serve as levers to restart economic growth. It is a very good time, then, to summarize the situation on energy and climate that prevails within the EU. How is European policy with regard to energy and global warming organized (the overall architecture, the objectives, the legal instruments etc.)? What are the major events that have occurred in the last five years that have impacted significantly on these fields? Has European policy borne fruit where energy and the climate are concerned? This article strives to provide answers to all these questions, while stressing the degree to which the increasing number of decisions taken at member-state level without Europe-wide consultation is leading to harmful incoherence and is casting doubt on the EU's capacity to remain a leader in the world wide struggle against global warming. And this leads to other questions which are crucial for the future, regarding the best way of organizing this European energy policy at the national, EU or international level, while not failing to pay attention to the main parties concerned: namely, European consumers

  16. Climate change and animal diseases: making the case for adaptation.

    Science.gov (United States)

    Cáceres, Sigfrido Burgos

    2012-12-01

    The exponential expansion of the human population has led to overexploitation of resources and overproduction of items that have caused a series of potentially devastating effects, including ocean acidification, ozone depletion, biodiversity loss, the spread of invasive flora and fauna and climatic changes - along with the emergence of new diseases in animals and humans. Climate change occurs as a result of imbalances between incoming and outgoing radiation in the atmosphere. This process generates heat. As concentrations of atmospheric gases reach record levels, global temperatures are expected to increase significantly. The hydrologic cycle will be altered, since warmer air can retain more moisture than cooler air. This means that some geographic areas will have more rainfall, whereas others have more drought and severe weather. The potential consequences of significant and permanent climatic changes are altered patterns of diseases in animal and human populations, including the emergence of new disease syndromes and changes in the prevalence of existing diseases. A wider geographic distribution of known vectors and the recruitment of new strains to the vector pool could result in infections spreading to more and potentially new species of hosts. If these predictions turn out to be accurate, there will be a need for policymakers to consider alternatives, such as adaptation. This review explores the linkages between climate change and animal diseases, and examines interrelated issues that arise from altered biological dynamics. Its aim is to consider various risks and vulnerabilities and to make the case for policies favoring adaptation.

  17. Point Climat no. 27 'Unlocking private investments in energy efficiency through carbon finance'

    International Nuclear Information System (INIS)

    Shishlov, Igor; Bellassen, Valentin

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: According to the latest IEA World Energy Outlook, energy efficiency is a 'key option' in transition to a low-carbon economy. A decade of experience with the CDM and JI demonstrates that carbon finance can be used as an effective tool to unlock private investments in energy efficiency. Capital investments in offset projects may significantly exceed the expected carbon revenues resulting in an average weighted leverage ratio of 4:1 and 9:1 for the CDM and JI respectively, which is comparable to other international financial instruments. So far carbon finance has been used mostly for large-scale industrial energy efficiency projects in advanced developing countries and economies in transition, although it is increasingly suited to tap into scattered household energy efficiency projects

  18. The climate-energy contribution. Understand it, and you will adopt it

    International Nuclear Information System (INIS)

    2013-10-01

    This publication explains why the climate-energy contribution has a crucial role in the protection of climate, how everybody should be concerned, and whether it's a constraint or an opportunity for a successful energy transition. It outlines that this contribution is an application of the 'polluter pays' principle, describes how this contribution can be efficient and fair (all energies and all sectors are concerned). It briefly describes how revenues can be redistributed and how to invest in energy transition. By referring to some European countries (UK, Ireland, Finland, Sweden, Denmark and Switzerland), it outlines that this contribution has already been implemented, and that it could be a tool for innovation and jobs. It indicates the impact of this contribution on households (costs for housing and for mobility, possible actions to reduce energy consumption in housing and in mobility practices)

  19. Making Industry Part of the Climate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Lapsa, Melissa Voss [ORNL; Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Jackson, Roderick K [ORNL; Cox, Matthew [Georgia Institute of Technology; Cortes, Rodrigo [Georgia Institute of Technology; Deitchman, Benjamin H [ORNL

    2011-06-01

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  20. Fuelling the climate crisis : the continental energy plan

    International Nuclear Information System (INIS)

    Foley, D.; Scott, G.; Hocking, D.; Marchildon, S.

    2001-01-01

    This paper emphasized the need for the Canadian government to address the issue of climate change. It was argued that the political will in Canada to address global warming is subordinate to the expansion of fossil fuel production and exports. Canadians are highly dependent upon the services that these carbon-based fuels provide. However, these fossil fuels are significant contributors to local air pollution and the biggest contributor to global climate change. It was argued that conservation and other sources, such as renewable energy sources, are equally technically feasible and economically available. The paper criticized the fact that while world markets for renewables are expanding, Canada's energy future is being developed by the fossil fuel industry in collaboration with U.S. political leaders, energy regulators and policy makers, and that industry and government are ignoring the obvious contradiction between the science of climate change and the policy of fossil fuel expansion. The Canadian government encourages the development of fossil fuel supply and production through subsidies and incentive programs for exploration and development along with deregulation of the oil and natural gas markets. This paper demonstrated that under current market trends, the planned growth in Canadian fossil fuel production and use will raise emissions 44 per cent above the Kyoto target by 2010. New tar sands expansion projects, increased natural gas production to meet U.S. demand and new coal-fired electricity generation will add 63.5 megatonnes of greenhouse gas emissions to Canada's projected annual total. refs., tabs., figs

  1. Energy policy and climate change in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2003-01-01

    The problem of massive emissions of carbon dioxide (CO 2 ) from the burning of fossil fuels and their climatic impact have become major scientific and political issues. Future stabilization of the atmospheric CO 2 content requires a drastic decrease of CO 2 emissions worldwide. In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country; with more than half of the energy requirement being supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture contents. Because of increasing energy consumption, air pollution is becoming a great environmental concern for the future in the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of the renewable energy sources

  2. The nuclear energy like an option in Mexico before the climatic change

    International Nuclear Information System (INIS)

    Hernandez M, B.; Puente E, F.; Ortiz O, H. B.; Avila P, P.; Flores C, J.

    2014-10-01

    The current energy poverty, the future necessities of energy and the climatic change caused by the global warming, are factors that associates each, manifest with more clarity the unsustainable production way and energy consumption that demands the society in the current life. This work analyzes the nuclear energy generation like an alternative from the environmental view point that ties with the sustainable development and the formulation of energy use models that require the countries at global level. With this purpose were collected and reviewed documented data of the energy resources, current and future energy consumption and the international commitments of Mexico regarding to greenhouse gases reduction. For Mexico two implementation scenarios of nuclear reactors type BWR and A BWR were analyzed, in compliance with the goals and policy development established in the National Strategy of Climatic Change and the National Strategy of Energy; the scenarios were analyzed through the emissions to the air of CO 2 , (main gas of greenhouse effect) which avoids when the energy production is obtained by nuclear reactors instead of consumptions of traditional fuels, such as coal, diesel, natural gas and fuel oil. The obtained results reflect that the avoided emissions contribute from 4.2% until 40% to the national goal that Mexico has committed to the international community through the Convention Marco of the United Nations against the Climatic Change (CMNUCC). These results recommends to the nuclear energy like a sustainable energy solution on specific and current conditions for Mexico. (Author)

  3. Clean energy for development and economic growth: Biomass and other renewable options to meet energy and development needs in poor nations

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, Art; Pandey, Bikash; Karstad, Elsen; Owen, Matthew; Bailis, Robert; Ribot, Jesse; Masera, Omar; Diaz, Rodolpho; Benallou, Abdelahanine; Lahbabi, Abdelmourhit

    2012-10-01

    The document explores the linkages between renewable energy, poverty alleviation, sustainable development, and climate change in developing countries. In particular, the paper places emphasis on biomass-based energy systems. Biomass energy has a number of unique attributes that make it particularly suitable to climate change mitigation and community development applications.

  4. Sustainable development, energy and climate. Exploring synergies and tradeoffs

    International Nuclear Information System (INIS)

    Halsnaes, K.; Garg, A.

    2006-11-01

    This report summarizes the results of the Development, Energy and Climate Project that has been managed by the UNEP Risoe Centre on behalf of UNEP DTIE. The project is a partnership between the UNEP Risoe Centre and centers of excellence in Bangladesh, Brazil, China, India, Senegal and South Africa. The focus of this report is on the energy sector mitigation assessments that have been carried out in the countries. In addition to this work, the project has also included adaptation focused case studies that explore climate change impacts on the energy sector and infrastructure. The report includes a short introduction to the project and its approach and summaries of the six country studies. This is followed by an assessment of cross country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. Furthermore, energy access and affordability for households are considered as major social aspects of energy provision. The country study results that are included in this report are a short summary of some of the main findings and do not provide all details of the work that has been undertaken. Some of the countries in particular those with fast growing economies and energy sectors such as Brazil, China, India and South Africa have conducted general scenario analysis of the energy sector and explored some policies in more depth, while the country studies for Bangladesh and Senegal where the energy sector is less developed have focused more on specific issues related to energy access and the electricity sector. (au)

  5. Sustainable development, energy and climate. Exploring synergies and tradeoffs

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K; Garg, A [eds.

    2006-11-15

    This report summarizes the results of the Development, Energy and Climate Project that has been managed by the UNEP Risoe Centre on behalf of UNEP DTIE. The project is a partnership between the UNEP Risoe Centre and centers of excellence in Bangladesh, Brazil, China, India, Senegal and South Africa. The focus of this report is on the energy sector mitigation assessments that have been carried out in the countries. In addition to this work, the project has also included adaptation focused case studies that explore climate change impacts on the energy sector and infrastructure. The report includes a short introduction to the project and its approach and summaries of the six country studies. This is followed by an assessment of cross country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. Furthermore, energy access and affordability for households are considered as major social aspects of energy provision. The country study results that are included in this report are a short summary of some of the main findings and do not provide all details of the work that has been undertaken. Some of the countries in particular those with fast growing economies and energy sectors such as Brazil, China, India and South Africa have conducted general scenario analysis of the energy sector and explored some policies in more depth, while the country studies for Bangladesh and Senegal where the energy sector is less developed have focused more on specific issues related to energy access and the electricity sector. (au)

  6. Regional energy demand and adaptations to climate change: Methodology and application to the state of Maryland, USA

    International Nuclear Information System (INIS)

    Ruth, Matthias; Lin, A.-C.

    2006-01-01

    This paper explores potential impacts of climate change on natural gas, electricity and heating oil use by the residential and commercial sectors in the state of Maryland, USA. Time series analysis is used to quantify historical temperature-energy demand relationships. A dynamic computer model uses those relationships to simulate future energy demand under a range of energy prices, temperatures and other drivers. The results indicate that climate exerts a comparably small signal on future energy demand, but that the combined climate and non-climate-induced changes in energy demand may pose significant challenges to policy and investment decisions in the state

  7. Regional energy demand and adaptations to climate change: Methodology and application to the state of Maryland, USA

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Matthias [Environmental Policy Program, School of Public Policy, 3139 Van Munching Hall, College Park, MD 20782 (United States)]. E-mail: mruth1@umd.edu; Lin, A.-C. [Environmental Policy Program, School of Public Policy, 3139 Van Munching Hall, College Park, MD 20782 (United States)

    2006-11-15

    This paper explores potential impacts of climate change on natural gas, electricity and heating oil use by the residential and commercial sectors in the state of Maryland, USA. Time series analysis is used to quantify historical temperature-energy demand relationships. A dynamic computer model uses those relationships to simulate future energy demand under a range of energy prices, temperatures and other drivers. The results indicate that climate exerts a comparably small signal on future energy demand, but that the combined climate and non-climate-induced changes in energy demand may pose significant challenges to policy and investment decisions in the state.

  8. An analytical model for climatic predictions

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-12-01

    A climatic model based upon analytical expressions is presented. This model is capable of making long-range predictions of heat energy variations on regional or global scales. These variations can then be transformed into corresponding variations of some other key climatic parameters since weather and climatic changes are basically driven by differential heating and cooling around the earth. On the basis of the mathematical expressions upon which the model is based, it is shown that the global heat energy structure (and hence the associated climatic system) are characterized by zonally as well as latitudinally propagating fluctuations at frequencies downward of 0.5 day -1 . We have calculated the propagation speeds for those particular frequencies that are well documented in the literature. The calculated speeds are in excellent agreement with the measured speeds. (author). 13 refs

  9. The Potential Of Fission Nuclear Energy In Resolving Global Climate Change

    International Nuclear Information System (INIS)

    Pevec, D.

    2015-01-01

    There is an international consensus on the need of drastic reduction of carbon emission if very serious global climate changes are to be avoided. At present target is to limit global temperature increase to 2 Degrees of C and to keep CO 2 concentration below 450 ppm, though some recent request by climatologists argue for lower limit of 1.5 Degrees of C. The carbon emission reduction has to be done in the next few decades, as climate effects are essentially determined by integral emission. The integral emissions should not exceed 1000 Gt CO 2 to keep the probability of exceeding global temperature by 2 Degrees of C below 25 percent. Consequently, when we consider energy sources that could produce carbon free energy we have to concentrate on the period not later than 2060-2065. The sources that can take the burden of reduction in the years up to 2065 are Renewable Energy Sources (RES) and nuclear fission energy. The potential of RES has been estimated by many organizations and individuals. Their predictions indicate that RES are not likely to be sufficient to replace carbon emitters and fulfill the 2 Degrees of C limit requirements. The nuclear fission energy can give a very serious and hopefully timely (unlike nuclear fusion) contribution to reduction of emission. Even with proven conventional reactors using once through fuel cycle without fuel reprocessing the nuclear build-up in the years 2025-2065 could reach 3330 GW. With this concept nuclear contribution of 94.5 EJ/y would be reached by 2065, while integral CO 2 emission savings would be about 500 Gt CO 2 by 2065. This shows that essential nuclear contribution is possible without the use of plutonium and fast breeders, technology not ready for climate-critical next 50 years and not acceptable in present political environment. This nuclear fission energy contribution along with contributions from renewable sources, energy saving, and increased efficiency in energy use can solve the climate problems. (author).

  10. Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems

    Science.gov (United States)

    Fortier, M. O. P.

    2017-12-01

    Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.

  11. EU-China Cooperation In the Field of Energy, Environment and Climate Change

    Directory of Open Access Journals (Sweden)

    Pietro De Matteis

    2010-11-01

    Full Text Available The evolution of the energy market and the intrinsic worldwide scope of environmental threats, such as climate change, are two elements that have pushed the world towards shared approaches to global governance via bilateral institutions and international regimes. This article, with the aid of an institutionalist approach, presents the current status of the EU-China relationship, which is characterised by high institutionalisation, and it underlines how their bilateral cooperation has progressively focused on energy and climate change-related issues. In particular, the article sheds some light on the linkages between energy, environment and climate change and how these have created the basis for the upgrade of the EU-China bilateral relationship to its current level. To do so, it underlines some of the tools, the main frameworks and some of the key outcomes of their bilateral cooperation in these fields.

  12. Integrated food–energy systems for climate-smart agriculture

    Directory of Open Access Journals (Sweden)

    Bogdanski Anne

    2012-07-01

    Full Text Available Abstract Food production needs to increase by 70%, mostly through yield increases, to feed the world in 2050. Increases in productivity achieved in the past are attributed in part to the significant use of fossil fuels. Energy use in agriculture is therefore also expected to rise in the future, further contributing to greenhouse emissions. At the same time, more than two-fifths of the world’s population still depends on unsustainably harvested wood energy for cooking and heating. Both types of energy use have detrimental impacts on the climate and natural resources. Continuing on this path is not an option as it will put additional pressure on the already stressed natural resource base and local livelihoods, while climate change is further reducing the resilience of agro-ecosystems and smallholder farmers. Ecosystem approaches that combine both food and energy production, such as agroforestry or integrated crop–livestock–biogas systems, could substantially mitigate these risks while providing both food and energy to rural and urban populations. Information and understanding on how to change course through the implementation of the practices outlined in this paper are urgently needed. Yet the scientific basis of such integrated systems, which is essential to inform decision-makers and to secure policy support, is still relatively scarce. The author therefore argues that new assessment methodologies based on a systems-oriented analysis are needed for analyzing these complex, multidisciplinary and large-scale phenomena.

  13. Climate, energy and emissions trading in the EU and DK

    International Nuclear Information System (INIS)

    Dyck-Madsen, S.

    2004-04-01

    European Union member states are facing two serious challenges: human-induced climatic changes and oil shortage. Evidence that human-induced global heating is threatening the climatic balance is piling up and the conflicts over the last oil resources are becoming critical. The European Union has neither large oil resources nor foreign-political or military power to conquer additional oil resources. The EU Commission's awareness of these facts is influencing the EU energy and climate policy. Recently EU launched the directive on carbon dioxide emissions trading within certain energy-heavy sectors. The greenhouse gas emission allowance trading directive requires a national ceiling on the allocation of CO 2 quotas for the heavy industry and energy sectors, thus adapting the quantity of quotas to the Kyoto requirements. This requirement can be quite extensive for the sectors affected by the greenhouse gas emission allowance trading directive, if national governments choose to abstain from political intervention in order to reduce release of greenhouse gases in sectors outside the emissions trading, e.g. agriculture, transportation, households, and smaller industry and service. Lack of action in these sectors will require the governments to impose either large burdens or use of national Joint Implementation and Clean Development agreements on the heavy industry and energy sectors outside national borders, thus conflicting with the Kyoto Protocol. (BA)

  14. From Climate Change Awareness to Energy Efficient Behaviour

    OpenAIRE

    Niamir, Leila; Filatova, Tatiana

    2016-01-01

    Understanding and predicting how climate will change, and whether and how a transition to low-carbon economies will develop over the next century is of vital importance. Nowadays there is high competition between countries to achieve a low-carbon economy. They are examining different ways e.g. different energy efficient technologies and low-carbon energy sources, however they believe that human choices and behavioural change has a crucial impact, which is many times discussed in the literatur...

  15. Can Climate Information be relevant to decision making for Agriculture on the 1-10 year timescale? Case studies from southern Africa

    Science.gov (United States)

    Fujisawa, Mariko

    2016-04-01

    Climate forecasts have been developed to assist decision making in sectors averse to, and affected by, climate risks, and agriculture is one of those. In agriculture and food security, climate information is now used on a range of timescales, from days (weather), months (seasonal outlooks) to decades (climate change scenarios). Former researchers have shown that when seasonal climate forecast information was provided to farmers prior to decision making, farmers adapted by changing their choice of planting seeds and timing or area planted. However, it is not always clear that the end-users' needs for climate information are met and there might be a large gap between information supplied and needed. It has been pointed out that even when forecasts were available, they were often not utilized by farmers and extension services because of lack of trust in the forecast or the forecasts did not reach the targeted farmers. Many studies have focused on the use of either seasonal forecasts or longer term climate change prediction, but little research has been done on the medium term, that is, 1 to 10 year future climate information. The agriculture and food system sector is one potential user of medium term information, as land use policy and cropping systems selection may fall into this time scale and may affect farmers' decision making process. Assuming that reliable information is provided and it is utilized by farmers for decision making, it might contribute to resilient farming and indeed to longer term food security. To this end, we try to determine the effect of medium term climate information on farmers' strategic decision making process. We explored the end-users' needs for climate information and especially the possible role of medium term information in agricultural system, by conducting interview surveys with farmers and agricultural experts. In this study, the cases of apple production in South Africa, maize production in Malawi and rice production in Tanzania

  16. Sustainability makes ready for the future. Utilization of the energy, environmental protection; Nachhaltigkeit macht fit fuer die Zukunft. Energie nutzen, Umwelt schuetzen

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Markus; Jungbluth, Andreas; Petry, David; Mueller, Bernd

    2010-09-15

    Needless to say, that sustainability corresponds to the preservation of development opportunities and livelihood opportunities as well as to save the competitiveness of our country. In addition to this, the sustainability is the answer to the challenges of the globalisation, demographic change, worldwide climate changes and the shortage of energy sources. Under this aspect, the brochure under consideration contains the following contributions: (1) Discovery of energy: fundamentals and sources; (2) Utilization of energy: climate-friendly concepts; (3) Energy conservation: Environmental protection by means of efficiency; (4) Energy exploration: Innovations for a sustainable development.

  17. Opportunity knocks - the sustainable energy industry and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Price, B.; Keegan, P. [International Institute for Energy Conservation, Washington, DC (United States)

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  18. Energy efficiency to reduce residential electricity and natural gas use under climate change.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V

    2017-05-15

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  19. Marginalization of end-use technologies in energy innovation for climate protection

    Science.gov (United States)

    Wilson, Charlie; Grubler, Arnulf; Gallagher, Kelly S.; Nemet, Gregory F.

    2012-11-01

    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies.

  20. Decision making in energy policies with conflicting interests

    International Nuclear Information System (INIS)

    Renn, O.

    1988-01-01

    After the accident in Chernobyl policy making and implementation of energy decisions have become more difficult than ever. On the one hand the public reacts with fear and opposition to a possible extention of nuclear power, on the other hand the economic prosperity of a country depends on an inexpensive and non-exhaustive energy source like nuclear energy. The paper describes a concept of energy planning developed by a study group of the Nuclear Research Centre in Julich (FRG). The concept is based on the idea that in a pluralistic society different social groups should participate in the policy formulation process and that the values of the public should be incorporated in the weighting process to make choices between given options. As reference theory the basic framework of decision analysis is used. (orig./DG)

  1. A framework for modeling adaptive forest management and decision making under climate change

    NARCIS (Netherlands)

    Yousefpour, Rasoul; Temperli, Christian; Jacobsen, Jette Bredahl; Thorsen, Bo Jellesmark; Meilby, Henrik; Lexer, Manfred J.; Lindner, Marcus; Bugmann, Harald; Borges, Jose G.; Palma, João H.N.; Ray, Duncan; Zimmermann, Niklaus E.; Delzon, Sylvain; Kremer, Antoine; Kramer, Koen; Reyer, Christopher P.O.; Lasch-Born, Petra; Garcia-Gonzalo, Jordi; Hanewinkel, Marc

    2017-01-01

    Adapting the management of forest resources to climate change involves addressing several crucial aspects to provide a valid basis for decision making. These include the knowledge and belief of decision makers, the mapping of management options for the current as well as anticipated future

  2. Oil Dependence, Climate Change and Energy Security: Will Constraints on Oil Shape our Climate Future or Vice Versa?

    Science.gov (United States)

    Mignone, B. K.

    2008-12-01

    Threats to US and global energy security take several forms. First, the overwhelming dependence on oil in the transport sector leaves the US economy (and others) vulnerable to supply shocks and price volatility. Secondly, the global dependence on oil inflates prices and enhances the transfer of wealth to authoritarian regimes. Finally, the global reliance on fossil fuels more generally jeopardizes the stability of the climate system. These three threats - economic, strategic and environmental - can only be mitigated through a gradual substitution away from fossil fuels (both coal and oil) on a global scale. Such large-scale substitution could occur in response to potential resource constraints or in response to coordinated government policies in which these externalities are explicitly internalized. Here, I make use of a well-known integrated assessment model (MERGE) to examine both possibilities. When resource limits are considered alone, global fuel use tends to shift toward even more carbon-intensive resources, like oil shale or liquids derived from coal. On the other hand, when explicit carbon constraints are imposed, the fuel sector response is more complex. Generally, less stringent climate targets can be satisfied entirely through reductions in global coal consumption, while more stringent targets require simultaneous reductions in both coal and oil consumption. Taken together, these model results suggest that resource constraints alone will only exacerbate the climate problem, while a subset of policy-driven carbon constraints may yield tangible security benefits (in the form of reduced global oil consumption) in addition to the intended environmental outcome.

  3. Energy security and climate change: How oil endowment influences alternative vehicle innovation

    International Nuclear Information System (INIS)

    Kim, Jung Eun

    2014-01-01

    Fast growing global energy needs raise concerns on energy supply security and climate change. Although policies addressing the two issues sometimes benefit one at the expense of the other, technology innovation, especially in alternative energy, provides a win–win solution to tackle both issues. This paper examines the effect of oil endowment on the patterns of technology innovation in the transportation sector, attempting to identify drivers of technology innovation in alternative energy. The analysis employs panel data constructed from patent data on five different types of automobile-related technologies from 1990 to 2002: oil extraction, petroleum refining, fuel cells, electric and hybrid vehicles (EHV) and vehicle energy efficiency. I find that countries with larger oil endowments perform less innovation on refining and alternative technologies. Conversely, higher gasoline prices positively impact the patent counts of alternative technologies and energy efficiency technology. The findings highlight the challenges and importance of policy designs in international climate change agreements. - Highlights: • I examine the effect of oil endowment on technology innovation in the transportation sector. • An empirical model was developed for a cross-country analysis of oil endowments. • A country's oil endowment is a negative driver of alternative technologies. • Energy price is a positive driver of alternative technologies and energy efficiency technology. • Implications for domestic and international climate policy are discussed

  4. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    Science.gov (United States)

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  5. Climate challenges - New issues for electricity

    International Nuclear Information System (INIS)

    Durdilly, R.

    2009-01-01

    While France is confronted with new challenges, in particular climate, the French Union for Electricity (UFE) wishes to make a contribution allowing to take advantage o the reduction of the carbon balance of the electricity generation facilities. This positive report should not however make us forget that the carbon balance of these facilities could deteriorate if the right choices are not made right now. That is why the UFE proposes a Vision 2020', an ambitious, but realistic scenario for energy policy taking on the fight against the climatic change, and achieving an economy that is globally more mode-rate in carbon, while potentially creating new jobs and a new industry. The UFE emphasizes in its 'Vision 2020' scenario, that in order too contribute to the fight against the climate change, the challenge is to reduce recourse during peak periods to those sources which generate the greatest volume of carbon dioxide emissions. Thus, the UFE proposes a structured change of behaviour, prioritizing the substitution away from the consumption of fossil energy to that of electricity with a better CO 2 performance. The implementation of this 'Vision 2020' will in particular allow France to achieve a large part of its objective to reduce CO 2 emissions, fixed within the framework of the Grenelle de l'Environnement and of the Paquet Energie Climat. (author)

  6. Public Participation in the Energy-Related Public Policy Making

    International Nuclear Information System (INIS)

    Bozicevic Vrhovcak, M.; Rodik, D.; Zmijarevic, Z.; Jaksic, D.

    2011-01-01

    This paper provides an overview of possibilities for public participation in proposing legal acts and other energy related documents in the Republic of Croatia and gives author assessment of the Croatian public participation level in the processes carried out. The ways how public has participated in the making of a few officially accepted documents have been analysed and potential benefits of inclusion of a wider circle of interested public have been stated. A comparison of the degree of public involvement in the decision making processes in Croatia and the European Union has been made, with specific emphasis on the adoption of the Third package of energy laws. Several national and EU funded projects aiming at enhancing the Croatian public participation in public decision making processes have been presented and their results given. Finally, possibilities for the improvement of the public participation in the Croatian energy policy making processes are proposed. (author)

  7. An integrated assessment of climate change, air pollution, and energy security policy

    International Nuclear Information System (INIS)

    Bollen, Johannes; Hers, Sebastiaan; Van der Zwaan, Bob

    2010-01-01

    This article presents an integrated assessment of climate change, air pollution, and energy security policy. Basis of our analysis is the MERGE model, designed to study the interaction between the global economy, energy use, and the impacts of climate change. For our purposes we expanded MERGE with expressions that quantify damages incurred to regional economies as a result of air pollution and lack of energy security. One of the main findings of our cost-benefit analysis is that energy security policy alone does not decrease the use of oil: global oil consumption is only delayed by several decades and oil reserves are still practically depleted before the end of the 21st century. If, on the other hand, energy security policy is integrated with optimal climate change and air pollution policy, the world's oil reserves will not be depleted, at least not before our modeling horizon well into the 22nd century: total cumulative demand for oil decreases by about 24%. More generally, we demonstrate that there are multiple other benefits of combining climate change, air pollution, and energy security policies and exploiting the possible synergies between them. These benefits can be large: for Europe the achievable CO 2 emission abatement and oil consumption reduction levels are significantly deeper for integrated policy than when a strategy is adopted in which one of the three policies is omitted. Integrated optimal energy policy can reduce the number of premature deaths from air pollution by about 14,000 annually in Europe and over 3 million per year globally, by lowering the chronic exposure to ambient particulate matter. Only the optimal strategy combining the three types of energy policy can constrain the global average atmospheric temperature increase to a limit of 3 C with respect to the pre-industrial level. (author)

  8. Investigating the impact of different thermal comfort models for zero energy buildings in hot climates

    NARCIS (Netherlands)

    Attia, S.G.; Hensen, J.L.M.

    2014-01-01

    The selection of a thermal comfort model has a major impact on energy consumption of Net Zero Energy Buildings (NZEBs) in hot climates. The objective of this paper is to compare the influence of using different comfort models for zero energy buildings in hot climates. The paper compares the impact

  9. Climate of the Nation. Australians Attitudes to Climate Change and its Solutions

    International Nuclear Information System (INIS)

    CLIMATE OF THE NATION AUSTRALIANS ATTITUDES TO CLIMATE CHANGE AND ITS SOLUTIONS

    2007-03-01

    It comes as no surprise that concern about climate change is at an all time high and the vast majority of people no longer doubt that it is real or that it is caused by greenhouse gases created by human activity. Not only is concern at an all time high, but climate change now ranks as more important to people than a wide range of issues including housing affordability and national security. While many people are still unfamiliar with the more detailed science of climate change, this does not detract from their passion to deal with it. Focus group research shows that people see climate change and weather as interchangeable. As such, drought, water supply and management, and climate change are often linked in the minds of the general public. This is backed up by quantitative polling which has water management and climate change topping people's concerns. A common theme in the research is that people are looking for leadership. They accept there may be a price to pay and they are hungry for decisive action.They are also keen to know more about the problem, and importantly they want to be able to take action which will make a real difference. Support for clean energy solutions like solar and wind is very strong and there is a view that Australia's abundant sunshine is not being put to good use. People also feel strongly about cutting energy waste. Themes that emerged strongly through the research were: growing understanding that climate change is already happening; particular concern about water resources and the impact of water restrictions; a view that Australia should lead and is not yet doing so; concern about our children's future (both jobs and environment). People expressed very strong support for a future in which our children are protected from the worst impacts of climate change and are able to be involved in a new economy built around renewable energy sources. Climate change as an issue is a mixture of economic (including households) management and

  10. Energy taxes, resource taxes and quantity rationing for climate protection

    Energy Technology Data Exchange (ETDEWEB)

    Eisenack, Klaus [Oldenburg Univ. (Germany). Dept. of Economics; Edenhofer, Ottmar; Kalkuhl, Matthias [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany)

    2010-11-15

    Economic sectors react strategically to climate policy, aiming at a re-distribution of rents. Established analysis suggests a Pigouvian emission tax as efficient instrument, but also recommends factor input or output taxes under specific conditions. However, existing studies leave it open whether output taxes, input taxes or input rationing perform better, and at best only touch their distributional consequences. When emissions correspond to extracted ressources, it is questionable whether taxes are effective at all. We determine the effectiveness, efficiency and functional income distribution for these instruments in the energy and resource sector, based on a game theoretic growth model with explicit factor markets and policy instruments. Market equilibrium depends on a government that acts as a Stackelberg leader with a climate protection goal. We find that resource taxes and cumulative resource quantity rationing achieve this objective efficiently. Energy taxation is only second best. Mitigation generates a substantial ''climate rent'' in the resource sector that can be converted to transfer incomes by taxes. (orig.)

  11. Europe, Energy and Climate: From Hope to Uncertainty, 2008-12

    International Nuclear Information System (INIS)

    Lesourne, Jacques

    2012-01-01

    In the current context of economic and financial crisis, the attention of citizens in France, as in many other European countries, is focussed above all on economic and social questions (purchasing power, employment, housing etc.). This means that environmental considerations are increasingly down-played, as are energy issues - though to a lesser extent, given their economic impact. However, the questions of future energy prospects and combating climate change are just as pressing now as they have ever been. Some argue that they might even serve as levers to restart economic growth. It is a very good time, then, for Jacques Lesourne to be summarizing the situation on energy and climate that prevails within the EU. How is European policy with regard to energy and global warming organized (the over all architecture, the objectives, the legal instruments etc.)? What are the major events that have occurred in the last five years that have impacted significantly on these fields? Has European policy borne fruit where energy and the climate are concerned? This article strives to provide answers to all these questions, while stressing the degree to which the increasing number of decisions taken at member-state level without Europe-wide consultation is leading to harmful incoherence and is casting doubt on the EU's capacity to remain a leader in the world wide struggle against global warming. And this leads to other questions which are crucial for the future, regarding the best way of organizing this European energy policy at the national, EU or international level, while not failing to pay attention to the main parties concerned: namely, European consumers. (author)

  12. Point Climat no. 23 'The new European Energy Efficiency Directive: France is on track'

    International Nuclear Information System (INIS)

    Berghmans, Nicolas; Alberola, Emilie

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: On October 4 2012, the European Union adopted a new Directive in order to help reach the common target of a 20% improvement in energy efficiency in 2020. At a time when a major national debate on energy transition is set to take place in France, this new directive will need to be taken into account when defining future energy policy. The measures specified in the European Directive, which focus on buildings and energy suppliers, will enable part of France's goal to be met. The transposition of the Directive into French law will result in the setting of a national target for 2020, and will primarily reinforce an existing requirement that applies to energy suppliers, as well as adding measures aimed at informing energy consumers

  13. Energy analysis of the personalized ventilation system in hot and humid climates

    DEFF Research Database (Denmark)

    Schiavon, S.; Melikov, Arsen Krikor; Sekhar, C.

    2010-01-01

    , inhaled air quality, thermal comfort, and self-estimated productivity. Little is known about its energy performance. In this study, the energy consumption of a personalized ventilation system introduced in an office building located in a hot and humid climate (Singapore) has been investigated by means...... effectiveness of PV; (b) increasing the maximum allowed room air temperature due to PV capacity to control the microclimate; (c) supplying the outdoor air only when the occupant is at the desk. The strategy to control the supply air temperature does not affect the energy consumption in a hot and humid climate....

  14. Mitigating climate change: Decomposing the relative roles of energy conservation, technological change, and structural shift

    International Nuclear Information System (INIS)

    Mishra, Gouri Shankar; Zakerinia, Saleh; Yeh, Sonia; Teter, Jacob; Morrison, Geoff

    2014-01-01

    We decompose the contribution of five drivers of energy use and CO 2 emissions reductions in achieving climate change goals over 2005–2100 for various climate policy scenarios. This study contributes to the decomposition literature in three ways. First, it disaggregates drivers of energy demand into technological progress and demand for energy services, represented in terms of useful energy, allowing us to estimate their contributions independently — an improvement over other economy-wide decomposition studies. Secondly, this approach reduces the ambiguity present in many previous measures of structural change. We delineate structural shifts into two separate measures: changes in fuel mix within a given resource or service pathway; and changes in mix among distinct energy resources or end-use services. Finally, this study applies decomposition methods to energy and emission trajectories from two mutually informing perspectives: (i) primary energy resources — crude oil, natural gas, coal, nuclear, and renewables; and (ii) end-uses of energy services — residential and commercial buildings, industry, and transportation. Our results show that technological improvements and energy conservation are important in meeting climate goals in the first half of the coming century; and that nuclear and renewable energy and CCS technology are crucial in meeting more stringent goals in the second half of the century. We examine the relative roles of the drivers in reducing CO 2 emissions separately for developed and developing regions. Although the majority of energy and emission growth – and by extension the greatest opportunities for mitigation – will occur in developing countries, the decomposition shows that the relative roles of the five drivers are broadly consistent between these two regions. - Highlights: • We decompose the contribution of five drivers of energy use and CO2 emissions reductions in achieving climate change goals • We analyze differences

  15. On the use and potential use of seasonal to decadal climate predictions for decision-making in Europe

    Science.gov (United States)

    Soares, Marta Bruno; Dessai, Suraje

    2014-05-01

    The need for climate information to help inform decision-making in sectors susceptible to climate events and impacts is widely recognised. In Europe, developments in the science and models underpinning the study of climate variability and change have led to an increased interest in seasonal to decadal climate predictions (S2DCP). While seasonal climate forecasts are now routinely produced operationally by a number of centres around the world, decadal climate predictions are still in its infancy restricted to the realm of research. Contrary to other regions of the world, where the use of these types of forecasts, particularly at seasonal timescales, has been pursued in recent years due to higher levels of predictability, little is known about the uptake and climate information needs of end-users regarding S2DCP in Europe. To fill this gap we conducted in-depth interviews with experts and decision-makers across a range of European sectors, a workshop with European climate services providers, and a systematic literature review on the use of S2DCP in Europe. This study is part of the EUropean Provision Of Regional Impact Assessment on a Seasonal-to-decadal timescale (EUPORIAS) project which aims to develop semi-operational prototypes of impact prediction systems in Europe on seasonal to decadal timescales. We found that the emerging landscape of users and potential users of S2DCP in Europe is complex and heterogeneous. Differences in S2DCP information needs across and within organisations and sectors are largely underpinned by factors such as the institutional and regulatory context of the organisations, the plethora of activities and decision-making processes involved, the level of expertise and capacity of the users, and the availability of resources within the organisations. In addition, although the use of S2DCP across Europe is still fairly limited, particular sectors such as agriculture, health, energy, water, (re)insurance, and transport are taking the lead on

  16. A decision science approach for integrating social science in climate and energy solutions

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Krishnamurti, Tamar; Davis, Alex; Schwartz, Daniel; Fischhoff, Baruch

    2016-06-01

    The social and behavioural sciences are critical for informing climate- and energy-related policies. We describe a decision science approach to applying those sciences. It has three stages: formal analysis of decisions, characterizing how well-informed actors should view them; descriptive research, examining how people actually behave in such circumstances; and interventions, informed by formal analysis and descriptive research, designed to create attractive options and help decision-makers choose among them. Each stage requires collaboration with technical experts (for example, climate scientists, geologists, power systems engineers and regulatory analysts), as well as continuing engagement with decision-makers. We illustrate the approach with examples from our own research in three domains related to mitigating climate change or adapting to its effects: preparing for sea-level rise, adopting smart grid technologies in homes, and investing in energy efficiency for office buildings. The decision science approach can facilitate creating climate- and energy-related policies that are behaviourally informed, realistic and respectful of the people whom they seek to aid.

  17. Making the most of distributed energy

    International Nuclear Information System (INIS)

    Malkamaeki, M.

    2004-01-01

    Distributed energy production is on the threshold of a new area, and offers a growing number of options for meeting energy needs that cannot be met effectively by larger, base load-type infrastructure. Distributed energy generation can offer a more cost- effective approach, depending on things such as location, load requirements, and fuel availability. It can also make it possible to generate energy at times when grid power is not available or is likely to be overloaded, and in locations not covered by an existing grid net-work. Perhaps most interesting from a technological point of view is the fact that distributed power opens up the opportunity to use fuels that have not been utilised up until now, for a variety of reasons

  18. Making good progress. SwissEnergy 2nd annual report 2002/03

    International Nuclear Information System (INIS)

    2003-01-01

    The second annual report for the Swiss Federal Office of Energy's 'SwissEnergy' programme presents the activities carried out and the results achieved within the framework of the programme, which aims to help implement Switzerland's climate change policy. SwissEnergy is a national programme in which the government, the cantons, local authorities, the private sector, consumer and environmental organisations, as well as public and private-sector agencies work together as partners. In the first part of the report, strategies - including increasing energy efficiency and the promotion of the use of renewable forms of energy - are described, as are the measures taken, which focus on voluntary efforts by trade and industry. Also, the programme's organisation in four sectors - public sector and buildings, trade and industry, mobility and renewable energy - are described. The second part of the report is dedicated to activities carried out in 2002/2003 and describes economic and policy developments, project management activities and those carried out in the four sectors. The third section discusses the impact of the programme's activities in 2002 on Switzerland's energy consumption and its contribution to the implementation of Switzerland's climate policy. The evaluation procedures used to establish the impact and their accuracy are discussed. The report also discusses the programme's impact on investment and employment in Switzerland

  19. Nuclear energy and climate change; Energia nuclear y cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Jimenez, A.

    2002-07-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO{sub 2} emissions. (Author)

  20. Hydrogen from nuclear energy and the impact on climate change

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Poehnell, T.G.

    2001-01-01

    The two major candidates for hydrogen production include nuclear power and other renewable energy sources. However, hydrogen produced by steam reforming of natural gas offers little advantage in total cycle greenhouse gas (GHG) emissions over hybrid internal combustion engine (ICE) technology. Only nuclear power offers the possibility of cutting GHG emissions significantly and to economically provide electricity for traditional applications and by producing hydrogen for its widespread use in the transportation sector. Using nuclear energy to produce hydrogen for transportation fuel, doubles or triples nuclear's capacity to reduce GHG emissions. An analysis at the Atomic Energy of Canada shows that a combination of hydrogen fuel and nuclear energy can stabilize GHG emissions and climate change for a wide range of the latest scenarios presented by the Intergovernmental Panel on Climate Change. The technology for replacing hydrocarbon fuels with non-polluting hydrogen exists with nuclear power, electrolysis and fuel cells, using electric power grids for distribution. It was emphasized that a move toward total emissions-free transportation will be a move towards solving the negative effects of climate change. This paper illustrated the trends between global economic and atmospheric carbon dioxide concentrations. Low carbon dioxide emission energy alternatives were discussed along with the sources of hydrogen and the full cycle assessment results in reduced emissions. It was shown that deploying 20 CANDU NPPs (of 690 MW (e) net each) would fuel 13 million vehicles with the effect of levelling of carbon dioxide emissions from transportation between 2020 to 2030. 13 refs., 2 tabs., 3 figs

  1. The importance of decision-making aids in the energy area: from planning to the management of disorder and climate change

    International Nuclear Information System (INIS)

    Taverdet-Popiolek, N.

    2011-01-01

    The purpose of this article is to situate decision-making aids in the energy area in France and show how the tools have changed over time as a function of the changing economic and political context. The challenges faced, already important in the post-war era due to reconstruction, are now huge due to supply constraints and global warming. While it is the State's responsibility to address these issues, as the players in the energy area currently are mainly in the private sphere, we look at decisions taken both by the State and by companies. Schematically, we compare two major periods: that of post-war planning through the eighties, and that of risk management, which has been current practice since market deregulation. From the methodological standpoint, we show that decision-making aids borrow tools from varied disciplines ranging from economics through management to futurology and long range planning. (author)

  2. Energy Awareness Displays - Making the Invisible Visible

    NARCIS (Netherlands)

    Börner, Dirk

    2011-01-01

    Börner, D. (2011). Energy Awareness Displays - Making the Invisible Visible. Presentation given at the Startbijeenkomst SURFnet Innovatieregeling Duurzaamheid & ICT. May, 13, 2011, Utrecht, The Netherlands.

  3. Climate, air and energy - Issue 2014. Key figures

    International Nuclear Information System (INIS)

    2015-01-01

    After having recalled international objectives (Kyoto protocol), European objectives (directives related to energy efficiency and renewable energies, greenhouse gas emissions and adaptation, air quality, wastes) and French national (plans, laws) and sector-based objectives (for buildings, transports, agriculture, renewable energies, industry, office building and local communities, air quality), this publication presents and comments numerous tables and graphs of data and indicators (and of their evolution) regarding energy consumptions and intensities (primary and final energy), greenhouse gas emissions and climate change, emissions of pollutants and air quality in France and in European countries, but also the implementation of various plans and tools (Agenda 21 for example), the creation of specific public bodies, jobs and markets related to renewable energies in France. The other chapters propose detailed data related to energy consumption or production, energy efficiency, greenhouse gas emissions, and so on for different sectors: housing, tertiary sector, transport, industry, agriculture and forest, renewable energies and heat networks, wastes, individuals

  4. The Energy transition for green growth. Energy transition for green growth act in action: Regions - Citizens - Business

    International Nuclear Information System (INIS)

    2016-07-01

    A great ambition underlies France's Energy Transition for Green Growth Act: to make France - following on from the Paris Climate Summit - an exemplary nation in terms of reducing its greenhouse gas emissions, diversifying its energy model and increasing the deployment of renewable energy sources. This Act provides a unique opportunity both for climate negotiations and for France. It sets goals and implements operational solutions which can be shared with different regions, companies, researchers, the public and anyone with a long-standing commitment to fighting climate change. The Energy Transition for Green Growth Act and its attendant action plans are designed to give France the means to make a more effective contribution to tackling climate change and reinforce its energy independence, while striking a better balance in its energy mix and creating jobs and business growth. The texts required for its implementation are operational and support plans are in place. These tools are available to private individuals, businesses and the regions, enabling them to take concrete action. This document summarizes the actions under way: Defining common objectives, Acting together, Renovating buildings, developing clean transport, Tackling waste and promoting the circular economy, Promoting renewable energy, optimising nuclear safety and public information, Simplifying and clarifying procedures

  5. Water-Energy Nexus Challenges & Opportunities in the Arabian Peninsula under Climate Change

    Science.gov (United States)

    Flores-Lopez, F.; Yates, D. N.; Galaitsi, S.; Binnington, T.; Dougherty, W.; Vinnaccia, M.; Glavan, J. C.

    2016-12-01

    Demand for water in the GCC countries relies mainly on fossil groundwater resources and desalination. Satisfying water demand requires a great deal of energy as it treats and moves water along the supply chain from sources, through treatment processes, and ultimately to the consumer. Hence, there is an inherent connection between water and energy and with climate change, the links between water and energy are expected to become even stronger. As part of AGEDI's Local, National, and Regional Climate Change Programme, a study of the water-energy nexus of the countries in the Arabian Peninsula was implemented. For water, WEAP models both water demand - and its main drivers - and water supply, simulating policies, priorities and preferences. For energy, LEAP models both energy supply and demand, and is able to capture the impacts of low carbon development strategies. A coupled WEAP-LEAP model was then used to evaluate the future performance of the energy-water system under climate change and policy scenarios. The coupled models required detailed data, which were obtained through literature reviews and consultations with key stakeholders in the region. As part of this process, the outputs of both models were validated for historic periods using existing data The models examined 5 policy scenarios of different futures of resource management to the year 2060. A future under current management practices with current climate and a climate projection based on the RCP8.5; a High Efficiency scenario where each country gradually implements policies to reduce the consumption of water and electricity; a Natural Resource Protection scenario with resource efficiency and phasing out of groundwater extraction and drastic reduction of fossil fuel usage in favor of solar; and an Integrated Policy scenario that integrates the prior two policy scenarios Water demands can mostly be met in any scenario through supply combinations of groundwater, desalination and wastewater reuse, with some

  6. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  7. Climate Gamble. Is Anti-Nuclear Activism Endangering Our Future?

    International Nuclear Information System (INIS)

    Korhonen, Janne M.; Partanen, Rauli

    2016-01-01

    This short and easy to read book is a thought-provoking book on one of the biggest problems of our time, climate change, and one of its most misunderstood and misrepresented solution, nuclear power. Humankind has won many great victories in the fight against climate change. However, these victories are rarely acknowledged or reported. Is this because they were won with nuclear power? Preventing dangerous climate change requires world energy production to be almost completely free from fossil fuels by 2050. At the same time, energy consumption keeps growing, as the population increases and those mired in poverty try to create better lives for themselves. With almost 87 percent of our energy produced with fossil fuels, the challenge is unprecedented in both its scale and urgency. International organizations agree that meeting this challenge will require the use of all the tools at our disposal: Renewable energy, more energy conservation and better efficiency, carbon capture and storage - and nuclear power. At the same time, the global environment and energy discussion is largely dominated by a vocal opinion that climate challenge and global poverty should be conquered with nothing else than renewables, energy conservation and energy efficiency. This book explains how this opinion is largely based on very selective reading of relevant studies and reports, wishful thinking about the powers of technological miracles, and even straight-out falsification of statistics and misrepresentation of facts. Does the anti-nuclear movement really help to give people objective, relevant information they need to make up their minds about zero-carbon energy production, the scale of the challenge, and in particular the up- and downsides of nuclear power? Or are they just spreading fear and uncertainty, while making a huge gamble with the climate, potentially endangering both human civilization and the Earth's ecosystems?

  8. Creating agent-based energy transition management models that can uncover profitable pathways to climate change mitigation

    NARCIS (Netherlands)

    Hoekstra, A.E.; Steinbuch, M.; Verbong, G.P.J.

    2017-01-01

    The energy domain is still dominated by equilibrium models that underestimate both the dangers and opportunities related to climate change. In reality, climate and energy systems contain tipping points, feedback loops, and exponential developments. This paper describes how to create realistic energy

  9. Use of RCM simulations to assess the impact of climate change on wind energy availability

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, Rebecca Jane

    2004-01-01

    There is considerable interest in the potential impact of climate change on the feasibility and predictability of renewable energy sources including wind energy. This report presents an application and evaluation of physical (dynamical) downscaling toolsfor examining the impact of climate change...... on near-surface flow and hence wind energy density across northern Europe. It is shown that: - Simulated wind fields using the Rossby Centre coupled Regional Climate Model (RCM) (RCAO) during the control period(1961-1990) exhibit reasonable and realistic features as documented in in situ observations...... and reanalysis data products. - The differences between near-surface wind speed and direction calculated for the control run (January 1, 1961 – December 30, 1990)based on boundary conditions derived from two Global Climate Models (GCM): HadAM3H and ECHAM4/OPYC3 are comparable to changes in the climate change...

  10. Final report: The effect of climate change on the Norwegian Energy System towards 2050

    Energy Technology Data Exchange (ETDEWEB)

    Seljom, P.; Rosenberg, E.; Fidje, A.; Meir, M.; Haugen, J.E.; Jarlseth, T.

    2010-08-15

    The climate impact on the renewable resources, end use demand, and on the Norwegian energy system towards 2050 is identified. Climate change will reduce the heat demand, increase the cooling demand, result in no impact on the wind power potential, and increase the hydro power potential. The total impact is reduced energy system costs, and lower Norwegian electricity prices. The net electricity export will increase, and national investments in new renewable power production like offshore wind- , tidal- and wave power will decrease due to climate change. Additionally, the electricity consumption in the residential and in the commercial sector will decrease, and climate change will lead to an earlier profitable implementation of electric based vehicles in Norway. Despite great uncertainties in the future climate, various future emission scenarios are compatible regarding the Norwegian climate impact, although the magnitude of the impact varies. (Author)

  11. Energy and climate policy in China's twelfth five-year plan: A paradigm shift

    International Nuclear Information System (INIS)

    Li Jun; Wang Xin

    2012-01-01

    The twelfth five-year plan (FYP) endorsed by the People's National Congress in March 2011 plays a crucial role in shaping China's development trajectory over the next decades , and especially for the fulfillment of the 40–45 carbon intensity reduction target by 2020. The plan will condition both the medium and long term perspectives of economic restructuring, rebalance between the inclusive economic growth and environmental objectives, which are compounded by multiple constraints faced by China such as aging population, natural resources depletion, energy supply security and environmental deterioration. This article investigates the major energy and climate targets and actions specified in the 12th FYP to gain insights into the nature and magnitude of challenges and difficulties with regard to the medium and long run economic and environmental policies. It points out that China should articulate sectoral policies with the global climate mitigation targets to avoid long term carbon lock-in. Based on an in-depth analysis of the objectives in the plan, it is argued that the implementation should include mainstreaming developments of appropriate instruments to support cost-effective energy efficiency improvements and carbon intensity reduction in the next five years. - Highlights: ► We investigate the major energy and climate targets and actions specified in the Chinese 12th FYP. ► It points out FYP's implications for energy policy and global climate stabilisation. ► Challenges and difficulties with regard to the medium and long run climate strategies. ► Shift from investment and export-led to consumption led sustainable and inclusive growth model.

  12. Unraveling the Importance of Climate Change Resilience in Planning the Future Sustainable Energy System

    Science.gov (United States)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2017-12-01

    In response to concerns regarding the environmental impacts of the current energy resource mix, significant research efforts have been focused on determining the future energy resource mix to meet emissions reduction and environmental sustainability goals. Many of these studies focus on various constraints such as costs, grid operability requirements, and environmental performance, and develop different plans for the rollout of energy resources between the present and future years. One aspect that has not yet been systematically taken into account in these planning studies, however, is the potential impacts that changing climates may have on the availability and performance of key energy resources that compose these plans. This presentation will focus on a case study for California which analyzes the impacts of climate change on the greenhouse gas emissions and renewable resource utilization of an energy resource plan developed by Energy Environmental Economics for meeting the state's year 2050 greenhouse gas goal of 80% reduction in emissions by the year 2050. Specifically, climate change impacts on three aspects of the energy system are investigated: 1) changes in hydropower generation due to altered precipitation, streamflow and runoff patterns, 2) changes in the availability of solar thermal and geothermal power plant capacity due to shifting water availability, and 3) changes in the residential and commercial electric building loads due to increased temperatures. These impacts were discovered to cause the proposed resource plan to deviate from meeting its emissions target by up to 5.9 MMT CO2e/yr and exhibit a reduction in renewable resource penetration of up to 3.1% of total electric energy. The impacts of climate change on energy system performance were found to be mitigated by increasing the flexibility of the energy system through increased storage and electric load dispatchability. Overall, this study highlights the importance of taking into account and

  13. Low-energy house in Arctic climate - 5 years of experience

    DEFF Research Database (Denmark)

    Vladyková, Petra; Rode, Carsten; Kragh, J.

    2011-01-01

    The aim of this article is to present and disseminate the experience gained from a low‐energy house in Sisimiut, Greenland, over the 5 years of operation since its inauguration in April 2005. The house was designed to test and present new low‐energy technologies in the Arctic climate and to impro...

  14. A Climate Change Vulnerability Assessment Report for the National Renewable Energy Laboratory: May 23, 2014 -- June 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. [Abt Environmental Research, Boulder, CO (United States); O' Grady, M. [Abt Environmental Research, Boulder, CO (United States); Renfrow, S. [Abt Environmental Research, Boulder, CO (United States)

    2015-09-03

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), in Golden, Colorado, focuses on renewable energy and energy efficiency research. Its portfolio includes advancing renewable energy technologies that can help meet the nation's energy and environmental goals. NREL seeks to better understand the potential effects of climate change on the laboratory--and therefore on its mission--to ensure its ongoing success. Planning today for a changing climate can reduce NREL's risks and improve its resiliency to climate-related vulnerabilities. This report presents a vulnerability assessment for NREL. The assessment was conducted in fall 2014 to identify NREL's climate change vulnerabilities and the aspects of NREL's mission or operations that may be affected by a changing climate.

  15. Climate Change and Energy Sustainability. Which Innovations in European Strategies and Plans

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available In recent years, the effects of climate change on urban areas have pushed more and more policy-makers and urban planners to deal with the management of territorial transformations in a systemic and multi-sector perspective, due to the complexity of the issue. In order to enhance the urban governance of climate change and cope with environmental sustainability, the concept of resilience can be used. In this perspective, the present work has a double purpose: on the one hand to reflect on he need to adopt a new comprehension/interpretive approach to the study of the city, which embraces the concept of resilience, and on the other hand to perform a reading of European strategies and plans oriented to mitigate the effects of climate change and to achieve the goals of energy and environmental sustainability. This paper describes some of the results of the knowledge framework of the Project Smart Energy Master for the energy management of territory financed by PON 04A2_00120 R & C Axis II, from 2012 to 2015 aimed at supporting local authorities in the development of strategies for the reduction of energy consumption through actions designed to change behavior (in terms of use and energy consumption and to improve the energy efficiency of equipment and infrastructure. The paper is divided into three parts: the first is oriented to the definition of the new comprehension/interpretive approach; the second illustrates a series of recent innovations in planning tools of some European States due to the adoption of the concept of resilience; the third, finally, describes and compares the most innovative energy and environmental strategies aimed at contrasting and/or mitigate the effects of climate change, promoted in some European and Italian cities.

  16. The economics of climate change and the change of climate in economics

    International Nuclear Information System (INIS)

    Marechal, Kevin

    2007-01-01

    Economics is an unavoidable decision-making tool in the field of climate policy. At the same time, traditional economics is being challenged both empirically and theoretically by scholars in different fields. Its non-neutrality in dealing with climate-related issues-which is illustrated by the controversy over the 'no-regret potential'-would thus call for an opening of economics to insights from other disciplines. Within that context, we show that an evolutionary-inspired line of thought coupled with a systemic and historical perspective of technological change provides a very insightful alternative to traditional economics. More particularly, it follows from that framework that the picture of the climate challenge ahead looks very different from what traditional economic analyses would suggest. For instance, the lock-in process makes it unlikely that traditional cost-efficient measures (such as carbon taxation or tradable emission rights) will be sufficient to bring about the required radical changes in the field of energy as they fail to address structural barriers highlighted in our approach

  17. 40% Whole-House Energy Savings in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  18. 40% Whole-House Energy Savings in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, T. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, M. G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cole, P. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adams, K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butner, R. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ortiz, S. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Love, Pat M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  19. Climate Change and Nuclear Power 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Climate change is one of the most important issues facing the world today. Nuclear power can make an important contribution to reducing greenhouse gas emissions while delivering energy in the increasingly large quantities needed for global socioeconomic development. Nuclear power plants produce virtually no greenhouse gas emissions or air pollutants during their operation and only very low emissions over their entire life cycle. The accident at the Fukushima Daiichi nuclear power plant of March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. It was a wake-up call for everyone involved in nuclear power - a reminder that safety can never be taken for granted. Yet, in the wake of the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The International Atomic Energy Agency provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This report has been substantially revised, updated and extended since the 2012 edition. It summarizes the potential role of nuclear power in mitigating global climate change and its contribution to other development and environmental challenges. The report also examines broader issues relevant to the climate change-nuclear energy nexus, such as cost, safety, waste management and non-proliferation. New developments in resource supply, innovative reactor technologies and related fuel cycles are also presented

  20. Climate Change in Environmental Impact Assessment of Renewable Energy Projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2012-01-01

    Many renewable energy projects are subject to EIA. However a question that surfaces is what use an impact assessment is when the project is ‘good for the environment’? One of the current topics receiving much attention in impact assessment is climate change and how this factor is integrated...... in impact assessments. This warrants the question: How do we assess the climate change related impacts of a project that inherently has a positive effect on climate? This paper is based on a document study of EIA reports from Denmark. The results show that climate change is included in most of the EIA...... reports reviewed, and that only climate change mitigation is in focus while adaptation is absent. Also the results point to focus on positive impacts, while the indirect negative impacts are less apparent. This leads to a discussion of the results in the light of the purpose of EIA....

  1. Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Gustavsson, Leif

    2016-01-01

    In this study, the extent to which different climate scenarios influence overheating risk, energy use and peak loads for space conditioning of district heated multi-storey buildings in Sweden are explored. Furthermore, the effectiveness of different overheating control measures and the implications of different electricity supply options for space cooling and ventilation are investigated. The analysis is based on buildings with different architectural and energy efficiency configurations including a prefab concrete-frame, a massive timber-frame and a light timber-frame building. Thermal performance of the buildings under low and high Representative Concentration Pathway climate scenarios for 2050–2059 and 2090–2099 are analysed and compared to that under historical climate of 1961–1990 and recent climate of 1996–2005. The study is based on a bottom-up methodology and includes detailed hour-by-hour energy balance and systems analyses. The results show significant changes in the buildings’ thermal performance under the future climate scenarios, relative to the historical and recent climates. Heating demand decreased significantly while cooling demand and overheating risk increased considerably with the future climate scenarios, for all buildings. In contrast to the cooling demand, the relative changes in heating demand of the buildings under the future climate scenarios are somewhat similar. The changes in the space conditioning demands and overheating risk vary for the buildings. Overheating risk was found to be slightly higher for the massive-frame building and slightly lower for the light-frame building. - Highlights: • We analysed thermal performance of buildings under different climate scenarios. • Our analysis is based on historical, recent and projected future climate datasets. • The buildings' thermal performance changed notably under future climate scenarios. • The extent of the changes is influenced by the buildings' energy efficiency

  2. SUSTAINABLE DEVELOPMENT, ENERGY AND CLIMATE CHANGE IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Andrei ROTH

    2015-04-01

    Full Text Available Through sustainable development the needs of the current generation are fulfilled without jeopardizing the opportunities of future generations. The concept takes into account economic, social and environmental considerations. It has a wide range of applications from natural resources to population growth and biodiversity. One of its most important themes is energy. In this area, sustainable development relates with resource availability and green house gases emissions. Also it takes into account the needs of people without access to energy, and their legitimate quest for development. For the European Union, sustainable development represents an overarching objective. The present article analyzes the concept from a theoretical perspective, contrasting its strong points and weaknesses. It highlights the relation between sustainable development, energetic resources and climate change. The EU policies results in the field of energy are analyzed from the perspective of resources, energetic dependency and climate change efforts.

  3. A climate for collaboration. Analysis of US and EU lessons and opportunities in energy and climate policy

    International Nuclear Information System (INIS)

    De Vita, A.; McLaren, J.; De Coninck, H.C.; Cochran, J.

    2009-11-01

    This paper aims to improve mutual understanding between the EU and US with regard to climate change and energy policy, suggesting specific opportunities for transatlantic cooperation in this area. A background on the environmental, legislative, and economic contexts of the EU and US as they relate to climate policy sets the context. This is followed by an overview of how cap and trade, renewable energy, and sustainable transportation policies have taken shape in the EU and the US. Some observations and lessons learnt within each of these areas are highlighted. Building on these insights, recommendations are made regarding the carbon market, possibilities for new technologies to bridge the valley of death, and best practices and standards.

  4. Optimization of annual energy demand in office buildings under the influence of climate change in Chile

    International Nuclear Information System (INIS)

    Rubio-Bellido, Carlos; Pérez-Fargallo, Alexis; Pulido-Arcas, Jesús A.

    2016-01-01

    Numerous studies about climate change have emerged in recent years because of their potential impact on many activities of human life, amongst which, the building sector is no exception. Changes in climate conditions have a direct influence on the external conditions for buildings and, thus, on their energy demand. In this context, computer aided simulation provides handy tools that help in assessing this impact. This paper investigates climate data for future scenarios and the effect on energy demand in office buildings in Chile. This data has been generated in the 9 climatic zones that are representative of the main inhabited areas, for the years 2020, 2050 and 2080. Predictions have been produced for the acknowledged A2 ‘medium-high’ Greenhouse Gases emissions GHG scenario, pursuant the Intergovernmental Panel on Climate Change (IPCC). The effect of climate change on the energy demand for office buildings is optimized by implementing the calculation procedure of ISO-13790:2008, based on iterations of its envelope and form. As a result, this research clarifies how future climate scenarios will affect the energy demand for different types of office buildings in Chile, and how their shape and enclosure can be optimized. - Highlights: • Forecast of 9 Chilean climate zones under Greenhouse Gases Scenario A2. • Influence of envelope and form on future energy demand in office buildings. • Multiple iterations on Form Ratio (FR) and Window-to-Wall Ratio (WWR). • Optimization in early stages of design considering global warming.

  5. Book of Abstracts of 18th Forum: Energy Day in Croatia: Quo Vadis- Energy in Time of Climate Change

    International Nuclear Information System (INIS)

    2009-01-01

    The 18th Forum of the Croatian Energy Society, titled Quo Vadis Energy in Times of Climate Change, is focused on analysis and thinking about energy sector development in the conditions of dramatically reducing the CO 2 and greenhouse gases emissions and in the eve of the Copenhagen Climate Summit. The commitments to radically down size CO 2 emissions will change the approach to planning and development of the energy sector. There is high probability that in the time frame of 20 to 30 years a new technology platform will have been introduced through the whole technological cycle, from generation to consumption of energy. It is expected that breakthroughs will be made towards clean and more efficient technologies, but with significantly higher price levels. The changes in the energy sector will affect everyone, from general public to energy buying companies, and most of all it will affect the companies in the energy sector. The changes in the energy sector, which are to contribute to climate preservation, are a realistic and achievable goal, but they come with a price. We can expect to see the doubling of the prices, not in the near future of course, but undoubtedly in the times of great changes in the energy sector. The realisation of these changes requires a great deal of political determination in the international context, as well as fair solutions which will enable the advancement of the underdeveloped and less developed nations. Also, a strong support to the technological development is needed. The climate preservation can be a powerful generator of the international cooperation, especially as a synergy in the technological development. Technological development can be the most important asset in solving the problems of climate preservation, with the condition, of course, that the resources for research are increased and that the developed countries join efforts in using the knowledge they have, and that a non-discriminatory transfer of knowledge to the

  6. Agrarian land use decision making in the light of global change and climate change

    CSIR Research Space (South Africa)

    Murambadoro, M

    2014-09-01

    Full Text Available in Limpopo Province to help land beneficiaries to achieve integrated and coordinated agrarian land use decision making. The second project is ongoing and it seeks to build local resilience to climate change by providing people at local government...

  7. Indoor climate perceived as improved after energy retrofitting of single-family houses

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Jensen, Ole Michael

    2014-01-01

    The need for energy retrofitting of the Danish single-family houses is massive, especially for the high proportion of single-family houses built in the 1960s and 1970s. But even though the potential benefits are many, only few families embark on a major energy retrofit. There may be many reasons...... for this. An obvious one may be limited knowledge of non-energy benefits, e.g. in relation to the indoor climate. The objective of this study was to explain this limited effort to save energy by identifying barriers and incentives among house owners in relation to energy retrofitting of one’s own house....... Moreover, it was investigated among house owners, who had carried out energy retrofitting, whether a number of factors, including the perceived indoor climate, became better or worse after retrofitting. A questionnaire survey was carried out among 1,990 house owners in a municipality north of Copenhagen...

  8. Climate policy studies by the Fridtjof Nansen Institute, ECON and Energy Data:10 Abstracts

    International Nuclear Information System (INIS)

    Andresen, S.; Eikeland, P.O.; Eleri, E.O.; Fermann, G.; Fredriksen, O.; Halseth, A.; Hansen, S.; Haugland, T.; Malnes, R.; Skjaerseth, J.B.; Ottosen, R.

    1993-01-01

    The overall focus is the relation between energy, environment and development on the national level and international co-operation concerning sustainable energy management and global environmental change. A series of country studies analyses the economic, political and institutional factors influencing energy, environment and climate policies. The role of non-state actors like NGOs and the energy industries in international environmental affairs is also closely examined. Strategies to enhance energy efficiency are studied with a particular focus on identifying and overcoming barriers to policy implementation. The ways in which developments in international energy markets affect the potential and scope of international environmental agreements are analysed, as are the impacts of different international environmental regimes on energy markets. Particular attention is paid on the opportunities and limitations of international institutions like the European Community, the United Nations, the multilateral development banks and GATT, in promoting international co-operation on energy and environmental issues. Strategies to overcome North/South conflicts over global environmental issues are examined, including issue linkages in international negotiations and North/South transfer of resources and technology. Another important area of sustainable production and consumption of energy in developing countries. Project titles are: 1) ''Leader'' and ''entrepreneur'' in international negotiations . A conceptual analysis. 2) Choosing climate policy. Decision theoretical premises. 3) Japan in the greenhouse responsibilities, policies and prospects for combating global warming. 4) Impacts on developing economies from changing trade regimes and growing international environmental concerns. 5) US energy policy in the greenhouse from the North slope forests to the Gulf Stream waters - this land was made for fossil fuels. 6) The climate policy of the EC - too hot to handle. 7) US climate

  9. Climate policy studies by the Fridtjof Nansen Institute, ECON and Energy Data:10 Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, S; Eikeland, P O; Eleri, E O; Fermann, G; Fredriksen, O; Halseth, A; Hansen, S; Haugland, T; Malnes, R; Skjaerseth, J B; Ottosen, R

    1993-07-01

    The overall focus is the relation between energy, environment and development on the national level and international co-operation concerning sustainable energy management and global environmental change. A series of country studies analyses the economic, political and institutional factors influencing energy, environment and climate policies. The role of non-state actors like NGOs and the energy industries in international environmental affairs is also closely examined. Strategies to enhance energy efficiency are studied with a particular focus on identifying and overcoming barriers to policy implementation. The ways in which developments in international energy markets affect the potential and scope of international environmental agreements are analysed, as are the impacts of different international environmental regimes on energy markets. Particular attention is paid on the opportunities and limitations of international institutions like the European Community, the United Nations, the multilateral development banks and GATT, in promoting international co-operation on energy and environmental issues. Strategies to overcome North/South conflicts over global environmental issues are examined, including issue linkages in international negotiations and North/South transfer of resources and technology. Another important area of sustainable production and consumption of energy in developing countries. Project titles are: 1) ''Leader'' and ''entrepreneur'' in international negotiations . A conceptual analysis. 2) Choosing climate policy. Decision theoretical premises. 3) Japan in the greenhouse responsibilities, policies and prospects for combating global warming. 4) Impacts on developing economies from changing trade regimes and growing international environmental concerns. 5) US energy policy in the greenhouse from the North slope forests to the Gulf Stream waters - this land was made for fossil fuels. 6) The climate policy of the EC - too hot to handle. 7) US climate

  10. Climate policy studies by the Fridtjof Nansen Institute, ECON and Energy Data:10 Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, S.; Eikeland, P.O.; Eleri, E.O.; Fermann, G.; Fredriksen, O.; Halseth, A.; Hansen, S.; Haugland, T.; Malnes, R.; Skjaerseth, J.B.; Ottosen, R

    1993-07-01

    The overall focus is the relation between energy, environment and development on the national level and international co-operation concerning sustainable energy management and global environmental change. A series of country studies analyses the economic, political and institutional factors influencing energy, environment and climate policies. The role of non-state actors like NGOs and the energy industries in international environmental affairs is also closely examined. Strategies to enhance energy efficiency are studied with a particular focus on identifying and overcoming barriers to policy implementation. The ways in which developments in international energy markets affect the potential and scope of international environmental agreements are analysed, as are the impacts of different international environmental regimes on energy markets. Particular attention is paid on the opportunities and limitations of international institutions like the European Community, the United Nations, the multilateral development banks and GATT, in promoting international co-operation on energy and environmental issues. Strategies to overcome North/South conflicts over global environmental issues are examined, including issue linkages in international negotiations and North/South transfer of resources and technology. Another important area of sustainable production and consumption of energy in developing countries. Project titles are: 1) ''Leader'' and ''entrepreneur'' in international negotiations . A conceptual analysis. 2) Choosing climate policy. Decision theoretical premises. 3) Japan in the greenhouse responsibilities, policies and prospects for combating global warming. 4) Impacts on developing economies from changing trade regimes and growing international environmental concerns. 5) US energy policy in the greenhouse from the North slope forests to the Gulf Stream waters - this land was made for fossil fuels. 6) The climate policy of

  11. Energy and cost associated with ventilating office buildings in a tropical climate.

    Science.gov (United States)

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  12. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level.

    Science.gov (United States)

    Barraza, Roberto; Velazquez-Angulo, Gilberto; Flores-Tavizón, Edith; Romero-González, Jaime; Huertas-Cardozo, José Ignacio

    2016-04-27

    This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico.

  13. An Interdisciplinary Network Making Progress on Climate Change Communication

    Science.gov (United States)

    Spitzer, W.; Anderson, J. C.; Bales, S.; Fraser, J.; Yoder, J. A.

    2012-12-01

    Public understanding of climate change continues to lag far behind the scientific consensus not merely because the public lacks information, but because there is in fact too much complex and contradictory information available. Fortunately, we can now (1) build on careful empirical cognitive and social science research to understand what people already value, believe, and understand; and then (2) design and test strategies for translating complex science so that people can examine evidence, make well-informed inferences, and embrace science-based solutions. Informal science education institutions can help bridge the gap between climate scientists and the public. In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks, etc.) are visited annually by 61% of the population. Extensive research shows that these visitors are receptive to learning about climate change and trust these institutions as reliable sources. Ultimately, we need to take a strategic approach to the way climate change is communicated. An interdisciplinary approach is needed to bring together three key areas of expertise (as recommended by Pidgeon and Fischhoff, 2011): 1. Climate and decision science experts - who can summarize and explain what is known, characterize risks, and describe appropriate mitigation and adaptation strategies; 2. Social scientists - who can bring to bear research, theory, and best practices from cognitive, communication, knowledge acquisition, and social learning theory; and 3. Informal educators and program designers - who bring a practitioner perspective and can exponentially facilitate a learning process for additional interpreters. With support from an NSF CCEP Phase I grant, we have tested this approach, bringing together Interdisciplinary teams of colleagues for a five month "study circles" to develop skills to communicate climate change based on research in the social and cognitive sciences. In 2011

  14. Climate impacts on the cost of solar energy

    International Nuclear Information System (INIS)

    Flowers, Mallory E.; Smith, Matthew K.; Parsekian, Ara W.; Boyuk, Dmitriy S.; McGrath, Jenna K.; Yates, Luke

    2016-01-01

    Photovoltaic (PV) Levelized Cost of Energy (LCOE) estimates are widely utilized by decision makers to predict the long-term cost and benefits of solar PV installations, but fail to consider local climate, which impacts PV panel lifetime and performance. Specific types of solar PV panels are known to respond to climate factors differently. Mono-, poly-, and amorphous-silicon (Si) PV technologies are known to exhibit varying degradation rates and instantaneous power losses as a function of operating temperature, humidity, thermal cycling, and panel soiling. We formulate an extended LCOE calculation, which considers PV module performance and lifespan as a function of local climate. The LCOE is then calculated for crystalline and amorphous Si PV technologies across several climates. Finally, we assess the impact of various policy incentives on reducing the firm's cost of solar deployment when controlling for climate. This assessment is the first to quantify tradeoffs between technologies, geographies, and policies in a unified manner. Results suggest crystalline Si solar panels as the most promising candidate for commercial-scale PV systems due to their low degradation rates compared to amorphous technologies. Across technologies, we note the strong ability of investment subsidies in removing uncertainty and reducing the LCOE, compared to production incentives. - Highlights: •We integrate local climate into the Levelized Cost of photovoltaic technology. •Climate dictates panel degradation rates and the impact of temperature on efficiency. •We compare LCOE under policy scenarios for three technologies in four U. S. states. •Degradation is highly variable, increasing costs by shortening panel life in many regions. •Incentives targeting investment are most effective at reducing solar deployment costs.

  15. Arctic melt ponds and energy balance in the climate system

    Science.gov (United States)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  16. Mainstreaming Low-Carbon Climate-Resilient growth pathways into investment decision-making - lessons from development financial institutions on approaches and tools

    International Nuclear Information System (INIS)

    Cochran, Ian; Eschalier, Claire; Deheza, Mariana

    2015-01-01

    The integration or 'mainstreaming' of the transition to a low-carbon climate-resilient future as a prism through which to make financial decisions poses a broad number of operational challenges. This background paper for the March 31 event is drawn from the report currently underway by CDC Climat Research supported by the Group Agence Francaise de Developpement and the Group Caisse des depots entitled 'Mainstreaming Low-Carbon Climate-Resilient Growth Pathways into International Finance Institutions' Activities: Identifying standards and tools and a typology for integration into operational decision-making'. Drawing from existing studies of current practice among mainly public development finance institutions (DFIs), this paper presents three families of tools and metrics used by DFIs to integrate climate change into investment decision-making. It presents a number of examples of how institutions have mainstreamed these issues into upstream strategic and downstream assessment processes. This paper also identifies the further challenge of moving from a system of tools and indicators that focus principally on climate finance tracking - important to foster trust and progress on international cooperation - to a means of aligning activities across financial institutions and the entire economy with the transition to a low-carbon climate-resilient economic model necessary to achieve the 2 deg. C commitment. (authors)

  17. Modeling the impact of large-scale energy conversion systems on global climate

    International Nuclear Information System (INIS)

    Williams, J.

    There are three energy options which could satisfy a projected energy requirement of about 30 TW and these are the solar, nuclear and (to a lesser extent) coal options. Climate models can be used to assess the impact of large scale deployment of these options. The impact of waste heat has been assessed using energy balance models and general circulation models (GCMs). Results suggest that the impacts are significant when the heat imput is very high and studies of more realistic scenarios are required. Energy balance models, radiative-convective models and a GCM have been used to study the impact of doubling the atmospheric CO 2 concentration. State-of-the-art models estimate a surface temperature increase of 1.5-3.0 0 C with large amplification near the poles, but much uncertainty remains. Very few model studies have been made of the impact of particles on global climate, more information on the characteristics of particle input are required. The impact of large-scale deployment of solar energy conversion systems has received little attention but model studies suggest that large scale changes in surface characteristics associated with such systems (surface heat balance, roughness and hydrological characteristics and ocean surface temperature) could have significant global climatic effects. (Auth.)

  18. Guide to protect climate. Saving energy and cost, protecting climate; Der Klima-Knigge. Energie sparen, Kosten senken, Klima schuetzen

    Energy Technology Data Exchange (ETDEWEB)

    Griesshammer, Rainer

    2008-07-01

    As a climate protector you mustn't seat in the darkness. The author shows by much humour and esprit how simple it is to save energy. Who is willing to persue his every day tips, must not miss comfort and lowers even carbon dioxide emission. This is good for the environment and fills up the own purse. (orig./GL) [German] Als Klimaschuetzer braucht man nicht im Dunkeln zu sitzen. Mit viel Humor und Esprit zeigt Griesshammer, wie einfach Energie sparen sein kann. Wer seine Alltagstipps befolgt, muss auf keinen Komfort verzichten und mindert trotzdem den CO2-Ausstoss. Das nutzt der Umwelt und fuellt den eigenen Geldbeutel auf. (orig./GL)

  19. Sustainable energy development and climate change in China

    Energy Technology Data Exchange (ETDEWEB)

    Xin Ren; Lei Zeng; Dadi Zhou

    2005-07-01

    This article analyses the national circumstances and major factors underpinning China's energy demand and supply, energy-related emissions, and consequently China's sustainable development. These factors include the huge, still growing, and aging population, rapid economic growth, ongoing industrialization and urbanization, environmental and health concerns at local, regional and global level. Against such background analysis, the article explores the potential and constraints of non-fossil fuel, fuel-switching to natural gas, economy restructuring and clean coal technology in mitigating emissions of greenhouse gases (GHG) and ensuring energy supply in China. The authors reiterate the importance of improving energy efficiency in China and discuss how to integrate renewable energy into rural development. The article concludes with an in-depth discussion about redefining development goals, the equity issue in climate change process, and the linkage with sustainable development. (author)

  20. Sustainable energy development and climate change in China

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.; Zeng, L.; Zhou, D.D. [UNFCCC Secretariat, Bonn (Germany)

    2005-07-01

    This article analyses the national circumstances and major factors underpinning China's energy demand and supply, energy-related emissions, and consequently China's sustainable development. These factors include the huge, still growing, and aging population, rapid economic growth, ongoing industrialization and urbanization, environmental and health concerns at local, regional and global level. Against such background analysis, the article explores the potential and constraints of non-fossil fuel, fuel-switching to natural gas, economy restructuring and clean coal technology in mitigating emissions of greenhouse gases (GHG) and ensuring energy supply in China. The authors reiterate the importance of improving energy efficiency in China and discuss how to integrate renewable energy into rural development. The article concludes with an in-depth discussion about redefining development goals, the equity issue in climate change process, and the linkage with sustainable development.

  1. Determining the climate impact of the German government's Integrated Energy and Climate Programme (IEKP) and proposing a plan to continuously monitor its climate impact. Summary; Ermittlung der Klimaschutzwirkung des Integrierten Energie- und Klimaschutzprogramms der Bundesregierung IEKP und Vorschlag fuer ein Konzept zur kontinuierlichen Ueberpruefung der Klimaschutzwirkung des IEKP. Zusammenfassung

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Claus; Eichhammer, Wolfgang; Fleiter, Tobias [Fraunhofer-Institut fuer System- und Innovationsforschung, Karlsruhe (DE)] (and others)

    2012-02-15

    In August 2007, key elements for an Integrated Energy and Climate Programme (IEKP) were adopted in the so-called Meseberg Decisions. This programme will contribute towards reducing greenhouse gas emissions in Germany by 40 % by the year 2020. The Meseberg Decisions were implemented in two packages, which mainly contain legislative amendments and support measures. On 5 December 2007 the German cabinet presented a comprehensive package of 14 laws and regulations which the German Bundestag passed on 6 June 2008 (IEKP I). This is in addition to the measures already in place such as the KfW programme (building refurbishment programme to reduce CO{sub 2}, the ''special energy efficiency programme for SMEs'' etc.). A second package with further legislative proposals (IEKP II) was made public on 18 June 2008. Thus essential elements of the Meseberg Decisions of 2007 are already being implemented. Moreover, there are other measures of the Meseberg programme which are relevant in an EU or in an international framework. What contribution the climate protection instruments enacted under IEKP will really make to this goal must be evaluated on the basis of the concrete design (and in future the concrete implementation), in order to provide policy-makers with decision-making support when further developing climate protection policy. The Integrated Energy and Climate Programme foresees that every two years the federal government should account for the emission reductions achieved thereby and the impacts of the individual measures (programme monitoring). The present research project was conducted in preparation for this objective. Specifically, the project should meet the following goals: 1. To assess how the Meseberg Decisions of August 2007 have been implemented in specific, effective instruments at national or European level (qualitative evaluation of each instrument and the total package). 2. To create a monitoring plan for comprehensive, regular evaluation

  2. Going the Extra Mile: Making Climate Data and Information Usable for Decision Making (Invited)

    Science.gov (United States)

    Garfin, G. M.

    2013-12-01

    Actionable science, defined as 'data, analysis, and forecasts that are sufficiently predictive, accepted and understandable to support decision-making,' is the holy grail for climate scientists engaged in working with decision makers, to provide the scientific basis for adaptation planning and decisions. The literature on boundary organizations and science translation offers guidelines and best practices for the generation of climate information that is useful and usable for policy and operational decisions. Guidelines emphasize understanding decision contexts and constraints, trust building, development of a shared vision of usable science, co-production of knowledge, iterative and sustained engagement, and the development and leveraging of knowledge networks and communities of practice. Some studies offer the advice that climate change is fraught with irreducible or slowly reducible uncertainties; hence, the adoption of adaptive risk management approaches is more valuable in the near-term than scientific effort to reduce uncertainty or combine data in novel ways. Nevertheless, many water resource managers still seek science that reduces uncertainties, assurance that the range of projections will not change, evidence of cause and effect (e.g., atmospheric circulation patterns linked to regional precipitation anomalies) and information that is as close to deterministic as possible. So, how does the scientific community move forward on initiatives that integrate paleoclimate, observations, and model projections, to inform water resource management? There are no simple answers, because the uses of climate and hydrological data and information are context dependent. Scientists have products -- data and information -- and they need to research characteristics of the consumers of their product. What is the consumer's operating procedure, and world view? How does the consumer handle uncertainty? What is their tolerance for risk? What social and political factors

  3. Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran

    Directory of Open Access Journals (Sweden)

    Sara Ghaem Sigarchian

    2018-05-01

    Full Text Available Design and performance of polygeneration energy systems are highly influenced by several variables, including the climate zone, which can affect the load profile as well as the availability of renewable energy sources. To investigate the effects, in this study, the design of a polygeneration system for identical residential buildings that are located in three different climate zones in Iran has been investigated. To perform the study, a model has previously developed by the author is used. The performance of the polygeneration system in terms of energy, economy and environment were compared to each other. The results show significant energetic and environmental benefits of the implementation of polygeneration systems in Iran, especially in the building that is located in a hot climate, with a high cooling demand and a low heating demand. Optimal polygeneration system for an identical building has achieved a 27% carbon dioxide emission reduction in the cold climate, while this value is around 41% in the hot climate. However, when considering the price of electricity and gas in the current energy market in Iran, none of the systems are feasible and financial support mechanisms or other incentives are required to promote the application of decentralized polygeneration energy systems.

  4. Assessing the role of energy in development and climate policies in large developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A.; Halsnaes, K. [UNEP Risoe Centre (Denmark)

    2007-05-15

    The paper discusses a number of key conceptual issues related to the role of energy in development and its potential synergies and tradeoffs with climate change. The relationship between economic development and energy over time is discussed and illustrated by data from Brazil, China, India and South Africa. It is concluded that energy plays an important role as a productivity enhancing factor in economic development and in human well being and several policy goals related to sustainable development (SD), energy and climate can be integrated. However, meeting all these policy goals requires a special effort and can imply costs. An analytical approach that can be used to assess development, energy and climate policies is introduced and empirical indicators of Sustainable development trends for the period 2000-2030 are presented. In a pragmatic way, it is proposed to use indicators of economic, social, and environmental SD dimensions such as costs, employment generation, energy access, local and global emissions, income distribution, and local participation in the evaluation of specific policies. The approach is developed and tested as part of the Development, Energy, and Climate project which is international project cooperation between the UNEP Risoe Centre and teams in Brazil, China, India and South Africa. The results demonstrate that there is a huge potential for energy efficiency improvements in the energy systems in these countries and thereby cost savings and reduced emissions intensity. However, the implied greenhouse gas emissions depend on fuel and technology compositions and reduction will imply that specific policies are put in place. (au)

  5. Assessing the role of energy in development and climate policies in large developing countries

    International Nuclear Information System (INIS)

    Garg, A.; Halsnaes, K.

    2007-01-01

    The paper discusses a number of key conceptual issues related to the role of energy in development and its potential synergies and tradeoffs with climate change. The relationship between economic development and energy over time is discussed and illustrated by data from Brazil, China, India and South Africa. It is concluded that energy plays an important role as a productivity enhancing factor in economic development and in human well being and several policy goals related to sustainable development (SD), energy and climate can be integrated. However, meeting all these policy goals requires a special effort and can imply costs. An analytical approach that can be used to assess development, energy and climate policies is introduced and empirical indicators of Sustainable development trends for the period 2000-2030 are presented. In a pragmatic way, it is proposed to use indicators of economic, social, and environmental SD dimensions such as costs, employment generation, energy access, local and global emissions, income distribution, and local participation in the evaluation of specific policies. The approach is developed and tested as part of the Development, Energy, and Climate project which is international project cooperation between the UNEP Risoe Centre and teams in Brazil, China, India and South Africa. The results demonstrate that there is a huge potential for energy efficiency improvements in the energy systems in these countries and thereby cost savings and reduced emissions intensity. However, the implied greenhouse gas emissions depend on fuel and technology compositions and reduction will imply that specific policies are put in place. (au)

  6. Which goals are driving the Energiewende? Making sense of the German Energy Transformation

    International Nuclear Information System (INIS)

    Joas, Fabian; Pahle, Michael; Flachsland, Christian; Joas, Amani

    2016-01-01

    In 2010, Germany agreed a plan to increase the share of renewables in power consumption to 80% by 2050, and in 2011 the decision was taken to phase-out nuclear power by 2022. This policy is now widely known as the “Energiewende”. While many global observers consider this program to be primarily driven by the need to tackle climate change, the precise political goals of the Energiewende are, by and large, unclear. In our study we compiled a list of 14 goals put forward in political debates and conducted a “mapping” survey among more than 50 policy experts. We asked them to prioritize the goals based on their personal views and provide arguments for their rankings in ensuing interviews. Our main findings are as follows: (i) a large majority named climate protection among the top-level goals of the Energiewende; at the same time, around 80% of all participants also identified additional goals; (ii) when asked if the Energiewende would make sense even if climate change did not exist, two thirds of the participants agreed, which, when taken with the first finding, demonstrates that the goals and motivations driving the Energiewende are more complex than often assumed. We conclude that for the sake of effective and efficient policies and ever rising climate policy ambition, a public debate and clear specification of the top-level goals are indispensable. - Highlights: •We examine the goals of German energy policy called the “Energiewende”. •We show that policy experts relate up to 14 goals with the Energiewende. •So far the political goals of the Energiewende, and especially their ranking is unclear. •We call for a public debate and a clear specification of the top-level goals of the Energiewende.

  7. Climate is the real challenge, not shortage. New problems arising for global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Pestel, E.

    1988-11-01

    The author of the article is Professor E. Pestel who, as an executive member of the Club of Rome, belongs to the group of experts who first gave impetus to start thinking about the global problems of mankind. In his publications on the problems linked with CO/sub 2/ emission he explains the unavoidable dilemma created by the growing world population and the growing demand for energy on the one hand, and the resulting hazards to the global climate on the other. His analyses take away the soft cushion of hopeful make-believe still widespread in the Western World, and in his capacity as an expert and realist he decidedly calls for decisions and measures to tackle the problem.

  8. Energy policies avoiding a tipping point in the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Olivier [GERAD and Department of Management Sciences, HEC Montreal, Montreal (Qc) (Canada); Edwards, Neil R. [Earth and Environmental Sciences, CEPSAR, Open University, Milton Keynes MK7 6AA (United Kingdom); Knutti, Reto [Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich (Switzerland); Stocker, Thomas F. [Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern (Switzerland)

    2011-01-15

    Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems. (author)

  9. City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Alexandra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Day, Megan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mathur, Shivani [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donohoo-Vallett, Paul [US Dept. of Energy, Washington, DC (United States)

    2015-07-01

    The report analyzes and presents information learned from a sample of 20 cities across the United States, from New York City to Park City, Utah, including a diverse sample of population size, utility type, region, annual greenhouse gas reduction targets, vehicle use, and median household income. The report compares climate, sustainability, and energy plans to better understand where cities are taking energy-related actions and how they are measuring impacts. Some common energy-related goals focus on reducing city-wide carbon emissions, improving energy efficiency across sectors, increasing renewable energy, and increasing biking and walking.

  10. Economic development, climate and values: making policy.

    Science.gov (United States)

    Stern, Nicholas

    2015-08-07

    The two defining challenges of this century are overcoming poverty and managing the risks of climate change. Over the past 10 years, we have learned much about how to tackle them together from ideas on economic development and public policy. My own work in these areas over four decades as an academic and as a policy adviser in universities and international financial institutions has focused on how the investment environment and the empowerment of people can change lives and livelihoods. The application of insights from economic development and public policy to climate change requires rigorous analysis of issues such as discounting, modelling the risks of unmanaged climate change, climate policy targets and estimates of the costs of mitigation. The latest research and results show that the case for avoiding the risks of dangerous climate change through the transition to low-carbon economic development and growth is still stronger than when the Stern Review was published. This is partly because of evidence that some of the impacts of climate change are happening more quickly than originally expected, and because of remarkable advances in technologies, such as solar power. Nevertheless, significant hurdles remain in securing the international cooperation required to avoid dangerous climate change, not least because of disagreements and misunderstandings about key issues, such as ethics and equity. © 2015 The Author(s).

  11. Excavation-drier method of energy-peat extraction reduces long-term climatic impact

    Energy Technology Data Exchange (ETDEWEB)

    Silvan, N.; Silvan, K.; Laine, J. [Finnish Forest Research Inst., Parkano (Finland)], e-mail: niko.silvan@metla.fi; Vaisanen, S.; Soukka, R. [Lappeenranta Univ.of Techology (Finland)

    2012-11-01

    Climatic impacts of energy-peat extraction are of increasing concern due to EU emissions trading requirements. A new excavation-drier peat extraction method has been developed to reduce the climatic impact and increase the efficiency of peat extraction. To quantify and compare the soil GHG fluxes of the excavation drier and the traditional milling methods, as well as the areas from which the energy peat is planned to be extracted in the future (extraction reserve area types), soil CO{sub 2}, CH{sub 4} and N{sub 2}O fluxes were measured during 2006-2007 at three sites in Finland. Within each site, fluxes were measured from drained extraction reserve areas, extraction fields and stockpiles of both methods and additionally from the biomass driers of the excavation-drier method. The Life Cycle Assessment (LCA), described at a principal level in ISO Standards 14040:2006 and 14044:2006, was used to assess the long-term (100 years) climatic impact from peatland utilisation with respect to land use and energy production chains where utilisation of coal was replaced with peat. Coal was used as a reference since in many cases peat and coal can replace each other in same power plants. According to this study, the peat extraction method used was of lesser significance than the extraction reserve area type in regards to the climatic impact. However, the excavation-drier method seems to cause a slightly reduced climatic impact as compared with the prevailing milling method. (orig.)

  12. Evaluation of energy efficiency in street lighting: model proposition considering climate variability

    Directory of Open Access Journals (Sweden)

    Amaury Caruzzo

    2015-12-01

    Full Text Available This paper assesses the impacts of climate variability on efficient electricity consumption in street lighting in Brazil. The Climate Demand Method (CDM was applied, and the energy savings achieved by Brazil’s National Efficient Street Lighting Program (ReLuz in 2005 were calculated, considering the monthly climatology of sunshine duration, disaggregated by county in Brazil. The total energy savings in street lighting in 2005 were estimated at 63 GWh/year or 1.39% higher than the value determined by ReLuz/Eletrobrás and there was a 15 MW reduction in demand in Brazil, considering the nearly 393,000 points in ReLuz served in 2005. The results indicate that, besides the difference in latitude, climate variability in different county increases the daily usage of street lighting up to 19%. Furthermore, Brazil’s large size means that seasonality patterns in energy savings are not homogeneous, and there is a correlation between the monthly variability in sunshine duration and the latitude of mesoregions. The CDM was also shown to be suitable for ranking mesoregions with the highest levels of energy saving lighting.

  13. A Robust Decision-Making Technique for Water Management under Decadal Scale Climate Variability

    Science.gov (United States)

    Callihan, L.; Zagona, E. A.; Rajagopalan, B.

    2013-12-01

    Robust decision making, a flexible and dynamic approach to managing water resources in light of deep uncertainties associated with climate variability at inter-annual to decadal time scales, is an analytical framework that detects when a system is in or approaching a vulnerable state. It provides decision makers the opportunity to implement strategies that both address the vulnerabilities and perform well over a wide range of plausible future scenarios. A strategy that performs acceptably over a wide range of possible future states is not likely to be optimal with respect to the actual future state. The degree of success--the ability to avoid vulnerable states and operate efficiently--thus depends on the skill in projecting future states and the ability to select the most efficient strategies to address vulnerabilities. This research develops a robust decision making framework that incorporates new methods of decadal scale projections with selection of efficient strategies. Previous approaches to water resources planning under inter-annual climate variability combining skillful seasonal flow forecasts with climatology for subsequent years are not skillful for medium term (i.e. decadal scale) projections as decision makers are not able to plan adequately to avoid vulnerabilities. We address this need by integrating skillful decadal scale streamflow projections into the robust decision making framework and making the probability distribution of this projection available to the decision making logic. The range of possible future hydrologic scenarios can be defined using a variety of nonparametric methods. Once defined, an ensemble projection of decadal flow scenarios are generated from a wavelet-based spectral K-nearest-neighbor resampling approach using historical and paleo-reconstructed data. This method has been shown to generate skillful medium term projections with a rich variety of natural variability. The current state of the system in combination with the

  14. Climate change science and the development of environment/energy policies

    International Nuclear Information System (INIS)

    Bernabo, J.C.

    1994-01-01

    For the past decade climate research in the US has focused on long-term-understanding of earth systems rather than addressing the more immediate information needs of decision makers, such as information on impacts and solutions. During the Bush Administration, the primary objective was to determine if there was a problem, with little emphasis on developing information on what to do about the issue. The Clinton Administration is trying to refocus research to assist more effectively in decision making. This reevaluation is part of the post-Cold War shift toward funding federal research based more explicitly on the relevancy to societal needs. The Joint Climate Project to Address Decision Makers' Uncertainties was sponsored by EPRI, DOE, DOI, EPA, USDA, and USFS to assess what information is most relevant for decision making and how research could address those needs. The results of this stakeholders' needs assessment are being used to help reorient the federal program. Decision makers' priorities include greater emphasis on impacts and responses. More work is required in the ecological and social sciences to provide information for policy making. Researchers periodically need to provide interim information and policy-relevant assessments while continuing to improve long-term scientific understanding

  15. Challenge energy policy turnaround; Herausforderung Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael; Brandt-Schwabedissen, Annette; Graaff, Rudolf; Queitsch, Peter; Thomas, Roland [Staedte- und Gemeindebund Nordrhein-Westfalen e.V., Duesseldorf (Germany); Becker, Sven [Trianel GmbH, Aachen (Germany); Portz, Norbert; Schmitz, Johannes [Deutscher Staedte- und Gemeindebund, Berlin (Germany)

    2011-07-01

    The documentation under consideration makes suggestions to cities and communities in light of the energy policy turnaround. The documentation contains the following contributions: (1) Power generation by means of renewable energy resources (Johannes Schmitz); (2) The energy policy turnaround needs acceptance - communication as the key to success (Sven Becker); (3) Climate-conscious communal construction planning (Michael Becker); (4) Establishment of climate concepts (Peter Queitsch); (5) Energetic measures at buildings (Annette Brandt-Schwabedissen); (6) Energy political turnaround and awarding (Norbert Portz); (7) Electromobility (Roland Thomas); (8) Position paper of DStB for the energy policy turnaround.

  16. Bioenergy: Resource efficiency and contributions to energy- and climate policy objectives; Bioenergi: Resurseffektivitet och bidrag till energi- och klimatpolitiska maal

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goeran; Karlsson, Sten [Chalmers Univ. of Technology, SE-412 96 Goeteborg (Sweden). Div. of Physical Resource Theory; Boerjesson, Paal; Rosenqvist, Haakan [Lund Univ., Lund (Sweden). Environmental and Energy Systems Studies

    2008-09-15

    transition, and given specific targets for mitigation or use of renewables within a certain sector, is also important. In addition to climate impact, bioenergy initiatives are motivated by for example the goal of creating jobs as well as the goal of improving the nation's security of supply. Discussions surrounding security of supply have mainly focused on our dependency on imported oil. Naturally, this puts the transportation sector in sharp relief; consequently, liquid biofuels are advocated as the most effective bioenergy alternative when the goal is increasing the security of energy supply. However, in the rest of Europe, the growing dependency on imported natural gas is also a central issue. In the long run, conditions may change dramatically when new technologies are established, if these are deployed large-scale. For instance, plug-in hybrid technology makes possible a far-reaching liberation from the need for transportable fuels in the transportation sector.

  17. Making better maize plants for sustainable grain production in a changing climate.

    Science.gov (United States)

    Gong, Fangping; Wu, Xiaolin; Zhang, Huiyong; Chen, Yanhui; Wang, Wei

    2015-01-01

    Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

  18. Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation

    Directory of Open Access Journals (Sweden)

    Kelli L. Larson

    2015-11-01

    Full Text Available Complexities and uncertainties surrounding urbanization and climate change complicate water resource sustainability. Although research has examined various aspects of complex water systems, including uncertainties, relatively few attempts have been made to synthesize research findings in particular contexts. We fill this gap by examining the complexities, uncertainties, and decision processes for water sustainability and urban adaptation to climate change in the case study region of Phoenix, Arizona. In doing so, we integrate over a decade of research conducted by Arizona State University’s Decision Center for a Desert City (DCDC. DCDC is a boundary organization that conducts research in collaboration with policy makers, with the goal of informing decision-making under uncertainty. Our results highlight: the counterintuitive, non-linear, and competing relationships in human–environment dynamics; the myriad uncertainties in climatic, scientific, political, and other domains of knowledge and practice; and, the social learning that has occurred across science and policy spheres. Finally, we reflect on how our interdisciplinary research and boundary organization has evolved over time to enhance adaptive and sustainable governance in the face of complex system dynamics.

  19. Global action on the energy/climate interaction. Report on working group 4

    International Nuclear Information System (INIS)

    1998-01-01

    A substantial wight of scientific evidence on the greenhouse problem has accumulated over the last decade. These findings led to a strong international response in both the scientific and the diplomatic arenas. The Intergovernmental Panel on Climate Change assessment indicates that the atmospheric buildup of greenhouse gases from human activities is creating a problem of genuine urgency. On the diplomatic front progress has also been impressive. Future patterns and conclusions concerned with energy conversion and use are discussed, based on international activities which address the energy-climate issue

  20. Climate change impacts on runoff and hydropower in the Nordic countries. Final report from the project 'Climate change and energy production'

    International Nuclear Information System (INIS)

    Roar Saelthun, N.; Aittoniemi, P.; Bergstroem, S.

    1998-01-01

    The Nordic research program 'Climate change and energy production' has been carried out in co-operation between the Nordic hydrological services and the Nordic hydroelectric power industry with funding from the Nordic Council of Ministers and participating institutions. The program has been running for the period 1991-1996. The main objective of the research program was to analyse the effects of a future global climate change on the Nordic system for hydroelectric power production due to increased anthropogenic emissions of greenhouse gases in the atmosphere. The main parts of the program have been: A. Testing and improvements of hydrological models, with special emphasis on evapotranspiration, snow melt and glacier mass balance submodels. B. Assessment of the capability of existing energy planning models to analyse climate change impacts. C. Establishment of state-of-art scenarios for meteorological variables. Estimation of runoff scenarios. D. Analysis of climate change impacts on electricity consumption. E. Analysis of impacts on the hydropower systems, on national and regional scale, including effects on floods and dam safety issues. F. Analysis of climatic variability and climatic trends of hydrological records, including annual, seasonal and extreme values. (au) 171 refs

  1. A study on making a long-term improvement in the national energy efficiency and GHG control plans by the AHP approach

    International Nuclear Information System (INIS)

    Lee, Seong Kon; Yoon, Yong Jin; Kim, Jong Wook

    2007-01-01

    Owing to the expiration of the national 10-year period plan and the establishment of an efficient energy and resource technology R and D system, the Korean government needs to make a strategic long-term national energy and resource technology R and D plan (NERP) to cope with forthcoming 10-year period. A new NERP aims to improve the energy intensity, reduce the emissions of greenhouse gas within the United Nations framework convention on climate change (UNFCCC), and contribute to the construction of an advanced economic system. We determine the priorities in technology development for the energy efficiency and greenhouse gas control plans (EGCP), which are parts of a new NERP, by using the AHP approach for the first time. We suggest a scientific procedure to determine the priorities in technology development by using AHP

  2. Pairing Essential Climate Science with Sustainable Energy Information: the "EARTH-The Operators' Manual" experiment

    Science.gov (United States)

    Akuginow, E.; Alley, R. B.; Haines-Stiles, G.

    2010-12-01

    Social science research on the effective communication of climate science suggests that today's audiences may be effectively engaged by presenting information about Earth's climate in the context of individual and community actions that can be taken to increase energy efficiency and to reduce carbon emissions. "EARTH-The Operators' Manual" (ETOM) is an informal science education and outreach project supported by NSF, comprising three related components: a 3-part broadcast television mini-series; on-site outreach at 5 major science centers and natural history museums strategically located across the USA; and a website with innovative social networking tools. A companion tradebook, written by series presenter and Penn State glaciologist Richard Alley, is to be published by W. W. Norton in spring 2011. Program 1, THE BURNING QUESTION, shows how throughout human history our need for energy has been met by burning wood, whale oil and fossil fuels, but notes that fossil fuels produce carbon dioxide which inevitably change the composition of Earth's atmosphere. The program uses little known stories (such as US Air Force atmospheric research immediately after WW2, looking at the effect of CO2 levels on heat-seeking missiles, and Abraham Lincoln's role in the founding of the National Academy of Sciences and the Academy's role in solving navigation problems during the Civil War) to offer fresh perspectives on essential but sometimes disputed aspects of climate science: that today's levels of CO2 are unprecedented in the last 400,000 and more years; that human burning of fossil fuel is the scientifically-proven source, and that multiple lines of evidence show Earth is warming. Program 2, TEN WAYS TO KEEP TEN BILLION SMILING, offers a list of appealing strategies (such as "Get Rich and Save the World": Texas & wind energy, and "Do More with Less": how glow worms make cool light without waste heat, suggesting a role for organic LEDs) to motivate positive responses to the

  3. Climate change and radical energy innovation: the policy issues

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Keith

    2009-01-15

    How can we sustain global economic performance while reducing and perhaps eliminating climate impacts? This dual objective ultimately requires the innovation of radically new low- or zero-emitting energy technologies. But what is involved in such innovation, and why and how should governments support it? What are the implications for innovation policy makers? The paper discusses the nature of the innovation challenge of climate change, develops a framework for analyzing modes of innovation, applies the framework to energy technologies and analyses policies for energy innovation. The overall argument is that we are 'locked in' to an unsustainable but large-scale hydrocarbon energy system. The innovation problem is to develop alternatives to this system as a whole. Yet despite widespread environmental innovation efforts and incentives, these are not yet addressing the innovation challenge on an adequate scale. The analytical framework sees technologies not as single techniques but as multi-faceted technological 'regimes'. Technological regimes comprise production systems and methods, scientific and engineering knowledge organization, infrastructures, and social patterns of technology use. We live not with individual energy technologies but with a complex hydrocarbon regime. Against this background we can identify three modes of innovation, with very different characteristics. They are; Incremental innovations - upgrades to existing technologies, producing innovation within existing technological regimes, such as increases in the capabilities and speeds of microprocessors; Disruptive innovations - new methods of performing existing technical functions, changing how things are done, but not changing the overall regime, such as the shift from film to digital imaging; Radical innovations - technological regime shifts, involving wholly new technical functions, new knowledge bases, and new organizational forms, such as the transition from steam power

  4. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Yong X. Tao; Yimin Zhu

    2012-04-26

    It has been widely recognized that the energy saving benefits of GSHP systems are best realized in the northern and central regions where heating needs are dominant or both heating and cooling loads are comparable. For hot and humid climate such as in the states of FL, LA, TX, southern AL, MS, GA, NC and SC, buildings have much larger cooling needs than heating needs. The Hybrid GSHP (HGSHP) systems therefore have been developed and installed in some locations of those states, which use additional heat sinks (such as cooling tower, domestic water heating systems) to reject excess heat. Despite the development of HGSHP the comprehensive analysis of their benefits and barriers for wide application has been limited and often yields non-conclusive results. In general, GSHP/HGSHP systems often have higher initial costs than conventional systems making short-term economics unattractive. Addressing these technical and financial barriers call for additional evaluation of innovative utility programs, incentives and delivery approaches. From scientific and technical point of view, the potential for wide applications of GSHP especially HGSHP in hot and humid climate is significant, especially towards building zero energy homes where the combined energy efficient GSHP and abundant solar energy production in hot climate can be an optimal solution. To address these challenges, this report presents gathering and analyzing data on the costs and benefits of GSHP/HGSHP systems utilized in southern states using a representative sample of building applications. The report outlines the detailed analysis to conclude that the application of GSHP in Florida (and hot and humid climate in general) shows a good potential.

  5. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  6. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change

    International Nuclear Information System (INIS)

    Isaac, Morna; Vuuren, Detlef P. van

    2009-01-01

    In this article, we assess the potential development of energy use for future residential heating and air conditioning in the context of climate change. In a reference scenario, global energy demand for heating is projected to increase until 2030 and then stabilize. In contrast, energy demand for air conditioning is projected to increase rapidly over the whole 2000-2100 period, mostly driven by income growth. The associated CO 2 emissions for both heating and cooling increase from 0.8 Gt C in 2000 to 2.2 Gt C in 2100, i.e. about 12% of total CO 2 emissions from energy use (the strongest increase occurs in Asia). The net effect of climate change on global energy use and emissions is relatively small as decreases in heating are compensated for by increases in cooling. However, impacts on heating and cooling individually are considerable in this scenario, with heating energy demand decreased by 34% worldwide by 2100 as a result of climate change, and air-conditioning energy demand increased by 72%. At the regional scale considerable impacts can be seen, particularly in South Asia, where energy demand for residential air conditioning could increase by around 50% due to climate change, compared with the situation without climate change

  7. Climate technology and energy efficiency. From ''best practice'' experiences to policy diffusion. Climate technology initiative capacity building seminar for CEE/FSU countries. Seminar proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, Sybille; Moench, Harald [eds.; Mez, Lutz; Krug, Michael; Grashof, Katharina [Free Univ. Berlin (DE). Environmental Policy Research Centre (FFU)

    2005-01-15

    The seminar proceedings cover the following contributions following the opening address: Germany's climate protection program - a step by step approach; the renewable energy act in Germany; CTI's activities for technology transfer on climate change; the climate protection programs of the Federal states: the example of Bavaria; UNECE energy efficiency market formation activities and investment project development to reduce GHG emissions in economies in transition; energy efficiency - policy designs and implementation in PEEREA countries; environmental fiscal reform in Germany; instruments to overcome existing barriers to energy efficiency projects in Bulgaria; proposal to establish a testing ground facility for JI projects in the Baltic sea region testing ground; the Baltic sea region joint implementation testing ground, the Estonian perspective; policy instrumentation; financing international market penetration of renewable energies: a report on the German export initiative; the Dutch ERUPT and CERUPT programs - lessons and outlook; co-operation between Austrian and Central and Eastern Europe in the field of energy efficiency and renewable energy; biomass and pellet market:: implementation strategies in Slovakia; results of monitoring of the German biomass ordinance; developing RES strategy for the Czech republic; building retrofit and renewable energy; energy conversion; between economics and environment - energy saving in German housing sector; implementation and performance contracting in Slovenia; sustainable institutional mechanisms of efficient energy use in Rostov oblast health care and educational facilities; towards sustainable housing management in Lithuania; emissions trading will accelerate the introduction of renewable energies into the markets; Energy efficiency in residential and public buildings; international climate protection policy; long-term perspectives for as sustainable energy future in Germany, the Danish program Energy 21; the Japanese

  8. Effects of energy and climate advisory service in 2012, to individuals, businesses and organizations; Effekter av energi och klimatraadgivningen 2012, till privatpersoner, foeretag och organisationer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    The Swedish Energy Agency has government mandate to finance energy and climate consultancy in the country's municipalities. Energy and climate advisors' mission is to provide local and regional custom information about energy efficiency, renewable energy, transportation, energy and climate change and on the potential to transform energy use in commercial and residential premises. The target group for counsel ing are households, businesses and organizations. This report presents the results of an evaluation of the effects of counsel ing, in the advice seekers perspective, with an emphasis on measurable energy savings in kWh. The aim is that the Agency should have a deeper understanding of what effect the counsel ing interventions have. The evaluation highlights the issues covered and the measures taken to reduce energy use and, where possible, an estimate / calculation of the energy saving made by measures taken.

  9. Energy and climate policies of the USA during the two Barack Obama's terms

    International Nuclear Information System (INIS)

    Meritet, Sophie; Monjon, Stephanie

    2016-02-01

    As Barack Obama, from its first presidential campaign to its second term, supported the development of low carbon energies, the protection of climate and of the environment, the development of renewable energies, but also the development of non conventional fossil resources (during his second term), the authors first propose an analysis of the situation of the USA in terms of energy and of greenhouse gas emissions. They highlight the good situation of energy: USA are the first world producer, natural gas is being developed, coal is still present, and electric power is a centre of attention. The evolution of greenhouse gas emissions is discussed for the electricity sector and for the transport sector. In the next part, the authors discuss the content of the different policies implemented during both terms. These policies can be characterized by a strong support to renewable energies at the federal as well as state level, contrasted choices among states in terms of climate policy, federal initiatives for climate (reduction of CO_2 emissions in electric power plants, reduction of methane emissions, reduction of greenhouse gas emissions in other sectors), and actions on the international scene

  10. Resource rents: The effects of energy taxes and quantity instruments for climate protection

    International Nuclear Information System (INIS)

    Eisenack, Klaus; Edenhofer, Ottmar; Kalkuhl, Matthias

    2012-01-01

    Carbon dioxide emissions correspond to fossil resource use. When considering this supply side of climate protection, crucial questions come to fore. It seems likely that owners of fossil resources would object to emission reductions. Moreover, policy instruments such as taxes may not be effective at all: it seems individually rational to leave no fossil resources unused. In this context, it can be expected that economic sectors will react strategically to climate policy, aiming at a re-distribution of rents. To address these questions, we investigate the effectiveness, efficiency, and resource rents for energy taxes, resource taxes, and quantity rationing of emissions. The analysis is based on a game theoretic growth model with explicit factor markets and policy instruments. Market equilibrium depends on a government that acts as a Stackelberg leader with a climate protection goal. We find that resource taxes and quantity rationing achieve this objective efficiently, energy taxation is only second-best. The use of quantity rationing to achieve climate protection generates substantial rents for resource owners. - Highlights: ► Resource taxes and quantity rationing (carbon budgets) are efficient. ► Carbon budgets increase resource rents, while taxes decrease rents. ► Resource owners may support climate protection. ► Climate protection introduces a climate rent.

  11. Teaching about Climate Change and Energy with Online Materials and Workshops from On the Cutting Edge

    Science.gov (United States)

    Kirk, K. B.; Manduca, C. A.; Myers, J. D.; Loxsom, F.

    2009-12-01

    Global climate change and energy use are among the most relevant and pressing issues in today’s science curriculum, yet they are also complex topics to teach. The underlying science spans multiple disciplines and is quickly evolving. Moreover, a comprehensive treatment of climate change and energy use must also delve into perspectives not typically addressed in geosciences courses, such as public policy and economics. Thus, faculty attempting to address these timely issues face many challenges. To support faculty in teaching these subjects, the On the Cutting Edge faculty development program has created a series of websites and workshop opportunities to provide faculty with information and resources for teaching about climate and energy. A web-based collection of teaching materials was developed in conjunction with the On the Cutting Edge workshops “Teaching about Energy in Geoscience Courses: Current Research and Pedagogy.” The website is designed to provide faculty with examples, references and ideas for either incorporating energy topics into existing geoscience courses or for designing or refining a course about energy. The website contains a collection of over 30 classroom and lab activities contributed by faculty and covering such diverse topics as renewable energy, energy policy and energy conservation. Course descriptions and syllabi for energy courses address audiences ranging from introductory courses to advanced seminars. Other materials available on the website include a collection of visualizations and animations, a catalog of recommended books, presentations and related references from the teaching energy workshops, and ideas for novel approaches or new topics for teaching about energy in the geosciences. The Teaching Climate Change website hosts large collections of teaching materials spanning many different topics within climate change, climatology and meteorology. Classroom activities highlight diverse pedagogic approaches such as role

  12. Status report on the county administrative boards and the development of the regional energy and climate policies; Statusrapport avseende laensstyrelsernas arbete och utveckling av de regionala energi- och klimatstrategierna

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This status report deals with the regional work on energy and climate issues. It is a summary and analysis of the County Administrative Board's work with the planning, implementation and monitoring of energy and climate change. The County Administrative Board's have since 2008 held the position of establishing and developing regional energy and climate strategies. It is an important part of government policy for energy conversion and reduced climate impact. Local and regional stake holders play an important role in the implementation of development for an energy efficient and sustainable society and the task to design and develop a regional strategic energy and climate work is then an important tool. This report was compiled by staff at the units Society and transports and Public sector at the Department for Energy Efficiency.

  13. Climate technology initiative capacity building seminar: best practice in climate technology and energy efficiency in central and eastern Europe. Seminar Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pichl, P [ed.

    2000-08-01

    The Capacity Building Seminar on 'Best Practice in Climate Technology and Energy Efficiency in Central and Eastern Europe', held 6-10 December 1999 in Marienthal/Ostritz in Germany, was a very successful event in the framework of the CLIMATE TECHNOLOGY INITIATIVE (CTI). One reason for that is that the seminar allowed delegates from 22 nations, from Kazakhstan to Estonia, come together for an exchange of opinions about 'Energy Efficiency and Climate Protection' and all related issues. A reason is that this seminar provided an excellent starting point for future networking in Central and Eastern Europe and Asia. The colleagues who got to know each other at the seminar will meet again in future workshops and seminars. They can now contact a colleague from abroad to get information about special questions of Energy Efficiency when they need it. A third reason - and the most important one for the entire co-operation within the CTI organisation - is the special character of the seminar as a starting point for multitude of activities on Energy Efficiency and Climate Protection. At the end of the Ostritz seminar eleven delegations stated that they would organise follow up workshops in their own countries to go deeper into the details and to co-operate on a higher level. It may be that these workshops will be followed by others in other European regions. (orig./GL)

  14. Climate technology initiative capacity building seminar: best practice in climate technology and energy efficiency in central and eastern Europe. Seminar Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pichl, P. [ed.

    2000-08-01

    The Capacity Building Seminar on 'Best Practice in Climate Technology and Energy Efficiency in Central and Eastern Europe', held 6-10 December 1999 in Marienthal/Ostritz in Germany, was a very successful event in the framework of the CLIMATE TECHNOLOGY INITIATIVE (CTI). One reason for that is that the seminar allowed delegates from 22 nations, from Kazakhstan to Estonia, come together for an exchange of opinions about 'Energy Efficiency and Climate Protection' and all related issues. A reason is that this seminar provided an excellent starting point for future networking in Central and Eastern Europe and Asia. The colleagues who got to know each other at the seminar will meet again in future workshops and seminars. They can now contact a colleague from abroad to get information about special questions of Energy Efficiency when they need it. A third reason - and the most important one for the entire co-operation within the CTI organisation - is the special character of the seminar as a starting point for multitude of activities on Energy Efficiency and Climate Protection. At the end of the Ostritz seminar eleven delegations stated that they would organise follow up workshops in their own countries to go deeper into the details and to co-operate on a higher level. It may be that these workshops will be followed by others in other European regions. (orig./GL)

  15. Seeing the light : adapting to climate change with decentralized renewable energy in developing countries

    International Nuclear Information System (INIS)

    Venema, H.D.; Cisse, M.

    2004-01-01

    This book presents innovative and sustainable ways to respond to climate change with particular reference to decentralized renewable energy (DRE) projects. It presents the experience of developing DRE projects in five developing countries, Argentina, Bangladesh, Brazil, Senegal and Zimbabwe. The conditions under which these countries can support DRE through the Kyoto Protocol's Clean Development Mechanism were also examined. Some policy recommendations were proposed for more dynamic DRE support for the Kyoto era. The Clean Development Mechanism was examined as a key financial tool for supporting DRE. The Intergovernmental Panel on Climate Change (IPCC) states that the least developed countries are the least equipped with adaptive capacity, and therefore most vulnerable to climate change. The IPCC claims that climate adaptation and sustainable development can be compatible if policies are made to lessen resource pressure, improve environmental risk management and improve the prosperity of the poorest members of society. This book presents a framework for introducing modern energy services through DRE that can stabilize the socio-economics of a developing country. The main implications of rural energy deprivation include deforestation and ecosystem degradation, chronic rural poverty and high vulnerability to the adverse effects of climate change. refs., tabs., figs

  16. Everything you should know about energy; Was man so ueber Energie wissen sollte

    Energy Technology Data Exchange (ETDEWEB)

    Rolfs, Claus

    2009-07-01

    The impending global climate change necessitates a conversion to renewable energy sources with CO2-free emissions. This book introduces the reader to classic and renewable energy sources, including nuclear power. It will enable the reader to participate competently in the current energy discussion and to be able to make informed decisions. (orig.)

  17. Climate and Electricity Annual 2011 - Data and Analyses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-05-27

    Electricity use is growing worldwide, providing a range of energy services: lighting, heating and cooling, specific industrial uses, entertainment, information technologies, and mobility. Because its generation remains largely based on fossil fuels, electricity is also the largest and the fastest-growing source of energy-related CO2 emissions, the primary cause of human-induced climate change. Forecasts from the IEA and others show that 'decarbonising' electricity and enhancing end-use efficiency can make major contributions to the fight against climate change. Global and regional trends on electricity supply and demand indicate the magnitude of the decarbonisation challenge ahead. As climate concerns become an essential component of energy policy-making, the generation and use of electricity will be subject to increasingly strong policy actions by governments to reduce their associated CO2 emissions. Despite these actions, and despite very rapid growth in renewable energy generation, significant technology and policy challenges remain if this unprecedented essential transition is to be achieved. This publication provides an authoritative resource on progress to date in this area, with statistics related to CO2 and the electricity sector across ten regions of the world. It also presents topical analyses on meeting the challenge of rapidly curbing CO2 emissions from electricity, from both a policy and technology perspective.

  18. The underestimated potential of solar energy to mitigate climate change

    Science.gov (United States)

    Creutzig, Felix; Agoston, Peter; Goldschmidt, Jan Christoph; Luderer, Gunnar; Nemet, Gregory; Pietzcker, Robert C.

    2017-09-01

    The Intergovernmental Panel on Climate Change's fifth assessment report emphasizes the importance of bioenergy and carbon capture and storage for achieving climate goals, but it does not identify solar energy as a strategically important technology option. That is surprising given the strong growth, large resource, and low environmental footprint of photovoltaics (PV). Here we explore how models have consistently underestimated PV deployment and identify the reasons for underlying bias in models. Our analysis reveals that rapid technological learning and technology-specific policy support were crucial to PV deployment in the past, but that future success will depend on adequate financing instruments and the management of system integration. We propose that with coordinated advances in multiple components of the energy system, PV could supply 30-50% of electricity in competitive markets.

  19. Comparison of future energy scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate...... Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy...

  20. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    Fujimori, S.; Kainuma, M.; Masui, T.; Hasegawa, T.; Dai, H.

    2014-01-01

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO 2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector