WorldWideScience

Sample records for climate change temperatures

  1. Mapping climate change in European temperature distributions

    International Nuclear Information System (INIS)

    Stainforth, David A; Chapman, Sandra C; Watkins, Nicholas W

    2013-01-01

    Climate change poses challenges for decision makers across society, not just in preparing for the climate of the future but even when planning for the climate of the present day. When making climate sensitive decisions, policy makers and adaptation planners would benefit from information on local scales and for user-specific quantiles (e.g. the hottest/coldest 5% of days) and thresholds (e.g. days above 28 ° C), not just mean changes. Here, we translate observations of weather into observations of climate change, providing maps of the changing shape of climatic temperature distributions across Europe since 1950. The provision of such information from observations is valuable to support decisions designed to be robust in today’s climate, while also providing data against which climate forecasting methods can be judged and interpreted. The general statement that the hottest summer days are warming faster than the coolest is made decision relevant by exposing how the regions of greatest warming are quantile and threshold dependent. In a band from Northern France to Denmark, where the response is greatest, the hottest days in the temperature distribution have seen changes of at least 2 ° C, over four times the global mean change over the same period. In winter the coldest nights are warming fastest, particularly in Scandinavia. (letter)

  2. Climate change impacts on the temperature of recharge water in a temporate climate

    Science.gov (United States)

    Murdock, E. A.

    2015-12-01

    Groundwater outflows into headwater streams play an important role in controlling local stream temperature and maintaining habitat for cool and cold water fisheries. Because of the ecological and economic importance of these fisheries, there is significant concern about the impacts of climate change on these habitats. Many studies of stream temperature changes under climate change assume that groundwater outflows will vary with long-term mean air temperature, perhaps with a temporal lag to account for the relatively slow rate of heat diffusion through soils. This assumption, however, ignores the fact that climate change will also impact the temporal patterns of recharge in some regions. In Southern Wisconsin, much of the annual recharge comes from the spring snowmelt event, as a large amount of meltwater is released onto saturated soils with little to no active transpiration. Using the Simultaneous Heat and Water (SHAW) model populated with climate date from the North American Regional Climate Change Assessment Program (NARCCAP), we show that the temperature of water passing below the rooting zone in a simulated corn planting in Southern Wisconsin will change significantly less than the air temperature by midcentury. This finding highlights the importance of understanding the variability of heat flow mechanisms in the subsurface while assessing climate change impacts on surface water resources. In landscapes such as Wisconsin's driftless area, where deep aquifers feed numerous localized headwater streams, meltwater-driven recharge may provide a buffer against rising air temperatures for some time into the future. Fully understanding this dynamic will allow for targeted conservation efforts in those streams that are likely to show higher than average resilience to rising temperatures, but which remain vulnerable to development, stormwater runoff, agricultural pollution and other ecological threats. In a world with dwindling coldwater resources, identifying and

  3. Temperature response to future urbanization and climate change

    Science.gov (United States)

    Argüeso, Daniel; Evans, Jason P.; Fita, Lluís; Bormann, Kathryn J.

    2014-04-01

    This study examines the impact of future urban expansion on local near-surface temperature for Sydney (Australia) using a future climate scenario (A2). The Weather Research and Forecasting model was used to simulate the present (1990-2009) and future (2040-2059) climates of the region at 2-km spatial resolution. The standard land use of the model was replaced with a more accurate dataset that covers the Sydney area. The future simulation incorporates the projected changes in the urban area of Sydney to account for the expected urban expansion. A comparison between areas with projected land use changes and their surroundings was conducted to evaluate how urbanization and global warming will act together and to ascertain their combined effect on the local climate. The analysis of the temperature changes revealed that future urbanization will strongly affect minimum temperature, whereas little impact was detected for maximum temperature. The minimum temperature changes will be noticeable throughout the year. However, during winter and spring these differences will be particularly large and the increases could be double the increase due to global warming alone at 2050. Results indicated that the changes were mostly due to increased heat capacity of urban structures and reduced evaporation in the city environment.

  4. Human-experienced temperature changes exceed global average climate changes for all income groups

    Science.gov (United States)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The

  5. Global River Discharge and Water Temperature under Climate Change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P.

    2013-01-01

    Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for

  6. A model for evaluating stream temperature response to climate change in Wisconsin

    Science.gov (United States)

    Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.

    2015-01-01

    Expected climatic changes in air temperature and precipitation patterns across the State of Wisconsin may alter future stream temperature and flow regimes. As a consequence of flow and temperature changes, the composition and distribution of fish species assemblages are expected to change. In an effort to gain a better understanding of how climatic changes may affect stream temperature, an approach was developed to predict and project daily summertime stream temperature under current and future climate conditions for 94,341 stream kilometers across Wisconsin. The approach uses a combination of static landscape characteristics and dynamic time-series climatic variables as input for an Artificial Neural Network (ANN) Model integrated with a Soil-Water-Balance (SWB) Model. Future climate scenarios are based on output from downscaled General Circulation Models (GCMs). The SWB model provided a means to estimate the temporal variability in groundwater recharge and provided a mechanism to evaluate the effect of changing air temperature and precipitation on groundwater recharge and soil moisture. The Integrated Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) Model was used to simulate daily summertime stream temperature under current (1990–2008) climate and explained 76 percent of the variation in the daily mean based on validation at 67 independent sites. Results were summarized as July mean water temperature, and individual stream segments were classified by thermal class (cold, cold transition, warm transition, and warm) for comparison of current (1990–2008) with future climate conditions.

  7. Evidence of Climate Change (Global Warming) and Temperature Increases in Arctic Areas

    OpenAIRE

    Eric Kojo Wu Aikins

    2012-01-01

    This paper contributes to the debate on the proximate causes of climate change. Also, it discusses the impact of the global temperature increases since the beginning of the twentieth century and the effectiveness of climate change models in isolating the primary cause (anthropogenic influences or natural variability in temperature) of the observed temperature increases that occurred within this period. The paper argues that if climate scientist and policymakers ignore the...

  8. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1990-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  9. Detecting climate change oriented and human induced changes in stream temperature across the Southeastern U.S.

    Science.gov (United States)

    Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.

    2017-12-01

    In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for

  10. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1991-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  11. Temperature extremes in Europe: mechanisms and responses to climatic change

    International Nuclear Information System (INIS)

    Cattiaux, Julien

    2010-01-01

    Europe witnessed a spate of record-breaking warm seasons during the 2000's. As illustrated by the devastating heat-wave of the summer 2003, these episodes induced strong societal and environmental impacts. Such occurrence of exceptional events over a relatively short time period raised up many questionings in the present context of climate change. In particular, can recent temperature extremes be considered as 'previews' of future climate conditions? Do they result from an increasing temperature variability? These questions constitute the main motivations of this thesis. Thus, our work aims to contribute to the understanding of physical mechanisms responsible for seasonal temperature extremes in Europe, in order to anticipate their future statistical characteristics. Involved processes are assessed by both statistical data-analysis of observations and climate projections and regional modeling experiments. First we show that while the inter-annual European temperature variability appears driven by disturbances in the North-Atlantic dynamics, the recent warming is likely to be dissociated with potential circulation changes. This inconsistency climaxes during the exceptionally mild autumn of 2006, whose temperature anomaly is only half explained by the atmospheric flow. Recent warm surface conditions in the North-Atlantic ocean seem to substantially contribute to the European warming in autumn-winter, through the establishment of advective and radiative processes. In spring-summer, since both advection by the westerlies and Atlantic warming are reduced, more local processes appear predominant (e.g. soil moisture, clouds, aerosols). Then the issue of future evolution of the relationship between North-Atlantic dynamics and European temperatures is addressed, based on climate projections of the International Panel on Climate Change. Multi-model analysis, using both flow-analogues and weather regimes methods, show that the inconsistency noticed over recent decades is

  12. Past temperature reconstructions from deep ice cores: relevance for future climate change

    Directory of Open Access Journals (Sweden)

    V. Masson-Delmotte

    2006-01-01

    Full Text Available Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP and Antarctic (Dome C ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice

  13. People as sensors: mass media and local temperature influence climate change discussion on Twitter

    Science.gov (United States)

    Kirilenko, A.; Molodtsova, T.; Stepchenkova, S.

    2014-12-01

    We examined whether people living under significant temperature anomalies connect their sensory experiences to climate change and the role that media plays in this process. We used Twitter messages containing words "climate change" and "global warming" as the indicator of attention that public pays to the issue. Specifically, the goals were: (1) to investigate whether people immediately notice significant local weather anomalies and connect them to climate change and (2) to examine the role of mass media in this process. Over 2 million tweets were collected for a two-year period (2012 - 2013) and were assigned to 157 urban areas in the continental USA (Figure 1). Geographical locations of the tweets were identified with a geolocation resolving algorithm based the profile of the users. Daily number of tweets (tweeting rate) was computed for 157 conterminous USA urban areas and adjusted for data acquisition errors. The USHCN daily minimum and maximum temperatures were obtained for the station locations closest to the centers of the urban areas and the 1981-2010 30-year temperature mean and standard deviation were used as the climate normals. For the analysis, we computed the following indices for each day of 2012 - 2013 period: standardized temperature anomaly, absolute standardized temperature anomaly, and extreme cold and hot temperature anomalies for each urban zone. The extreme cold and hot temperature anomalies were then transformed into country-level values that represent the number of people living in extreme temperature conditions. The rate of tweeting on climate change was regressed on the time variables, number of climate change publications in the mass media, and temperature. In the majority of regression models, the mass media and temperature variables were significant at the pmedia acts as a mediator in the relationship between local weather and climate change discourse intensity. Our analysis of Twitter data confirmed that the public is able to

  14. Predicting Impact of Climate Change on Water Temperature and Dissolved Oxygen in Tropical Rivers

    Directory of Open Access Journals (Sweden)

    Al-Amin Danladi Bello

    2017-07-01

    Full Text Available Predicting the impact of climate change and human activities on river systems is imperative for effective management of aquatic ecosystems. Unique information can be derived that is critical to the survival of aquatic species under dynamic environmental conditions. Therefore, the response of a tropical river system under climate and land-use changes from the aspects of water temperature and dissolved oxygen concentration were evaluated. Nine designed projected climate change scenarios and three future land-use scenarios were integrated into the Hydrological Simulation Program FORTRAN (HSPF model to determine the impact of climate change and land-use on water temperature and dissolved oxygen (DO concentration using basin-wide simulation of river system in Malaysia. The model performance coefficients showed a good correlation between simulated and observed streamflow, water temperature, and DO concentration in a monthly time step simulation. The Nash–Sutcliffe Efficiency for streamflow was 0.88 for the calibration period and 0.82 for validation period. For water temperature and DO concentration, data from three stations were calibrated and the Nash–Sutcliffe Efficiency for both water temperature and DO ranged from 0.53 to 0.70. The output of the calibrated model under climate change scenarios show that increased rainfall and air temperature do not affects DO concentration and water temperature as much as the condition of a decrease in rainfall and increase in air temperature. The regression model on changes in streamflow, DO concentration, and water temperature under the climate change scenarios illustrates that scenarios that produce high to moderate streamflow, produce small predicted change in water temperatures and DO concentrations compared with the scenarios that produced a low streamflow. It was observed that climate change slightly affects the relationship between water temperatures and DO concentrations in the tropical rivers that we

  15. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  16. A linear regression model for predicting PNW estuarine temperatures in a changing climate

    Science.gov (United States)

    Pacific Northwest coastal regions, estuaries, and associated ecosystems are vulnerable to the potential effects of climate change, especially to changes in nearshore water temperature. While predictive climate models simulate future air temperatures, no such projections exist for...

  17. Climate change, global warming and coral reefs: modelling the effects of temperature.

    Science.gov (United States)

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  18. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  19. Climate of origin affects tick (Ixodes ricinus) host-seeking behavior in response to temperature: implications for resilience to climate change?

    Science.gov (United States)

    Gilbert, Lucy; Aungier, Jennifer; Tomkins, Joseph L

    2014-04-01

    Climate warming is changing distributions and phenologies of many organisms and may also impact on vectors of disease-causing pathogens. In Europe, the tick Ixodes ricinus is the primary vector of medically important pathogens (e.g., Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis). How might climate change affect I. ricinus host-seeking behavior (questing)? We hypothesize that, in order to maximize survival, I. ricinus have adapted their questing in response to temperature in accordance with local climates. We predicted that ticks from cooler climates quest at cooler temperatures than those from warmer climates. This would suggest that I. ricinus can adapt and therefore have the potential to be resilient to climate change. I. ricinus were collected from a cline of climates using a latitudinal gradient (northeast Scotland, North Wales, South England, and central France). Under laboratory conditions, ticks were subjected to temperature increases of 1°C per day, from 6 to 15°C. The proportion of ticks questing was recorded five times per temperature (i.e., per day). The theoretical potential to quest was then estimated for each population over the year for future climate change projections. As predicted, more ticks from cooler climates quested at lower temperatures than did ticks from warmer climates. The proportion of ticks questing was strongly associated with key climate parameters from each location. Our projections, based on temperature alone, suggested that populations could advance their activity season by a month under climate change, which has implications for exposure periods of hosts to tick-borne pathogens. Our findings suggest that I. ricinus have adapted their behavior in response to climate, implying some potential to adapt to climate change. Predictive models of I. ricinus dynamics and disease risk over continental scales would benefit from knowledge of these differences between populations.

  20. Temperature extremes in a changing climate: Drivers and feedbacks (Invited)

    Science.gov (United States)

    Seneviratne, S. I.; Davin, E. L.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Orth, R.; Wilhelm, M.

    2013-12-01

    Global warming increases the occurrence probability of hot extremes, and improving the predictability of such events is thus becoming of critical importance (e.g. Seneviratne et al. 2012). This presentation provides an overview of past and projected changes in hot extremes on the global and regional scale, and of the respective drivers and feedbacks responsible for their occurrence. In particular, soil moisture-temperature feedbacks have been identified as major drivers for hot extremes (e.g. Seneviratne et al. 2006, 2010; Hirschi et al. 2011). Recently, a global study (Mueller and Seneviratne 2012) has shown that wide areas of the world display a strong relationship between the number of hot days in the regions' hottest month and preceding precipitation deficits. These findings suggest that effects of soil moisture-temperature coupling are geographically more widespread than commonly assumed, with for instance large hot spots of soil moisture-temperature coupling in the Southern Hemisphere. Further results indicate that this relationship could be better used in the context of seasonal forecasting, allowing an early warning of impending hot summers (Mueller and Seneviratne 2012, Orth and Seneviratne 2013). In addition, the role of soil moisture-climate feedbacks for climate projections will also be discussed (e.g. Orlowsky and Seneviratne 2012; Seneviratne et al., 2013). Finally, we will address the relevance of the identified feedbacks in the context of urban climate, as well as potential relevant impacts of other land-climate interactions (e.g. from modifications in surface albedo). References: Hirschi, M., et al., 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geosci., 4, 17-21, doi:10.1038/ngeo1032. Mueller, B., and S.I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl Acad. Sci., 109 (31), 12398-12403, doi: 10.1073/pnas.1204330109. Orth, R. and S.I. Seneviratne

  1. Temperature variations as evidence of climate change in northern ...

    African Journals Online (AJOL)

    The paper seeks to investigate whether evolving temperature patterns over northern Nigeria agree with the projections made by global warming and climate change models. The data used are screen air temperature on a monthly time scale. These data were obtained from the database of the Nigerian Meteorological ...

  2. The Rate of Seasonal Changes in Temperature Alters Acclimation of Performance under Climate Change.

    Science.gov (United States)

    Nilsson-Örtman, Viktor; Johansson, Frank

    2017-12-01

    How the ability to acclimate will impact individual performance and ecological interactions under climate change remains poorly understood. Theory predicts that the benefit an organism can gain from acclimating depends on the rate at which temperatures change relative to the time it takes to induce beneficial acclimation. Here, we present a conceptual model showing how slower seasonal changes under climate change can alter species' relative performance when they differ in acclimation rate and magnitude. To test predictions from theory, we performed a microcosm experiment where we reared a mid- and a high-latitude damselfly species alone or together under the rapid seasonality currently experienced at 62°N and the slower seasonality predicted for this latitude under climate change and measured larval growth and survival. To separate acclimation effects from fixed thermal responses, we simulated growth trajectories based on species' growth rates at constant temperatures and quantified how much and how fast species needed to acclimate to match the observed growth trajectories. Consistent with our predictions, the results showed that the midlatitude species had a greater capacity for acclimation than the high-latitude species. Furthermore, since acclimation occurred at a slower rate than seasonal temperature changes, the midlatitude species had a small growth advantage over the high-latitude species under the current seasonality but a greater growth advantage under the slower seasonality predicted for this latitude under climate change. In addition, the two species did not differ in survival under the current seasonality, but the midlatitude species had higher survival under the predicted climate change scenario, possibly because rates of cannibalism were lower when smaller heterospecifics were present. These findings highlight the need to incorporate acclimation rates in ecological models.

  3. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  4. Temperature tracking by North Sea benthic invertebrates in response to climate change.

    Science.gov (United States)

    Hiddink, Jan G; Burrows, Michael T; García Molinos, Jorge

    2015-01-01

    Climate change is a major threat to biodiversity and distributions shifts are one of the most significant threats to global warming, but the extent to which these shifts keep pace with a changing climate is yet uncertain. Understanding the factors governing range shifts is crucial for conservation management to anticipate patterns of biodiversity distribution under future anthropogenic climate change. Soft-sediment invertebrates are a key faunal group because of their role in marine biogeochemistry and as a food source for commercial fish species. However, little information exists on their response to climate change. Here, we evaluate changes in the distribution of 65 North Sea benthic invertebrate species between 1986 and 2000 by examining their geographic, bathymetric and thermal niche shifts and test whether species are tracking their thermal niche as defined by minimum, mean or maximum sea bottom (SBT) and surface (SST) temperatures. Temperatures increased in the whole North Sea with many benthic invertebrates showing north-westerly range shifts (leading/trailing edges as well as distribution centroids) and deepening. Nevertheless, distribution shifts for most species (3.8-7.3 km yr(-1) interquantile range) lagged behind shifts in both SBT and SST (mean 8.1 km yr(-1)), resulting in many species experiencing increasing temperatures. The velocity of climate change (VoCC) of mean SST accurately predicted both the direction and magnitude of distribution centroid shifts, while maximum SST did the same for contraction of the trailing edge. The VoCC of SBT was not a good predictor of range shifts. No good predictor of expansions of the leading edge was found. Our results show that invertebrates need to shift at different rates and directions to track the climate velocities of different temperature measures, and are therefore lagging behind most temperature measures. If these species cannot withstand a change in thermal habitat, this could ultimately lead to a drop in

  5. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Ivan Arismendi; Mohammad Safeeq; Jason B Dunham; Sherri L Johnson

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To...

  6. Projections of temperature-related excess mortality under climate change scenarios.

    Science.gov (United States)

    Gasparrini, Antonio; Guo, Yuming; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Huber, Veronika; Tong, Shilu; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Matus Correa, Patricia; Valdes Ortega, Nicolas; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Jaakkola, Jouni J K; Ryti, Niilo R I; Pascal, Mathilde; Goodman, Patrick G; Zeka, Ariana; Michelozzi, Paola; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Diaz, Magali; Cesar Cruz, Julio; Seposo, Xerxes; Kim, Ho; Tobias, Aurelio; Iñiguez, Carmen; Forsberg, Bertil; Åström, Daniel Oudin; Ragettli, Martina S; Guo, Yue Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L; Dang, Tran Ngoc; Van, Dung Do; Heaviside, Clare; Vardoulakis, Sotiris; Hajat, Shakoor; Haines, Andy; Armstrong, Ben

    2017-12-01

    Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes. Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat

  7. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation

    International Nuclear Information System (INIS)

    Lobell, David B; Burke, Marshall B

    2008-01-01

    Estimates of climate change impacts are often characterized by large uncertainties that reflect ignorance of many physical, biological, and socio-economic processes, and which hamper efforts to anticipate and adapt to climate change. A key to reducing these uncertainties is improved understanding of the relative contributions of individual factors. We evaluated uncertainties for projections of climate change impacts on crop production for 94 crop-region combinations that account for the bulk of calories consumed by malnourished populations. Specifically, we focused on the relative contributions of four factors: climate model projections of future temperature and precipitation, and the sensitivities of crops to temperature and precipitation changes. Surprisingly, uncertainties related to temperature represented a greater contribution to climate change impact uncertainty than those related to precipitation for most crops and regions, and in particular the sensitivity of crop yields to temperature was a critical source of uncertainty. These findings occurred despite rainfall's important contribution to year-to-year variability in crop yields and large disagreements among global climate models over the direction of future regional rainfall changes, and reflect the large magnitude of future warming relative to historical variability. We conclude that progress in understanding crop responses to temperature and the magnitude of regional temperature changes are two of the most important needs for climate change impact assessments and adaptation efforts for agriculture

  8. Development of climate change scenarios to evaluate the impacts of temperature change on the energy demand in south of Quebec

    International Nuclear Information System (INIS)

    Chamount, D.

    2008-01-01

    'Full text': In year 2000, Hydro-Quebec Distribution began to integrate temperature change in the planning of Quebec energy demand. With the evolution of knowledge in climate change science and the availability of larger ensemble of climate projections from GCMs (Global Climate Model), the methodology has progressively improved and uncertainties are now more efficiently taken into account. Inclusion of temperature evolution in the estimation of energy demand covers two issues : 1) the adjustment of climate normals as reference values and 2) integration of the climate change scenario in long term planning (horizon 2040). Recently, the analysis of an ensemble of climate simulations produced from 17 different GCMs forced by 3 emissions scenarios for a total of 39 projections, enabled these two aspects to be effectively addressed. Following the analysis the use of linear temperature increase on a monthly basis is recommended for the needs of addressing climate change impacts on energy demand. Higher slope values are obtained during winter while lower ones are present in summer. Heating and cooling degree days have then been calculated for an optimistic, median and pessimistic climate change scenario to evaluate economic impacts of temperature change on three energy sources: hydro-power, natural gas and heating oil. The evaluation was carried out taking into account not only the temperature change scenario but demographical and economical scenarios as well. Obviously, temperature increase will cause opposite effects for the winter and summer seasons (reducing energy demand for heating purpose during winter while increasing cooling demand during summer). However, comparing energy sources, combustibles might see a more important decrease than hydro-power. Overall, the net effect of temperature change on energy demand is quite small: a reduction of 2 to 3% is projected. (author)

  9. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  10. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    Science.gov (United States)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  11. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  12. Climate engineering and the risk of rapid climate change

    International Nuclear Information System (INIS)

    Ross, Andrew; Damon Matthews, H

    2009-01-01

    Recent research has highlighted risks associated with the use of climate engineering as a method of stabilizing global temperatures, including the possibility of rapid climate warming in the case of abrupt removal of engineered radiative forcing. In this study, we have used a simple climate model to estimate the likely range of temperature changes associated with implementation and removal of climate engineering. In the absence of climate engineering, maximum annual rates of warming ranged from 0.015 to 0.07 deg. C/year, depending on the model's climate sensitivity. Climate engineering resulted in much higher rates of warming, with the temperature change in the year following the removal of climate engineering ranging from 0.13 to 0.76 deg. C. High rates of temperature change were sustained for two decades following the removal of climate engineering; rates of change of 0.5 (0.3,0.1) deg. C/decade were exceeded over a 20 year period with 15% (75%, 100%) likelihood. Many ecosystems could be negatively affected by these rates of temperature change; our results suggest that climate engineering in the absence of deep emissions cuts could arguably constitute increased risk of dangerous anthropogenic interference in the climate system under the criteria laid out in the United Nations Framework Convention on Climate Change.

  13. Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios

    Science.gov (United States)

    Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.

    2017-12-01

    Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit

  14. Effects of Forecasted Climate Change on Stream Temperatures in the Nooksack River Basin

    Science.gov (United States)

    Truitt, S. E.; Mitchell, R. J.; Yearsley, J. R.; Grah, O. J.

    2017-12-01

    The Nooksack River in northwest Washington State provides valuable habitat for endangered salmon species, as such it is critical to understand how stream temperatures will be affected by forecasted climate change. The Middle and North Forks basins of the Nooksack are high-relief and glaciated, whereas the South Fork is a lower relief rain and snow dominated basin. Due to a moderate Pacific maritime climate, snowpack in the basins is sensitive to temperature increases. Previous modeling studies in the upper Nooksack basins indicate a reduction in snowpack and spring runoff, and a recession of glaciers into the 21st century. How stream temperatures will respond to these changes is unknown. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) coupled with a glacier dynamics model and the River Basin Model (RBM) to simulate hydrology and stream temperature from present to the year 2100. We calibrate the DHSVM and RBM to the three forks in the upper 1550 km2 of the Nooksack basin, which contain an estimated 3400 hectares of glacial ice. We employ observed stream-temperature data collected over the past decade and hydrologic data from the four USGS streamflow monitoring sites within the basin and observed gridded climate data developed by Linveh et al. (2013). Field work was conducted in the summer of 2016 to determine stream morphology, discharge, and stream temperatures at a number of stream segments for the RBM calibration. We simulate forecast climate change impacts, using gridded daily downscaled data from global climate models of the CMIP5 with RCP4.5 and RCP8.5 forcing scenarios developed using the multivariate adaptive constructed analogs method (MACA; Abatzoglou and Brown, 2011). Simulation results project a trending increase in stream temperature as a result of lower snowmelt and higher air temperatures into the 21st century, especially in the lower relief, unglaciated South Fork basin.

  15. Extremes temperatures and enthalpy in Finland and Sweden in a changing climate

    International Nuclear Information System (INIS)

    Venaelaeinen, A.; Saku, S.; Jylhae, K.; Nikulin, G.; Kjellstroem, E.; Baerring, L.

    2009-06-01

    Though risks caused by harsh weather conditions are taken into account in the planning of nuclear power plants, some exceptional weather events or combination of different events may prevent normal power operation and simultaneously endanger safe shutdown of the plant. Extreme weather events could influence, for example, the external power grid connection, emergency diesel generators (blockage of air intakes), ventilation and cooling of electric and electronics equipment rooms and the seawater intake. Due to the influence of an intensified greenhouse effect the climate is changing rapidly during the coming decades and this change is expected to have an influence also on the occurrence of extreme weather events. In this report we have examined extreme temperatures. Enthalpy is a parameter that combines air temperature and air humidity and it is used in the design of air conditioning systems. Therefore, we have included also return levels of enthalpy in our analysis. The influence of climate change on extreme temperatures is analysed based on regional climate model simulations. The reoccurrence times of high temperatures combined with high air humidity was analysed based on measurements made at five Finnish and three Swedish meteorological stations. Based on the observational records we find the 10 year return level of daily maximum temperature to be around 32 deg. C and the 100 year return level around 35 deg. C. If we look the return levels of warm and humid conditions then for example in Helsinki the 10 year return level of one week mean temperature in case mean air humidity is above 80% is 20.1 deg. C. The 10 year return level of daily maximum enthalpy is around 60 kJ/kg and the 100 year return level almost 70 kJ/kg. According to the climate model simulations the largest increase of 50-year return level of daily maximum temperature is found in southern Sweden and south-western Finland. By the end of this century the increase can be 3-5 deg. C. The largest change

  16. Extremes temperatures and enthalpy in Finland and Sweden in a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Venaelaeinen, A.; Saku, S.; Jylhae, K. (Finnish Meteorological Institute (Finland)); Nikulin, G.; Kjellstroem, E.; Baerring, L. (Swedish Meteorological Institute (Sweden))

    2009-06-15

    Though risks caused by harsh weather conditions are taken into account in the planning of nuclear power plants, some exceptional weather events or combination of different events may prevent normal power operation and simultaneously endanger safe shutdown of the plant. Extreme weather events could influence, for example, the external power grid connection, emergency diesel generators (blockage of air intakes), ventilation and cooling of electric and electronics equipment rooms and the seawater intake. Due to the influence of an intensified greenhouse effect the climate is changing rapidly during the coming decades and this change is expected to have an influence also on the occurrence of extreme weather events. In this report we have examined extreme temperatures. Enthalpy is a parameter that combines air temperature and air humidity and it is used in the design of air conditioning systems. Therefore, we have included also return levels of enthalpy in our analysis. The influence of climate change on extreme temperatures is analysed based on regional climate model simulations. The reoccurrence times of high temperatures combined with high air humidity was analysed based on measurements made at five Finnish and three Swedish meteorological stations. Based on the observational records we find the 10 year return level of daily maximum temperature to be around 32 deg. C and the 100 year return level around 35 deg. C. If we look the return levels of warm and humid conditions then for example in Helsinki the 10 year return level of one week mean temperature in case mean air humidity is above 80% is 20.1 deg. C. The 10 year return level of daily maximum enthalpy is around 60 kJ/kg and the 100 year return level almost 70 kJ/kg. According to the climate model simulations the largest increase of 50-year return level of daily maximum temperature is found in southern Sweden and south-western Finland. By the end of this century the increase can be 3-5 deg. C. The largest change

  17. Climate change and the impact of extreme temperatures on aviation

    Science.gov (United States)

    Coffel, E.; Horton, R.

    2014-12-01

    Weather is the most significant factor affecting aircraft operations, accounting for 70-80% of passenger delays and costing airlines hundreds of millions of dollars per year in lost revenue. Temperature and airport elevation significantly influence the maximum allowable takeoff weight of an aircraft by changing the surface air density and thus the lift produced at a given speed. For a given runway length, airport elevation, and aircraft type there is a temperature threshold above which the airplane cannot take off at its maximum weight and thus must be weight restricted. The number of summer days necessitating weight restriction has increased since 1980 along with the observed increase in surface temperature. Climate change is projected to increase mean temperatures at all airports and significantly increase the frequency and severity of extreme heat events at some. These changes will negatively affect aircraft performance, leading to increased weight restrictions especially at airports with short runways and little room to expand. For a Boeing 737-800 aircraft, we find that the number of weight restriction days between May and September will increase by 50-100% at four major airports in the United States by 2050-2070 under the RCP8.5 high emissions scenario. These performance reductions may have a significant economic effect on the airline industry, leading to lower profits and higher passenger fares. Increased weight restrictions have previously been identified as potential impacts of climate change, but this study is the first to quantify the effect of higher temperatures on commercial aviation.

  18. Climate change impact of livestock CH4 emission in India: Global temperature change potential (GTP) and surface temperature response.

    Science.gov (United States)

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Managing the health effects of temperature in response to climate change: challenges ahead.

    Science.gov (United States)

    Huang, Cunrui; Barnett, Adrian G; Xu, Zhiwei; Chu, Cordia; Wang, Xiaoming; Turner, Lyle R; Tong, Shilu

    2013-04-01

    Although many studies have shown that high temperatures are associated with an increased risk of mortality and morbidity, there has been little research on managing the process of planned adaptation to alleviate the health effects of heat events and climate change. In particular, economic evaluation of public health adaptation strategies has been largely absent from both the scientific literature and public policy discussion. We examined how public health organizations should implement adaptation strategies and, second, how to improve the evidence base required to make an economic case for policies that will protect the public's health from heat events and climate change. Public health adaptation strategies to cope with heat events and climate change fall into two categories: reducing the heat exposure and managing the health risks. Strategies require a range of actions, including timely public health and medical advice, improvements to housing and urban planning, early warning systems, and assurance that health care and social systems are ready to act. Some of these actions are costly, and given scarce financial resources the implementation should be based on the cost-effectiveness analysis. Therefore, research is required not only on the temperature-related health costs, but also on the costs and benefits of adaptation options. The scientific community must ensure that the health co-benefits of climate change policies are recognized, understood, and quantified. The integration of climate change adaptation into current public health practice is needed to ensure the adaptation strategies increase future resilience. The economic evaluation of temperature-related health costs and public health adaptation strategies are particularly important for policy decisions.

  20. Temperature and extreme rainfalls on France in a climatic change scenario

    International Nuclear Information System (INIS)

    Deque, M.

    2007-01-01

    Impact of an anthropogenic climate change scenario on the frequency distribution of temperature and precipitation over France is studied with a numerical simulation calibrated with observed daily data from the synoptic network. (author)

  1. International aspects of climate change: The intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    Brydges, T.; Fenech, A.

    1990-01-01

    The impact of various international conferences concerning global climate change on international opinions and attitudes is discussed. A number of conferences over the past two decades have drawn attention to the large socio-economic consequences of climate change. There has been increasing attention given to the likely affect of anthropogenically derived greenhouse gases on the global climate. Some early uncertainty over the likely long term changes in global temperature have been replaced by a scientific consensus that global temperatures are increasing and will continue to do so into the next century. Public awareness of the possibility of climate change and severe socio-economic consequences has been increasing and was given a major impetus by the Toronto Conference on the Changing Atmosphere. An estimate of the possible time to solution of the climate change issue is given as 1988-2005, a span of 17 years. The Intergovernmental Panel on Climate Change has focused work into three working groups examining science, impacts and response strategies. 28 refs., 3 figs., 6 tabs

  2. Simulating the effect of climate change on stream temperature in the Trout Lake Watershed, Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Selbig, William R., E-mail: wrselbig@usgs.gov

    2015-07-15

    The potential for increases in stream temperature across many spatial and temporal scales as a result of climate change can pose a difficult challenge for environmental managers, especially when addressing thermal requirements for sensitive aquatic species. This study evaluates simulated changes to the thermal regime of three northern Wisconsin streams in response to a projected changing climate using a modeling framework and considers implications of thermal stresses to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with a coupled groundwater and surface water flow model to assess forecasts in climate from six global circulation models and three emission scenarios. Model results suggest that annual average stream temperature will steadily increase approximately 1.1 to 3.2 °C (varying by stream) by the year 2100 with differences in magnitude between emission scenarios. Daily mean stream temperature during the months of July and August, a period when cold-water fish communities are most sensitive, showed excursions from optimal temperatures with increased frequency compared to current conditions. Projections of daily mean stream temperature, in some cases, were no longer in the range necessary to sustain a cold water fishery. - Highlights: • A stream temperature model was calibrated for three streams in northern Wisconsin. • The effect of climate change on stream temperature was simulated in each stream. • Annual average stream temperature was projected to rise from 1 to 3 °C by 2100. • Forecasts of stream temperature exceeded optimal ranges for brook trout.

  3. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  4. Climatic change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-02-15

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  5. Climatic change

    International Nuclear Information System (INIS)

    1977-01-01

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  6. Health Impacts of Climate Change-Induced Subzero Temperature Fires.

    Science.gov (United States)

    Metallinou, Maria-Monika; Log, Torgrim

    2017-07-20

    General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km² of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires.

  7. Climate change: overview of data sources, observed and predicted temperature changes, and impacts on public and environmental health

    Science.gov (United States)

    David H. Levinson; Christopher J. Fettig

    2014-01-01

    This chapter addresses the societal and the environmental impacts of climate change related to increasing surface temperatures on air quality and forest health. Increasing temperatures at and near the earth’s surface, due to both a warming climate and urban heat island effects, have been shown to increase ground-level ozone concentrations in cities across the U.S. In...

  8. Projecting temperature-related years of life lost under different climate change scenarios in one temperate megacity, China.

    Science.gov (United States)

    Li, Yixue; Li, Guoxing; Zeng, Qiang; Liang, Fengchao; Pan, Xiaochuan

    2018-02-01

    Temperature has been associated with population health, but few studies have projected the future temperature-related years of life lost attributable to climate change. To project future temperature-related disease burden in Tianjin, we selected years of life lost (YLL) as the dependent variable to explore YLL attributable to climate change. A generalized linear model (GLM) and distributed lag non-linear model were combined to assess the non-linear and delayed effects of temperature on the YLL of non-accidental mortality. Then, we calculated the YLL changes attributable to future climate scenarios in 2055 and 2090. The relationships of daily mean temperature with the YLL of non-accident mortality were basically U-shaped. Both the daily mean temperature increase on high-temperature days and its drop on low-temperature days caused an increase of YLL and non-accidental deaths. The temperature-related YLL will worsen if future climate change exceeds 2 °C. In addition, the adverse effects of extreme temperature on YLL occurred more quickly than that of the overall temperature. The impact of low temperature was greater than that of high temperature. Men were vulnerable to high temperature compared with women. This analysis highlights that the government should formulate environmental policies to reach the Paris Agreement goal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection

    Science.gov (United States)

    DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation

  10. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.

    Science.gov (United States)

    DeWeber, Jefferson T; Wagner, Tyler

    2018-06-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our

  11. Mapping climate change in European temperature distributions

    OpenAIRE

    Stainforth, David A.; Chapman, Sandra C.; Watkins, Nicholas W.

    2014-01-01

    Climate change poses challenges for decision makers across society, not just in preparing for the climate of the future but even when planning for the climate of the present day. When making climate sensitive decisions, policy makers and adaptation planners would benefit from information on local scales and for user-specific quantiles (e.g. the hottest/coldest 5% of days) and thresholds (e.g. days above 28 ° C), not just mean changes. Here, we translate observations of weather into observatio...

  12. Mapping climate change in European temperature distributions

    OpenAIRE

    Stainforth, David A; Chapman, Sandra C; Watkins, Nicholas W

    2013-01-01

    Climate change poses challenges for decision makers across society, not just in preparing for the climate of the future but even when planning for the climate of the present day. When making climate sensitive decisions, policy makers and adaptation planners would benefit from information on local scales and for user-specific quantiles (e.g. the hottest/coldest 5% of days) and thresholds (e.g. days above 28 ° C), not just mean changes. Here, we translate observations of weather into observatio...

  13. Response of water temperatures and stratification to changing climate in three lakes with different morphometry

    Science.gov (United States)

    Magee, Madeline R.; Wu, Chin H.

    2017-12-01

    Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal

  14. Regional climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-01-01

    Because studies of the regional impact of climate change need higher spatial resolution than that obtained in standard global climate change scenarios, developing regional scenarios from models is a crucial goal for the climate modelling community. The zoom capacity of ARPEGE-Climat, the Meteo-France climate model, allows use of scenarios with a horizontal resolution of about 50 km over France and the Mediterranean basin. An IPCC-A2 scenario for the end of the 21. century in France shows higher temperatures in each season and more winter and less summer precipitation than now. Tuning the modelled statistical distributions to observed temperature and precipitation allows us to study changes in the frequency of extreme events between today's climate and that at the end of century. The frequency of very hot days in summer will increase. In particular, the frequency of days with a maximum temperature above 35 deg C will be multiplied by a factor of 10, on average. In our scenario, the Toulouse area and Provence might see one quarter of their summer days with a maximum temperature above 35 deg C. (author)

  15. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  16. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  17. Climate-induced changes in river water temperature in North Iberian Peninsula

    Science.gov (United States)

    Soto, Benedicto

    2017-06-01

    This study evaluates the effects of climate change on the thermal regime of 12 rivers in the Northern Iberian Peninsula by using a non-linear regression model that employs air temperature as the only input variable. Prediction of future air temperature was obtained from five regional climate models (RCMs) under emission scenario Special Report on Emissions Scenarios A1B. Prior to simulation of water temperature, air temperature was bias-corrected (B-C) by means of variance scaling (VS) method. This procedure allows an improvement of fit between observed and estimated air temperature for all climate models. The simulation of water temperature for the period 1990-2100 shows an increasing trend, which is higher for the period of June-August (summer) and September-November (autumn) (0.0275 and 0.0281 °C/year) than that of winter (December-February) and spring (March-May) (0.0181 and 0.0218 °C/year). In the high air temperature range, daily water temperature is projected to increase on average by 2.2-3.1 °C for 2061-2090 relative to 1961-1990. During the coldest days, the increment of water temperature would range between 1.0 and 1.7 °C. In fact, employing the numbers of days that water temperature exceeded the upper incipient lethal temperature (UILT) for brown trout (24.7 °C) has been noted that this threshold is exceeded 14.5 days per year in 2061-2090 while in 1961-1990, this values was exceeded 2.6 days per year of mean and 3.6 days per year in observation period (2000-2014).

  18. Carbon-Temperature-Water Change Analysis for Peanut Production Under Climate Change: A Prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP)

    Science.gov (United States)

    Ruane, Alex C.; McDermid, Sonali; Rosenzweig, Cynthia; Baigorria, Guillermo A.; Jones, James W.; Romero, Consuelo C.; Cecil, L. DeWayne

    2014-01-01

    Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO2]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO2], temperature changes, and precipitation changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca. 2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach.

  19. The lesser known challenge of climate change: thermal variance and sex-reversal in vertebrates with temperature-dependent sex determination.

    Directory of Open Access Journals (Sweden)

    Jennifer L Neuwald

    Full Text Available Climate change is expected to disrupt biological systems. Particularly susceptible are species with temperature-dependent sex determination (TSD, as in many reptiles. While the potentially devastating effect of rising mean temperatures on sex ratios in TSD species is appreciated, the consequences of increased thermal variance predicted to accompany climate change remain obscure. Surprisingly, no study has tested if the effect of thermal variance around high-temperatures (which are particularly relevant given climate change predictions has the same or opposite effects as around lower temperatures. Here we show that sex ratios of the painted turtle (Chrysemys picta were reversed as fluctuations increased around low and high unisexual mean-temperatures. Unexpectedly, the developmental and sexual responses around female-producing temperatures were decoupled in a more complex manner than around male-producing values. Our novel observations are not fully explained by existing ecological models of development and sex determination, and provide strong evidence that thermal fluctuations are critical for shaping the biological outcomes of climate change.

  20. Climate Change Impacts on Stream Temperature in Regulated River Systems: A Case Study in the Southeastern United States

    Science.gov (United States)

    Cheng, Y.; Niemeyer, R. J.; Zhang, X.; Yearsley, J. R.; Voisin, N.; Nijssen, B.

    2017-12-01

    Climate change and associated changes in air temperature and precipitation are projected to impact natural water resources quantity, quality and timing. In the past century, over 280 major dams were built in the Southeastern United States (SEUS) (GRanD database). Regulation of the river system greatly alters natural streamflow as well as stream temperature. Understanding the impacts of climate change on regulated systems, particularly within the context of the Clean Water Act, can inform stakeholders how to maintain and adapt water operations (e.g. regulation, withdrawals). In this study, we use a new modeling framework to study climate change impacts on stream temperatures of a regulated river system. We simulate runoff with the Variable Infiltration Capacity (VIC) macroscale hydrological model, regulated streamflow and reservoir operations with a large-scale river routing-reservoir model (MOSART-WM), and stream temperature using the River Basin Model (RBM). We enhanced RBM with a two-layer thermal stratification reservoir module. This modeling framework captures both the impact of reservoir regulation on streamflow and the reservoir stratification effects on downstream temperatures. We evaluate changes in flow and stream temperatures based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We simulate river temperature with meteorological forcings that have been downscaled with the Multivariate Constructed Analogs (MACA) method. We are specifically interested in analyzing extreme periods during which stream temperature exceeds water quality standards. In this study, we focus on identifying whether these extreme temperature periods coincide with low flows, and whether the frequency and duration of these operationally-relevant periods will increase under future climate change.

  1. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  2. Projection of temperature-related mortality due to cardiovascular disease in beijing under different climate change, population, and adaptation scenarios.

    Science.gov (United States)

    Zhang, Boya; Li, Guoxing; Ma, Yue; Pan, Xiaochuan

    2018-04-01

    Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Complexity in Climate Change Manipulation Experiments

    DEFF Research Database (Denmark)

    Kreyling, Juergen; Beier, Claus

    2014-01-01

    Climate change goes beyond gradual changes in mean conditions. It involves increased variability in climatic drivers and increased frequency and intensity of extreme events. Climate manipulation experiments are one major tool to explore the ecological impacts of climate change. Until now...... variability in temperature are ecologically important. Embracing complexity in future climate change experiments in general is therefore crucial......., precipitation experiments have dealt with temporal variability or extreme events, such as drought, resulting in a multitude of approaches and scenarios with limited comparability among studies. Temperature manipulations have mainly been focused only on warming, resulting in better comparability among studies...

  4. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  5. Can human local activities worsen the rise of temperature due to Climate Change?

    Science.gov (United States)

    Mateos, E.; Santana, J.; Deeb, A.; Grünwaldt, A.; Prieto, R.

    2013-12-01

    Several studies have shown a global scale temperature rise which in consequence, have brought up the need to propose various impact scenarios for this change on the planet and its life forms. Climate changes have a direct effect on human activities. Particularly these alterations have a negative impact on economy which in turn affects the most vulnerable and marginal population on developing nations. In a recent study based on 30 years climatological observed temperature in ten Mexican watersheds, from the period between 1970 and 1999, positive trend on maximum temperature were found in all watersheds. At each watershed at least 10 climatological stations from the net operated by the National Meteorological Service (Servicio Meterologico Nacional), whose data are maintained in the CLICOM database (Computerized Climate database), were selected. The climatological stations have at least 70% valid data per decade. In eight watersheds a maximum temperature trend oscillates between +0.5 to +1 oC every 30 years with a 95% confidence level. Nonetheless, in Rio Bravo and Rio Verde watersheds the tendencies are +1.75 and +2.75 oC over 30 years. The result in these two last watersheds evinces that: 1) there are fragile systems; 2) the human activities have a strong impact in those places, and 3) a principal anthropogenic influence on temperature rise is the change in land use. Temperature rised on Jalostitlan within Rio Verde watershed

  6. Comparing stream-specific to generalized temperature models to guide salmonid management in a changing climate

    Science.gov (United States)

    Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail

    2017-01-01

    Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource

  7. Summer Season Water Temperature Modeling under the Climate Change: Case Study for Fourchue River, Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2017-05-01

    Full Text Available It is accepted that human-induced climate change is unavoidable and it will have effects on physical, chemical, and biological properties of aquatic habitats. This will be especially important for cold water fishes such as trout. The objective of this study is to simulate water temperature for future periods under the climate change situations. Future water temperature in the Fourchue River (St-Alexandre-de-Kamouraska, QC, Canada were simulated by the CEQUEAU hydrological and water temperature model, using meteorological inputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5 Global Circulation Models (GCMs with Representative Concentration Pathway (RCP 2.6, 4.5 and 8.5 climate change scenarios. The result of the study indicated that water temperature in June will increase 0.2–0.7 °C and that in September, median water temperature could decrease by 0.2–1.1 °C. The rise in summer water temperature may be favorable to brook trout (Salvelinus fontinalis growth, but several days over the Upper Incipient Lethal Temperature (UILT are also likely to occur. Therefore, flow regulation procedures, including cold water releases from the Morin dam may have to be considered for the Fourchue River.

  8. Climate Change in Alpine Regions - Regional Characteristics of a Global Phenomenon by the Example of Air Temperature

    Science.gov (United States)

    Lang, Erich; Stary, Ulrike

    2017-04-01

    For nearly 50 years the Austrian Research Centre for Forests (BFW) has been engaged in research in the Alpine region recording measuring data at extreme sites. Data series of this duration provide already a good insight into the evolution of climate parameters. Extrapolations derived from it are suitable for comparison with results from climate change models or supplement them with regard to their informative value. This is useful because climate change models describe a simplified picture of reality based on the size of the data grid they use. Analysis of time series of two air temperature measuring stations in different torrent catchment areas indicate that 1) predictions of temperature rise for the Alpine region in Austria will have to be revised upwards, and 2) only looking at the data of seasons (or shorter time periods), reveals the real dramatic effect of climate change. Considering e.g. the annual average data of air temperature of the years 1969-2016 at the climate station "Fleissner" (altitude 1210m a.s.l; Upper Mölltal, Carinthia) a significant upward trend is visible. Using a linear smoothing function an increase of the average annual air temperature of about 2.2°C within 50 years emerges. The calculated temperature rise thus confirms the general fear of an increase of more than 2.0°C till the middle of the 21st century. Looking at the seasonal change of air temperature, significant positive trends are shown in all four seasons. But the level of the respective temperature increase varies considerably and indicates the highest increase in spring (+3.3°C), and the lowest one in autumn (+1.3°C, extrapolated for a time period of 50 years). The maximum increase of air temperature at the measuring station "Pumpenhaus" (altitude 980m a.s.l), which is situated in the "Karnische Alpen" in the south of Austria, is even stronger. From a time series of 28 years (with data recording starting in 1989) the maximum rise of temperature was 5.4°C detected for the

  9. A century of climate and ecosystem change in Western Montana: What do temperature trends portend?

    Science.gov (United States)

    Pederson, G.T.; Graumlich, L.J.; Fagre, D.B.; Kipfer, T.; Muhlfeld, C.C.

    2010-01-01

    The physical science linking human-induced increases in greenhouse gasses to the warming of the global climate system is well established, but the implications of this warming for ecosystem processes and services at regional scales is still poorly understood. Thus, the objectives of this work were to: (1) describe rates of change in temperature averages and extremes for western Montana, a region containing sensitive resources and ecosystems, (2) investigate associations between Montana temperature change to hemispheric and global temperature change, (3) provide climate analysis tools for land and resource managers responsible for researching and maintaining renewable resources, habitat, and threatened/endangered species and (4) integrate our findings into a more general assessment of climate impacts on ecosystem processes and services over the past century. Over 100 years of daily and monthly temperature data collected in western Montana, USA are analyzed for long-term changes in seasonal averages and daily extremes. In particular, variability and trends in temperature above or below ecologically and socially meaningful thresholds within this region (e.g., -17.8??C (0??F), 0??C (32??F), and 32.2??C (90??F)) are assessed. The daily temperature time series reveal extremely cold days (??? -17.8??C) terminate on average 20 days earlier and decline in number, whereas extremely hot days (???32??C) show a three-fold increase in number and a 24-day increase in seasonal window during which they occur. Results show that regionally important thresholds have been exceeded, the most recent of which include the timing and number of the 0??C freeze/thaw temperatures during spring and fall. Finally, we close with a discussion on the implications for Montana's ecosystems. Special attention is given to critical processes that respond non-linearly as temperatures exceed critical thresholds, and have positive feedbacks that amplify the changes. ?? Springer Science + Business Media B

  10. Climate variability: Possible changes with climate change and impacts on crop yields

    International Nuclear Information System (INIS)

    Mearns, L.O.

    1991-01-01

    A pilot study was carried out of the sensitivity of the CERES wheat model, a deterministic crop-climate model, to changes in the interannual variability of temperature and precipitation. The study was designed to determine the effect of changed temperature variance on the mean and variance of the simulated yields, to compare the effect with the effect of mean temperature changes, and to determine the interacting effects of changes in mean and variance of temperature. The CERES model was applied to 29 cropping years (1952-1980), using three different soil types and two different management practices (fully irrigated and dryland). The coefficients of variation of the yields for irrigated and dryland conditions are plotted against variance change. It was found that in both management systems, the yield response is usually greater to increases rather than decreases in variance. The combined effect of mean and variance temperature changes are most striking under irrigated conditions, with a dramatic decrease in yield variability in the high mean climate change scenario with decreased temperature variance. This suggests that the variability decrease might mitigate the effect of a mean increase in temperature. This result is not found with the dryland case, where decreased temperature variability has little impact on yield variability. 12 refs., 4 figs

  11. Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change.

    Science.gov (United States)

    Shakya, S K; Goss, E M; Dufault, N S; van Bruggen, A H C

    2015-02-01

    Global climate change will have effects on diurnal temperature oscillations as well as on average temperatures. Studies on potato late blight (Phytophthora infestans) development have not considered daily temperature oscillations. We hypothesize that growth and development rates of P. infestans would be less influenced by change in average temperature as the magnitude of fluctuations in daily temperatures increases. We investigated the effects of seven constant (10, 12, 15, 17, 20, 23, and 27°C) and diurnally oscillating (±5 and ±10°C) temperatures around the same means on number of lesions, incubation period, latent period, radial lesion growth rate, and sporulation intensity on detached potato leaves inoculated with two P. infestans isolates from clonal lineages US-8 and US-23. A four-parameter thermodynamic model was used to describe relationships between temperature and disease development measurements. Incubation and latency progression accelerated with increasing oscillations at low mean temperatures but slowed down with increasing oscillations at high mean temperatures (P effects of global climate change on disease development.

  12. Future PMPs Estimation in Korea under AR5 RCP 8.5 Climate Change Scenario: Focus on Dew Point Temperature Change

    Science.gov (United States)

    Okjeong, Lee; Sangdan, Kim

    2016-04-01

    According to future climate change scenarios, future temperature is expected to increase gradually. Therefore, it is necessary to reflect the effects of these climate changes to predict Probable Maximum Precipitations (PMPs). In this presentation, PMPs will be estimated with future dew point temperature change. After selecting 174 major storm events from 1981 to 2005, new PMPs will be proposed with respect to storm areas (25, 100, 225, 400, 900, 2,025, 4,900, 10,000 and 19,600 km2) and storm durations (1, 2, 4, 6, 8, 12, 18, 24, 48 and 72 hours) using the Korea hydro-meteorological method. Also, orographic transposition factor will be applied in place of the conventional terrain impact factor which has been used in previous Korean PMPs estimation reports. After estimating dew point temperature using future temperature and representative humidity information under the Korea Meteorological Administration AR5 RCP 8.5, changes in the PMPs under dew point temperature change will be investigated by comparison with present and future PMPs. This research was supported by a grant(14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  13. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces.

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J; Nolte, Christopher G; Spero, Tanya L; Hubbell, Bryan; Rappold, Ana G

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results varied by region. Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1.6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.6 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels.

  14. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  15. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    Science.gov (United States)

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  16. The river temperature changes follows the climate variability

    International Nuclear Information System (INIS)

    Gergov, G.; Karagiozova, Tz.

    2004-01-01

    The temperature of the river water is a dynamical characteristic affected by the geophysical processes- and climate characteristics of the catchment area, as well as the hydrological processes of the runoff formation and movement. The knowledge about the river water is very important when the water losses for transpiration are concerned. One should add that the river pollution problems, the self purification, the potable water supply require this information also. We consider the temperature of the river water as a very important parameter for diversity of ecological studies and research. It is a general practice to accept that the river water temperature is rather homogeneous across any profile because of the turbulent mass exchange. The temperature stratification is a matter of concern in limnology and oceanology studies mainly. We have shown several basic regularities about the cyclic feature of the daily and seasonal changes or about the river water temperature and both the altitude of the catchment area (gradient 1 o C per a 100 m) and so on. After the mean water temperatures on any hydro metric gauge stations are being determined the area patterns with equal temperatures are identified, thus drawing a map. It is a presumption that the river water temperatures inside a specific area are equal on any place, meaning that the temperature field is rather homogeneous. The mapping allowed to distinguish the river reaches, subjected to the anthropogenic impact. The study and the map have been developed on the basis of the new hydro metric information data bank, composed recently by the authors.(Author)

  17. Climate Change and Fetal Health: The Impacts of Exposure to Extreme Temperatures in New York City

    Science.gov (United States)

    Ngo, Nicole S.; Horton, Radley M.

    2015-01-01

    Background: Climate change is projected to increase the frequency, intensity, and duration of heat waves while reducing cold extremes, yet few studies have examined the relationship between temperature and fetal health. Objectives: We estimate the impacts of extreme temperatures on birth weight and gestational age in Manhattan, a borough in New York City, and explore differences by socioeconomic status (SES). Methods: We combine average daily temperature from 1985 to 2010 with birth certificate data in Manhattan for the same time period. We then generate 33 downscaled climate model time series to project impacts on fetal health. Results: We find exposure to an extra day where average temperature 25 F and 85 F during pregnancy is associated with a 1.8 and 1.7 g (respectively) reduction in birth weight, but the impact varies by SES, particularly for extreme heat, where teen mothers seem most vulnerable. We find no meaningful, significant effect on gestational age. Using projections of temperature from these climate models, we project average net reductions in birth weight in the 2070- 2099 period of 4.6 g in the business-as-usual scenario. Conclusions: Results suggest that increasing heat events from climate change could adversely impact birth weight and vary by SES.

  18. High temperatures and nephrology: The climate change problem

    Directory of Open Access Journals (Sweden)

    Alberto de Lorenzo

    2017-09-01

    Full Text Available It is well known that climate change greatly affects human health, even though there are few studies on renal outcomes. Heat waves have been found to increase cardiovascular and respiratory morbidity and mortality, as well as the risk of acute renal failure and hospitalisation due to renal diseases, with related mortality. Recurrent dehydration in people regularly exposed to high temperatures seems to be resulting in an unrecognised cause of proteinuric chronic kidney disease, the underlying pathophysiological mechanism of which is becoming better understood. However, beyond heat waves and extreme temperatures, there is a seasonal variation in glomerular filtration rate that may contribute to the onset of renal failure and electrolyte disorders during extremely hot periods. Although there are few references in the literature, serum sodium disorders seem to increase. The most vulnerable population to heat-related disease are the elderly, children, chronic patients, bedridden people, disabled people, people living alone or with little social contact, and socioeconomically disadvantaged people.

  19. Linking models of human behaviour and climate alters projected climate change

    Science.gov (United States)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.

  20. Sea Surface Temperature for Climate Applications: A New Dataset from the European Space Agency Climate Change Initiative

    Science.gov (United States)

    Merchant, C. J.; Hulley, G. C.

    2013-12-01

    There are many datasets describing the evolution of global sea surface temperature (SST) over recent decades -- so why make another one? Answer: to provide observations of SST that have particular qualities relevant to climate applications: independence, accuracy and stability. This has been done within the European Space Agency (ESA) Climate Change Initative (CCI) project on SST. Independence refers to the fact that the new SST CCI dataset is not derived from or tuned to in situ observations. This matters for climate because the in situ observing network used to assess marine climate change (1) was not designed to monitor small changes over decadal timescales, and (2) has evolved significantly in its technology and mix of types of observation, even during the past 40 years. The potential for significant artefacts in our picture of global ocean surface warming is clear. Only by having an independent record can we confirm (or refute) that the work done to remove biases/trend artefacts in in-situ datasets has been successful. Accuracy is the degree to which SSTs are unbiased. For climate applications, a common accuracy target is 0.1 K for all regions of the ocean. Stability is the degree to which the bias, if any, in a dataset is constant over time. Long-term instability introduces trend artefacts. To observe trends of the magnitude of 'global warming', SST datasets need to be stable to <5 mK/year. The SST CCI project has produced a satellite-based dataset that addresses these characteristics relevant to climate applications. Satellite radiances (brightness temperatures) have been harmonised exploiting periods of overlapping observations between sensors. Less well-characterised sensors have had their calibration tuned to that of better characterised sensors (at radiance level). Non-conventional retrieval methods (optimal estimation) have been employed to reduce regional biases to the 0.1 K level, a target violated in most satellite SST datasets. Models for

  1. Communicating global climate change using simple indices: an update

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Frank; Karoly, David [University of Melbourne, School of Earth Sciences, Melbourne, VIC (Australia); Braganza, Karl [National Climate Centre, Bureau of Meteorology, Melbourne, VIC (Australia)

    2012-08-15

    Previous studies have shown that there are several indices of global-scale temperature variations, in addition to global-mean surface air temperature, that are useful for distinguishing natural internal climate variations from anthropogenic climate change. Appropriately defined, such indices have the ability to capture spatio-temporal information in a similar manner to optimal fingerprints of climate change. These indices include the contrast between the average temperatures over land and over oceans, the Northern Hemisphere meridional temperature gradient, the temperature contrast between the Northern and Southern Hemisphere and the magnitude of the annual cycle of average temperatures over land. They contain information independent of the global-mean temperature for internal climate variations at decadal time scales and represent different aspects of the climate system, yet they show common responses to anthropogenic climate change. In addition, the ratio of average temperature changes over land to those over the oceans should be nearly constant for transient climate change. Hence, supplementing analysis of global-mean surface temperature with analyses of these indices can strengthen results of attribution studies of causes of observed climate variations. In this study, we extend the previous work by including the last 10 years of observational data and the CMIP3 climate model simulations analysed for the IPCC AR4. We show that observed changes in these indices over the last 10 years provide increased evidence of an anthropogenic influence on climate. We also show the usefulness of these indices for evaluating the performance of climate models in simulating large-scale variability of surface temperature. (orig.)

  2. Connectivity planning to address climate change

    Science.gov (United States)

    Tristan A. Nuñez; Joshua J. Lawler; Brad H. McRae; D. John Pierce; Meade B. Krosby; Darren M. Kavanagh; Peter H. Singleton; Joshua J. Tewksbury

    2013-01-01

    As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad...

  3. Global climate change

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases. 18 refs

  4. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to

  5. Response of Soil Temperature to Climate Change in the CMIP5 Earth System Models

    Science.gov (United States)

    Phillips, C. L.; Torn, M. S.; Koven, C. D.

    2014-12-01

    Predictions of soil temperature changes are as critical to policy development and climate change adaptation as predictions of air temperature, but have received comparatively little attention. Soil temperature determines seed germination and growth of wild and agricultural plants, and impacts climate through both geophysical and carbon-cycle feedbacks. The Intergovernmental Panel on Climate Change 5th Assessment Report does not report soil temperature predictions, but focuses instead on surface air temperatures, despite the fact that mean annual soil temperatures and mean surface air temperatures are often different from each other. Here we aim to fill this important knowledge gap by reporting soil temperature and moisture predictions for 15 earth system models (ESMs) that participated in phase 5 of the Coupled Model Intercomparison 5 Project (CMIP5). Under the RCP 4.5 and 8.5 emissions scenarios, soil warming is predicted to almost keep pace with soil air warming, with about 10% less warming in soil than air, globally. The slower warming of soil compared to air is likely related to predictions of soil drying, with drier soils having reduced soil heat capacity and thermal conductivity. Mollisol soils, which are typically regarded as the most productive soil order for cultivating cereal crops, are anticipated to see warming in North America of 3.5 to 5.5 °C at the end of the 21st century (2080-2100) compared to 1986-2005. One impact of soil warming is likely to be an acceleration of germination timing, with the 3°C temperature threshold for wheat germination anticipated to advance by several weeks in Mollisol regions. Furthermore, soil warming at 1 m depth is predicted to be almost equivalent to warming at 1 cm depth in frost-free regions, indicating vulnerability of deep soil carbon pools to destabilization. To assess model performance we compare the models' predictions with observations of damping depth, and offsets between mean annual soil and air temperature

  6. Food-web dynamics under climate change

    DEFF Research Database (Denmark)

    Zhang, L.; Takahashi, M.; Hartvig, Martin

    2017-01-01

    Climate change affects ecological communities through its impact on the physiological performance of individuals. However, the population dynamic of species well inside their thermal niche is also determined by competitors, prey and predators, in addition to being influenced by temperature changes....... We use a trait-based food-web model to examine how the interplay between the direct physiological effects from temperature and the indirect effects due to changing interactions between populations shapes the ecological consequences of climate change for populations and for entire communities. Our...... climatically well-adapted species may be brought to extinction by the changed food-web topology. Our results highlight that the impact of climate change on specific populations is largely unpredictable, and apparently well-adapted species may be severely impacted...

  7. Regional climate projections for the MENA-CORDEX domain: analysis of projected temperature and precipitation changes

    Science.gov (United States)

    Hänsler, Andreas; Weber, Torsten; Eggert, Bastian; Saeed, Fahad; Jacob, Daniela

    2014-05-01

    Within the CORDEX initiative a multi-model suite of regionalized climate change information will be made available for several regions of the world. The German Climate Service Center (CSC) is taking part in this initiative by applying the regional climate model REMO to downscale global climate projections of different coupled general circulation models (GCMs) for several CORDEX domains. Also for the MENA-CORDEX domain, a set of regional climate change projections has been established at the CSC by downscaling CMIP5 projections of the Max-Planck-Institute Earth System Model (MPI-ESM) for the scenarios RCP4.5 and RCP8.5 with the regional model REMO for the time period from 1950 to 2100 to a horizontal resolution of 0.44 degree. In this study we investigate projected changes in future climate conditions over the domain towards the end of the 21st century. Focus in the analysis is given to projected changes in the temperature and rainfall characteristics and their differences for the two scenarios will be highlighted.

  8. Climate and land cover effects on the temperature of Puget Sound streams: Assessment of Climate and Land Use Impacts on Stream Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qian [Department of Geography, University of California, Los Angeles, Los Angeles CA USA; Sun, Ning [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Nijssen, Bart [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Lettenmaier, Dennis P. [Department of Geography, University of California, Los Angeles, Los Angeles CA USA

    2016-03-06

    We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization

  9. Climate change. Climate in Medieval time.

    Science.gov (United States)

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  10. Climate Change in Voyageurs National Park

    Science.gov (United States)

    Seeley, M. W.

    2011-12-01

    Voyageurs National Park was created in 1975. This beautifully forested and lake-dominated landscape shared between Minnesota and Canada has few roads and must be seen by water. The islands and Kabetogama Peninsula are part of the Canadian Shield, some of the oldest exposed rock in the world. Voyageurs National Park boasts many unique landscape and climatic attributes, and like most mid-latitude regions of the northern hemisphere climate change is in play there. The statistical signals of change in the climate record are evident from both temperature and precipitation measurements. The history of these measurements goes back over 100 years. Additionally, studies and measurements of the lakes and general ecosystem already show some consequences of these climate changes. Mean temperature measurements are generally warmer than they once were, most notably in the winter season. Minimum temperatures have changed more than maximum temperatures. Precipitation has trended upward, but has also changed in character with greater frequency and contribution from thunderstorm rainfalls across the park. In addition variability in annual precipitation has become more amplified, as the disparity between wet and dry years has grown wider. Some changes are already in evidence in terms of bird migration patterns, earlier lake ice-out dates, warmer water temperatures with more algal blooms, decline in lake clarity, and somewhat longer frost-free seasons. Climate change will continue to have impacts on Voyageurs National Park, and likely other national parks across the nation. Furthermore scientists may find that the study, presentation, and discussion about climate impacts on our national parks is a particularly engaging way to educate citizens and improve climate literacy as we contemplate what adaptation and mitigation policies should be enacted to preserve the quality of our national parks for future generations.

  11. Climatic change of summer temperature and precipitation in the Alpine region - a statistical-dynamical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D.; Sept, V.

    1998-12-01

    Climatic changes in the Alpine region due to increasing greenhouse gas concentrations are assessed by using statistical-dynamical downscaling. The downscaling procedure is applied to two 30-year periods (1971-2000 and 2071-2100, summer months only) of the output of a transient coupled ocean/atmosphere climate scenario simulation. The downscaling results for the present-day climate are in sufficient agreement with observations. The estimated regional climate change during the next 100 years shows a general warming. The mean summer temperatures increase by about 3 to more than 5 Kelvin. The most intense climatic warming is predicted in the western parts of the Alps. The amount of summer precipitation decreases in most parts of central Europe by more than 20 percent. Only over the Adriatic area and parts of eastern central Europe an increase in precipitation is simulated. The results are compared with observed trends and results of regional climate change simulations of other authors. The observed trends and the majority of the simulated trends agree with our results. However, there are also climate change estimates which completely contradict with ours. (orig.) 29 refs.

  12. Climate change in China and China’s policies and actions for addressing climate change

    OpenAIRE

    Luo Y.; Qin D.; Huang J.

    2010-01-01

    Since the first assessment report (FAR) of Inter-Governmental Panel on Climate Change (IPCC) in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warmi...

  13. Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers

    Science.gov (United States)

    Merchant, C. J.; Llewellyn-Jones, D.; Saunders, R. W.; Rayner, N. A.; Kent, E. C.; Old, C. P.; Berry, D.; Birks, A. R.; Blackmore, T.; Corlett, G. K.; Embury, O.; Jay, V. L.; Kennedy, J.; Mutlow, C. T.; Nightingale, T. J.; O'Carroll, A. G.; Pritchard, M. J.; Remedios, J. J.; Tett, S.

    We describe the approach to be adopted for a major new initiative to derive a homogeneous record of sea surface temperature for 1991 2007 from the observations of the series of three along-track scanning radiometers (ATSRs). This initiative is called (A)RC: (Advanced) ATSR Re-analysis for Climate. The main objectives are to reduce regional biases in retrieved sea surface temperature (SST) to less than 0.1 K for all global oceans, while creating a very homogenous record that is stable in time to within 0.05 K decade-1, with maximum independence of the record from existing analyses of SST used in climate change research. If these stringent targets are achieved, this record will enable significantly improved estimates of surface temperature trends and variability of sufficient quality to advance questions of climate change attribution, climate sensitivity and historical reconstruction of surface temperature changes. The approach includes development of new, consistent estimators for SST for each of the ATSRs, and detailed analysis of overlap periods. Novel aspects of the approach include generation of multiple versions of the record using alternative channel sets and cloud detection techniques, to assess for the first time the effect of such choices. There will be extensive effort in quality control, validation and analysis of the impact on climate SST data sets. Evidence for the plausibility of the 0.1 K target for systematic error is reviewed, as is the need for alternative cloud screening methods in this context.

  14. Borehole temperatures, climate change and the pre-observational surface air temperature mean: allowance for hydraulic conditions

    Czech Academy of Sciences Publication Activity Database

    Bodri, L.; Čermák, Vladimír

    2005-01-01

    Roč. 45, č. 4 (2005), s. 265-276 ISSN 0921-8181 R&D Projects: GA AV ČR IAA3012005; GA ČR GA205/03/0998; GA AV ČR KSK3046108 Institutional research plan: CEZ:AV0Z3012916 Keywords : climate change * global warming * surface air temperature Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.223, year: 2005

  15. Climate change and parasite transmission: how temperature affects parasite infectivity via predation on infective stages

    NARCIS (Netherlands)

    Goedknegt, M.A.; Welsh, J.E.; Drent, J.; Thieltges, D.

    2015-01-01

    Climate change is expected to affect disease risk in many parasite-host systems, e.g., via an effect of temperature on infectivity (temperature effects). However, recent studies indicate that ambient communities can lower disease risk for hosts, for instance via predation on free-living stages of

  16. How Does The Climate Change?

    Science.gov (United States)

    Jones, R. N.

    2011-12-01

    In 1997, maximum temperature in SE Australia shifted up by 0.8°C at pH0impact indicators: baumé levels in winegrapes shift >21 days earlier from 1998, streamflow records decrease by 30-70% from 1997 and annual mean forest fire danger index increased by 38% from 1997. Despite catastrophic fires killing 178 people in early 2009, the public remains unaware of this large change in their exposure. When regional temperature was separated into internally and externally forced components, the latter component was found to warm in two steps, in 1968-73 and 1997. These dates coincide with shifts in zonal mean temperature (24-44S; Figure 1). Climate model output shows similar step and trend behavior. Tests run on zonal, hemispheric and global mean temperature observations found shifts in all regions. 1997 marks a shift in global temperature of 0.3°C at pH0ocean heat content. The prevailing paradigm for how climate variables change is signal-noise construct combining a smooth signal with variations caused by internal climate variability. There seems to be no sound theoretical basis for this assumption. On the contrary, complex system behavior would suggest non-linear responses to externally forced change, especially at the regional scale. Some of our most basic assumptions about how climate changes may need to be re-examined.

  17. Climate indices of Iran under climate change

    OpenAIRE

    alireza kochaki; mehdi nasiry; gholamali kamali

    2009-01-01

    Global warming will affect all climatic variables and particularly rainfall patterns. The purpose of present investigation was to predict climatic parameters of Iran under future climate change and to compare them with the present conditions. For this reason, UKMO General Circulation Model was used for the year 2025 and 2050. By running the model, minimum and maximum monthly temperature and also maximum monthly rainfall for the representative climate stations were calculated and finally the e...

  18. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    Enright, W.

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  19. Climate-society feedbacks and the avoidance of dangerous climate change

    Science.gov (United States)

    Jarvis, A. J.; Leedal, D. T.; Hewitt, C. N.

    2012-09-01

    The growth in anthropogenic CO2 emissions experienced since the onset of the Industrial Revolution is the most important disturbance operating on the Earth's climate system. To avoid dangerous climate change, future greenhouse-gas emissions will have to deviate from business-as-usual trajectories. This implies that feedback links need to exist between climate change and societal actions. Here, we show that, consciously or otherwise, these feedbacks can be represented by linking global mean temperature change to the growth dynamics of CO2 emissions. We show that the global growth of new renewable sources of energy post-1990 represents a climate-society feedback of ~0.25%yr-1 per degree increase in global mean temperature. We also show that to fulfil the outcomes negotiated in Durban in 2011, society will have to become ~ 50 times more responsive to global mean temperature change than it has been since 1990. If global energy use continues to grow as it has done historically then this would result in amplification of the long-term endogenous rate of decarbonization from -0.6%yr-1 to ~-13%yr-1. It is apparent that modest levels of feedback sensitivity pay large dividends in avoiding climate change but that the marginal return on this effort diminishes rapidly as the required feedback strength increases.

  20. Climate Change, Soils, and Human Health

    Science.gov (United States)

    Brevik, Eric C.

    2013-04-01

    According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical

  1. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature

    Science.gov (United States)

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quali...

  2. Modeling Electricity Sector Vulnerabilities and Costs Associated with Water Temperatures Under Scenarios of Climate Change

    Science.gov (United States)

    Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.

    2014-12-01

    The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.

  3. Climate change in China and China’s policies and actions for addressing climate change

    Directory of Open Access Journals (Sweden)

    Luo Y.

    2010-12-01

    Full Text Available Since the first assessment report (FAR of Inter-Governmental Panel on Climate Change (IPCC in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4 was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  4. Dynamic temperature dependence patterns in future energy demand models in the context of climate change

    International Nuclear Information System (INIS)

    Hekkenberg, M.; Moll, H.C.; Uiterkamp, A.J.M. Schoot

    2009-01-01

    Energy demand depends on outdoor temperature in a 'u' shaped fashion. Various studies have used this temperature dependence to investigate the effects of climate change on energy demand. Such studies contain implicit or explicit assumptions to describe expected socio-economic changes that may affect future energy demand. This paper critically analyzes these implicit or explicit assumptions and their possible effect on the studies' outcomes. First we analyze the interaction between the socio-economic structure and the temperature dependence pattern (TDP) of energy demand. We find that socio-economic changes may alter the TDP in various ways. Next we investigate how current studies manage these dynamics in socio-economic structure. We find that many studies systematically misrepresent the possible effect of socio-economic changes on the TDP of energy demand. Finally, we assess the consequences of these misrepresentations in an energy demand model based on temperature dependence and climate scenarios. Our model results indicate that expected socio-economic dynamics generally lead to an underestimation of future energy demand in models that misrepresent such dynamics. We conclude that future energy demand models should improve the incorporation of socio-economic dynamics. We propose dynamically modeling several key parameters and using direct meteorological data instead of degree days. (author)

  5. Wine and Climate Change

    OpenAIRE

    Ashenfelter, Orley; Storchmann, Karl

    2014-01-01

    In this article we provide an overview of the extensive literature on the impact of weather and climate on grapes and wine with the goal of describing how climate change is likely to affect their production. We start by discussing the physical impact of weather on vine phenology, berry composition and yields, and then survey the economic literature measuring the effects of temperature on wine quality, prices, costs and profits and how climate change will affect these. We also describe what ha...

  6. Ground-air temperature tracking and multi-year cycles in the subsurface temperature time series at geothermal climat e-change observatory

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Bodri, L.; Šafanda, Jan; Krešl, Milan; Dědeček, Petr

    2014-01-01

    Roč. 58, č. 3 (2014), s. 406-424 ISSN 0039-3169 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA AV ČR KSK3046108 Institutional support: RVO:67985530 Keywords : borehole observatory * temperature monitoring * climate change * subsurface temperature Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.806, year: 2014

  7. Climate indices of Iran under climate change

    Directory of Open Access Journals (Sweden)

    alireza kochaki

    2009-06-01

    Full Text Available Global warming will affect all climatic variables and particularly rainfall patterns. The purpose of present investigation was to predict climatic parameters of Iran under future climate change and to compare them with the present conditions. For this reason, UKMO General Circulation Model was used for the year 2025 and 2050. By running the model, minimum and maximum monthly temperature and also maximum monthly rainfall for the representative climate stations were calculated and finally the effects of climate change on these variables based on pre-determined scenarios was evaluated. The results showed that averaged over all stations, mean temperature increase for spring in the year 2025 and 2050 will be 3.1 and 3.9, for summer 3.8 and 4.7, for autumn 2.3 and 3 and for winter 2.0 and 2.4 ºC, respectively. This increase will be more pronounced from North to the South and from East to the West parts of the country. Mean decrease in autumn rainfall for the target years of 2025 and 2050 will be 8 and 11 percent, respectively. This decrease is negligible for summer months. Length of dry season for the years 2025 and 2050 will be increased, respectively up to 214 and 223 days due to combined effects of increased temperature and decreased rainfall.

  8. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change.

    Directory of Open Access Journals (Sweden)

    Frank A La Sorte

    Full Text Available Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among

  9. Witnesses of climate change

    International Nuclear Information System (INIS)

    2015-11-01

    After having evoked the process of climate change, the effect of greenhouse gas emissions, the evolution of average temperatures in France since 1900, and indicated the various interactions and impacts of climate change regarding air quality, water resources, food supply, degradation and loss of biodiversity, deforestation, desertification, this publication, while quoting various testimonies (from a mountain refuge guardian, a wine maker, a guide in La Reunion, an IFREMER bio-statistician engineer, and a representative of health professionals), describes the various noticed impacts of climate change on the environment in mountain chains, on agriculture, on sea level rise, on overseas biodiversity, and on health

  10. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  11. A relationship between regional and global GCM surface air temperature changes and its application to an integrated model of climate change

    International Nuclear Information System (INIS)

    Jonas, M.; Ganopolski, A.V.; Krabec, J.; Olendrzyski, K.; Petoukhov, V.K.

    1994-01-01

    This study outlines the advantages of combining the Integrated Model to Assess the Greenhouse affect (IMAGE, an integrated quick turnaround, global model of climate change) with a spatially detailed General Circulation Model (GCM), in this case developed at the Max Planck Institute for Meteorology (MPI) in Hamburg. The outcome is a modified IMAGE model that simulates the MPI GCM projections of annual surface air temperature change globally and regionally. IMAGE thus provides policy analysts with integrated and regional information about global warming for a great range of policy-dependent greenhouse gas emission or concentration scenarios, while preserving its quick turnaround time. With the help of IMAGE various regional temperature response simulations have been produced. None of these simulations has yet been performed by any GCM. The simulations reflect the uncertainty range of a future warming. In this study the authors deal only with a simplified subsystem of such an integrated model of climate change, which begins with policy options, neglects the societal component in the greenhouse gas accounting tool, and ends with temperature change as the only output of the climate model. The model the authors employ is the Integrated Model to Assess the Greenhouse Effect (IMAGE, version 1.0), which was developed by the Netherlands National Institute of Public Health and Environmental Protection (RIVM). IMAGE is a scientifically based, parameterized simulation policy model designed to calculate the historical and future effects of greenhouse gases on global surface and surface air temperatures and sea-level rise

  12. How does climate change cause extinction?

    Science.gov (United States)

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-07

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  13. Climate change and climate policy

    International Nuclear Information System (INIS)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  14. Climate Change Indicators: Health and Society

    Science.gov (United States)

    ... chapter looks at some of the ways that climate change is affecting human health and society, including changes in Lyme disease, West ... health effects. Why does it matter? Changes in climate affect the ... to human health and welfare. Warmer average temperatures will likely lead ...

  15. Climate change scenarios of extreme temperatures and atmospheric humidity for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda-Martinez, A. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)]. E-mail: atejeda@uv.mx; Conde-Alvarez, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Valencia-Treviso, L.E. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2008-10-15

    The following study explores climatic change scenarios of extreme temperature and atmospheric humidity for the 2020 and 2050 decades. They were created for Mexico through the GFDLR30, ECHAM4 and HadCM2 general circulation models. Base scenario conditions were associated with the normal climatological conditions for the period 1961-1990, with a database of 50 surface observatories. It was necessary to empirically estimate the missing data in approximately half of the pressure measurements. For the period 1961-1990, statistical models of the monthly means of maximum and minimum temperatures and atmospheric humidity (relative and specific) were obtained from the observed data of temperature, solar radiation and precipitation. Based on the simulations of the GFDLR30, ECHAM4 and HADCM2 models, a future scenario of monthly means of maximum and minimum temperatures and humidity in climatic change conditions was created. The results shown are for the representative months of winter (January) and summer (July). [Spanish] En este articulo se presentan escenarios de cambio climatico referidos a temperaturas extremas y humedad atmosferica para las decadas de 2020 y 2050. Fueron generados para Mexico a partir de los modelos de circulacion general GFDLR30, ECHAM4 y HADCM2. El escenario base corresponde a las normales climatologicas del periodo 1961-1990 para 50 observatorios de superficie. Para la mitad de ellos fue necesario estimar empiricamente la presion atmosferica a partir de la altitud y para la totalidad se obtuvieron modelos estadisticos de los promedios mensuales de temperaturas maxima y minima asi como de humedad atmosferica (relativa y especifica). Esos modelos estadisticos, combinados con las salidas de los modelos de circulacion general mencionados, produjeron escenarios futuros de medias mensuales de temperaturas extremas y de humedad bajo condiciones de cambio climatico. Se mostraran los resultados para un mes representativo del invierno (enero) y otro del verano

  16. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2013-10-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere–Ocean General Circulation Models (AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  17. Weather anomalies affect Climate Change microblogging intensity

    Science.gov (United States)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    There is a huge gap between the scientific consensus and public understanding of climate change. Climate change has become a political issue and a "hot" topic in mass media that only adds the complexity to forming the public opinion. Scientists operate in scientific terms, not necessarily understandable by general public, while it is common for people to perceive the latest weather anomaly as an evidence of climate change. In 1998 Hansen et al. introduced a concept of an objectively measured subjective climate change indicator, which can relate public feeling that the climate is changing to the observed meteorological parameters. We tested this concept in a simple example of a temperature-based index, which we related to microblogging activity. Microblogging is a new form of communication in which the users describe their current status in short Internet messages. Twitter (http://twitter.com), is currently the most popular microblogging platform. There are multiple reasons, why this data is particularly valuable to the researches interested in social dynamics: microblogging is widely used to publicize one's opinion with the public; has broad, diverse audience, represented by users from many countries speaking different languages; finally, Twitter contains an enormous number of data, e.g., there were 1,284,579 messages related to climate change from 585,168 users in the January-May data collection. We collected the textual data entries, containing words "climate change" or "global warming" from the 1st of January, 2012. The data was retrieved from the Internet every 20 minutes using a specially developed Python code. Using geolocational information, blog entries originating from the New York urbanized area were selected. These entries, used as a source of public opinion on climate change, were related to the surface temperature, obtained from La Guardia airport meteorological station. We defined the "significant change" in the temperature index as deviation of the

  18. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  19. Climate change - the impacts

    International Nuclear Information System (INIS)

    Reysset, Bertrand; Billes-Garabedian, Laurent; Henique, Julien; Pascal, Mathilde; Pirard, Philippe; Motreff, Yvon; Barbault, Robert; Weber, Jacques; Gate, Philippe; Salagnac, Jean-Luc; Desplat, Julien; Kounkou-Arnaud, Raphaelle

    2012-01-01

    This special dossier about the impacts of climate change is made of 6 contributions dealing with: the mitigation of climate effects and how to deal with them (Bertrand Reysset); how to dare and transmit (Laurent Billes-Garabedian); littoral risks, the Pas-de-Calais example (Julien Henique); extreme meteorological events and health impacts (Mathilde Pascal, Philippe Pirard, Yvon Motreff); Biodiversity and climate: the janus of global change (Robert Barbault, Jacques Weber); adapting agriculture to dryness and temperatures (Philippe Gate); Paris and the future heats of the year 2100 (Jean-Luc Salagnac, Julien Desplat, Raphaelle Kounkou-Arnaud)

  20. Global climate change and tree nutrition : effects of elevated CO2 and temperature

    International Nuclear Information System (INIS)

    Lukac, M.; Calfapietra, C.; Lagomarsino, A.; Loreto, F.

    2010-01-01

    The availability of nutrients for plant uptake can limit the productivity and survival of forest ecosystems. Information about multiple interacting factors regarding the availability of essential nutrients and their roles in plant metabolism is needed in order to understand the full impact of climate change. This paper presented the known effects of elevated carbon dioxide (CO 2 ) and temperature on tree nutrition, with particular reference to the mobilization and immobilization processes instead of pools. Existing gaps in knowledge were identified and future research priorities were suggested. This review focused on the major nutrients, notably nitrogen (N) and phosphorous (P) and how the processes that alter their cycling and availability are influenced by the effects of climate change. 143 refs., 3 figs.

  1. Homogenised Australian climate datasets used for climate change monitoring

    International Nuclear Information System (INIS)

    Trewin, Blair; Jones, David; Collins; Dean; Jovanovic, Branislava; Braganza, Karl

    2007-01-01

    Full text: The Australian Bureau of Meteorology has developed a number of datasets for use in climate change monitoring. These datasets typically cover 50-200 stations distributed as evenly as possible over the Australian continent, and have been subject to detailed quality control and homogenisation.The time period over which data are available for each element is largely determined by the availability of data in digital form. Whilst nearly all Australian monthly and daily precipitation data have been digitised, a significant quantity of pre-1957 data (for temperature and evaporation) or pre-1987 data (for some other elements) remains to be digitised, and is not currently available for use in the climate change monitoring datasets. In the case of temperature and evaporation, the start date of the datasets is also determined by major changes in instruments or observing practices for which no adjustment is feasible at the present time. The datasets currently available cover: Monthly and daily precipitation (most stations commence 1915 or earlier, with many extending back to the late 19th century, and a few to the mid-19th century); Annual temperature (commences 1910); Daily temperature (commences 1910, with limited station coverage pre-1957); Twice-daily dewpoint/relative humidity (commences 1957); Monthly pan evaporation (commences 1970); Cloud amount (commences 1957) (Jovanovic etal. 2007). As well as the station-based datasets listed above, an additional dataset being developed for use in climate change monitoring (and other applications) covers tropical cyclones in the Australian region. This is described in more detail in Trewin (2007). The datasets already developed are used in analyses of observed climate change, which are available through the Australian Bureau of Meteorology website (http://www.bom.gov.au/silo/products/cli_chg/). They are also used as a basis for routine climate monitoring, and in the datasets used for the development of seasonal

  2. Climate reconstruction from borehole temperatures influenced by groundwater flow

    Science.gov (United States)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate

  3. Utilizing the social media data to validate 'climate change' indices

    Science.gov (United States)

    Molodtsova, T.; Kirilenko, A.; Stepchenkova, S.

    2013-12-01

    Reporting the observed and modeled changes in climate to public requires the measures understandable by the general audience. E.g., the NASA GISS Common Sense Climate Index (Hansen et al., 1998) reports the change in climate based on six practically observable parameters such as the air temperature exceeding the norm by one standard deviation. The utility of the constructed indices for reporting climate change depends, however, on an assumption that the selected parameters are felt and connected with the changing climate by a non-expert, which needs to be validated. Dynamic discussion of climate change issues in social media may provide data for this validation. We connected the intensity of public discussion of climate change in social networks with regional weather variations for the territory of the USA. We collected the entire 2012 population of Twitter microblogging activity on climate change topic, accumulating over 1.8 million separate records (tweets) globally. We identified the geographic location of the tweets and associated the daily and weekly intensity of twitting with the following parameters of weather for these locations: temperature anomalies, 'hot' temperature anomalies, 'cold' temperature anomalies, heavy rain/snow events. To account for non-weather related events we included the articles on climate change from the 'prestige press', a collection of major newspapers. We found that the regional changes in parameters of weather significantly affect the number of tweets published on climate change. This effect, however, is short-lived and varies throughout the country. We found that in different locations different weather parameters had the most significant effect on climate change microblogging activity. Overall 'hot' temperature anomalies had significant influence on climate change twitting intensity.

  4. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.

    2012-09-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon

  5. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.

    2013-04-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie

  6. Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models

    Directory of Open Access Journals (Sweden)

    B. B. B. Booth

    2013-04-01

    Full Text Available We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM. These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario. A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5 and even under aggressive mitigation (RCP2.6 temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs, the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high

  7. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    Science.gov (United States)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of

  8. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.

    Science.gov (United States)

    Dayananda, Buddhi; Gray, Sarah; Pike, David; Webb, Jonathan K

    2016-07-01

    Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current 'cold' nests (mean = 23.2 °C, range 10-33 °C) and future 'hot' nests (27.0 °C, 14-37 °C). 'Hot' incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot-incubated hatchlings had higher annual mortality (99%, 97%) than cold-incubated (11%, 58%) or wild-born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78- 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52- 1.0) with mean times to extinction of 18-44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest-site choices. Over the period 1992-2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest-site selection. The impacts of climate change may

  9. Using Streamflow and Stream Temperature to Assess the Potential Responses of Freshwater Fish to Climate Change

    Science.gov (United States)

    VanCompernolle, M.; Ficklin, D. L.; Knouft, J.

    2017-12-01

    Streamflow and stream temperature are key variables influencing growth, reproduction, and mortality of freshwater fish. Climate-induced changes in these variables are expected to alter the structure and function of aquatic ecosystems. Using Maxent, a species distribution model (SDM) based on the principal of maximum entropy, we predicted potential distributional responses of 100 fish species in the Mobile River Basin (MRB) to changes in climate based on contemporary and future streamflow and stream temperature estimates. Geologic, topographic, and landcover data were also included in each SDM to determine the contribution of these physical variables in defining areas of suitable habitat for each species. Using an ensemble of Global Climate Model (GCM) projections under a high emissions scenario, predicted distributions for each species across the MRB were produced for both a historical time period, 1975-1994, and a future time period, 2060-2079, and changes in total area and the percent change in historical suitable habitat for each species were calculated. Results indicate that flow (28%), temperature (29%), and geology (29%), on average, contribute evenly to determining areas of suitable habitat for fish species in the MRB, with landcover and slope playing more limited roles. Temperature contributed slightly more predictive ability to SDMs (31%) for the 77 species experiencing overall declines in areas of suitable habitat, but only 21% for the 23 species gaining habitat across all GCMs. Species are expected to lose between 15-24% of their historical suitable habitat, with threatened and endangered species losing 22-30% and those endemic to the MRB losing 19-28%. Sculpins (Cottidae) are expected to lose the largest amount of historical habitat (up to 84%), while pygmy sunfish (Elassomatidae) are expected to lose less than 1% of historical habitat. Understanding which species may be at risk of habitat loss under future projections of climate change can help

  10. Changing Energy Requirements in the Mediterranean Under Changing Climatic Conditions

    Directory of Open Access Journals (Sweden)

    George Demosthenous

    2009-09-01

    Full Text Available This study investigates the impacts of climate change on energy requirements in the Mediterranean. Energy requirements, especially for space heating and cooling, are closely linked to several weather variables, mainly air temperature. The analysis is based on daily temperature outputs from several regional climate models run at a resolution of 25 km × 25 km in the framework of EU project ENSEMBLES using the A1B emissions scenario. The impacts of changes in temperature on energy requirements are investigated using the concept of degree days, defined as the difference of mean air temperature from a base temperature. Base temperature should be chosen to coincide with the minimum energy consumption. In this way, changes in heating and cooling requirements between the reference and the future period are calculated and areas about to undergo large changes identified. These changes are calculated between a 30-year reference period 1961–1990 and a near future period 2021–2050 taking the ensemble mean of all regional climate models. The near-term future has been chosen instead of the frequently used end-of-the-century period to assist policy makers in their planning. In general, a decrease in energy requirements is projected under future milder winters and an increase under hotter summers.

  11. Climate Change and Respiratory Infections.

    Science.gov (United States)

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  12. Temperature and Violent Crime in Dallas, Texas: Relationships and Implications of Climate Change

    Directory of Open Access Journals (Sweden)

    Janet L. Gamble

    2012-08-01

    Full Text Available Introduction: To investigate relationships between ambient temperatures and violent crimes to determine whether those relationships are consistent across different crime categories and whether they are best described as increasing linear functions, or as curvilinear functions that decrease beyond some temperature threshold. A secondary objective was to consider the implications of the observed relationships for injuries and deaths from violent crimes in the context of a warming climate. To address these questions, we examined the relationship between daily ambient temperatures and daily incidents of violent crime in Dallas, Texas from 1993–1999.Methods: We analyzed the relationships between daily fluctuations in ambient temperature, other meteorological and temporal variables, and rates of daily violent crime using time series piece-wise regression and plots of daily data. Violent crimes, including aggravated assault, homicide, and sexualassault, were analyzed.Results: We found that daily mean ambient temperature is related in a curvilinear fashion to daily rates of violent crime with a positive and increasing relationship between temperature and aggravated crime that moderates beyond temperatures of 80 F and then turns negative beyond 90 F.Conclusion: While some have characterized the relationship between temperature and violent crime as a continually increasing linear function, leaving open the possibility that aggravated crime will increase in a warmer climate, we conclude that the relationship in Dallas is not linear, but moderatesand turns negative at high ambient temperatures. We posit that higher temperatures may encourage people to seek shelter in cooler indoor spaces, and that street crime and other crimes of opportunity are subsequently decreased. This finding suggests that the higher ambient temperatures expected with climate change may result in marginal shifts in violent crime in the short term, but are not likely to be

  13. Ice Storms in a Changing Climate

    Science.gov (United States)

    2016-06-01

    CHANGING CLIMATE by Jennifer M. McNitt June 2016 Thesis Advisor: Wendell Nuss Co-Advisor: David W. Titley THIS PAGE INTENTIONALLY LEFT...SUBTITLE ICE STORMS IN A CHANGING CLIMATE 5. FUNDING NUMBERS 6. AUTHOR(S) Jennifer M. McNitt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...increase in global temperatures, due to climate change, could affect the frequency, intensity, and geographic location of ice storms. Three known ice

  14. Twenty first century climate change as simulated by European climate models

    International Nuclear Information System (INIS)

    Cubasch, Ulrich

    2007-01-01

    Full text: Climate change simulation results for seven European state-of-the-art climate models, participating in the European research project ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts), will be presented. Models from Norway, France, Germany, Denmark, and Great Britain, representing a sub-ensemble of the models contributing to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), are included. Climate simulations are conducted with all the models for present-day climate and for future climate under the SRES A1B, A2, and B1 scenarios. The design of the simulations follows the guidelines of the IPCC AR4. The 21st century projections are compared to the corresponding present-day simulations. The ensemble mean global mean near surface temperature rise for the year 2099 compared to the 1961-1990 period amounts to 3.2Kforthe A1B scenario, to 4.1 K for the A2 scenario, and to 2.1 K for the B1 scenario. The spatial patterns of temperature change are robust among the contributing models with the largest temperature increase over the Arctic in boreal winter, stronger warming overland than over ocean, and little warming over the southern oceans. The ensemble mean globally averaged precipitation increases for the three scenarios (5.6%, 5.7%, and 3.8% for scenarios A1B, A2, and B1, respectively). The precipitation signals of the different models display a larger spread than the temperature signals. In general, precipitation increases in the Intertropical Convergence Zone and the mid- to high latitudes (most pronounced during the hemispheric winter) and decreases in the subtropics. Sea-level pressure decreases over the polar regions in all models and all scenarios, which is mainly compensated by a pressure increase in the subtropical highs. These changes imply an intensification of the Southern and Northern Annular Modes

  15. Climate change projections: past and future mysteries of climate science

    International Nuclear Information System (INIS)

    Meehl, Gerald A.

    2007-01-01

    Full text: Full text: The history of climate change has been wrapped in mysteries. Some have been solved, and we await the outcome of others. The major mystery of 20th century climate was why did temperatures rise in the early part of the century, level off, and then rise rapidly again after the 1970s? It has only been in the past seven years that advances in climate modelling have allowed us to deconstruct 20th century climate to pull apart the separate influences of natural and human-caused factors. This has allowed us to understand the subtle interplay between these various influences that produced the temperature time evolution. Another mystery has involved extreme weather and climate events. Again, climate models have allowed us to quantify how the small changes in average climate translate into much larger changes of regional extremes. The biggest remaining mysteries in climate science involve the future, and how the climate will evolve over the coming century. Up until now, various scenarios postulating different possible outcomes for 21st century climate, assuming different types of human activities, have been run in the climate models to provide a wide range of possible futures. However, more recently the outlook for global warming is being framed as a combination of mitigation and adaptation. If policy actions are taken to mitigate part of the problem of global warming, then climate models must be relied on to quantify the time-evolving picture of how much regional climate change we must adapt to. Solving this mystery will be the biggest and most important challenge ever taken on by the climate modelling community

  16. Climate change and agriculture in Denmark

    International Nuclear Information System (INIS)

    Olesen, J.E.

    2001-01-01

    This chapter reviews the current knowledge on effects of climate change on agriculture in Denmark, and the contribution of agriculture to greenhouse gas emissions in Denmark. The chapter also considers the possibilities of Danish agriculture to adapt to changing climate and to reduce greenhouse gas emissions. The relations to other aspects of global change are discussed, including liberalisation of world markets and changes in land use. Scenarios of climate change for Denmark suggest increases in annual mean temperature of 1 to 4 deg. C by the end of the 21st century depending on socioeconomic development. Winter rainfall may increase up to 20%. This implies a wide range of possible consequences. Agricultural productivity may be expected to increase under increasing temperature and increasing CO 2 concentration. Highter temperatures will increase the risk of pests and deseases. Warming in association with increased winter rainfall will also increase the risk of nitrate leaching. Climate change may thus be expected to reinforce the current trends in Danish agriculture of declining cattle population and increasing pig and cereal production. Apart from an anticipated continued decline in total agricultural area, land use will probably not be greatly affected. The current environmental regulation in Denmark aims at reducing pesticide use and nitrogen losses from agriculture. Some of the regulations are very detailed and directly regulate farming practices in a manner that may not provide the most cost-effective mechanism under a changed climate. Some of these existing rigid frameworks for environmental regulation should thus be substituted by more flexible goal-oriented environmental protection strategies, in order to ensure sustainability of farming under global climate change. (LN)

  17. Impact of Climate Change on Food Security in Kenya

    Science.gov (United States)

    Yator, J. J.

    2016-12-01

    This study sought to address the existing gap on the impact of climate change on food security in support of policy measures to avert famine catastrophes. Fixed and random effects regressions for crop food security were estimated. The study simulated the expected impact of future climate change on food insecurity based on the Representative Concentration Pathways scenario (RCPs). The study makes use of county-level yields estimates (beans, maize, millet and sorghum) and daily climate data (1971 to 2010). Climate variability affects food security irrespective of how food security is defined. Rainfall during October-November-December (OND), as well as during March-April-May (MAM) exhibit an inverted U-shaped relationship with most food crops; the effects are most pronounced for maize and sorghum. Beans and Millet are found to be largely unresponsive to climate variability and also to time-invariant factors. OND rains and fall and summer temperature exhibit a U-shaped relationship with yields for most crops, while MAM rains temperature exhibits an inverted U-shaped relationship. However, winter temperatures exhibit a hill-shaped relationship with most crops. Project future climate change scenarios on crop productivity show that climate change will adversely affect food security, with up to 69% decline in yields by the year 2100. Climate variables have a non-linear relationship with food insecurity. Temperature exhibits an inverted U-shaped relationship with food insecurity, suggesting that increased temperatures will increase crop food insecurity. However, maize and millet, benefit from increased summer and winter temperatures. The simulated effects of different climate change scenarios on food insecurity suggest that adverse climate change will increase food insecurity in Kenya. The largest increases in food insecurity are predicted for the RCP 8.5Wm2, compared to RCP 4.5Wm2. Climate change is likely to have the greatest effects on maize insecurity, which is likely

  18. Climate Change and Algal Blooms =

    Science.gov (United States)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  19. Climate change and the Delta

    Science.gov (United States)

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  20. The regional characteristics of climatic change in China

    International Nuclear Information System (INIS)

    Chen Longxun

    1994-01-01

    Using abundant historical records, the Chinese climatologists have analyzed regional climatic change during the past 2,000 years. Recently, more research on regional climatic change has been done by using the data of the instrumental period. The data show that Chinese climatic change has obvious regional characteristics. The average temperature in the whole country has kept increasing since the last century, and reached its highest value in the 1940s, then it decreased. Although there was a warming trend in the 1980s, the temperature declined again. Especially in the area south of 35 degree N and east of 100 degree E in the mainland China, the air temperature decreased continuously from the 1940s. So climatic change in China is not consistent with global warming, but has its own regional characteristics

  1. Enchytraeidae (Oligochaeta) in a changing climate

    DEFF Research Database (Denmark)

    Maraldo, Kristine

    The background for this thesis was to investigate the effect of climate change (increased CO2, temperature and prolonged drought) on field communities of enchytraeids dominated by the species Cognettia sphagnetorum. In the short-term, enchytraeids appear to be unaffected by the climate change when...

  2. An overview of climate change

    International Nuclear Information System (INIS)

    Masson-Delmotte, V.; Paillard, D.

    2004-01-01

    We describe briefly here the main mechanisms and time scales involved in natural and anthropogenic climate variability, based on quantitative paleo-climatic reconstructions from natural archives and climate model simulations: the large glacial-interglacial cycles of the last million years (the Quaternary), lasting typically a hundred thousand years, triggered by changes in the solar radiation received by the Earth due to its position around the Sun; the century-long climatic changes occurring during last glacial period and triggered by recurrent iceberg discharges of the large northern hemisphere ice caps, massive freshwater flux to the north Atlantic, and changes in the ocean heat transport. We show the strong coupling between past climatic changes and global biogeochemical cycles, namely here atmospheric greenhouse gases. We also discuss the decadal climatic fluctuations during the last thousand years, showing an unprecedented warming attributed to the anthropogenic greenhouse gas emissions. We show the range of atmospheric greenhouse concentrations forecasted for the end of the 21. century and the climate model predictions for global temperature changes during the 21. century. We also discuss the possible climatic changes at longer time scales involving the possibility of north Atlantic heat transport collapse (possibility of abrupt climate change), and the duration of the current interglacial period. (author)

  3. Climate Change And Hydrologic Instability In Yemen

    Science.gov (United States)

    Kelley, C. P.; Funk, C. C.; McNally, A.; Shukla, S.

    2015-12-01

    Yemen is one of the most food insecure nations in the world. Its agriculture is strongly dependent on soil moisture that is heavily influenced by surface temperature and annual precipitation. We examine observations of rainfall and surface temperature and find that the rainfall, which exhibits strong interannual variability, has seen a moderate downward trend over the last 35 years while surface temperature has seen a very significant rise over the same period. Yemen has high vulnerability and low resilience to these climate changes stemming from many geopolitical and socioeconomic factors. The threshold of resilience has been crossed as Yemen is embroiled in chaos and conflict. We examine the relationship between climate change and agricultural and water insecurity using observed data and the Noah land surface model. We further used atmospheric reanalyses to explore the atmospheric teleconnections that affect the anomalous regional circulation. According to these investigations the robust surface temperature increase over recent decades, expected to continue under climate change, has strongly depleted the soil moisture. This drying of the soil exacerbated the acute hydrologic insecurity in Yemen, stemming predominantly from unsustainable groundwater use, and was likely a contributing factor to the ongoing conflict. We show that during naturally occurring dry years and under climate change this region experiences anomalous dry air advection from the northeast and that these regional circulation changes appear to be linked to tropical sea-surface temperature forcing and to the Northern Hemisphere midlatitude circulation. These results are an important example of the emerging influence of climate change in hydrologically insecure regions.

  4. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  5. Relative effects of climate change and wildfires on stream temperatures: A simulation modeling approach in a Rocky Mountain watershed

    Science.gov (United States)

    Lisa Holsinger; Robert E. Keane; Daniel J. Isaak; Lisa Eby; Michael K. Young

    2014-01-01

    Freshwater ecosystems are warming globally from the direct effects of climate change on air temperature and hydrology and the indirect effects on near-stream vegetation. In fire-prone landscapes, vegetative change may be especially rapid and cause significant local stream temperature increases but the importance of these increases relative to broader changes associated...

  6. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change

    Science.gov (United States)

    Jezkova, Tereza

    2016-01-01

    Climate change may soon threaten much of global biodiversity. A critical question is: can species undergo niche shifts of sufficient speed and magnitude to persist within their current geographic ranges? Here, we analyse niche shifts among populations within 56 plant and animal species using time-calibrated trees from phylogeographic studies. Across 266 phylogeographic groups analysed, rates of niche change were much slower than rates of projected climate change (mean difference > 200 000-fold for temperature variables). Furthermore, the absolute niche divergence among populations was typically lower than the magnitude of projected climate change over the next approximately 55 years for relevant variables, suggesting the amount of change needed to persist may often be too great, even if these niche shifts were instantaneous. Rates were broadly similar between plants and animals, but especially rapid in some arthropods, birds and mammals. Rates for temperature variables were lower at lower latitudes, further suggesting that tropical species may be especially vulnerable to climate change. PMID:27881748

  7. Climate change science - beyond IPCC

    International Nuclear Information System (INIS)

    Nicholls, N.

    2007-01-01

    Full text: Full text: The main conclusions of the IPCC Working Group I assessment of the physical science of climate change, from the Fourth IPCC Assessment, will be presented, along with the evidence supporting these conclusions. These conclusions include: Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years. The global increases in carbon dioxide concentration are due primarily to fossil fuel use and land use change, while those of methane and nitrous oxide are primarily due to agriculture; The understanding of anthropogenic warming and cooling influences on climate has improved since the Third Assessment Report, leading to very high confidence that the global average net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] Wm-2; Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level; At continental, regional and ocean basin scales, numerous long-term changes in climate have been observed. These include changes in arctic temperatures and ice, widespread changes in precipitation amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones. Palaeo-climatic information supports the interpretation that the warmth of the last half-century is unusual in at least the previous 1,300 years; Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations; Discernible human influences now extend to other aspects of climate, including ocean warming, continental

  8. Climate change - global warming

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2001-01-01

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  9. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  10. Changing Climate in the MENA Means Changing Energy Needs

    Directory of Open Access Journals (Sweden)

    Adam Fenech

    2015-12-01

    Full Text Available The leading authority on climate change, the Intergovernmental Panel on Climate Change (IPCC hasconcluded that warming of the climate system is unequivocal, and will continue for centuries. The regionsin the Middle East and Northern Africa (MENA have experienced numerous extreme climate events overthe past few years including the 2009 flooding in Jeddah, Kingdom of Saudi Arabia; the 2005 dust stormin Al Asad, Iraq; water scarcity throughout the Arab MENA; and the rising sea levels on the Nile Deltacoast, Egypt. A climate baseline can be developed for regions in the MENA by locating climate stations inthe study area using observations made in the Global Climate Observing System (GCOS. For projectionsof future climate, global climate models (GCMs, mathematical equations that describe the physics, fluidmotion and chemistry of the atmosphere, are the most advanced science available. The Climate ResearchLab at the University of Prince Edward Island has a dataset available to researchers, called the Climate,Ocean and Atmosphere Data Exchange (COADE, that provides easy access to the output from fortyglobal climate models used in the deliberations of the Intergovernmental Panel on Climate Change’s(IPCC Fifth Assessment Report (AR5 including monthly global climate model projections of future climatechange for a number of climate parameters including temperature and precipitation. Over the past 50years, climate changes in the MENA Region have led to increases in annual mean temperatures anddecreases in annual total precipitation. Applying all four greenhouse gas emission futures on a baseclimate normal of 1981-2010 to an ensemble of forty global climate models used in the Fifth AssessmentReport of the Intergovernmental Panel on Climate Change (IPCC AR5 results in future temperatureincreases for the MENA Region ranging from 1.6 to 2.3 degrees Celsius, and in a range of futureprecipitation changes from reductions of 11 percent to increases of 36 percent

  11. CLIMATE CHANGE: LONG-TERM TRENDS AND SHORT-TERM OSCILLATIONS

    Institute of Scientific and Technical Information of China (English)

    GAO Xin-quan; ZHANG Xin; QIAN Wei-hong

    2006-01-01

    Identifying the Northern Hemisphere (NH) temperature reconstruction and instrumental data for the past 1000 years shows that climate change in the last millennium includes long-term trends and various oscillations. Two long-term trends and the quasi-70-year oscillation were detected in the global temperature series for the last 140 years and the NH millennium series. One important feature was emphasized that temperature decreases slowly but it increases rapidly based on the analysis of different series. Benefits can be obtained of climate change from understanding various long-term trends and oscillations. Millennial temperature proxies from the natural climate system and time series of nonlinear model system are used in understanding the natural climate change and recognizing potential benefits by using the method of wavelet transform analysis. The results from numerical modeling show that major oscillations contained in numerical solutions on the interdecadal timescale are consistent with that of natural proxies. It seems that these oscillations in the climate change are not directly linked with the solar radiation as an external forcing. This investigation may conclude that the climate variability at the interdecadal timescale strongly depends on the internal nonlinear effects in the climate system.

  12. Adaptability and climate change

    International Nuclear Information System (INIS)

    Sprague, M.W.

    1991-01-01

    The potential social, economic and environmental impacts of climate change are reviewed, with emphasis on agricultural implications. Impact analyses must be done on the scale of watersheds or river basins. For agriculture, climate change effects on water resources are likely to be more important than temperature changes, and climatic variability is also equally important. Another set of critical climatic variables are the frequencies, magnitudes and timing of extreme events such as floods, droughts, etc. A carbon dioxide enriched atmosphere will increase water use efficiency and confer increased tolerance to drought, salinity and air pollution. Better understanding and accounting is required for the effects of increased carbon dioxide on all plant life, including crops. Adaptability of agriculture to change must be taken into account in predicting impacts of climate change, with technological innovation and infrastructure giving agriculture a dynamic nature. Limitations and adaptations must be considered when formulating public policy, to ensure that marginal costs do not exceed marginal benefits. Monoculture plantation forests may be the most efficient sinks of atmospheric carbon dioxide, yet widespread reliance on them may harm biological diversity. Actions the U.S. is currently taking under a no-regrets policy are summarized

  13. Climate change affects carbon allocation to the soil in shrublands

    NARCIS (Netherlands)

    Gorissen, A.; Tietema, A.; Joosten, N.N.; Estiarte, M.; Peñuelas, J.; Sowerby, A.; Emmett, B.; Beier, J.C.

    2004-01-01

    Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes

  14. Widespread climate change in the Himalayas and associated changes in local ecosystems.

    Science.gov (United States)

    Shrestha, Uttam Babu; Gautam, Shiva; Bawa, Kamaljit S

    2012-01-01

    Climate change in the Himalayas, a biodiversity hotspot, home of many sacred landscapes, and the source of eight largest rivers of Asia, is likely to impact the well-being of ~20% of humanity. However, despite the extraordinary environmental, cultural, and socio-economic importance of the Himalayas, and despite their rapidly increasing ecological degradation, not much is known about actual changes in the two most critical climatic variables: temperature and rainfall. Nor do we know how changes in these parameters might impact the ecosystems including vegetation phenology. By analyzing temperature and rainfall data, and NDVI (Normalized Difference Vegetation Index) values from remotely sensed imagery, we report significant changes in temperature, rainfall, and vegetation phenology across the Himalayas between 1982 and 2006. The average annual mean temperature during the 25 year period has increased by 1.5 °C with an average increase of 0.06 °C yr(-1). The average annual precipitation has increased by 163 mm or 6.52 mmyr(-1). Since changes in temperature and precipitation are immediately manifested as changes in phenology of local ecosystems, we examined phenological changes in all major ecoregions. The average start of the growing season (SOS) seems to have advanced by 4.7 days or 0.19 days yr(-1) and the length of growing season (LOS) appears to have advanced by 4.7 days or 0.19 days yr(-1), but there has been no change in the end of the growing season (EOS). There is considerable spatial and seasonal variation in changes in climate and phenological parameters. This is the first time that large scale climatic and phenological changes at the landscape level have been documented for the Himalayas. The rate of warming in the Himalayas is greater than the global average, confirming that the Himalayas are among the regions most vulnerable to climate change.

  15. Climate change in Nova Scotia : a background paper to guide Nova Scotia's climate change action plan

    International Nuclear Information System (INIS)

    2007-10-01

    Climate change causes changes in the temperature of the earth, the level of the sea, and the frequency of extreme weather conditions. The province of Nova Scotia recently released an act related to environmental goals and sustainable prosperity. Addressing climate change is a key element in achieving Nova Scotia's sustainable prosperity goals outlined in the act. The Nova Scotia Department of Energy is working towards developing both policy and action, to help meet its target of a 10 per cent reduction in greenhouse gases from 1990 levels by the year 2020. Two major plans are underway, notably a climate change action plan and a renewed energy strategy. This report provided background information on Nova Scotia's climate change action plan. It discussed climate change issues affecting Nova Scotia, air pollutants, energy sources in Nova Scotia, energy consumers in the province, and Nova Scotia's approach to climate change. The report also discussed actions underway and funding sources. It was concluded that in order for the climate change action plan to be successful, Nova Scotians must use energy more efficiently; use renewable energy; use cleaner energy; and plan for change. 13 refs., 2 tabs., 6 figs., 4 appendices

  16. Detection and Attribution of Anthropogenic Climate Change Impacts

    Science.gov (United States)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  17. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate.

    Science.gov (United States)

    Rountrey, Adam N; Coulson, Peter G; Meeuwig, Jessica J; Meekan, Mark

    2014-08-01

    Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long-term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed-effects modeling to examine the sensitivity of growth in a long-lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi-decadal biochronology (1952-2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries. © 2014 John Wiley & Sons Ltd.

  18. World Regionalization of Climate Change(1961–2010)

    Institute of Scientific and Technical Information of China (English)

    Peijun; Shi; Shao; Sun; Daoyi; Gong; Tao; Zhou

    2016-01-01

    Traditional climate classification or regionalization characterizes the mean state of climate condition, which cannot meet the demand of addressing climate change currently. We have developed a climate change classification method, as well as the fundamental principles, an indicator system, and mapping techniques of climate change regionalization. This study used annual mean temperature and total precipitation as climatic indices, and linear trend and variation change as change indices to characterize climate change quantitatively. The study has proposed a scheme for world climate change regionalization based on a half century of climate data(1961–2010). Level-I regionalization divides the world into 12 tendency zones based on the linear trend of climate, level-II regionalization resulted in 28 fluctuation regions based on the variation change of climate. Climate change regionalization provides a scientific basis for countries and regions to develop plans for adapting to climate change, especially for managing climate-related disaster or environmental risks.

  19. Climate change and wildlife health: direct and indirect effects

    Science.gov (United States)

    Hofmeister, Erik K.; Moede Rogall, Gail; Wesenberg, Katherine; Abbott, Rachel C.; Work, Thierry M.; Schuler, Krysten; Sleeman, Jonathan M.; Winton, James

    2010-01-01

    Climate change will have significant effects on the health of wildlife, domestic animals, and humans, according to scientists. The Intergovernmental Panel on Climate Change projects that unprecedented rates of climate change will result in increasing average global temperatures; rising sea levels; changing global precipitation patterns, including increasing amounts and variability; and increasing midcontinental summer drought (Intergovernmental Panel on Climate Change, 2007). Increasing temperatures, combined with changes in rainfall and humidity, may have significant impacts on wildlife, domestic animal, and human health and diseases. When combined with expanding human populations, these changes could increase demand on limited water resources, lead to more habitat destruction, and provide yet more opportunities for infectious diseases to cross from one species to another.

  20. Vertical climatic belts in the Tatra Mountains in the light of current climate change

    Science.gov (United States)

    Łupikasza, Ewa; Szypuła, Bartłomiej

    2018-04-01

    The paper discusses temporal changes in the configuration of vertical climatic belts in the Tatra Mountains as a result of current climate change. Meteorological stations are scarce in the Tatra Mountains; therefore, we modelled decadal air temperatures using existing data from 20 meteorological stations and the relationship between air temperature and altitude. Air temperature was modelled separately for northern and southern slopes and for convex and concave landforms. Decadal air temperatures were additionally used to delineate five climatic belts previously distinguished by Hess on the basis of threshold values of annual air temperature. The spatial extent and location of the borderline isotherms of 6, 4, 2, 0, and - 2 °C for four decades, including 1951-1960, 1981-1990, 1991-2000, and 2001-2010, were compared. Significant warming in the Tatra Mountains, uniform in the vertical profile, started at the beginning of the 1980s and led to clear changes in the extent and location of the vertical climatic belts delineated on the basis of annual air temperature. The uphill shift of the borderline isotherms was more prominent on southern than on northern slopes. The highest rate of changes in the extent of the climatic belts was found above the isotherm of 0 °C (moderately cold and cold belts). The cold belt dramatically diminished in extent over the research period.

  1. Impact of climate change on Taiwanese power market determined using linear complementarity model

    International Nuclear Information System (INIS)

    Tung, Ching-Pin; Tseng, Tze-Chi; Huang, An-Lei; Liu, Tzu-Ming; Hu, Ming-Che

    2013-01-01

    Highlights: ► Impact of climate change on average temperature is estimated. ► Temperature elasticity of demand is measured. ► Impact of climate change on Taiwanese power market determined. -- Abstract: The increase in the greenhouse gas concentration in the atmosphere causes significant changes in climate patterns. In turn, this climate change affects the environment, ecology, and human behavior. The emission of greenhouse gases from the power industry has been analyzed in many studies. However, the impact of climate change on the electricity market has received less attention. Hence, the purpose of this research is to determine the impact of climate change on the electricity market, and a case study involving the Taiwanese power market is conducted. First, the impact of climate change on temperature is estimated. Next, because electricity demand can be expressed as a function of temperature, the temperature elasticity of demand is measured. Then, a linear complementarity model is formulated to simulate the Taiwanese power market and climate change scenarios are discussed. Therefore, this paper establishes a simulation framework for calculating the impact of climate change on electricity demand change. In addition, the impact of climate change on the Taiwanese market is examined and presented.

  2. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    Science.gov (United States)

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  3. Climate change effects on forests: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. [Argonne National Lab., IL (United States); LeBlanc, D. [Ball State Univ., Muncie, IN (United States). Dept. of Biology

    1996-02-01

    While current projections of future climate change associated with increases in atmospheric greenhouse gases have a high degree of uncertainty, the potential effects of climate change on forests are of increasing concern. A number of studies based on forest simulation models predict substantial temperatures associated with increasing atmospheric carbon dioxide concentrations. However, the structure of these computer models may cause them to overemphasize the role of climate in controlling tree growth and mortality. We propose that forest simulation models be reformulated with more realistic representations of growth responses to temperature, moisture, mortality, and dispersal. We believe that only when these models more accurately reflect the physiological bases of the responses of tree species to climate variables can they be used to simulate responses of forests to rapid changes in climate. We argue that direct forest responses to climate change projected by such a reformulated model may be less traumatic and more gradual than those projected by current models. However, the indirect effects of climate change on forests, mediated by alterations of disturbance regimes or the actions of pests and pathogens, may accelerate climate-induced change in forests, and they deserve further study and inclusion within forest simulation models.

  4. Ecological and evolutionary impacts of changing climatic variability.

    Science.gov (United States)

    Vázquez, Diego P; Gianoli, Ernesto; Morris, William F; Bozinovic, Francisco

    2017-02-01

    While average temperature is likely to increase in most locations on Earth, many places will simultaneously experience higher variability in temperature, precipitation, and other climate variables. Although ecologists and evolutionary biologists widely recognize the potential impacts of changes in average climatic conditions, relatively little attention has been paid to the potential impacts of changes in climatic variability and extremes. We review the evidence on the impacts of increased climatic variability and extremes on physiological, ecological and evolutionary processes at multiple levels of biological organization, from individuals to populations and communities. Our review indicates that climatic variability can have profound influences on biological processes at multiple scales of organization. Responses to increased climatic variability and extremes are likely to be complex and cannot always be generalized, although our conceptual and methodological toolboxes allow us to make informed predictions about the likely consequences of such climatic changes. We conclude that climatic variability represents an important component of climate that deserves further attention. © 2015 Cambridge Philosophical Society.

  5. Sensitivity of regional climate to global temperature and forcing

    International Nuclear Information System (INIS)

    Tebaldi, Claudia; O’Neill, Brian; Lamarque, Jean-François

    2015-01-01

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250–1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m −2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway. (letter)

  6. THE EVOLUTION OF ANNUAL MEAN TEMPERATURE AND PRECIPITATION QUANTITY VARIABILITY BASED ON ESTIMATED CHANGES BY THE REGIONAL CLIMATIC MODELS

    Directory of Open Access Journals (Sweden)

    Paula Furtună

    2013-03-01

    Full Text Available Climatic changes are representing one of the major challenges of our century, these being forcasted according to climate scenarios and models, which represent plausible and concrete images of future climatic conditions. The results of climate models comparison regarding future water resources and temperature regime trend can become a useful instrument for decision makers in choosing the most effective decisions regarding economic, social and ecologic levels. The aim of this article is the analysis of temperature and pluviometric variability at the closest grid point to Cluj-Napoca, based on data provided by six different regional climate models (RCMs. Analysed on 30 year periods (2001-2030,2031-2060 and 2061-2090, the mean temperature has an ascending general trend, with great varability between periods. The precipitation expressed trough percentage deviation shows a descending general trend, which is more emphazied during 2031-2060 and 2061-2090.

  7. Assessment of weather indicators for possible climate change

    International Nuclear Information System (INIS)

    Maqssood, H.; Ahmed, S.I.

    2014-01-01

    From 20 century onwards, a great concern has been expressed regarding global climate change. This study attempts to perform detailed analysis of temperature and precipitation for Karachi city of Pakistan, to assess the possible climate change, using two data sets (51-year data: 1961-2012 and 31-year data: 1981-2012) for different parameters. Trends were generated using linear regression (LR) and Mann-Kendall (MK), which depicted that daily and annual temperatures were increasing, with changes in minimum temperature being more significant than maximum temperature. Analyses also showed increase in extreme temperature at night and during winter, showing that urbanization was a major factor, as the heat from buildings trapped in between dissipates at nights. The daily and monthly precipitation levels increased in contrast to annual precipitation trend, which is justified by the averaged monthly analysis showing that decreasing trends were much more significant than increasing trends. In addition, monthly precipitation showed an increase of 4.3 mm, using LR and MK test. It can be noticed that two extreme winter months (December and January) and two extreme hot months (May and October) received increased rainfall. However, statistical analyses showed overall annual decrease in rainfall. Furthermore, decadal analysis indicated sinusoidal behaviour of change in climate indicators; making climatic change evident but cyclic in nature. (author)

  8. Impacts of climate change on electricity network business

    International Nuclear Information System (INIS)

    Martikainen, A.

    2006-04-01

    Climate has a significant impact on the electricity network business. The electricity network is under the weather pressure all the time and it is planned and constructed to withstand normal climatic stresses. The electricity network that has been planned and constructed now, is expected to be in operation next 40 years. If climatic stresses change in this period, it can cause significant impacts on electricity network business. If the impacts of climate change are figured out in advance, it is possible to mitigate negative points of climate change and exploit the positive points. In this paper the impact of climate change on electricity network business is presented. The results are based on RCAO climate model scenarios. The climate predictions were composed to the period 2016. 2045. The period 1960.1990 was used as a control period. The climate predictions were composed for precipitation, temperature, hoarfrost, thunder, ground frost and wind. The impacts of the change of the climate variables on electricity network business were estimated from technical and economical points of view. The estimation was based on the change predictions of the climate variables. It is expected that climate change will cause more damages than benefits on the electricity network business. The increase of the number of network faults will be the most significant and demanding disadvantage caused by climate change. If networks are not improved to be more resistant for faults, then thunder, heavy snow and wind cause more damages especially to overhead lines in medium voltage network. Increasing precipitation and decreasing amount of ground frost weaken the strength of soil. The construction work will be more difficult with the present vehicles because wet and unfrozen ground can not carry heavy vehicles. As a consequence of increasing temperature, the demand of heating energy will decrease and the demand of cooling energy will increase. This is significant for the electricity

  9. Climate impacts of deforestation/land-use changes in Central South America in the PRECIS regional climate model: mean precipitation and temperature response to present and future deforestation scenarios.

    Science.gov (United States)

    Canziani, Pablo O; Carbajal Benitez, Gerardo

    2012-01-01

    Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961-2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960-2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia.

  10. Climate Change Impact on Togo's Agriculture Performance: A ...

    African Journals Online (AJOL)

    Climate Change Impact on Togo's Agriculture Performance: A Ricardian Analysis Based on Time Series Data. ... Ethiopian Journal of Environmental Studies and Management ... Conclusively, the impact of climate change on agriculture seems to be varied with the temperature and precipitation in different seasons. Climate ...

  11. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  12. Sensitivity of streamflow to climate change in California

    Science.gov (United States)

    Grantham, T.; Carlisle, D.; Wolock, D.; McCabe, G. J.; Wieczorek, M.; Howard, J.

    2015-12-01

    Trends of decreasing snowpack and increasing risk of drought are looming challenges for California water resource management. Increasing vulnerability of the state's natural water supplies threatens California's social-economic vitality and the health of its freshwater ecosystems. Despite growing awareness of potential climate change impacts, robust management adaptation has been hindered by substantial uncertainty in future climate predictions for the region. Down-scaled global climate model (GCM) projections uniformly suggest future warming of the region, but projections are highly variable with respect to the direction and magnitude of change in regional precipitation. Here we examine the sensitivity of California surface water supplies to climate variation independently of GCMs. We use a statistical approach to construct predictive models of monthly streamflow based on historical climate and river basin features. We then propagate an ensemble of synthetic climate simulations through the models to assess potential streamflow responses to changes in temperature and precipitation in different months and regions of the state. We also consider the range of streamflow change predicted by bias-corrected downscaled GCMs. Our results indicate that the streamflow in the xeric and coastal mountain regions of California is more sensitive to changes in precipitation than temperature, whereas streamflow in the interior mountain region responds strongly to changes in both temperature and precipitation. Mean climate projections for 2025-2075 from GCM ensembles are highly variable, indicating streamflow changes of -50% to +150% relative to baseline (1980-2010) for most months and regions. By quantifying the sensitivity of streamflow to climate change, rather than attempting to predict future hydrologic conditions based on uncertain GCM projections, these results should be more informative to water managers seeking to assess, and potentially reduce, the vulnerability of surface

  13. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  14. Atmospheric Composition Change: Climate-Chemistry Interactions

    Science.gov (United States)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  15. Climate Change Amplifications of Climate-Fire Teleconnections in the Southern Hemisphere

    Science.gov (United States)

    Mariani, Michela; Holz, Andrés.; Veblen, Thomas T.; Williamson, Grant; Fletcher, Michael-Shawn; Bowman, David M. J. S.

    2018-05-01

    Recent changes in trend and variability of the main Southern Hemisphere climate modes are driven by a variety of factors, including increasing atmospheric greenhouse gases, changes in tropical sea surface temperature, and stratospheric ozone depletion and recovery. One of the most important implications for climatic change is its effect via climate teleconnections on natural ecosystems, water security, and fire variability in proximity to populated areas, thus threatening human lives and properties. Only sparse and fragmentary knowledge of relationships between teleconnections, lightning strikes, and fire is available during the observed record within the Southern Hemisphere. This constitutes a major knowledge gap for undertaking suitable management and conservation plans. Our analysis of documentary fire records from Mediterranean and temperate regions across the Southern Hemisphere reveals a critical increased strength of climate-fire teleconnections during the onset of the 21st century including a tight coupling between lightning-ignited fire occurrences, the upward trend in the Southern Annular Mode, and rising temperatures across the Southern Hemisphere.

  16. Effects of climate change on water requirements and phenological period of major crops in Heihe River basin, China - Based on the accumulated temperature threshold method

    Science.gov (United States)

    Han, Dongmei; Xu, Xinyi; Yan, Denghua

    2016-04-01

    In recent years, global climate change has significantly caused a serious crisis of water resources throughout the world. However, mainly through variations in temperature, climate change will affect water requirements of crop. It is obvious that the rise of temperature affects growing period and phenological period of crop directly, then changes the water demand quota of crop. Methods including accumulated temperature threshold and climatic tendency rate were adopted, which made up for the weakness of phenological observations, to reveal the response of crop phenological change during the growing period. Then using Penman-Menteith model and crop coefficients from the United Nations Food& Agriculture Organization (FAO), the paper firstly explored crop water requirements in different growth periods, and further forecasted quantitatively crop water requirements in Heihe River Basin, China under different climate change scenarios. Results indicate that: (i) The results of crop phenological change established in the method of accumulated temperature threshold were in agreement with measured results, and (ii) there were many differences in impacts of climate warming on water requirement of different crops. The growth periods of wheat and corn had tendency of shortening as well as the length of growth periods. (ii)Results of crop water requirements under different climate change scenarios showed: when temperature increased by 1°C, the start time of wheat growth period changed, 2 days earlier than before, and the length of total growth period shortened 2 days. Wheat water requirements increased by 1.4mm. However, corn water requirements decreased by almost 0.9mm due to the increasing temperature of 1°C. And the start time of corn growth period become 3 days ahead, and the length of total growth period shortened 4 days. Therefore, the contradiction between water supply and water demands are more obvious under the future climate warming in Heihe River Basin, China.

  17. European climate change policy beyond 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    There is an increasing scientific consensus that human activities do trigger climate changes. Actual forecasts predict temperature increases that are likely to be beyond the adaptation potential of ecosystems. These considerations play a major role in shaping public opinion and the media landscape, culminating in the view that Europe needs to play a leading role in combating climate change.

  18. Climate Change Assessments for Lakes Region of Turkey

    Directory of Open Access Journals (Sweden)

    Ayten Erol

    2012-07-01

    Full Text Available Climate change is one of the most important challenges for forestry. Forests are known to be most efficient natural tools to ensure availability and quality of water in many regions. Besides, planning of forest resources towards water quality and quantity is essential in countries that are expected to face with more frequent drought periods in the next decades due to climate change. Watershed management concept has been supposed as the primary tool to plan natural resources in a more efficient and sustainable way by both academicians and practitioners to mitigate and adapt climate change. Forest cover among other land use types provides the best regulating mechanism to mitigate erosion, sedimentation, desertification, and pollution. In addition, climate change can potentially affect forest stand dynamics by influencing the availability of water resources. Therefore, the amount of forest cover in a watershed is an indicator of climate change mitigation and adaptation. Climate change is a concern and risk for the sustainability of water resources in Lakes Region of Turkey. The objective of this study is to make a comprehensive assessment in lake watersheds of the Lakes region considering the forest cover. For this purpose, the study gives a general view of trends in climatic parameters using Mann Kendall trend test. The results showed that Mann Kendall trend test for temperature and precipitation data is not enough to evaluate the magnitude of potential changes of climate in terms of forest cover. Understanding impacts of changes in temperature and precipitation on forest cover, runoff data should be evaluated with temperature and precipitation for watersheds of forest areas in Lakes Region.

  19. Assessment of climate change scenarios for Saudi Arabia using data from global climate models

    International Nuclear Information System (INIS)

    Husain, T.; Chowdhury, S.

    2009-01-01

    This study assesses available scientific information and data to predict changes in the climatic parameters in Saudi Arabia for understanding the impacts for mitigation and/or adaptation. Meteorological data from 26 synoptic stations were analyzed in this study. Various climatic change scenarios were reviewed and A 2 and B 2 climatic scenario families were selected. In order to assess long-term global impact, global climatic models were used to simulate changes in temperature, precipitation, relative humidity, solar radiation, and wind circulation. Using global climate model (GCM), monthly time series data was retrieved for Longitude 15 o N to 35 o N and 32.5 o E to 60 o E covering the Kingdom of Saudi Arabia from 1970 to 2100 for all grids. Taking averages of 1970 to 2003 as baseline, change in temperature, relative humidity and precipitation were estimated for the base period. A comparative evaluation was performed for predictive capabilities of these models for temperature, precipitation and relative humidity. Available meteorological data from 1970 to 2003 was used to determine trends. This paper discusses the inconsistency in these parameters for decision-making and recommends future studies by linking global climate models with a suitable regional climate modeling tool. (author)

  20. Impacts of climate change on paddy rice yield in a temperate climate.

    Science.gov (United States)

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  1. Potential decline in geothermal energy generation due to rising temperatures under climate change scenarios

    Science.gov (United States)

    Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.

    2016-12-01

    Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.

  2. Chapter 1. Impacts of the oceans on climate change.

    Science.gov (United States)

    Reid, Philip C; Fischer, Astrid C; Lewis-Brown, Emily; Meredith, Michael P; Sparrow, Mike; Andersson, Andreas J; Antia, Avan; Bates, Nicholas R; Bathmann, Ulrich; Beaugrand, Gregory; Brix, Holger; Dye, Stephen; Edwards, Martin; Furevik, Tore; Gangstø, Reidun; Hátún, Hjálmar; Hopcroft, Russell R; Kendall, Mike; Kasten, Sabine; Keeling, Ralph; Le Quéré, Corinne; Mackenzie, Fred T; Malin, Gill; Mauritzen, Cecilie; Olafsson, Jón; Paull, Charlie; Rignot, Eric; Shimada, Koji; Vogt, Meike; Wallace, Craig; Wang, Zhaomin; Washington, Richard

    2009-01-01

    The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to

  3. Maize production in terms of global climate changes

    Directory of Open Access Journals (Sweden)

    Bekavac Goran

    2010-01-01

    Full Text Available Climate changes and expected variability of climatic parameters represent a serious concern of the 21st century agriculture. At the global level, the further rise in temperature, changed quantity and distribution of precipitation, increased variability of climate parameters and the occurrence of extreme climate events are expected. In order to avoid, or at least reduce the negative effects of global climate change, several adaptation strategies are proposed. Adjustment of production technology and breeding for tolerance to changed environment are proposed as two most important adaptation measures.

  4. Decreases in beetle body size linked to climate change and warming temperatures.

    Science.gov (United States)

    Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina

    2018-05-01

    Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The

  5. Climate Change: Past, Present, and Future

    Science.gov (United States)

    Chapman, David S.; Davis, Michael G.

    2010-09-01

    Questions about global warming concern climate scientists and the general public alike. Specifically, what are the reliable surface temperature reconstructions over the past few centuries? And what are the best predictions of global temperature change the Earth might expect for the next century? Recent publications [National Research Council (NRC), 2006; Intergovernmental Panel on Climate Change (IPCC), 2007] permit these questions to be answered in a single informative illustration by assembling temperature reconstructions of the past thousand years with predictions for the next century. The result, shown in Figure 1, illustrates present and future warming in the context of natural variations in the past [see also Oldfield and Alverson, 2003]. To quote a Chinese proverb, “A picture's meaning can express ten thousand words.” Because it succinctly captures past inferences and future projections of climate, the illustration should be of interest to scientists, educators, policy makers, and the public.

  6. Attributing Changing Rates of Temperature Record Breaking to Anthropogenic Influences

    Science.gov (United States)

    King, Andrew D.

    2017-11-01

    Record-breaking temperatures attract attention from the media, so understanding how and why the rate of record breaking is changing may be useful in communicating the effects of climate change. A simple methodology designed for estimating the anthropogenic influence on rates of record breaking in a given time series is proposed here. The frequency of hot and cold record-breaking temperature occurrences is shown to be changing due to the anthropogenic influence on the climate. Using ensembles of model simulations with and without human-induced forcings, it is demonstrated that the effect of climate change on global record-breaking temperatures can be detected as far back as the 1930s. On local scales, a climate change signal is detected more recently at most locations. The anthropogenic influence on the increased occurrence of hot record-breaking temperatures is clearer than it is for the decreased occurrence of cold records. The approach proposed here could be applied in rapid attribution studies of record extremes to quantify the influence of climate change on the rate of record breaking in addition to the climate anomaly being studied. This application is demonstrated for the global temperature record of 2016 and the Central England temperature record in 2014.

  7. Climate Change and Forests

    International Nuclear Information System (INIS)

    Omenda, T.O

    1997-01-01

    The causes for climatic change in the period between 3000 and 1250 BC was different from what present scenario portends. After industrialization, temperatures has arisen by 0.5 degrees centigrade every 100 years since factories started to spew out smoke. Over the last two centuries, the concentration of Carbon Dioxide in the atmosphere has increased by more than 25% from about 275ppm in the 18th Century to more than 350ppm at the present time while the current level is expected to double by the year 2050. The increase in Carbon Dioxide and together with other greenhouse gases in the atmosphere will trap the sun's radiation causing the mean global temperatures to rise by between 1 degree and 5 degrees centigrade by 2050. The climatic change affects forestry in many ways for instance, temperatures determines the rate at which enzymes catalyze biochemical reactions while solar radiation provide the energy which drive light reactions in photosynthesis. On the other hand, water which is a component of climate is a universal solvent which enables plants to transport nutrients through the transpirational stream, and similarly transport photosynthates from the leave to all parts of the plants. It is a raw material for photosynthesis and important for maintaining turgidity, which is important for growth

  8. Climate change and future fire regimes: Examples from California

    Science.gov (United States)

    Keeley, Jon E.; Syphard, Alexandra D.

    2016-01-01

    Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation trajectories, as well as

  9. Climate Change and Future Fire Regimes: Examples from California

    Directory of Open Access Journals (Sweden)

    Jon E. Keeley

    2016-08-01

    Full Text Available Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation

  10. Long-term changes in sea surface temperatures

    International Nuclear Information System (INIS)

    Parker, D.E.

    1994-01-01

    Historical observations of sea surface temperature since 1856 have been improved by applying corrections to compensate for the predominant use of uninsulated or partly insulated buckets until the Second World War. There are large gaps in coverage in the late nineteenth century and around the two world wars, but a range of statistical techniques suggest that these gaps do not severely prejudice estimates of global and regional climatic change. Nonetheless, to improve the analysis on smaller scales, many unused historical data are to be digitized and incorporated. For recent years, satellite-based sea surface temperatures have improved the coverage, after adjustments for their biases relative to in situ data. An initial version of a nominally globally complete sea ice and interpolated sea surface temperature data set, beginning in 1871, has been created for use in numerical simulations of recent climate. Long time series of corrected regional, hemispheric, and global sea surface temperatures are mostly consistent with corresponding night marine air temperature series, and confirm the regionally specific climatic changes portrayed in the Scientific Assessments of the intergovernmental Panel on Climate Change. The observations also show an El Nino-like oscillation on bidecadal and longer time scales

  11. Impact of Climate Change on India's Monsoonal Climate: Present ...

    Indian Academy of Sciences (India)

    Expected Future Changes in Rainfall and Temperature over India under IPCC SRES A1B GHG Scenarios · Expected Future Change in Monsoon Rainfall and Annual Surface Temp for 2020's, 2050's and 2080's · Likely Future Paradox of Monsoon-ENSO Links · High-Resolution Regional Climate Change Scenarios.

  12. Signs of climate change in Nordic nature

    DEFF Research Database (Denmark)

    Mikkelsen, Maria; Jensen, Trine Susanne; Normander, Bo

    on population size and range of the polar bear, for example, are scarce, whereas data on the pollen season are extensive. Each indicator is evaluated using a number of quality criteria, including sensitivity to climate change, policy relevance and methodology. Although the indicator framework presented here has......Not only is the Earth's climate changing, our natural world is also being affected by the impact of rising temperatures and changes in climatic conditions. In order to track climate-related changes in Nordic ecosystems, we have identified a number of climate change sensitive indicators. We present...... a catalogue of 14 indicator-based signs that demonstrate the impact of climate change on terrestrial, marine and freshwater ecosystems in the different bio-geographical zones of the Nordic region. The indicators have been identified using a systematic and quality, criteria based approach to discern and select...

  13. Evaluation of surface air temperature trend and climate change in the north - east of I. R. of Iran

    International Nuclear Information System (INIS)

    Alireza, Shahabfar

    2004-01-01

    In this paper maximum, minimum and mean surface air temperature recorded, analysed to reveal spatial and temporal patterns of long-term trends, change points, significant warming (cooling) periods and linear trend per decade. According to this research summer minimum temperatures have generally increased at a larger rate than in spring and autumn minimum temperatures. On the other hand, nighttime warming rates of spring and summer are generally stronger than those that exist in spring and summer daytime temperatures. Considering the significant increasing trends in annual, spring and summer temperatures, it is seen that night-time warming rates are stronger in the northern regions, which are characterized by the Khorasan Province macro climate type: a very hot summer, a relatively hot and late spring and early autumn, and a moderate winter. We have seriously considered the strong warming trends in spring and summer and thus likely in annual minimum air temperatures. It is very likely that significant and very rapid night-time warming trends over much of the province can be related to the widespread, rapid and increased urbanization in Khorasan Province, in addition to long-term and global effects of the human-induced climate change on air temperatures. (Author)

  14. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  15. Effects of climate change on Forest Service strategic goals

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    2010-01-01

    Climate change affects forests and grasslands in many ways. Changes in temperature and precipitation affect plant productivity as well as some species' habitat. Changes in key climate variables affect the length of the fire season and the seasonality of National Forest hydrological regimes. Also, invasive species tend to adapt to climate change more easily and...

  16. Impacts of climate change on electricity network business

    International Nuclear Information System (INIS)

    Auvinen, O.; Martikainen, A.

    2006-01-01

    In this project the impact of climate change on electricity network business was study. The results are based on RCAO climate model scenarios. The climate predictions were composed to the period 2016- 2045. The period 1960-1990 was used as a control period. The climate predictions were composed for precipitation, temperature, hoarfrost, thunder, ground frost and wind. Impacts of the change of the climate variables on electricity network business were estimated from technical and economical points of view. It is expected that climate change will cause more damages than benefits on the electricity network business. The increase of the number of network faults will be the most significant and demanding disadvantage caused by climate change in distribution network. If networks are not improved to be more resistant for faults, then thunder, heavy snow and wind cause more damages especially to overhead lines in medium voltage network. Increasing precipitation and decreasing amount of ground frost weaken the strength of soil. The construction work will be more difficult with the present vehicles because wet and unfrozen ground can not carry heavy vehicles. As a consequence of increasing temperature, the demand of heating energy will decrease and the demand of cooling energy will increase. This is significant for the electricity consumption and the peak load of temperature-dependent electricity users. (orig.)

  17. Climate change impact on river flows in Chitral watershed

    International Nuclear Information System (INIS)

    Shakir, A.S.; Rehman, H.U.; Ehsan, S.

    2010-01-01

    The impact of climate change has always been very important for water resources in the world. In countries like Pakistan where different weather conditions exist, the effects of climate change can be more crucial. Generally, the climate changes are considered in terms of global warming i.e. increase in the average temperature of earth's near surface air. The global warming can have a strong impact on river flows in Pakistan. This may be due to the melting of snow and glaciers at a higher rate and changes in precipitation patterns. Glaciers in Pakistan cover about 13,680 km/sup 2/, which is 13% of the mountainous regions of the Upper Indus Basin. Glacier and Snow melt water from these glaciers contributes significantly to the river flows in Pakistan. Due to climate change, the changes in temperature and the amount of precipitation could have diversified effects on river flows of arid and semi-arid regions of Pakistan. This paper reviews the existing research studies on climate change impact on water resources of Pakistan. The past trend of river flows in Pakistan has been discussed with respect to the available data. Further, different projections about future climate changes in terms of glacier melting and changes in temperature and precipitation have also been taken into consideration in order to qualitatively assess the future trend of river flows in Pakistan. As a case study, the flows were generated for the Chitral watershed using UBC Watershed Model. Model was calibrated for the year 2002, which is an average flow year. Model results show good agreement between simulated and observed flows. UBC watershed model was applied to a climate change scenario of 1 deg. C increase in temperature and 15% decrease in glaciated area. Results of the study reveal that the flows were decreased by about 4.2 %. (author)

  18. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  19. Environmental impact of climate change in pakistan

    International Nuclear Information System (INIS)

    Khan, S.; Raja, I.A.

    2014-01-01

    Climate change results in the increase or decrease in temperature and rainfall. These have significant impact on environment - impinge agricultural crop yields, affect human health, cause changes to forests and other ecosystems, and even impact our energy supply. Climate change is a global phenomenon and its impact can be observed on Pakistan's economy and environment. This paper contains details concerning the climate change and environmental impacts. It takes into account current and projected key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and environment. The purpose of the study is to devise national policies and incentive systems combined with national level capacity-building programs to encourage demand-oriented conservation technologies. Recommendations are also made to abate the climate change related issues in country. (author)

  20. Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector's climatic suitability and virus' temperature requirements.

    Science.gov (United States)

    Fischer, Dominik; Thomas, Stephanie M; Suk, Jonathan E; Sudre, Bertrand; Hess, Andrea; Tjaden, Nils B; Beierkuhnlein, Carl; Semenza, Jan C

    2013-11-12

    Chikungunya was, from the European perspective, considered to be a travel-related tropical mosquito-borne disease prior to the first European outbreak in Northern Italy in 2007. This was followed by cases of autochthonous transmission reported in South-eastern France in 2010. Both events occurred after the introduction, establishment and expansion of the Chikungunya-competent and highly invasive disease vector Aedes albopictus (Asian tiger mosquito) in Europe. In order to assess whether these outbreaks are indicative of the beginning of a trend or one-off events, there is a need to further examine the factors driving the potential transmission of Chikungunya in Europe. The climatic suitability, both now and in the future, is an essential starting point for such an analysis. The climatic suitability for Chikungunya outbreaks was determined by using bioclimatic factors that influence, both vector and, pathogen. Climatic suitability for the European distribution of the vector Aedes albopictus was based upon previous correlative environmental niche models. Climatic risk classes were derived by combining climatic suitability for the vector with known temperature requirements for pathogen transmission, obtained from outbreak regions. In addition, the longest potential intra-annual season for Chikungunya transmission was estimated for regions with expected vector occurrences.In order to analyse spatio-temporal trends for risk exposure and season of transmission in Europe, climate change impacts are projected for three time-frames (2011-2040, 2041-2070 and 2071-2100) and two climate scenarios (A1B and B1) from the Intergovernmental Panel on Climate Change (IPCC). These climatic projections are based on regional climate model COSMO-CLM, which builds on the global model ECHAM5. European areas with current and future climatic suitability of Chikungunya transmission are identified. An increase in risk is projected for Western Europe (e.g. France and Benelux-States) in the

  1. Projection of future climate changes

    International Nuclear Information System (INIS)

    Boucher, Olivier; Dufresne, Jean-Louis; Vial, Jessica; Brun, Eric; Cattiaux, Julien; Chauvin, Fabrice; Salas y Melia, David; Voldoire, Aurore; Bopp, Laurent; Braconnot, Pascale; Ciais, Philippe; Yiou, Pascal; Guilyardi, Eric; Mignot, Juliette; Guivarch, Celine

    2015-01-01

    Climate models provide the opportunity to anticipate how the climate system may change due to anthropogenic activities during the 21. century. Studies are based on numerical simulations that explore the evolution of the mean climate and its variability according to different socio-economic scenarios. We present a selection of results from phase 5 of the Climate model intercomparison project (CMIP5) with an illustrative focus on the two French models that participated to this exercise. We describe the effects of human perturbations upon surface temperature, precipitation, the cryo-sphere, but also extreme weather events and the carbon cycle. Results show a number of robust features, on the amplitude and geographical patterns of the expected changes and on the processes at play in these changes. They also show the limitations of such a prospective exercise and persistent uncertainties on some key aspects. (authors)

  2. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  3. Uncertainty in Simulating Wheat Yields Under Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O' Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

    2013-09-01

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

  4. Climate change impacts and adaptation : a Canadian perspective

    International Nuclear Information System (INIS)

    Lemmen, D.S.; Warren, F.J.

    2004-01-01

    This book summarizes the research that has been conducted in Canada over the past five years on the issue of climate change impacts on key sectors such as water resources, agriculture, forestry, fisheries, coastal zones, transportation, and human health and well-being. The book refers to the growing evidence that climate change is occurring. The Intergovernmental Panel on Climate Change (IPCC) believes that these changes have already contributed to increases in annual precipitation, cloud cover and extreme temperatures over the last 50 years. It suggests that it in order to develop an effective strategy for adaptation, it is necessary to understand the vulnerability of each sector to climate change in terms of the nature of climate change, the climatic sensitivity of the region being considered, and the capacity to adapt to the changes. Adaptation will require a reduction in greenhouse gas emissions in order to lower the rate of climate change. Problems associated with water resources include water quality issues that relate to water shortages from droughts, or excesses from floods. The impacts of climate change on agriculture will vary depending on precipitation changes, soil conditions, and land use. Some studies have suggested that higher temperatures would benefit the forestry sector by improving the growth rate of trees, but the increase in the frequency and severity of moisture stress and forest disturbances would create other problems. Adaptations in the fisheries sector may have implications for the water resources, transportation, tourism and human health sectors. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The areas that seem most vulnerable to climate change in the transportation sector include northern ice roads, Great Lakes shipping, coastal infrastructure threatened by sea-level rise, and infrastructure located on permafrost

  5. Possible changes in climate constraints and consequences on tree growth

    International Nuclear Information System (INIS)

    Breda, Nathalie; Granier, Andre; Aussenac, Gilbert

    2000-01-01

    The probable consequences of changes in the major climate variables (rainfall, temperature, potential evapotranspiration) on growth and die back of forest trees are analysed for the range of variations forecasted by global climate change models. The sensitivity of phenology (temperature effects) and levels of water constraints during the growing season (change in rainfall and potential evapotranspiration) are developed. On the basis of the relations established by a retrospective dendro-climatological approach between radial increment and climate, the consequences of climate variations on the radial increment of beech and on oak mortality are discussed. (authors)

  6. The origin of climate changes.

    Science.gov (United States)

    Delecluse, P

    2008-08-01

    Investigation on climate change is coordinated by the Intergovernmental Panel on Climate Change (IPCC), which has the delicate task of collecting recent knowledge on climate change and the related impacts of the observed changes, and then developing a consensus statement from these findings. The IPCC's last review, published at the end of 2007, summarised major findings on the present climate situation. The observations show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. Numerical modelling combined with statistical analysis has shown that this warming trend is very likely the signature of increasing emissions of greenhouse gases linked with human activities. Given the continuing social and economic development around the world, the IPCC emission scenarios forecast an increasing greenhouse effect, at least until 2050 according to the most optimistic models. The model ensemble predicts a rising temperature that will reach dangerous levels for the biosphere and ecosystems within this century. Hydrological systems and the potential significant impacts of these systems on the environment are also discussed. Facing this challenging future, societies must take measures to reduce emissions and work on adapting to an inexorably changing environment. Present knowledge is sufficientto start taking action, but a stronger foundation is needed to ensure that pertinent long-term choices are made that will meet the demands of an interactive and rapidly evolving world.

  7. Tributaries affect the thermal response of lakes to climate change

    Science.gov (United States)

    Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien

    2018-01-01

    Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  8. Tributaries affect the thermal response of lakes to climate change

    Directory of Open Access Journals (Sweden)

    L. Råman Vinnå

    2018-01-01

    Full Text Available Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC, lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  9. Does the weather influence public opinion about climate change?

    Science.gov (United States)

    Donner, S. D.; McDaniel, J.

    2010-12-01

    Public opinion in North America about the science of anthropogenic climate change and the motivation for policy action has been variable over the past twenty years. The trends in public opinion over time have been attributed the general lack of pressing public concern about climate change to a range of political, economic and psychological factors. One driving force behind the variability in polling data from year to year may be the weather itself. The difference between what we “expect” - the climate - and what we “get” - the weather - can be a major source of confusion and obfuscation in the public discourse about climate change. For example, reaction to moderate global temperatures in 2007 and 2008 may have helped prompt the spread of a “global cooling” meme in the public and the news media. At the same time, a decrease in the belief in the science of climate change and the need for action has been noted in opinion polls. This study analyzes the relationship between public opinion about climate change and the weather in the U.S. since the mid-1980s using historical polling data from several major organizations (e.g. Gallup, Pew, Harris Interactive, ABC News), historical monthly air temperature (NCDC) and a survey of opinion articles from major U.S. newspapers (Washington Post, New York Times, Wall Street Journal, Houston Chronicle, USA Today). Seasonal and annual monthly temperature anomalies for the northeastern U.S and the continental U.S are compared with available national opinion data for three general categories of questions: i) Is the climate warming?, ii) Is the observed warming due to human activity?, and iii) Are you concerned about climate change? The variability in temperature and public opinion over time is also compared with the variability in the fraction of opinion articles in the newspapers (n ~ 7000) which express general agreement or disagreement with IPCC Summary for Policymakers consensus statements on climate change (“most of

  10. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R

    2010-05-04

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.

  11. Forest ecotone response to climate change: sensitivity to temperature response functional forms

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. [National Council for Air and Stream Improvement, Naperville, IL (United States)

    2000-10-01

    Past simulation studies have been in general agreement that climatic change could have adverse effects on forests, including geographic range shrinkages, conversion to grassland, and catastrophic forest decline or dieback. Some other recent studies, however, concluded that this agreement is generally based on parabolic temperature response rather than functional responses or data, and may therefore exaggerate dieback effects. This paper proposes a new model of temperature response that is based on a trade-off between cold tolerance and growth rate. In this model, the growth rate increases at first, and then levels off with increasing growing degree-days. Species from more southern regions have a higher minimum temperature and a faster maximum height growth rate. It is argued that faster growth rates of southern types lead to their competitive superiority in warmer environments and that such temperature response should produce less dieback and slower rates of change than the more common parabolic response model. Theoretical justification of this model is provided, followed by application of the model to a simulated ecotone under a warming scenario. Results of the study based on the proposed asymptotic model showed no dieback and only a gradual ecotone movement north, suggesting that ecotone shifts will, in fact, take many hundreds to thousands of years, with the result that species will not face the risk of extinction. 56 refs., 1 tab., 8 figs.

  12. Fisheries: climate change impacts and adaptation

    International Nuclear Information System (INIS)

    2003-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on fisheries focuses on the impact of climate change on Canada's marine and freshwater fisheries, and the role of adaptation in reducing the vulnerability of the sector. Canadian fisheries encompass the Atlantic, Pacific and Arctic oceans as well as freshwater systems. Fish health, productivity and distribution is strongly influenced by climatic factors such as air and water temperature, precipitation and wind. Most fish species have a distinct set of environmental conditions for optimal growth and survival. If the conditions change in response to changing climate, the fish may be affected. Some of the impacts include reduced growth, increased competition, a shift in species distribution, greater susceptibility to disease, and altered ecosystem function. Studies show that in some areas, fisheries may already be experiencing the effect of climate change. Recommendations were suggested on how to deal with the impacts associated with climate change in sensitive environments. It was noted that actions taken in the fisheries sector will have implications for the water resources, transportation, tourism and human health sectors. 103 refs., 2 tabs., 6 figs

  13. Seasonal Changes of Precipitation and Temperature of Mountainous Watersheds in Future Periods with Approach of Fifth Report of Intergovernmental Panel on Climate Change (Case study: Kashafrood Watershed Basin

    Directory of Open Access Journals (Sweden)

    Amirhosein Aghakhani Afshar

    2017-01-01

    Full Text Available Introduction: Hydrology cycle of river basins and water resources availability in arid and semi-arid regions are highly affected by climate changes, so that recently the increase of temperature due to the increase of greenhouse gases have led to anomaly in the Earth’ climate system. At present, General Circulation Models (GCMs are the most frequently used models for projection of different climatic change scenarios. Up to now, IPCC has released four different versions of GCM models, including First Assessment Report models (FAR in 1990, Second Assessment Report models (SAR in 1996, Third Assessment Report models (TAR in 2001 and Fourth Assessment Report models (AR4 in 2007. In 2011, new generation of GCM, known as phase five of the Coupled Model Intercomparison Project (CMIP5 released which it has been actively participated in the preparation of Intergovernmental Panel on Climate Change (IPCC fifth Assessment report (AR5. A set of experiments such as simulations of 20th and projections of 21st century climate under the new emission scenarios (so called Representative Concentration Pathways (RCPs are included in CMIP5. Iran is a country that located in arid and semi-arid climates mostly characterized by low rainfall and high temperature. Anomalies in precipitation and temperature in Iran play a significant role in this agricultural and quickly developing country. Growing population, extensive urbanization and rapid economic development shows that Iran faces intensive challenges in available water resources at present and especially in the future. The first purpose of this study is to analyze the seasonal trends of future climate components over the Kashafrood Watershed Basin (KWB located in the northeastern part of Iran and in the Khorsan-e Razavi province using fifth report of Intergovernmental Panel on climate change (IPCC under new emission scenarios with Mann-Kendall (MK test. Mann-Kendall is one of the most commonly used nonparametric

  14. Mangrove ecosystems under climate change

    Science.gov (United States)

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  15. Modelling the regional effects of climate change on air quality

    International Nuclear Information System (INIS)

    Giorgi, F.; Meleux, F.

    2007-01-01

    The life cycle of pollutants is affected by chemical as well as meteorological factors, such as wind, temperature, precipitation, solar radiation. Therefore, climatic changes induced by anthropogenic emissions of greenhouse gases may be expected to have significant effects on air quality. Because of the spatial variability of the pollutant emissions and climate-change signals, these effects are particularly relevant at the regional to local scales. This paper first briefly reviews modelling tools and methodologies used to study regional climate-change impacts on air quality. Patterns of regional precipitation, temperature, and sea-level changes emerging from the latest set of general circulation model projections are then discussed. Finally, the specific case of climate-change effects on summer ozone concentrations over Europe is presented to illustrate the potential impacts of climate change on pollutant amounts. It is concluded that climate change is an important factor that needs to be taken into account when designing future pollution-reduction policies. (authors)

  16. Arctic adaptation and climate change

    International Nuclear Information System (INIS)

    Agnew, T.A.; Headley, A.

    1994-01-01

    The amplification of climatic warming in the Arctic and the sensitivity of physical, biological, and human systems to changes in climate make the Arctic particularly vulnerable to climate changes. Large areas of the Arctic permafrost and sea ice are expected to disappear under climate warming and these changes will have considerable impacts on the natural and built environment of the north. A review is presented of some recent studies on what these impacts could be for the permafrost and sea ice environment and to identify linkages with socioeconomic activities. Terrestrial adaptation to climate change will include increases in ground temperature; melting of permafrost with consequences such as frost heave, mudslides, and substantial settlement; rotting of peat contained in permafrost areas, with subsequent emission of CO 2 ; increased risk of forest fire; and flooding of low-lying areas. With regard to the manmade environment, structures that will be affected include buildings, pipelines, highways, airports, mines, and railways. In marine areas, climate change will increase the ice-free period for marine transport operations and thus provide some benefit to the offshore petroleum industry. This benefit will be offset by increased wave height and period, and increased coastal erosion. The offshore industry needs to be particularly concerned with these impacts since the expected design life of industry facilities (30-60 y) is of the same order as the time frame for possible climatic changes. 18 refs., 5 figs

  17. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Science.gov (United States)

    María Santiago, José; Muñoz-Mas, Rafael; Solana-Gutiérrez, Joaquín; García de Jalón, Diego; Alonso, Carlos; Martínez-Capel, Francisco; Pórtoles, Javier; Monjo, Robert; Ribalaygua, Jaime

    2017-08-01

    Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. -49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  18. Climate change hotspots in the CMIP5 global climate model ensemble.

    Science.gov (United States)

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  19. Changes in Indices of Daily Temperature and Precipitation Extremes ...

    African Journals Online (AJOL)

    It's a known fact that climate change will bring about increases in the occurrence of weather extreme events such as elevated temperature, drought, and floods; most especially in areas classified as hotspots to climate change – such as northwest Nigeria. This study investigates trends in extreme temperature and ...

  20. Refresher Course on Mountain Hydrology and Climate Change

    Indian Academy of Sciences (India)

    IAS Admin

    2016-01-29

    Jan 29, 2016 ... The programme focuses on hydrology of mountains, which provide water around 40 % of the world population. Changes in temperature and precipitation have in recent years led to the retreat of glaciers in mountains. Climatic changes do not only affect glaciers or the nival zone; a change in climatic ...

  1. Obama states obligation to act on climate change

    Science.gov (United States)

    Showstack, Randy

    2012-11-01

    Obama states obligation to act on climate change Noting increased global temperatures, Arctic ice melt, and severe weather events, President Barack Obama said that climate change is real and called for a conversation across the country to determine what can be done about it.

  2. Climate change and climate policy; Klimaendringer og klimapolitikk

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done

  3. Climate Extreme Events over Northern Eurasia in Changing Climate

    Science.gov (United States)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2014-12-01

    During the period of widespread instrumental observations in Northern Eurasia, the annual surface air temperature has increased by 1.5°C. Close to the north in the Arctic Ocean, the late summer sea ice extent has decreased by 40% providing a near-infinite source of water vapor for the dry Arctic atmosphere in the early cold season months. The contemporary sea ice changes are especially visible in the Eastern Hemisphere All these factors affect the change extreme events. Daily and sub-daily data of 940 stations to analyze variations in the space time distribution of extreme temperatures, precipitation, and wind over Russia were used. Changing in number of days with thaw over Russia was described. The total seasonal numbers of days, when daily surface air temperatures (wind, precipitation) were found to be above (below) selected thresholds, were used as indices of climate extremes. Changing in difference between maximum and minimum temperature (DTR) may produce a variety of effects on biological systems. All values falling within the intervals ranged from the lowest percentile to the 5th percentile and from the 95th percentile to the highest percentile for the time period of interest were considered as daily extremes. The number of days, N, when daily temperatures (wind, precipitation, DTR) were within the above mentioned intervals, was determined for the seasons of each year. Linear trends in the number of days were calculated for each station and for quasi-homogeneous climatic regions. Regional analysis of extreme events was carried out using quasi-homogeneous climatic regions. Maps (climatology, trends) are presented mostly for visualization purposes. Differences in regional characteristics of extreme events are accounted for over a large extent of the Russian territory and variety of its physical and geographical conditions. The number of days with maximum temperatures higher than the 95% percentile has increased in most of Russia and decreased in Siberia in

  4. Risk of severe climate change impact on the terrestrial biosphere

    International Nuclear Information System (INIS)

    Heyder, Ursula; Schaphoff, Sibyll; Gerten, Dieter; Lucht, Wolfgang

    2011-01-01

    The functioning of many ecosystems and their associated resilience could become severely compromised by climate change over the 21st century. We present a global risk analysis of terrestrial ecosystem changes based on an aggregate metric of joint changes in macroscopic ecosystem features including vegetation structure as well as carbon and water fluxes and stores. We apply this metric to global ecosystem simulations with a dynamic global vegetation model (LPJmL) under 58 WCRP CMIP3 climate change projections. Given the current knowledge of ecosystem processes and projected climate change patterns, we find that severe ecosystem changes cannot be excluded on any continent. They are likely to occur (in > 90% of the climate projections) in the boreal-temperate ecotone where heat and drought stress might lead to large-scale forest die-back, along boreal and mountainous tree lines where the temperature limitation will be alleviated, and in water-limited ecosystems where elevated atmospheric CO 2 concentration will lead to increased water use efficiency of photosynthesis. Considerable ecosystem changes can be expected above 3 K local temperature change in cold and tropical climates and above 4 K in the temperate zone. Sensitivity to temperature change increases with decreasing precipitation in tropical and temperate ecosystems. In summary, there is a risk of substantial restructuring of the global land biosphere on current trajectories of climate change.

  5. Risk of severe climate change impact on the terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Heyder, Ursula; Schaphoff, Sibyll; Gerten, Dieter; Lucht, Wolfgang, E-mail: Ursula.Heyder@pik-potsdam.de, E-mail: Sibyll.Schaphoff@pik-potsdam.de [Potsdam Institute for Climate Impact Research, Telegraphenberg A62, 14473 Potsdam (Germany)

    2011-07-15

    The functioning of many ecosystems and their associated resilience could become severely compromised by climate change over the 21st century. We present a global risk analysis of terrestrial ecosystem changes based on an aggregate metric of joint changes in macroscopic ecosystem features including vegetation structure as well as carbon and water fluxes and stores. We apply this metric to global ecosystem simulations with a dynamic global vegetation model (LPJmL) under 58 WCRP CMIP3 climate change projections. Given the current knowledge of ecosystem processes and projected climate change patterns, we find that severe ecosystem changes cannot be excluded on any continent. They are likely to occur (in > 90% of the climate projections) in the boreal-temperate ecotone where heat and drought stress might lead to large-scale forest die-back, along boreal and mountainous tree lines where the temperature limitation will be alleviated, and in water-limited ecosystems where elevated atmospheric CO{sub 2} concentration will lead to increased water use efficiency of photosynthesis. Considerable ecosystem changes can be expected above 3 K local temperature change in cold and tropical climates and above 4 K in the temperate zone. Sensitivity to temperature change increases with decreasing precipitation in tropical and temperate ecosystems. In summary, there is a risk of substantial restructuring of the global land biosphere on current trajectories of climate change.

  6. Climate Change Decouples Drought from Early Wine Grape Harvests in France

    Science.gov (United States)

    Cook, Benjamin I.; Wolkovich, Elizabeth M.

    2016-01-01

    Across the world, wine grape phenology has advanced in recent decades, in step with climate-change-induced trends in temperature - the main driver of fruit maturation - and drought. Fully understanding how climate change contributes to changes in harvest dates, however, requires analysing wine grape phenology and its relationship to climate over a longer-term context, including data predating anthropogenic interference in the climate system. Here, we investigate the climatic controls of wine grape harvest dates from 1600-2007 in France and Switzerland using historical harvest and climate data. Early harvests occur with warmer temperatures (minus 6 days per degree Centigrade) and are delayed by wet conditions (plus 0.07 days per millimeter; plus 1.68 days per PDSI (Palmer drought severity index)) during spring and summer. In recent decades (1981-2007), however, the relationship between harvest timing and drought has broken down. Historically, high summer temperatures in Western Europe, which would hasten fruit maturation, required drought conditions to generate extreme heat. The relationship between drought and temperature in this region, however, has weakened in recent decades and enhanced warming from anthropogenic greenhouse gases can generate the high temperatures needed for early harvests without drought. Our results suggest that climate change has fundamentally altered the climatic drivers of early wine grape harvests in France, with possible ramifications for viticulture management and wine quality.

  7. Hydrologic refugia, plants, and climate change.

    Science.gov (United States)

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  8. Climate Change In Indonesia (Case Study : Medan, Palembang, Semarang)

    Science.gov (United States)

    Suryadi, Yadi; Sugianto, Denny Nugroho; Hadiyanto

    2018-02-01

    Indonesia's maritime continent is one of the most vulnerable regions regarding to climate change impacts. One of the vulnerable areas affected are the urban areas, because they are home to almost half of Indonesia's population where they live and earn a living, so that environmental management efforts need to be done. To support such efforts, climate change analysis is required. The analysis was carried out in several big cities in Indonesia. The method used in the research was trend analysis of temperature, rainfall, shifts in rainfall patterns, and extreme climatic trend. The data of rainfall and temperature were obtained from Meteorology and Geophysics Agency (BMKG). The result shows that the air temperature and rainfall have a positive trend, except in Semarang City which having a negative rainfall trend. The result also shows heavy rainfall trends. These indicate that climate is changing in these three cities.

  9. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  10. Climate change and amphibians

    Science.gov (United States)

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  11. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  12. climate change: causes, effects and mitigation measures-a review

    African Journals Online (AJOL)

    BARTH EKWUEME

    Both natural and human causes of climate change including the earth's orbital changes, solar variations .... analysis supported by climate models have revealed that cloud ... clouds could actually exert a small cooling effect as temperature ...

  13. Climate change and water availability for vulnerable agriculture

    Science.gov (United States)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of

  14. Millennial-scale temperature change velocity in the continental northern Neotropics.

    Directory of Open Access Journals (Sweden)

    Alexander Correa-Metrio

    Full Text Available Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk

  15. Millennial-scale temperature change velocity in the continental northern Neotropics.

    Science.gov (United States)

    Correa-Metrio, Alexander; Bush, Mark; Lozano-García, Socorro; Sosa-Nájera, Susana

    2013-01-01

    Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical

  16. Identifying alternate pathways for climate change to impact inland recreational fishers

    Science.gov (United States)

    Hunt, Len M.; Fenichel, Eli P.; Fulton, David C.; Mendelsohn, Robert; Smith, Jordan W.; Tunney, Tyler D.; Lynch, Abigail J.; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Fisheries and human dimensions literature suggests that climate change influences inland recreational fishers in North America through three major pathways. The most widely recognized pathway suggests that climate change impacts habitat and fish populations (e.g., water temperature impacting fish survival) and cascades to impact fishers. Climate change also impacts recreational fishers by influencing environmental conditions that directly affect fishers (e.g., increased temperatures in northern climates resulting in extended open water fishing seasons and increased fishing effort). The final pathway occurs from climate change mitigation and adaptation efforts (e.g., refined energy policies result in higher fuel costs, making distant trips more expensive). To address limitations of past research (e.g., assessing climate change impacts for only one pathway at a time and not accounting for climate variability, extreme weather events, or heterogeneity among fishers), we encourage researchers to refocus their efforts to understand and document climate change impacts to inland fishers.

  17. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  18. Agriculture and climate change

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1992-01-01

    How will increases in levels of CO 2 and changes in temperature affect food production? A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO 2 but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall? That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO 2 from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO 2 by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops

  19. Contributions of developed and developing countries to global climate forcing and surface temperature change

    International Nuclear Information System (INIS)

    Ward, D S; Mahowald, N M

    2014-01-01

    Understanding the relative contributions of individual countries to global climate change for different time periods is essential for mitigation strategies that seek to hold nations accountable for their historical emissions. Previous assessments of this kind have compared countries by their greenhouse gas emissions, but have yet to consider the full spectrum of the short-lived gases and aerosols. In this study, we use the radiative forcing of anthropogenic emissions of long-lived greenhouse gases, ozone precursors, aerosols, and from albedo changes from land cover change together with a simple climate model to evaluate country contributions to climate change. We assess the historical contribution of each country to global surface temperature change from anthropogenic forcing ( Δ T s ), future Δ T s through year 2100 given two different emissions scenarios, and the Δ T s that each country has committed to from past activities between 1850 and 2010 (committed Δ T s ). By including forcings in addition to the long-lived greenhouse gases the contribution of developed countries, particularly the United States, to Δ T s from 1850 to 2010 (58%) is increased compared to an assessment of CO 2 -equivalent emissions for the same time period (52%). Contributions to committed Δ T s evaluated at year 2100, dominated by long-lived greenhouse gas forcing, are more evenly split between developed and developing countries (55% and 45%, respectively). The portion of anthropogenic Δ T s attributable to developing countries is increasing, led by emissions from China and India, and we estimate that this will surpass the contribution from developed countries around year 2030. (paper)

  20. Seed dormancy and germination changes of snowbed species under climate warming: the role of pre- and post-dispersal temperatures

    Science.gov (United States)

    Bernareggi, Giulietta; Carbognani, Michele; Mondoni, Andrea; Petraglia, Alessandro

    2016-01-01

    Background and Aims Climate warming has major impacts on seed germination of several alpine species, hence on their regeneration capacity. Most studies have investigated the effects of warming after seed dispersal, and little is known about the effects a warmer parental environment may have on germination and dormancy of the seed progeny. Nevertheless, temperatures during seed development and maturation could alter the state of dormancy, affecting the timing of emergence and seedling survival. Here, the interplay between pre- and post-dispersal temperatures driving seed dormancy release and germination requirements of alpine plants were investigated. Methods Three plant species inhabiting alpine snowbeds were exposed to an artificial warming treatment (i.e. +1·5 K) and to natural conditions in the field. Seeds produced were exposed to six different periods of cold stratification (0, 2, 4, 8, 12 and 20 weeks at 0 °C), followed by four incubation temperatures (5, 10, 15 and 20 °C) for germination testing. Key Results A warmer parental environment produced either no or a significant increase in germination, depending on the duration of cold stratification, incubation temperatures and their interaction. In contrast, the speed of germination was less sensitive to changes in the parental environment. Moreover, the effects of warming appeared to be linked to the level of (physiological) seed dormancy, with deeper dormant species showing major changes in response to incubation temperatures and less dormant species in response to cold stratification periods. Conclusions Plants developed under warmer climates will produce seeds with changed germination responses to temperature and/or cold stratification, but the extent of these changes across species could be driven by seed dormancy traits. Transgenerational plastic adjustments of seed germination and dormancy shown here may result from increased seed viability, reduced primary and secondary dormancy state, or both, and

  1. Undocumented migration in response to climate change

    Science.gov (United States)

    Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.

    2016-01-01

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification. PMID:27570840

  2. Undocumented migration in response to climate change.

    Science.gov (United States)

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986-1999. We employ two measures of climate change, the warm spell duration index ( WSDI ) and the precipitation during extremely wet days ( R99PTOT ). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.

  3. Appropriate modelling of climate change impacts on river flooding

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Global climate change is likely to increase temperatures, change precipitation patterns and probably raise the frequency of extreme events. Impacts of climate change on river flooding may be considerable and may cause enormous economical, social and environmental damage and even loss of lives. This

  4. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    Science.gov (United States)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  5. Bromus response to climate and projected changes with climate change [Chapter 9

    Science.gov (United States)

    Bethany A. Bradley; Caroline A. Curtis; Jeanne C. Chambers

    2016-01-01

    A prominent goal of invasive plant management is to prevent or reduce the spread of invasive species into uninvaded landscapes and regions. Monitoring and control efforts often rely on scientific knowledge of suitable habitat for the invasive species. However, rising temperatures and altered precipitation projected with climate change are likely to shift the...

  6. Climatic change in Germany. Development, consequences, risks and perspectives

    International Nuclear Information System (INIS)

    Brasseur, Guy; Jacob, Daniela; Schuck-Zoeller, Susanne

    2017-01-01

    The book on the climatic change in Germany includes contributions to the following issues: global climate projections and regional projections in Germany and Europe: observation of the climatic change in Central Europe, regional climate modeling, limits and challenges of the regional climate modeling; climatic change in Germany - regional features and extremes: temperature and heat waves, precipitation, wind and cyclones, sea-level increase, tides, storm floods and sea state, floods, definition uncertainties, draughts, forest fires, natural risks; consequences of the climatic change in Germany: air quality, health, biodiversity, water resources, biochemical cycles, agriculture, forestry, soils, personal and commercial transport, cities and urban regions, tourism, infrastructure, energy and water supplies, cost of the climatic change and economic consequences; overall risks and uncertainties: assessment of vulnerabilities, literature review, climatic change as risk enhancement in complex systems, overall risks and uncertainties, decision making under uncertainties in complex systems; integrated strategies for the adaptation to the climatic change: the climate resilient society - transformations and system changes, adaptation to the climatic change as new political field, options for adaptation strategies.

  7. Challenges of climate change: an Arctic perspective.

    Science.gov (United States)

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  8. Downscaling the climate change for oceans around Australia

    Directory of Open Access Journals (Sweden)

    M. A. Chamberlain

    2012-09-01

    Full Text Available At present, global climate models used to project changes in climate poorly resolve mesoscale ocean features such as boundary currents and eddies. These missing features may be important to realistically project the marine impacts of climate change. Here we present a framework for dynamically downscaling coarse climate change projections utilising a near-global ocean model that resolves these features in the Australasian region, with coarser resolution elsewhere.

    A time-slice projection for a 2060s ocean was obtained by adding climate change anomalies to initial conditions and surface fluxes of a near-global eddy-resolving ocean model. Climate change anomalies are derived from the differences between present and projected climates from a coarse global climate model. These anomalies are added to observed fields, thereby reducing the effect of model bias from the climate model.

    The downscaling model used here is ocean-only and does not include the effects that changes in the ocean state will have on the atmosphere and air–sea fluxes. We use restoring of the sea surface temperature and salinity to approximate real-ocean feedback on heat flux and to keep the salinity stable. Extra experiments with different feedback parameterisations are run to test the sensitivity of the projection. Consistent spatial differences emerge in sea surface temperature, salinity, stratification and transport between the downscaled projections and those of the climate model. Also, the spatial differences become established rapidly (< 3 yr, indicating the importance of mesoscale resolution. However, the differences in the magnitude of the difference between experiments show that feedback of the ocean onto the air–sea fluxes is still important in determining the state of the ocean in these projections.

    Until such a time when it is feasible to regularly run a global climate model with eddy resolution, our framework for ocean climate change

  9. Assessment of Climate Change Effects on Shahcheraghi Reservoir Inflow

    Directory of Open Access Journals (Sweden)

    M. E. Banihabib

    2016-10-01

    Full Text Available Introduction: Forecasting the inflow to the reservoir is important issues due to the limited water resources and the importance of optimal utilization of reservoirs to meet the need for drinking, industry and agriculture in future time periods. In the meantime, ignoring the effects of climate change on meteorological and hydrological parameters and water resources in long-term planning of water resources cause inaccuracy. It is essential to assess the impact of climate change on reservoir operation in arid regions. In this research, climate change impact on hydrological and meteorological variables of the Shahcheragh dam basin, in Semnan Province, was studied using an integrated model of climate change assessment. Materials and Methods: The case study area of this study was located in Damghan Township, Semnan Province, Iran. It is an arid zone. The case study area is a part of the Iran Central Desert. The basin is in 12 km north of the Damghan City and between 53° E to 54° 30’ E longitude and 36° N to 36° 30’ N latitude. The area of the basin is 1,373 km2 with average annual inflow around 17.9 MCM. Total actual evaporation and average annual rainfall are 1,986 mm and 137 mm, respectively. This case study is chosen to test proposed framework for assessment of climate change impact hydrological and meteorological variables of the basin. In the proposed model, LARS-WG and ANN sub-models (7 sub models with a combination of different inputs such as temperature, precipitation and also solar radiation were used for downscaling daily outputs of CGCM3 model under 3 emission scenarios, A2, B1 and A1B and reservoir inflow simulation, respectively. LARS-WG was tested in 99% confidence level before using it as downscaling model and feed-forward neural network was used as raifall-runoff model. Moreover, the base period data (BPD, 1990-2008, were used for calibration. Finally, reservoir inflow was simulated for future period data (FPD of 2015-2044 and

  10. Western forests, fire risk, and climate change.

    Science.gov (United States)

    Valerie. Rapp

    2004-01-01

    Climate warming may first show up in forests as increased growth, which occurs as warmer temperatures, increased carbon dioxide, and more precipitation encourage higher rates of photosynthesis. The second way that climate change may show up in forests is through changes in disturbance regimes—the long-term patterns of fire, drought, insects, and diseases that are basic...

  11. Western forest, fire risk, and climate change

    Science.gov (United States)

    Valerie Rapp

    2004-01-01

    Climate warming may first show up in forests as increased growth, which occurs as warmer temperatures, increased carbon dioxide, and more precipitation encourage higher rates of photosynthesis. The second way that climate change may show up in forests is through changes in disturbance regimes—the long-term patterns of fire, drought, insects, and diseases that are basic...

  12. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe

    Directory of Open Access Journals (Sweden)

    A. P. van Ulden

    2006-01-01

    Full Text Available The quality of global sea level pressure patterns has been assessed for simulations by 23 coupled climate models. Most models showed high pattern correlations. With respect to the explained spatial variance, many models showed serious large-scale deficiencies, especially at mid-latitudes. Five models performed well at all latitudes and for each month of the year. Three models had a reasonable skill. We selected the five models with the best pressure patterns for a more detailed assessment of their simulations of the climate in Central Europe. We analysed observations and simulations of monthly mean geostrophic flow indices and of monthly mean temperature and precipitation. We used three geostrophic flow indices: the west component and south component of the geostrophic wind at the surface and the geostrophic vorticity. We found that circulation biases were important, and affected precipitation in particular. Apart from these circulation biases, the models showed other biases in temperature and precipitation, which were for some models larger than the circulation induced biases. For the 21st century the five models simulated quite different changes in circulation, precipitation and temperature. Precipitation changes appear to be primarily caused by circulation changes. Since the models show widely different circulation changes, especially in late summer, precipitation changes vary widely between the models as well. Some models simulate severe drying in late summer, while one model simulates significant precipitation increases in late summer. With respect to the mean temperature the circulation changes were important, but not dominant. However, changes in the distribution of monthly mean temperatures, do show large indirect influences of circulation changes. Especially in late summer, two models simulate very strong warming of warm months, which can be attributed to severe summer drying in the simulations by these models. The models differ also

  13. Weak Hydrological Sensitivity to Temperature Change over Land, Independent of Climate Forcing

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Forster, P. M.; Hodnebrog, O.; Andrews, T.; Boucher, O.; Faluvegi, G.; Flaeschner, D.; Kasoar, M.; Kharin, V.; hide

    2018-01-01

    We present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from ten climate models, we show how modeled global mean precipitation increases by 2-3% per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature-driven (slow) ocean HS of 3-5%/K, while the slow land HS is only 0-2%/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. We identify a particular need for model investigations and observational constraints on convective precipitation in the Arctic, and large-scale precipitation around the Equator.

  14. The Climate Web Library - All the reference reports on climate changes

    International Nuclear Information System (INIS)

    Wasse, Gwenael

    2012-01-01

    This document gathers bibliographical information (title and original title, theme, authors, publication date, link to browse the document, and abstract) of documents addressing climatic change (generalities and mechanisms, temperatures, dry periods and rainfalls, snow and ice, oceans, extreme events, sources and sinks of greenhouse gases and feedbacks, breaking points and hazardous changes), impacts and consequences of climate change (pollution and health, soft water, ecosystems, food, agriculture and forestry, coasts and low altitude areas, populations and societies, economy), emissions of greenhouse gases (present emissions, evolution scenarios)

  15. Future changes of temperature and heat waves in Ontario, Canada

    Science.gov (United States)

    Li, Zhong; Huang, Guohe; Huang, Wendy; Lin, Qianguo; Liao, Renfei; Fan, Yurui

    2018-05-01

    Apparent changes in the temperature patterns in recent years brought many challenges to the province of Ontario, Canada. As the need for adapting to climate change challenges increases, the development of reliable climate projections becomes a crucial task. In this study, a regional climate modeling system, Providing Regional Climates for Impacts Studies (PRECIS), is used to simulate the temperature patterns in Ontario. Three PRECIS runs with a resolution of 25 km × 25 km are carried out to simulate the present (1961-1990) temperature variations. There is a good match between the simulated and observed data, which validates the performance of PRECIS in reproducing temperature changes in Ontario. Future changes of daily maximum, mean, and minimum temperatures during the period 2071-2100 are then projected under the IPCC SRES A2 and B2 emission scenarios using PRECIS. Spatial variations of annual mean temperature, mean diurnal range, and temperature seasonality are generated. Furthermore, heat waves defined based on the exceedance of local climatology and their temporal and spatial characteristics are analyzed. The results indicate that the highest temperature and the most intensive heat waves are most likely to occur at the Toronto-Windsor corridor in Southern Ontario. The Northern Ontario, in spite of the relatively low projected temperature, would be under the risk of long-lasting heat waves, and thus needs effective measures to enhance its climate resilience in the future. This study can assist the decision makers in better understanding the future temperature changes in Ontario and provide decision support for mitigating heat-related loss.

  16. Climate change impacts on projections of excess mortality at ...

    Science.gov (United States)

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observeddata. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results variedby region . Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1 .6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.628.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. In this study we evaluate changes in ozone related mortality due to changes in biogenic f

  17. Impacts of Land Cover Changes on Climate over China

    Science.gov (United States)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  18. Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin

    Science.gov (United States)

    Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve

    2013-01-01

    Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period

  19. Effects of city expansion on heat stress under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Daniel Argüeso

    Full Text Available We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009 and future (2040-2059 simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.

  20. Projected Temperature-Related Years of Life Lost From Stroke Due To Global Warming in a Temperate Climate City, Asia: Disease Burden Caused by Future Climate Change.

    Science.gov (United States)

    Li, Guoxing; Guo, Qun; Liu, Yang; Li, Yixue; Pan, Xiaochuan

    2018-04-01

    Global warming has attracted worldwide attention. Numerous studies have indicated that stroke is associated with temperature; however, few studies are available on the projections of the burden of stroke attributable to future climate change. We aimed to investigate the future trends of stroke years of life lost (YLL) associated with global warming. We collected death records to examine YLL in Tianjin, China, from 2006 to 2011. We fitted a standard time-series Poisson regression model after controlling for trends, day of the week, relative humidity, and air pollution. We estimated temperature-YLL associations with a distributed lag nonlinear model. These models were then applied to the local climate projections to estimate temperature-related YLL in the 2050s and 2070s. We projected temperature-related YLL from stroke in Tianjin under 19 global-scale climate models and 3 different greenhouse gas emission scenarios. The results showed a slight decrease in YLL with percent decreases of 0.85%, 0.97%, and 1.02% in the 2050s and 0.94%, 1.02%, and 0.91% in the 2070s for the 3 scenarios, respectively. The increases in heat-related annual YLL and the decreases in cold-related YLL under the high emission scenario were the strongest. The monthly analysis showed that the most significant increase occurred in the summer months, particularly in August, with percent changes >150% in the 2050s and up to 300% in the 2070s. Future changes in climate are likely to lead to an increase in heat-related YLL, and this increase will not be offset by adaptation under both medium emission and high emission scenarios. Health protections from hot weather will become increasingly necessary, and measures to reduce cold effects will also remain important. © 2018 American Heart Association, Inc.

  1. Climate change: challenges and opportunities for global health.

    Science.gov (United States)

    Patz, Jonathan A; Frumkin, Howard; Holloway, Tracey; Vimont, Daniel J; Haines, Andrew

    2014-10-15

    Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. To provide new US-based temperature projections from downscaled climate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. We searched PubMed and Google Scholar from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average ozone with air temperature data taken from the National Oceanic and Atmospheric Administration, National Climate Data Center. By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). High temperatures are also strongly associated with ozone exceedance days, for example, in Chicago, Illinois. The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; respiratory disorders, including those exacerbated by air pollution and aeroallergens, such as asthma; infectious diseases, including vectorborne diseases and waterborne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic cobenefits could be

  2. Agricultural Adaptations to Climate Changes in West Africa

    Science.gov (United States)

    Guan, K.; Sultan, B.; Lobell, D. B.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.

    2014-12-01

    Agricultural production in West Africa is highly vulnerable to climate variability and change and a fast growing demand for food adds yet another challenge. Assessing possible adaptation strategies of crop production in West Africa under climate change is thus critical for ensuring regional food security and improving human welfare. Our previous efforts have identified as the main features of climate change in West Africa a robust increase in temperature and a complex shift in the rainfall pattern (i.e. seasonality delay and total amount change). Unaddressed, these robust climate changes would reduce regional crop production by up to 20%. In the current work, we use two well-validated crop models (APSIM and SARRA-H) to comprehensively assess different crop adaptation options under future climate scenarios. Particularly, we assess adaptations in both the choice of crop types and management strategies. The expected outcome of this study is to provide West Africa with region-specific adaptation recommendations that take into account both climate variability and climate change.

  3. Impacts and adaptation for climate change in urban forests

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    Changes to urban trees as a result of climate change were reviewed in order to aid urban forest managers in the development of adaptive climate change strategies. Various climate change models have predicted that winter and spring temperatures will increase. Higher amounts of precipitation are also anticipated. Higher temperatures will results in evapotranspiration, which will cause soil moisture levels to decline. Climatologists have also suggested that very hot days, winter storms and high rainfall events will increase in frequency. In addition, higher levels of atmospheric carbon dioxide (CO{sub 2}) will affect photosynthesis, with associated impacts on urban tree growth. Higher temperatures and longer growing seasons will allow insect populations to build up to higher levels, and warmer and dryer summers are likely to bring longer fire seasons and more severe fires. Urban trees under stress from drought and higher temperatures will be increasingly vulnerable to existing urban stressors such as air pollution and soil compaction. However, the ecological services provided by trees will become more valuable under future climate change regimes, particularly for shading and space cooling, as well as soil aeration and stabilization and the uptake of storm water. It was suggested that future tree growth may be enhanced on sites with adequate water and nutrients, but will probably decline in areas that are already marginal. It was recommended that urban forest managers assess the present vulnerability of trees to climate-related events in order to prepare for future change. Managers should also assess their capacity to implement various strategies through municipal and provincial partnerships. It was observed that decisions taken now about forest management will play out over several decades. It was concluded that maintaining a flexible and resilient urban forest management system is the best defence, as specific climate change impacts cannot be predicted. 18 refs., 4

  4. Regional climate change for the Pacific Northwest

    International Nuclear Information System (INIS)

    McBean, G.A.; Thomas, G.

    1991-01-01

    The Pacific Northwest climate is dominated by topography and the Pacific Ocean; the forests have become adapted to the present climate. Within short distances there are large changes in precipitation and temperature, with resultant changes in ecosystems. As the atmospheric concentrations of greenhouse gases increase, global climate is expected to warm and precipitation to increase. Global climate model simulations show enhanced warming at high northern latitudes. For the Pacific Northwest, models show 2-6 degree C warming and increased precipitation in the winter for doubled atmospheric CO 2 concentration. However, the regional details of these models are presently not very reliable. The results and limitations of present global climate models are reviewed. The roles of the oceans, clouds, and other feedback mechanisms are described along with some of the possible impacts of climate change on forest resources. 24 refs., 2 figs., 1 tab

  5. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light

    Directory of Open Access Journals (Sweden)

    I. Marinov

    2010-12-01

    Full Text Available The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100 from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above which a nutrient change will affect small phytoplankton biomass more (less than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have

  6. Study on climate change in Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongxing

    2015-03-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  7. Study on climate change in Southwestern China

    International Nuclear Information System (INIS)

    Li, Zongxing

    2015-01-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  8. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  9. Anticipated water quality changes in response to climate change and potential consequences for inland fishes

    Science.gov (United States)

    Chen, Yushun; Todd, Andrew S.; Murphy, Margaret H.; Lomnicky, Gregg

    2016-01-01

    Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Changes anticipated with climate change in the future are likely to have a profound effect on inland aquatic ecosystems through diverse pathways, including changes in water quality. In this brief article, we present an initial discussion of several of the water quality responses that can be anticipated to occur within inland water bodies with climate change and how those changes are likely to impact fishes.

  10. 2009 Climate Change Research Strategy: Rocky Mountain Research Station

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    2010-01-01

    Climate change and shifting demographics influence the landscape and the social and economic systems of the Interior West. Climate change impacts are already evident, as seen in declining snowpacks, changes in runoff timing and intensity, increasing fire frequency and severity, increasing drought frequency and severity, and rising temperatures.

  11. Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s.

    Science.gov (United States)

    Hajat, Shakoor; Vardoulakis, Sotiris; Heaviside, Clare; Eggen, Bernd

    2014-07-01

    The most direct way in which climate change is expected to affect public health relates to changes in mortality rates associated with exposure to ambient temperature. Many countries worldwide experience annual heat-related and cold-related deaths associated with current weather patterns. Future changes in climate may alter such risks. Estimates of the likely future health impacts of such changes are needed to inform public health policy on climate change in the UK and elsewhere. Time-series regression analysis was used to characterise current temperature-mortality relationships by region and age group. These were then applied to the local climate and population projections to estimate temperature-related deaths for the UK by the 2020s, 2050s and 2080s. Greater variability in future temperatures as well as changes in mean levels was modelled. A significantly raised risk of heat-related and cold-related mortality was observed in all regions. The elderly were most at risk. In the absence of any adaptation of the population, heat-related deaths would be expected to rise by around 257% by the 2050s from a current annual baseline of around 2000 deaths, and cold-related mortality would decline by 2% from a baseline of around 41 000 deaths. The cold burden remained higher than the heat burden in all periods. The increased number of future temperature-related deaths was partly driven by projected population growth and ageing. Health protection from hot weather will become increasingly necessary, and measures to reduce cold impacts will also remain important in the UK. The demographic changes expected this century mean that the health protection of the elderly will be vital. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Climate change characteristics of Amur River

    Directory of Open Access Journals (Sweden)

    Lan-lan YU

    2013-04-01

    Full Text Available Unusually severe weather is occurring more frequently due to global climate change. Heat waves, rainstorms, snowstorms, and droughts are becoming increasingly common all over the world, threatening human lives and property. Both temperature and precipitation are representative variables usually used to directly reflect and forecast the influences of climate change. In this study, daily data (from 1953 to 1995 and monthly data (from 1950 to 2010 of temperature and precipitation in five regions of the Amur River were examined. The significance of changes in temperature and precipitation was tested using the Mann-Kendall test method. The amplitudes were computed using the linear least-squares regression model, and the extreme temperature and precipitation were analyzed using hydrological statistical methods. The results show the following: the mean annual temperature increased significantly from 1950 to 2010 in the five regions, mainly due to the warming in spring and winter; the annual precipitation changed significantly from 1950 to 2010 only in the lower mainstream of the Amur River; the frequency of extremely low temperature events decreased from 1953 to 1995 in the mainstream of the Amur River; the frequency of high temperature events increased from 1953 to 1995 in the mainstream of the Amur River; and the frequency of extreme precipitation events did not change significantly from 1953 to 1995 in the mainstream of the Amur River. This study provides a valuable theoretical basis for settling disputes between China and Russia on sustainable development and utilization of water resources of the Amur River.

  13. Projections of temperature-related excess mortality under climate change scenarios

    Czech Academy of Sciences Publication Activity Database

    Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; Coelho, M. S. Z. S.; Saldiva, P. H. N.; Lavigne, E.; Correa, P.M.; Ortega, N. V.; Kan, H.; Osorio, S.; Kyselý, Jan; Urban, Aleš; Jaakkola, J.J.K.; Ryti, N.R.I.; Pascal, M.; Goodman, P.G.; Zeka, A.; Michelozzi, P.; Scortichini, M.; Hashizume, M.; Honda, Y.; Hurtado-Diaz, M.; Cruz, J.C.; Seposo, X.; Kim, H.; Tobias, A.; Iñiguez, C.; Forsberg, B.; Åström, D.O.; Ragettli, M.S.; Guo, Y.L.; Wu, Ch.; Zanobetti, A.; Schwartz, J.; Bell, M.L.; Dang, T.N.; Van, D.D.; Heaviside, C.; Vardoulakis, S.; Hajat, S.; Haines, A.; Armstrong, B.

    2017-01-01

    Roč. 1, č. 9 (2017), e360-e367 ISSN 2542-5196 R&D Projects: GA ČR(CZ) GA16-22000S Institutional support: RVO:68378289 Keywords : climate change scenarios * mortality Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Climatic research https://www.sciencedirect.com/science/article/pii/S2542519617301560#!

  14. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  15. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...

  16. Observed climatic changes in Shanghai during 1873-2002

    Institute of Scientific and Technical Information of China (English)

    ZHANGQiang; CHENJiaqi; ZHANGZengxin

    2005-01-01

    Variation characteristics of temperature and precipitation in January and July and annual mean temperature and annual precipitation are analyzed with the help of cumulative anomalies,Mann-Kendall analysis and wavelet analysis. The research results indicate that January precipitation presents an increasing trend after 1990, wavelet analysis result suggests that this increasing trend will continue in the near future. The changes of July precipitation present different features. During 1900-1960, July precipitation is in a rising trend, but is in a declining trend after 1960. Wavelet analysis shows that this declining trend will go on in the near future. Temperature variations in Shanghai are in fluctuations with 2 to 3 temperature rising periods. Mann-Kendall analysis indicates that temperature variations have the obvious abrupt change time when compared with precipitation changes in Shanghai during the past 100 years. The abrupt change time of January temperature lies in 1985, and that of July temperature lies in 1931-1933 and annual mean temperature has the abrupt change time in 1923-1930. Except July precipitation, the precipitation in January, temperature in January, July and annual mean temperature, and annual precipitation are also in a rising trend in the near future. The research results in this paper may be meaningful for future further climatic changes of Shanghai and social mitigation of climatic disasters in the future.

  17. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  18. Sensitivity of Climate Change Detection and Attribution to the Characterization of Internal Climate Variability

    KAUST Repository

    Imbers, Jara

    2014-05-01

    The Intergovernmental Panel on Climate Change\\'s (IPCC) "very likely" statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under different representations of such variability. The contributions of the different natural and anthropogenic forcings to the global mean surface air temperature response are computed using a box diffusion model. Representations of internal climate variability are explored using simple stochastic models that nevertheless span a representative range of plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)] process and the long-memory fractionally differencing process. The authors find that, independently of the representation chosen, the greenhouse gas signal remains statistically significant under the detection model employed in this paper. The results support the robustness of the IPCC detection and attribution statement for global mean temperature change under different characterizations of internal variability, but they also suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be performed when dealing with other climate variables and/or different spatial scales. © 2014 American Meteorological Society.

  19. Predicting the Response of Electricity Load to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Colman, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kalendra, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  20. Challenges of climate change. Which climate governance?

    International Nuclear Information System (INIS)

    Vieillefosse, A.; Cros, Ch.

    2007-01-01

    This report deals with the main challenges of climate change, and attempts to answer some questions: what is the temperature increase foreseen by scientific experts? Who will be affected by the consequences of climate change? Are there technologies to reduce emissions? If yes, why are they not diffused? Is it justified to ask developing countries to do something? Are concurrence distortions a real problem? Which are the main sectors where emissions are to be reduced? Are tools developed at the international level efficient? What is the present assessment for the clean development mechanism? What can be thought of technological partnerships developed with the United States? Then, the report comments the present status of international discussions, proposes a brief assessment of the Kyoto protocol ten years after its implementation, and proposes some improvement pathways

  1. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K; Karlen, W [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  2. Late Quaternary changes in climate

    International Nuclear Information System (INIS)

    Holmgren, K.; Karlen, W.

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  3. The Impacts of Maximum Temperature and Climate Change to Current and Future Pollen Distribution in Skopje, Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vladimir Kendrovski

    2012-02-01

    Full Text Available BACKGROUND. The goal of the present paper was to assess the impact of current and future burden of the ambient temperature to pollen distributions in Skopje. METHODS. In the study we have evaluated a correlation between the concentration of pollen grains in the atmosphere of Skopje and maximum temperature, during the vegetation period of 1996, 2003, 2007 and 2009 as a current burden in context of climate change. For our analysis we have selected 9 representative of each phytoallergen group (trees, grasses, weeds. The concentration of pollen grains has been monitored by a Lanzoni volumetric pollen trap. The correlation between the concentration of pollen grains in the atmosphere and selected meteorological variable from weekly monitoring has been studied with the help of linear regression and correlation coefficients. RESULTS. The prevalence of the sensibilization of standard pollen allergens in Skopje during the some period shows increasing from 16,9% in 1996 to 19,8% in 2009. We detect differences in onset of flowering, maximum and end of the length of seasons for pollen. The pollen distributions and risk increases in 3 main periods: early spring, spring and summer which are the main cause of allergies during these seasons. The largest increase of air temperature due to climate change in Skopje is expected in the summer season. CONCLUSION. The impacts of climate change by increasing of the temperature in the next decades very likely will include impacts on pollen production and differences in current pollen season. [TAF Prev Med Bull 2012; 11(1.000: 35-40

  4. Paleoclimates: Understanding climate change past and present

    Science.gov (United States)

    Cronin, Thomas M.

    2010-01-01

    The field of paleoclimatology relies on physical, chemical, and biological proxies of past climate changes that have been preserved in natural archives such as glacial ice, tree rings, sediments, corals, and speleothems. Paleoclimate archives obtained through field investigations, ocean sediment coring expeditions, ice sheet coring programs, and other projects allow scientists to reconstruct climate change over much of earth's history. When combined with computer model simulations, paleoclimatic reconstructions are used to test hypotheses about the causes of climatic change, such as greenhouse gases, solar variability, earth's orbital variations, and hydrological, oceanic, and tectonic processes. This book is a comprehensive, state-of-the art synthesis of paleoclimate research covering all geological timescales, emphasizing topics that shed light on modern trends in the earth's climate. Thomas M. Cronin discusses recent discoveries about past periods of global warmth, changes in atmospheric greenhouse gas concentrations, abrupt climate and sea-level change, natural temperature variability, and other topics directly relevant to controversies over the causes and impacts of climate change. This text is geared toward advanced undergraduate and graduate students and researchers in geology, geography, biology, glaciology, oceanography, atmospheric sciences, and climate modeling, fields that contribute to paleoclimatology. This volume can also serve as a reference for those requiring a general background on natural climate variability.

  5. The Costs of Climate Change: A Study of Cholera in Tanzania

    DEFF Research Database (Denmark)

    Trærup, Sara Lærke Meltofte; Ortiz, Ramon A.; Markandya, Anil

    2011-01-01

    Increased temperatures and changes in rainfall patterns as a result of climate change are widely recognized to entail potentially serious consequences for human health, including an increased risk of diarrheal diseases. This study integrates historical data on temperature and rainfall...... to climate change are shown to be in the range of 0.32 to 1.4 percent of GDP in Tanzania 2030. The results provide useful insights into national-level estimates of the implications of climate change on the health sector and offer information which can feed into both national and international debates...... risk of cholera increases by 15 to 29 percent. Based on the modeling results, we project the number and costs of additional cases of cholera that can be attributed to climate change by 2030 in Tanzania for a 1 and 2 degree increase in temperatures, respectively. The total costs of cholera attributable...

  6. Climate Change and Fish Availability

    Science.gov (United States)

    Teng, Paul P. S.; Lassa, Jonatan; Caballero-Anthony, Mely

    Human consumption of fish has been trending upwards in the past decades and this is projected to continue. The main sources of fish are from wild fisheries (marine and freshwater) and aquaculture. Climate change is anticipated to affect the availability of fish through its effect on these two sources as well as on supply chain processes such as storage, transport, processing and retail. Climate change is known to result in warmer and more acid oceans. Ocean acidification due to higher CO2 concentration levels at sea modifies the distribution of phytoplankton and zooplankton to affect wild, capture fisheries. Higher temperature causes warm-water coral reefs to respond with species replacement and bleaching, leading to coral cover loss and habitat loss. Global changes in climatic systems may also cause fish invasion, extinction and turnover. While this may be catastrophic for small scale fish farming in poor tropical communities, there are also potential effects on animal protein supply shifts at local and global scales with food security consequences. This paper discusses the potential impacts of climate change on fisheries and aquaculture in the Asian Pacific region, with special emphasis on Southeast Asia. The key question to be addressed is “What are the impacts of global climate change on global fish harvests and what does it mean to the availability of fish?”

  7. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Directory of Open Access Journals (Sweden)

    J. M. Santiago

    2017-08-01

    Full Text Available Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta, and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. −49 % by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C, although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  8. Climatic change. What solutions?

    International Nuclear Information System (INIS)

    Vieillefosse, A.

    2009-01-01

    From 1990 to the present day, worldwide greenhouse gas emissions have increased by about 25%. Fighting climatic change has become an urgency: we only have 15 years in front of us to inflect the trajectory of worldwide emissions and to avoid a temperature rise of more than 2 deg. C during this century. Therefore, how is it possible to explain the shift between the need of an urgent action and the apparent inertia of some governing parties? How is it possible to implement a worldwide governance capable to answer the urgency of the fight against climatic change? These are the two questions that this pedagogical and concrete book tries to answer by analysing the different dimensions of climatic change and by making a first status of the building up of the international action, and in particular of the Kyoto protocol. For the post-2012 era, research and negotiations are in progress with the objective of reaching an agreement for the Copenhagen conference of December 2009. Several architectures are possible. This book shades light on the advantages and limitations of each of them with the possible compromises. It supplies a pluri-disciplinary approach of the international negotiations, often considered as complex by the general public. Content: 1 - understanding the climatic change stakes: climatic stakes, the main actors behind the figures, the technical-economical stakes; 2 - understanding the present day architecture of the fight against climatic change: strengths and weaknesses of the Kyoto protocol; encouraging research and technology spreading; the other action means in developing countries; 3 - what structure for a future international agreement?: the Bali negotiation process; the ideal vision: an improved Kyoto protocol; the pragmatic vision: individualized commitments; the negotiation space; preventing a planned fiasco. (J.S.)

  9. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  10. Climate Change Impact Assessment of Hydro-Climate in Southern Peninsular Malaysia

    Science.gov (United States)

    Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydroclimate of the coastal region in the south of Peninsular Malaysia in the 21st century was assessed by means of a regional climate model utilizing an ensemble of 15 different future climate realizations. Coarse resolution Global Climate Models' future projections covering four emission scenarios based on Coupled Model Intercomparison Project phase 3 (CMIP3) datasets were dynamically downscaled to 6 km resolution over the study area. The analyses were made in terms of rainfall, air temperature, evapotranporation, and soil water storage.

  11. Influence of climate changes on the migration ability of technogenic radionuclides

    International Nuclear Information System (INIS)

    Todorov, B.; Kovacheva, P.; Djingova, R.

    2011-01-01

    Full text: Global warming and climatic changes in the last decade focus the attention of scientists worldwide. Changes in climate variables (winds, precipitation, currents, temperature, etc.) affect the transport, transfer, and deposition of contaminants in the environment. Numerous investigations show the strong impact of climatic parameters like temperature and precipitations on soil characteristics, and especially on soil organic matter, which plays a significant role in the migration behaviour of the contaminants in the environment. This defines the need of special attention on elucidation of the impact of temperature and precipitations on the chemical behaviour of the radionuclides. This work presents initial results of a research project aiming to elucidate the influence of climate changes on the migration and bioaccumulation of natural and technogenic radionuclides in terrestrial ecosystems. Different types of soils were contaminated by technogenic radionuclides ( 241 Am, 137 Cs, and 60 Co) and conditioned under different temperatures and soil humidity, simulating sharp climatic variations. Chemical fractionation of the radionuclides was studied by using two different procedures for sequential extractions, followed by radiation detection by gamma-spectrometry. Evaluation of the chemical behaviour of the investigated radionuclides with respect to soil characteristics, temperature and humidity variations and duration of conditioning was performed. Initial conclusions on the influence of the climate changes on the migration ability of radionuclides of different oxidation states were made

  12. Level of knowledge in the science of climate change: will the climate really change in the 21st century?

    International Nuclear Information System (INIS)

    Bourque, A.

    2003-01-01

    The Intergovernmental Panel on Climate Change (IPCC) recently stated that mean temperature is not as stable as it used to be, indicating a trend toward global warming. Understanding this phenomena should lead to better decisions concerning reductions of greenhouse gas emissions. It should also make it easier to adapt our socio-economic and environmental activities to a new reality which seems inevitable. The author discussed climate equilibrium by looking at the five sub-systems: atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere. A review of the historical evolution of climate was presented along with an examination of the relationships between greenhouse gases and the recent evolution of climate. The author discussed the uncertainty of scenarios predicting the future of climate change and concluded that climate change is upon us and is likely to intensify in the future. It was emphasized that adaptation to climate change will have to include reductions of greenhouse gas emissions. According to the author, a scenario involving a doubling of carbon dioxide in the atmosphere appears almost unavoidable. 7 refs., 1 tab., 6 figs

  13. Near-linear cost increase to reduce climate-change risk

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, M. [Environmental Systems Analysis Group, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Kram, T.; Van Vuuren, D.P. [Climate and Global Sustainability Group, Netherlands Environmental Assessment Agency, P.O. Box 303, 3720 AH Bilthoven (Netherlands); Meinshausen, M.; Hare, W.L. [Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam (Germany); Schneider, S.H. (ed.) [Stanford University, Stanford, CA (United States)

    2008-12-30

    One approach in climate-change policy is to set normative long-term targets first and then infer the implied emissions pathways. An important example of a normative target is to limit the global-mean temperature change to a certain maximum. In general, reported cost estimates for limiting global warming often rise rapidly, even exponentially, as the scale of emission reductions from a reference level increases. This rapid rise may suggest that more ambitious policies may be prohibitively expensive. Here, we propose a probabilistic perspective, focused on the relationship between mitigation costs and the likelihood of achieving a climate target. We investigate the qualitative, functional relationship between the likelihood of achieving a normative target and the costs of climate-change mitigation. In contrast to the example of exponentially rising costs for lowering concentration levels, we show that the mitigation costs rise proportionally to the likelihood of meeting a temperature target, across a range of concentration levels. In economic terms investing in climate mitigation to increase the probability of achieving climate targets yields 'constant returns to scale', because of a counterbalancing rapid rise in the probabilities of meeting a temperature target as concentration is lowered.

  14. Five-City Network to Pioneer Climate Change Adaptation in sub ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Current climate change projections indicate that temperature increases, ... This project aims to design a framework for managing increased risk from climate change ... In partnership with UNESCO's Organization for Women in Science for the ...

  15. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections

    Science.gov (United States)

    Junk, J.; Ulber, B.; Vidal, S.; Eickermann, M.

    2015-11-01

    Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.

  16. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections.

    Science.gov (United States)

    Junk, J; Ulber, B; Vidal, S; Eickermann, M

    2015-11-01

    Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.

  17. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change.

    Directory of Open Access Journals (Sweden)

    A Michelle Lawing

    Full Text Available Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models, phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species, and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr than it has been on average for the past 320 ky (2.3 m/yr.

  18. The essential interactions between understanding climate variability and climate change

    Science.gov (United States)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  19. Embracing uncertainty in climate change policy

    Science.gov (United States)

    Otto, Friederike E. L.; Frame, David J.; Otto, Alexander; Allen, Myles R.

    2015-10-01

    The 'pledge and review' approach to reducing greenhouse-gas emissions presents an opportunity to link mitigation goals explicitly to the evolving climate response. This seems desirable because the progression from the Intergovernmental Panel on Climate Change's fourth to fifth assessment reports has seen little reduction in uncertainty. A common reaction to persistent uncertainties is to advocate mitigation policies that are robust even under worst-case scenarios, thereby focusing attention on upper extremes of both the climate response and the costs of impacts and mitigation, all of which are highly contestable. Here we ask whether those contributing to the formation of climate policies can learn from 'adaptive management' techniques. Recognizing that long-lived greenhouse gas emissions have to be net zero by the time temperatures reach a target stabilization level, such as 2 °C above pre-industrial levels, and anchoring commitments to an agreed index of attributable anthropogenic warming would provide a transparent approach to meeting such a temperature goal without prior consensus on the climate response.

  20. The impacts of climate change in Aquitaine

    International Nuclear Information System (INIS)

    Le Treut, Herve; Baldi, Isabelle; Bonneton, Philippe; Budzinski, Helene; Caill-Milly, Nathalie; D'Amico, Frank; Dupuy, Alain; Etcheber, Henri; Grousset, Francis; Kremer, Antoine; Ollat, Nathalie; Pereau, Jean-Christophe; Prouzet, Patrick; Salles, Denis; Sautour, Benoit; Villenave, Eric

    2013-01-01

    This article presents a book which addresses the impacts of climate change in the Aquitaine region by 2030-2050 in order to prepare the adaptation of the main economic sectors. Several fields are addressed: agriculture and wine-growing, forestry, estuaries, coasts and sea resources. The book examines two aspects of climate change due to greenhouse gas emissions: mitigation and adaptation. Two scenarios are studied: a global temperature increase of 2 degrees, and a global temperature increase between 4 and 5 degrees. As examples of this study, this article gives an overview of these issues of mitigation and adaptation in four domains: forests, wine-growing, air quality, and health

  1. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  2. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  3. Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change

    Science.gov (United States)

    Wu, Minchao; Schurgers, Guy; Rummukainen, Markku; Smith, Benjamin; Samuelsson, Patrick; Jansson, Christer; Siltberg, Joe; May, Wilhelm

    2016-07-01

    Africa has been undergoing significant changes in climate and vegetation in recent decades, and continued changes may be expected over this century. Vegetation cover and composition impose important influences on the regional climate in Africa. Climate-driven changes in vegetation structure and the distribution of forests versus savannah and grassland may feed back to climate via shifts in the surface energy balance, hydrological cycle and resultant effects on surface pressure and larger-scale atmospheric circulation. We used a regional Earth system model incorporating interactive vegetation-atmosphere coupling to investigate the potential role of vegetation-mediated biophysical feedbacks on climate dynamics in Africa in an RCP8.5-based future climate scenario. The model was applied at high resolution (0.44 × 0.44°) for the CORDEX-Africa domain with boundary conditions from the CanESM2 general circulation model. We found that increased tree cover and leaf-area index (LAI) associated with a CO2 and climate-driven increase in net primary productivity, particularly over subtropical savannah areas, not only imposed important local effect on the regional climate by altering surface energy fluxes but also resulted in remote effects over central Africa by modulating the land-ocean temperature contrast, Atlantic Walker circulation and moisture inflow feeding the central African tropical rainforest region with precipitation. The vegetation-mediated feedbacks were in general negative with respect to temperature, dampening the warming trend simulated in the absence of feedbacks, and positive with respect to precipitation, enhancing rainfall reduction over the rainforest areas. Our results highlight the importance of accounting for vegetation-atmosphere interactions in climate projections for tropical and subtropical Africa.

  4. European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models

    Science.gov (United States)

    Kjellström, Erik; Nikulin, Grigory; Strandberg, Gustav; Bøssing Christensen, Ole; Jacob, Daniela; Keuler, Klaus; Lenderink, Geert; van Meijgaard, Erik; Schär, Christoph; Somot, Samuel; Sørland, Silje Lund; Teichmann, Claas; Vautard, Robert

    2018-05-01

    We investigate European regional climate change for time periods when the global mean temperature has increased by 1.5 and 2 °C compared to pre-industrial conditions. Results are based on regional downscaling of transient climate change simulations for the 21st century with global climate models (GCMs) from the fifth-phase Coupled Model Intercomparison Project (CMIP5). We use an ensemble of EURO-CORDEX high-resolution regional climate model (RCM) simulations undertaken at a computational grid of 12.5 km horizontal resolution covering Europe. The ensemble consists of a range of RCMs that have been used for downscaling different GCMs under the RCP8.5 forcing scenario. The results indicate considerable near-surface warming already at the lower 1.5 °C of warming. Regional warming exceeds that of the global mean in most parts of Europe, being the strongest in the northernmost parts of Europe in winter and in the southernmost parts of Europe together with parts of Scandinavia in summer. Changes in precipitation, which are less robust than the ones in temperature, include increases in the north and decreases in the south with a borderline that migrates from a northerly position in summer to a southerly one in winter. Some of these changes are already seen at 1.5 °C of warming but are larger and more robust at 2 °C. Changes in near-surface wind speed are associated with a large spread among individual ensemble members at both warming levels. Relatively large areas over the North Atlantic and some parts of the continent show decreasing wind speed while some ocean areas in the far north show increasing wind speed. The changes in temperature, precipitation and wind speed are shown to be modified by changes in mean sea level pressure, indicating a strong relationship with the large-scale circulation and its internal variability on decade-long timescales. By comparing to a larger ensemble of CMIP5 GCMs we find that the RCMs can alter the results, leading either to

  5. Genetic plant improvement and climate changes

    Directory of Open Access Journals (Sweden)

    Magno Antonio Patto Ramalho

    2009-01-01

    Full Text Available The consequences of climate change for the agribusiness in Brazil have been widely debated. The issue isdiscussed in this publication to show the expected problems, particularly those associated with increases in temperature andwater stress. It is emphasized that the genetic improvement of plants, based on the experience in the past, has much tocontribute to mitigate these problems. To invest in the breeding of new cultivars, selected under stress conditions, is certainlythe best possible strategy for agriculture to cope with changes caused by climate alterations.

  6. The understanding of world climate change

    International Nuclear Information System (INIS)

    Petit, M.

    2008-01-01

    After having recalled that the problem of global warming in relationship with human activities has been studied since the end of the nineteenth century and since then by different scientific programs, the author describes how the IPCC's or Intergovernmental Panel on Climate Change's report is produced. He briefly comments how Earth's temperature is determined and the various natural parameters which influence the climate on Earth. He recalls how the IPCC showed the actual influence of human activities, and which changes have actually been observed

  7. The radiative heating response to climate change

    Science.gov (United States)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  8. Calculating Historical Contributions To Climate Change. Discussing The 'Brazilian Proposal'

    International Nuclear Information System (INIS)

    Hoehne, N.; Blok, K.

    2005-01-01

    This paper discusses methodological issues relevant to the calculation of historical responsibility of countries for climate change ('The Brazilian Proposal'). Using a simple representation of the climate system, the paper compares contributions to climate change using different indicators: current radiative forcing, current GWP-weighted emissions, radiative forcing from increased concentrations, cumulative GWP-weighted emissions, global-average surface-air temperature increase and two new indicators: weighted concentrations (analogue to GWP-weighted emissions) and integrated temperature increase. Only the last two indicators are at the same time 'backward looking' (take into account historical emissions), 'backward discounting' (early emissions weigh less, depending on the decay in the atmosphere) and 'forward looking' (future effects of the emissions are considered) and are comparable for all gases. Cumulative GWP-weighted emissions are simple to calculate but are not 'backward discounting'. 'Radiative forcing' and 'temperature increase' are not 'forward looking'. 'Temperature increase' discounts the emissions of the last decade due to the slow response of the climate system. It therefore gives low weight to regions that have recently significantly increased emissions. Results of the five different indicators are quite similar for large groups (but possibly not for individual countries): industrialized countries contributed around 60% to today's climate change, developing countries around 40% (using the available data for fossil, industrial and forestry CO2, CH4 and N2O). The paper further argues including non-linearities of the climate system or using a simplified linear system is a political choice. The paper also notes that results of contributions to climate change need to be interpreted with care: Countries that developed early benefited economically, but have high historical emission, and countries developing at a later period can profit from developments

  9. Financial market response to extreme events indicating climatic change

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2016-05-01

    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  10. Emissions pathways, climate change, and impacts on California

    Science.gov (United States)

    Hayhoe, Katharine; Cayan, Daniel; Field, Christopher B.; Frumhoff, Peter C.; Maurer, Edwin P.; Miller, Norman L.; Moser, Susanne C.; Schneider, Stephen H.; Cahill, Kimberly Nicholas; Cleland, Elsa E.; Dale, Larry; Drapek, Ray; Hanemann, R. Michael; Kalkstein, Laurence S.; Lenihan, James; Lunch, Claire K.; Neilson, Ronald P.; Sheridan, Scott C.; Verville, Julia H.

    2004-01-01

    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine/subalpine forests are reduced by 50–75%; and Sierra snowpack is reduced 30–70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine/subalpine forests are reduced by 75–90%; and snowpack declines 73–90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California's water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades. PMID:15314227

  11. Climate Change as Migration Driver from Rural and Urban Mexico

    Science.gov (United States)

    Hunter, Lori M.; Runfola, Daniel M.; Riosmena, Fernando

    2015-01-01

    Studies investigating migration as a response to climate variability have largely focused on rural locations to the exclusion of urban areas. This lack of urban focus is unfortunate given the sheer numbers of urban residents and continuing high levels of urbanization. To begin filling this empirical gap, this study investigates climate change impacts on U.S.-bound migration from rural and urban Mexico, 1986–1999. We employ geostatistical interpolation methods to construct two climate change indices, capturing warm and wet spell duration, based on daily temperature and precipitation readings for 214 weather stations across Mexico. In combination with detailed migration histories obtained from the Mexican Migration Project, we model the influence of climate change on household-level migration from 68 rural and 49 urban municipalities. Results from multilevel event-history models reveal that a temperature warming and excessive precipitation significantly increased international migration during the study period. However, climate change impacts on international migration is only observed for rural areas. Interactions reveal a causal pathway in which temperature (but not precipitation) influences migration patterns through employment in the agricultural sector. As such, climate-related international migration may decline with continued urbanization and the resulting reductions in direct dependence of households on rural agriculture. PMID:26692890

  12. Climate Change as Migration Driver from Rural and Urban Mexico.

    Science.gov (United States)

    Nawrotzki, Raphael J; Hunter, Lori M; Runfola, Daniel M; Riosmena, Fernando

    2015-11-01

    Studies investigating migration as a response to climate variability have largely focused on rural locations to the exclusion of urban areas. This lack of urban focus is unfortunate given the sheer numbers of urban residents and continuing high levels of urbanization. To begin filling this empirical gap, this study investigates climate change impacts on U.S.-bound migration from rural and urban Mexico, 1986-1999. We employ geostatistical interpolation methods to construct two climate change indices, capturing warm and wet spell duration, based on daily temperature and precipitation readings for 214 weather stations across Mexico. In combination with detailed migration histories obtained from the Mexican Migration Project, we model the influence of climate change on household-level migration from 68 rural and 49 urban municipalities. Results from multilevel event-history models reveal that a temperature warming and excessive precipitation significantly increased international migration during the study period. However, climate change impacts on international migration is only observed for rural areas. Interactions reveal a causal pathway in which temperature (but not precipitation) influences migration patterns through employment in the agricultural sector. As such, climate-related international migration may decline with continued urbanization and the resulting reductions in direct dependence of households on rural agriculture.

  13. Five-City Network to Pioneer Climate Change Adaptation in sub ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Local governments and coastal cities in Southern Africa face a serious threat associated with climate change. Current climate change projections indicate that temperature increases, rising sea levels (permanent and temporary), changes in precipitation, and extreme events (floods, droughts, high winds) are likely to occur.

  14. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  15. Climate change and sustainability in Europe

    International Nuclear Information System (INIS)

    Alfsen, Knut H.

    2001-01-01

    This paper discusses the climate history of the Earth, exploring some of the driving forces of climate change along the way. It points out that it may not be the gradual increase in global mean temperature that we have to fear the most. Rather the variability of the climate may pose an even greater threat to us. The paper outlines some possible future scenarios of climate change based on what we now think we know about the causes of climate change and possible future development in emissions of greenhouse gases. It then goes on to describe the current climate negotiations and possible political solutions in the near term, before concluding with a description of the more long-term fundamental challenges we face. The aim of the discussion is to provide a deeper understanding of the climate problem we are facing, as well as the challenges that lie ahead of us, individually as well as a region, in securing the climate aspect of a sustainable development for Europe and the world. The paper is based on a presentation given at the conference Rio + 10 in Dublin in September 2001, made possible by a kind contribution from the European Environment Agency. (author)

  16. Climate change and sustainability in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H

    2001-07-01

    This paper discusses the climate history of the Earth, exploring some of the driving forces of climate change along the way. It points out that it may not be the gradual increase in global mean temperature that we have to fear the most. Rather the variability of the climate may pose an even greater threat to us. The paper outlines some possible future scenarios of climate change based on what we now think we know about the causes of climate change and possible future development in emissions of greenhouse gases. It then goes on to describe the current climate negotiations and possible political solutions in the near term, before concluding with a description of the more long-term fundamental challenges we face. The aim of the discussion is to provide a deeper understanding of the climate problem we are facing, as well as the challenges that lie ahead of us, individually as well as a region, in securing the climate aspect of a sustainable development for Europe and the world. The paper is based on a presentation given at the conference Rio + 10 in Dublin in September 2001, made possible by a kind contribution from the European Environment Agency. (author)

  17. Public perceptions of climate change and extreme weather events

    Science.gov (United States)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  18. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    Science.gov (United States)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  19. Role of resolution in regional climate change projections over China

    Science.gov (United States)

    Shi, Ying; Wang, Guiling; Gao, Xuejie

    2017-11-01

    This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to

  20. Long-term projections of temperature-related mortality risks for ischemic stroke, hemorrhagic stroke, and acute ischemic heart disease under changing climate in Beijing, China.

    Science.gov (United States)

    Li, Tiantian; Horton, Radley M; Bader, Daniel A; Liu, Fangchao; Sun, Qinghua; Kinney, Patrick L

    2018-03-01

    Changing climates have been causing variations in the number of global ischemic heart disease and stroke incidences, and will continue to affect disease occurrence in the future. To project temperature-related mortality for acute ischemic heart disease, and ischemic and hemorrhagic stroke with concomitant climate warming. We estimated the exposure-response relationship between daily cause-specific mortality and daily mean temperature in Beijing. We utilized outputs from 31 downscaled climate models and two representative concentration pathways (RCPs) for the 2020s, 2050s, and 2080s. This strategy was used to estimate future net temperature along with heat- and cold-related deaths. The results for predicted temperature-related deaths were subsequently contrasted with the baseline period. In the 2080s, using the RCP8.5 and no population variation scenarios, the net total number of annual temperature-related deaths exhibited a median value of 637 (with a range across models of 434-874) for ischemic stroke; this is an increase of approximately 100% compared with the 1980s. The median number of projected annual temperature-related deaths was 660 (with a range across models of 580-745) for hemorrhagic stroke (virtually no change compared with the 1980s), and 1683 (with a range across models of 1351-2002) for acute ischemic heart disease (a slight increase of approximately 20% compared with the 1980s). In the 2080s, the monthly death projection for hemorrhagic stroke and acute ischemic heart disease showed that the largest absolute changes occurred in summer and winter while the largest absolute changes for ischemic stroke occurred in summer. We projected that the temperature-related mortality associated with ischemic stroke will increase dramatically due to climate warming. However, projected temperature-related mortality pertaining to acute ischemic heart disease and hemorrhagic stroke should remain relatively stable over time. Copyright © 2017 Elsevier Ltd. All rights

  1. How is the River Water Quality Response to Climate Change Impacts?

    Science.gov (United States)

    Nguyen, T. T.; Willems, P.

    2015-12-01

    Water quality and its response to climate change have been become one of the most important issues of our society, which catches the attention of many scientists, environmental activists and policy makers. Climate change influences the river water quality directly and indirectly via rainfall and air temperature. For example, low flow decreases the volume of water for dilution and increases the residence time of the pollutants. By contrast, high flow leads to increases in the amount of pollutants and sediment loads from catchments to rivers. The changes in hydraulic characteristics, i.e. water depth and velocity, affect the transportation and biochemical transformation of pollutants in the river water body. The high air temperature leads to increasing water temperature, shorter growing periods of different crops and water demands from domestic households and industries, which eventually effects the level of river pollution. This study demonstrates the quantification of the variation of the water temperature and pollutant concentrations along the Molse Neet river in the North East of Belgium as a result of the changes in the catchment rainfall-runoff, air temperature and nutrient loads. Firstly, four climate change scenarios were generated based on a large ensemble of available global and regional climate models and statistical downscaling based on a quantile perturbation method. Secondly, the climatic changes to rainfall and temperature were transformed to changes in the evapotranspiration and runoff flow through the conceptual hydrological model PDM. Thirdly, the adjustment in nutrient loads from agriculture due to rainfall and growing periods of crops were calculated by means of the semi-empirical SENTWA model. Water temperature was estimated from air temperature by a stochastic model separating the temperature into long-term annual and short-term residual components. Next, hydrodynamic and water quality models of the river, implemented in InfoWorks RS, were

  2. Inventory of Research on the Impacts of Climate Change

    OpenAIRE

    Cesar, H.; Linden, O.; Walker, R.

    2004-01-01

    Climate change is one of the greatest threats for the global environment today. Global mean temperature has risen by about 0.6 degrees C during the 20th century, greater than during any other century in the last 1000 years. Subsequently, climate change is likely to have detrimental effects on all global natural and anthropogenic systems. Climate change will have consequences for the structure and function of ecosystems and all the major global biomes. Also agricultural production and producti...

  3. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  4. [Evolution of maize climate productivity and its response to climate change in Heilongjiang Province, China.

    Science.gov (United States)

    Li, Xiu Fen; Zhao, Hui Ying; Zhu, Hai Xia; Wang, Ping; Wang, Qiu Jing; Wang, Ming; Li, Yu Guang

    2016-08-01

    Under the background of climate change, revealing the change trend and spatial diffe-rence of maize climate productivity in-depth and understanding the regularity of maize climatic resources utilization can provide scientific basis for the macro-decision of agricultural production in Heilongjiang Province. Based on the 1981-2014 meteorological data of 72 weather stations and the corresponding maize yield data in Heilongjiang Province, by the methods of step by step revisal, spatial interpolation and linear trend analysis, this paper studied the photosynthetic productivity (PP), light-temperature productivity (LTP), and climatic productivity (CP) of spring maize, and their temporal and spatial variation characteristics, main influencing factors and light energy utilization efficiency, and evaluated the maize climate productivities under different climate scenarios in the future. The results showed that during the study period, the mean PP, LTP and CP in Heilongjiang Province were 26558, 19953, 18742 kg·hm -2 , respectively. Maize PP, LTP and CP were high in plains and low in mountains, and gradually decreased from southwest to northeast. PP, LTP and CP presented significantly increasing trends, and the increase rates were 378, 723 and 560 kg·hm -2 ·(10 a) -1 , respectively. The increase of radiation and temperature had positive effect on maize production in Heilongjiang Province. The potential productivity of maize presented significant response to climate change. The decrease of solar radiation led to the decline of PP in western Songnen Plain, but the increased temperature compensated the negative effect of solar radiation, so the downward trend of LTP was slowed. The response to climate warming was particularly evident in North and East, and LTP was significantly increased, which was sensitive to the change of precipitation in southwest of Songnen Plain and part of Sanjiang Plain. The average ratio of maize actual yield to its climate productivity was only 24

  5. Climate Impacts of Fire-Induced Land-Surface Changes

    Science.gov (United States)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  6. Contrasting model complexity under a changing climate in a headwaters catchment.

    Science.gov (United States)

    Foster, L.; Williams, K. H.; Maxwell, R. M.

    2017-12-01

    Alpine, snowmelt-dominated catchments are the source of water for more than 1/6th of the world's population. These catchments are topographically complex, leading to steep weather gradients and nonlinear relationships between water and energy fluxes. Recent evidence suggests that alpine systems are more sensitive to climate warming, but these regions are vastly simplified in climate models and operational water management tools due to computational limitations. Simultaneously, point-scale observations are often extrapolated to larger regions where feedbacks can both exacerbate or mitigate locally observed changes. It is critical to determine whether projected climate impacts are robust to different methodologies, including model complexity. Using high performance computing and an integrated model of a representative headwater catchment we determined the hydrologic response from 30 projected climate changes to precipitation, temperature and vegetation for the Rocky Mountains. Simulations were run with 100m and 1km resolution, and with and without lateral subsurface flow in order to vary model complexity. We found that model complexity alters nonlinear relationships between water and energy fluxes. Higher-resolution models predicted larger changes per degree of temperature increase than lower resolution models, suggesting that reductions to snowpack, surface water, and groundwater due to warming may be underestimated in simple models. Increases in temperature were found to have a larger impact on water fluxes and stores than changes in precipitation, corroborating previous research showing that mountain systems are significantly more sensitive to temperature changes than to precipitation changes and that increases in winter precipitation are unlikely to compensate for increased evapotranspiration in a higher energy environment. These numerical experiments help to (1) bracket the range of uncertainty in published literature of climate change impacts on headwater

  7. Bird response to future climate and forest management focused on mitigating climate change

    Science.gov (United States)

    Jaymi J. LeBrun; Jeffrey E. Schneiderman; Frank R. Thompson; William D. Dijak; Jacob S. Fraser; Hong S. He; Joshua J. Millspaugh

    2016-01-01

    Context. Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climateinduced changes through promoting carbon sequestration, forest resilience, and facilitated change. Objectives. We modeled direct and indirect effects of climate change on avian...

  8. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas

    Directory of Open Access Journals (Sweden)

    Karin Lundgren

    2013-07-01

    Full Text Available Global climate change increases heat loads in urban areas causing health and productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas are at especial risk due to high population density, already high temperatures, and temperature increases due to climate change. Air conditioning is growing rapidly, especially in South and South-East Asia due to income growth and the need to protect from high heat exposures. Studies have linked increased total hourly electricity use to outdoor temperatures and humidity; modeled future predictions when facing additional heat due to climate change, related air conditioning with increased street level heat and estimated future air conditioning use in major urban areas. However, global and localized studies linking climate variables with air conditioning alone are lacking. More research and detailed data is needed looking at the effects of increasing air conditioning use, electricity consumption, climate change and interactions with the urban heat island effect. Climate change mitigation, for example using renewable energy sources, particularly photovoltaic electricity generation, to power air conditioning, and other sustainable methods to reduce heat exposure are needed to make future urban areas more climate resilient.

  9. Cosmic rays and space weather: effects on global climate change

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2012-01-01

    Full Text Available We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate.

  10. Cosmic rays and space weather. Effects on global climate change

    International Nuclear Information System (INIS)

    Dorman, L.I.; Israel Space Agency; Russian Academy of Sciences

    2012-01-01

    We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate. (orig.)

  11. Assessing the Vulnerability of Agriculture to Climate Change in Jordan

    Science.gov (United States)

    Khresat, Sa'eb; Shraidaeh, Fadi; Maddat, Amer

    2015-04-01

    Climate change represents one of the greatest environmental, social and economic threats facing Jordan. In particular, the combined effects of climate change and water scarcity threaten to affect food and water resources that are critical for livelihoods in Jordan. This is especially true for those communities who live in the dryland area in the country and who rely wholly on rain-fed agriculture. The exact nature and extent of the impact of climate change on temperature and precipitation distribution pattern remain uncertain and it is the poor and vulnerable who will be the most susceptible to climate change adverse effects. A vulnerability assessment of rain fed agriculture to climate change and variability in semi-arid parts of Jordan was conducted in 2014. The purpose of this study is to assess the vulnerability and resilience of the most vulnerable groups where rainfed and irrigated agriculture is practiced. Also, the study focused on quantifying the impacts on agricultural productivity in response to climate change. This will help policymakers and researchers better understand and anticipate the likely impacts of climate change on agriculture and on vulnerable communities in Jordan. Also, it will provide them with tools to identify and implement appropriate adaptation strategies. The data used includes; Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5 adopted by the IPCC for its fifth Assessment Report (AR5). Those pathways were used for climate modeling. A decision support system (DSSAT) for agricultural production was used to assess the impact of climate changes on agricultural production. This approach was used for the Identification of climate change risk and their impacts on Agriculture. Outputs from models are used to assess the vulnerability of farmers and crops to climate and socio-economic change by estimating their sensitivity and capacity to adapt to external factors as a means of identifying what causes the differences in their

  12. Effects of climate change process on comfort climate of Shiraz station

    Energy Technology Data Exchange (ETDEWEB)

    Shakoor, A.; Roshan, G.R.; Khoshakhlagh, F.; Hejazizadeh, Z. [Islamic Azad Univ., Larestan (Iran)

    2008-09-30

    Dwelling in cities and city development together with quick increase of population and development of industrial activites with unplanned consumption of fossil fuels have intensively increased pollution with consequences whcih will cause different diseases in short periods, and will lead to some climatic oscillations and its environmental effects such as the change of desirable periods in view of comfort climate in long period. The objective point of view of this reasearch was to study the climate in Shiraz and its effect on comfort conditions for human physiology. In this research, using 55-year cliamtic data (1952-2006), the relative humidity and temperature through the application of Guni comfort climatic model, the desirable months for the comfort of human physiology have been determined in the five 11-year periods and the linear process of these changes have been estimated for the next 11 years. The results of this research show that the temperature trend in Shiraz station is increasing and most months have heating process in a way that it is expected in the future the cold months will have more favorable conditions for physiological comfort of residents and correspondingly in the warm months, heating tension will have remarkable increase.

  13. Multi-factor climate change effects on insect herbivore performance

    DEFF Research Database (Denmark)

    Scherber, Christoph; Gladbach, David J; Stevnbak, Karen

    2013-01-01

    The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO...... suturalis Thomson), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under...... the drought treatment, and there was a three-way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co-acting factors and were mediated by changes in plant secondary compounds, nitrogen...

  14. Adapting agriculture to climate change: a review

    Science.gov (United States)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short

  15. Spatial and temporal variation in climate change: A bird’s eye view

    Science.gov (United States)

    Fontaine, Joseph J.; Decker, Karie L.; Skagen, Susan K.; van Riper, Charles

    2009-01-01

    Recent changes in global climate have dramatically altered worldwide temperatures and the corresponding timing of seasonal climate conditions. Recognizing the degree to which species respond to changing climates is therefore an area of increasing conservation concern as species that are unable to respond face increased risk of extinction. Here we examine spatial and temporal heterogeneity in the rate of climate change across western North America and discuss the potential for conditions to arise that may limit the ability of western migratory birds to adapt to changing climates. Based on 52 years of climate data, we show that changes in temperature and precipitation differ significantly between spring migration habitats in the desert southwest and breeding habitats throughout western North America. Such differences may ultimately increase costs to individual birds and thereby threaten the long-term population viability of many species.

  16. Climate change and zoonotic infections in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Boris Revich

    2012-07-01

    Full Text Available Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax.

  17. Estimation of climate change impacts on hydrology and floods in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Veijalainen, N.

    2012-07-01

    Climate scenarios project increases in air temperature and precipitation in Finland during the 21st century and these will results in changes in hydrology. In this thesis climate change impacts on hydrology and floods in Finland were estimated with hydrological modelling and several climate scenarios. One of the goals was to understand the influence of different processes and catchment characteristics on the hydrological response to climate change in boreal conditions. The tool of the climate change impact assessment was the conceptual hydrological model WSFS (Watershed Simulation and Forecasting System). The studies employed and compared two methods of transferring the climate change signal from climate models to the WSFS hydrological model (delta change approach and direct bias corrected Regional Climate Model (RCM) data). Direct RCM data was used to simulate transient hydrological scenarios for 1951- 2100 and the simulation results were analysed to detect changes in water balance components and trends in discharge series. The results revealed that seasonal changes in discharges in Finland were the clearest impacts of climate change. Air temperature increase will affect snow accumulation and melt, increase winter discharge and decrease spring snowmelt discharge. The impacts of climate change on floods in Finland by 2070-2099 varied considerably depending on the location, catchment characteristics, timing of the floods and climate scenario. Floods caused by spring snowmelt decreased or remained unchanged, whereas autumn and winter floods caused by precipitation increased especially in large lakes and their outflow rivers. Since estimation of climate change impacts includes uncertainties in every step of the long modelling process, the accumulated uncertainties by the end of the process become large. The large differences between results from different climate scenarios highlight the need to use several climate scenarios in climate change impact studies

  18. Health Aspects of Climate Change in Cities with Mediterranean Climate, and Local Adaptation Plans.

    Science.gov (United States)

    Paz, Shlomit; Negev, Maya; Clermont, Alexandra; Green, Manfred S

    2016-04-21

    Cities with a Mediterranean-type climate (Med-cities) are particularly susceptible to health risks from climate change since they are located in biogeographical hot-spots that experience some of the strongest effects of the changing climate. The study aims to highlight health impacts of climate change in Med-cities, analyze local climate adaptation plans and make adaptation policy recommendations for the Med-city level. We identified five Med-cities with a climate change adaptation plan: Adelaide, Barcelona, Cape Town, Los Angeles and Santiago. Beyond their similar Med-climate features (although Santiago's are slightly different), the cities have different socio-economic characteristics in various aspects. We analyzed each plan according to how it addresses climate change-related drivers of health impacts among city dwellers. For each driver, we identified the types of policy adaptation tools that address it in the urban climate adaptation plans. The surveyed cities address most of the fundamental climate change-related drivers of risks to human health, including rising temperatures, flooding and drought, but the policy measures to reduce negative impacts vary across cities. We suggest recommendations for Med-cities in various aspects, depending on their local needs and vulnerability challenges: assessment of health risks, extreme events management and long-term adaptation, among others.

  19. The adaptation to climate change

    International Nuclear Information System (INIS)

    Van Gameren, Valentine; Weikmans, Romain; Zaccai, Edwin

    2014-01-01

    The authors address the issue of adaptation to climate change. They first address the physical aspects related to this issue: scenarios of temperature evolution, main possible impacts. Then, they address the social impacts related to climate risks, and the adaptation strategies which aim at reducing the exposure and vulnerability of human societies, or at increasing their resilience. Some examples of losses of human lives and of economic damages due to recent catastrophes related to climate change are evoked. The authors address the international framework, the emergence of an international regime on climate, the quite recent emergence of adaptation within international negotiations in 2001, the emergence of the idea of a support to developing countries. National and local policies are presented in the next chapter (in the European Union, the Netherlands which are faced with the issue of sea level rise, programs in developing countries) and their limitations are also outlined. The next chapter addresses the adaptation actions performed by private actors (enterprises, households, associations, civil society, and so on) with example of vulnerability, and adaptation opportunities and possibilities in some specific sectors. The last chapter presents a typology of actions of adaptation, indicators of adaptation to climate change, and examples of mistaken adaptation

  20. Astronomical theory of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Berger, A.; Loutre, M.F. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium). Inst. d' Astronomie et de Geophysique G. Lemaitre

    2004-12-01

    The astronomical theory of paleo-climates aims to explain the climatic variations occurring with quasi-periodicities lying between tens and hundreds of thousands of years. The origin of these quasi-cycles lies in the astronomically driven changes in the latitudinal and seasonal distributions of the energy that the Earth receives from the Sun. These changes are then amplified by the feedback mechanisms which characterize the natural behaviour of the climate system like those involving the albedo-, the water vapor-, and the vegetation- temperature relationships. Climate models of different complexities are used to explain the chain of processes which finally link the long-term variations of three astronomical parameters to the long-term climatic variations at time scale of tens to hundreds of thousands of years. In particular, sensitivity analysis to the astronomically driven insolation changes and to the CO{sub 2} atmospheric concentrations have been performed with the 2-dimension climate model of Louvain-la-Neuve. It could be shown that this model simulates more or less correctly the entrance into glaciation around 2.75 million year (Myr) BP (before present), the late Pliocene-early Pleistocene 41-kyr (thousand years) cycle, the emergence of the 100-kyr cycle around 850 kyr BP and the glacial-interglacial cycles of the last 600 kyr. During the Late Pliocene (in an ice-free - warm world) ice sheets can only develop during times of sufficiently low summer insolation. This occurs during large eccentricity times when climatic precession and obliquity combine to obtain such low values, leading to the 41-kyr period between 3 and 1 million years BP. On the contrary in a glacial world, ice sheets persist most of the time except when insolation is very high in polar latitudes, requiring large eccentricity again, but leading this time to interglacial and finally to the 100-kyr period of the last 1 Myr. Using CO{sub 2} scenarios, it has been shown that stage 11 and stage 1

  1. Climate change issues of Nepal: challenges and perspectives for future generations

    International Nuclear Information System (INIS)

    Regmi, M.R.; Khanal, H.S.

    2009-01-01

    In Nepal Climate change has implications on reduction of snow pack on the mountains, water supply shortages, increase forest fires, increase in extreme weather, increase demand for irrigation, decreases power generation; wells dry up due to lower water table. Climate change seeks the two actions on the mitigation of greenhouse gases and adaptation to the climate change. This paper also describes the climate change issues of Nepal. In addition it deals with the potential threats of climate change to water Supply, agriculture and food security, temperature increase, run-off patterns, glacial melt and floods. (author)

  2. Climate change and Public health: vulnerability, impacts, and adaptation

    Science.gov (United States)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change

  3. Temporal changes and variability in temperature series over Peninsular Malaysia

    Science.gov (United States)

    Suhaila, Jamaludin

    2015-02-01

    With the current concern over climate change, the descriptions on how temperature series changed over time are very useful. Annual mean temperature has been analyzed for several stations over Peninsular Malaysia. Non-parametric statistical techniques such as Mann-Kendall test and Theil-Sen slope estimation are used primarily for assessing the significance and detection of trends, while a nonparametric Pettitt's test and sequential Mann-Kendall test are adopted to detect any abrupt climate change. Statistically significance increasing trends for annual mean temperature are detected for almost all studied stations with the magnitude of significant trend varied from 0.02°C to 0.05°C per year. The results shows that climate over Peninsular Malaysia is getting warmer than before. In addition, the results of the abrupt changes in temperature using Pettitt's and sequential Mann-Kendall test reveal the beginning of trends which can be related to El Nino episodes that occur in Malaysia. In general, the analysis results can help local stakeholders and water managers to understand the risks and vulnerabilities related to climate change in terms of mean events in the region.

  4. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  5. Low Frequency Modulation of Extreme Temperature Regimes in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Black, Robert X. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-11-24

    The project examines long-term changes in extreme temperature episodes (ETE) associated with planetary climate modes (PCMs) in both the real atmospheric and climate model simulations. The focus is on cold air outbreaks (CAOs) and warm waves (WWs) occurring over the continental US during the past 60 winters. No significant long-term trends in either WWs or CAOs are observed over the US. The annual frequency of CAOs is affected by the (i) North Atlantic Oscillation (NAO) over the Southeast US and (ii) Pacific–North American (PNA) pattern over the Northwest US. WW frequency is influenced by the (i) NAO over the eastern US and (ii) combined influence of PNA, Pacific decadal oscillation (PDO), and ENSO over the southern US. The collective influence of PCMs accounts for as much as 50% of the regional variability in ETE frequency. During CAO (WW) events occurring over the southeast US, there are low (high) pressure anomalies at higher atmospheric levels over the southeast US with oppositely-signed pressure anomalies in the lower atmosphere over the central US. These patterns lead to anomalous northerly (for CAOs) or southerly (for WWs) flow into the southeast leading to cold or warm surface air temperature anomalies, respectively. One distinction is that CAOs involve substantial air mass transport while WW formation is more local in nature. The primary differences among event categories are in the origin and nature of the pressure anomaly features linked to ETE onset. In some cases, PCMs help to provide a favorable environment for event onset. Heat budget analyses indicate that latitudinal transport in the lower atmosphere is the main contributor to regional cooling during CAO onset. This is partly offset by adiabatic warming associated with subsiding air. Additional diagnoses reveal that this latitudinal transport is partly due to the remote physical influence of a shallow cold pool of air trapped along the east side of the Rocky Mountains. ETE and PCM behavior is also

  6. Climate Change: Seed Production and Options for Adaptation

    Directory of Open Access Journals (Sweden)

    John G. Hampton

    2016-07-01

    Full Text Available Food security depends on seed security and the international seed industry must be able to continue to deliver the quantities of quality seed required for this purpose. Abiotic stress resulting from climate change, particularly elevated temperature and water stress, will reduce seed yield and quality. Options for the seed industry to adapt to climate change include moving sites for seed production, changing sowing date, and the development of cultivars with traits which allow them to adapt to climate change conditions. However, the ability of seed growers to make these changes is directly linked to the seed system. In the formal seed system operating in developed countries, implementation will be reasonably straight forward. In the informal system operating in developing countries, the current seed production challenges including supply failing to meet demand and poor seed quality will increase with changing climates.

  7. Impacts of climate variability and future climate change on harmful algal blooms and human health

    Science.gov (United States)

    Stephanie K. Moore; Vera L. Trainer; Nathan J. Mantua; Micaela S. Parker; Edward A. Laws; Lorraine C. Backer; Lora E. Fleming

    2008-01-01

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes...

  8. Expected impacts of climate change on extreme climate events

    International Nuclear Information System (INIS)

    Planton, S.; Deque, M.; Chauvin, F.; Terray, L.

    2008-01-01

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  9. Climate Changes and Their Impact on Agricultural Market Systems: Examples from Nepal

    Directory of Open Access Journals (Sweden)

    Andrea Karin Barrueto

    2017-11-01

    Full Text Available Global climate models foresee changes in temperature and precipitation regimes that shift regional climate zones and influence the viability of agricultural market systems. Understanding the influence of climate change on the different sub-sectors and functions of a market system is crucial to increasing the systems’ climate resilience and to ensuring the long-term viability of the sectors. Our research applies a new approach to climate change analysis to better understand the influence of climate change on each step of an agricultural market system—on its core (processing units, storage facilities and sales and support functions (sapling supply, research, insurance and agricultural policy. We use spatial climate analyses to investigate current and projected changes in climate for different regions in Nepal. We then analyse the risks and vulnerabilities of the sub-sectors banana, charcoal, coffee, macadamia, orange, vegetables and walnut. Our results show that temperatures and precipitation levels will change differently depending on the climatic regions, and that climate change elicits different responses from the market functions both between and within each of the different sub-sectors. We conclude that climate-related interventions in market systems must account for each different market function’s specific response and exposure to climate change, in order to select adaptation measures that ensure long-term climate resilience.

  10. Vulnerabilities of macrophytes distribution due to climate change

    Science.gov (United States)

    Hossain, Kaizar; Yadav, Sarita; Quaik, Shlrene; Pant, Gaurav; Maruthi, A. Y.; Ismail, Norli

    2017-08-01

    The rise in the earth's surface and water temperature is part of the effect of climatic change that has been observed for the last decade. The rates of climate change are unprecedented, and biological responses to these changes have also been prominent in all levels of species, communities and ecosystems. Aquatic-terrestrial ecotones are vulnerable to climate change, and degradation of the emergent aquatic macrophyte zone would have contributed severe ecological consequences for freshwater, wetland and terrestrial ecosystems. Most researches on climate change effects on biodiversity are contemplating on the terrestrial realm, and considerable changes in terrestrial biodiversity and species' distributions have been detected in response to climate change. This is unfortunate, given the importance of aquatic systems for providing ecosystem goods and services. Thus, if researchers were able to identify early-warning indicators of anthropogenic environmental changes on aquatic species, communities and ecosystems, it would certainly help to manage and conserve these systems in a sustainable way. One of such early-warning indicators concerns the expansion of emergent macrophytes in aquatic-terrestrial ecotones. Hence, this review highlights the impact of climatic changes towards aquatic macrophytes and their possible environmental implications.

  11. The Climate Change Learning Curve

    OpenAIRE

    Andrew J. Leach

    2004-01-01

    The key element in the tension between those who believe climate change is an issue and those who do not is essentially the question of whether we are merely in a long period of shock-induced above average temperatures or if we have led to this increase in temperatures by anthropogenic carbon emissions. The model proposed in this paper allows for a model in which we weigh observations on temperature against the potential that these are generated by a combination of uncertain parameters; namel...

  12. Global climate change

    International Nuclear Information System (INIS)

    Gugele, B.; Radunsky, K.; Spangl, W.

    2002-01-01

    In the last decade marked changes of climatic factors have been observed, such as increases in average global earth temperatures, the amount of precipitation and the number of extreme weather events. Green house gases influence the energy flow in the atmosphere by absorbing infra-red radiation. An overview of the Austrian greenhouse gas emissions is given, including statistical data and their major sources. In 1999 the emissions of all six Kyoto greenhouse gases ( CO 2 , CH 4 , N 2 O, HFC s , PFC s and SF 6 ) amounted to 79.2 million tonnes of CO 2 equivalents . A comparison between the EC Members states is also presented. Finally the climate change strategy prepared by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management together with other ministries and the federal provinces is discussed, which main aim is to lead to an annual emission reduction of 16 million tonnes of CO 2 . Figs. 2, Tables 1. (nevyjel)

  13. The upper end of climate model temperature projections is inconsistent with past warming

    International Nuclear Information System (INIS)

    Stott, Peter; Good, Peter; Jones, Gareth; Gillett, Nathan; Hawkins, Ed

    2013-01-01

    Climate models predict a large range of possible future temperatures for a particular scenario of future emissions of greenhouse gases and other anthropogenic forcings of climate. Given that further warming in coming decades could threaten increasing risks of climatic disruption, it is important to determine whether model projections are consistent with temperature changes already observed. This can be achieved by quantifying the extent to which increases in well mixed greenhouse gases and changes in other anthropogenic and natural forcings have already altered temperature patterns around the globe. Here, for the first time, we combine multiple climate models into a single synthesized estimate of future warming rates consistent with past temperature changes. We show that the observed evolution of near-surface temperatures appears to indicate lower ranges (5–95%) for warming (0.35–0.82 K and 0.45–0.93 K by the 2020s (2020–9) relative to 1986–2005 under the RCP4.5 and 8.5 scenarios respectively) than the equivalent ranges projected by the CMIP5 climate models (0.48–1.00 K and 0.51–1.16 K respectively). Our results indicate that for each RCP the upper end of the range of CMIP5 climate model projections is inconsistent with past warming. (letter)

  14. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  15. Climate change impact on economical and industrial activities

    Science.gov (United States)

    Parey, Sylvie; Bernardara, Pietro; Donat, Markus G.

    2010-05-01

    Climate change is underway and even if mitigation measures are successfully implemented, societies will have to adapt to new climatic conditions in the near future and further. This session had been proposed to gather different studies dedicated to the climate change impact on some human activities, and discuss the possible ways of adaptation. Climate change is often presented in terms of global mean temperature evolutions, but what is important for adaptation concerns the local evolutions, and rather of the variability and extremes than of the mean of the involved meteorological parameters. In the session, studies and applications will be presented, covering different economical and industrial activities, such as energy production, (re-) insurance and risk assessment, water management or tourism.

  16. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960-2014

    Science.gov (United States)

    Fang, Xuewei; Luo, Siqiong; Lyu, Shihua

    2018-01-01

    Soil temperature, an important indicator of climate change, has rarely explored due to scarce observations, especially in the Tibetan Plateau (TP) area. In this study, changes observed in five meteorological variables obtained from the TP between 1960 and 2014 were investigated using two non-parametric methods, the modified Mann-Kendall test and Sen's slope estimator method. Analysis of annual series from 1960 to 2014 has shown that surface (0 cm), shallow (5-20 cm), deep (40-320 cm) soil temperatures (ST), mean air temperature (AT), and precipitation (P) increased with rates of 0.47 °C/decade, 0.36 °C/decade, 0.36 °C/decade, 0.35 °C/decade, and 7.36 mm/decade, respectively, while maximum frozen soil depth (MFD) as well as snow cover depth (MSD) decreased with rates of 5.58 and 0.07 cm/decade. Trends were significant at 99 or 95% confidence level for the variables, with the exception of P and MSD. More impressive rate of the ST at each level than the AT indicates the clear response of soil to climate warming on a regional scale. Monthly changes observed in surface ST in the past decades were consistent with those of AT, indicating a central place of AT in the soil warming. In addition, with the exception of MFD, regional scale increasing trend of P as well as the decreasing MSD also shed light on the mechanisms driving soil trends. Significant negative-dominated correlation coefficients (α = 0.05) between ST and MSD indicate the decreasing MSD trends in TP were attributable to increasing ST, especially in surface layer. Owing to the frozen ground, the relationship between ST and P is complicated in the area. Higher P also induced higher ST, while the inhibition of freeze and thaw process on the ST in summer. With the increasing AT, P accompanied with the decreasing MFD, MSD should be the major factors induced the conspicuous soil warming of the TP in the past decades.

  17. Simulation of climate variability and anthropogenic climate change

    International Nuclear Information System (INIS)

    Bengtsson, Lennart

    1999-01-01

    The climatic changes in the last century were discussed and focus was on the questions: 1) What are the causes of the rapid climate fluctuations and 2) Is the global warming, which is observed during the last century, caused by natural or anthropogenic effects. It is concluded that an understanding of climate based on the interpretation of observational data only is not feasible, unless supported by an adequate theoretical interpretation. The capabilities of climatic models were discussed and the importance of incorporating 1) calculations of the internal variability of the atmosphere when forced from an ocean with prescribed sea surface temperature as well as for a system consisting of an atmosphere and a mixed ocean of limited depth, 2) a fully coupled atmospheric and ocean model and finally, 3) a fully coupled system including transiently changing greenhouse gases and aerosols. A short summation of the results is presented. The pronounced warming during the last century is not reproduced under the assumption of constant forcing and pollution emissions have to be incorporated into the models in order to bring the simulated data in agreement with observations

  18. Northward shift of the agricultural climate zone under 21st-century global climate change.

    Science.gov (United States)

    King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian

    2018-05-21

    As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.

  19. Climate change and wildlife in the southern United States: potential effects and management options

    Science.gov (United States)

    Cathryn H. Greenberg; Roger W. Perry; Kathleen E. Franzreb; Susan C. Loeb; Daniel Saenz; D. Craig Rudolph; Eric Winters; E.M. Fucik; M.A. Kwiatkowski; B.R. Parresol; J.D. Austin; G.W. Tanner

    2014-01-01

    In the southeastern United States, climate models project a temperature increase of 2-10°C by 2100 (Intergovernmental Panel on Climate Change 2007). Climate change is already evident. Since the 1970s, average temperature has risen by about 1°C, with the greatest seasonal temperature increase during winter. Average precipitation during autumn has increased by 30% since...

  20. Climate change and food security

    Science.gov (United States)

    Gregory, P.J; Ingram, J.S.I; Brklacich, M

    2005-01-01

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  1. Climate changes and biodiversity

    International Nuclear Information System (INIS)

    Bertelsmeier, C.

    2011-01-01

    As some people forecast an average temperature increase between 1 and 3.5 degrees by the end of the century, with higher increases under high latitudes (it could reach 8 degrees in some regions of Canada), other changes will occur: precipitations, sea level rise, reductions in polar ice, extreme climatic events, glacier melting, and so on. The author discusses how these changes will impact biodiversity as they will threat habitat and living conditions of many species. Some studies assess a loss of 15 to 37 per cent of biodiversity by 2050. Moreover, physiology is influenced by temperature: for some species, higher temperatures favour the development of female embryos, or the increase of their population, or may result in an evolution of their reproduction strategy. Life rhythm will also change, for plants as well as for animals. Species will keep on changing their distribution area, but some others will not be able to and are therefore threatened. Finally, as the evolutions concern their vectors, some diseases will spread in new regions

  2. Phenology and pest status of Agrotis segetum in a changing climate

    DEFF Research Database (Denmark)

    Esbjerg, Peter; Sigsgaard, Lene

    2014-01-01

    Insects are strongly dependent on climatic factors, especially temperature. For this reason, changes in insect phenology are predicted to be one of the many effects of climate change. We analysed the effect of climate warming on Agrotis segetum (Denis & Schiffermüller) in Denmark. Agrotis segetum...

  3. The Liability of European States for Climate Change

    Directory of Open Access Journals (Sweden)

    Roger H J Cox

    2014-02-01

    Full Text Available According to climate science and the 195 signatory States to the UN Climate Convention, every emission of anthropogenic greenhouse gases contributes to climate change. Furthermore, they hold that a two degree Celsius rise of Earth’s average temperature is to be considered as a dangerous climate change to mankind and all of the world’s ecosystems. Using the climate proceedings of Dutch citizens against the Dutch state as a starting point, the author of this case note explains why each European Member State’s contribution to dangerous climate change as a result of inadequate emission reduction policies constitutes a tort of negligence against its citizens and poses a real threat for its citizens’ effective enjoyment of human rights. The author argues that this makes individual European Nations severally liable for dangerous climate change and gives European citizens and non-governmental organisations the possibility to request their Nation State’s competent court to compel the Nation’s government to implement stricter emission reductions in accordance with what is deemed necessary to help avoid dangerous climate change and to protect their human rights.

  4. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    Science.gov (United States)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data

  5. Uncertainty in Simulating Wheat Yields Under Climate Change

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.; hide

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

  6. Evolution of plasticity and adaptive responses to climate change along climate gradients.

    Science.gov (United States)

    Kingsolver, Joel G; Buckley, Lauren B

    2017-08-16

    The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle , along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments. © 2017 The Author(s).

  7. Impacts of climate variability and future climate change on harmful algal blooms and human health

    Science.gov (United States)

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-01-01

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae. PMID:19025675

  8. Impacts of climate variability and future climate change on harmful algal blooms and human health.

    Science.gov (United States)

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-11-07

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.

  9. Climate Change Media Forum - for Enhanced Communication between Journalists and Climate Scientists in Japan

    Science.gov (United States)

    Goto-Maeda, Y.; Emori, S.; Takahashi, K.; Aoyagi-Usui, M.; Fukushi, K.; Tanaka, Y.; Fukuda, H.; Matsumoto, Y.; Asakura, A.; Hiramatsu, A.; Sumi, A.

    2011-12-01

    For researchers, being reported by mass media is an effective way to share their studies with others, although some have concerns that scientific results are often exaggerated by highlighting sensational parts and ignoring essential results by the media. Obviously, journalists have their own criteria of effective science reporting for their newspapers or magazines which do not necessarily conform to how researchers report their results. Climate Change Media Forum was started in 2009 by researchers specializing in climate science and communication to fill such gaps and enhance communication between climate scientists and journalists as part of a climate change research project funded by the Ministry of Environment of Japan. Since its start, forum events have been held once a year to exchange ideas on reporting of climate change science through mass media. At the first event in March, 2009, we started with learning about what actually the journalists and researchers think about media reports on climate change sciences. Using onsite questionnaire surveys, the participants (39 journalists and 31 researchers) discussed their problems on reporting climate change and what they would like to tell to the public. Some of the survey results suggested that researchers are willing to emphasize more about the conditions and assumptions of studies, while journalists would like to know more about current and short-term impacts. From the second year, two journalists joined the committee to make the events more meaningful for journalists. For the event in March, 2010, three months after COP15 in Copenhagen, the 2 degrees temperature target, which was the only written number on the Copenhagen Accord, was selected as a timely topic. Although researchers understand that a specific target is necessary for setting a concrete pathway, many of them also feel uncomfortable about selecting one single value from the temperature range with uncertainty. After two lectures on the history of the

  10. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  11. Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.

    2014-12-01

    Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.

  12. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  13. Regional climate change and national responsibilities

    Science.gov (United States)

    Hansen, James; Sato, Makiko

    2016-03-01

    Global warming over the past several decades is now large enough that regional climate change is emerging above the noise of natural variability, especially in the summer at middle latitudes and year-round at low latitudes. Despite the small magnitude of warming relative to weather fluctuations, effects of the warming already have notable social and economic impacts. Global warming of 2 °C relative to preindustrial would shift the ‘bell curve’ defining temperature anomalies a factor of three larger than observed changes since the middle of the 20th century, with highly deleterious consequences. There is striking incongruity between the global distribution of nations principally responsible for fossil fuel CO2 emissions, known to be the main cause of climate change, and the regions suffering the greatest consequences from the warming, a fact with substantial implications for global energy and climate policies.

  14. American archives and climate change: Risks and adaptation

    Directory of Open Access Journals (Sweden)

    T. Mazurczyk

    Full Text Available Climate change directly affects the future security of cultural resources. Cultural heritage and in particular, archives, are increasingly at risk of degradation due to climate change threats and triggers. This study evaluated present and future consequences of water-related climate change impacts using a mapping methodology to assess exposure of American archives to incompatible weather extremes. Susceptibility to climate change threats like sea level rise, storm surge, surface water flooding, and humidity, all influenced by a combination of temperature rise and increased precipitation, at a worst-case scenario were assessed for 1232 archival repositories. Results indicate that approximately 98.8% of archives are likely to be affected by at least one climate risk factor, though on average, most archives are at low risk of exposure (90% when risk factors are combined. Future storm surge plus sea level rise was likely to impact 17.7% of archival repositories with 22.1% affected by only storm surge and 4.3% affected by only sea level rise (1.8-m scenario. Fewer archives were likely to be susceptible to surface water flooding (2.4%. More than 90% of archives were estimated to have a temperature change greater than ±1 °C, with 7.5% of sites likely to change by ±10 °C, and 69.5% of archives were likely to receive at least 152 mm more rainfall by 2100 over current annual averages. In terms of sustainability, developing appropriate socio-economic planning schemes that integrate cumulative exposure of archives to future climate patterns is critically important for safeguarding society and its heritage. The outcomes from the risk assessment in this study aid in the decision-making process by promoting strategic adaptation protocols and providing administrators a way to prioritize archival management goals based on the expected severity of future climate change impacts. Keywords: Archives, Climate change, Sea level rise, Storm surge, Cultural

  15. Global climate change and California agriculture

    International Nuclear Information System (INIS)

    Lewis, L.; Rains, W.; Kennedy, L.

    1991-01-01

    This paper has highlighted some of the impacts that a warmer climate may have on agriculture in California. Because of the state's diverse geomorphology it is difficult to predict what crops will grow in which locations under future climate regimes. However, the potential interactions between warmer temperatures, higher CO 2 concentrations, and the factors that affect plant and animal growth may have major consequences for the competitive position of the state's agriculture. Forward-thinking research and public policies are required to assure that responses to climate change will optimize production systems under future constraints

  16. Nitrogen cycling in heathland ecosystems and effects of climate change

    DEFF Research Database (Denmark)

    Andresen, Louise Christoffersen

    Terrestrial ecosystems are currently exposed to climatic and air quality changes with increased atmospheric CO2, increased temperature and periodical droughts. At a temperate heath site this was investigated in a unique full factorial in situ experiment (CLIMAITE). The climate change treatments...

  17. Recent and Future Climate Change in Northwest China

    International Nuclear Information System (INIS)

    Shi, Yafeng; Shen, Yongping; Kang, Ersi; Li, Dongliang; Ding, Yongjian; Zhang, Guowei; Hu, Ruji

    2007-01-01

    As a consequence of global warming and an enhanced water cycle, the climate changed in northwest China, most notably in the Xinjiang area in the year 1987. Precipitation, glacial melt water and river runoff and air temperature increased continuously during the last decades, as did also the water level of inland lakes and the frequency of flood disasters. As a result, the vegetation cover is improved, number of days with sand-dust storms reduced. From the end of the 19th century to the 1970s, the climate was warm and dry, and then changed to warm and wet. The effects on northwest China can be classified into three classes by using the relation between precipitation and evaporation increase. If precipitation increases more than evaporation, runoff increases and lake water levels rise. We identify regions with: (1) notable change, (2) slight change and (3) no change. The future climate for doubled CO2 concentration is simulated in a nested approach with the regional climate model-RegCM2. The annual temperature will increase by 2.7C and annual precipitation by 25%. The cooling effect of aerosols and natural factors will reduce this increase to 2.0C and 19% of precipitation. As a consequence, annual runoff may increase by more than 10%

  18. Recent and Future Climate Change in Northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yafeng; Shen, Yongping; Kang, Ersi; Li, Dongliang; Ding, Yongjian [Cold and Arid Regions, Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000 (China); Zhang, Guowei [Xinjiang Bureau of Hydrology and Water Resources, Urumqi, 830010 (China); Hu, Ruji [Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 (China)

    2007-02-15

    As a consequence of global warming and an enhanced water cycle, the climate changed in northwest China, most notably in the Xinjiang area in the year 1987. Precipitation, glacial melt water and river runoff and air temperature increased continuously during the last decades, as did also the water level of inland lakes and the frequency of flood disasters. As a result, the vegetation cover is improved, number of days with sand-dust storms reduced. From the end of the 19th century to the 1970s, the climate was warm and dry, and then changed to warm and wet. The effects on northwest China can be classified into three classes by using the relation between precipitation and evaporation increase. If precipitation increases more than evaporation, runoff increases and lake water levels rise. We identify regions with: (1) notable change, (2) slight change and (3) no change. The future climate for doubled CO2 concentration is simulated in a nested approach with the regional climate model-RegCM2. The annual temperature will increase by 2.7C and annual precipitation by 25%. The cooling effect of aerosols and natural factors will reduce this increase to 2.0C and 19% of precipitation. As a consequence, annual runoff may increase by more than 10%.

  19. Forecasting conditional climate-change using a hybrid approach

    Science.gov (United States)

    Esfahani, Akbar Akbari; Friedel, Michael J.

    2014-01-01

    A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.

  20. Climate Change and Global Wine Quality

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.V. [Department of Geography, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon, 97520 (United States); White, M.A. [Department of Aquatic, Watershed, and Earth Resources, Utah State University, Logan, Utah, 84322 (United States); Cooper, O.R. [Cooperative Institute for Research in Environmental Sciences CIRES, University of Colorado/NOAA Aeronomy Laboratory, Boulder, Colorado, 80305 (United States); Storchmann, K. [Department of Economics, Yale University, New Haven, Connecticut, 06520 (United States)

    2005-12-01

    From 1950 to 1999 the majority of the world's highest quality wine-producing regions experienced growing season warming trends. Vintage quality ratings during this same time period increased significantly while year-to-year variation declined. While improved winemaking knowledge and husbandry practices contributed to the better vintages it was shown that climate had, and will likely always have, a significant role in quality variations. This study revealed that the impacts of climate change are not likely to be uniform across all varieties and regions. Currently, many European regions appear to be at or near their optimum growing season temperatures, while the relationships are less defined in the New World viticulture regions. For future climates, model output for global wine producing regions predicts an average warming of 2C in the next 50 yr. For regions producing high-quality grapes at the margins of their climatic limits, these results suggest that future climate change will exceed a climatic threshold such that the ripening of balanced fruit required for existing varieties and wine styles will become progressively more difficult. In other regions, historical and predicted climate changes could push some regions into more optimal climatic regimes for the production of current varietals. In addition, the warmer conditions could lead to more poleward locations potentially becoming more conducive to grape growing and wine production.

  1. Climate conditions, and changes, affect microalgae communities… should we worry?

    Science.gov (United States)

    Gimenez Papiol, Gemma

    2018-03-01

    Microalgae play a pivotal role in the regulation of Earth's climate and its cycles, but are also affected by climate change, mainly by changes in temperature, light, ocean acidification, water stratification, and precipitation-induced nutrient inputs. The changes and impacts on microalgae communities are difficult to study, predict, and manage, but there is no doubt that there will be changes. These changes will have impacts beyond microalgae communities, and many of them will be negative. Some actions are currently ongoing for the mitigation of some of the negative impacts, such as harmful algal blooms and water quality, but global efforts for reducing CO 2 emissions, temperature rises, and ocean acidification are paramount for reducing the impact of climate change on microalgae communities, and eventually, on human well-being. Integr Environ Assess Manag 2018;14:181-184. © 2018 SETAC. © 2018 SETAC.

  2. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest

    Science.gov (United States)

    Charles Luce; Brian Staab; Marc Kramer; Seth Wenger; Dan Isaak; Callie McConnell

    2014-01-01

    Estimating the thermal response of streams to a warming climate is important for prioritizing native fish conservation efforts. While there are plentiful estimates of air temperature responses to climate change, the sensitivity of streams, particularly small headwater streams, to warming temperatures is less well understood. A substantial body of literature correlates...

  3. Biotic and Biogeochemical Feedbacks to Climate Change

    Science.gov (United States)

    Torn, M. S.; Harte, J.

    2002-12-01

    Feedbacks to paleoclimate change are evident in ice core records showing correlations of temperature with carbon dioxide, nitrous oxide, and methane. Such feedbacks may be explained by plant and microbial responses to climate change, and are likely to occur under impending climate warming, as evidenced by results of ecosystem climate manipulation experiments and biometeorological observations along ecological and climate gradients. Ecosystems exert considerable influence on climate, by controlling the energy and water balance of the land surface as well as being sinks and sources of greenhouse gases. This presentation will focus on biotic and biogeochemical climate feedbacks on decadal to century time scales, emphasizing carbon storage and energy exchange. In addition to the direct effects of climate on decomposition rates and of climate and CO2 on plant productivity, climate change can alter species composition; because plant species differ in their surface properties, productivity, phenology, and chemistry, climate-induced changes in plant species composition can exert a large influence on the magnitude and sign of climate feedbacks. We discuss the effects of plant species on ecosystem carbon storage that result from characteristic differences in plant biomass and lifetime, allocation to roots vs. leaves, litter quality, microclimate for decomposition and the ultimate stabilization of soil organic matter. We compare the effect of species transitions on transpiration, albedo, and other surface properties, with the effect of elevated CO2 and warming on single species' surface exchange. Global change models and experiments that investigate the effect of climate only on existing vegetation may miss the biggest impacts of climate change on biogeochemical cycling and feedbacks. Quantification of feedbacks will require understanding how species composition and long-term soil processes will change under global warming. Although no single approach, be it experimental

  4. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    Science.gov (United States)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  5. Means and extremes: building variability into community-level climate change experiments.

    Science.gov (United States)

    Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula

    2013-06-01

    Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.

  6. An Exploratory Analysis of the Impact of Climate Change on Macedonian Agriculture

    Directory of Open Access Journals (Sweden)

    Jordan Hristov

    2017-12-01

    Full Text Available Using a mixed input–output model, this study examines potential changes in sector output and water requirements in Macedonia arising from climate change. By defining three climate change scenarios and exogenously specifying the warming shocks for five key agricultural sub-sectors, the effects on the economy were quantified. The results indicated that except for cereals and grapes, agricultural production would benefit from the low climate change scenario due to moderate changes in precipitation and temperature and longer cropping period, while there would be negligible effects on the rest of the economy. Contrary, the medium and high climate change scenarios would negatively affect agriculture due to increase in temperature and decline in precipitation, with severe losses in grape, apple and cereal production, but again with low effects on other economic sectors. As a result, water consumption by agriculture sector will increase by around 6% in the low climate change scenario, and decrease by around 8% and 16% in the medium and high climate change scenarios, respectively, relative to the current agriculture water consumption. Capital investment in irrigation equipment could mitigate the negative climate change impacts in the medium and high climate change scenarios. However, it would impose additional stresses on the existing limited water resource over time.

  7. The human health chapter of climate change and ozone depletion ...

    African Journals Online (AJOL)

    Climate change is one of the greatest emerging threats of the 21st century. There is much scientific evidence that climate change is giving birth to direct health events including more frequent weather extremes, increase in epidemics, food and water scarcity. Indirect risks to health are related to changes in temperature and ...

  8. Vulnerability to Climate Change in Rural Nicaragua

    Science.gov (United States)

    Byrne, T. R.; Townshend, I.; Byrne, J. M.; McDaniel, S. A.

    2013-12-01

    While there is a growing recognition of the impact that climate change may have on human development, there has been a shift in focus from an impacts-led assessment approach towards a vulnerability-led assessment approach. This research operationalizes the IPCC's definition of vulnerability in a sub-national assessment to understand how different factors that shape vulnerability to climate change vary spatially across rural Nicaragua. The research utilizes the Food and Agriculture Organization of the United Nations' (FAO UN) CropWat model to evaluate how the annual yield of two of Nicaragua's staple crops may change under projected changes in temperature and precipitation. This analysis of agricultural sensitivity under exposure to climate change is then overlain with an indicator-based assessment of adaptive capacity in rural Nicaraguan farming households. Adaptive capacity was evaluated using household survey data from the 2001 National Household Survey on Living Standards Measurement, which was provided to us by the FAO UN. The result is a map representing current vulnerability to future climate change, and can serve as a basis for targeting policy interventions in rural Nicaragua.

  9. Sensitivity of Climate Change Detection and Attribution to the Characterization of Internal Climate Variability

    KAUST Repository

    Imbers, Jara; Lopez, Ana; Huntingford, Chris; Allen, Myles

    2014-01-01

    The Intergovernmental Panel on Climate Change's (IPCC) "very likely" statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under different representations of such variability. The contributions of the different natural and anthropogenic forcings to the global mean surface air temperature response are computed using a box diffusion model. Representations of internal climate variability are explored using simple stochastic models that nevertheless span a representative range of plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)] process and the long-memory fractionally differencing process. The authors find that, independently of the representation chosen, the greenhouse gas signal remains statistically significant under the detection model employed in this paper. The results support the robustness of the IPCC detection and attribution statement for global mean temperature change under different characterizations of internal variability, but they also suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be performed when dealing with other climate variables and/or different spatial scales. © 2014 American Meteorological Society.

  10. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  11. Climatic projections and socio economic impacts of the climatic change in Colombia

    International Nuclear Information System (INIS)

    Eslava R, Jesus Antonio; Pabon Caicedo, Jose Daniel

    2001-01-01

    For the task of working out climate change projections, different methodologies have been in use, from simple extrapolations to sophisticated statistical and mathematical tools. Today, the tools most used are the models of the general circulation of the atmosphere and ocean, which include many processes of other climate components (biosphere, cryosphere, continental surface models, etc.). Different global and regional scenarios have been generated with those models. They may be of great utility in calculating projections and future scenarios for Colombia, but the representation of the country's climate in those models has to be improved in order to get projections with a higher level of certainty. The application of climate models and of the techniques of down scaling in studies of climate change is new both in Colombia and tropical America, and was introduced through the National University of Colombia's project on local and national climate change. In the first phase of the project, version 3 of the CCM (Climate Community Model) of NCAR was implemented. Parallel to that, and based on national (grid) data, maps have been prepared of the monthly temperature and precipitation of Colombia, which were used to validate the model

  12. Public Health-Related Impacts of Climate Change inCalifornia

    Energy Technology Data Exchange (ETDEWEB)

    Drechsler, D.M.; Motallebi, N.; Kleeman, M.; Cayan, D.; Hayhoe,K.; Kalkstein, L.S.; Miller, N.L.; Jin, J.; VanCuren, R.A.

    2005-12-01

    In June 2005 Governor Arnold Schwarzenegger issued Executive Order S-3-05 that set greenhouse gas emission reduction targets for California, and directed the Secretary of the California Environmental Protection Agency to report to the governor and the State legislature by January 2006 and biannually thereafter on the impacts to California of global warming, including impacts to water supply, public health, agriculture, the coastline, and forestry, and to prepare and report on mitigation and adaptation plans to combat these impacts. This report is a part of the report to the governor and legislature, and focuses on public health impacts that have been associated with climate change. Considerable evidence suggests that average ambient temperature is increasing worldwide, that temperatures will continue to increase into the future, and that global warming will result in changes to many aspects of climate, including temperature, humidity, and precipitation (McMichael and Githeko, 2001). It is expected that California will experience changes in both temperature and precipitation under current trends. Many of the changes in climate projected for California could have ramifications for public health (McMichael and Githeko, 2001), and this document summarizes the impacts judged most likely to occur in California, based on a review of available peer-reviewed scientific literature and new modeling and statistical analyses. The impacts identified as most significant to public health in California include mortality and morbidity related to temperature, air pollution, vector and water-borne diseases, and wildfires. There is considerable complexity underlying the health of a population with many contributing factors including biological, ecological, social, political, and geographical. In addition, the relationship between climate change and changes in public health is difficult to predict for the most part, although more detailed information is available on temperature

  13. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    Energy Technology Data Exchange (ETDEWEB)

    Heide-Joergensen, H S; Johnsen, I [Koebenhavns Univ., Botanisk Inst., Oekologisk afd. (Denmark)

    1998-12-31

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  14. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    International Nuclear Information System (INIS)

    Heide-Joergensen, H.S.; Johnsen, I.

    1997-01-01

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  15. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    Energy Technology Data Exchange (ETDEWEB)

    Heide-Joergensen, H.S.; Johnsen, I. [Koebenhavns Univ., Botanisk Inst., Oekologisk afd. (Denmark)

    1997-12-31

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  16. Climate Change and Variability in Ghana: Stocktaking

    Directory of Open Access Journals (Sweden)

    Felix A. Asante

    2014-12-01

    Full Text Available This paper provides a holistic literature review of climate change and variability in Ghana by examining the impact and projections of climate change and variability in various sectors (agricultural, health and energy and its implication on ecology, land use, poverty and welfare. The findings suggest that there is a projected high temperature and low rainfall in the years 2020, 2050 and 2080, and desertification is estimated to be proceeding at a rate of 20,000 hectares per annum. Sea-surface temperatures will increase in Ghana’s waters and this will have drastic effects on fishery. There will be a reduction in the suitability of weather within the current cocoa-growing areas in Ghana by 2050 and an increase evapotranspiration of the cocoa trees. Furthermore, rice and rooted crops (especially cassava production are expected to be low. Hydropower generation is also at risk and there will be an increase in the incidence rate of measles, diarrheal cases, guinea worm infestation, malaria, cholera, cerebro-spinal meningitis and other water related diseases due to the current climate projections and variability. These negative impacts of climate change and variability worsens the plight of the poor, who are mostly women and children.

  17. Interactions between climate change and contaminants.

    Science.gov (United States)

    Schiedek, Doris; Sundelin, Brita; Readman, James W; Macdonald, Robie W

    2007-12-01

    There is now general consensus that climate change is a global threat and a challenge for the 21st century. More and more information is available demonstrating how increased temperature may affect aquatic ecosystems and living resources or how increased water levels may impact coastal zones and their management. Many ecosystems are also affected by human releases of contaminants, for example from land based sources or the atmosphere, which also may cause severe effects. So far these two important stresses on ecosystems have mainly been discussed independently. The present paper is intended to increase awareness among scientists, coastal zone managers and decision makers that climate change will affect contaminant exposure and toxic effects and that both forms of stress will impact aquatic ecosystems and biota. Based on examples from different ecosystems, we discuss risks anticipated from contaminants in a rapidly changing environment and the research required to understand and predict how on-going and future climate change may alter risks from chemical pollution.

  18. Climate change impacts in Iran: assessing our current knowledge

    Science.gov (United States)

    Rahimi, Jaber; Malekian, Arash; Khalili, Ali

    2018-02-01

    During recent years, various studies have focused on investigating the direct and indirect impacts of climate changes in Iran while the noteworthy fact is the achievement gained by these researches. Furthermore, what should be taken into consideration is whether these studies have been able to provide appropriate opportunities for improving further studies in this particular field or not. To address these questions, this study systematically reviewed and summarized the current available literature (n = 150) regarding the impacts of climate change on temperature and precipitation in Iran to assess our current state of knowledge. The results revealed that while all studies discuss the probable changes in temperature and precipitation over the next decades, serious contradictions could be seen in their results; also, the general pattern of changes was different in most of the cases. This matter may have a significant effect on public beliefs in climate change, which can be a serious warning for the activists in this realm.

  19. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R; Feneberg, B; Ponater, M [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  20. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  1. Climate change and global crop yield: impacts, uncertainties and adaptation

    OpenAIRE

    Deryng, Delphine

    2014-01-01

    As global mean temperature continues to rise steadily, agricultural systems are projected to face unprecedented challenges to cope with climate change. However, understanding of climate change impacts on global crop yield, and of farmers’ adaptive capacity, remains incomplete as previous global assessments: (1) inadequately evaluated the role of extreme weather events; (2) focused on a small subset of the full range of climate change predictions; (3) overlooked uncertainties related to the ch...

  2. Amplification and dampening of soil respiration by changes in temperature variability

    Directory of Open Access Journals (Sweden)

    C. A. Sierra

    2011-04-01

    Full Text Available Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature. Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long-term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen the release of carbon through soil respiration as climate regimes change. These effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  3. Amplification and dampening of soil respiration by changes in temperature variability

    Science.gov (United States)

    Sierra, C.A.; Harmon, M.E.; Thomann, E.; Perakis, S.S.; Loescher, H.W.

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feed backs related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature vari-ability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature.Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen there release of carbon through soil respiration as climate regimes change. The effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  4. Recent climate changes in the northern hemisphere

    International Nuclear Information System (INIS)

    Trenberth, K.E.

    1990-01-01

    The consistency of analyzed changes in surface wind stress, sea level pressures and surface temperatures between 1980-86 and previous periods indicates the reality of statistically significant and substantial climate changes in the Northern Hemisphere, especially over the North Pacific, on decadal time scales. Cooling in North Pacific sea surface temperatures and warming along the west coast of North America and Alaska are ascribed mainly to the changes in thermal advection associated with a deeper and more extensive Aleutian Low

  5. Risk to a Changing Climate in the Mexico City Metropolitan Area

    Science.gov (United States)

    Vargas, N. D.

    2016-12-01

    The issue of climate change has dominated the atmospheric sciences agenda in recent decades. The concern about an increase in climate related disasters, mainly in large population centers, has led to ask whether they are mainly due to changes in climate or in vulnerability.The Mexico City Metropolitan Area (MCMA) is an example of megalopolis under high climate risk, where floods, landslides, health problems, high air pollution events, socioeconomic droughts are becoming important environmental and social problems. As urbanization spreads and population increases exposure to natural hazards increases, and so the magnitude of risk to a changing climate and the negative impacts. Since the late nineteenth century, in the MCMA an average maximum temperature could be around 22°C, whereas today it is about 24.5ºC. That is, the increase in the average temperature in Mexico City is around 3°C in a hundred years. But there are areas where an increase in the average temperature is similar in only thirty years. The heating rate of the city can vary depending on the change in land use. Areas that conserve forested regions in the process of urbanization tend to warm less than areas where the transformation into concrete and cement is almost complete. Thus, the climate of the MCMA shows important changes mainly in relation to land use changes. Global warming and natural climate variability were also analyzed as possible forcing factors of the observed warming by comparing low frequency variations in local temperature and indices for natural forcing. The hydrological cycle of the MCMA has also changed with urbanization. The "bubble of hot air" over the urban area has more capacity to hold moisture now than before the UHI. However, the increased risk to floods, heat or drought appears to be related not only to more frequent intense climatic hazards induced by the urbanization effect. This process also induces increased vulnerability to a changing climate. The establishment of

  6. Georgian climate change under global warming conditions

    Directory of Open Access Journals (Sweden)

    Mariam Elizbarashvili

    2017-03-01

    Full Text Available Georgian Climate change has been considered comprehensively, taking into account World Meteorological Organization recommendations and recent observation data. On the basis of mean temperature and precipitation decadal trend geo-information maps for 1936–2012 years period, Georgian territory zoning has been carried out and for each areas climate indices main trends have been studied, that best characterize climate change - cold and hot days, tropical nights, vegetation period duration, diurnal maximum precipitation, maximum five-day total precipitation, precipitation intensity simple index, precipitation days number of at least 10 mm, 20 mm and 50 mm, rainy and rainless periods duration. Trends of temperature indices are statistically significant. On the Black Sea coastline and Colchis lowland at high confidence level cold and hot days and tropical nights number changes are statistically significant. On eastern Georgia plains at high level of statistical significance, the change of all considered temperature indices has been fixed except for the number of hot days. In mountainous areas only hot day number increasing is significant. Trends of most moisture indices are statistically insignificant. While keeping Georgian climate change current trends, precipitation amount on the Black Sea coastline and Colchis lowland, as well as in some parts of Western Caucasus to the end of the century will increase by 50% and amounts to 3000 and 6000 mm, respectively this will strengthen humidity of those areas. Besides increasing of rainy period duration may constitute the risk for flooding and high waters. On eastern Georgia plains, in particular Kvemo Kartli, annual precipitation amount will decrease by 50% or more, and will be only 150–200 mm and the precipitation daily maximum will decrease by about 20 mm and be only 10–15 mm, which of course will increase the intensity of desertification of steppe and semi-desert landscapes.

  7. Physical and economic consequences of climate change in Europe.

    Science.gov (United States)

    Ciscar, Juan-Carlos; Iglesias, Ana; Feyen, Luc; Szabó, László; Van Regemorter, Denise; Amelung, Bas; Nicholls, Robert; Watkiss, Paul; Christensen, Ole B; Dankers, Rutger; Garrote, Luis; Goodess, Clare M; Hunt, Alistair; Moreno, Alvaro; Richards, Julie; Soria, Antonio

    2011-02-15

    Quantitative estimates of the economic damages of climate change usually are based on aggregate relationships linking average temperature change to loss in gross domestic product (GDP). However, there is a clear need for further detail in the regional and sectoral dimensions of impact assessments to design and prioritize adaptation strategies. New developments in regional climate modeling and physical-impact modeling in Europe allow a better exploration of those dimensions. This article quantifies the potential consequences of climate change in Europe in four market impact categories (agriculture, river floods, coastal areas, and tourism) and one nonmarket impact (human health). The methodology integrates a set of coherent, high-resolution climate change projections and physical models into an economic modeling framework. We find that if the climate of the 2080s were to occur today, the annual loss in household welfare in the European Union (EU) resulting from the four market impacts would range between 0.2-1%. If the welfare loss is assumed to be constant over time, climate change may halve the EU's annual welfare growth. Scenarios with warmer temperatures and a higher rise in sea level result in more severe economic damage. However, the results show that there are large variations across European regions. Southern Europe, the British Isles, and Central Europe North appear most sensitive to climate change. Northern Europe, on the other hand, is the only region with net economic benefits, driven mainly by the positive effects on agriculture. Coastal systems, agriculture, and river flooding are the most important of the four market impacts assessed.

  8. Climate change impacts on crop yield: evidence from China.

    Science.gov (United States)

    Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi

    2014-11-15

    When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The ACPI Climate Change Simulations

    International Nuclear Information System (INIS)

    Dai, A.; Washington, W.M.; Meehl, G.A.; Bettge, T.W.; Strand, W.G.

    2004-01-01

    The Parallel Climate Model (PCM) has been used in the Accelerated Climate Prediction Initiative (ACPI) Program to simulate the global climate response to projected CO2, sulfate, and other greenhouse gas forcing under a business-as-usual emissions scenario during the 21st century. In these runs, the oceans were initialized to 1995 conditions by a group from the Scripps Institution of Oceanography and other institutions. An ensemble of three model runs was then carried out to the year 2099 using the projected forcing. Atmospheric data from these runs were saved at 6-hourly intervals (hourly for certain critical fields) to support the ACPI objective of accurately modeling hydrological cycles over the western U.S. It is shown that the initialization to 1995 conditions partly removes the un-forced oceanic temperature and salinity drifts that occurred in the standard 20th century integration. The ACPI runs show a global surface temperature increase of 3-8C over northern high-latitudes by the end of the 21st century, and 1-2C over the oceans. This is generally within ±0.1C of model runs without the 1995 ocean initialization. The exception is in the Antarctic circumpolar ocean where surface air temperature is cooler in the ACPI run; however the ensemble scatter is large in this region. Although the difference in climate at the end of the 21st century is minimal between the ACPI runs and traditionally spun up runs, it might be larger for CGCMs with higher climate sensitivity or larger ocean drifts. Our results suggest that the effect of small errors in the oceans (such as those associated with climate drifts) on CGCM-simulated climate changes for the next 50-100 years may be negligible

  10. Modeling behavioral thermoregulation in a climate change sentinel.

    Science.gov (United States)

    Moyer-Horner, Lucas; Mathewson, Paul D; Jones, Gavin M; Kearney, Michael R; Porter, Warren P

    2015-12-01

    When possible, many species will shift in elevation or latitude in response to rising temperatures. However, before such shifts occur, individuals will first tolerate environmental change and then modify their behavior to maintain heat balance. Behavioral thermoregulation allows animals a range of climatic tolerances and makes predicting geographic responses under future warming scenarios challenging. Because behavioral modification may reduce an individual's fecundity by, for example, limiting foraging time and thus caloric intake, we must consider the range of behavioral options available for thermoregulation to accurately predict climate change impacts on individual species. To date, few studies have identified mechanistic links between an organism's daily activities and the need to thermoregulate. We used a biophysical model, Niche Mapper, to mechanistically model microclimate conditions and thermoregulatory behavior for a temperature-sensitive mammal, the American pika (Ochotona princeps). Niche Mapper accurately simulated microclimate conditions, as well as empirical metabolic chamber data for a range of fur properties, animal sizes, and environmental parameters. Niche Mapper predicted pikas would be behaviorally constrained because of the need to thermoregulate during the hottest times of the day. We also showed that pikas at low elevations could receive energetic benefits by being smaller in size and maintaining summer pelage during longer stretches of the active season under a future warming scenario. We observed pika behavior for 288 h in Glacier National Park, Montana, and thermally characterized their rocky, montane environment. We found that pikas were most active when temperatures were cooler, and at sites characterized by high elevations and north-facing slopes. Pikas became significantly less active across a suite of behaviors in the field when temperatures surpassed 20°C, which supported a metabolic threshold predicted by Niche Mapper. In general

  11. Potential climate change impacts on temperate forest ecosystem processes

    Science.gov (United States)

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  12. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  13. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  14. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  15. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  16. Fisheries and climate change: The Danish perspective

    International Nuclear Information System (INIS)

    MacKenzie, B.R.; Visser, A.W.

    2001-01-01

    Generally, the specific processes involved in fish abundance-climate relationships are not well known and there is usually much variability associated with projections of fish abundance. At the present time therefore it is possible to make only limited predictions how climate change will affect the fish species composition in Danish waters. Some general expectations are possible based on past observations in response to decadal climate fluctuations (e.g. NAO - North Atlantic Oscillation), but more concrete prognoses will require a more extensive review and analysis of existing fisheries and environmental information as well as a further knowledge of processes affecting fish production and survival. Despite the existing limitations in understanding, three general types of changes can be expected. - First, the survival, growth and reproduction of fish species presently found in Danish waters will changes as temperatures rise and salinities fall. The forecasted change will be beneficial for some species and detrimental to others. The relative abundances of those species presently living in Danish waters will therefore change. - Second, as the temperature and salinity changes progress, the species composition of the fish community will change. We can expect to see 'new' species enter Danish waters and existing species to become rarer or locally extinct. These changes will be due to 1) the immigration of exotic species, probably from more temperate areas to the south; 2) the success/failure of local species to adapt to the changing abiotic conditions; and 3) the establishment of immigrant species which may be direct competitors or predators of species presently living in Danish waters. What is not presently clear is which species will immigrate or disappear and whether the overall species diversity or richness of the fish community will change. It is also not clear how the climate changes will affect genetic diversity within a species. - Third, the proportion of pelagic

  17. Can model weighting improve probabilistic projections of climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, Jouni; Ylhaeisi, Jussi S. [Department of Physics, P.O. Box 48, University of Helsinki (Finland)

    2012-10-15

    Recently, Raeisaenen and co-authors proposed a weighting scheme in which the relationship between observable climate and climate change within a multi-model ensemble determines to what extent agreement with observations affects model weights in climate change projection. Within the Third Coupled Model Intercomparison Project (CMIP3) dataset, this scheme slightly improved the cross-validated accuracy of deterministic projections of temperature change. Here the same scheme is applied to probabilistic temperature change projection, under the strong limiting assumption that the CMIP3 ensemble spans the actual modeling uncertainty. Cross-validation suggests that probabilistic temperature change projections may also be improved by this weighting scheme. However, the improvement relative to uniform weighting is smaller in the tail-sensitive logarithmic score than in the continuous ranked probability score. The impact of the weighting on projection of real-world twenty-first century temperature change is modest in most parts of the world. However, in some areas mainly over the high-latitude oceans, the mean of the distribution is substantially changed and/or the distribution is considerably narrowed. The weights of individual models vary strongly with location, so that a model that receives nearly zero weight in some area may still get a large weight elsewhere. Although the details of this variation are method-specific, it suggests that the relative strengths of different models may be difficult to harness by weighting schemes that use spatially uniform model weights. (orig.)

  18. Quebec industry and climatic changes : Quebec Industry Working Group on Climatic Changes

    International Nuclear Information System (INIS)

    2001-03-01

    Global climatic change is a phenomenon greatly influenced by greenhouse gas emissions resulting from human activity and the natural greenhouse effect necessary to sustain life on the planet. Carbon dioxide emissions in the atmosphere now exceed the levels prior to the industrial revolution by 31 per cent. Half of this increase occurred during the past 30 years, while the average temperature increased by 0.3 to 0.6 degrees C. By using climate change models, scientists have linked this increase to the increase in the concentration of carbon dioxide in the atmosphere and predict that the average temperature will rise by 1 to 3.5 degrees C during the next century with increases of 5 to 10 degrees C being felt in certain parts of Canada. In an effort to curb the emissions of carbon dioxide, the Quebec Industry Working Group on Climatic Change was created to represent different sectors of the industry, including energy, metallurgy, aluminium, cement, environment, mines, plastics, petrochemicals, pulp and paper, and manufacturing. The group worked at meeting the following objectives: (1) to examine the possibilities of reducing greenhouse gases emissions in the industrial sector, (2) to propose and evaluate measures and initiatives for the reduction of greenhouse gases emissions including their cost, impact and potential timetable for implementation, (3) to identify new and promising technologies in the field of greenhouse gases reduction, (4) to identify business opportunities and risks for industry in Quebec, and (5) to recommend an implementation strategy for the Kyoto Protocol for each sector, in terms of reduction measures that would be economical and in agreement with the various plans in place at the federal, provincial and municipal levels. A total of 22 recommendations were proposed covering the entire spectrum of the mandate. 15 tabs, 2 appendices

  19. Public Perception of Climate Change and the New Climate Dice

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Ruedy, Reto

    2012-01-01

    "Climate dice", describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 years, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3 sigma) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming, because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change.

  20. Climate change and maize agriculture among Chepang communities of Nepal: A review

    Directory of Open Access Journals (Sweden)

    Pratiksha Sharma

    2017-12-01

    Full Text Available This paper reviews recent literature concerning effects of climate change on agriculture and its agricultural adaptation strategies, climate change impacts on Chepang communities and their maize farming. Climate change is perhaps the most serious environmental threat to agricultural productivity. Change in temperature and precipitation specially has greater influence on crop growth and productivity and most of these effect are found to be adverse. Climate change has been great global threat with global temperature rise by 0.83 °C and global sea level rise by 0.19 m. Poor countries of the world are more vulnerable to changing climate due to different technological, institutional and resource constraints. In context of Nepal, practices like tree plantation, lowering numbers of livestock, shifting to off farm activities, sloping agricultural land technology (SALT and shifting cultivation are most common coping strategies. Chepang, one of the most backward indigenous ethnic groups of Nepal are also found to perceive change in the climate. Perception and adaptation strategies followed by different farmers of world including Chepang is mainly found to be effected by household head’s age, size of farm, family size, assessment to credit, information and extension service, training received and transportation. Maize is second most important crop in Nepal in which increase in temperature is favorable in Mountain and its yield is negatively influenced by increase in summer rain and maximum temperature. Local knowledge of indigenous people provides new insights into the phenomenon that has not yet been scientifically researched. So, government should combine this perceptive with scientific climate scenario and should conduct activities in term of adoption strategies and policies to insist targeted and marginalized farmers.

  1. Climate Reconstructions of the Younger Dryas: An ELA Model Investigating Variability in ELA Depressions, Temperature, and Precipitation Changes for the Graubϋnden Alps

    Science.gov (United States)

    Keeler, D. G.; Rupper, S.; Schaefer, J. M.; Finkel, R. C.

    2015-12-01

    The high sensitivity of mountain glaciers to even small perturbations in climate, combined with a near global distribution, make alpine glaciers an important target for terrestrial paleoclimate reconstructions. The geomorphic remnant of past glaciers can yield important insights into past climate, particularly in regions where other methods of reconstruction are not possible. The quantitative conversion of these changes in geomorphology to a climate signal, however, presents a significant challenge. A particular need exists for a versatile climate reconstruction method applicable to diverse glacierized regions around the globe. Because the glacier equilibrium line altitude (ELA) provides a more explicit comparison of climate than properties such as glacier length or area, ELA methods lend themselves well to such a need, and allow for a more direct investigation of the primary drivers of mountain glaciations during specific events. Here, we present an ELA model for quantifying changes in climate based on changes in glacier extent, while accounting for differences in glacier width, glacier shape, bed topography, ice thickness, and glacier length. The model furthermore provides bounds on the ΔELA using Monte Carlo simulations. These methods are validated using published mass balances and ELA measurements from 4 modern glaciers in the European Alps. We then use this ELA model, combined with a surface mass and energy balance model, to estimate the changes in temperature/precipitation between the Younger Dryas (constrained by 10Be surface exposure ages) and the present day for three glacier systems in the Graubϋnden Alps. Our results indicate an ELA depression in this area of 257 m ±45 m during the Younger Dryas (YD) relative to today. This corresponds to a 1.3 °C ±0.36 °C decrease in temperature or a 156% ±30% increase in precipitation relative to today. These results indicate the likelihood of a predominantly temperature-driven change rather than a strong

  2. Utilising temperature differences as constraints for estimating parameters in a simple climate model

    International Nuclear Information System (INIS)

    Bodman, Roger W; Karoly, David J; Enting, Ian G

    2010-01-01

    Simple climate models can be used to estimate the global temperature response to increasing greenhouse gases. Changes in the energy balance of the global climate system are represented by equations that necessitate the use of uncertain parameters. The values of these parameters can be estimated from historical observations, model testing, and tuning to more complex models. Efforts have been made at estimating the possible ranges for these parameters. This study continues this process, but demonstrates two new constraints. Previous studies have shown that land-ocean temperature differences are only weakly correlated with global mean temperature for natural internal climate variations. Hence, these temperature differences provide additional information that can be used to help constrain model parameters. In addition, an ocean heat content ratio can also provide a further constraint. A pulse response technique was used to identify relative parameter sensitivity which confirmed the importance of climate sensitivity and ocean vertical diffusivity, but the land-ocean warming ratio and the land-ocean heat exchange coefficient were also found to be important. Experiments demonstrate the utility of the land-ocean temperature difference and ocean heat content ratio for setting parameter values. This work is based on investigations with MAGICC (Model for the Assessment of Greenhouse-gas Induced Climate Change) as the simple climate model.

  3. Regional Highlights of Climate Change

    Science.gov (United States)

    David L. Peterson; J.M. Wolken; Teresa Hollingsworth; Christian Giardina; J.S. Littell; Linda Joyce; Chris Swanston; Stephen Handler; Lindsey Rustad; Steve McNulty

    2014-01-01

    Climatic extremes, ecological disturbance, and their interactions are expected to have major effects on ecosystems and social systems in most regions of the United States in the coming decades. In Alaska, where the largest temperature increases have occurred, permafrost is melting, carbon is being released, and fire regimes are changing, leading to a...

  4. The effect of seasonal changes and climatic factors on suicide attempts of young people.

    Science.gov (United States)

    Akkaya-Kalayci, Türkan; Vyssoki, Benjamin; Winkler, Dietmar; Willeit, Matthaeus; Kapusta, Nestor D; Dorffner, Georg; Özlü-Erkilic, Zeliha

    2017-11-15

    Seasonal changes and climatic factors like ambient temperature, sunlight duration and rainfall can influence suicidal behavior. This study analyses the relationship between seasonal changes and climatic variations and suicide attempts in 2131 young patients in Istanbul, Turkey. In our study sample, there was an association between suicide attempts in youths and seasonal changes, as suicide attempts occurred most frequently during summer in females as well as in males. Furthermore, there was a positive correlation between the mean temperature over the past 10 days and temperature at the index day and suicide attempts in females. After seasonality effects were mathematically removed, the mean temperature 10 days before a suicide attempt remained significant in males only, indicating a possible short-term influence of temperature on suicide attempts. This study shows an association between suicide attempts of young people and climatic changes, in particular temperature changes as well as seasonal changes. Therefore, the influence of seasonal changes and climatic factors on young suicide attempters should get more attention in research to understand the biopsychosocial mechanisms playing a role in suicide attempts of young people. As suicide attempts most frequently occur in young people, further research is of considerable clinical importance.

  5. Climate change, humidity, and mortality in the United States

    Science.gov (United States)

    Barreca, Alan I.

    2014-01-01

    This paper estimates the effects of humidity and temperature on mortality rates in the United States (c. 1973–2002) in order to provide an insight into the potential health impacts of climate change. I find that humidity, like temperature, is an important determinant of mortality. Coupled with Hadley CM3 climate-change predictions, I project that mortality rates are likely to change little on the aggregate for the United States. However, distributional impacts matter: mortality rates are likely to decline in cold and dry areas, but increase in hot and humid areas. Further, accounting for humidity has important implications for evaluating these distributional effects. PMID:25328254

  6. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    Science.gov (United States)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  7. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change.

    Directory of Open Access Journals (Sweden)

    Apple Pui Yi Chui

    Full Text Available With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient, 30, 32°C] and salinity [33 psu (ambient, 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu could

  8. Climate Change Effects on Respiratory Health: Implications for Nursing.

    Science.gov (United States)

    George, Maureen; Bruzzese, Jean-Marie; Matura, Lea Ann

    2017-11-01

    Greenhouse gases are driving climate change. This article explores the adverse health effects of climate change on a particularly vulnerable population: children and adults with respiratory conditions. This review provides a general overview of the effects of increasing temperatures, extreme weather, desertification, and flooding on asthma, chronic obstructive lung disease, and respiratory infections. We offer suggestions for future research to better understand climate change hazards, policies to support prevention and mitigation efforts targeting climate change, and clinical actions to reduce individual risk. Climate change produces a number of changes to the natural and built environments that may potentially increase respiratory disease prevalence, morbidity, and mortality. Nurses might consider focusing their research efforts on reducing the effects of greenhouse gases and in directing policy to mitigate the harmful effects of climate change. Nurses can also continue to direct educational and clinical actions to reduce risks for all populations, but most importantly, for our most vulnerable groups. While advancements have been made in understanding the impact of climate change on respiratory health, nurses can play an important role in reducing the deleterious effects of climate change. This will require a multipronged approach of research, policy, and clinical action. © 2017 Sigma Theta Tau International.

  9. Indications of climatic change

    International Nuclear Information System (INIS)

    2005-04-01

    The earth's annual mean global temperature increased by around 0,6 C during the 20 century, with wide regional differences. Even if solar activity has played some part in the mean temperature rise and some greenhouse gases are present naturally in the atmosphere, enhancing of the greenhouse effect due to the human activities is responsible for a large and increasing part of the observed warming. The work of the Intergovernmental Panel on Climate Change confirms the future increase under all scenarios. Depending on the efforts made by mankind to limit greenhouse gases emissions, the global mean temperature in 2100 could be between 1,4 and 5,8 C higher than in 2000. (A.L.B.)

  10. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    Science.gov (United States)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  11. Simulating Climate Change in Ireland

    Science.gov (United States)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  12. Correlations between Climate Change and the Modern European Construction

    Science.gov (United States)

    Gumińska, Anna

    2017-10-01

    The aim of the study was to analyze the links between climate change and the way modern cities are structured and responded to climate change. How do these changes affect building materials and technologies, or does climate change affect the type of technology and materials used? The most important results are the effects of analysing selected examples of a modern European building, the use of materials and technology, the adaptation of buildings to the changing climate. Selected examples of contemporary architecture from Germany, Italy and Denmark, Norway and Sweden. There are also examples in photographic documentation. The most important criteria affecting the objects are elements that shape the changing climate, as well as existing legal and technical requirements. The main conclusion was that modern urban space is adapted to the changing climate. Unprecedented climatic phenomena in this area: intense and sudden rain, snow, floods, strong winds, abundant sunshine, high temperature changes, greenhouse effect of the city - “island heat”, atmospheric pollution. Building materials and technologies contribute to the optimal conservation of natural resources, buildings are shaped in such a way as to ensure safety, resilience and environmental protection. However, there is still a need for continuous monitoring of climate change, criteria affecting the design and construction of urban and central facilities. Key words: energy efficiency, renewable energy, climate change, contemporary architecture.

  13. Sustain : the climate change challenge

    International Nuclear Information System (INIS)

    1998-01-01

    This special report on climate change and greenhouse gas emissions focused on widely held current opinions which indicate that average global surface temperatures are increasing. The potential consequences of climate change can include rising sea levels, drought storms, disease, and mass migration of people. While the global climate change theory is widely accepted, the report warns that there are still many uncertainties about how climate change occurs and what processes can offset human-caused emissions. Canada produces about 2 per cent of global greenhouse gas emissions. Carbon dioxide comprises 80 per cent of Canada's total emissions. It is well known that Canadians place a heavy demand on energy to heat and light their homes because of the northern climate, and on transportation fuels to move people, goods and services across vast distances. With the Kyoto Protocol of December 1997, developed countries agreed to legally binding greenhouse gas emission reductions of at least five per cent by 2008 to 2012. Canada agreed to a six per cent reduction below 1990 levels by 2010. Although Canada signed the Kyoto Protocol, it does not intend to ratify it until an implementation strategy has been developed with broad support. The goal is to develop a strategy by 1999. The oil and gas industry has in general improved its efficiency and reduced emissions on a per unit of production basis by installing new equipment and new operating practices that reduce greenhouse gas emissions to the atmosphere, and improve energy efficiency. The industry is conscious of its responsibility, and while not fully in agreement with the environmental doomsayers, it is prepared to take proactive actions now, albeit on a voluntary basis. What the industry wants is a balance between environmental and economic responsibility. E missions trading' and 'joint implementation' are seen as two important tools to tackle climate change on a global basis. 4 figs

  14. Global climate change: impact of diurnal temperature range on mortality in Guangzhou, China.

    Science.gov (United States)

    Yang, Jun; Liu, Hua-Zhang; Ou, Chun-Quan; Lin, Guo-Zhen; Zhou, Qin; Shen, Gi-Chuan; Chen, Ping-Yan; Guo, Yuming

    2013-04-01

    Diurnal temperature range (DTR) is an important meteorological indicator associated with global climate change, but little is known about the effects of DTR on mortality. We examined the effects of DTR on cause-/age-/education-specific mortality in Guangzhou, a subtropical city in China during 2003-2010. A quasi-Poisson regression model combined with distributed lag non-linear model was used to examine the effects of DTR, after controlling for daily mean temperature, air pollutants, season and day of the week. A 1 °C increase in DTR at lag 0-4 days was associated with a 0.47% (95% confidence interval: 0.01%-0.93%) increase in non-accidental mortality. Stroke mortality was most sensitive to DTR. Female, the elderly and those with low education were more susceptible to DTR than male, the youth and those with high education, respectively. Our findings suggest that vulnerable subpopulations should pay more attention to protect themselves from unstable daily weather. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The effect of climate and climate change on ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Skjøth, Carsten Ambelas; Geels, Camilla

    2013-01-01

    Abstract. We present here a dynamical method for modelling temporal and geographical variations in ammonia emissions in regional-scale chemistry transport models (CTMs) and chemistry climate models (CCMs). The method is based on the meteorology in the models and gridded inventories. We use...... to a standard Danish pig stable with 1000 animals and display how emissions from this source would vary geographically throughout central and northern Europe and from year to year. In view of future climate changes, we also evaluate the potential future changes in emission by including temperature projections....... Finally, the climate penalty on ammonia emissions should be taken into account at the policy level such as the NEC and IPPC directives....

  16. Climate change impacts on cowpea productivity in Nigeria ...

    African Journals Online (AJOL)

    If a climate signal could be detected at state or regional level, it would be useful to policy planners, agricultural authority and farmers to prepare for climate change. This study, therefore, employed a statistical model to investigate the relationship between the yield of cowpea and temperature (in centigrade) and precipitation ...

  17. Climate Change: Generic Implications for Agriculture

    Indian Academy of Sciences (India)

    Climate Change: Generic Implications for Agriculture. Increasing carbon dioxide: Good for most crops. Increase in mean temperature: orter ... Increasing rainfall intensity and dry days- more floods and droughts: Higher production variability. Himalayan glaciers to recede: irrigation in IGP gradually becomes less dependable ...

  18. Sociology: Drivers of climate change beliefs

    Science.gov (United States)

    Givens, Jennifer E.

    2014-12-01

    Direct experience of global warming is expected to increase the number of people who accept that it is real and human-caused. A study now shows that people's perceptions about abnormal temperatures mostly match actual measurements but do not affect climate change beliefs.

  19. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    Science.gov (United States)

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  20. Climate change and health: temperature and health impacts

    CSIR Research Space (South Africa)

    Matooane, M

    2009-03-01

    Full Text Available /heat waves are anticipated to increase in frequency and magnitude in the 21st century. excessive temperatures lead to excess morbidity and mortality (all cause, respiratory, cardiovascular system mortality). Figure 1 depicts the impact of summer 2003... mortality temperature threshold below or above which every 1?C change increases mortality by ~4% and ~0.5%, respectively (mcmichael, et al., 2008). temperature-related mortality rates (all cause, cardiovascular and respiratory) are modified by many...

  1. Climate Change Impacts on Central China and Adaptation Measures

    Institute of Scientific and Technical Information of China (English)

    REN Yong-Jian; CUI Jiang-Xue; WAN Su-Qin; LIU Min; CHEN Zheng-Hong; LIAO Yu-Fang; WANG Ji-Jun

    2013-01-01

    In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within the study area, and with the harmful effects far more prevalent. Under the scenario A1B, it is reported that temperature, precipitation, days of heat waves and extreme precipitation intensity will increase at respective rates of 0.38◦C per decade, 12.6 mm per decade, 6.4 d and 47 mm per decade in the 21st century. It is widely believed that these climate changes in the future will result in some apparent impacts on agro-ecosystems, water resources, wetland ecosystem, forest ecosystem, human health, energy sectors and other sensitive fields in Central China. Due to the limited scientific knowledge and researches, there are still some shortages in the climate change assessment methodologies and many uncertainties in the climate prediction results. Therefore, it is urgent and essential to increase the studies of the regional climate change adaptation, extend the research fields, and enhance the studies in the extreme weather and climate events to reduce the uncertainties of the climate change assessments.

  2. The role of land-climate interactions for the regional amplification of temperature extremes in climate projections

    Science.gov (United States)

    Seneviratne, S. I.; Vogel, M.; Zscheischler, J.; Schwingshackl, C.; Davin, E.; Gudmundsson, L.; Guillod, B.; Hauser, M.; Hirsch, A.; Hirschi, M.; Humphrey, V.; Thiery, W.

    2017-12-01

    Regional hot extremes are projected to increase more strongly than the global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level (Seneviratne et al. 2016). This presentation will highlight the processes underlying this behavior, which is strongly related to land-climate feedbacks (Vogel et al. 2017). The identified feedbacks are also affecting the occurrence probability of compound drought and heat events (Zscheischler and Seneviratne 2017), with high relevance for impacts on forest fire and agriculture production. Moreover, the responsible land processes strongly contribute to the inter-model spread in the projections, and can thus be used to derive observations-based constraints to reduce the uncertainty of projected changes in climate extremes. Finally, we will also discuss the role of soil moisture effects on carbon uptake and their relevance for projections, as well as the role of land use changes in affecting the identified feedbacks and projected changes in climate extremes. References: Seneviratne, S.I., M. Donat, A.J. Pitman, R. Knutti, and R.L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477-483, doi:10.1038/nature16542. Vogel, M.M., R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B.J.J.M. Hurk, and S.I. Seneviratne, 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3), 1511-1519, doi:10.1002/2016GL071235. Zscheischler, J., and S.I. Seneviratne, 2017: Dependence of drivers affects risks associated with compound events. Science Advances, 3(6), doi: 10.1126/sciadv.1700263

  3. Integrating uncertainties for climate change mitigation

    Science.gov (United States)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  4. Wintertime urban heat island modified by global climate change over Japan

    Science.gov (United States)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  5. (Un)certainty in climate change impacts on global energy consumption

    Science.gov (United States)

    van Ruijven, B. J.; De Cian, E.; Sue Wing, I.

    2017-12-01

    Climate change is expected to have an influence on the energy sector, especially on energy demand. For many locations, this change in energy demand is a balance between increase of demand for space cooling and a decrease of space heating demand. We perform a large-scale uncertainty analysis to characterize climate change risk on energy consumption as driven by climate and socioeconomic uncertainty. We combine a dynamic econometric model1 with multiple realizations of temperature projections from all 21 CMIP5 models (from the NASA Earth Exchange Global Daily Downscaled Projections2) under moderate (RCP4.5) and vigorous (RCP8.5) warming. Global spatial population projections for five SSPs are combined with GDP projections to construct scenarios for future energy demand driven by socioeconomic change. Between the climate models, we find a median global increase in climate-related energy demand of around 24% by 2050 under RCP8.5 with an interquartile range of 18-38%. Most climate models agree on increases in energy demand of more than 25% or 50% in tropical regions, the Southern USA and Southern China (see Figure). With respect to socioeconomic scenarios, we find wide variations between the SSPs for the number of people in low-income countries who are exposed to increases in energy demand. Figure attached: Number of models that agree on total climate-related energy consumption to increase or decrease by more than 0, 10, 25 or 50% by 2050 under RCP8.5 and SSP5 as result of the CMIP5 ensemble of temperature projections. References1. De Cian, E. & Sue Wing, I. Global Energy Demand in a Warming Climate. (FEEM, 2016). 2. Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16, 3309-3314 (2012).

  6. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A V; Bezmenov, K V; Demchenko, P F; Mokhov, I I; Petoukhov, V K [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1996-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  7. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A.V.; Bezmenov, K.V.; Demchenko, P.F.; Mokhov, I.I.; Petoukhov, V.K. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1995-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  8. Tracking Public Beliefs About Anthropogenic Climate Change.

    Science.gov (United States)

    Hamilton, Lawrence C; Hartter, Joel; Lemcke-Stampone, Mary; Moore, David W; Safford, Thomas G

    2015-01-01

    A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews) yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40%) concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15%) say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire) finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  9. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observations and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include

  10. Impact of local adaptation measures and regional climate change on perceived temperature

    Energy Technology Data Exchange (ETDEWEB)

    Schoetter, Robert; Grawe, David; Hoffmann, Peter; Kirschner, Peter; Heinke Schluenzen, K. [Hamburg Univ. (Germany). Meteorological Inst.; Graetz, Angelika [Deutscher Wetterdienst, Freiburg (Germany). Zentrum fuer Medizin-Meteorologische Forschung

    2013-04-15

    The perceived temperature (PT) is a measure for the quantification of human thermal comfort developed by the German Meteorological Service (DWD). In the present article, the sensitivity of PT on air temperature, water vapour pressure, wind speed, mean radiant temperature, street canyon width, and building heights is investigated. The mesoscale atmospheric model METRAS is integrated for a domain covering the city of Hamburg at 250 m horizontal resolution to calculate the meteorological input data for PT. The sensitivities of PT are determined by automatic differentiation of the basic DWD program. The sensitivities show how local adaptation measures and regional climate change can influence PT. The sensitivities also allow to estimate how accurate different input variables need to be known in order to achieve a desired accuracy in PT. The results are discussed in detail for 10 June 2007, a cloudless day with advection of warm air masses from south-east. A comparison with results obtained for different synoptic situations during summer is made. The sensitivities of PT on air temperature, water vapour pressure and mean radiant temperature are higher during warm and humid conditions than in situations with thermal comfort. The sensitivity of PT on wind speed is highest for low wind speeds. Around noon, increasing the building heights by 5 m can reduce PT up to 2.4 K due to shading effects in street canyons with aspect ratios above 0.5. After sunset, increasing the building heights by 5 m tends to moderately increase PT due to increased longwave radiation. (orig.)

  11. Climate Change and Tropical Total Lightning

    Science.gov (United States)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  12. Vulnerability of High-Quality Winegrowing to Climate Change in California

    Science.gov (United States)

    Cahill, K. N.; Field, C. B.; Matthews, M. A.; Lobell, D. B.

    2009-05-01

    We took an interdisciplinary approach to examine the climate sensitivity and adaptive capacity of both the ecological and social systems of winegrowing. In a three-year study, we used field, laboratory, modeling, and anthropological approaches to examine the vulnerability of the wine industry to climate change. We developed models of winegrape yields based on the effects of historical temperature and precipitation in California, and used these findings to project future yields under climate change. We examined the concentrations of phenolic compounds important to wine quality (anthocyanins and tannins) in Pinot noir grapes from across a range of mesoclimates. We found that increased concentrations of these phenolic compounds were correlated with cool temperatures in the fall the year before harvest, warm temperatures from budburst to bloom, and cool temperatures from bloom to veraison, and with lower light intensities in these highly sun-exposed vines. We also conducted interviews to examine the adaptation responses of winegrowers to environmental stresses. We found that growers undertake a wide variety of environmental management strategies in the vineyard, most of which are individual in nature, and either in response to an existing stress, or in anticipation of an imminent stress. Finally, we examined the potential adaptive capacity of the wine industry to climate change, based on its awareness of climate change, ability to react, and actual actions and barriers to action. We conclude that winegrowers have a fairly high adaptive capacity, but that successful adaptation in practice depends on including proactive and coordinated community responses, which are beginning to develop.

  13. Socioeconomic impacts of climate change on rural communities in the United States

    Science.gov (United States)

    Pankaj Lal; Janaki Alavalapati; D Evan Mercer

    2011-01-01

    Climate change refers to any distinct change in measures of climate such as temperature, rainfall, snow, or wind patterns lasting for decades or longer (USEPA 2009). In the last decade, there has been a clear consensus among scientists that the world is experiencing a rapid global climate change, much of it attributable to anthropogenic activities. The extent of...

  14. Climate change and the Great Barrier Reef

    International Nuclear Information System (INIS)

    Johnson, Johanna; Marshall, Paul

    2007-01-01

    Full text: Full text: Climate change is now recognised as the greatest long-term threat to the Great Barrier Reef (GBR). Managers face a future in which the impacts of climate change on tropical marine ecosystems are becoming increasingly frequent and severe. Further degradation is inevitable as the climate continues to change but the extent of the decline will depend on the rate and magnitude of climate change and the resilience of the ecosystem. Changes to the ecosystem have implications for the industries and regional communities that depend on the GBR. Climate projections for the GBR region include increasing air and sea temperatures, ocean acidification, nutrient enrichment (via changes in rainfall), altered light levels, more extreme weather events, changes to ocean circulation and sea level rise. Impacts have already been observed, with severe coral bleaching events in 1998 and 2002, and mass mortalities of seabirds linked to anomalously warm summer conditions. Climate change also poses significant threats to the industries and communities that depend on the GBR ecosystem, both directly and indirectly through loss of natural resources; industries such as recreational and commercial fishing, and tourism, which contributes to a regional tourism industry worth $6.1 billion (Access Economics 2005). A vulnerability assessment undertaken by leading experts in climate and marine science identified climate sensitivities for GBR species, habitats, key processes, GBR industries and communities (Johnson and Marshall 2007). This information has been used to develop a Climate Change Action Plan for the GBR. The Action Plan is a five-year program aimed at facilitating targeted science, building a resilient ecosystem, assisting adaptation of industries and communities, and reducing climate footprints. The Action Plan identifies strategies to review current management arrangements and raise awareness of the issue in order to work towards a resilient ecosystem. Integral to

  15. Changes in diurnal temperature range and national cereal yields

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D

    2007-04-26

    Models of yield responses to temperature change have often considered only changes in average temperature (Tavg), with the implicit assumption that changes in the diurnal temperature range (DTR) can safely be ignored. The goal of this study was to evaluate this assumption using a combination of historical datasets and climate model projections. Data on national crop yields for 1961-2002 in the 10 leading producers of wheat, rice, and maize were combined with datasets on climate and crop locations to evaluate the empirical relationships between Tavg, DTR, and crop yields. In several rice and maize growing regions, including the two major nations for each crop, there was a clear negative response of yields to increased DTR. This finding reflects a nonlinear response of yields to temperature, which likely results from greater water and heat stress during hot days. In many other cases, the effects of DTR were not statistically significant, in part because correlations of DTR with other climate variables and the relatively short length of the time series resulted in wide confidence intervals for the estimates. To evaluate whether future changes in DTR are relevant to crop impact assessments, yield responses to projected changes in Tavg and DTR by 2046-2065 from 11 climate models were estimated. The mean climate model projections indicated an increase in DTR in most seasons and locations where wheat is grown, mixed projections for maize, and a general decrease in DTR for rice. These mean projections were associated with wide ranges that included zero in nearly all cases. The estimated impacts of DTR changes on yields were generally small (<5% change in yields) relative to the consistently negative impact of projected warming of Tavg. However, DTR changes did significantly affect yield responses in several cases, such as in reducing US maize yields and increasing India rice yields. Because DTR projections tend to be positively correlated with Tavg, estimates of yields

  16. Modeling Uncertainty in Climate Change: A Multi-Model Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth; Nordhaus, William; Anthoff, David; Blanford, Geoffrey J.; Bosetti, Valentina; Christensen, Peter; McJeon, Haewon C.; Reilly, J. M.; Sztorc, Paul

    2015-10-01

    The economics of climate change involves a vast array of uncertainties, complicating both the analysis and development of climate policy. This study presents the results of the first comprehensive study of uncertainty in climate change using multiple integrated assessment models. The study looks at model and parametric uncertainties for population, total factor productivity, and climate sensitivity and estimates the pdfs of key output variables, including CO2 concentrations, temperature, damages, and the social cost of carbon (SCC). One key finding is that parametric uncertainty is more important than uncertainty in model structure. Our resulting pdfs also provide insight on tail events.

  17. Biome redistribution under climate change

    Science.gov (United States)

    Dominique Bachelet; Ronald P. Neilson

    2000-01-01

    General warming in the Northern Hemisphere has been recorded since the end of the 1800s following the Little Ice Age. Records of glacier retreat during the last 100 years over the entire globe independently confirmed the recorded trend in global temperature rise. Several studies have illustrated various responses to this climate forcing, i.e., the recorded changes in...

  18. Climate Change in the Seychelles: Implications for Water and Coral Reefs

    Energy Technology Data Exchange (ETDEWEB)

    Payet, Rolph; Agricole, Wills [National Meteorological Services Mahe (Seychelles). Div. of Policy, Planning and Services

    2006-06-15

    The Seychelles is a small island state in the western Indian Ocean that is vulnerable to the effects of climate change. This vulnerability led the Intergovernmental Panel on Climate Change (IPCC) in 2001 to express concern over the potential economic and social consequences that may be faced by small island states. Small island states should be prepared to adapt to such changes, especially in view of their dependence on natural resources, such as water and coral reefs, to meet basic human welfare needs. Analysis of long-term data for precipitation, air temperature, and sea-surface temperature indicated that changes are already observable in the Seychelles. The increase in dry spells that resulted in drought conditions in 1999 and the 1998 mass coral bleaching are indicative of the events that are likely to occur under future climate change. Pre-IPCC Third Assessment Report scenarios and the new SRES scenarios are compared for changes in precipitation and air surface temperature for the Seychelles. These intercomparisons indicate that the IS92 scenarios project a much warmer and wetter climate for the Seychelles than do the SRES scenarios. However, a wetter climate does not imply readily available water, but rather longer dry spells with more intense precipitation events. These observations will likely place enormous pressures on water-resources management in the Seychelles. Similarly, sea-surface temperature increases predicted by the HADCm{sup 3} model will likely trigger repeated coral-bleaching episodes, with possible coral extinctions within the Seychelles region by 2040. The cover of many coral reefs around the Seychelles have already changed, and the protection of coral-resilient areas is a critical adaptive option.

  19. Regional feedbacks under changing climate and land-use conditions

    Science.gov (United States)

    Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B. J.; van Minnen, J. G.

    2012-04-01

    Ecosystem responses to a changing climate and human-induced climate forcings (e.g. deforestation) might amplify (positive feedback) or dampen (negative feedback) the initial climate response. Feedbacks may include the biogeochemical (e.g. carbon cycle) and biogeophysical feedbacks (e.g. albedo and hydrological cycle). Here, we first review the most important feedbacks and put them into the context of a conceptual framework, including the major processes and interactions between terrestrial ecosystems and climate. We explore potential regional feedbacks in four hot spots with pronounced potential changes in land-use/management and local climate: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, the relevant human-induced climate forcings and feedbacks were identified based on published literature. When evapotranspiration is limited by a soil water deficit, heat waves in Europe are amplified (positive soil moisture-temperature feedback). Drought events in the Amazon lead to further rainfall reduction when water recycling processes are affected (positive soil moisture-precipitation feedback). In SSA, the adoption of irrigation in the commonly rainfed systems can modulate the negative soil moisture-temperature feedback. In contrast, future water shortage in South and Southeast Asia can turn the negative soil moisture-temperature feedback into a positive one. Further research including advanced modeling strategies is needed to isolate the dominant processes affecting the strength and sign of the feedbacks. In addition, the socio-economic dimension needs to be considered in the ecosystems-climate system to include the essential role of human decisions on land-use and land-cover change (LULCC). In this context, enhanced integration between Earth System (ES) and Integrated Assessment (IA) modeling communities is strongly recommended.

  20. Climate change scenario data for the national parks

    International Nuclear Information System (INIS)

    Scott, D.

    2003-01-01

    This report presents daily scenario data obtained from monthly time scale climate change scenarios. The scenarios were applied to a stochastic weather generator, a statistical tool that simulates daily weather data for a range of climates at a particular location. The weather generators simulate weather that is statistically similar to observed climate data from climate stations. They can also generate daily scenario data for monthly time scales. This low cost computational method offers site-specific, multi-year climate change scenarios at a daily temporal level. The data is useful for situations that rely on climate thresholds such as forest fire season, drought conditions, or recreational season length. Data sets for temperature, precipitation and frost days was provided for 3 national parks for comparative evaluations. Daily scenarios for other parks can be derived using global climate model (GCM) output data through the Long Ashton Research Station (LARS) weather generator program. tabs

  1. Interactions of Climate Change, Air Pollution, and Human Health.

    Science.gov (United States)

    Kinney, Patrick L

    2018-03-01

    I review literature on the impacts of climate change on air quality and human health, with a focus on articles published from 2013 on ozone and airborne particles. Selected previous literature is discussed where relevant in tracing the origins of our current knowledge. Climate and weather have strong influences on the spatial and temporal distribution of air pollution concentrations. Emissions of ozone and PM 2.5 precursors increase at higher ambient temperatures. The reactions that form ozone occur faster with greater sunlight and higher temperatures. Weather systems influence the movement and dispersion of air pollutants in the atmosphere through the action of winds, vertical mixing, and precipitation, all of which are likely to alter in a changing climate. Recent studies indicate that, holding anthropogenic air pollution emissions constant, ozone concentrations in populated regions will tend to increase in future climate scenarios. For the USA, the climate impact on ozone is most consistently seen in north-central and north-eastern states, with the potential for many thousands of additional ozone-related deaths. The sensitivity of anthropogenic PM 2.5 to climate is more variable across studies and regions, owing to the varied nature of PM constituents, as well as to less complete characterization of PM reaction chemistry in available atmospheric models. However, PM emitted by wildland fires is likely to become an increasing health risk in many parts of the world as climate continues to change. The complex interactions between climate change and air quality imply that future policies to mitigate these twin challenges will benefit from greater coordination. Assessing the health implications of alternative policy approaches towards climate and pollution mitigation will be a critical area of future work.

  2. The physiology of mangrove trees with changing climate

    Science.gov (United States)

    Lovelock, Catherine E.; Krauss, Ken W.; Osland, Michael J.; Reef, Ruth; Ball, Marilyn C.; Meinzer, Frederick C.; Niinemets, Ülo

    2016-01-01

    Mangrove forests grow on saline, periodically flooded soils of the tropical and subtropical coasts. The tree species that comprise the mangrove are halophytes that have suites of traits that confer differing levels of tolerance of salinity, aridity, inundation and extremes of temperature. Here we review how climate change and elevated levels of atmospheric CO2 will influence mangrove forests. Tolerance of salinity and inundation in mangroves is associated with the efficient use of water for photosynthetic carbon gain which unpins anticipated gains in productivity with increasing levels of CO2. We review evidence of increases in productivity with increasing CO2, finding that enhancements in growth appear to be similar to trees in non-mangrove habitats and that gains in productivity with elevated CO2 are likely due to changes in biomass allocation. High levels of trait plasticity are observed in some mangrove species, which potentially facilitates their responses to climate change. Trait plasticity is associated with broad tolerance of salinity, aridity, low temperatures and nutrient availability. Because low temperatures and aridity place strong limits on mangrove growth at the edge of their current distribution, increasing temperatures over time and changing rainfall patterns are likely to have an important influence on the distribution of mangroves. We provide a global analysis based on plant traits and IPCC scenarios of changing temperature and aridity that indicates substantial global potential for mangrove expansion.

  3. Treeline dynamics with climate change at Central Nepal Himalaya

    Science.gov (United States)

    Gaire, N. P.; Koirala, M.; Bhuju, D. R.; Borgaonkar, H. P.

    2013-10-01

    Global climate change has multidimensional impacts with several biological fingerprints, and treeline shifting in tandem with climate change is a widely observed phenomenon in various parts of the world. In Nepal several impacts of climate change on physical environments have been observed. However, studies on the biological impacts are lacking. This dendrochronological study was carried out at the treeline ecotone (3750-4003 m a.s.l.) in the Kalchuman Lake (Kal Tal) area of the Manaslu Conservation Area in central Nepal Himalaya with the aim to study the dynamic impact of climate change at the treeline. The study provides an insight into regeneration and treeline dynamics over the past 200 yr. Two belt transect plots (size: 20 m wide, >250 m long) were laid covering forest line, treeline as well as tree species Abies spectabilis and Betula utilis was done and their tree-cores were collected. Stand character and age distribution revealed an occurrence of more matured B. utilis (max. age 198 yr old) compared to A. spectabilis (max. age 160 yr). A. spectabilis contained an overwhelmingly high population (89%) of younger plants (plant density as well as upward shifting in the studied treeline ecotones was observed. Thus, two species presented species-specific responses to climate change and much wider differences anticipated in their population status as climate continues to cha spectabilis correlated negatively with the mean monthly temperature of May-August of the current year and with September of the previous year. The regeneration of A. spectabilis, on the other hand, was positively related with May-August precipitation and January-April temperature of the current year. The reconstructed average summer temperature (May-August) using tree ring data revealed alternate period of cool and warm period with warming in the 2nd half of the 20th century. Further palynological and geochronological studies of sediments of the Kalchuman Lake would advance our understanding

  4. The role of eddy transports in climate change

    International Nuclear Information System (INIS)

    Stone, P.H.

    1994-01-01

    Large-scale atmospheric eddies are the dominant transport mechanisms in mid and high latitudes. Thus, climate models must simulate these eddies, their effects, and their feedbacks accurately. Getting the feedbacks right is particularly important since it is the feedbacks which affect climate sensitivity. Observational studies of these feedbacks are hindered by the lack of actual climate changes for which good data is available, and by the lack of data on vertical heat fluxes. General circulation model (GCM) studies are hindered by errors in GCM simulations of transports in the current climate; the dependence of GCM results on uncertain subgrid scale parameterizations; and large computational requirements. A more promising approach for learning about eddy feedbacks and how they can be modelled is process model studies. So far these studies have only looked at the feedback between eddy sensible heat fluxes arising from baroclinic instability and the temperature structure. The results indicate that there is a very strong negative feedback between eddy fluxes and temperature structure, both meridional and vertical, with the fluxes themselves being sensitive to small changes in temperature structure. These studies need to be extended to higher vertical resolution, and to include the effects of moisture, stationary eddies, and coupling to the oceans

  5. Historical evidence for a connection between volcanic eruptions and climate change

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    The times of historical volcanic aerosol clouds were compared with changes in atmospheric temperatures on regional, hemispheric, and global scales. These involve either a direct comparison of individual significant eruption years with temperature records, or a comparison of eruption years with composited temperature records for several years before and after chosen sets of eruptions. Some studies have challenged the connection between individual eruptions and climate change. Mass and Portman (1989) recently suggested that the volcanic signal was present, but smaller than previously thought. In a study designed to test the idea that eruptions could cause small changes in climate, Hansen and other (1978) chose one of the best monitored eruptions at the time, the 1963 eruption of Agung volcano on the island of Bali. Using a simple radiation-balance model, in which an aerosol cloud in the tropics was simulated, this basic pattern of temperature change in the tropics and subtropics was reproduced. There may be natural limits to the atmospheric effects of any volcanic eruption. Self-limiting physical and chemical effects in eruption clouds were proposed. Model results suggest that aerosol microphysical processes of condensation and coagulation produce larger aerosols as the SO2 injection rate is increased. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on regional temperatures where the effects of volcanic aerosol clouds can be amplified by perturbed atmospheric circulation patterns, especially changes in mid-latitudes where meridional circulation patterns may develop. Such climatic perturbations can be detected in proxy evidence such as decreases in tree-ring widths and frost damage rings in climatically sensitive parts of the world, changes in treelines, weather anomalies such as unusually cold summers, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures.

  6. Contribution of human and climate change impacts to changes in streamflow of Canada.

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew

    2015-12-04

    Climate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.

  7. Views on alternative forums for effectively tackling climate change

    Science.gov (United States)

    Hjerpe, Mattias; Nasiritousi, Naghmeh

    2015-09-01

    This year (2015) marks the 21st formal anniversary of the United Nations Framework Convention on Climate Change (UNFCCC) and in December a new climate treaty is expected to be reached. Yet, the UNFCCC has not been successful in setting the world on a path to meet a target to prevent temperatures rising by more than 2 °C above pre-industrial levels. Meanwhile, other forums, such as the G20 and subnational forums, have increasingly become sites of climate change initiatives. There has, however, so far been no systematic evaluation of what forums climate change policymakers and practitioners perceive to be needed to effectively tackle climate change. Drawing on survey data from two recent UNFCCC Conference of the Parties (COP), we show that there exists an overall preference for state-led, multilateral forums. However, preferences starkly diverge between respondents from different geographical regions and no clear alternative to the UNFCCC emerges. Our results highlight difficulties in coordinating global climate policy in a highly fragmented governance landscape.

  8. Trends of climatic changes considering over years 1894-1993 and 1894-2003 for Sarajevo

    International Nuclear Information System (INIS)

    Majstorovic, Zeljko; Toromanovic, Aida; Halilovic, Senada

    2004-01-01

    Linear trends of changes in climatic parameters have been observed for Sarajevo and we considered correlation with world's trends and mutual correlation of years .1894-1993 and 1894-2003, both for the same meteorological station Sarajevo. In purpose of ascertaining correlation with global climate's changes, Sarajevo's records have been studied over the primary climatic parameters: average annual temperatures, absolute annual maximum and minimum temperatures, annual sum of rainfalls and drought index. We used method of adding of linear trends. Correlation with global tendency of climate has be shown as follow: - We notice increase of average temperature about 0.7 o C in past 100 years - We notice a rapid increase of absolute minimum temperature in compare with values of absolute maximum temperatures. - Annual sum of rainfalls doesn't show drastic changes. - We notice asymmetry trend for some actual seasons. - We notice increase of drought. During correlation of trends for years 1894-1993 and 1894-2003 has been noticed rapid increase of temperature and drought-index, while considering rainfalls there has not been drastic changes. (Author)

  9. Recent changes in seasonal variations of climate within the range of northern caribou populations

    Directory of Open Access Journals (Sweden)

    Paul H. Whitfield

    2005-05-01

    Full Text Available The Arctic is one region where it is expected that the impacts of a globally changing climate will be readily observed. We present results that indicate that climate derivatives of potential significance to caribou changed during the past 50 years. Many temperature derivatives reflect the increasing overall temperature in the Arctic such as decreases in the number of days with low temperatures, increases in the number of days with thaw, and days with extremely warm temperatures. Other derivatives reflect changes in the precipitation regime such as days with heavy precipitation and number of days when rain fell on snow. Our results indicate that specific caribou herds from across the Arctic were subjected to different variations of these derivatives in different seasons in the recent past. Examination of temperature and precipitation at finer time-steps than annual or monthly means, shows that climatic variations in the region are neither consistent through the seasons nor across space. Decadal changes in seasonal patterns of temperature and precipitation are shown for selected herds. A process for assessing caribou-focused climate derivatives is proposed.

  10. Human activities and climate and environment changes: an inevitable relation

    International Nuclear Information System (INIS)

    Sanchez, Aretha

    2009-01-01

    The human interference in the environment and the consequent climate change is today a consensus. The climate change can be local, regional and global. The global climate change is mainly caused by the greenhouse gases, and consequently the climate change intervenes in the environment. The interference cycle emerges in several forms and results in several consequences. However, the Global Warming has certainly the most import global impact. The main cause of the increase in the temperature (Greenhouse Effect) is the intensive use of the fossil fuels. Thus, to minimize the climatic changes actions are necessary to reduce, to substitute and to use with more efficient the fossil fuels. Looking at the past, the old agriculturists may have released greenhouse gases since thousand years ago, thus, modifying slowly but in significant form the earth climate much before the Industrial Age. If this theory is confirmed, its consequences would be decisive for the man history in the planet. For example, in parts of the North America and Europe the current temperatures could be even four Celsius degrees smaller. This change in temperature is enough to hinder agricultural used of these regions and consequently to diminish the human development. The main focus of this work is to perform a retrospective in some of civilizations who collapse due to environmental problems and make a historical description of the human activities (agriculture and livestock) since the primordium of the man up to the Industrial Age, aiming at the man interference on the natural dynamics of the global climate and the environment. This work will show through data comparisons and inferences that the gases emissions from these activities had a significant magnitude comparatively by the emissions after the Industrial Age. It is also demonstrated that the climate and environment interference was inevitable because the human evolution was caused by these activities. Another important point of this work is to

  11. Climatic change

    International Nuclear Information System (INIS)

    Perthuis, Ch. de; Delbosc, A.

    2009-01-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  12. Linking city development and adaptation to climate change

    OpenAIRE

    Andrej Steiner; Rudolf Bauer; Jana Knezova

    2014-01-01

    Climate change is happening, projected to continue and poses serious challenges also for cities' development. Extreme weather events resulting in hazards such as heat waves, floods and droughts are expected to happen more frequently in many parts of Europe. The United Nations Intergovernmental Panel on Climate Change (IPCC) predicts global temperatures to rise an additional 2-4˚C by the end of this century and graduation of weather extremes. While urban areas will generally experience the sam...

  13. Notable shifting in the responses of vegetation activity to climate change in China

    Science.gov (United States)

    Chen, Aifang; He, Bin; Wang, Honglin; Huang, Ling; Zhu, Yunhua; Lv, Aifeng

    The weakening relationship between inter-annual temperature variability and vegetation activity in the Northern Hemisphere over the last three decades has been reported by a recent study. However, how and to what extent vegetation activity responds to climate change in China is still unclear. We applied the Pearson correlation and partial correlation methods with a moving 15-y window to the GIMMS NDVI dataset from NOAA/AVHRR and observed climate data to examine the variation in the relationships between vegetation activity and climate variables. Results showed that there was an expanding negative response of vegetation growth to climate warming and a positive role of precipitation. The change patterns between NDVI and climate variables over vegetation types during the past three decades pointed an expending negative correlation between NDVI and temperature and a positive role of precipitation over most of the vegetation types (meadow, grassland, shrub, desert, cropland, and forest). Specifically, correlation between NDVI and temperature (PNDVI-T) have shifted from positive to negative in most of the station of temperature-limited areas with evergreen broadleaf forests, whereas precipitation-limited temperate grassland and desert were characterized by a positive PNDVI-P. This study contributes to ongoing investigations of the effects of climate change on vegetation activity. It is also of great importance for designing forest management strategies to cope with climate change.

  14. Vulnerability to changes in malaria transmission due to climate change in West Africa

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2012-12-01

    Malaria transmission in West Africa is strongly tied to climate; temperature affects the development rate of the malaria parasite, as well as the survival of the mosquitoes that transmit the disease, and rainfall is tied to mosquito abundance, as the vector lays its eggs in rain-fed water pools. As a result, the environmental suitability for malaria transmission in this region is expected to change as temperatures rise and rainfall patterns are altered. The vulnerability to changes in transmission varies throughout West Africa. Areas where malaria prevalence is already very high will be less sensitive to changes in transmission. Increases in environmental suitability for malaria transmission in the most arid regions may still be insufficient to allow sustained transmission. However, areas were malaria transmission currently occurs at low levels are expected to be the most sensitive to changes in environmental suitability for transmission. Here, we use data on current environment and malaria transmission rates to highlight areas in West Africa that we expect to be most vulnerable to an increase in malaria under certain climate conditions. We then analyze climate predictions from global climate models in vulnerable areas, and make predictions for the expected change in environmental suitability for malaria transmission using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a mechanistic model developed to simulate village-scale response of malaria transmission to environmental variables in West Africa.

  15. Exchanging ideas on climate change in the Yukon

    International Nuclear Information System (INIS)

    2000-01-01

    Climate change models predict that Canada's North will receive the earliest and most extreme impacts of a changing climate. An increase in temperature could affect the Yukon economy, wildlife, traditional cultures and recreational activities. For this reason, the Northern Climate Exchange visited communities in the Yukon to exchange ideas with residents regarding observations and concerns about changes in weather and the land. The information obtained from the visits provides a better understanding of the situation and could help determine priorities for further research. The report showed that the residents are concerned about their observations, but public opinion on what do do about climate change varies among communities. While there are large amounts of local information on the subject, very little of it is documented. Very little research is available at a scale that is useful to community-level decision-making processes. This makes local observations even more valuable as they are in the best position to understand and assess their vulnerability to climate change. It was recommended that local and traditional knowledge on climate change be properly documented and that a community-based environmental monitoring strategy be developed. The final recommendation was to develop policy and decision-support tools. 3 tabs., 10 figs

  16. Ruang Terbuka Hijau Dalam Mitigasi Perubahan Iklim Green Open Space in Climate Change Mitigation

    OpenAIRE

    Dewi, Yusriani Sapta

    2010-01-01

    Climate change is any substantial change in Earth's climate that lasts for an extended period oftime. Global warming refers to climate change that causes an increase in the average temperature of thelower atmosphere. Global warming is the combined result of anthropogenic (human-caused) emissionsof greenhouse gases and changes in solar irradiance, while climate change refers to any change in thestate of the climate that can be identified by changes in the average and/or the variability of its ...

  17. Impact of Climate change on Milk production of Murrah buffaloes

    Directory of Open Access Journals (Sweden)

    A. Ashutosh

    2010-02-01

    Full Text Available Global warming is likely to impact productivity of buffaloes due to their sensitivity to temperature changes. Air temperature, humidity, wind velocity and solar radiation are the main climate variables that affect buffalo production in tropical climate. In the present study sensitivity of lactating Murrah buffaloes to sudden temperature (Tmax, Tmin change and THI have been analyzed from milk production and climatic records (1994-2004 of Karnal. Algorithms were developed and validated on lactating buffaloes during 2005-2006 at the Institute. A sudden change (rise or fall in Maximum/Minimum temperature during summer and winter was observed to affect milk production. The decline in minimum temperature (>3°C during winter and increase (>4°C during summer than normal were observed to negatively impact milk production upto 30% on the next or subsequent days after extreme event. The return to normal milk production depended on severity and time period of thermal stress/ event occurrence. The R² was very low for cool period observed during Feb- April/Sept-Nov and actual effect on milk production was minimum. This indicated that low THI had a relatively small effect on milk production performance. The lactation period of animals are shortened during extreme summer when THI were more than 80 and reproductive functions were also adversely affected. Thermal stressed buffaloes did not exhibit estrus or exhibited estrus for short period. The potential direct effects of possible climate change and global warming on summer season milk production of Murrah buffaloes were evaluated using widely known global circulation model UKMO to represent possible scenarios of future climate. Both milk production and reproductive functions of Murrah buffaloes are likely to be affected due to warming effects.

  18. Effects of climate change on residential infiltration and air pollution exposure.

    Science.gov (United States)

    Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley

    2017-01-01

    Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.

  19. Global mortality consequences of climate change accounting for adaptation costs and benefits

    Science.gov (United States)

    Rising, J. A.; Jina, A.; Carleton, T.; Hsiang, S. M.; Greenstone, M.

    2017-12-01

    Empirically-based and plausibly causal estimates of the damages of climate change are greatly needed to inform rapidly developing global and local climate policies. To accurately reflect the costs of climate change, it is essential to estimate how much populations will adapt to a changing climate, yet adaptation remains one of the least understood aspects of social responses to climate. In this paper, we develop and implement a novel methodology to estimate climate impacts on mortality rates. We assemble comprehensive sub-national panel data in 41 countries that account for 56% of the world's population, and combine them with high resolution daily climate data to flexibly estimate the causal effect of temperature on mortality. We find the impacts of temperature on mortality have a U-shaped response; both hot days and cold days cause excess mortality. However, this average response obscures substantial heterogeneity, as populations are differentially adapted to extreme temperatures. Our empirical model allows us to extrapolate response functions across the entire globe, as well as across time, using a range of economic, population, and climate change scenarios. We also develop a methodology to capture not only the benefits of adaptation, but also its costs. We combine these innovations to produce the first causal, micro-founded, global, empirically-derived climate damage function for human health. We project that by 2100, business-as-usual climate change is likely to incur mortality-only costs that amount to approximately 5% of global GDP for 5°C degrees of warming above pre-industrial levels. On average across model runs, we estimate that the upper bound on adaptation costs amounts to 55% of the total damages.

  20. Climate Change and Malaria in Canada: A Systems Approach

    Directory of Open Access Journals (Sweden)

    L. Berrang-Ford

    2009-01-01

    Full Text Available This article examines the potential for changes in imported and autochthonous malaria incidence in Canada as a consequence of climate change. Drawing on a systems framework, we qualitatively characterize and assess the potential direct and indirect impact of climate change on malaria in Canada within the context of other concurrent ecological and social trends. Competent malaria vectors currently exist in southern Canada, including within this range several major urban centres, and conditions here have historically supported endemic malaria transmission. Climate change will increase the occurrence of temperature conditions suitable for malaria transmission in Canada, which, combined with trends in international travel, immigration, drug resistance, and inexperience in both clinical and laboratory diagnosis, may increase malaria incidence in Canada and permit sporadic autochthonous cases. This conclusion challenges the general assumption of negligible malaria risk in Canada with climate change.

  1. Assessing the Role of Climate Change in Malaria Transmission in Africa

    Directory of Open Access Journals (Sweden)

    E. T. Ngarakana-Gwasira

    2016-01-01

    Full Text Available The sensitivity of vector borne diseases like malaria to climate continues to raise considerable concern over the implications of climate change on future disease dynamics. The problem of malaria vectors shifting from their traditional locations to invade new zones is of important concern. A mathematical model incorporating rainfall and temperature is constructed to study the transmission dynamics of malaria. The reproduction number obtained is applied to gridded temperature and rainfall datasets for baseline climate and future climate with aid of GIS. As a result of climate change, malaria burden is likely to increase in the tropics, the highland regions, and East Africa and along the northern limit of falciparum malaria. Falciparum malaria will spread into the African highlands; however it is likely to die out at the southern limit of the disease.

  2. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico.

    Science.gov (United States)

    Esperón-Rodríguez, Manuel; Bonifacio-Bautista, Martín; Barradas, Víctor L

    2016-03-01

    Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922-2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

  3. Learning and Risk Exposure in a Changing Climate

    Science.gov (United States)

    Moore, F.

    2015-12-01

    Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.

  4. The Impact of Climate Change on Recent Vegetation Changes on Dovrefjell, Norway

    Directory of Open Access Journals (Sweden)

    Jarle Inge Holten

    2011-01-01

    Full Text Available The ongoing climate warming has been reported to affect a broad range of organisms, and mountain ecosystems are considered to be particularly sensitive because they are limited by low temperatures. Meteorological data show an increased temperature for the alpine areas at Dovrefjell, Norway, causing a prolonged growing season and increased temperature sum. As part of the worldwide project Global Observation Research Initiative in Alpine Environments (GLORIA, the short-term changes in vascular plant species richness, species composition of lichen and vascular plant communities, and abundance of single species were studied at four summits representing an altitudinal gradient from the low alpine to the high alpine zone. During the period from 2001 to 2008, an increase in species richness at the lowest summit, as well as a change in the composition of vascular plant communities, was found at the two lowest summits. The results also indicate an increase in abundance of some shrubs and graminoids and a decline in the cover of some species of lichens at the lowest summit. These changes are in accordance with climate induced changes reported in other studies, but other causes for the observed vegetation changes, in particular changes in grazing and trampling pressure, cannot be ruled out.

  5. Climate change driven plant-metal-microbe interactions.

    Science.gov (United States)

    Rajkumar, Mani; Prasad, Majeti Narasimha Vara; Swaminathan, Sandhya; Freitas, Helena

    2013-03-01

    Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    International Nuclear Information System (INIS)

    Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han

    2014-01-01

    Due to increasing atmospheric CO 2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO 2 and those which involve CO 2 -induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO 2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO 2 -induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO 2 -induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change. (letters)

  7. A probabilistic model of ecosystem response to climate change

    International Nuclear Information System (INIS)

    Shevliakova, E.; Dowlatabadi, H.

    1994-01-01

    Anthropogenic activities are leading to rapid changes in land cover and emissions of greenhouse gases into the atmosphere. These changes can bring about climate change typified by average global temperatures rising by 1--5 C over the next century. Climate change of this magnitude is likely to alter the distribution of terrestrial ecosystems on a large scale. Options available for dealing with such change are abatement of emissions, adaptation, and geoengineering. The integrated assessment of climate change demands that frameworks be developed where all the elements of the climate problem are present (from economic activity to climate change and its impacts on market and non-market goods and services). Integrated climate assessment requires multiple impact metrics and multi-attribute utility functions to simulate the response of different key actors/decision-makers to the actual physical impacts (rather than a dollar value) of the climate-damage vs. policy-cost debate. This necessitates direct modeling of ecosystem impacts of climate change. The authors have developed a probabilistic model of ecosystem response to global change. This model differs from previous efforts in that it is statistically estimated using actual ecosystem and climate data yielding a joint multivariate probability of prevalence for each ecosystem, given climatic conditions. The authors expect this approach to permit simulation of inertia and competition which have, so far, been absent in transfer models of continental-scale ecosystem response to global change. Thus, although the probability of one ecotype will dominate others at a given point, others would have the possibility of establishing an early foothold

  8. Large regional variability of recent climatic change driven sub-surface temperature changes as derived from temperature logs-central Canada example

    Czech Academy of Sciences Publication Activity Database

    Majorowicz, J.; Šafanda, Jan

    2018-01-01

    Roč. 107, č. 1 (2018), s. 123-135 ISSN 1437-3254 Institutional support: RVO:67985530 Keywords : ground warming * borehole climatology * land use change climate change drivers * Central Canada Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.283, year: 2016

  9. Smallholder agriculture in India and adaptation to current and future climate variability and climate change

    Science.gov (United States)

    Murari, K. K.; Jayaraman, T.

    2014-12-01

    Modeling studies have indicated that global warming, in many regions, will increase the exposure of major crops to rainfall and temperature stress, leading to lower crop yields. Climate variability alone has a potential to decrease yield to an extent comparable to or greater than yield reductions expected due to rising temperature. For India, where agriculture is important, both in terms of food security as well as a source of livelihoods to a majority of its population, climate variability and climate change are subjects of serious concern. There is however a need to distinguish the impact of current climate variability and climate change on Indian agriculture, especially in relation to their socioeconomic impact. This differentiation is difficult to determine due to the secular trend of increasing production and yield of the past several decades. The current research in this aspect is in an initial stage and requires a multi-disciplinary effort. In this study, we assess the potential differential impacts of environmental stress and shock across different socioeconomic strata of the rural population, using village level survey data. The survey data from eight selected villages, based on the Project on Agrarian Relations in India conducted by the Foundation for Agrarian Studies, indicated that income from crop production of the top 20 households (based on the extent of operational land holding, employment of hired labour and asset holdings) is a multiple of the mean income of the village. In sharp contrast, the income of the bottom 20 households is a fraction of the mean and sometimes negative, indicating a net loss from crop production. The considerable differentials in output and incomes suggest that small and marginal farmers are far more susceptible to climate variability and climate change than the other sections. Climate change is effectively an immediate threat to small and marginal farmers, which is driven essentially by socioeconomic conditions. The impact

  10. Dynamically-downscaled projections of changes in temperature extremes over China

    Science.gov (United States)

    Guo, Junhong; Huang, Guohe; Wang, Xiuquan; Li, Yongping; Lin, Qianguo

    2018-02-01

    In this study, likely changes in extreme temperatures (including 16 indices) over China in response to global warming throughout the twenty-first century are investigated through the PRECIS regional climate modeling system. The PRECIS experiment is conducted at a spatial resolution of 25 km and is driven by a perturbed-physics ensemble to reflect spatial variations and model uncertainties. Simulations of present climate (1961-1990) are compared with observations to validate the model performance in reproducing historical climate over China. Results indicate that the PRECIS demonstrates reasonable skills in reproducing the spatial patterns of observed extreme temperatures over the most regions of China, especially in the east. Nevertheless, the PRECIS shows a relatively poor performance in simulating the spatial patterns of extreme temperatures in the western mountainous regions, where its driving GCM exhibits more uncertainties due to lack of insufficient observations and results in more errors in climate downscaling. Future spatio-temporal changes of extreme temperature indices are then analyzed for three successive periods (i.e., 2020s, 2050s and 2080s). The projected changes in extreme temperatures by PRECIS are well consistent with the results of the major global climate models in both spatial and temporal patterns. Furthermore, the PRECIS demonstrates a distinct superiority in providing more detailed spatial information of extreme indices. In general, all extreme indices show similar changes in spatial pattern: large changes are projected in the north while small changes are projected in the south. In contrast, the temporal patterns for all indices vary differently over future periods: the warm indices, such as SU, TR, WSDI, TX90p, TN90p and GSL are likely to increase, while the cold indices, such as ID, FD, CSDI, TX10p and TN10p, are likely to decrease with time in response to global warming. Nevertheless, the magnitudes of changes in all indices tend to

  11. The increased atmospheric greenhouse effect and regional climate change

    Energy Technology Data Exchange (ETDEWEB)

    Groenaas, S. [Bergen Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The main information for predicting future climate changes comes from integrating coupled climate models of the atmosphere, ocean and cryosphere. Regional climate change may be studied from the global integrations, however, resolution is coarse because of insufficient computer power. Attempts are being made to get more regional details out of the global integrations by ``downscaling`` the latter. This can be done in two ways. Firstly, limited area models with high resolution are applied, driven by the global results as boundary values. Secondly, statistical relationships have been found between observed meteorological parameters, like temperature and precipitation, and analyzed large scale gridded fields. The derived relations are then used on similar data from climate runs to give local interpretations. A review is given of literature on recent observations of climate variations and on predicted regional climate change. 18 refs., 4 figs.

  12. Climate change, food, water and population health in China.

    Science.gov (United States)

    Tong, Shilu; Berry, Helen L; Ebi, Kristie; Bambrick, Hilary; Hu, Wenbiao; Green, Donna; Hanna, Elizabeth; Wang, Zhiqiang; Butler, Colin D

    2016-10-01

    Anthropogenic climate change appears to be increasing the frequency, duration and intensity of extreme weather events. Such events have already had substantial impacts on socioeconomic development and population health. Climate change's most profound impacts are likely to be on food, health systems and water. This paper explores how climate change will affect food, human health and water in China. Projections indicate that the overall effects of climate change, land conversion and reduced water availability could reduce Chinese food production substantially - although uncertainty is inevitable in such projections. Climate change will probably have substantial impacts on water resources - e.g. changes in rainfall patterns and increases in the frequencies of droughts and floods in some areas of China. Such impacts would undoubtedly threaten population health and well-being in many communities. In the short-term, population health in China is likely to be adversely affected by increases in air temperatures and pollution. In the medium to long term, however, the indirect impacts of climate change - e.g. changes in the availability of food, shelter and water, decreased mental health and well-being and changes in the distribution and seasonality of infectious diseases - are likely to grow in importance. The potentially catastrophic consequences of climate change can only be avoided if all countries work together towards a substantial reduction in the emission of so-called greenhouse gases and a substantial increase in the global population's resilience to the risks of climate variability and change.

  13. Negative impacts of climate change on cereal yields: statistical evidence from France

    Science.gov (United States)

    Gammans, Matthew; Mérel, Pierre; Ortiz-Bobea, Ariel

    2017-05-01

    In several world regions, climate change is predicted to negatively affect crop productivity. The recent statistical yield literature emphasizes the importance of flexibly accounting for the distribution of growing-season temperature to better represent the effects of warming on crop yields. We estimate a flexible statistical yield model using a long panel from France to investigate the impacts of temperature and precipitation changes on wheat and barley yields. Winter varieties appear sensitive to extreme cold after planting. All yields respond negatively to an increase in spring-summer temperatures and are a decreasing function of precipitation about historical precipitation levels. Crop yields are predicted to be negatively affected by climate change under a wide range of climate models and emissions scenarios. Under warming scenario RCP8.5 and holding growing areas and technology constant, our model ensemble predicts a 21.0% decline in winter wheat yield, a 17.3% decline in winter barley yield, and a 33.6% decline in spring barley yield by the end of the century. Uncertainty from climate projections dominates uncertainty from the statistical model. Finally, our model predicts that continuing technology trends would counterbalance most of the effects of climate change.

  14. Climate change and the water cycle: A new southwest regional climate hub curriculum unit for 6th-12th grade students

    Science.gov (United States)

    As climate change intensifies, increased temperatures and altered precipitation will make water, a limited resource in the arid southwestern United States, even scarcer in many locations. The USDA Southwest Regional Climate Hub (SWRCH) developed Climate Change and the Water Cycle, an engaging and sc...

  15. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  16. Changes in the seasonality of Arctic sea ice and temperature

    Science.gov (United States)

    Bintanja, R.

    2012-04-01

    Observations show that the Arctic sea ice cover is currently declining as a result of climate warming. According to climate models, this retreat will continue and possibly accelerate in the near-future. However, the magnitude of this decline is not the same throughout the year. With temperatures near or above the freezing point, summertime Arctic sea ice will quickly diminish. However, at temperatures well below freezing, the sea ice cover during winter will exhibit a much weaker decline. In the future, the sea ice seasonal cycle will be no ice in summer, and thin one-year ice in winter. Hence, the seasonal cycle in sea ice cover will increase with ongoing climate warming. This in itself leads to an increased summer-winter contrast in surface air temperature, because changes in sea ice have a dominant influence on Arctic temperature and its seasonality. Currently, the annual amplitude in air temperature is decreasing, however, because winters warm faster than summer. With ongoing summer sea ice reductions there will come a time when the annual temperature amplitude will increase again because of the large seasonal changes in sea ice. This suggests that changes in the seasonal cycle in Arctic sea ice and temperature are closely, and intricately, connected. Future changes in Arctic seasonality (will) have an profound effect on flora, fauna, humans and economic activities.

  17. Climatic change effects on agriculture. A future scenario; Auswirkungen des Klimawandels auf die Landwirtschaft. Ein Zukunftsszenario

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Udo [Deutscher Wetterdienst, Offenbach (Germany). Abt. Agrarmeteorologie

    2014-07-01

    The contribution on the effect of the climatic change on agriculture covers the topics meteorology - agriculture, modeling of the climate, observation of projected changes - temperature, precipitation and extreme weather conditions; effects of the climatic change on selected agro-meteorological parameters in agriculture - surface temperature, shift of the growing period, corn and other energy plants for biogas production, droughts.

  18. Changes of the Temperature and Precipitation Extremes on Homogenized Data

    Directory of Open Access Journals (Sweden)

    LAKATOS, Mónika

    2007-01-01

    Full Text Available Climate indices to detect changes have been defined in several international projects onclimate change. Climate index calculations require at least daily resolution of time series withoutinhomogeneities, such as transfer of stations, changes in observation practice. In many cases thecharacteristics of the estimated linear trends, calculated from the original and from the homogenizedtime series are significantly different. The ECA&D (European Climate Assessment & Dataset indicesand some other special temperature and precipitation indices of own development were applied to theClimate Database of the Hungarian Meteorological Service. Long term daily maximum, minimum anddaily mean temperature data series and daily precipitation sums were examined. The climate indexcalculation processes were tested on original observations and on homogenized daily data fortemperature; in the case of precipitation a complementation process was performed to fill in the gapsof missing data. Experiences of comparing the climate index calculation results, based on original andcomplemented-homogenized data, are reported in this paper. We present the preliminary result ofclimate index calculations also on gridded (interpolated daily data.

  19. Wetlands in a changing climate: Science, policy and management

    Science.gov (United States)

    Moomaw, William R.; Chmura, G.L.; Davies, Gillian T.; Finlayson, Max; Middleton, Beth A.; Natali, Sue M.; Perry, James; Roulet, Nigel; Sutton-Grier, Ariana

    2018-01-01

    Part 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems. Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the paper explores the policy and management realm from international to national, subnational and local levels to identify strategies and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable researchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services.

  20. The Evaluation of Climate Change Risks

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2012-11-01

    Full Text Available Nowadays, it is acknowledged that climatic changes represent a serious threat for the environment and, so, this problem has been approached at numerous conferences, conventions and summits. The climate is strongly influenced by the changes in the atmospheric concentrations of certain gases that hold the solar radiations on the Earth’s surface (the greenhouse effect. The water vapors and the carbon dioxide (CO2 present in the atmosphere have always generated a natural greenhouse effect, without which the Earth surface would be 33o C lower than it is today. Other greenhouse gases are: methane (CH4, nitrogen protoxide (N2O, and the halogenated compounds such as chlorofluorocarbons (CFCs. During the last hundred years, man’s activity has led to the increase of the atmospheric concentration of the greenhouse gases and of other pollutants, its consequence being the increase of the average global temperature. Although it has not been calculated exactly how much of this warming can be attributed to the greenhouse gases, there is evidence that human activity contributes to global warming. The main causes leading to the accentuation of the greenhouse effect are the burning of the fossil fuels, deforestations, cement production, waste disposal, refrigeration etc. The climatic changes triggered by the greenhouse gases will have consequences that have already made themselves visible, causing: the increase of the sea level and the possible flooding of the low areas; the melting of the icecap; the modification of the precipitations regime, with consequences like the increase of the floods and droughts frequency; changes in the occurrence of climatic extremes, especially in the occurrence of the high, extreme temperatures. All these will have a direct impact on ecosystems, health, some key economic sectors such as agriculture and on water resources.