WorldWideScience

Sample records for climate change experiments

  1. Complexity in Climate Change Manipulation Experiments

    DEFF Research Database (Denmark)

    Kreyling, Juergen; Beier, Claus

    2014-01-01

    Climate change goes beyond gradual changes in mean conditions. It involves increased variability in climatic drivers and increased frequency and intensity of extreme events. Climate manipulation experiments are one major tool to explore the ecological impacts of climate change. Until now...... variability in temperature are ecologically important. Embracing complexity in future climate change experiments in general is therefore crucial......., precipitation experiments have dealt with temporal variability or extreme events, such as drought, resulting in a multitude of approaches and scenarios with limited comparability among studies. Temperature manipulations have mainly been focused only on warming, resulting in better comparability among studies...

  2. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  3. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U [DKRZ, Hamburg (Germany)

    1996-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  4. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  5. Means and extremes: building variability into community-level climate change experiments.

    Science.gov (United States)

    Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula

    2013-06-01

    Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.

  6. Climate change: lived experience, policy and public action

    OpenAIRE

    Abbott, Dina; Wilson, Gordon

    2014-01-01

    Purpose – The purpose of this paper is to explore the importance of lived experiences, as complementary knowledge to that provided by the sciences, for policy and intervention on climate change.\\ud Design/methodology/approach – This conceptual paper draws on several strands within the context of climate change: knowledge and power; human engagement; the meaning of “lived experience” (and its association with “local/indigenous knowledge”); its capture through interdisciplinary and transdiscipl...

  7. The Governance of Climate Change Adaptation Through Urban Policy Experiments

    NARCIS (Netherlands)

    Chu, E.K.

    2016-01-01

    Climate change is increasingly posing risks to infrastructure and public services in cities across the global South. Building on ideas of policy experimentation at the nexus of institutional and transition theories, this paper assesses six climate change adaptation experiments across the cities of

  8. Interactions between above- and belowground organisms modified in climate change experiments

    DEFF Research Database (Denmark)

    Stevnsbak, Karen; Scherber, Christoph; Gladbach, David

    2012-01-01

    Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate4 can be expected to influence above–belowground interactions. Here, we use...... a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms.We use an insect herbivore...... a reduction in herbivory and cascading effects through the soil food web. Interactions between CO2, drought and warming can affect belowground protozoan abundance. Our findings imply that climate change affects aboveground–belowground interactions through changes in nutrient availability....

  9. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  10. Interactions between above- and belowground organisms modified in climate change experiments

    Science.gov (United States)

    Stevnbak, Karen; Scherber, Christoph; Gladbach, David J.; Beier, Claus; Mikkelsen, Teis N.; Christensen, Søren

    2012-11-01

    Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate can be expected to influence above-belowground interactions. Here, we use a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms. We use an insect herbivore to experimentally increase aboveground herbivory in grass phytometers exposed to all eight combinations of climate change factors for three years. Aboveground herbivory increased the abundance of belowground protozoans, microbial growth and microbial nitrogen availability. Increased CO2 modified these links through a reduction in herbivory and cascading effects through the soil food web. Interactions between CO2, drought and warming can affect belowground protozoan abundance. Our findings imply that climate change affects aboveground-belowground interactions through changes in nutrient availability.

  11. Klimaschutz in China. Summary of experience from the existing environmental law relating to climate change and suggestions for China's climate change legislation

    International Nuclear Information System (INIS)

    Cao, Mingde

    2014-01-01

    This essay summarizes Chinese experiences from environmental law relating to climate change legislation and puts forward certain constructive advices, by a comprehensive and systematic examination of China's laws and policies in addressing the issue of climate change, and evaluation on their legal effects. On the basis of analysis and empirical research of this essay, it could be found that, there are many successful institutions in the existing policy systems and practices of China in respect of greenhouse gas emission reduction, including the planning and scheduling institution, the target responsibility institution, and the compulsory standard institution. These institutions should be amended, confirmed and fixed down in the laws, so as to bring their functions into full play. Simultaneously, climate change legislation should bring in and focus on promoting new institutions such as the institution of climate change environmental impact evaluation on construction projects, planning and policy strategies, carbon capture and storage technology promotion institution, carbon sinks trading or indemnification institution. Local governments have urgent demand for climate change legislation as well as obvious limitations, as a result, it is imperative for the launch of state-level comprehensive mode of climate change legislation. The basic principles of legislation may incorporate policy principles and introduce specific principles in the field. Furthermore, building a perfect administrative system and nailing down the legal responsibilities for addressing climate change are crucial for safeguarding the smooth implementation of laws. This study aims at providing early-stage preparations for China's climate change legislation, and a research foundation for drafting climate change laws. Research findings of this study involve three aspects, i.e. laws, policies and practice, by studying more than thirty resolutions of the general assembly of the United Nations, more than

  12. CO2-induced climate change in northern Europe: comparison of 12 CMIP2 experiments

    International Nuclear Information System (INIS)

    Raeisaenen, Jouni

    2000-01-01

    The results of 12 coupled atmosphere-ocean general circulation model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2) are studied with focus on the area of northern Europe. The variables considered are surface air temperature, precipitation and sea level pressure. The 80-year control simulations are first compared with observational estimates of the present climate. Several aspects of the simulated CO 2 -induced climate changes, defined by subtracting the control run seasonal or annual means from 20-year perturbation run means around the transient doubling of CO 2 , are then studied. The common features and individual variations in the simulated climate change are documented. Particular attention is put on expressing the inter experiment agreement in quantitative terms and on estimating the relative contribution of model-simulated internal variability to the inter experiment variance. For that purpose, a new statistical framework is developed. Finally, an attempt is made to statistically relate the inter experiment differences in the simulated climate change in northern Europe to aspects of the control climates, global climate change and some of the basic model characteristics. A summary of the main findings is given in the last section of the report

  13. Poverty and Climate Change. Part 2. Adaptation Lessons from Past Experience

    Energy Technology Data Exchange (ETDEWEB)

    Abeygunawardena, P. [Asian Development Bank ADB, Tokyo (Japan); Vyas, Y. [African Development Bank AfDB, Abidjan (Cote d' Ivoire); Knill, P. [Federal German Ministry for Economic Cooperation and Development BMZ, Bonn (Germany); Foy, T.; Harrold, M.; Steele, P.; Tanner, T. [Department for International Developmen DFID, London (United Kingdom); Hirsch, D.; Oosterman, M.; Rooimans, J. [Development Cooperation DGIS, Ministry of Foreign Affairs, Den Haag (Netherlands); Debois, M.; Lamin, M. [Directorate-General for Development, European Commission EC, Brussels (Belgium); Liptow, H.; Mausolf, E.; Verheyen, R. [Deutsche Gesellschaft fuer Technische Zusammenarbeit GTZ, Eschborn (Germany); Agrawala, S.; Caspary, G.; Paris, R. [Organization for Economic Cooperation and Development OECD, Paris (France); Kashyap, A. [United Nations Development Programme UNDP, New York, NY (United States); Sharma, R. [United Nations Environment Programme UNEP, Nairobi (Kenya); Mathur, A.; Sharma, M.; Sperling, F. [World Bank, Washington, DC (United States)

    2003-07-01

    Adaptation is successful if it reduces the vulnerability of poor countries and poor people to existing climate variability, while also building in the potential to anticipate and react to further changes in climate in the future. The evidence from past experience suggests that this is best achieved through mainstreaming and integrating climate responses into development and poverty eradication processes, rather than by identifying and treating them separately. In this document, mainstreaming is used to describe the consideration of climate issues in decision making processes such as planning and budgeting. Integration is used when specific adaptation measures are added to design and implementation strategies. Thus, integration occurs in instances where adaptation is deemed to be a priority in order to effectively achieve development goals. The rationale for integrating adaptation in development strategies and practices is underlined by the fact that many of the interventions required to increase resilience to climatic changes generally benefit development objectives. Adaptation requires the development of human capital, strengthening of institutional systems, and sound management of public finances and natural resources. Such processes build the resilience of countries, communities, and households to all shocks and stresses, including climate variability and change, and are good development practice in themselves. Mainstreaming climate issues into national development policies ensures consistency between the needs of adaptation and poverty eradication. Separation of the two runs the risk of adaptation policies inadvertently conflicting with development and poverty policies, or conversely, development policies inadvertently increasing vulnerability to climatic factors. Accordingly, this issue is critical to the successful eradication of poverty and needs to be placed at the core of national development processes. The experiences described in this section show how

  14. A replicated climate change field experiment reveals rapid evolutionary response in an ecologically important soil invertebrate

    DEFF Research Database (Denmark)

    Bataillon, Thomas; Galtier, Nicolas; Bernard, Aurelien

    2016-01-01

    to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies......Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out innatural field conditions. We examined the evolutionary response...... associated to changes in soil temperature and soil moisture. This shows an evolutionaryresponse to realistic climate change happening over short-time scale, and calls for incorporating evolution into modelspredicting future response of species to climate change. It also shows that designed climate change...

  15. Klimaschutz in China. Summary of experience from the existing environmental law relating to climate change and suggestions for China's climate change legislation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Mingde [China Univ. of Political Science and Law, Peking (China). Climate Change and Natural Resources Law Center

    2014-07-01

    This essay summarizes Chinese experiences from environmental law relating to climate change legislation and puts forward certain constructive advices, by a comprehensive and systematic examination of China's laws and policies in addressing the issue of climate change, and evaluation on their legal effects. On the basis of analysis and empirical research of this essay, it could be found that, there are many successful institutions in the existing policy systems and practices of China in respect of greenhouse gas emission reduction, including the planning and scheduling institution, the target responsibility institution, and the compulsory standard institution. These institutions should be amended, confirmed and fixed down in the laws, so as to bring their functions into full play. Simultaneously, climate change legislation should bring in and focus on promoting new institutions such as the institution of climate change environmental impact evaluation on construction projects, planning and policy strategies, carbon capture and storage technology promotion institution, carbon sinks trading or indemnification institution. Local governments have urgent demand for climate change legislation as well as obvious limitations, as a result, it is imperative for the launch of state-level comprehensive mode of climate change legislation. The basic principles of legislation may incorporate policy principles and introduce specific principles in the field. Furthermore, building a perfect administrative system and nailing down the legal responsibilities for addressing climate change are crucial for safeguarding the smooth implementation of laws. This study aims at providing early-stage preparations for China's climate change legislation, and a research foundation for drafting climate change laws. Research findings of this study involve three aspects, i.e. laws, policies and practice, by studying more than thirty resolutions of the general assembly of the United Nations

  16. Transgenerational plasticity and climate change experiments: Where do we go from here?

    Science.gov (United States)

    Donelson, Jennifer M; Salinas, Santiago; Munday, Philip L; Shama, Lisa N S

    2018-01-01

    Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental conditions that may promote it, its relationship to within-generation plasticity (WGP) and its role in evolutionary potential. In this review, we consider how the detection of TGP in climate change experiments is affected by the predictability of environmental variation, as well as the timing and magnitude of environmental change cues applied. We also discuss the need to design experiments that are able to distinguish TGP from selection and TGP from WGP in multigenerational experiments. We conclude by suggesting future research directions that build on the knowledge to date and admit the limitations that exist, which will depend on the way environmental change is simulated and the type of experimental design used. Such an approach will open up this burgeoning area of research to a wider variety of organisms and allow better predictive capacity of the role of TGP in the response of organisms to future climate change. © 2017 John Wiley & Sons Ltd.

  17. How to understand our willingness-to-pay to fight climate change? A choice experiment approach

    OpenAIRE

    De Chaisemartin , Clément; Mahé , Thuriane

    2009-01-01

    We explore the willingness-to-pay (WTP) to fight climate change in a choice experiment. Since tree planting prevents climate change, subjects are offered to choose between receiving a high amount of money or receiving a lower amount of money plus participating to tree planting action. This allows us to get an individual interval of the WTP to prevent climate change. We also set the experiment to control for framing effects: we measure whether subjects WTP is higher not to prevent a tree plant...

  18. CO{sub 2}-induced climate change in northern Europe: comparison of 12 CMIP2 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, Jouni

    2000-01-01

    The results of 12 coupled atmosphere-ocean general circulation model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2) are studied with focus on the area of northern Europe. The variables considered are surface air temperature, precipitation and sea level pressure. The 80-year control simulations are first compared with observational estimates of the present climate. Several aspects of the simulated CO{sub 2}-induced climate changes, defined by subtracting the control run seasonal or annual means from 20-year perturbation run means around the transient doubling of CO{sub 2}, are then studied. The common features and individual variations in the simulated climate change are documented. Particular attention is put on expressing the inter experiment agreement in quantitative terms and on estimating the relative contribution of model-simulated internal variability to the inter experiment variance. For that purpose, a new statistical framework is developed. Finally, an attempt is made to statistically relate the inter experiment differences in the simulated climate change in northern Europe to aspects of the control climates, global climate change and some of the basic model characteristics. A summary of the main findings is given in the last section of the report.

  19. Quality Climate Change Professional Development Translates into Quality Climate Change Education (Invited)

    Science.gov (United States)

    Holzer, M. A.

    2013-12-01

    Perhaps one of the reasons we have so many climate change deniers in the United States is that to them climate change is not occurring. This is a valid claim about climate change deniers considering that the effects of climate change in the mid-latitudes are quite subtle as compared to those found in low-latitude and high-latitude regions. A mid-latitude classroom teacher is saddled with the challenge of enlightening students about our changing climate and empowering students to assist in making necessary lifestyle changes, all the while the students don't understand the urgency in doing so. Quality climate change data and resources from the Polar Regions and low latitudes, as well as connections to researchers from these regions help to bridge the understanding of our changing climate from the extreme latitudes to the mid-latitudes. Connecting science teachers with data, resources, and researchers is one way of ensuring our mid-latitude students understand the urgency in taking appropriate actions to adapt, mitigate, and show resilience. This presentation will highlight a few of the many impacts of an authentic research experience for teachers that not only provides teachers with data, resources, and researchers, but changes the way a science teacher teaches where the methods they use mirror the methods used by scientists. National projects like PolarTREC connect educators with the science of climate change as well as the reality of impacts of climate change. For example, research expeditions in the Arctic and in Antarctica connect teachers with the content and practices of climate change science preparing them to replicate their experiences with their students. A PolarTREC experience does not end with the close of the expedition. Teachers continue their connections with the program through their educator network, the integration of PolarTREC resources into their curriculums, and communications with their principal investigators either virtually or with school

  20. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  1. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    Science.gov (United States)

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  2. Tourists’ Environmentally Responsible Behavior in Response to Climate Change and Tourist Experiences in Nature-Based Tourism

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Han

    2016-07-01

    Full Text Available Nature-based tourism destinations—locations in which economic viability and environmental responsibility are sought—are sensitive to climate change and its effects on important environmental components of the tourism areas. To meet the dual roles, it is important for destination marketers and resources managers to provide quality experiences for tourists and to induce tourists’ environmentally responsible behavior in such destinations. This study documents the importance of perceptions toward climate change and tourist experiences in determining tourists’ environmentally responsible behavior while enjoying holidays at nature-based tourism destinations in Jeju Island, South Korea. Two hundred and eleven Korean and 204 Chinese tourists marked dominant tourist arrivals to the island, and responded to the survey questionnaire. Results showed that perceptions toward climate change and tourist experiences affect Korean tourists’ environmentally responsible behavior intentions, whereas tourist experiences—not perceptions toward climate change—only significantly affect Chinese tourists’ behavior intention. In a nature-based tourism context under the pressure of climate change and adverse environmental effects as consequences of tourism activities, resources managers and destination marketers need to develop environmental campaigns or informative tourist programs to formulate environmentally responsible behavior as well as to increase tourist quality experiences among domestic and international tourists.

  3. Can Climate Change Enhance Biology Lessons? A Quasi-Experiment

    Science.gov (United States)

    Monroe, Martha C.; Hall, Stephanie; Li, Christine Jie

    2016-01-01

    Climate change is a highly charged topic that some adults prefer to ignore. If the same holds true for secondary students, teachers could be challenged to teach about climate change. We structured one activity about the biological concepts of carbon cycle and carbon sequestration in two ways: with and without mention of climate change. Results…

  4. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  5. Impact assessment of climate change on tourism in the Pacific small islands based on the database of long-term high-resolution climate ensemble experiments

    Science.gov (United States)

    Watanabe, S.; Utsumi, N.; Take, M.; Iida, A.

    2016-12-01

    This study aims to develop a new approach to assess the impact of climate change on the small oceanic islands in the Pacific. In the new approach, the change of the probabilities of various situations was projected with considering the spread of projection derived from ensemble simulations, instead of projecting the most probable situation. The database for Policy Decision making for Future climate change (d4PDF) is a database of long-term high-resolution climate ensemble experiments, which has the results of 100 ensemble simulations. We utilized the database for Policy Decision making for Future climate change (d4PDF), which was (a long-term and high-resolution database) composed of results of 100 ensemble experiments. A new methodology, Multi Threshold Ensemble Assessment (MTEA), was developed using the d4PDF in order to assess the impact of climate change. We focused on the impact of climate change on tourism because it has played an important role in the economy of the Pacific Islands. The Yaeyama Region, one of the tourist destinations in Okinawa, Japan, was selected as the case study site. Two kinds of impact were assessed: change in probability of extreme climate phenomena and tourist satisfaction associated with weather. The database of long-term high-resolution climate ensemble experiments and the questionnaire survey conducted by a local government were used for the assessment. The result indicated that the strength of extreme events would be increased, whereas the probability of occurrence would be decreased. This change should result in increase of the number of clear days and it could contribute to improve the tourist satisfaction.

  6. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  7. European climate change experiments on precipitation change

    DEFF Research Database (Denmark)

    Beier, Claus

    Presentation of European activities and networks related to experiments and databases within precipitation change......Presentation of European activities and networks related to experiments and databases within precipitation change...

  8. Climate change research in Canada

    International Nuclear Information System (INIS)

    Dawson, K.

    1994-01-01

    The current consensus on climatic change in Canada is briefly summarized, noting the results of modelling of the effects of a doubling of atmospheric CO 2 , the nonuniformity of climate change across the country, the uncertainties in local responses to change, and the general agreement that 2-4 degrees of warming will occur for each doubling of CO 2 . Canadian government response includes programs aimed at reducing the uncertainties in the scientific understanding of climate change and in the socio-economic response to such change. Canadian climate change programs include participation in large-scale experiments on such topics as heat transport in the ocean, and sources and sinks of greenhouse gases; development of next-generation climate models; studying the social and economic effects of climate change in the Great Lakes Basin and Mackenzie River Basin; investigation of paleoclimates; and analysis of climate data for long-term trends

  9. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-01-01

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  10. Climate variability and climate change vulnerability and adaptation. Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, N.; Cirillo, R.R. [Argonne National Lab., IL (United States); Dixon, R.K. [U.S. Country Studies Program, Washington, DC (United States)] [and others

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  11. Climate Change Conceptual Change: Scientific Information Can Transform Attitudes.

    Science.gov (United States)

    Ranney, Michael Andrew; Clark, Dav

    2016-01-01

    Of this article's seven experiments, the first five demonstrate that virtually no Americans know the basic global warming mechanism. Fortunately, Experiments 2-5 found that 2-45 min of physical-chemical climate instruction durably increased such understandings. This mechanistic learning, or merely receiving seven highly germane statistical facts (Experiment 6), also increased climate-change acceptance-across the liberal-conservative spectrum. However, Experiment 7's misleading statistics decreased such acceptance (and dramatically, knowledge-confidence). These readily available attitudinal and conceptual changes through scientific information disconfirm what we term "stasis theory"--which some researchers and many laypeople varyingly maintain. Stasis theory subsumes the claim that informing people (particularly Americans) about climate science may be largely futile or even counterproductive--a view that appears historically naïve, suffers from range restrictions (e.g., near-zero mechanistic knowledge), and/or misinterprets some polarization and (noncausal) correlational data. Our studies evidenced no polarizations. Finally, we introduce HowGlobalWarmingWorks.org--a website designed to directly enhance public "climate-change cognition." Copyright © 2016 Cognitive Science Society, Inc.

  12. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  13. Climate change: believing and seeing implies adapting.

    Directory of Open Access Journals (Sweden)

    Kristina Blennow

    Full Text Available Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01 to 0.81 (SD ± 0.03 for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008 to 0.91 (SD ± 0.02. We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  14. The social construct of climate and climate change

    International Nuclear Information System (INIS)

    Stehr, N.

    1994-01-01

    Different time scales of climate change and their differential perception in society are discussed. A historical examination of natural climate changes during the past millennium suggests that short-term changes, especially crucial changes, trigger a significant response in and by society. Short-term changes correspond to the 'time horizon of everyday life', that is, to a time scale from days and weeks to a few years. The anticipated anthropogenic climate changes, however, are expected to occur on a longer time scale. They require a response by society not on the basis of primary experience but on the basis of scientifically constructed scenarios and ways in which such information is represented in the modern media for example. Socio-economic impact research relies on concepts that are based on the premise of perfectly informed actors for the development of optimal adaptation strategies. In contrast to such a conception, we develop the concept of a 'social construct of climate' as decisive for the public perception of scientific knowledge about climate and for public policy on climate change. The concept is illustrated using a number of examples. (orig.)

  15. Human-experienced temperature changes exceed global average climate changes for all income groups

    Science.gov (United States)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The

  16. Conceptual Change regarding middle school students' experience with Global Climate Change

    Science.gov (United States)

    Golden, B. W.; Lutz, B.

    2011-12-01

    Given the complexity of the science involving climate change (IPCC, 2007), its lack of curricular focus within US K-12 schooling (Golden, 2009), and the difficulty in effecting conceptual change in science (Vosniadou, 2007), we sought to research middle school students' conceptions about climate change, in addition to how those conceptions changed during and as a result of a deliberately designed global climate change (GCC) unit. In a sixth grade classroom, a unit was designed which incorporated Argumentation-Driven Inquiry (Sampson & Grooms, 2010). That is, students were assigned to groups and asked to make sense of standard GCC data such as paleoclimate data from ice cores, direct temperature measurement, and Keeling curves, in addition to learning about the greenhouse effect in a modeling lesson (Hocking, et al, 1993). The students were then challenged, in groups, to create, on whiteboards, explanations and defend these explanations to and with their peers. They did two iterations of this argumentation. The first iteration focused on the simple identification of climate change patterns. The second focused on developing causal explanations for those patterns. After two rounds of such argumentation, the students were then asked to write (individually) a "final" argument which accounted for the given data. Interview and written data were analyzed prior to the given unit, during it, and after it, in order to capture complicated nuance that might escape detection by simpler research means such as surveys. Several findings emerged which promised to be of interest to climate change educators. The first is that many students tended to "know" many "facts" about climate change, but were unable to connect these disparate facts in any meaningful ways. A second finding is that while no students changed their entire belief systems, even after a robust unit which would seemingly challenge such, each student engaged did indeed modify the manner in which they discussed the

  17. iSeeChange: Crowdsourced Climate Change Reporting

    Science.gov (United States)

    Drapkin, J. K.

    2012-12-01

    Directly engaging local communities about their climate change experiences has never been more important. As weather and climate become more unpredictable, these experiences provide a baseline for community decisions, developing adaptation strategies, and planning for the future. Typically, climate change is documented in a top-down fashion: a scientist has a question, makes observations, and publishes a study; in the best case scenario, a journalist reports on the results; if there's time, a local anecdote is sought to put the results in a familiar context. iSeeChange, a public media project funded by the Corporation for Public Broadcasting, reports local environmental change in reverse and turns community questions and conversations with scientists into reported stories that promote opportunities to learn about climate change's affects on the environment and daily life. iSeeChange engages residents of the North Fork Valley region of western Colorado in a multiplatform conversation with scientists about how they perceive their environment is changing through the course of a year - season to season. By bringing together public radio, a mobile reporting and cellular engagement strategy, and a custom crowdsourcing multimedia platform, iSeeChange provides a central access point to collect observations (texts, photographs, voice recordings, and video), organize conversations and interviews with scientists, and report stories online and on air. In this way, iSeeChange is building a dynamic crowdsourced reservoir of information that can increase awareness of environmental problems and potentially disseminate useful information about climate change and successful adaptation strategies. Ultimately, by understanding the community's information needs in a localized question-driven context, the iSeeChange platform presents opportunities for the science community to better understand the value of information and develop better ways to tailor information for communities to use

  18. Long-term ecophysiological responses to climate change

    DEFF Research Database (Denmark)

    Boesgaard, Kristine Stove; Ro-Poulsen, Helge

    Plant physiology is affected by climate change. Acclimations of photosynthetic processes are induced by short-term changes in climatic conditions. Further acclimation can be caused by longterm adjustments to climate change due to ecosystem-feedbacks. The aim of this PhD was to investigate plant...... term responses of plant physiology to the climate change factors were investigated. In the CLIMAITE-experiment it has been shown that 2 years of treatment altered physiological responses in Deschampsiaand Calluna. In the work of this PhD similar responses were observed after 6 years of treatment...... physiological responses to climate change in a seasonal and long-term perspective. The effects of elevated CO2, passive night time warming and periodic summer drought as single factor and in combination, on plant physiology were investigated in the long-term multifactorial field experiment CLIMAITE in a Danish...

  19. Tropical-extratropical climate interaction as revealed in idealized coupled climate model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haijun [Peking University, Department of Atmospheric Science and Laboratory for Severe Storm and Flood Disasters, School of Physics, Beijing (China); Liu, Zhengyu [University of Wisconsin-Madison, Center for Climatic Research and Department of the Atmospheric and Oceanic Sciences, Madison, WI (United States)

    2005-06-01

    Tropical-extratropical climate interactions are studied by idealized experiments with a prescribed 2 C SST anomaly at different latitude bands in a coupled climate model. Instead of focusing on intrinsic climate variability, this work investigates the mean climate adjustment to remote external forcing. The extratropical impact on tropical climate can be as strong as the tropical impact on extratropical climate, with the remote sea surface temperature (SST) response being about half the magnitude of the imposed SST change in the forcing region. The equatorward impact of extratropical climate is accomplished by both the atmospheric bridge and the oceanic tunnel. About two-thirds of the tropical SST change comes from the atmospheric bridge, while the remaining one-third comes from the oceanic tunnel. The equatorial SST increase is first driven by the reduced latent heat flux and the weakened poleward surface Ekman transport, and then enhanced by the decrease in subtropical cells' strength and the equatorward subduction of warm anomalies. In contrast, the poleward impact of tropical climate is accomplished mainly by the atmospheric bridge, which is responsible for extratropical temperature changes in both the surface and subsurface. Sensitivity experiments also show the dominant role of the Southern Hemisphere oceans in the tropical climate change. (orig.)

  20. Public perceptions of climate change and extreme weather events

    Science.gov (United States)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  1. Drought, Endurance and Climate Change 'Pioneers': Lived Experience in the Production of Rural Environmental Knowledge

    Directory of Open Access Journals (Sweden)

    Deb Anderson

    2010-03-01

    Full Text Available This article explores the politicisation of environmental knowledge on rural Australia, in an analysis of discourse on the lived experience of drought. It draws on research conducted in dryland farm communities in the Mallee wheat-belt of Victoria – where rural histories have presented spirited sagas of community perseverance in ‘battling’ a harsh climate – during a period of marked shift in public awareness of climate change (2004-07. Indeed climate change projections have intensified debate over rural futures in Australia, where droughts have played a powerful role in the mythologizing of rural battlers and landscapes, and where drought discourse has been dominated by the language of war. Cultural engagement with climate is, however, under constant renegotiation, as rural cultural research is apt to reveal.

  2. Creating Effective Dialogue Around Climate Change

    Science.gov (United States)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  3. Developing an approach to effectively use super ensemble experiments for the projection of hydrological extremes under climate change

    Science.gov (United States)

    Watanabe, S.; Kim, H.; Utsumi, N.

    2017-12-01

    This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate

  4. Natural versus anthropogenic climate change: Swedish farmers' joint construction of climate perceptions.

    Science.gov (United States)

    Asplund, Therese

    2016-07-01

    While previous research into understandings of climate change has usually examined general public perceptions, this study offers an audience-specific departure point. This article analyses how Swedish farmers perceive climate change and how they jointly shape their understandings. The agricultural sector is of special interest because it both contributes to and is directly affected by climate change. Through focus group discussions with Swedish farmers, this study finds that (1) farmers relate to and understand climate change through their own experiences, (2) climate change is understood either as a natural process subject to little or no human influence or as anthropogenic and (3) various communication tools contribute to the formation of natural and anthropogenic climate change frames. The article ends by discussing frame resonance and frame clash in public understanding of climate change and by comparing potential similarities and differences in how various segments of the public make sense of climate change. © The Author(s) 2014.

  5. Learning and Risk Exposure in a Changing Climate

    Science.gov (United States)

    Moore, F.

    2015-12-01

    Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.

  6. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    Science.gov (United States)

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollisterd; Anna Maria Fosaa; William A. Gould; Luise Hermanutz; Annika Hofgaard; Ingibjorg I. Jonsdottir; Janet C. Jorgenson; Esther Levesque; Borgbor Magnusson; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Christian Rixen; Craig E. Tweedie; Marilyn Walkers

    2015-01-01

    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along...

  7. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  8. Next Generation Climate Change Experiments Needed to Advance Knowledge and for Assessment of CMIP6

    Energy Technology Data Exchange (ETDEWEB)

    Katzenberger, John [Aspen Global Change Inst., Basalt, CO (United States); Arnott, James [Aspen Global Change Inst., Basalt, CO (United States); Wright, Alyson [Aspen Global Change Inst., Basalt, CO (United States)

    2014-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Next generation climate change experiments needed to advance knowledge and for assessment of CMIP6,” on August 4-9, 2013 in Aspen, CO. Jerry Meehl (NCAR), Richard Moss (PNNL), and Karl Taylor (LLNL) served as co-chairs for the workshop which included the participation of 32 scientists representing most of the major climate modeling centers for a total of 160 participant days. In August 2013, AGCI gathered a high level meeting of representatives from major climate modeling centers around the world to assess achievements and lessons learned from the most recent generation of coordinated modeling experiments known as the Coupled Model Intercomparison Project – 5 (CMIP5) as well as to scope out the science questions and coordination structure desired for the next anticipated phase of modeling experiments called CMIP6. The workshop allowed for reflection on the coordination of the CMIP5 process as well as intercomparison of model results, such as were assessed in the most recent IPCC 5th Assessment Report, Working Group 1. For example, this slide from Masahiro Watanabe examines performance on a range of models capturing Atlantic Meridional Overturning Circulation (AMOC).

  9. Biotic and Biogeochemical Feedbacks to Climate Change

    Science.gov (United States)

    Torn, M. S.; Harte, J.

    2002-12-01

    Feedbacks to paleoclimate change are evident in ice core records showing correlations of temperature with carbon dioxide, nitrous oxide, and methane. Such feedbacks may be explained by plant and microbial responses to climate change, and are likely to occur under impending climate warming, as evidenced by results of ecosystem climate manipulation experiments and biometeorological observations along ecological and climate gradients. Ecosystems exert considerable influence on climate, by controlling the energy and water balance of the land surface as well as being sinks and sources of greenhouse gases. This presentation will focus on biotic and biogeochemical climate feedbacks on decadal to century time scales, emphasizing carbon storage and energy exchange. In addition to the direct effects of climate on decomposition rates and of climate and CO2 on plant productivity, climate change can alter species composition; because plant species differ in their surface properties, productivity, phenology, and chemistry, climate-induced changes in plant species composition can exert a large influence on the magnitude and sign of climate feedbacks. We discuss the effects of plant species on ecosystem carbon storage that result from characteristic differences in plant biomass and lifetime, allocation to roots vs. leaves, litter quality, microclimate for decomposition and the ultimate stabilization of soil organic matter. We compare the effect of species transitions on transpiration, albedo, and other surface properties, with the effect of elevated CO2 and warming on single species' surface exchange. Global change models and experiments that investigate the effect of climate only on existing vegetation may miss the biggest impacts of climate change on biogeochemical cycling and feedbacks. Quantification of feedbacks will require understanding how species composition and long-term soil processes will change under global warming. Although no single approach, be it experimental

  10. Climate change and indigenous peoples: A synthesis of current impacts and experiences

    Science.gov (United States)

    Norton-Smith, Kathryn; Lynn, Kathy; Chief, Karletta; Cozetto, Karen; Donatuto, Jamie; Hiza, Margaret; Kruger, Linda; Maldonado, Julie; Viles, Carson; Whyte, Kyle P.

    2016-01-01

    A growing body of literature examines the vulnerability, risk, resilience, and adaptation of indigenous peoples to climate change. This synthesis of literature brings together research pertaining to the impacts of climate change on sovereignty, culture, health, and economies that are currently being experienced by Alaska Native and American Indian tribes and other indigenous communities in the United States. The knowledge and science of how climate change impacts are affecting indigenous peoples contributes to the development of policies, plans, and programs for adapting to climate change and reducing greenhouse gas emissions. This report defines and describes the key frameworks that inform indigenous understandings of climate change impacts and pathways for adaptation and mitigation, namely, tribal sovereignty and self-determination, culture and cultural identity, and indigenous community health indicators. It also provides a comprehensive synthesis of climate knowledge, science, and strategies that indigenous communities are exploring, as well as an understanding of the gaps in research on these issues. This literature synthesis is intended to make a contribution to future efforts such as the 4th National Climate Assessment, while serving as a resource for future research, tribal and agency climate initiatives, and policy development.

  11. Undergraduate Students As Effective Climate Change Communicators

    Science.gov (United States)

    Sharif, H. O.; Joseph, J.; Mullendore, G. L.

    2014-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. The program is in its third year. More than 75 students participated in a guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Three Colleges were involved in the program: Engineering, Education, and Science.

  12. Global warming and climate change in Amazonia: Climate-vegetation feedback and impacts on water resources

    Science.gov (United States)

    Marengo, José; Nobre, Carlos A.; Betts, Richard A.; Cox, Peter M.; Sampaio, Gilvan; Salazar, Luis

    This chapter constitutes an updated review of long-term climate variability and change in the Amazon region, based on observational data spanning more than 50 years of records and on climate-change modeling studies. We start with the early experiments on Amazon deforestation in the late 1970s, and the evolution of these experiments to the latest studies on greenhouse gases emission scenarios and land use changes until the end of the twenty-first century. The "Amazon dieback" simulated by the HadCM3 model occurs after a "tipping point" of CO2 concentration and warming. Experiments on Amazon deforestation and change of climate suggest that once a critical deforestation threshold (or tipping point) of 40-50% forest loss is reached in eastern Amazonia, climate would change in a way which is dangerous for the remaining forest. This may favor a collapse of the tropical forest, with a substitution of the forest by savanna-type vegetation. The concept of "dangerous climate change," as a climate change, which induces positive feedback, which accelerate the change, is strongly linked to the occurrence of tipping points, and it can be explained as the presence of feedback between climate change and the carbon cycle, particularly involving a weakening of the current terrestrial carbon sink and a possible reversal from a sink (as in present climate) to a source by the year 2050. We must, therefore, currently consider the drying simulated by the Hadley Centre model(s) as having a finite probability under global warming, with a potentially enormous impact, but with some degree of uncertainty.

  13. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  14. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  15. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  16. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  17. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    Fischer, G.; Shah, M.; Van Velthuizen, H.

    2002-08-01

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  18. Climate Change and Impacts Research Experiences for Urban Students

    Science.gov (United States)

    Marchese, P.; Carlson, B. E.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Scalzo, F.; Frost, J.; Moshary, F.; Greenbaum, S.; Cheung, T. K.; Howard, A.; Steiner, J. C.; Johnson, L. P.

    2011-12-01

    Climate change and impacts research for undergraduate urban students is the focus of the Center for Global Climate Research (CGCR). We describe student research and significant results obtained during the Summer 2011. The NSF REU site, is a collaboration between the City University of New York (CUNY) and the NASA Goddard Institute for Space Studies (GISS). The research teams are mentored by NASA scientists and CUNY faculty. Student projects include: Effects of Stratospheric Aerosols on Tropical Cyclone Activity in the North Atlantic Basin; Comparison of Aerosol Optical Depth and Angstrom Exponent Retrieved by AERONET, MISR, and MODIS Measurements; White Roofs to the Rescue: Combating the Urban Heat Island Effect; Tropospheric Ozone Investigations in New York City; Carbon Sequestration with Climate Change in Alaskan Peatlands; Validating Regional Climate Models for Western Sub-Sahara Africa; Bio-Remediation of Toxic Waste Sites: Mineral Characteristics of Cyanide-Treated Mining Waste; Assessment of an Ocean Mixing Parameterization for Climate Studies; Comparative Wind Speed through Doppler Sounding with Pulsed Infrared LIDAR; and Satellite Telemetry and Communications. The CGCR also partners with the New York City Research Initiative (NYCRI) at GISS. The center is supported by NSF ATM-0851932 and the American Recovery and Reinvestment Act of 2009 (ARRA).

  19. Climate change damage functions in LCA

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Beier, Claus; Bagger Jørgensen, Rikke

    , their properties, goods and services. In: Climate change 2007. Cambridge, Cambridge University Press, p. 211-272. [2] Mikkelsen TN, Beier C, et al. (2008) Experimental design of multifactor climate change experiments with elevated CO2, warming and drought – the CLIMAITE project. Functional Ecology, 22, 185-195. [3...... will be variable (2). Modeling exercises suggest large-scale range shifts of the major biomes of the world (1). The unknown magnitude of future GHG emissions and the complexity of the climate-carbon system induce large uncertainties in the projected changes. A changed climate may result in new interactions and new...... directions of ecosystem change due to differing adaptive capacities and new species assemblages. Within the framework ‘ecosystem services’ both marketed and non-marketed utilities of the natural environment are formulated (3). Provisioning, cultural, supporting, and regulating ecosystem services have been...

  20. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  1. Managing climate change risks in rangeland systems [Chapter 15

    Science.gov (United States)

    Linda A. Joyce; Nadine A. Marshall

    2017-01-01

    The management of rangelands has long involved adapting to climate variability to ensure that economic enterprises remain viable and ecosystems sustainable; climate change brings the potential for change that surpasses the experience of humans within rangeland systems. Adaptation will require an intentionality to address the effects of climate change. Knowledge of...

  2. Physical and chemical consequences of artificially deepened thermocline in a small humic lake - a paired whole-lake climate change experiment

    Science.gov (United States)

    Forsius, M.; Saloranta, T.; Arvola, L.; Salo, S.; Verta, M.; Ala-Opas, P.; Rask, M.; Vuorenmaa, J.

    2010-05-01

    Climate change with higher air temperatures and changes in cloud cover, radiation and wind speed alters the heat balance and stratification patterns of lakes. A paired whole-lake thermocline manipulation experiment of a small (0.047 km2) shallow dystrophic lake (Halsjärvi) was carried out in southern Finland. A thermodynamic model (MyLake) was used for both predicting the impacts of climate change scenarios and for determining the manipulation target of the experiment. The model simulations assuming several climate change scenarios indicated large increases in the whole-lake monthly mean temperature (+1.4-4.4 °C in April-October for the A2 scenario), and shortening of the length of the ice covered period by 56-89 days. The thermocline manipulation resulted in large changes in the thermodynamic properties of the lake, and those were rather well consistent with the simulated future increases in the heat content during the summer-autumn season. The manipulation also resulted in changes in the oxygen stratification, and the expansion of the oxic water layer increased the spatial extent of the sediment surface oxic-anoxic interfaces. The experiment also affected several other chemical constituents; concentrations of TotN, NH4 and organic carbon showed a statistically significant decrease, likely due to both unusual hydrological conditions during the experiment period and increased decomposition and sedimentation. Changes in mercury processes and in the aquatic food web were also introduced. In comparison with the results of a similar whole-lake manipulation experiment in a deep, oligotrophic, clear-watered lake in Norway, it is evident that shallow dystrophic lakes, common in the boreal region, are more sensitive to physical perturbations. This means that projected climate change may strongly modify their physical and chemical conditions in the future.

  3. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  4. Perception, experience, and indigenous knowledge of climate change and variability: the case of Accra, a sub-Saharan African city

    Science.gov (United States)

    Codjoe, Samuel N.A.; Owusu, George; Burkett, Virginia

    2014-01-01

    Several recent international assessments have concluded that climate change has the potential to reverse the modest economic gains achieved in many developing countries over the past decade. The phenomenon of climate change threatens to worsen poverty or burden populations with additional hardships, especially in poor societies with weak infrastructure and economic well-being. The importance of the perceptions, experiences, and knowledge of indigenous peoples has gained prominence in discussions of climate change and adaptation in developing countries and among international development organizations. Efforts to evaluate the role of indigenous knowledge in adaptation planning, however, have largely focused on rural people and their agricultural livelihoods. This paper presents the results of a study that examines perceptions, experiences, and indigenous knowledge relating to climate change and variability in three communities of metropolitan Accra, which is the capital of Ghana. The study design is based on a three-part conceptual framework and interview process involving risk mapping, mental models, and individual stressor cognition. Most of the residents interviewed in the three communities of urban Accra attributed climate change to the combination of deforestation and the burning of firewood and rubbish. None of the residents associated climate change with fossil fuel emissions from developed countries. Numerous potential adaptation strategies were suggested by the residents, many of which have been used effectively during past drought and flood events. Results suggest that ethnic residential clustering as well as strong community bonds in metropolitan Accra have allowed various groups and long-settled communities to engage in the sharing and transmission of knowledge of weather patterns and trends. Understanding and building upon indigenous knowledge may enhance the design, acceptance, and implementation of climate change adaptation strategies in Accra and

  5. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  6. Animating the Discussion about Climate Change

    Science.gov (United States)

    Ratner, A.

    2016-12-01

    Abstract concepts such as climate change are extremely difficult for both students and adults to grasp. Given that many of these concepts involve issues at global scales or at a microscopic level, photos and video are simply insufficient much of the time. Through an innovative partnership between The Marine Mammal Center, a marine mammal hospital and education facility, and the California College of the Arts Animation Department, we have been able to provide animation students real-world experience in producing scientific animations, and the Center has been able to create an animated video highlighting the science of climate change and effects on marine mammals. Using the science direct from our veterinary and research teams, along with scientifically tested communication strategies related to climate change from the National Network of Ocean and Climate Change Interpretation and Frameworks Institute, this video enables us to teach students and adults of all ages these complex scientific concepts in a fun, engaging, and easily understandable way. Utilizing the skill set and expertise of the College professor as director (currently a lead animator at Pixar Animation), this video provided animation students critical experience in the animation field, exposure and engagement in a critical environmental issue, and an understanding of the opportunities available within the field of animation for educational and scientific purposes. This presentation will highlight the opportunities to utilize animation for educational purposes and provide resources surrounding climate change that could be beneficial to educators at their own organizations.

  7. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  8. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1990-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  9. Climate Change in an IB PYP Classroom

    Science.gov (United States)

    da Costa, Ana

    2014-05-01

    Students in elementary school are inherently curious, which allows them to explore, experiment and investigate various themes, while also demonstrating the will to preserve the resources that surround them and take action to contribute to a better world. One of the units taught at International School Carinthia is "climate change" and its impacts on life on Earth. During this unit, grade 4 students conduct research to answer their own inquiries related to this topic. They investigate the different climate zones on our planet, examine why climate change happens, and discover how global warming and climate change are connected and its consequences on living beings.

  10. The physics and dynamics of the climate system simulation of climate change

    International Nuclear Information System (INIS)

    Mitchell, J.F.B.

    1991-01-01

    The use of climate models is described, using examples related to: the greenhouse effect, the principal absorbers, past, present and future, climate feedbacks in CO2 experiments, equilibrium climate change due to increased CO2, modelling the transient response to increases in trace gases, uncertainties in the simulation and detection of the climatic effect of increased trace gas, simulations for 9000 years before present

  11. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  12. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1991-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  13. Life in Europe under climate change

    DEFF Research Database (Denmark)

    Alcamo, J.; Olesen, Jørgen E

    Life in Europe will indeed go on as the climate changes, but not in the same way as before. The air will be warmer, winds will change, patterns of rainfall and snowfall will alter, and sea level is likely to rise. These phenomena are already being seen. Europe will in the future experience marked...... changes in vegetation cover, increased floods along rivers and coastlines as well as more frequent droughts and forest fires, often leading to large societal costs. The changes will be minor in some cases, profound in others, but in any case, pervasive.......Life in Europe will indeed go on as the climate changes, but not in the same way as before. The air will be warmer, winds will change, patterns of rainfall and snowfall will alter, and sea level is likely to rise. These phenomena are already being seen. Europe will in the future experience marked...

  14. Traditional forest-related knowledge and climate change

    Science.gov (United States)

    John A. Parrotta; Mauro Agnoletti

    2012-01-01

    The holders and users of traditional forest-related knowledge are on the front lines of global efforts to deal with climate change and its impacts. Because of their close connection with, and high dependence on, forest ecosystems and landscapes, indigenous and local communities are among the fi rst to witness, understand, and experience the impacts of climate change on...

  15. Downscaling the climate change for oceans around Australia

    Directory of Open Access Journals (Sweden)

    M. A. Chamberlain

    2012-09-01

    Full Text Available At present, global climate models used to project changes in climate poorly resolve mesoscale ocean features such as boundary currents and eddies. These missing features may be important to realistically project the marine impacts of climate change. Here we present a framework for dynamically downscaling coarse climate change projections utilising a near-global ocean model that resolves these features in the Australasian region, with coarser resolution elsewhere.

    A time-slice projection for a 2060s ocean was obtained by adding climate change anomalies to initial conditions and surface fluxes of a near-global eddy-resolving ocean model. Climate change anomalies are derived from the differences between present and projected climates from a coarse global climate model. These anomalies are added to observed fields, thereby reducing the effect of model bias from the climate model.

    The downscaling model used here is ocean-only and does not include the effects that changes in the ocean state will have on the atmosphere and air–sea fluxes. We use restoring of the sea surface temperature and salinity to approximate real-ocean feedback on heat flux and to keep the salinity stable. Extra experiments with different feedback parameterisations are run to test the sensitivity of the projection. Consistent spatial differences emerge in sea surface temperature, salinity, stratification and transport between the downscaled projections and those of the climate model. Also, the spatial differences become established rapidly (< 3 yr, indicating the importance of mesoscale resolution. However, the differences in the magnitude of the difference between experiments show that feedback of the ocean onto the air–sea fluxes is still important in determining the state of the ocean in these projections.

    Until such a time when it is feasible to regularly run a global climate model with eddy resolution, our framework for ocean climate change

  16. Climatic change due to land surface alterations

    Energy Technology Data Exchange (ETDEWEB)

    Franchito, S.H.; Rao, V.B.

    1992-01-01

    A primitive equations global zonally averaged climate model is developed. The model includes biofeedback mechanisms. For the Northern Hemisphere the parameterization of biofeedback mechanisms is similar to that used by Gutman et al. For the Southern Hemisphere new parameterizations are derived. The model simulates reasonably well the mean annual zonally averaged climate and geobotanic zones. Deforestation, desertification, and irrigation experiments are performed. In the case of deforestation and desertification there is a reduction in the surface net radiation, evaporation, and precipitation and an increase in the surface temperature. In the case of irrigation experiment opposite changes occurred. In all the cases considered the changes in evapotranspiration overcome the effect of surface albedo modification. In all the experiments changes are smaller in the Southern Hemisphere.

  17. Climate change. Managing the risks

    International Nuclear Information System (INIS)

    Swart, R.J.

    1994-01-01

    In order to address the key question if a targeted approach to climate change response is feasible, different aspects of this question are analyzed. First, the scientific and political aspects of different options to determine specific long-term objectives for climate change are evaluated on the basis of the current scientific insights and the experiences over the last 5 years to develop climate objectives. Preliminary directions for such objectives are given. Next, important analytical tools are discussed that can be applied to analyze the different options and their implications in detail. In order to evaluate the implications of mitigation options, strategies that are consistent with the preliminary climate goals are analyzed in the third part. In chapter 2, the concept of long-term environmental goals, derived from critical levels of climate change, is discussed. Also a historical perspective is provided. A new, systematic regionalized and risk-based approach to elaborate the ultimate objective of the Framework Convention on Climate Change is proposed. In chapter 3 scenarios and integrated models are discussed. Central is the description of scenarios that were developed with RlVM's Integrated Model to Assess the Greenhouse Effect (IMAGE) and the US-EPA's Atmospheric Stabilization Framework (ASF). In chapter 4 potential long-term international emissions control strategies for the different sources and sinks of the most important greenhouse gases are analyzed. Carbon dioxide from energy, carbon dioxide from deforestation, and non-CO 2 greenhouse gases are dealt with subsequently. The dissertation ends with general conclusions and recommendations for the further design of a targeted approach to climate change response, the development of analytical tools to support policy development in the area of climate change, and strategies that are consistent with preliminary long-term environmental goals. 66 figs., 8 tabs., 417 refs., 1 appendix

  18. Separating sensitivity from exposure in assessing extinction risk from climate change.

    Science.gov (United States)

    Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M

    2014-11-04

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.

  19. Changes in Southern Hemisphere circulation variability in climate change modelling experiments

    International Nuclear Information System (INIS)

    Grainger, Simon; Frederiksen, Carsten; Zheng, Xiaogu

    2007-01-01

    Full text: The seasonal mean of a climate variable can be considered as a statistical random variable, consisting of a signal and noise components (Madden 1976). The noise component consists of internal intraseasonal variability, and is not predictable on time-scales of a season or more ahead. The signal consists of slowly varying external and internal variability, and is potentially predictable on seasonal time-scales. The method of Zheng and Frederiksen (2004) has been applied to monthly time series of 500hPa Geopotential height from models submitted to the Coupled Model Intercomparison Project (CMIP3) experiment to obtain covariance matrices of the intraseasonal and slow components of covariability for summer and winter. The Empirical Orthogonal Functions (EOFs) of the intraseasonal and slow covariance matrices for the second half of the 20th century are compared with those observed by Frederiksen and Zheng (2007). The leading EOF in summer and winter for both the intraseasonal and slow components of covariability is the Southern Annular Mode (see, e.g. Kiladis and Mo 1998). This is generally reproduced by the CMIP3 models, although with different variance amounts. The observed secondary intraseasonal covariability modes of wave 4 patterns in summer and wave 3 or blocking in winter are also generally seen in the models, although the actual spatial pattern is different. For the slow covariabilty, the models are less successful in reproducing the two observed ENSO modes, with generally only one of them being represented among the leading EOFs. However, most models reproduce the observed South Pacific wave pattern. The intraseasonal and slow covariances matrices of 500hPa geopotential height under three climate change scenarios are also analysed and compared with those found for the second half of the 20th century. Through aggregating the results from a number of CMIP3 models, a consensus estimate of the changes in Southern Hemisphere variability, and their

  20. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  1. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  2. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  3. Community based adaptations to climate change: experiences of the Mijikenda Community in Coastal Kenya

    OpenAIRE

    Groh, Maxie Elizabeth

    2016-01-01

    Small-scale farmers in Africa are among the most vulnerable to the impacts of climate change. Macro level climate change policies are having little positive impacts on their livelihoods. However, at the local level, communities are innovating and adapting to climate change. While these innovations are not enough to guarantee extensive adaptation to climate change, they are an important element for the survival of agrarian societies and botanical diversity. It is therefore importan...

  4. Exploring elementary students’ understanding of energy and climate change

    Directory of Open Access Journals (Sweden)

    Colin BOYLAN

    2008-10-01

    Full Text Available As environmental changes become a significant societal issue, elementary science curriculaneed to develop students’ understanding about the key concepts of energy and climate change.For teachers, developing quality learning experiences involves establishing what theirstudents’ prior understanding about energy and climate change are. A survey was developed toexplore what elementary students know and understand about renewable and non-renewablesources of energy and their relationship to climate change issues. The findings from thissurvey are reported in this paper.

  5. Climate Change Communicators: The C3E3 Project

    Science.gov (United States)

    Sharif, H. O.; Joseph, J.

    2013-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. More than 60 students participated in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.

  6. Climate change and the possible health effects on older Australians.

    Science.gov (United States)

    Saniotis, Arthur; Irvine, Rod

    2010-01-01

    Climate change is an important issue for Australia. Climate change research forecasts that Australia will experience accelerated warming due to anthrogenic activities. Australia's aging society will face special challenges that demand current attention. This paper discusses two issues in relation to climate change and older Australians: first, pharmacology and autoregulation; and second, mental health among older Australians.

  7. Climate change and climate policy

    International Nuclear Information System (INIS)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  8. The radiative heating response to climate change

    Science.gov (United States)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  9. The Atlas of Climate Change. Based on SEAP-CMIP5. Super-ensemble projection and attribution (SEAP) of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wenjie; Guo, Yan [Beijing Normal Univ. (China). Normal Univ. College of Global Change and Earth System Science; Ren, Fumin [China Meterological Administration, Beijing (China). National Climate Center; Huang, Jianbin [Tsinghua Univ., Beijing (China). Center for Earth System Science

    2013-02-01

    Outputs from the latest generation of earth system model from world class model development groups for IPCC AR5. Describes quantitatively state historical responsibility for global warming. Demonstrates how the Earth's climate system will change from today up to 2100. Describes how much climate change we may avoid if we take action according to Cancun Pledge ''The Atlas of Climate Change-Based on SEAP-CMIP5'' is intended to satisfy readers' curiosity: how will our climate system change over the next 100 years? It is the first showcase for the state-of -the-art earth system models that released their CMIP5 simulations for the IPCC AR5.The atlas focuses on both the past climate system change from 1850 and the projection of the future climate system change to 2100 using the RCP2.6, RCP4.5 and RCP8.5 scenarios based on climate models. This provides the research and application community interested in the impact of climate change on fields such as agriculture, ecosystem, environment,water resources, energy, health, economy, risk governance and international negotiation, etc. with the newest climate change projection information. Additionally, the atlas will show the historical responsibility of the developed/developing countries and possible contributions to the mitigation of climate change according to their pledge of GHG emission reduction after the Cancun Agreement as an extension numerical experiment to CMIP5 with NCAR's CESM1.0. The authors will update this atlas after future releases of CMIP5 model outputs and update the figures in the second edition of the atlas in 2012-2013.

  10. Getting The Picture: Our Changing Climate- A new learning tool for climate science

    Science.gov (United States)

    Yager, K.; Balog, J. D.

    2014-12-01

    Earth Vision Trust (EVT), founded by James Balog- photographer and scientist, has developed a free, online, multimedia climate science education tool for students and educators. Getting The Picture (GTP) creates a new learning experience, drawing upon powerful archives of Extreme Ice Survey's unique photographs and time-lapse videos of changing glaciers around the world. GTP combines the latest in climate science through interactive tools that make the basic scientific tenets of climate science accessible and easy to understand. The aim is to use a multidisciplinary approach to encourage critical thinking about the way our planet is changing due to anthropogenic activities, and to inspire students to find their own voice regarding our changing climate The essence of this resource is storytelling through the use of inspiring images, field expedition notes and dynamic multimedia tools. EVT presents climate education in a new light, illustrating the complex interaction between humans and nature through their Art + Science approach. The overarching goal is to educate and empower young people to take personal action. GTP is aligned with national educational and science standards (NGSS, CCSS, Climate Literacy) so it may be used in conventional classrooms as well as education centers, museum kiosks or anywhere with Internet access. Getting The Picture extends far beyond traditional learning to provide an engaging experience for students, educators and all those who wish to explore the latest in climate science.

  11. A synthesis of regional climate change simulations - A Scandinavian perspective

    DEFF Research Database (Denmark)

    Christensen, J. H.; Räinsänen, J.; Iversen, T.

    2001-01-01

    Four downscaling experiments of regional climate change for the Nordic countries have been conducted with three different regional climate models (RCMs). A short synthesis of the outcome of the suite of experiments is presented as an ensemble, reflecting the different driving atmosphere-ocean...... general circulation model (AOGCM) conditions, RCM model resolution and domain size, and choice of emission scenarios. This allows the sources of uncertainties in the projections to be assessed. At the same time analysis of the climate change signal for temperature and precipitation over the period 1990......-2050 reveals strong similarities. In particular, all experiments in the suite simulate changes in the precipitation distribution towards a higher frequency of heavy precipitation....

  12. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    Science.gov (United States)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The

  13. Ecological and evolutionary impacts of changing climatic variability.

    Science.gov (United States)

    Vázquez, Diego P; Gianoli, Ernesto; Morris, William F; Bozinovic, Francisco

    2017-02-01

    While average temperature is likely to increase in most locations on Earth, many places will simultaneously experience higher variability in temperature, precipitation, and other climate variables. Although ecologists and evolutionary biologists widely recognize the potential impacts of changes in average climatic conditions, relatively little attention has been paid to the potential impacts of changes in climatic variability and extremes. We review the evidence on the impacts of increased climatic variability and extremes on physiological, ecological and evolutionary processes at multiple levels of biological organization, from individuals to populations and communities. Our review indicates that climatic variability can have profound influences on biological processes at multiple scales of organization. Responses to increased climatic variability and extremes are likely to be complex and cannot always be generalized, although our conceptual and methodological toolboxes allow us to make informed predictions about the likely consequences of such climatic changes. We conclude that climatic variability represents an important component of climate that deserves further attention. © 2015 Cambridge Philosophical Society.

  14. Health Aspects of Climate Change in Cities with Mediterranean Climate, and Local Adaptation Plans.

    Science.gov (United States)

    Paz, Shlomit; Negev, Maya; Clermont, Alexandra; Green, Manfred S

    2016-04-21

    Cities with a Mediterranean-type climate (Med-cities) are particularly susceptible to health risks from climate change since they are located in biogeographical hot-spots that experience some of the strongest effects of the changing climate. The study aims to highlight health impacts of climate change in Med-cities, analyze local climate adaptation plans and make adaptation policy recommendations for the Med-city level. We identified five Med-cities with a climate change adaptation plan: Adelaide, Barcelona, Cape Town, Los Angeles and Santiago. Beyond their similar Med-climate features (although Santiago's are slightly different), the cities have different socio-economic characteristics in various aspects. We analyzed each plan according to how it addresses climate change-related drivers of health impacts among city dwellers. For each driver, we identified the types of policy adaptation tools that address it in the urban climate adaptation plans. The surveyed cities address most of the fundamental climate change-related drivers of risks to human health, including rising temperatures, flooding and drought, but the policy measures to reduce negative impacts vary across cities. We suggest recommendations for Med-cities in various aspects, depending on their local needs and vulnerability challenges: assessment of health risks, extreme events management and long-term adaptation, among others.

  15. Genetic plant improvement and climate changes

    Directory of Open Access Journals (Sweden)

    Magno Antonio Patto Ramalho

    2009-01-01

    Full Text Available The consequences of climate change for the agribusiness in Brazil have been widely debated. The issue isdiscussed in this publication to show the expected problems, particularly those associated with increases in temperature andwater stress. It is emphasized that the genetic improvement of plants, based on the experience in the past, has much tocontribute to mitigate these problems. To invest in the breeding of new cultivars, selected under stress conditions, is certainlythe best possible strategy for agriculture to cope with changes caused by climate alterations.

  16. Multi-factor climate change effects on insect herbivore performance

    DEFF Research Database (Denmark)

    Scherber, Christoph; Gladbach, David J; Stevnbak, Karen

    2013-01-01

    The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO...... suturalis Thomson), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under...... the drought treatment, and there was a three-way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co-acting factors and were mediated by changes in plant secondary compounds, nitrogen...

  17. Time Scavengers: a Website for the Public to Learn about Climate Change and Evolution Through the Experiences of Scientists

    Science.gov (United States)

    Fraass, A. J.; Lam, A. R.; Bauer, J.; Bryant, R.; Golder, K.; Hartshorn, K. R.; Hils, J. M.; Limbeck, M.; Sheffield, S. L.

    2017-12-01

    Climate change and evolution are subjects that are consistently in the public sphere, though as public acceptance and desire to act on these subjects has increased, misinformation has as well. Thus, it is critical that scientists engage the public in discussions on these subjects. Several sites and blogs have attempted to explain these concepts; however, they often focus on one aspect of climate change or evolution, and blogs tend to follow the experiences of one scientist in a specific field. Due to these limitations, we have created a new website, TimeScavengers.blog. The site, maintained by postdocs, graduate students, and avocational scientists, is unique in that it includes static pages that thoroughly explain climate and evolution related topics and includes 5 blog pages that highlight the experiences of the site collaborators. Blog pages include: `Meet the Scientist', dedicated to introducing the public to scientists in many disciplines; `Science Bytes', focusing on research conducted by the site collaborators; `Education & Outreach', highlighting interactions between site collaborators and the public; and `Climate & Paleo News', explaining the relevance of important papers in climate research, paleoceanography, and paleontology and how they increase our understanding of climate change and evolution. The site also includes a `Teaching Resources' page with links to sites with activities related to the content on the website appropriate for K-12 classrooms. The overarching goal of the site is to bridge the gap between scientists and the public through engaging, informational pages and personal experiences in the field, lab, classroom, and community. Current data indicate that 78% of the public find the site through social media platforms and people ages 25-34 are dominantly interacting with the site. 21.7% of users' first interaction (first click once on the homepage) viewed the `Meet the Scientist' blog, 10.2% viewed the climate pages, and 8.4% visited the

  18. Climatic change

    International Nuclear Information System (INIS)

    Perthuis, Ch. de; Delbosc, A.

    2009-01-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  19. How Five Master Teachers Teach about Climate Chang

    Science.gov (United States)

    Bloch, L.

    2015-12-01

    The AGU Position Statement, "Human-Induced Climate Change Requires Urgent Action," calls on scientists to "[work] with stakeholders to identify relevant information, and [to convey] understanding clearly and accurately, both to decision makers and to the general public". Everyday, K-12 teachers communicate with an important segment of the general public, and they represent important stakeholders with unique needs. The terms 'global warming', 'greenhouse effect', and 'climate change' appear nowhere in the 1996 National Science Education Standards, but under the Next Generation Science Standards, millions of teachers- most of whom have little to no experience teaching about climate change- will be required to cover the topic. This presentation discusses research conducted with five veteran public school teachers, each of whom has been teaching about climate change for many years. The group comprises three high school teachers, a middle school teacher, and an elementary school teacher. The study examined: 1) What these teachers teach about climate change; 2) How they teach about climate change; 3) What resources they use in teaching and learning about climate change; and 4) How they think the scientific community can support teachers in their efforts to teach about climate change. The teachers varied in their teaching practices and in their conceptions of 'climate change', but they all said that the academic community can support climate change education by developing locally relevant educational resources. Scientists working with K-12 teachers can build on the work of these master teachers, and attendees can access detailed descriptions of all of the lessons and the associated learning materials.

  20. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  1. Climate model diversity in the Northern Hemisphere Polar vortex response to climate change.

    Science.gov (United States)

    Simpson, I.; Seager, R.; Hitchcock, P.; Cohen, N.

    2017-12-01

    Global climate models vary widely in their predictions of the future of the Northern Hemisphere stratospheric polar vortex, with some showing a significant strengthening of the vortex, some showing a significant weakening and others displaying a response that is not outside of the range expected from internal variability alone. This inter-model spread in stratospheric predictions may account for some inter-model spread in tropospheric predictions with important implications for the storm tracks and regional climate change, particularly for the North Atlantic sector. Here, our current state of understanding of this model spread and its tropospheric impacts will be reviewed. Previous studies have proposed relationships between a models polar vortex response to climate change and its present day vortex climatology while others have demonstrated links between a models polar vortex response and changing wave activity coming up from the troposphere below under a warming climate. The extent to which these mechanisms can account for the spread in polar vortex changes exhibited by the Coupled Model Intercomparison Project, phase 5 models will be assessed. In addition, preliminary results from a series of idealized experiments with the Community Atmosphere Model will be presented. In these experiments, nudging of the stratospheric zonal mean state has been imposed to mimic the inter-model spread in the polar vortex response to climate change so that the downward influence of the spread in zonal mean stratospheric responses on the tropospheric circulation can be assessed within one model.

  2. International aspects of climate change: The intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    Brydges, T.; Fenech, A.

    1990-01-01

    The impact of various international conferences concerning global climate change on international opinions and attitudes is discussed. A number of conferences over the past two decades have drawn attention to the large socio-economic consequences of climate change. There has been increasing attention given to the likely affect of anthropogenically derived greenhouse gases on the global climate. Some early uncertainty over the likely long term changes in global temperature have been replaced by a scientific consensus that global temperatures are increasing and will continue to do so into the next century. Public awareness of the possibility of climate change and severe socio-economic consequences has been increasing and was given a major impetus by the Toronto Conference on the Changing Atmosphere. An estimate of the possible time to solution of the climate change issue is given as 1988-2005, a span of 17 years. The Intergovernmental Panel on Climate Change has focused work into three working groups examining science, impacts and response strategies. 28 refs., 3 figs., 6 tabs

  3. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  4. Experience of the Paris Research Consortium Climate-Environment-Society

    Science.gov (United States)

    Joussaume, Sylvie; Pacteau, Chantal; Vanderlinden, Jean Paul

    2016-04-01

    It is now widely recognized that the complexity of climate change issues translates itself into a need for interdisciplinary approaches to science. This allows to first achieve a more comprehensive vision of climate change and, second, to better inform the decision-making processes. However, it seems that willingness alone is rarely enough to implement interdisciplinarity. The purpose of this presentation is to mobilize reflexivity to revisit and analyze the experience of the Paris Consortium for Climate-Environment-Society. The French Consortium Climate-Environment-Society aims to develop, fund and coordinate interdisciplinary research into climate change and its impacts on society and environment. Launched in 2007, the consortium relies on the research expertise of 17 laboratories and federation in the Paris area working mainly in the fields of climatology, hydrology, ecology, health sciences, and the humanities and social sciences. As examples, economists and climatologists have studied greenhouse gas emission scenarios compatible with climate stabilization goals. Historical records have provided both knowledge about past climate change and vulnerability of societies. Some regions, as the Mediterranean and the Sahel, are particularly vulnerable and already have to cope with water availability, agricultural production and even health issues. A project showed that millet production in West Africa is expected to decline due to warming in a higher proportion than observed in recent decades. Climate change also raises many questions concerning health: combined effects of warming and air quality, impacts on the production of pollens and allergies, impacts on infectious diseases. All these issues lead to a need for approaches integrating different disciplines. Furthermore, climate change impacts many ecosystems which, in turn, affect its evolution. Our experience shows that interdisciplinarity supposes, in order to take shape, the conjunction between programming

  5. Land-use change may exacerbate climate change impacts on water resources in the Ganges basin

    Science.gov (United States)

    Tsarouchi, Gina; Buytaert, Wouter

    2018-02-01

    Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000-2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000-2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030-2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of

  6. Global vs climate change

    International Nuclear Information System (INIS)

    Watson, H.L.; Bach, M.C.; Goklany, I.M.

    1991-01-01

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  7. Teaching About Climate Change in Medical Education: An Opportunity.

    Science.gov (United States)

    Maxwell, Janie; Blashki, Grant

    2016-04-26

    Climate change threatens many of the gains in development and health over the last century. However, it could also be a catalyst for a necessary societal transformation to a sustainable and healthy future. Doctors have a crucial role in climate change mitigation and health system adaptation to prepare for emergent health threats and a carbon-constrained future. This paper argues that climate change should be integrated into medical education for three reasons: first, to prepare students for clinical practice in a climate-changing world; secondly, to promote public health and eco-health literacy; and finally, to deepen existing learning and strengthen graduate attributes. This paper builds on existing literature and the authors' experience to outline potential learning objectives, teaching methods and assessment tasks. In the wake of recent progress at the United Nations climate change conference, COP-21, it is hoped that this paper will assist universities to integrate teaching about climate change into medical education. Significance for public healthThere is a strong case for teaching about climate change in medical education. Anthropogenic climate change is accepted by scientists, governments and health authorities internationally. Given the dire implications for human health, climate change is of fundamental relevance to future doctors. Integrating climate change into medical education offers an opportunity for future doctors to develop skills and insights essential for clinical practice and a public health role in a climate-changing world. This echoes a broader call for improved public health literacy among medical graduates. This paper provides medical schools with a rationale and an outline for teaching on climate change.

  8. Climate for change

    International Nuclear Information System (INIS)

    Newell, P.

    2000-01-01

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  9. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  10. Climate challenge 2012: growth and climate change - Socio-economical impacts of climate change. Conference proceedings

    International Nuclear Information System (INIS)

    Orange-Louboutin, Mylene; Robinet, Olivier; Delalande, Daniel; Reysset, Bertrand; De Perthuis, Christian; Le Treut, Herve; Cottenceau, Jean-Baptiste; Ayong, Alain; Daubaire, Aurelien; Gaudin, Thomas

    2012-01-01

    The contributions of this conference session proposed comments and discussion on the relationship between climate change and 'green' growth, on the status of scientific knowledge on climate change (from global to local), on the way to perform carbon print assessment and to decide which actions to implement, on the costs and opportunity of impacts of climate change, on the economy of adaptation, on the benefits and costs of the adaptation policy, and on impacts of climate change on employment in quantitative terms and in terms of profession types

  11. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  12. Climate Change Impact: The Experience of the Coastal Areas of Bangladesh Affected by Cyclones Sidr and Aila

    Directory of Open Access Journals (Sweden)

    Russell Kabir

    2016-01-01

    Full Text Available Bangladesh is considered one of the countries most at risk to the effects of climate change and its coastal area is most vulnerable. This study tries to explore the experiences of cyclones Sidr and Aila affected people living in the coastal areas of Bangladesh. This study was conducted in the cyclone Sidr affected Amtali Upazila of Barguna District and in the cyclone Aila affected Koyra Upazila of Khulna District. Primary data collection was done using Focus Group Interview and then a thematic analysis approach was used for analysis. Three core themes emerged from the analysis and they are, firstly, impacts of climate change on the socioeconomic condition of the people, secondly, the impact on the health status of the population, and finally the impact on vulnerable people. Findings show that the effects of climate change have serious consequences on the livelihood patterns of the affected population and on their overall health status. As a result, the unfavorable health condition of these affected people makes them more vulnerable to various emerging diseases.

  13. Simple messages help set the record straight about scientific agreement on human-caused climate change: the results of two experiments.

    Directory of Open Access Journals (Sweden)

    Teresa A Myers

    Full Text Available Human-caused climate change is happening; nearly all climate scientists are convinced of this basic fact according to surveys of experts and reviews of the peer-reviewed literature. Yet, among the American public, there is widespread misunderstanding of this scientific consensus. In this paper, we report results from two experiments, conducted with national samples of American adults, that tested messages designed to convey the high level of agreement in the climate science community about human-caused climate change. The first experiment tested hypotheses about providing numeric versus non-numeric assertions concerning the level of scientific agreement. We found that numeric statements resulted in higher estimates of the scientific agreement. The second experiment tested the effect of eliciting respondents' estimates of scientific agreement prior to presenting them with a statement about the level of scientific agreement. Participants who estimated the level of agreement prior to being shown the corrective statement gave higher estimates of the scientific consensus than respondents who were not asked to estimate in advance, indicating that incorporating an "estimation and reveal" technique into public communication about scientific consensus may be effective. The interaction of messages with political ideology was also tested, and demonstrated that messages were approximately equally effective among liberals and conservatives. Implications for theory and practice are discussed.

  14. Health and equity impacts of climate change in Aotearoa-New Zealand, and health gains from climate action.

    Science.gov (United States)

    Bennett, Hayley; Jones, Rhys; Keating, Gay; Woodward, Alistair; Hales, Simon; Metcalfe, Scott

    2014-11-28

    Human-caused climate change poses an increasingly serious and urgent threat to health and health equity. Under all the climate projections reported in the recent Intergovernmental Panel on Climate Change assessment, New Zealand will experience direct impacts, biologically mediated impacts, and socially mediated impacts on health. These will disproportionately affect populations that already experience disadvantage and poorer health. Without rapid global action to reduce greenhouse gas emissions (particularly from fossil fuels), the world will breach its carbon budget and may experience high levels of warming (land temperatures on average 4-7 degrees Celsius higher by 2100). This level of climate change would threaten the habitability of some parts of the world because of extreme weather, limits on working outdoors, and severely reduced food production. However, well-planned action to reduce greenhouse gas emissions could bring about substantial benefits to health, and help New Zealand tackle its costly burden of health inequity and chronic disease.

  15. Nitrogen cycling in heathland ecosystems and effects of climate change

    DEFF Research Database (Denmark)

    Andresen, Louise Christoffersen

    Terrestrial ecosystems are currently exposed to climatic and air quality changes with increased atmospheric CO2, increased temperature and periodical droughts. At a temperate heath site this was investigated in a unique full factorial in situ experiment (CLIMAITE). The climate change treatments...

  16. Incorporating Student Activities into Climate Change Education

    Science.gov (United States)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  17. Impacts of Land Cover Changes on Climate over China

    Science.gov (United States)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  18. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  19. Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment

    Energy Technology Data Exchange (ETDEWEB)

    Johns, T.C.; Hewitt, C.D. [Met Office, Hadley Centre, Exeter (United Kingdom); Royer, J.F.; Salas y. Melia, D. [Centre National de Recherches Meteorologiques-Groupe d' Etude de l' Atmosphere Meteorologique (CNRM-GAME Meteo-France CNRS), Toulouse (France); Hoeschel, I.; Koerper, J. [Freie Universitaet Berlin, Institute for Meteorology, Berlin (Germany); Huebener, H. [Hessian Agency for the Environment and Geology, Wiesbaden (Germany); Roeckner, E.; Giorgetta, M.A. [Max Planck Institute for Meteorology, Hamburg (Germany); Manzini, E. [Max Planck Institute for Meteorology, Hamburg (Germany); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); May, W.; Yang, S. [Danish Meteorological Institute, Danish Climate Centre, Copenhagen (Denmark); Dufresne, J.L. [Laboratoire de Meteorologie Dynamique (LMD/IPSL), UMR 8539 CNRS, ENS, UPMC, Ecole Polytechnique, Paris Cedex 05 (France); Otteraa, O.H. [Nansen Environmental and Remote Sensing Center, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Uni. Bjerknes Centre, Bergen (Norway); Vuuren, D.P. van [Utrecht University, Utrecht (Netherlands); Planbureau voor de Leefomgeving (PBL), Bilthoven (Netherlands); Denvil, S. [Institut Pierre Simon Laplace (IPSL), FR 636 CNRS, UVSQ, UPMC, Paris Cedex 05 (France); Fogli, P.G. [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Tjiputra, J.F. [University of Bergen, Department of Geophysics, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Stehfest, E. [Planbureau voor de Leefomgeving (PBL), Bilthoven (Netherlands)

    2011-11-15

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental design for the forthcoming 5th Intergovernmental Panel on Climate Change assessment. Atmospheric carbon-dioxide concentrations pathways rather than carbon emissions are specified in all models, including five ESMs that contain interactive carbon cycles. Specified forcings also include minor greenhouse gas concentration pathways, ozone concentration, aerosols (via concentrations or precursor emissions) and land use change (in five models). The new aggressive mitigation scenario (E1), constructed using an integrated assessment model (IMAGE 2.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K, is studied alongside the medium-high non-mitigation scenario SRES A1B. Resulting twenty-first century global mean warming and precipitation changes for A1B are broadly consistent with previous studies. In E1 twenty-first century global warming remains below 2 K in most models, but global mean precipitation changes are higher than in A1B up to 2065 and consistently higher per degree of warming. The spread in global temperature and precipitation responses is partly attributable to inter-model variations in aerosol loading and representations of aerosol-related radiative forcing effects. Our study illustrates that the benefits of mitigation will not be realised in temperature terms until several decades after emissions reductions begin, and may vary considerably between regions. A subset of the models containing integrated carbon cycles agree that land and ocean sinks remove roughly half of present day anthropogenic carbon emissions from the atmosphere, and that anthropogenic carbon emissions must decrease by at least 50% by 2050 relative

  20. Climate Change, Politics and Religion: Australian Churchgoers’ Beliefs about Climate Change

    Directory of Open Access Journals (Sweden)

    Miriam Pepper

    2016-05-01

    Full Text Available A growing literature has sought to understand the relationships between religion, politics and views about climate change and climate change policy in the United States. However, little comparative research has been conducted in other countries. This study draws on data from the 2011 Australian National Church Life Survey to examine the beliefs of Australian churchgoers from some 20 denominations about climate change—whether or not it is real and whether it is caused by humans—and political factors that explain variation in these beliefs. Pentecostals, Baptist and Churches of Christ churchgoers, and people from the smallest Protestant denominations were less likely than other churchgoers to believe in anthropogenic climate change, and voting and hierarchical and individualistic views about society predicted beliefs. There was some evidence that these views function differently in relation to climate change beliefs depending on churchgoers’ degree of opposition to gay rights. These findings are of interest not only for the sake of international comparisons, but also in a context where Australia plays a role in international climate change politics that is disproportionate to its small population.

  1. Climate changes your business

    International Nuclear Information System (INIS)

    2008-01-01

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  2. Public Views on Climate Change. European and USA Perspectives

    International Nuclear Information System (INIS)

    Lorenzoni, I.; Pidgeon, N.F.

    2006-01-01

    If uncontrolled, human influences on the climate system may generate changes that will endanger various aspects of life on Earth. The precise implications of the scientific claims about climate change, and the extent to which they pose dangers to various populations, are becoming intensely debated at many levels in relation to policy. How 'danger' is interpreted will ultimately affect which actions are taken. In this paper, we examine how climate change is conceptualised by publics in Europe and in the USA. Although there is widespread concern about climate change, it is of secondary importance in comparison to other issues in people's daily lives. Most individuals relate to climate change through personal experience, knowledge, the balance of benefits and costs, and trust in other societal actors. We analyse these factors through findings from various surveys and studies, which highlight both the distinctiveness and some shared perspectives at a generalised level. We reflect upon these in relation to trust and responsibility for climate change action, and risk communication, supporting the call for discourses about climate change to also be situated in people's locality, as a means of increasing its saliency

  3. Climate Change, Public Health, and Policy: A California Case Study.

    Science.gov (United States)

    Ganesh, Chandrakala; Smith, Jason A

    2018-04-01

    Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California's progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions.

  4. Climate Change, Public Health, and Policy: A California Case Study

    Science.gov (United States)

    Smith, Jason A.

    2018-01-01

    Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California’s progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions. PMID:29072936

  5. Technologies for climate change adaptation. Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X [ed.; UNEP Risoe Centre, Roskilde (Denmark); Clements, R; Quezada, A; Torres, J [Practical Action Latin America, Lima (Peru); Haggar, J [Univ. of Greenwich, London (United Kingdom)

    2011-08-15

    review of key publications, journal articles, and e-platforms, and by drawing on documented experiences sourced from a range of organisations working on projects and programmes concerned with climate change adaptation technologies in the agriculture sector. Its geographic scope focuses on developing countries where high levels of poverty, agricultural production, climate variability and biological diversity intersect. (Author)

  6. The Ophidia Stack: Toward Large Scale, Big Data Analytics Experiments for Climate Change

    Science.gov (United States)

    Fiore, S.; Williams, D. N.; D'Anca, A.; Nassisi, P.; Aloisio, G.

    2015-12-01

    The Ophidia project is a research effort on big data analytics facing scientific data analysis challenges in multiple domains (e.g. climate change). It provides a "datacube-oriented" framework responsible for atomically processing and manipulating scientific datasets, by providing a common way to run distributive tasks on large set of data fragments (chunks). Ophidia provides declarative, server-side, and parallel data analysis, jointly with an internal storage model able to efficiently deal with multidimensional data and a hierarchical data organization to manage large data volumes. The project relies on a strong background on high performance database management and On-Line Analytical Processing (OLAP) systems to manage large scientific datasets. The Ophidia analytics platform provides several data operators to manipulate datacubes (about 50), and array-based primitives (more than 100) to perform data analysis on large scientific data arrays. To address interoperability, Ophidia provides multiple server interfaces (e.g. OGC-WPS). From a client standpoint, a Python interface enables the exploitation of the framework into Python-based eco-systems/applications (e.g. IPython) and the straightforward adoption of a strong set of related libraries (e.g. SciPy, NumPy). The talk will highlight a key feature of the Ophidia framework stack: the "Analytics Workflow Management System" (AWfMS). The Ophidia AWfMS coordinates, orchestrates, optimises and monitors the execution of multiple scientific data analytics and visualization tasks, thus supporting "complex analytics experiments". Some real use cases related to the CMIP5 experiment will be discussed. In particular, with regard to the "Climate models intercomparison data analysis" case study proposed in the EU H2020 INDIGO-DataCloud project, workflows related to (i) anomalies, (ii) trend, and (iii) climate change signal analysis will be presented. Such workflows will be distributed across multiple sites - according to the

  7. Thermodynamics of climate change: generalized sensitivities

    Directory of Open Access Journals (Sweden)

    V. Lucarini

    2010-10-01

    Full Text Available Using a recent theoretical approach, we study how global warming impacts the thermodynamics of the climate system by performing experiments with a simplified yet Earth-like climate model. The intensity of the Lorenz energy cycle, the Carnot efficiency, the material entropy production, and the degree of irreversibility of the system change monotonically with the CO2 concentration. Moreover, these quantities feature an approximately linear behaviour with respect to the logarithm of the CO2 concentration in a relatively wide range. These generalized sensitivities suggest that the climate becomes less efficient, more irreversible, and features higher entropy production as it becomes warmer, with changes in the latent heat fluxes playing a predominant role. These results may be of help for explaining recent findings obtained with state of the art climate models regarding how increases in CO2 concentration impact the vertical stratification of the tropical and extratropical atmosphere and the position of the storm tracks.

  8. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  9. The NASA Global Climate Change Education Project: An Integrated Effort to Improve the Teaching and Learning about Climate Change (Invited)

    Science.gov (United States)

    Chambers, L. H.; Pippin, M. R.; Welch, S.; Spruill, K.; Matthews, M. J.; Person, C.

    2010-12-01

    The NASA Global Climate Change Education (GCCE) Project, initiated in 2008, seeks to: - improve the teaching and learning about global climate change in elementary and secondary schools, on college campuses, and through lifelong learning; - increase the number of people, particularly high school and undergraduate students, using NASA Earth observation data, Earth system models, and/or simulations to investigate and analyze global climate change issues; - increase the number of undergraduate students prepared for employment and/or to enter graduate school in technical fields relevant to global climate change. Through an annual solicitation, proposals are requested for projects that address these goals using a variety of approaches. These include using NASA Earth system data, interactive models and/or simulations; providing research experiences for undergraduate or community college students, or for pre- or in-service teachers; or creating long-term teacher professional development experiences. To date, 57 projects have been funded to pursue these goals (22 in 2008, 18 in 2009, and 17 in 2010), each for a 2-3 year period. The vast majority of awards address either teacher professional development, or use of data, models, or simulations; only 7 awards have been made for research experiences. NASA, with assistance from the Virginia Space Grant Consortium, is working to develop these awardees into a synergistic community that works together to maximize its impact. This paper will present examples of collaborations that are evolving within this developing community. It will also introduce the opportunities available in fiscal year 2011, when a change in emphasis is expected for the project as it moves within the NASA Office of Education Minority University Research and Education Program (MUREP).

  10. Climate Change Adaptation in Urban Planning in African Cities

    DEFF Research Database (Denmark)

    Jørgensen, Gertrud; Herslund, Lise Byskov; Lund, Dorthe Hedensted

    2014-01-01

    Resilience of urban structures towards impacts of a changing climate is one of the emerging tasks that cities all over the world are facing at present. Effects of climate change take many forms, depending on local climate, spatial patterns, and socioeconomic structures. Cities are only just...... beginning to be aware of the task, and some time will pass before it is integrated into mainstream urban governance. This chapter is based on work in progress. It covers urban governance and planning aspects of climate change adaptation as studied in the CLUVA project (CLimate change and Urban Vulnerability...... in Africa), as well as some experiences from Denmark. Focus is on the responses and capacities of urban authorities, strengths and weaknesses of the efforts, data needs and possible ways forward. The chapter concludes that many adaptation activities are taking place in the CLUVA case cities...

  11. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    Science.gov (United States)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody B.; Reed, Sasha C.

    2017-01-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  12. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    Science.gov (United States)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.

    2017-03-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  13. Climate Change: Making the Best Use of Scientific Information

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Climate science regularly makes headlines in the media, usually after an extreme weather event or a disaster, or in the wake of campaigns by think tanks about the science of climate change. In this presentation, I discuss four specific challenges that are posed to climate scientist when communicating with the public: (i) The widening gap between the scientific literacy of the public and the communication literacy of the scientists; (ii), the multiplicity of scientific information conduits; (iii), information of, and under, uncertainty; and (iv), the requirement to be precise without using technical language. It turns out that these challenges are quite generic to science communication. Climate scientists have learned from the regular international assessments they perform under the auspices of the Intergovernmental Panel on Climate Change and have accumulated a collective experience of more than 20 years. In this presentation I discuss the most important lessons learned from this experience and their relevant...

  14. Simulating Hydrologic Changes with Climate Change Scenarios in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; XIE Zheng-Hui; LIU Qian; XIA Jun

    2005-01-01

    Climate change scenarios, predicted using the regional climate modeling system of PRECIS (providing regional climates for impacts studies), were used to derive three-layer variable infiltration capacity (VIC-3L) land surface model for the simulation of hydrologic processes at a spatial resolution of 0.25°× 0.25° in the Haihe River Basin. Three climate scenaxios were considered in this study: recent climate (1961-1990), future climate A2 (1991-2100) and future climate B2 (1991-2100) with A2 and B2 being two storylines of future emissions developed with the Intergovernmental Panel on Climate Change (IPCC) special report on emissions scenarios. Overall, under future climate scenarios A2 and B2, the Haihe River Basin would experience warmer climate with increased precipitation, evaporation and runoff production as compared with recent climate, but would be still likely prone to water shortages in the period of 2031-2070. In addition,under future climate A2 and B2, an increase in runoff during the wet season was noticed, indicating a future rise in the flood occurrence possibility in the Haihe River Basin.

  15. How are cities combating climate change?

    International Nuclear Information System (INIS)

    Paugam, Anne; Giraud, Gael; Thauvin, Eric

    2015-11-01

    Cities are often blamed for being the main emitters of greenhouse gases (up to 75% of CO_2 emissions are attributed to cities [IPCC, Climate Change Synthesis Report 2014]) due to the energy consumption tied to the activities they host: transport, industry, etc. But they are also the first to suffer from climate change: extreme climate events have more drastic outcomes in highly populated areas and the harmful effects of polluting activities are felt more strongly. Aware of the role that they can play, cities have been organising themselves into networks since the 1990's (C40, Cities Climate Leadership Group, ICLEI Local Governments for Sustainability, etc.) to share their experiences and reinforce their actions. Their commitment now singles them out as leading players: for example, London has announced an 80% reduction in its emissions by 2050, which is one of the most ambitious objectives targeted at local authority level or even national level. A comparative study conducted in five cities of the Global North and South (Agadir, Da Nang, Lima, London, Nantes) aimed at understanding their commitment to action on climate change. Why have they made this a priority? What concrete actions have been launched? What challenges are they facing?

  16. Our changing climate

    International Nuclear Information System (INIS)

    Kandel, R.

    1990-01-01

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  17. Climate change and skin disease.

    Science.gov (United States)

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  18. Climate change science compendium 2009

    Energy Technology Data Exchange (ETDEWEB)

    McMullen, C.P.; Jabbour, J.

    2009-09-15

    In a matter of a few weeks' time, governments will gather in Copenhagen, Denmark, for a crucial UN climate convention meeting. Many governments and stakeholders have requested an annual snapshot of how the science has been evolving since the publication of the IPCC's landmark fourth assessment in advance of the panel's next one in 2014. This Climate Change Science Compendium, based on the wealth of peerreviewed research published by researchers and institutions since 2006, has been compiled by UNEP in response to that request. The findings indicate that ever more rapid environmental change is underway with the pace and the scale of climate change accelerating, along with the confidence among researchers in their forecasts. The Arctic, with implications for the globe, is emerging as an area of major concern. There is growing evidence that the ice there is melting far faster than had been previously supposed. Mountains glaciers also appear to be retreating faster. Scientists now suggest that the Arctic could be virtually ice free in September of 2037 and that a nearly ice-free September by 2028 is well within the realms of possibility. Recent findings also show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. The impact on the Earth's multi-trillion dollar ecosystems is also a key area of concern. Under a high emission scenario-the one that most closely matches current trends-12-39 per cent of the planet's terrestrial surface could experience novel climate conditions and 10-48 per cent could suffer disappearing climates by 2100. Rising levels of aridity are also concentrating scientific minds. New research indicates that by the end of the 21st century the Mediterranean region will also experience much more severe increases in aridity than previously estimated rendering the entire region, but particularly the southern Mediterranean

  19. Climate Change - A New Risk Reality for Utility Companies

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, William R.; Cramer, Espen; Torstad, Elisabeth; Rosnes, Olafr

    2010-09-15

    Climate change introduces new and complex risk factors affecting the power sector. In DNV's experience, the companies that manage to control risk and take advantage of the opportunities in a changing business environment are more likely to succeed. This paper gives an overview of the main risks and opportunities of climate change facing the sector. Through a survey of the European and North American power sector, DNV has mapped the industry's views on the risk picture. The survey identifies what the industry players consider to be viable strategies for the sector in tackling the new risk reality of climate change.

  20. Sociology: Drivers of climate change beliefs

    Science.gov (United States)

    Givens, Jennifer E.

    2014-12-01

    Direct experience of global warming is expected to increase the number of people who accept that it is real and human-caused. A study now shows that people's perceptions about abnormal temperatures mostly match actual measurements but do not affect climate change beliefs.

  1. Trade and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Tamiotti, L.; Teh, R.; Kulacoglu, V. (World Trade Organization (WTO), Geneva (Switzerland)); Olhoff, A.; Simmons, B.; Abaza, H. (United Nations Environment Programme (UNEP) (Denmark))

    2009-06-15

    The Report aims to improve understanding about the linkages between trade and climate change. It shows that trade intersects with climate change in a multitude of ways. For example, governments may introduce a variety of policies, such as regulatory measures and economic incentives, to address climate change. This complex web of measures may have an impact on international trade and the multilateral trading system. The Report begins with a summary of the current state of scientific knowledge on climate change and on the options available for responding to the challenge of climate change. The scientific review is followed by a part on the economic aspects of the link between trade and climate change, and these two parts set the context for the subsequent parts of the Report, which looks at the policies introduced at both the international and national level to address climate change. The part on international policy responses to climate change describes multilateral efforts to reduce greenhouse gas emissions and to adapt to the effects of climate change, and also discusses the role of the current trade and environment negotiations in promoting trade in technologies that aim to mitigate climate change. The final part of the Report gives an overview of a range of national policies and measures that have been used in a number of countries to reduce greenhouse gas emissions and to increase energy efficiency. It presents key features in the design and implementation of these policies, in order to draw a clearer picture of their overall effect and potential impact on environmental protection, sustainable development and trade. It also gives, where appropriate, an overview of the WTO rules that may be relevant to such measures. (author)

  2. Information, communication and education on climate change. European perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Filho, W.L.; Mannke, F. [TuTech Innovation GmbH, Hamburg (Germany); Schmidt-Thome, P. (eds.) [Geologinen Tutkimuslaitos, Espoo (Finland)

    2007-07-01

    Project by Film and DVD (F.-M. Chambers, F.R.G. Daniell, Sally A. Brain); (l) Raising Awareness of Climate Change: Experience in Lithuania (Arunas Bukantis, Linas Kliucininkas, Egigijus Rimkus, Elena Talockaite); (m) Linking Sustainability, Education, Communication and Climate Change - Some International Approaches and Good Practice (Walter Leal Filho, Franzisko Mannke).

  3. The climate is changing

    International Nuclear Information System (INIS)

    Alfsen, Knut H.

    2001-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has finalized its Third Assessment Report. Among its conclusions is that we must expect continued changes in our climate, despite our efforts to reduce greenhouse gas emissions. Planning for and adapting to climate change are therefore necessary. As a starting point, CICERO has written this short note on expected impacts in Norway. The main conclusions are that (1) Adaptation to climate change is necessary (2) Substantial impacts are expected for several important sectors in Norway (3) The local and central authorities should now consider and start planning for adaptation measures. (4) There is still a need for more knowledge about potential impacts of climate change in Norway. (author)

  4. Workshop on the preparation of climate change action plans. Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-24

    Over 130 participants from more than 27 countries shared experiences of developing and transition countries in preparation and development of their climate change national action plans. International experts guided countries in preparation of their climate change national action plans.

  5. Overcoming the barriers. Mainstreaming climate change adaptation in developing countries

    International Nuclear Information System (INIS)

    Mitchell, T.; Tanner, T.; Wilkinson, E.; Roach, R.; Boyd, S.

    2006-10-01

    Climate change is a huge threat to all aspects of human development and achievement of the Millennium Development Goals for poverty reduction. Until recently, donor agencies, national and local layers of government, and non-governmental organisations have paid little attention to the risks and uncertainties associated with climate change. Now, however, players at all levels are increasingly engaging with the question of how to tackle the impacts of climate change on development in poorer nations. There are growing efforts to reduce negative impacts and seize opportunities by integrating climate change adaptation into development planning, programmes and budgeting, a process known as mainstreaming. Such a co-ordinated, integrated approach to adaptation is imperative in order to deal with the scale and urgency of dealing with climate change impacts. In developed countries progress on mainstreaming climate adaptation has been limited. Many countries have carried out climate change projections and impact assessments, but few have started consultation processes to look at adaptation options and identify policy responses. In developing countries, the mainstreaming process is also in its early stages. Small island developing states have made good progress, with Caribbean countries among the first to start work on adaptation. The Pacific islands have received considerable support and through the World Bank a number of initiatives have begun. Crucially, there has been little progress in mainstreaming adaptation within existing poverty alleviation policy frameworks. There is a lack of research on the extent to which climate change, and environmental issues more broadly, have been integrated within PRSPs. This is critical. Examples of efforts from Sri Lanka, Bangladesh, Tanzania, Uganda, Sudan, Mexico and Kenya are presented, highlighting a number of key issues relating to current experiences of integrating climate change into poverty reduction efforts. Experiences so far

  6. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    Science.gov (United States)

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating

  7. Climate Change Portal - Home Page

    Science.gov (United States)

    Science Partnerships Contact Us Take Action Climate change is already having significant and widespread of climate change. Business Businesses throughout California are taking action to address climate climate change impacts and informing policies to reduce greenhouse gases, adapt to changing environments

  8. Historical and idealized climate model experiments: an EMIC intercomparison

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.

    2012-01-01

    Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE......, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows considerable synergy between land-use change and CO2... and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures...

  9. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  10. Climatic change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-02-15

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  11. Climatic change

    International Nuclear Information System (INIS)

    1977-01-01

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  12. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  13. Public Engagement on Climate Change

    Science.gov (United States)

    Curry, J.

    2011-12-01

    Climate change communication is complicated by complexity of the scientific problem, multiple perspectives on the magnitude of the risk from climate change, often acrimonious disputes between scientists, high stakes policy options, and overall politicization of the issue. Efforts to increase science literacy as a route towards persuasion around the need for a policy like cap and trade have failed, because the difficulty that a scientist has in attempting to make sense of the social and political complexity is very similar to the complexity facing the general public as they try to make sense of climate science itself. In this talk I argue for a shift from scientists and their institutions as information disseminators to that of public engagement and enablers of public participation. The goal of engagement is not just to inform, but to enable, motivate and educate the public regarding the technical, political, and social dimensions of climate change. Engagement is a two-way process where experts and decision-makers seek input and learn from the public about preferences, needs, insights, and ideas relative to climate change impacts, vulnerabilities, solutions and policy options. Effective public engagement requires that scientists detach themselves from trying to control what the public does with the acquired knowledge and motivation. The goal should not be to "sell" the public on particular climate change solutions, since such advocacy threatens public trust in scientists and their institutions. Conduits for public engagement include the civic engagement approach in the context of community meetings, and perhaps more significantly, the blogosphere. Since 2006, I have been an active participant in the climate blogosphere, focused on engaging with people that are skeptical of AGW. A year ago, I started my own blog Climate Etc. at judithcurry.com. The demographic that I have focused my communication/engagement activities are the technically educated and scientifically

  14. Danish forestry and climate change

    International Nuclear Information System (INIS)

    Larsen, J.B.; Saxe, H.

    2001-01-01

    Results from Danish experimental field and chamber studies indicate that in general the projected climatic changes are likely to promote tree growth especially for those trees, which have their northern limit in southern Scandinavia. The only major species which will experience a setback, is Norway Spruce - unfortunately however so far the most common commercially planted tree in Denmark. (LN)

  15. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  16. CLIMATE CHANGE IN KYIV: WAYS TO CONTERACT AND MINIMIZE NEGATIVE EFFECTS

    Directory of Open Access Journals (Sweden)

    V. Bazylevych

    2013-10-01

    Full Text Available ital issues of climate change in Kyiv are studied with elucidation of the need for developing a comprehensive research technique to analyse and assess a cumulative impact of the process. The study exposes anthropogenic and natural factors responsible for climate formation in Kyiv and the climatic changes. With an account for recent international experience the proposals are formulated how to make use of contemporary administrative, economic, legal and regulatory levers to forestall climatic changes in the capital and cope with the negative environmental aftermath.

  17. Climate Change and Malaria

    OpenAIRE

    Goklany;, I. M.

    2004-01-01

    Sir David A. King's claim that "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" ("Climate change

  18. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Anthropogenic impacts on the Earth`s atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  19. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    International Nuclear Information System (INIS)

    1996-01-01

    Anthropogenic impacts on the Earth's atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  20. Chatham Islands Climate Change

    International Nuclear Information System (INIS)

    Mullan, B.; Salinger, J.; Thompson, C.; Ramsay, D.; Wild, M.

    2005-06-01

    This brief report provides guidance on climate change specific to the Chatham Islands, to complement the information recently produced for local government by the Ministry for the Environment in 'Climate Change Effects and Impacts Assessment: A guidance manual for Local Government in New Zealand' and 'Coastal Hazards and Climate Change: A guidance manual for Local Government in New Zealand'. These previous reports contain a lot of generic information on climate change, and how to assess associated risks, that is relevant to the Chatham Islands Council.

  1. Linking city development and adaptation to climate change

    OpenAIRE

    Andrej Steiner; Rudolf Bauer; Jana Knezova

    2014-01-01

    Climate change is happening, projected to continue and poses serious challenges also for cities' development. Extreme weather events resulting in hazards such as heat waves, floods and droughts are expected to happen more frequently in many parts of Europe. The United Nations Intergovernmental Panel on Climate Change (IPCC) predicts global temperatures to rise an additional 2-4˚C by the end of this century and graduation of weather extremes. While urban areas will generally experience the sam...

  2. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  3. Spatial heterogeneity of climate change as an experiential basis for skepticism.

    Science.gov (United States)

    Kaufmann, Robert K; Mann, Michael L; Gopal, Sucharita; Liederman, Jackie A; Howe, Peter D; Pretis, Felix; Tang, Xiaojing; Gilmore, Michelle

    2017-01-03

    We postulate that skepticism about climate change is partially caused by the spatial heterogeneity of climate change, which exposes experiential learners to climate heuristics that differ from the global average. This hypothesis is tested by formalizing an index that measures local changes in climate using station data and comparing this index with survey-based model estimates of county-level opinion about whether global warming is happening. Results indicate that more stations exhibit cooling and warming than predicted by random chance and that spatial variations in these changes can account for spatial variations in the percentage of the population that believes that "global warming is happening." This effect is diminished in areas that have experienced more record low temperatures than record highs since 2005. Together, these results suggest that skepticism about climate change is driven partially by personal experiences; an accurate heuristic for local changes in climate identifies obstacles to communicating ongoing changes in climate to the public and how these communications might be improved.

  4. The physics and dynamics of the climate system simulation of climate change

    International Nuclear Information System (INIS)

    Mitchell, J.F.B.

    1991-01-01

    The increases in atmospheric Greenhouse gases since 1860 have a radiative effect equivalent to a 40% increase in carbon dioxide concentrations, and by the middle of the next century, are expected to be equivalent to a doubling of carbon dioxide concentration. Simulations with detailed climate models indicate that this would produce a warming of 2 to 5 K in global mean surface temperature at equilibrium, with accompanying changes in precipitation, sea level and other parameters. The observed increase of 0.5 K since 1900 is consistent with the lower range of the estimated potential increase, allowing for a possible slowing of the global mean warming due to the ocean's large thermal inertia. There is an ever pressing need to predict the likely changes in climate due to increases in trace gases and detailed 3-dimensional models of climate are the most promising method of providing the detailed information required for climatic impact assessment. This paper is arranged as follows: 1. Introduction, why model climate. 2. The Greenhouse effect. 3. The principal gases, past, present and future. 4. Climate feedbacks in CO 2 experiments. 5. Equilibrium climate change due to increased CO 2 . 6. Modelling the transient response to increases in trace gases. 7. Uncertainties in the simulation and detection of the climatic effect of increased trace gases. 8. Appeals to the past; simulations for 9000 years before present (9 K bp). 13 figs., 3 tabs., 33 refs

  5. The role of internal climate variability for interpreting climate change scenarios

    Science.gov (United States)

    Maraun, Douglas

    2013-04-01

    When communicating information on climate change, the use of multi-model ensembles has been advocated to sample uncertainties over a range as wide as possible. To meet the demand for easily accessible results, the ensemble is often summarised by its multi-model mean signal. In rare cases, additional uncertainty measures are given to avoid loosing all information on the ensemble spread, e.g., the highest and lowest projected values. Such approaches, however, disregard the fundamentally different nature of the different types of uncertainties and might cause wrong interpretations and subsequently wrong decisions for adaptation. Whereas scenario and climate model uncertainties are of epistemic nature, i.e., caused by an in principle reducible lack of knowledge, uncertainties due to internal climate variability are aleatory, i.e., inherently stochastic and irreducible. As wisely stated in the proverb "climate is what you expect, weather is what you get", a specific region will experience one stochastic realisation of the climate system, but never exactly the expected climate change signal as given by a multi model mean. Depending on the meteorological variable, region and lead time, the signal might be strong or weak compared to the stochastic component. In cases of a low signal-to-noise ratio, even if the climate change signal is a well defined trend, no trends or even opposite trends might be experienced. Here I propose to use the time of emergence (TOE) to quantify and communicate when climate change trends will exceed the internal variability. The TOE provides a useful measure for end users to assess the time horizon for implementing adaptation measures. Furthermore, internal variability is scale dependent - the more local the scale, the stronger the influence of internal climate variability. Thus investigating the TOE as a function of spatial scale could help to assess the required spatial scale for implementing adaptation measures. I exemplify this proposal with

  6. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  7. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    and the number and types of interviews conducted are, for example, not always clear. Information on crucial aspects of qualitative research like researcher positionality, social positions of key informants, the use of field assistants, language issues and post-fieldwork treatment of data is also lacking in many...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork......There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...

  8. Carbon: change of climate, but no worldwide catastrophe

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Kempe, S; Spitzy, A

    1981-03-21

    The combustion of nearly all available coal, petroleum and natural gas supplies in the next 150 years which has been formed over 600 million years of earth's history, has resulted in man starting the largest conceivable geochemical experiment, without knowing whether and how the hence increased CO/sub 2/ content of the atmosphere is going to alter the climate. Predictions of the time change of the climate and its influence on the food basis are very hard to make. The authors working at the International Carbon Centre at Hamburg within the framework of the SCOPE/UNEP program analyze various climate models and conclude that the changing climate with or without CO/sub 2/ will cause costs in industrial countries as well as catastrophes in the development countries.

  9. Climate engineering and the risk of rapid climate change

    International Nuclear Information System (INIS)

    Ross, Andrew; Damon Matthews, H

    2009-01-01

    Recent research has highlighted risks associated with the use of climate engineering as a method of stabilizing global temperatures, including the possibility of rapid climate warming in the case of abrupt removal of engineered radiative forcing. In this study, we have used a simple climate model to estimate the likely range of temperature changes associated with implementation and removal of climate engineering. In the absence of climate engineering, maximum annual rates of warming ranged from 0.015 to 0.07 deg. C/year, depending on the model's climate sensitivity. Climate engineering resulted in much higher rates of warming, with the temperature change in the year following the removal of climate engineering ranging from 0.13 to 0.76 deg. C. High rates of temperature change were sustained for two decades following the removal of climate engineering; rates of change of 0.5 (0.3,0.1) deg. C/decade were exceeded over a 20 year period with 15% (75%, 100%) likelihood. Many ecosystems could be negatively affected by these rates of temperature change; our results suggest that climate engineering in the absence of deep emissions cuts could arguably constitute increased risk of dangerous anthropogenic interference in the climate system under the criteria laid out in the United Nations Framework Convention on Climate Change.

  10. Transient regional climate change: analysis of the summer climate response in a high-resolution, century-scale, ensemble experiment over the continental United States

    Science.gov (United States)

    Diffenbaugh, Noah S.; Ashfaq, Moetasim; Scherer, Martin

    2013-01-01

    Integrating the potential for climate change impacts into policy and planning decisions requires quantification of the emergence of sub-regional climate changes that could occur in response to transient changes in global radiative forcing. Here we report results from a high-resolution, century-scale, ensemble simulation of climate in the United States, forced by atmospheric constituent concentrations from the Special Report on Emissions Scenarios (SRES) A1B scenario. We find that 21st century summer warming permanently emerges beyond the baseline decadal-scale variability prior to 2020 over most areas of the continental U.S. Permanent emergence beyond the baseline annual-scale variability shows much greater spatial heterogeneity, with emergence occurring prior to 2030 over areas of the southwestern U.S., but not prior to the end of the 21st century over much of the southcentral and southeastern U.S. The pattern of emergence of robust summer warming contrasts with the pattern of summer warming magnitude, which is greatest over the central U.S. and smallest over the western U.S. In addition to stronger warming, the central U.S. also exhibits stronger coupling of changes in surface air temperature, precipitation, and moisture and energy fluxes, along with changes in atmospheric circulation towards increased anticylonic anomalies in the mid-troposphere and a poleward shift in the mid-latitude jet aloft. However, as a fraction of the baseline variability, the transient warming over the central U.S. is smaller than the warming over the southwestern or northeastern U.S., delaying the emergence of the warming signal over the central U.S. Our comparisons with observations and the Coupled Model Intercomparison Project Phase 3 (CMIP3) ensemble of global climate model experiments suggest that near-term global warming is likely to cause robust sub-regional-scale warming over areas that exhibit relatively little baseline variability. In contrast, where there is greater

  11. Uncertainty and Climate Change

    OpenAIRE

    Berliner, L. Mark

    2003-01-01

    Anthropogenic, or human-induced, climate change is a critical issue in science and in the affairs of humankind. Though the target of substantial research, the conclusions of climate change studies remain subject to numerous uncertainties. This article presents a very brief review of the basic arguments regarding anthropogenic climate change with particular emphasis on uncertainty.

  12. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  13. Climate for women in climate science: Women scientists and the Intergovernmental Panel on Climate Change.

    Science.gov (United States)

    Gay-Antaki, Miriam; Liverman, Diana

    2018-02-27

    The Intergovernmental Panel on Climate Change (IPCC) is an authoritative and influential source of reports on climate change. The lead authors of IPCC reports include scientists from around the world, but questions have been raised about the dominance of specific disciplines in the report and the disproportionate number of scholars from the Global North. In this paper, we analyze the as-yet-unexamined issue of gender and IPCC authorship, looking at changes in gender balance over time and analyzing women's views about their experience and barriers to full participation, not only as women but also at the intersection of nationality, race, command of English, and discipline. Over time, we show that the proportion of female IPCC authors has seen a modest increase from less than 5% in 1990 to more than 20% in the most recent assessment reports. Based on responses from over 100 women IPCC authors, we find that many women report a positive experience in the way in which they are treated and in their ability to influence the report, although others report that some women were poorly represented and heard. We suggest that an intersectional lens is important: not all women experience the same obstacles: they face multiple and diverse barriers associated with social identifiers such as race, nationality, command of English, and disciplinary affiliation. The scientific community benefits from including all scientists, including women and those from the Global South. This paper documents barriers to participation and identifies opportunities to diversify climate science. Copyright © 2018 the Author(s). Published by PNAS.

  14. China's response to climate change issues after Paris Climate Change Conference

    Directory of Open Access Journals (Sweden)

    Yun Gao

    2016-12-01

    Full Text Available The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of win–win cooperation with each country contributing to the best of its ability; a future of the rule of law, fairness, and justice; and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  15. China's response to climate change issues after Paris Climate Change Conference

    Institute of Scientific and Technical Information of China (English)

    GAO Yun

    2016-01-01

    The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of winewin cooperation with each country contributing to the best of its ability;a future of the rule of law, fairness, and justice;and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  16. RURAL FARMERS’ PERCEPTION OF CLIMATE CHANGE IN CENTRAL AGRICULTURAL ZONE OF DELTA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    A.U. Ofuoku

    2011-10-01

    Full Text Available Farmer perception of their environment is a factor of climate change. Adaptation to climate change requires farmers to realize that the climate has changed and they must identify useful adaptations and implement them. This study analyzed the per-ception of climate change among rural farmers in central agri-cultural zone of Delta State, Nigeria. Climate change studies often assume certain adaptations and minimal examination of how, when, why, and conditions under which adaptations usually take place in any economic and social systems. The study was conducted by survey method on 131 respondents using struc-tured interview schedule and questionnaire. Data were analyzed with descriptive statistics and linear regression model to test that education, gender, and farming experience influenced farmers’ perception of climate change. The results showed that the farmers were aware of climate change. The identified causes of climate change were ranging from intensified agriculture, population explosion, increased use of fossil fuel, loss of in-digenous know practice to gas flaring. The effects of climate change on crops and livestocks were also identified by the rural farmers. Many of the farmers adapted to climate change by planting trees, carrying out soil conservation practice, changing planting dates, using different crop varieties, installing fans in livestock pens, and applying irrigation. Almost half of them did not adapt to climate change. The linear regression analysis revealed that education, gender, and farming experience influ-enced farmers’ perception of climate change. The major barriers to adaptation to climate change included lack of information, lack of money, and inadequate land.

  17. A Meta-Analysis of Urban Climate Change Adaptation ...

    Science.gov (United States)

    The concentration of people, infrastructure, and ecosystem services in urban areas make them prime sites for climate change adaptation. While advances have been made in developing frameworks for adaptation planning and identifying both real and potential barriers to action, empirical work evaluating urban adaptation planning processes has been relatively piecemeal. Existing assessments of current experience with urban adaptation provide necessarily broad generalizations based on the available peer-reviewed literature. This paper uses a meta-analysis of U.S. cities’ current experience with urban adaptation planning drawing from 54 sources that include peer-reviewed literature, government reports, white papers, and reports published by non-governmental organizations. The analysis specifically evaluates the institutional support structures being developed for urban climate change adaptation. The results demonstrate that adaptation planning is driven by a desire to reduce vulnerability and often catalyzes new collaborations and coordination mechanisms in urban governance. As a result, building capacity for urban climate change adaptation planning requires a focus not only on city governments themselves but also on the complex horizontal and vertical networks that have arisen around such efforts. Existing adaptation planning often lacks attention to equity issues, social vulnerability, and the influence of non-climatic factors on vulnerability. Engaging city govern

  18. Adapting to climate variability and change: experiences from cereal-based farming in the central rift and Kobo Valleys, Ethiopia.

    Science.gov (United States)

    Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin

    2013-11-01

    risks outside the range of current experiences. To enable farmers to adapt to these impacts critical technological, institutional, and market-access constraints need to be removed. Inconsistencies between farmers' perceptions and observed climate trends (e.g., decrease in annual rainfall) could lead to sub-optimal or counterproductive adaptations, and therefore must be removed by better communication and capacity building, for example through Climate Field Schools. Enabling strategies, which are among others targeted at agricultural inputs, credit supply, market access, and strengthening of local knowledge and information services need to become integral part of government policies to assist farmers to adapt to the impacts of current and future climate change.

  19. Adapting to Climate Variability and Change: Experiences from Cereal-Based Farming in the Central Rift and Kobo Valleys, Ethiopia

    Science.gov (United States)

    Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin

    2013-11-01

    risks outside the range of current experiences. To enable farmers to adapt to these impacts critical technological, institutional, and market-access constraints need to be removed. Inconsistencies between farmers’ perceptions and observed climate trends (e.g., decrease in annual rainfall) could lead to sub-optimal or counterproductive adaptations, and therefore must be removed by better communication and capacity building, for example through Climate Field Schools. Enabling strategies, which are among others targeted at agricultural inputs, credit supply, market access, and strengthening of local knowledge and information services need to become integral part of government policies to assist farmers to adapt to the impacts of current and future climate change.

  20. Climate of Tajikistan in connection with global climate change

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonava, N.A.

    2006-01-01

    The analysis of global climate change for different periods and its consequences on regional climate is given. The chronology of climate change in Tajikistan in various regions and the reasons leading or resulted to these changes are changes are shown as well

  1. Temporal variance reverses the impact of high mean intensity of stress in climate change experiments.

    Science.gov (United States)

    Benedetti-Cecchi, Lisandro; Bertocci, Iacopo; Vaselli, Stefano; Maggi, Elena

    2006-10-01

    Extreme climate events produce simultaneous changes to the mean and to the variance of climatic variables over ecological time scales. While several studies have investigated how ecological systems respond to changes in mean values of climate variables, the combined effects of mean and variance are poorly understood. We examined the response of low-shore assemblages of algae and invertebrates of rocky seashores in the northwest Mediterranean to factorial manipulations of mean intensity and temporal variance of aerial exposure, a type of disturbance whose intensity and temporal patterning of occurrence are predicted to change with changing climate conditions. Effects of variance were often in the opposite direction of those elicited by changes in the mean. Increasing aerial exposure at regular intervals had negative effects both on diversity of assemblages and on percent cover of filamentous and coarsely branched algae, but greater temporal variance drastically reduced these effects. The opposite was observed for the abundance of barnacles and encrusting coralline algae, where high temporal variance of aerial exposure either reversed a positive effect of mean intensity (barnacles) or caused a negative effect that did not occur under low temporal variance (encrusting algae). These results provide the first experimental evidence that changes in mean intensity and temporal variance of climatic variables affect natural assemblages of species interactively, suggesting that high temporal variance may mitigate the ecological impacts of ongoing and predicted climate changes.

  2. Climate and climate change sensitivity to model configuration in the Canadian RCM over North America

    Energy Technology Data Exchange (ETDEWEB)

    De Elia, Ramon [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada); Centre ESCER, Univ. du Quebec a Montreal (Canada); Cote, Helene [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada)

    2010-06-15

    Climate simulations performed with Regional Climate Models (RCMs) have been found to show sensitivity to parameter settings. The origin, consequences and interpretations of this sensitivity are varied, but it is generally accepted that sensitivity studies are very important for a better understanding and a more cautious manipulation of RCM results. In this work we present sensitivity experiments performed on the simulated climate produced by the Canadian Regional Climate Model (CRCM). In addition to climate sensitivity to parameter variation, we analyse the impact of the sensitivity on the climate change signal simulated by the CRCM. These studies are performed on 30-year long simulated present and future seasonal climates, and we have analysed the effect of seven kinds of configuration modifications: CRCM initial conditions, lateral boundary condition (LBC), nesting update interval, driving Global Climate Model (GCM), driving GCM member, large-scale spectral nudging, CRCM version, and domain size. Results show that large changes in both the driving model and the CRCM physics seem to be the main sources of sensitivity for the simulated climate and the climate change. Their effects dominate those of configuration issues, such as the use or not of large-scale nudging, domain size, or LBC update interval. Results suggest that in most cases, differences between simulated climates for different CRCM configurations are not transferred to the estimated climate change signal: in general, these tend to cancel each other out. (orig.)

  3. Climate change: are we all vulnerable?: Reconsidering inequalities

    International Nuclear Information System (INIS)

    Magnan, Alexandre

    2013-01-01

    This bibliographical note presents a book in which the author reviews two generally accepted ideas: first, the poorest communities would be the most vulnerable to climate change due to their weak adaptation capacities, and second, such an adaptation would only be an issue of projection on a long term. Based on his works on coastal areas and on his experience on issues of vulnerability and adaptation to climate change he shows that all societies are potentially vulnerable. He uses the notion of 'impact chains', introduces three global parameters for these chains (temperatures, sea level, and precipitation regime), and outlines the always increasing complexity of causes-consequences relationships. He discusses two key concepts: vulnerability as the degree at which a system might be affected by climate changes, and the adaptation capacity which is developed by societies to reduce their vulnerability to environmental changes

  4. Climate change impacts on yields and soil carbon in dryland agriculture

    Science.gov (United States)

    Dryland agroecosystems could be a sizable sink for atmospheric carbon (C) due to their spatial extent and level of degradation, providing climate change mitigation. We examined productivity and soil C dynamics under two IPCC climate change scenarios (RCP 4.5; RCP 8.5), utilizing long-term experiment...

  5. Climate change and farmers responses in rural china, lessons for Africa

    NARCIS (Netherlands)

    M.P. van Dijk (Meine Pieter)

    2012-01-01

    textabstractHow does China deal with the consequences of climate change and can we learn from that experience in Africa? Important external drivers in China such as rapid economic growth, urbanization, climate change and a growing awareness of environmental degradation have contributed to a shift in

  6. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning

    Science.gov (United States)

    Ozbay, G.; Sriharan, S.; Fan, C.

    2014-12-01

    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  7. Assessment of potential climate change impacts on peatland dissolved organic carbon release and drinking water treatment from laboratory experiments

    International Nuclear Information System (INIS)

    Tang, R.; Clark, J.M.; Bond, T.; Graham, N.; Hughes, D.; Freeman, C.

    2013-01-01

    Catchments draining peat soils provide the majority of drinking water in the UK. Over the past decades, concentrations of dissolved organic carbon (DOC) have increased in surface waters. Residual DOC can cause harmful carcinogenic disinfection by-products to form during water treatment processes. Increased frequency and severity of droughts combined with and increased temperatures expected as the climate changes, have potentials to change water quality. We used a novel approach to investigate links between climate change, DOC release and subsequent effects on drinking water treatment. We designed a climate manipulation experiment to simulate projected climate changes and monitored releases from peat soil and litter, then simulated coagulation used in water treatment. We showed that the ‘drought’ simulation was the dominant factor altering DOC release and affected the ability to remove DOC. Our results imply that future short-term drought events could have a greater impact than increased temperature on DOC treatability. - Highlights: ► We model realistic temperature and moisture changes on peat and surface vegetation. ► Quantity, quality and treatability changes of dissolved organic carbon were examined. ► Moisture has significantly greater influence than temperature on DOC production. ► Dry conditions alter treatability of DOC released from surface litter. ► Droughts have greater impact on water treatment than short-term heat waves alone. - Future drought events are likely to alter soil moisture, which predominately controls production of peat-derived dissolved organic carbon and subsequently drinking water quality.

  8. Climate Change and Agricultural Adaptation in Indonesia

    Directory of Open Access Journals (Sweden)

    Bevaola Kusumasari

    2016-12-01

    Full Text Available This research strives to provide answers regarding adaptation patterns of farmers in confronting climate change in Indonesia. The method utilized for this research is a mixed method. Qualitative data was acquired through a series of focus group discussions and in-depth interviews with farmers and agricultural stakeholders in Gunung Kidul and Sleman, Indonesia. Additionally, the survey was carried out to 220 farmers in both research locations. The two research locations were chosen based on the difference in agricultural land. The findings of this research show that farmers understand climate change is occurring in their region and it influences their cultivation method. Farmers utilize their personal experiences as well as local practices in adapting to climate change. The impact most felt by farmers is crop failure and a decrease in quality and quantity of agricultural crops. The ensuing implication is that farmer’s income declines more and more. This research found that agricultural product cost increased by almost as much as 50%, whilst farmer’s income merely increased half of that, which is 25% since climate change has affected their farming. Responding to the matter, the strategy farmers employ is by changing the planting pattern, using soil cultivation technique, plant pest management technique, and watering/irrigation technique.

  9. Nuclear Renaissance in an Era of Anthropogenic Climate Change

    International Nuclear Information System (INIS)

    Bird, John

    2008-01-01

    This paper substantiates the anthropogenic origin of climate change, demonstrates the resulting consequences, and thereby establishes the need for a nuclear renaissance over the next thirty years. First, the mechanisms behind the natural cycles in global warming, specifically, cycles of precession and eccentricity in Earth's orbit, as measured in ice cores, are compared to the mechanisms of anthropogenic warming, revealing the scientific basis for the observed correlation between carbon dioxide and temperature. Second, the resulting climate change is exemplified by key results from experiments performed by the author in the Arctic and at the South Geographic Pole, and the author's experience of Switzerland's costliest natural catastrophe - the flash flood of 2005. Third, although facing barriers such as research and development requirements, political will and public acceptance, the potential for nuclear power to triple to 1,000 GWe by 2050 would mitigate climate change by holding carbon dioxide concentration below 500 ppm, thereby challenging the younger nuclear generation to contribute to the most important issue facing humanity. (authors)

  10. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  11. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  12. Climate Change Risk Perception in Taiwan: Correlation with Individual and Societal Factors.

    Science.gov (United States)

    Sun, Yingying; Han, Ziqiang

    2018-01-08

    This study differentiates the risk perception and influencing factors of climate change along the dimensions of global severity and personal threat. Using the 2013 Taiwan Social Change Survey (TSGS) data (N = 2001) as a representative sample of adults from Taiwan, we investigated the influencing factors of the risk perceptions of climate change in these two dimensions (global severity and personal threat). Logistic regression models were used to examine the correlations of individual factors (gender, age, education, climate-related disaster experience and risk awareness, marital status, employment status, household income, and perceived social status) and societal factors (religion, organizational embeddedness, and political affiliations) with the above two dimensions. The results demonstrate that climate-related disaster experience has no significant impact on either the perception of global severity or the perception of personal impact. However, climate-related risk awareness (regarding typhoons, in particular) is positively associated with both dimensions of the perceived risks of climate change. With higher education, individuals are more concerned about global severity than personal threat. Regarding societal factors, the supporters of political parties have higher risk perceptions of climate change than people who have no party affiliation. Religious believers have higher risk perceptions of personal threat than non-religious people. This paper ends with a discussion about the effectiveness of efforts to enhance risk perception of climate change with regard to global severity and personal threat.

  13. Climate Change in China : Exploring Informants' Perceptions of Climate Change through a Qualitative Approach

    OpenAIRE

    Lipin, Tan

    2016-01-01

    Climate change is not only a natural phenomenon, but also a global social issue. Many studies try to explore the mechanisms behind climate change and the consequences of climate change, and provide information for developing the measures to mitigate or adapt to it. For example, the IPCC reviews and assesses climate-change-related scientific information produced worldwide, thus aiming to support decision-making from a scientific perspective. However, though various international and regional c...

  14. Structural Design Feasibility Study for the Global Climate Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal

  15. The neurobiology of climate change.

    Science.gov (United States)

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  16. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  17. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change

    Science.gov (United States)

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data. PMID:24454550

  18. Plant community responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kongstad, J.

    2012-07-01

    Climate change is expected to affect terrestrial ecosystems across the globe with increased atmospheric CO{sub 2} concentration, higher temperatures and changes in precipitation patterns. These environmental factors are drivers of many important ecosystem processes, and changes in ecosystem function are therefore expected in the future. The aim of this PhD-thesis was to examine the effects of climate change on aboveground plant growth, plant composition and plant phenology in Danish heathland ecosystems. Two sites were investigated in large-scale field experiments: 1) the CLIMAITE site, 'Brandbjerg' and 2) the INCREASE site at Mols. Field manipulations lasted years and included: Warming, summer drought and (CLIMAITE only) elevated CO{sub 2} concentrations. The treatments were applied individually and in all possible combinations. Further, at Brandbjerg, but outside the treatment plots, a study was performed on the effects nitrogen and phosphorus addition on phenology, chemistry and growth of the dominant grass Deschampsia flexuosa (Wavy Hairgrass). In general, the aboveground vegetation responded less than expected to changing climatic conditions; even though Calluna vulgaris (Heather) increased in biomass over the study period, the biomass was not affected by the manipulations, indicating that C. vulgaris, has a strong resistance to changes in climate. Also, the grass biomass (primarily D. flexuosa) was not affected and was relatively constant over the period. I argue that the resilience of D. flexuosa towards the climatic treatments came from the plants ability to let the tissue die back, and then quickly recover once conditions again became favourable. That gave the plant a high resilience to changes in climatic factors. Calluna vulgaris, on the other hand, showed a resistance to changes by constantly maintaining the growth during the whole season, probably because of its evergreen status. Together, the two different strategies made the heathland

  19. CLIMAITE - a three factor climate change ecosystem manipulation experiment.

    Science.gov (United States)

    Mikkelsen, T. N.; Beier, C.; Albert, K.; Ro-Poulsen, H.

    2007-12-01

    The Danish multi factorial climate change effects on vegetation experiment (Climaite) have now been conducted for two years on semi-natural grassland. The day time [CO2], night time temperature and precipitation (drought) have been altered, according to a regional climate change model for the year 2075, in a full factorial split plot design. The manipulated area for each treatment is 7 m2 and it is replicated 6 times. The CO2 and temperature treatments have been conducted continuously except for periods with snow cover. The CO2 is enhanced to 510 ppm via a FACE system based on concentrated CO2 released upwind under pressure. The control of the [CO2] varies with wind speed and irradiation, but during 50 percent of the fumigation period the target concentration was kept within +/-5 percent. The temperature treatment is conducted via infrared reflective curtains covering the plots during night time, and the warming of plants and soil depends of the day irradiation, night time wind speed and factors related to seasonality. In general, the air temperature is increased during night time with 1-2 C° and negligible during the day. The soil temperature in 5 cm depth is enhanced to 0.3 - 0.6 C° during night and day. The artificial summer droughts lasted about one month and differences in soil water content were developed over time. By the end of the treatment the èv content in the soil was as low as 0.06 m3 m-3 compared to 0.20 m3 m-3 in the control. Numerous physical and biological parameters in the grassland ecosystem have been measured and several are responding to the changed environment. After 9 months of exposure enhanced [CO2] stimulated the net photosynthesis (based on dry weight) in both of the domination plant species Calluna Vulgaris and Deschampsia flexuosa. When the plants were exposed to short term saturated [CO2] during gasexchange measurements the long term CO2 treated plants also had the highest photosynthesis rate, meaning that the plants were not

  20. Trees and Climate Change

    OpenAIRE

    Dettenmaier, Megan; Kuhns, Michael; Unger, Bethany; McAvoy, Darren

    2017-01-01

    This fact sheet describes the complex relationship between forests and climate change based on current research. It explains ways that trees can mitigate some of the risks associated with climate change. It details the impacts that forests are having on the changing climate and discuss specific ways that trees can be used to reduce or counter carbon emissions directly and indirectly.

  1. Solar Radiation and Climate Experiment (SORCE) Satellite

    Science.gov (United States)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  2. Southern Ocean Phytoplankton in a Changing Climate

    OpenAIRE

    Deppeler, Stacy L.; Davidson, Andrew T.

    2017-01-01

    Phytoplankton are the base of the Antarctic food web, sustain the wealth and diversity of life for which Antarctica is renowned, and play a critical role in biogeochemical cycles that mediate global climate. Over the vast expanse of the Southern Ocean (SO), the climate is variously predicted to experience increased warming, strengthening wind, acidification, shallowing mixed layer depths, increased light (and UV), changes in upwelling and nutrient replenishment, declining sea ice, reduced sal...

  3. Climate Change Action Fund: public education and outreach. Change: think climate

    International Nuclear Information System (INIS)

    2001-05-01

    This illustrated booklet provides a glimpse of the many creative approaches being adopted by educators, community groups, industry associations and governments at all levels to inform Canadians about the causes and effects of climate change. It also provides suggestions about how each individual person can contribute to reduce greenhouse gas emissions through residential energy efficiency, by participating in ride-share programs, by planting trees and a myriad of other community action projects and public awareness campaigns. The booklet describes educational resources and training available to teachers, science presentations, climate change workshops, public awareness initiatives, community action on climate change, and sector-specific actions underway in the field of transportation and in improving energy efficiency in residential and large buildings. Descriptive summaries of the activities of organizations involved in climate change advocacy and promotion, and a list of contacts for individual projects also form part of the volume

  4. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    mobilize and redistribute volatile reservoirs both on and below the surface. And for Mars, these variations are large. In the past 20 My, for example, the obliquity is believed to have varied from a low of 15° to a high of 45° with a regular oscillation time scale of ~10^5 years. These variations are typically less than two degrees on the Earth. Mars, therefore, offers a natural laboratory for the study of orbitally induced climate change on a terrestrial planet. Finally, general circulation models (GCMs) for Mars have reached a level of sophistication that justifies their application to the study of spin axis/orbitally forced climate change. With recent advances in computer technology the models can run at reasonable spatial resolution for many Mars years with physics packages that include cloud microphysics, radiative transfer in scattering/absorbing atmospheres, surface heat budgets, boundary layer schemes, and a host of other processes. To be sure, the models will undergo continual improvement, but with carefully designed experiments they can now provide insights into mechanisms of climate change in the recent past. Thus, the geologic record is better preserved, the forcing function is large, and GCMs have become useful tools. While research efforts in each of these areas have progressed considerably over the past several decades, they have proceeded mostly on independent paths occasionally leading to conflicting ideas. To remedy this situation and accelerate progress in the area, the NASA/Ames Research Center's Mars General Circulation Modeling Group hosted a 3-day workshop on May 15-17, 2012 that brought together the geological and atmospheric science communities to collectively discuss the evidence for recent climate change on Mars, the nature of the change required, and how that change could be brought about. Over 50 researchers, students, and post-docs from the US, Canada, Europe, and Japan attended the meeting. The program and abstracts from the workshop are

  5. Climatic change science, experience and controversies

    International Nuclear Information System (INIS)

    Le Treut, H.; Van Ypersele, J.P.; Hallegatte, St.; Hourcade, J.Ch.

    2004-01-01

    The international scientific community, gathered in the framework of the inter-governmental group for climate evolution (Giec), has confirmed the influence of human activities on climate and on the global warming. However, this diagnosis is sometimes questioned in the press. This book, published by the institute of sustainable development, gathers a series of articles written by scientists who make comments on the last Giec reports and who outline the knowledge gained, the remaining uncertainties and the controversies. (J.S.)

  6. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  7. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  8. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.

  9. Chemistry and climate change

    International Nuclear Information System (INIS)

    Bernier, Jean-Claude; Brasseur, Guy; Brechet, Yves; Candel, Sebastien; Cazenave, Anny; Courtillot, Vincent; Fontecave, Marc; Garnier, Emmanuel; Goebel, Philippe; Legrand, Jack; Legrand, Michel; Le Treut, Herve; Mauberger, Pascal; Dinh-Audouin, Minh-Thu; Olivier, Daniele; Rigny, Paul; Bigot, Bernard

    2016-01-01

    In its first part, this collective publication addresses the decennial and centuries-old variations of climate: perspectives and implications of climate change for the 21. century, questions remaining about the understanding of climate change from its sources to its modelling, extreme climate variations and societies during the last millennium. The contributions of the second part outline how chemistry is a tool to study climate change: ice chemistry as an archive of our past environment, observations and predictions on sea level rise, relationship between atmosphere chemistry and climate. The third set of contributions discusses the transformation of the energy system for a cleaner atmosphere and the management of the climate risk: the chemical processing of CO_2, actions of chemical companies to support the struggle against climate change, relationship between barrel price and renewable energies, relationship between grid complexity and green energy. The last part outlines the role chemistry can have to be able to do without fossil fuels: chemistry in front of challenges of transformation of the energy system, the use of micro-algae, the use of hydrogen as a vector of energy transition

  10. Climate Change Student Summits: A Model that Works (Invited)

    Science.gov (United States)

    Huffman, L. T.

    2013-12-01

    The C2S2: Climate Change Student Summit project has completed four years of activities plus a year-long longitudinal evaluation with demonstrated positive impacts beyond the life of the project on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up from its Midwestern roots to achieve measurable national impact. A NOAA Environmental Literacy grant allowed ANDRILL (ANtarctic geological DRILLing) to grow a 2008 pilot program involving 2 Midwestern sites, to a program 4 years later involving 10 sites. The excellent geographical coverage included 9 of the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. Through the delivery of two professional development (PD) workshops, a unique opportunity was provided for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. For maximum contact hours, the PD experience was extended throughout the school year through the use of an online grouphub. Student teams were involved in a creative investigative science research and presentation experience culminating in a Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program was based on combining multiple aspects, such as encouraging the active involvement of scientists and early career researchers both in the professional development workshops and in the Student Summit. Another key factor was the close working relationships between informal and formal science entities, including involvement of informal science learning facilities and informal science education leaders. The program also created cutting-edge curriculum materials titled the ELF, (Environmental Literacy Framework with a focus on climate change), providing an earth systems

  11. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  12. Built-up resilience to climate change in peatlands

    Science.gov (United States)

    Wang, H.; Tian, J.; Ho, M.; Flanagan, N. E.; Vilgalys, R.; Richardson, C. J.

    2017-12-01

    Peatlands have stored about 30% of global soil carbon over millennia. Most studies suggest that climate change effects, like drought and warming, may decrease C sequestration and increase C loss in peatlands, thus resulting in a positive feedback on climate change. However, the long-term feedback between plant-microbe mediated carbon processes and climate change still remains highly uncertain. Here, we conducted a series of field and lab experiments in southern shrub and northern Sphagnum peatlands to document how previously unrecognized mechanisms regulate the buildup of anti-microbial phenolics, which protects stored carbon directly by reducing phenol oxidase activity during short-term drought, and indirectly through a shift from low-phenolics Sphagnum/herbs to high-phenolics shrubs after long-term moderate drought. We further showed a symbiosis of slow-growing decomposers concomitant with a shift of high-phenolic plants, which increased peat resistance to disturbance. Our results indicate that shrub expansion induced by climate change in boreal peatlands may be a long-term self-adaptive mechanism not only increasing carbon sequestration, but also potentially protecting soil carbon. Therefore, peatlands are highly resilient ecosystems in which the symbiotic adaption of both plants and microbes, triggered by persistent climate change, likely can acclimate to the stressors and maintain their carbon sequestration function and processes.

  13. Climate change. Climate in Medieval time.

    Science.gov (United States)

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  14. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  15. Unjust waters. Climate change, flooding and the protection of poor urban communities. Experiences from six African cities

    International Nuclear Information System (INIS)

    2007-02-01

    are clear. Poor people and poor communities are frequently the primary victims of floods, partly because they cannot afford to live in safer areas and have crowded, makeshift houses. Flooding hits poor families particularly severely because injury, disability and loss of life directly affect their main asset, their labour. ActionAid carried out participatory vulnerability analysis (PVA) with people living in vulnerable areas of six capital cities (East Africa: Nairobi (Kenya), Kampala (Uganda); West Africa: Lagos (Nigeria), Accra (Ghana), Freetown (Sierra Leone); Southern Africa Maputo (Mozambique)) where climate change impact is most predicted. Policy analysis was also carried out as a part of PVA to understand whether there is a gap between poor urban people's experiences of climate change impacts and current disaster management policies. An international desk study was carried out to evaluate current understanding of urban flooding and climate change in 10 cities (including the six capital cities where PVA was carried out)

  16. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    Science.gov (United States)

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance.

  17. Are flood victims more concerned about climate change than other people? The role of direct experience in risk perception and behavioural response

    OpenAIRE

    Whitmarsh, Lorraine E.

    2008-01-01

    Climate change is a threat to human health and life, both now and in the future. Despite this, studies show that the public typically do not consider the issue a priority concern or a direct, personal threat. Furthermore, few are taking any preventive or protective action. Previous studies identify direct experience as a major influence on risk perception, learning and action. Drawing on such evidence, this paper focuses on the intangibility of climate change as a key impediment to personal e...

  18. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought...... or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  19. Energy and Climate Change (Executive Summary)

    International Nuclear Information System (INIS)

    World Energy Council

    2007-01-01

    The world needs urgently to develop a coherent and practical approach to reducing greenhouse gas (ghg) emissions. Energy professionals from across the world have been examining climate change policies to see what works in promoting sustainable development. The Intergovernmental Panel on Climate Change has recently confirmed that the evidence for global warming is unequivocal and the Stern Report has argued that early action to combat climate change makes economic sense. However, existing efforts are clearly insufficient - most countries with targets under Kyoto Protocol are not on track to meeting them and many countries do not have Kyoto targets. As a result, ghg emissions are still rising and are forecast to go on doing so for decades to come. The problem is not a lack of policies to deal with climate change - some thousands of policies have been introduced, both by countries within the Kyoto system and those outside, and the effort is under way to develop a successor to the Kyoto Protocol. Yet so far those policies are not proving adequate to the scale of the problem. There is a pressing need to understand why they are failing and to implement measures that are more effective in reducing emissions, particularly from the energy sector, which accounts for around two thirds of total ghg emissions. The WEC has therefore undertaken a Study of Energy and Climate Change, drawing on the collective experience and resources of energy professionals worldwide. It has looked in detail at the impact of existing climate change measures and how effective they have been in promoting sustainable development, using the criteria of the three A's - accessibility (to affordable energy); acceptability (of the energy sources used, particularly in environmental terms); and availability (how secure and reliable are those sources?). It is important to remember that sustainable development is not only about the environment - policies which fail to contribute to economic and social

  20. Adaptation to climate extremes: Experiences in the agricultural sector

    International Nuclear Information System (INIS)

    Ball, M.; Dowlatabadi, H.

    1994-01-01

    Various social and economic systems are at risk from variability in weather conditions. A realization of this fact has prompted endogenous adaptations to cope with weather variability. Climate change may overwhelm existing adaptive strategies. These systems would experience this change from the secular trends in first-order and higher order statistics of climate parameters (e.g., mean biotemperature, intensity, and inter-arrival times of extreme events). Historically, different human activities have formally or informally incorporated adaptation to climate conditions. Activities such as agriculture are influenced strongly by weather, yet through a variety of mechanisms, impacts are ameliorated. Taking agriculture as an example of a central and substantive system, the authors' study presents response strategies of oranges production -- a crop currently affected greatly by weather conditions. Understanding the adaptation mechanisms used today can be used to examine the cost and effectiveness of adaptive actions to future climate change

  1. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    The European Union ROADEX Project 1998 – 2012 was a trans-national roads co-operation aimed at developing ways for interactive and innovative management of low traffic volume roads throughout the cold climate regions of the Northern Periphery Area of Europe. Its goals were to facilitate co......-operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  2. Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications

    Science.gov (United States)

    Reddy, S. R.

    2015-12-01

    NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school

  3. Analysis and detection of climate change

    International Nuclear Information System (INIS)

    Thejll, P.; Stendel, M.

    2001-01-01

    The authors first discuss the concepts 'climate' and 'climate change detection', outlining the difficulties of the latter in terms of the properties of the former. In more detail they then discuss the analysis and detection, carried out at the Danish Climate Centre, of anthropogenic climate change and the nonanthropogenic changes regarding anthropogenic climate change the emphasis is on the improvement of global and regional climate models, and the reconstruction of past climates regarding non-anthropogenic changes the authors describe two case studies of potential solar influence on climate. (LN)

  4. Yukon Government climate change action plan

    International Nuclear Information System (INIS)

    2009-02-01

    This Climate Change Action Plan described the measures that are being taken by the Yukon Government to adapt to, understand, and reduce contributions to climate change. The action plan is the result of input received from more than 100 individuals and organizations and provides clear direction for a strategy that will minimize the negative impacts of climate change and provide economic, social and other environmental benefits through climate change mitigation. The Yukon government has already taken many actions that respond to climate change, such as: developing the Yukon Cold Climate Innovation Centre; supporting the Northern Climate Exchange for public education and outreach; funding community recycling depots and other groups that reduce waste generation, promote public awareness and divert solid waste; and working with provincial and territorial counterparts to enhance national building standards. The main objectives of the climate change actions are to enhance knowledge and understanding of climate change; adapt to climate change; reduce greenhouse gas emissions; and lead Yukon action in response to climate change. tabs., figs.

  5. Landcare and climate change: a regional perspective

    International Nuclear Information System (INIS)

    Huthwaite, Peter

    2007-01-01

    wide range of decisions, some urgent, some gradually unfolding. This very slow pace of change and the varying season cycles will make planning for change very difficult and more stressful. Experience to date indicates that discussion about adaptation to climate change often brings up issues of emissions, blame and scepticism which serve to distract the adaptation debate. Communications about adaptation are urgently needed to move the conversation towards strategic planning for a less reliable climate future, regardless of how the greenhouse debate develops

  6. Climate Change And Hydrologic Instability In Yemen

    Science.gov (United States)

    Kelley, C. P.; Funk, C. C.; McNally, A.; Shukla, S.

    2015-12-01

    Yemen is one of the most food insecure nations in the world. Its agriculture is strongly dependent on soil moisture that is heavily influenced by surface temperature and annual precipitation. We examine observations of rainfall and surface temperature and find that the rainfall, which exhibits strong interannual variability, has seen a moderate downward trend over the last 35 years while surface temperature has seen a very significant rise over the same period. Yemen has high vulnerability and low resilience to these climate changes stemming from many geopolitical and socioeconomic factors. The threshold of resilience has been crossed as Yemen is embroiled in chaos and conflict. We examine the relationship between climate change and agricultural and water insecurity using observed data and the Noah land surface model. We further used atmospheric reanalyses to explore the atmospheric teleconnections that affect the anomalous regional circulation. According to these investigations the robust surface temperature increase over recent decades, expected to continue under climate change, has strongly depleted the soil moisture. This drying of the soil exacerbated the acute hydrologic insecurity in Yemen, stemming predominantly from unsustainable groundwater use, and was likely a contributing factor to the ongoing conflict. We show that during naturally occurring dry years and under climate change this region experiences anomalous dry air advection from the northeast and that these regional circulation changes appear to be linked to tropical sea-surface temperature forcing and to the Northern Hemisphere midlatitude circulation. These results are an important example of the emerging influence of climate change in hydrologically insecure regions.

  7. Climate change and nutrition: creating a climate for nutrition security.

    Science.gov (United States)

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  8. Climate Change Impacts on Future Wave Climate around the UK

    Directory of Open Access Journals (Sweden)

    William G. Bennett

    2016-11-01

    Full Text Available Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model outputs of two time slice experiments were analysed with 1979–2009 representing present conditions and 2075–2100 representing the future climate. Three WaveNet buoy sites around the United Kingdom, which represent diverse site conditions and have long datasets, were chosen for this study. A storm event definition (Dissanayake et al., 2015 was used to separate meteorologically-independent storm events from wave data, which in turn allowed storm wave characteristics to be analysed. Model outputs were validated through a comparison of the modelled storm data with observed storm data for overlapping periods. Although no consistent trends across all future clusters were observed, there were no significant increases in storm wave height, storm count or storm power in the future, at least according to the global wave projection results provided by the chosen model.

  9. Beyond Knowledge: Service Learning and Local Climate Change Research Engagement Activities that Foster Action and Behavior Change

    Science.gov (United States)

    Low, R.; Mandryk, C.; Gosselin, D. C.; Haney, C.

    2013-12-01

    Climate change engagement requires individuals to understand an abstract and complex topic and realize the profound implications of climate change for their families and local community. In recent years federal agencies have spent millions of dollars on climate change education to prepare a nation for a warming future. The majority of these education efforts are based on a knowledge deficit model. In this view 'educate' means 'provide information'. However cognitive and behavioral research and current action demonstrate that information alone is not enough; knowledge does not necessarily lead to action. Educators are speaking to deaf ears if we rely on passive and abstract information transfer and neglect more persuasive and affective approaches to communication. When climate change is presented abstractly as something that happens in the future to people, environments, animals somewhere else it is easy to discount. People employ two separate systems for information processing: analytical-rational and intuitive-experiential Authentic local research experiences that engage both analytical and experiential information processing systems not only help individuals understand the abstraction of climate change in a concrete and personally experienced manner, but are more likely to influence behavior. Two on-line, graduate-level courses offered within University of Nebraska's Masters of Applied Science program provide opportunities for participants to engage in authentic inquiry based studies climate change's local impacts, and work with K-12 learners in promoting the scientific awareness and behavioral changes that mitigate against the negative impacts of a changing climate. The courses are specifically designed to improve middle and high school (grades 6-12) teachers' content knowledge of climate processes and climate change science in the context of their own community. Both courses provide data-rich, investigative science experiences in a distributed digital

  10. An overview of climate change

    International Nuclear Information System (INIS)

    Masson-Delmotte, V.; Paillard, D.

    2004-01-01

    We describe briefly here the main mechanisms and time scales involved in natural and anthropogenic climate variability, based on quantitative paleo-climatic reconstructions from natural archives and climate model simulations: the large glacial-interglacial cycles of the last million years (the Quaternary), lasting typically a hundred thousand years, triggered by changes in the solar radiation received by the Earth due to its position around the Sun; the century-long climatic changes occurring during last glacial period and triggered by recurrent iceberg discharges of the large northern hemisphere ice caps, massive freshwater flux to the north Atlantic, and changes in the ocean heat transport. We show the strong coupling between past climatic changes and global biogeochemical cycles, namely here atmospheric greenhouse gases. We also discuss the decadal climatic fluctuations during the last thousand years, showing an unprecedented warming attributed to the anthropogenic greenhouse gas emissions. We show the range of atmospheric greenhouse concentrations forecasted for the end of the 21. century and the climate model predictions for global temperature changes during the 21. century. We also discuss the possible climatic changes at longer time scales involving the possibility of north Atlantic heat transport collapse (possibility of abrupt climate change), and the duration of the current interglacial period. (author)

  11. Using a Global Climate Model in an On-line Climate Change Course

    Science.gov (United States)

    Randle, D. E.; Chandler, M. A.; Sohl, L. E.

    2012-12-01

    Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that

  12. Is nuance possible in climate change communication?

    Science.gov (United States)

    Donner, S. D.

    2015-12-01

    One of the core challenges of climate communication is finding the balance between honestly portraying the science, with all its complexity, and effectively engaging the audience. At a time when all politics are partisan and the media measures value in clicks, complicated stories can become black-and-white. This loss of nuance is acute in tales told of climate change impacts in the developing world, particularly in the low-lying island states of the Pacific. Atoll countries like Kiribati, Tuvalu, the Marshall Islands and the Maldives are certainly existentially threatened by climate change and sea-level rise. Yet the islands and their residents are also more resilient than the dramatic headlines about sinking islands would have you think. Casting the people as helpless victims, however well-intentioned, can actually hurt their ability to respond to climate change. This presentation examines the risks and benefits of providing such nuance on a climate issue that the public and policy-makers generally view as black-and-white. Drawing on efforts a decade of research in Kiribati and other small island developing states in the Pacific, I describe how a mix of cultural differences, geopolitics, and the legacy of colonialism has made the Pacific Islands a narrative device in a western discussion about climate change. I then describe in detail the challenging process of writing a popular magazine story which questions that narrative - but not the long-term threat of sea-level rise - and the personal and political aftermath of its publication. Building upon this humbling experience and findings from psychology, communications and science and technology studies, I outline the key benefits and risks of engaging publicly with the nuances of a climate change issue, and provide a template for effectively communicating nuance in a politically charged atmosphere.

  13. Changes in drought risk with climate change

    International Nuclear Information System (INIS)

    Mullan, B.; Porteous, A.; Wratt, D.; Hollis, M.

    2005-05-01

    As human activity adds more greenhouse gases to the atmosphere, most climate change scenarios predict rising temperatures and decreased rainfall in the east of New Zealand. This means eastern parts of the country are expected to experience more droughts as the 21st century goes on. Our report seeks for the first time to define the possible range of changes in future drought risk. This report was commissioned because of the importance of drought for agriculture and water resources. The report aims to give central and local government and the agriculture sector an indication of how big future drought changes could be in the various regions. This information can be relevant in managing long-term water resources and land use, including planning for irrigation schemes.

  14. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  15. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    Science.gov (United States)

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Economic impacts of climate change in Australia: framework and analysis

    International Nuclear Information System (INIS)

    Ford, Melanie

    2007-01-01

    Full text: There is growing interest in understanding the potential impacts of climate change in Australia, and especially the economic impacts of 'inaction'. In this study, a preliminary analysis of the possible economic impacts of future climate change in Australia is undertaken using ABARE's general equilibrium model of the global economy, GTEM. In order to understand the potential economy-wide economic impacts, the broad climatic trends that Australia is likely to experience over the next several decades are canvassed and the potential economic and non-economic impacts on key risk areas, such as water resources, agriculture and forests, health, industry and human settlements and the ecosystems, are identified. A more detailed analysis of the economic impacts of climate change are undertaken by developing two case studies. In the first case study, the economic impact of climate change and reduced water availability on the agricultural sector is assessed in the Murray-Darling Basin. In the second case study, the sectoral economic impacts on the Australian resources sector of a projected decline in global economic activity due to climate change is analysed. The key areas of required development to more fully understand the economy-wide and sectoral impacts of climate change are also discussed including issues associated with estimating both non-market and market impacts. Finally, an analytical framework for undertaking integrated assessment of climate change impacts domestically and globally is developed

  17. Community ecology, climate change and ecohydrology in desert grassland and shrubland

    Science.gov (United States)

    Mathew Daniel Petrie

    2014-01-01

    This dissertation explores the climate, ecology and hydrology of Chihuahuan Desert ecosystems in the context of global climate change. In coming decades, the southwestern United States is projected to experience greater temperature-driven aridity, possible small decreases in annual precipitation, and a later onset of summer monsoon rainfall. These changes may have...

  18. The Inuit and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fenge, T.

    2001-12-31

    Marked climate change has been forecast for regions in high latitudes by global climate models presented by the Intergovernmental Panel on Climate Change. Observations and reports of significant alterations to the natural environment of Canada's north have been reported by Inuit and other indigenous peoples using their traditional ecological knowledge as a reference. Global climate change appears to be the cause for the changes noted. Many aspects of climate change need to be addressed, such as research, outreach, impacts, adaptations and international negotiations. Based on the strong partnership that had been developed between the Inuit and four federal agencies, three territorial governments and four indigenous people's organizations in support of the Northern Contaminants Program, Inuit are now seeking a partnership with the federal government to address the issues mentioned above concerning climate change. refs., 1 tab.

  19. Vulnerability of roads and associated structures to the effects of climate change

    International Nuclear Information System (INIS)

    Arisz, H.; Therrien, M.; Burrell, B.C.; LeBlanc, M.M.

    2009-01-01

    The vulnerability of roads and associated structures in the City of Greater Sudbury to the effects of climate change was evaluated using the Public Infrastructure Vulnerability Committee (PIEVC) Engineering Protocol for Climate Change Infrastructure Assessment. Study objectives were to evaluate the vulnerability of road-related infrastructure in Greater Sudbury to climate change, and to identify potential impediments to the application of the protocol in other municipalities. Based on the experience gained during this study, recommendations were provided with respect to the vulnerabilities of roads and associated structures to the predicted effects of climate change and the performance of vulnerability assessments. (author)

  20. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  1. Climate change research - Danish contributions

    International Nuclear Information System (INIS)

    Joergensen, A.M.K.; Fenger, J.; Halsnaes, K.

    2001-01-01

    The book describes a series of Danish scientific and technical studies. They broadly reflect the fields and disciplines embraced by assessments of the Intergovernmental Panel on Climate Change (IPCC), but with an emphasis on natural sciences (i.e. climate investigations and impact studies). After the general introduction, that presents the issue and gives a summary of the content of the book, the chapters are organised in four parts: 1. The Climate System and Climate Variations. 2. Climate Change Scenarios. 3. Impacts of Climate Change. 4. Policy Aspects. Each chapter is indexed separately. (LN)

  2. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  3. Climate change, conflict and health.

    Science.gov (United States)

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  4. Successfully Integrating Climate Change Education into School System Curriculum

    Science.gov (United States)

    Scallion, M.

    2017-12-01

    include climate change education as part of a larger ecological exploration, giving students and teachers local context to this global issue and memorable outdoor hands-on experiences and student driven adaptation projects.

  5. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  6. Interviewing German scientists on climate change. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Ungar, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung; Toronto Univ., Scarborough (Canada)

    2004-07-01

    This study is based on in-depth interviews with 25 German scientists at the Coastal Research Institute of the GKSS-Forschungszentrum. It takes as its context the differential rhetoric and planning on climate change found in Germany and North America. The interviews try to throw light on the early German decision to address climate change, and to assess the current attitudes, beliefs and experiences of these German scientists. The results reveal a degree of complacency among these scientists, including a sense that Germany is not particularly threatened by climate change and has the capacity to adapt to it. The scientists are critical of inaction among the German population, but themselves uphold a ''light version'' of the precautionary principle. They have great difficulty translating the idea of climate change into popular metaphors that can be grasped by children. They strongly reject any link between German leadership on the issue as a result of a sense of guilt about the German past. (orig.)

  7. Climate change scenarios and Technology Transfer Protocols

    International Nuclear Information System (INIS)

    Kypreos, Socrates; Turton, Hal

    2011-01-01

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. - Research Highlights: → Climate policy scenarios are assessed with differentiated commitments in carbon emission control supported by Technology Transfer Protocols. → Donor countries finance, via carbon-tax revenues, the exports of carbon-free technologies in developing countries helping to get a new international agreement. → Developing countries experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and secondary benefits. → Under Technology Protocols alone and

  8. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    Hall, J.P.; Carlson, L.W.

    1990-01-01

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  9. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  10. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  11. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  12. Assessment of Coastal Governance for Climate Change Adaptation in Kenya

    Science.gov (United States)

    Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina

    2017-11-01

    The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.

  13. Our knowledge on climate change

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Van Wijk, A.J.M.

    1991-01-01

    A workshop was organised to evaluate and discuss the report 'Scientific Assessment of Climate Change (1990)' of the Intergovernmental Panel on Climate Change (IPCC). Thirty prominent Dutch experts in the field attended the workshop. The introductions and discussions held on our knowledge of climatic change as a result of the growth of the greenhouse effect caused by the emission of greenhouse gases from human actions are presented. It is concluded that the IPCC-report shows in a clear and balanced way the certainties and uncertainties in our knowledge of climate change. There is a large chance that the earth's climate will change considerably, if the policy remains unamended. 15 figs., 2 apps

  14. Impacts of climate change on paddy rice yield in a temperate climate.

    Science.gov (United States)

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  15. Climate change: biological and human aspects

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cowie

    2007-07-15

    The textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. Contents are: 1. An introduction to climate change; 2. Principal indicators of past climates; 3. Past climate change; 4. The Oligocene to the Quaternary: climate and biology; 5. Present climate and biological change; 6. Current warming and likely future impacts; 7. Human ecology of climate change; 8. Sustainability and policy; Appendix 1. Glossary and acronyms; Appendix 2. Bio-geological timescale; Appendix 3. Calculations of energy demand/supply, and orders of magnitude; Index. 69 figs.

  16. Our Changing Climate: A Brand New Way to Study Climate Science

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  17. Nuclear Renaissance in an Era of Anthropogenic Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bird, John [Bruce Power, Box 3000 B06, Tiverton, Ontario N0G 2T0 (Canada)

    2008-07-01

    This paper substantiates the anthropogenic origin of climate change, demonstrates the resulting consequences, and thereby establishes the need for a nuclear renaissance over the next thirty years. First, the mechanisms behind the natural cycles in global warming, specifically, cycles of precession and eccentricity in Earth's orbit, as measured in ice cores, are compared to the mechanisms of anthropogenic warming, revealing the scientific basis for the observed correlation between carbon dioxide and temperature. Second, the resulting climate change is exemplified by key results from experiments performed by the author in the Arctic and at the South Geographic Pole, and the author's experience of Switzerland's costliest natural catastrophe - the flash flood of 2005. Third, although facing barriers such as research and development requirements, political will and public acceptance, the potential for nuclear power to triple to 1,000 GWe by 2050 would mitigate climate change by holding carbon dioxide concentration below 500 ppm, thereby challenging the younger nuclear generation to contribute to the most important issue facing humanity. (authors)

  18. Climate change and One Health.

    Science.gov (United States)

    Zinsstag, Jakob; Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-06-01

    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.

  19. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  20. Adaptation to climate change and industrial vulnerability

    International Nuclear Information System (INIS)

    Garnaud, Benjamin; Ferret, Celine

    2010-06-01

    In today's societies, the production base made up by the industrial fabric acts as an important link between the climate and its variations and our lifestyle. However, several decades of experience have often enabled us to minimise the impact of the weather and its fluctuations on activities, making the industrial sector out to be purely artificial and protected from climate impacts. Yet climate change leads us to challenge this assumption: if the industrial base is supposed to be impervious to the current climate, is this still the case in a context of climate change? In an attempt to answer this question, the Invulnerable project was launched, led by the Institute for Sustainable Development and International Relations (IDDRI) and bringing together scientific and industrial partners (Meteo-France, IPSL, CERFACS). Observing the availability of scientific resources on climate change, partly resulting from the modeling research coordinated by the IPCC, the idea was to work with industries to identify their vulnerabilities and to use these to define indicators for climatologists. These indicators are not chosen by scientists without consulting industries, but are in fact defined by these industries to ensure they correspond to their needs as closely as possible. The challenge is therefore to bring together scientists and industries and to catalyse a mutual understanding to ensure this discussion results in one or several indicators that are relevant to the activity in question and on which climatologists can work

  1. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    2009-07-01

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  2. Climate change and climate policy; Klimaendringer og klimapolitikk

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done

  3. Climate change: against despair

    OpenAIRE

    McKinnon, Catriona

    2014-01-01

    In the face of accelerating climate change and the parlous state of its politics, despair is tempting. This paper analyses two manifestations of despair about climate change related to (1) the inefficacy of personal emissions reductions, and (2) the inability to make a difference to climate change through personal emissions reductions. On the back of an analysis of despair as a loss of hope, the paper argues that the judgements grounding each form of despair are unsound. The paper concludes w...

  4. The role of forests in climate change: Nordic experience

    Energy Technology Data Exchange (ETDEWEB)

    Portin, A.; Barua, S.; Clarke, M.; Camargo, M.; Viding, J.; Pekkanen, M.

    2013-08-15

    The objective of this project is to discuss the role of forests in Nordic countries in climate change mitigation and discuss the possible roles of forests as a part of a cost-effective climate policy. The report aims to provide a comprehensive and easily digestible way to better understand the issue. The report includes a discussion on the role of forests for enhancing carbon stocks and carbon sinks in the Nordic countries. The extent of above- and below-ground biomass and their role as forests carbon sinks in Nordic forests is analysed. The use of wood in products, buildings and as bioenergy is examined. Finally the report presents emissions trading schemes from around the globe that allow offsets and credits from forest projects on them and provides an analysis on the feasibility of such a scheme for the Nordic region. The report has been commissioned by the Working Group on Environment and Economics under the Nordic Council of Ministers. The study was carried out by Indufor. (Author)

  5. Climate change in China and China’s policies and actions for addressing climate change

    Directory of Open Access Journals (Sweden)

    Luo Y.

    2010-12-01

    Full Text Available Since the first assessment report (FAR of Inter-Governmental Panel on Climate Change (IPCC in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4 was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  6. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  7. Systemic range shift lags among a pollinator species assemblage following rapid climate change

    DEFF Research Database (Denmark)

    Bedford, Felicity E.; Whittaker, Robert J.; Kerr, Jeremy T.

    2012-01-01

    Contemporary climate change is driving widespread geographical range shifts among many species. If species are tracking changing climate successfully, then leading populations should experience similar climatic conditions through time as new populations establish beyond historical range margins....... Here, we investigate geographical range shifts relative to changing climatic conditions among a particularly well-sampled assemblage of butterflies in Canada. We assembled observations of 81 species and measured their latitudinal displacement between two periods: 1960–1975 (a period of little climate...... change) and 1990–2005 (a period with large climate change). We find an unexpected trend for species’ northern borders to shift progressively less relative to increasing minimum winter temperatures in northern Canada. This study demonstrates a novel, systemic latitudinal gradient in lags among a large...

  8. Climate Change and Natural Disasters

    NARCIS (Netherlands)

    Merkouris, Panos; Negri, Stefania; Maljean-Dubois, Sandrine

    2014-01-01

    Only 21 years ago, in 1992, the first ever convention on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was signed. The science behind studying climate change and its effects on the environment is not only mind-boggling but still in its infancy. It should come

  9. PUBLIC PRIVATE COLLABORATION ON CLIMATE CHANGE MITIGATION

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Kasper

    How can local governments influence companies to reduce their climate change impacts? This overall problem is examined in this PhD thesis. The PhD thesis is based on the experiences of seven Danish municipalities participating in the EU Life+ project, Carbon 20. Analyses are made...

  10. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability.

    Science.gov (United States)

    Reyer, Christopher P O; Leuzinger, Sebastian; Rammig, Anja; Wolf, Annett; Bartholomeus, Ruud P; Bonfante, Antonello; de Lorenzi, Francesca; Dury, Marie; Gloning, Philipp; Abou Jaoudé, Renée; Klein, Tamir; Kuster, Thomas M; Martins, Monica; Niedrist, Georg; Riccardi, Maria; Wohlfahrt, Georg; de Angelis, Paolo; de Dato, Giovanbattista; François, Louis; Menzel, Annette; Pereira, Marízia

    2013-01-01

    We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches. © 2012 Blackwell Publishing Ltd.

  11. Bioethics and Public Health Collaborate to Reveal Impacts of Climate Change on Caribbean Life

    Science.gov (United States)

    Macpherson, C.; Akpinar-Elci, M.

    2011-12-01

    Interdisciplinary dialog and collaboration aimed at protecting health against climate change is impeded by the small number of scientists and health professionals skilled in interdisciplinary work, and by the view held by many that "climate change won't affect me personally". These challenges may be surmounted by discussions about the lived experience of climate change and how this threatens things we value. Dialog between bioethics and public health generated an innovative collaboration using the focus group method. The main limitation of focus groups is the small number of participants however the data obtained is generalizable to wider groups and is used regularly in business to enhance marketing strategies. Caribbean academicians from varied disciplines discussed how climate change affects them and life in the Caribbean. Caribbean states are particularly vulnerable to climate change because their large coastal areas are directly exposed to rising sea levels and their development relies heavily on foreign aid. The Caribbean comprises about half of the 39 members of the Association of Small Island States (AOSIS), and small island states comprise about 5% of global population [1]. Participants described socioeconomic and environmental changes in the Caribbean that they attribute to climate change. These include extreme weather, unusual rain and drought, drying rivers, beach erosion, declining fish catches, and others. The session exposed impacts on individuals, businesses, agriculture, and disaster preparedness. This data helps to reframe climate change as a personal reality rather than a vague future concern. It is relevant to the design, implementation, and sustainability of climate policies in the Caribbean and perhaps other small island states. The method and interdisciplinary approach can be used in other settings to elicit dialog about experiences and values across sectors, and to inform policies. Those who have experienced extreme weather are more concerned

  12. The response of terrestrial ecosystems to global climate change: Towards an integrated approach

    International Nuclear Information System (INIS)

    Rustad, Lindsey E.

    2008-01-01

    Accumulating evidence points to an anthropogenic 'fingerprint' on the global climate change that has occurred in the last century. Climate change has, and will continue to have, profound effects on the structure and function of terrestrial ecosystems. As such, there is a critical need to continue to develop a sound scientific basis for national and international policies regulating carbon sequestration and greenhouse gas emissions. This paper reflects on the nature of current global change experiments, and provides recommendations for a unified multidisciplinary approach to future research in this dynamic field. These recommendations include: (1) better integration between experiments and models, and amongst experimental, monitoring, and space-for-time studies; (2) stable and increased support for long-term studies and multi-factor experiments; (3) explicit inclusion of biodiversity, disturbance, and extreme events in experiments and models; (4) consideration of timing vs intensity of global change factors in experiments and models; (5) evaluation of potential thresholds or ecosystem 'tipping points'; and (6) increased support for model-model and model-experiment comparisons. These recommendations, which reflect discussions within the TERACC international network of global change scientists, will facilitate the unraveling of the complex direct and indirect effects of global climate change on terrestrial ecosystems and their components

  13. Predicting vulnerabilities of North American shorebirds to climate change.

    Directory of Open Access Journals (Sweden)

    Hector Galbraith

    Full Text Available Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90% taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.

  14. Climate Change Sensitivity of Multi-Species Afforestation in Semi-Arid Benin

    Directory of Open Access Journals (Sweden)

    Florent Noulèkoun

    2018-06-01

    Full Text Available The early growth stage is critical in the response of trees to climate change and variability. It is not clear, however, what climate metrics are best to define the early-growth sensitivity in assessing adaptation strategies of young forests to climate change. Using a combination of field experiments and modelling, we assessed the climate sensitivity of two promising afforestation species, Jatropha curcas L. and Moringa oleifera Lam., by analyzing their predicted climate–growth relationships in the initial two years after planting on degraded cropland in the semi-arid zone of Benin. The process-based WaNuLCAS model (version 4.3, World Agroforestry Centre, Bogor, Indonesia was used to simulate aboveground biomass growth for each year in the climate record (1981–2016, either as the first or as the second year of tree growth. Linear mixed models related the annual biomass growth to climate indicators, and climate sensitivity indices quantified climate–growth relationships. In the first year, the length of dry spells had the strongest effect on tree growth. In the following year, the annual water deficit and length of dry season became the strongest predictors. Simulated rooting depths greater than those observed in the experiments enhanced biomass growth under extreme dry conditions and reduced sapling sensitivity to drought. Projected increases in aridity implied significant growth reduction, but a multi-species approach to afforestation using species that are able to develop deep-penetrating roots should increase the resilience of young forests to climate change. The results illustrate that process-based modelling, combined with field experiments, can be effective in assessing the climate–growth relationships of tree species.

  15. Climate change, climatic variation and extreme biological responses.

    Science.gov (United States)

    Palmer, Georgina; Platts, Philip J; Brereton, Tom; Chapman, Jason W; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W; Roy, David B; Hill, Jane K; Thomas, Chris D

    2017-06-19

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Authors.

  16. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    Science.gov (United States)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  17. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  18. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Onyango, J.C.O.; Ojoo-Massawa, E.; Abira, M.A.

    1997-01-01

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  19. Global Climate Change, Food Security, and Local Sustainability: Increasing Climate Literacy in Urban Students

    Science.gov (United States)

    Boger, R. A.; Low, R.; Gorokhovich, Y.

    2011-12-01

    Three higher education institutions, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, are working together to share expertise and resources to expand climate change topics offered to undergraduate and graduate students in New York City (NYC). This collaboration combines existing UNL educational learning resources and infrastructure in virtual coursework. It will supply global climate change education and locally-based research experiences to the highly diverse undergraduate students of Brooklyn and Lehman Colleges and to middle and high school teachers in NYC. Through the university partnership, UNL materials are being adapted and augmented to include authentic research experiences for undergraduates and teachers using NASA satellite data, geographic information system (GIS) tools, and/or locally collected microclimate data from urban gardens. Learners download NASA data, apply an Earth system approach, and employ GIS in the analysis of food production landscapes in a dynamically changing climate system. The resulting course will be offered via Blackboard courseware, supported by Web 2.0 technologies designed specifically to support dialogue, data, and web publication sharing between partners, teachers and middle school, high school and undergraduate student researchers. NYC is in the center of the urban farming movement. By exploring water and food topics of direct relevance to students' lives and community, we anticipate that students will be motivated and more empowered to make connections between climate change and potential impacts on the health and happiness of people in their community, in the United States and around the world. Final course will be piloted in 2012.

  20. Gray wolves as climate change buffers in Yellowstone.

    Directory of Open Access Journals (Sweden)

    Christopher C Wilmers

    2005-04-01

    Full Text Available Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.

  1. Gray wolves as climate change buffers in Yellowstone.

    Science.gov (United States)

    Wilmers, Christopher C; Getz, Wayne M

    2005-04-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.

  2. Gray Wolves as Climate Change Buffers in Yellowstone

    Directory of Open Access Journals (Sweden)

    Wilmers Christopher C

    2005-01-01

    Full Text Available Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.

  3. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    Science.gov (United States)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of

  4. Southern voices on climate policy choices: Analysis of and lessons learned from civil society advocacy on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Ampomah, Gifty; Prera, Maria Isabel Olazabal; Rabbani, Golam; Zvigadza, Shepard

    2012-05-15

    This report provides an analysis of the tools and tactics advocacy groups use to influence policy responses to climate change at international, regional, national and sub-national levels. More than 20 climate networks and their member organisations have contributed to the report with their experiences of advocacy on climate change, including over 70 case studies from a wide range of countries - including many of the poorest - in Africa, Asia, Latin America and the Pacific. These advocacy activities primarily target national governments, but also international and regional processes, donors and the private sector. Analyses and case studies show how civil society plays key roles in pushing for new laws, programmes, policies or strategies on climate change, in holding governments to account on their commitments; in identifying the lack of joined-up government responses to climate change; and in ensuring that national policy making does not forget the poor and vulnerable. The report is the first joint product of the Southern Voices Capacity Building Programme, or for short: Southern Voices on Climate Change.

  5. Climate and Global Change

    International Nuclear Information System (INIS)

    Duplessy, J.C.; Pons, A.; Fantechi, R.

    1991-01-01

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  6. Data Requirements for Developing Adaptations to Climate Variability and Change

    International Nuclear Information System (INIS)

    Basher, Reid E.

    1999-01-01

    An extensive foundation of high quality data and information on the climate and on the biological, environmental and social systems affected by climate is required in order to understand the climate impact processes involved, to develop new adaptation practices, and to subsequently implement these practices. Experience of the impacts of current and past variability of climate and sea level is a prime source of information. Many practices are in use to reduce climate impacts, for example in engineering design, agricultural risk management and climate prediction services, though their roles as adaptations to climate change are not widely appreciated. While there are good data sets on some factors and in some regions, in many cases the databases are inadequate and there are few data sets on adaptation-specific quantities such as vulnerability, resilience and adaptation effectiveness. Current international action under the United Nations Framework Convention on Climate Change (UNFCCC) pays little attention to adaptation and its information requirements. Furthermore there are trends toward reduced data gathering and to restrictions on access to data sets, especially arising from cost and commercialisation pressures. To effectively respond to the changes in climate that are now inevitable, governments will need to more clearly identify adaptation as a central feature of climate change policy and make a renewed shared commitment to collecting and freely exchanging the necessary data. 12 refs

  7. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    Science.gov (United States)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between

  8. Promoting Action on Climate Change through Scientific Storytelling and the Green Ninja Film Academy

    Science.gov (United States)

    Cordero, E.; Metzger, E. P.; Smith, G.

    2013-12-01

    Encouraging student interest on the challenges and opportunities associated with our changing climate can both promote science literacy and enable future reductions in carbon emissions. The goal of the Green Ninja Project is to affect youth culture in ways that promote informed action on climate change. The character and story of the Green Ninja are communicated in a series of quirky short films on YouTube, which focus on actions to reduce human impact. To complement the related underlying science, the films are designed in parallel with a set of engagement experiences that encourage young people to take action on climate change. One such experience is the Green Ninja Film Academy, a classroom experience where students use scientific storytelling to make their own Green Ninja films. Student filmmakers are asked to tell a story related to climate science for a particular audience using the Green Ninja as a storyline. In July 2013, a group of 24 teachers attended a workshop to develop experience using filmmaking to engage their students in climate science topics. The filmmaking experience is designed to promote integrated learning in the sciences, language arts, and technology fields. Students will have the opportunity to submit their films to the Green Ninja Film Festival for possible public screening and awards. Student films will also receive coaching from a panel of scientists and filmmakers. An initial analysis of the effectiveness of this project in engaging student action on climate change will be discussed.

  9. Ozone, air quality and climatic change

    International Nuclear Information System (INIS)

    Van Noije, T.

    2008-01-01

    Changes in climate due to increased greenhouse gas emissions differ per region. Regional climate changes can also be caused by regional changes in air quality, though. On the other hand, global and regional changes in climate also lead to changes in air quality without any changes in sources of pollution. This article discusses the various aspects of the interaction between air quality and climate change with extra focus on the role of ozone. [mk] [nl

  10. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  11. Gender and climate change-induced migration: proposing a framework for analysis

    International Nuclear Information System (INIS)

    Chindarkar, Namrata

    2012-01-01

    This paper proposes frameworks to analyze the gender dimensions of climate change-induced migration. The experiences, needs and priorities of climate migrants will vary by gender and these differences need to be accounted for if policies are to be inclusive. Among the vulnerable groups, women are likely to be disproportionately affected due to climate change because on average women tend to be poorer, less educated, have a lower health status and have limited direct access to or ownership of natural resources. Both the process (actual movement) and the outcomes (rural–rural or rural–urban migration, out-migration mainly of men) of climate change-induced migration are also likely to be highly gendered. (letter)

  12. Climate changes over the past millennium: Relationships with Mediterranean climates

    International Nuclear Information System (INIS)

    Mann, M.E.

    2006-01-01

    Evidence is reviewed for climate change and its causes over the interval spanning roughly the past millennium. Particular emphasis is placed on patterns of climate change influencing Mediterranean climates of the Northern Hemisphere. The evidence is taken from studies using high-resolution climate proxy data sources, and climate modeling simulations. The available evidence suggests that forced changes in dynamical modes of variability including the North Atlantic Oscillation (NAO) and El Nino/Southern Oscillation (ENSO) have played a key role in the patterns of climate variability in Mediterranean regions over the past millennium

  13. Climate Change and Health

    Science.gov (United States)

    ... Home / News / Fact sheets / Detail WHO /A. Craggs Climate change and health 1 February 2018 ","datePublished":"2018-02- ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  14. Adaptability and climate change

    International Nuclear Information System (INIS)

    Sprague, M.W.

    1991-01-01

    The potential social, economic and environmental impacts of climate change are reviewed, with emphasis on agricultural implications. Impact analyses must be done on the scale of watersheds or river basins. For agriculture, climate change effects on water resources are likely to be more important than temperature changes, and climatic variability is also equally important. Another set of critical climatic variables are the frequencies, magnitudes and timing of extreme events such as floods, droughts, etc. A carbon dioxide enriched atmosphere will increase water use efficiency and confer increased tolerance to drought, salinity and air pollution. Better understanding and accounting is required for the effects of increased carbon dioxide on all plant life, including crops. Adaptability of agriculture to change must be taken into account in predicting impacts of climate change, with technological innovation and infrastructure giving agriculture a dynamic nature. Limitations and adaptations must be considered when formulating public policy, to ensure that marginal costs do not exceed marginal benefits. Monoculture plantation forests may be the most efficient sinks of atmospheric carbon dioxide, yet widespread reliance on them may harm biological diversity. Actions the U.S. is currently taking under a no-regrets policy are summarized

  15. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  16. Struggle against climate change

    International Nuclear Information System (INIS)

    2009-01-01

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  17. The World Climate Exercise: Is (Simulated) Experience Our Best Teacher?

    Science.gov (United States)

    Rath, K.; Rooney-varga, J. N.; Jones, A.; Johnston, E.; Sterman, J.

    2015-12-01

    Meeting the challenge of climate change will clearly require 'deep learning' - learning that motivates a search for underlying meaning, a willingness to exert the sustained effort needed to understand complex problems, and innovative problem-solving. This type of learning is dependent on the level of the learner's engagement with the material, their intrinsic motivation to learn, intention to understand, and relevance of the material to the learner. Here, we present evidence for deep learning about climate change through a simulation-based role-playing exercise, World Climate. The exercise puts participants into the roles of delegates to the United Nations climate negotiations and asks them to create an international climate deal. They find out the implications of their decisions, according to the best available science, through the same decision-support computer simulation used to provide feedback for the real-world negotiations, C-ROADS. World Climate provides an opportunity for participants have an immersive, social experience in which they learn first-hand about both the social dynamics of climate change decision-making, through role-play, and the dynamics of the climate system, through an interactive computer simulation. Evaluation results so far have shown that the exercise is highly engaging and memorable and that it motivates large majorities of participants (>70%) to take action on climate change. In addition, we have found that it leads to substantial gains in understanding key systems thinking concepts (e.g., the stock-flow behavior of atmospheric CO2), as well as improvements in understanding of climate change causes and impacts. While research is still needed to better understand the impacts of simulation-based role-playing exercises like World Climate on behavior change, long-term understanding, transfer of systems thinking skills across topics, and the importance of social learning during the exercise, our results to date indicate that it is a

  18. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    Science.gov (United States)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  19. Climate change issues in China

    Energy Technology Data Exchange (ETDEWEB)

    Ye Ruqiu (China National Environmental Protection Agency, Beijing (China))

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. 8 refs., 3 tabs.

  20. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  1. Ecosystem and Food Security in a Changing Climate

    Science.gov (United States)

    Field, C. B.

    2011-12-01

    Observed and projected impacts of climate change for ecosystem and food security tend to appear as changes in the risk of both desirable and undesirable outcomes. As a consequence, it is useful to frame the challenge of adaptation to a changing climate as a problem in risk management. For some kinds of impacts, the risks are relatively well characterized. For others, they are poorly known. Especially for the cases where the risks are poorly known, effective adaptation will need to consider approaches that build dynamic portfolios of options, based on learning from experience. Effective adaptation approaches also need to consider the risks of threshold-type responses, where opportunities for gradual adaptation based on learning may be limited. Finally, effective adaptation should build on the understanding that negative impacts on ecosystems and food security often result from extreme events, where a link to climate change may be unclear now and far into the future. Ecosystem and food security impacts that potentially require adaptation to a changing climate vary from region to region and interact strongly with actions not related to climate. In many ecosystems, climate change shifts the risk profile to increase risks of wildfire and biological invasions. Higher order risks from factors like pests and pathogens remain difficult to quantify. For food security, observational evidence highlights threshold-like behavior to high temperature in yields of a number of crops. But the risks to food security may be much broader, encompassing risks to availability of irrigation, degradation of topsoil, and challenges of storage and distribution. A risk management approach facilitates consideration of all these challenges with a unified framework.

  2. Climate change: Recent findings

    International Nuclear Information System (INIS)

    Hesselmans, G.H.F.M.

    1993-08-01

    In the late eighties several reports have been published on climate change and sea level rise. In the meantime insights may have changed due to the availability of better and more observations and/or more advanced climate models. The aim of this report is to present the most recent findings with respect to climate change, in particular of sea level rise, storm surges and river peak flows. These climate factors are important for the safety of low-lying areas with respect to coastal erosion and flooding. In the first chapters a short review is presented of a few of the eighties reports. Furthermore, the predictions by state of the art climate models at that time are given. The reports from the eighties should be considered as 'old' information, whereas the IPCC supplement and work, for example, by Wigley should be considered as new information. To assess the latest findings two experts in this field were interviewed: dr J. Oerlemans and dr C.J.E. Schuurmans, a climate expert from the Royal Netherlands Meteorological Institute (KNMI). Their views are presented together with results published in recent papers on the subject. On the basis of this assessment, the report presents current knowledge regarding predictions of climate change (including sea-level rise) over the next century, together with an assessment of the uncertainties associated with these predictions. 14 figs., 11 tabs., 24 refs

  3. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.

    Science.gov (United States)

    Primack, Richard B; Laube, Julia; Gallinat, Amanda S; Menzel, Annette

    2015-11-01

    Climate change is advancing the leaf-out times of many plant species and mostly extending the growing season in temperate ecosystems. Laboratory experiments using twig cuttings from woody plant species present an affordable, easily replicated approach to investigate the relative importance of factors such as winter chilling, photoperiod, spring warming and frost tolerance on the leafing-out times of plant communities. This Viewpoint article demonstrates how the results of these experiments deepen our understanding beyond what is possible via analyses of remote sensing and field observation data, and can be used to improve climate change forecasts of shifts in phenology, ecosystem processes and ecological interactions. The twig method involves cutting dormant twigs from trees, shrubs and vines on a single date or at intervals over the course of the winter and early spring, placing them in containers of water in controlled environments, and regularly recording leaf-out, flowering or other phenomena. Prior to or following leaf-out or flowering, twigs may be assigned to treatment groups for experiments involving temperature, photoperiod, frost, humidity and more. Recent studies using these methods have shown that winter chilling requirements and spring warming strongly affect leaf-out and flowering times of temperate trees and shrubs, whereas photoperiod requirements are less important than previously thought for most species. Invasive plant species have weaker winter chilling requirements than native species in temperate ecosystems, and species that leaf-out early in the season have greater frost tolerance than later leafing species. This methodology could be extended to investigate additional drivers of leaf-out phenology, leaf senescence in the autumn, and other phenomena, and could be a useful tool for education and outreach. Additional ecosystems, such as boreal, southern hemisphere and sub-tropical forests, could also be investigated using dormant twigs to

  4. Geopolitics of climate change: A review

    Directory of Open Access Journals (Sweden)

    Bošnjaković Branko

    2012-01-01

    Full Text Available The paper reviews the geopolitical elements of the emerging discourse on how to control, and cope with climate change. Two complementary approaches may be distinguished: the actor-related approach analyses the positioning of states and interest groups, which develop strategies on coping with climate change; the other approach addresses processes and problem areas (physical, economic, demographic… emerging in the geographic space as a consequence of, or linked to climate change. With failing mitigation policies and instruments, the urgency of adaptation to climate change is increasing. Assessment of regional consequences of climate change includes the perceptions and motivations of presumed losers or winners. New security implications related to climate change are emerging in the Arctic, South-East Asia, Africa and the Pacific. Energy supply security is a dominant factor in geopolitical considerations. The geopolitics of climate change is inextricably linked to many other issues of globalization. Significant shift of global power raises the discussion of ethical responsibility. Climate change is evolving as a testing ground for competitiveness and innovation potential of political and economic models in achieving sustainability.

  5. Responsible investors acting on climate change. Investors acting on climate change. Climate: Investors take action

    International Nuclear Information System (INIS)

    Simon, Marie; Blanc, Dominique; Husson-Traore, Anne-Catherine; Amiell, Alison; Barochez, Aurelie de; Conti, Sophie; Kamelgarn, Yona; Bonnet, Olivier; Braman, Stuart; Chenet, Hugues; Fisher, Remco; Hellier, Mickael; Horster, Maximilian; Kindelbacher, Sophie; Leaton, James; Lieblich, Sebastien; Neuneyer, Dustin; Lenoel, Benjamin; Smart, Lauren; Torklep Meisingset, Christine

    2015-02-01

    Some investors are willing to lower the carbon emission financed by their investment, recognizing that climate change has financial impacts. At first they measure the carbon footprint of their portfolio, than initiate shareholder engagement actions at oil and gas companies, publish list of exclusion composed of the most carbon-intensive companies and ask for ex fossil fuels indices. In June 2015, Novethic launches the first actualisation of its study released on February 2015 on the mobilisation of investors on climate change over the whole 2015 year. The trend is gaining momentum since more than 200 additional investors publicly disclosed commitments to integrate climate risk into their investment and management practices. In September 2015, for its second update of the report on how investors are taking action on climate change, more than 800 entities were screened. As a key result, investor's actions gain momentum: approaches are growing in number and becoming more expert, divestments are widespread in Europe, and green investments promises are more ambitious. The last edition of November 2015 highlights and scans an exclusive panel of 960 investors worth Euro 30 trillion of assets who have made steps forward to tackle climate change. During the last 8 months, their number has almost increased twofold. This document brings together the first edition of Novethic's study and its three updates

  6. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  7. Climate Change Through a Poverty Lens

    Science.gov (United States)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  8. Climate change in Nova Scotia : a background paper to guide Nova Scotia's climate change action plan

    International Nuclear Information System (INIS)

    2007-10-01

    Climate change causes changes in the temperature of the earth, the level of the sea, and the frequency of extreme weather conditions. The province of Nova Scotia recently released an act related to environmental goals and sustainable prosperity. Addressing climate change is a key element in achieving Nova Scotia's sustainable prosperity goals outlined in the act. The Nova Scotia Department of Energy is working towards developing both policy and action, to help meet its target of a 10 per cent reduction in greenhouse gases from 1990 levels by the year 2020. Two major plans are underway, notably a climate change action plan and a renewed energy strategy. This report provided background information on Nova Scotia's climate change action plan. It discussed climate change issues affecting Nova Scotia, air pollutants, energy sources in Nova Scotia, energy consumers in the province, and Nova Scotia's approach to climate change. The report also discussed actions underway and funding sources. It was concluded that in order for the climate change action plan to be successful, Nova Scotians must use energy more efficiently; use renewable energy; use cleaner energy; and plan for change. 13 refs., 2 tabs., 6 figs., 4 appendices

  9. Modelling the effects of climate change on the energy system-A case study of Norway

    International Nuclear Information System (INIS)

    Seljom, Pernille; Rosenberg, Eva; Fidje, Audun; Haugen, Jan Erik; Meir, Michaela; Rekstad, John; Jarlset, Thore

    2011-01-01

    The overall objective of this work is to identify the effects of climate change on the Norwegian energy system towards 2050. Changes in the future wind- and hydro-power resource potential, and changes in the heating and cooling demand are analysed to map the effects of climate change. The impact of climate change is evaluated with an energy system model, the MARKAL Norway model, to analyse the future cost optimal energy system. Ten climate experiments, based on five different global models and six emission scenarios, are used to cover the range of possible future climate scenarios and of these three experiments are used for detailed analyses. This study indicate that in Norway, climate change will reduce the heating demand, increase the cooling demand, have a limited impact on the wind power potential, and increase the hydro-power potential. The reduction of heating demand will be significantly higher than the increase of cooling demand, and thus the possible total direct consequence of climate change will be reduced energy system costs and lower electricity production costs. The investments in offshore wind and tidal power will be reduced and electric based vehicles will be profitable earlier. - Highlights: → Climate change will make an impact on the Norwegian energy system towards 2050. → An impact is lower Norwegian electricity production costs and increased electricity export. → Climate change gives earlier profitable investments in electric based vehicles. → Climate change reduces investments in offshore wind and tidal power.

  10. Indigenous experiences in the U.S. with climate change and environmental stewardship in the Anthropocene

    Science.gov (United States)

    Karletta Chief; John J. Daigle; Kathy Lynn; Kyle Powys Whyte

    2014-01-01

    The recognition of climate change issues facing tribal communities and indigenous peoples in the United States is growing, and understanding its impacts is rooted in indigenous ethical perspectives and systems of ecological knowledge. This foundation presents a context and guide for contemporary indigenous approaches to address climate change impacts that are...

  11. Signs of the Land: Reaching Arctic Communities Facing Climate Change

    Science.gov (United States)

    Sparrow, E. B.; Chase, M. J.; Demientieff, S.; Pfirman, S. L.; Brunacini, J.

    2014-12-01

    In July 2014, a diverse and intergenerational group of Alaskan Natives came together on Howard Luke's Galee'ya Camp by the Tanana River in Fairbanks, Alaska to talk about climate change and it's impacts on local communities. Over a period of four days, the Signs of the Land Climate Change Camp wove together traditional knowledge, local observations, Native language, and climate science through a mix of storytelling, presentations, dialogue, and hands-on, community-building activities. This camp adapted the model developed several years ago under the Association for Interior Native Educators (AINE)'s Elder Academy. Part of the Polar Learning and Responding Climate Change Education Partnership, the Signs of the Land Climate Change Camp was developed and conducted collaboratively with multiple partners to test a model for engaging indigenous communities in the co-production of climate change knowledge, communication tools, and solutions-building. Native Alaskans have strong subsistence and cultural connections to the land and its resources, and, in addition to being keen observers of their environment, have a long history of adapting to changing conditions. Participants in the camp included Elders, classroom teachers, local resource managers and planners, community members, and climate scientists. Based on their experiences during the camp, participants designed individualized outreach plans for bringing culturally-responsive climate learning to their communities and classrooms throughout the upcoming year. Plans included small group discussions, student projects, teacher training, and conference presentations.

  12. Building a stakeholder network for the Indiana Climate Change Impacts Assessment

    Science.gov (United States)

    Dukes, J. S.; Widhalm, M.

    2017-12-01

    The Indiana Climate Change Impacts Assessment (IN CCIA) is a stakeholder-informed, service-driven resource developed under the coordination of the Purdue Climate Change Research Center (PCCRC) and with involvement from a diverse mix of contributors throughout the state. The IN CCIA brings together the best available climate change research into a series of reports aimed at helping Hoosiers better understand climate change-related risks so they can prepare for challenges and capitalize on opportunities. The IN CCIA development process aims to 1) increase the dialogue about climate change across the state, 2) provide Indiana decision makers with accessible, credible climate impact information, and 3) build a network of experts and stakeholders to support ongoing assessment efforts and knowledge sharing. This presentation will report on our experience with developing and maintaining a diverse stakeholder network. We will describe our efforts to connect with stakeholders before, during, and after the development of assessment reports and share the top themes that emerged from our pre-assessment inquires and other interactions.

  13. Capturing Tweets on Climate Change: What is the role of Twitter in Climate Change Communication?

    Science.gov (United States)

    Ngo, A. M.; McNeal, K.; Luginbuhl, S.; Enteen, J.

    2015-12-01

    Climate change is a major environmental issue that is often discussed throughout the world using social media outlets such as Twitter. This research followed and collected tweets about climate change as they related to two events: (i) the June 18, 2015 release of the Encyclical by Pope Francis which included content about climate change and (ii) the upcoming COP21 conference, a United Nations climate change conference, to be held on Dec. 7-8, 2015 in Paris. Using a Twitter account and Ncapture we were able to collect tens of thousands of climate change related tweets that were then loaded into a program called Nvivo which stored the tweets and associated publically available user information. We followed a few major hashtags such as COP21, UNFCCC, @climate, and the Pope. We examined twitter users, the information sources, locations, number of re-tweets, and frequency of tweets as well as the category of the tweet in regard to positive, negative, and neutral positions about climate. Frequency analysis of tweets over a 10 day period of the Encyclical event showed that ~200 tweets per day were made prior to the event, with ~1000 made on the day of the event, and ~100 per day following the event. For the COP21 event, activity ranged from 2000-3000 tweets per day. For the Encyclical event, an analysis of 1100 tweets on the day of release indicated that 47% of the tweets had a positive perspective about climate change, 50% were neutral, 1% negative, and 2% were unclear. For the COP21 event, an analysis of 342 tweets randomly sampled from 31,721 tweets, showed that 53% of the tweets had a positive perspective about climate change, 12% were neutral, 13% negative, and 22% were unclear. Differences in the frequency and perspectives of tweets were likely due to the nature of the events, one a long-term and recurring international event and the other a single international religious-oriented event. We tabulated the top 10 tweets about climate change as they relate to these two

  14. Prospects for future climate: A special US/USSR report on climate and climate change

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Budyko, M.I.; Hecht, A.D.; Izrael, Y.A.

    1990-01-01

    Starting with the US-USSR Agreement on Protection of the Environment signed in 1972, the two nations have cooperated in joint research on atmospheric and environmental problems. The result of these efforts has been an innovative approach to projecting future climate change based on what has been learned about past warm periods and what can be learned from models. The chapters in this document explore the following: past changes in climate, both paleoclimatology and changes in the recent past; changes in atmospheric composition; estimates of greenhouse-induced change including the use of both empirical methods and climate models; impacts of climate change on water resources and agriculture in the two countries; and prospects for future climate changes

  15. Global Climate Change Pilot Course Project

    Science.gov (United States)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  16. Examining the potential impacts of climate change on international security: EU-Africa partnership on climate change.

    Science.gov (United States)

    Dodo, Mahamat K

    2014-01-01

    Climate Change like many global problems nowadays is recognized as a threat to the international security and cooperation. In theoretical terms, it is being securitized and included in the traditional security studies. Climate change and its accompanying environmental degradation are perceived to be a threat that can have incalculable consequences on the international community. The consequences are said to have more effects in small island developing nations and Africa where many States are fragile and overwhelmed with mounting challenges. In recent years, the security implications of the climate change are being addressed from national, regional and multilateral level. Against this backdrop, this paper intends to contribute to the debate on climate change and international security and present a broader perspective on the discussion. The paper will draw from the EU-Africa partnership on climate change and is structured as follows: the first part introduces the background of the international climate change policy and its securitization, the second part covers the EU-Africa relations and EU-Africa partnership on climate change, and the third part discusses the Congo Basin Forest Partnership as a concrete example of EU-Africa Partnership on Climate Change. Lastly, the paper concludes by drawing some conclusions and offers some policy perspectives and recommendations. Q54; 055; 052; 01;

  17. Politics of climate change belief

    Science.gov (United States)

    2017-01-01

    Donald Trump's actions during the election and his first weeks as US president-elect send a strong message about his belief in climate change, or lack thereof. However, these actions may reflect polarization of climate change beliefs, not climate mitigation behaviour.

  18. Eye tracking and climate change: How is climate literacy information processed?

    Science.gov (United States)

    Williams, C. C.; McNeal, K. S.

    2011-12-01

    The population of the Southeastern United States is perceived to be resistant to information regarding global climate change. The Climate Literacy Partnership in the Southeast (CLiPSE) project was formed to provide a resource for climate science information. As part of this project, we are evaluating the way that education materials influence the interpretation of climate change related information. At Mississippi State University, a study is being conducted examining how individuals from the Southeastern United States process climate change information and whether or not the interaction with such information impacts the interpretation of subsequent climate change related information. By observing the patterns both before and after an educational intervention, we are able to evaluate the effectiveness of the climate change information on an individual's interpretation of related information. Participants in this study view figures describing various types of climate change related information (CO2 emissions, sea levels, etc.) while their eye movements are tracked to determine a baseline for the way that they process this type of graphical data. Specifically, we are examining time spent viewing and number of fixations on critical portions of the figures prior to exposure to an educational document on climate change. Following the baseline period, we provide participants with portions of a computerized version of Climate Literacy: The Essential Principles of Climate Sciences that the participants read at their own pace while their eye movements are monitored. Participants are told that they will be given a test on the material after reading the resource. After reading the excerpt, participants are presented with a new set of climate change related figures to interpret (with eye tracking) along with a series of questions regarding information contained in the resource. We plan to evaluate changes that occur in the way that climate change related information is

  19. Climate change issues in China

    International Nuclear Information System (INIS)

    Ye Ruqiu

    1994-01-01

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. (author). 8 refs, 3 tabs

  20. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  1. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    Science.gov (United States)

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  2. Climate change with Korea as the center

    International Nuclear Information System (INIS)

    Kim, Yeon Ok

    1998-04-01

    This book deals with climate change with Korea as the center, which is divided into ten chapters. It explain climate change by human life. The contents of this book are climate change, climate before human period, great ice age of prehistoric period, prehistoric times of last glacial era, climate change in historical era, change during observation time for 100 years, warming period, global environment period, the cause of climate change and climate and human. It has reference and an index.

  3. Effective Engagement of Hostile Audiences on Climate Change

    Science.gov (United States)

    Denning, A.

    2011-12-01

    In 2010 and 2011, I gave invited presentations of mainstream climate science to large conferences dismissive of climate change organized by the HEartland Institute. In this presentation I review some of the common objections raised by such audiences and outline effective strategies to rebut them in public venues or the media. Respectful engagement on a human level is much more effective than appeals from authority, scientific consensus, or numerical models. Starting from a base of agreement on basic facts helps establish a basis of trust, which is then nurtured through personal anecdotes and humor. The basic science of climate change is presented in a non-confrontational way with frequent use of examples from everyday life to explain physical principles. Although a hard core of hostile individuals may not be swayed by such an approach, my experience was that this type of engagement can be very effective with ordinary people. I strongly encourage more climate scientists to work with public audiences and the media.

  4. Quantitative approaches in climate change ecology

    DEFF Research Database (Denmark)

    Brown, Christopher J.; Schoeman, David S.; Sydeman, William J.

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between...... climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer‐reviewed articles that examined relationships...

  5. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R; Feneberg, B; Ponater, M [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  6. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  7. Creationism & Climate Change (Invited)

    Science.gov (United States)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  8. Climate Change and Transportation

    OpenAIRE

    Yevdokimov, Yuri

    2010-01-01

    As stated at the beginning of this chapter, the relationship between transportation and climate is two-directional. Based on our statistical analysis performed for Canada, we can make some general conclusions about this relationship. On the one hand, transportation is one of the largest contributors to GHG emissions which, in turn, cause various changes in climate. On the other hand, these climate changes negatively affect transportation in terms of its infrastructure and operations. Therefor...

  9. Adapting agriculture to climate change.

    Science.gov (United States)

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  10. Climate change in China and China’s policies and actions for addressing climate change

    OpenAIRE

    Luo Y.; Qin D.; Huang J.

    2010-01-01

    Since the first assessment report (FAR) of Inter-Governmental Panel on Climate Change (IPCC) in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warmi...

  11. Hard choices : climate change in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Coward, H.; Weaver, A.J. (eds.)

    2004-07-01

    This book explains the nature of climate change, the options to respond to it and the virtues of Canada's commitment to the Kyoto Protocol. It includes a collection of essays by prominent Canadian scientists and scholars who discuss the impacts of climate change on Canada from physical, social, technological, economic and political perspectives. Climate change assessments have been made possible by monitoring and recording changes in atmospheric concentrations of greenhouse gases. As a result of these assessments, climate change has become an issue on policy agendas. Advanced computer models have convinced much of the scientific community that climate change will bring with it droughts, floods, hurricanes, forest fires, ice storms, blackouts, and increased warming in countries in high latitudes, including Canada, despite remaining uncertainties about how human activities will affect the climate. The authors cautioned that climate change response strategies can only be refined once these uncertainties are significantly reduced. refs., tabs., figs.

  12. Rural Urban Interaction to Cope with Climate Change (Nigeria ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    . Site internet. http://www.nest.org.ng/. Extrants. Rapports. Triggering Rural-Urban Interactions to Cope With Climate Change: An Adaptation Experiment In Aba and its Region, Southeastern Nigeria - Final Technical Report. Rapports.

  13. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  14. Financing climate change adaptation

    NARCIS (Netherlands)

    Bouwer, L.M.; Aerts, J.C.J.H.

    2006-01-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources.

  15. Research Advances of Impacts of Climate Changes on Crop Climatic Adaptability

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Agriculture received most direct influences from climate changes. Because of climate changes, agricultural climate resources changed and thus influenced climate adaptability of agricultural products. The growth and output of crops were finally affected. The calculation method and application of agricultural products in recent years were summarized. Several questions about the response of agricultural crops to climate elements were proposed for attention.

  16. Assessment of climate change impact on water resources in the Pungwe river basin

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lotta; Samuelsson, Patrick; Kjellstroem, Erik (Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)), e-mail: lotta.andersson@smhi.se

    2011-01-15

    The Rossby Centre Regional Climate Model (RCA3) and the hydrological model HBV were linked to assess climate change impacts on water resources in the Pungwe basin until 2050. RCA3 was capable of simulating the most important aspects of the climate for a control period at the regional scale. At the subbasin scale, additional scaling was needed. Three climate change experiments using ECHAM4-A2, B2 and CCSM3-B2 as input to RCA3 were carried out. According to the simulations annual rainfall in 2050 would be reduced by approximately 10% with increasing interannual variability of rainfall and dry season river flow and later onset of the rainy season. The ECHAM4-A2 driven experiment did also indicate a slight increase of high flows. If the results indeed reflect the future, they will worsen the already critical situation for water resources, regarding both floods and droughts. Uncertainties, however in the downscaled scenarios make it difficult to prioritize adaptation options. This calls for inclusion of more climate change experiments, in an ensemble of climate scenarios possibly by using a combination of dynamical and statistical downscaling of general circulation models, as well as extending the simulations to 2100 to further ensure robustness of the signal

  17. Risk communication, public engagement, and climate change: a role for emotions.

    Science.gov (United States)

    Roeser, Sabine

    2012-06-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt their lifestyle. Empirical studies show that people lack a sense of urgency: they experience climate change as a problem that affects people in distant places and in a far future. Several scholars have claimed that emotions might be a necessary tool in communication about climate change. This article sketches a theoretical framework that supports this hypothesis, drawing on insights from the ethics of risk and the philosophy of emotions. It has been shown by various scholars that emotions are important determinants in risk perception. However, emotions are generally considered to be irrational states and are hence excluded from communication and political decision making about risky technologies and climate change, or they are used instrumentally to create support for a position. However, the literature on the ethics of risk shows that the dominant, technocratic approach to risk misses the normative-ethical dimension that is inherent to decisions about acceptable risk. Emotion research shows that emotions are necessary for practical and moral decision making. These insights can be applied to communication about climate change. Emotions are necessary for understanding the moral impact of the risks of climate change, and they also paradigmatically provide for motivation. Emotions might be the missing link in effective communication about climate change. © 2012 Society for Risk Analysis.

  18. Witnesses of climate change

    International Nuclear Information System (INIS)

    2015-11-01

    After having evoked the process of climate change, the effect of greenhouse gas emissions, the evolution of average temperatures in France since 1900, and indicated the various interactions and impacts of climate change regarding air quality, water resources, food supply, degradation and loss of biodiversity, deforestation, desertification, this publication, while quoting various testimonies (from a mountain refuge guardian, a wine maker, a guide in La Reunion, an IFREMER bio-statistician engineer, and a representative of health professionals), describes the various noticed impacts of climate change on the environment in mountain chains, on agriculture, on sea level rise, on overseas biodiversity, and on health

  19. Technology and climate change

    International Nuclear Information System (INIS)

    Morrison, R.; Layzedl, D.; McLean, G.

    2002-01-01

    This paper was the major one of the opening plenary session at the Climate Change 2 conference. The paper provides a context for assessing the needs for technologies to reduce the concentration of GHG in the atmosphere. It looks at sources, sinks and trends for GHG, in the world at large and in Canada, and at efforts to develop new technologies to achieve the goals of climate change policy. The paper focusses on transport, electricity and biomass as sectors of interest, both because of their potential for contributing to climate change policy goals within Canada, and also because of research interests

  20. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T; Tuomenvirta, H [Finnish Meteorological Inst., Helsinki (Finland); Posch, M [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1996-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  1. The development of climatic scenarios for assessing impacts of climate change

    International Nuclear Information System (INIS)

    Carter, T.; Tuomenvirta, H.; Posch, M.

    1995-01-01

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  2. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  3. Fair adaptation to climate change

    International Nuclear Information System (INIS)

    Paavola, Jouni; Adger, W. Neil

    2006-01-01

    This article identifies social justice dilemmas associated with the necessity to adapt to climate change, examines how they are currently addressed by the climate change regime, and proposes solutions to overcome prevailing gaps and ambiguities. We argue that the key justice dilemmas of adaptation include responsibility for climate change impacts, the level and burden sharing of assistance to vulnerable countries for adaptation, distribution of assistance between recipient countries and adaptation measures, and fair participation in planning and making decisions on adaptation. We demonstrate how the climate change regime largely omits responsibility but makes a general commitment to assistance. However, the regime has so far failed to operationalise assistance and has made only minor progress towards eliminating obstacles for fair participation. We propose the adoption of four principles for fair adaptation in the climate change regime. These include avoiding dangerous climate change, forward-looking responsibility, putting the most vulnerable first and equal participation of all. We argue that a safe maximum standard of 400-500 ppm of CO 2 concentrations in the atmosphere and a carbon tax of $20-50 per carbon equivalent ton could provide the initial instruments for operationalising the principles. (author)

  4. Explore the consequences of climate changes in 2099: Virtual reality

    OpenAIRE

    Yilmaz, Rütvan Mustafa; Jakobsen, Nikolaj Egholk; Roed-Kristiansen, Søren

    2016-01-01

    The project’s theme is about climate changes and virtual reality’s role in simplifying the knowledge about the consequences, and the causes behind climate change to the point where the ordinary human understands the problematic. We present how humans understands and perceives the world. We explain how phenomenology and post- phenomenology has an impact on our experiences and how we make sense using some of the philosophical thinkings. We have used sketches to illustrate the desired virtual re...

  5. Climate change, multiple stressors, and the decline of ectotherms.

    Science.gov (United States)

    Rohr, Jason R; Palmer, Brent D

    2013-08-01

    Climate change is believed to be causing declines of ectothermic vertebrates, but there is little evidence that climatic conditions associated with declines have exceeded critical (i.e., acutely lethal) maxima or minima, and most relevant studies are correlative, anecdotal, or short-term (hours). We conducted an 11-week factorial experiment to examine the effects of temperature (22 °C or 27 °C), moisture (wet or dry), and atrazine (an herbicide; 0, 4, 40, 400 μg/L exposure as embryos and larvae) on the survival, growth, behavior, and foraging rates of postmetamorphic streamside salamanders (Ambystoma barbouri), a species of conservation concern. The tested climatic conditions were between the critical maxima and minima of streamside salamanders; thus, this experiment quantified the long-term effects of climate change within the noncritical range of this species. Despite a suite of behavioral adaptations to warm and dry conditions (e.g., burrowing, refuge use, huddling with conspecifics, and a reduction in activity), streamside salamanders exhibited significant loss of mass and significant mortality in all but the cool and moist conditions, which were closest to the climatic conditions in which they are most active in nature. A temperature of 27 °C represented a greater mortality risk than dry conditions; death occurred rapidly at this temperature and more gradually under cool and dry conditions. Foraging decreased under dry conditions, which suggests there were opportunity costs to water conservation. Exposure to the herbicide atrazine additively decreased water-conserving behaviors, foraging efficiency, mass, and time to death. Hence, the hypothesis that moderate climate change can cause population declines is even more plausible under scenarios with multiple stressors. These results suggest that climate change within the noncritical range of species and pollution may reduce individual performance by altering metabolic demands, hydration, and foraging effort

  6. DTU climate change technologies. Recommendations on accelerated development and deployment of climate change technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Halsnaes, K [Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, System Analysis Div., Roskilde (Denmark); Nielsen, Niels Axel; Moeller, J S; Hansen, Jakob Fritz; Froekjaer Strand, I [Technical Univ. of Denmark, Kgs. Lyngby (Denmark)

    2009-09-15

    During 2009, the Technical University of Denmark (DTU) has held a number of international workshops for climate change. Participants came from industry, research institutions and government. The workshops focused on sustainable energy systems and climate change adaptation. The summary of conclusions and recommendations from the workshops constitutes a comprehensive set of technology tracks and recommended actions towards accelerated development and deployment of technology within these two key areas. The workshop process has led to three main conclusions. A. Radical changes are needed to develop sustainable energy systems. B. Tools and processes that climate-proof societal planning and management are needed in order to adapt to climate change. C. Partnerships concerning innovation and deployment (research, development and deployment) are required to meet time constraints.

  7. The economics of climate change

    International Nuclear Information System (INIS)

    Jones, T.

    1992-01-01

    Perhaps the most startling aspect of the debate on climate change is the speed with which it has climbed the international political agenda. In 1985, climate change was viewed almost entirely as a scientific issue. Only seven years later, most industrialized countries have made some sort of political pledge to abate their emissions of greenhouse gases over a specific timetable. And earlier this year, 154 countries signed a Framework Convention on Climate Change at the UN Conference on Environment and Development in Rio de Janeiro. What is the present 'state of play' in the economics of climate change. And what priorities are now emerging in 'post-Rio' policy. 11 ref

  8. Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model

    International Nuclear Information System (INIS)

    Cubasch, U.; Santer, B.D.; Hegerl, G.; Hoeck, H.; Maier-Reimer, E.; Mikolajwicz, U.; Stoessel, A.; Voss, R.

    1992-01-01

    The Monte Carlo approach, which has increasingly been used during the last decade in the field of extended range weather forecasting, has been applied for climate change experiments. Four integrations with a global coupled ocean-atmosphere model have been started from different initial conditions, but with the same greenhouse gas forcing according to the IPCC scenario A. All experiments have been run for a period of 50 years. The results indicate that the time evolution of the global mean warming depends strongly on the initial state of the climate system. It can vary between 6 and 31 years. The Monte Carlo approach delivers information about both the mean response and the statistical significance of the response. While the individual members of the ensemble show a considerable variation in the climate change pattern of temperature after 50 years, the ensemble mean climate change pattern closely resembles the pattern obtained in a 100 year integration and is, at least over most of the land areas, statistically significant. The ensemble averaged sea-level change due to thermal expansion is significant in the global mean and locally over wide regions of the Pacific. The hydrological cycle is also significantly enhanced in the global mean, but locally the changes in precipitation and soil moisture are masked by the variability of the experiments. (orig.)

  9. Research on climate effects. Effects of climate changes. Proceedings

    International Nuclear Information System (INIS)

    Fischer, W.; Stein, G.

    1991-01-01

    Global changes affecting the earth are at the forefront of public interest, possibly caused by climate alterations amongst other things. The public expects appropriate measures from politics to successfully adapt to unavoidable climate changes. As well as an investigation into the causes of climatic changes and the corollaries between the different scientific phenomena, the effects on the economy and society must also be examined. The Federal Minister for Research and Technology aims to make a valuable German contribution to international Global Change Research with the focal point ''Effects of Climate Changes on the Ecological and Civil System''. The aim of the workshop was to give an outline of current scientific knowledge, sketch out research requirements and give recommendations on the focal point with regard to the BMFT. (orig.) [de

  10. Climate change, environment and development

    OpenAIRE

    Okereke, Chukwumerije; Massaquoi, Abu-Bakar S.

    2017-01-01

    Climate change, a quintessential environmental problem, is generally recognised as the most important development challenge in the 21st century (IPCC, 2014). In addition to acknowledging its many significant direct consequences, climate change is increasingly used to frame discussions on other important global challenges, such as health, energy and food security. This chapter provides understanding of the intricate and complex relationship between climate change, environment and development.

  11. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  12. Historical and idealized climate model experiments: an EMIC intercomparison

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.

    2012-01-01

    Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE...... and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures...... the Medieval Climate Anomaly and the Little Ice Age estimated from paleoclimate reconstructions. This in turn could be a result of errors in the reconstructions of volcanic and/or solar radiative forcing used to drive the models or the incomplete representation of certain processes or variability within...

  13. Climate indices of Iran under climate change

    OpenAIRE

    alireza kochaki; mehdi nasiry; gholamali kamali

    2009-01-01

    Global warming will affect all climatic variables and particularly rainfall patterns. The purpose of present investigation was to predict climatic parameters of Iran under future climate change and to compare them with the present conditions. For this reason, UKMO General Circulation Model was used for the year 2025 and 2050. By running the model, minimum and maximum monthly temperature and also maximum monthly rainfall for the representative climate stations were calculated and finally the e...

  14. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K; Karlen, W [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  15. Late Quaternary changes in climate

    International Nuclear Information System (INIS)

    Holmgren, K.; Karlen, W.

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  16. Land use allocation model considering climate change impact

    Science.gov (United States)

    Lee, D. K.; Yoon, E. J.; Song, Y. I.

    2017-12-01

    In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"

  17. Maintaining resilience in the face of climate change: Chapter 8

    Science.gov (United States)

    Camacho, Alejandro E.; Beard, T. Douglas

    2014-01-01

    Climate change, when combined with more conventional stress from human exploitation, calls into question the capacity of both existing ecological communities and resource management institutions to experience disturbances while substantially retaining their same functions and identities (Zellmer and Gunderson 2009; Ruhl 2011). In other words, the physical and biological effects of climate change raise fundamental challenges to the resilience of natural ecosystems (Gunderson and Holling 2002). Perhaps more importantly, the projected scope of ecological shifts from global climate change-and uncertainty about such changes-significantly stresses the capacity of legal institutions to manage ecosystem change (Camacho 2009). Existing governmental institutions lack the adaptive capacity to manage such substantial changes to ecological and legal systems. In particular, regulators and managers lack information about ecological effects and alternative management strategies for managing the effects of climate change (Karkkainen 2008; Camacho 2009), as well as the institutional infrastructure for obtaining such information (Peters 2008).A number of recent initiatives have been proposed to address the effects of climate change on ecological systems. However, these nascent programs do not fully meet the needs for developing adaptive capacity. A federal, publicly accessible, and system-wide portal and clearinghouse will help regulators at all levels of government manage the effects and uncertainty from climate change (DiMento and Ingram 2005; Farber 2007). Such an information infrastructure, combined with a range of incentives that encourage regulators to engage in adaptive management and programmatic adjustment over time (Baron et al. 2009), will help governmental and private institutions become more resilient and capable of managing the physical and human institutional effects of changing climate (Camacho 2009).

  18. NASA NDATC Global Climate Change Education Initiative

    Science.gov (United States)

    Bennett, B.; Wood, E.; Meyer, D.; Maynard, N.; Pandya, R. E.

    2009-12-01

    Country in the Northern Plains; (4) strengthen our partnerships in the scientific community in addressing climate change issues that will impact our reservations; and (5) utilize NASA resources and instrumentation through LPDAAC (Landsat TM and ETM +, MODIS, ASTER and other remotely sensed data) to educate our TCU students about appropriate research and modeling applications. Few of the TCU STEM faculty have read and comprehend the “Summaries for Policy Makers” published by the IPCC working groups, the Global Climate Change Impacts in the United States, or the ACIA report. Many of these same faculty have little or no experience with remote sensing applications. Through this project we will empower our colleges and students to fully understand the threats posed by this important phenomenon. We will provide training for our TCU faculty, who, in turn, will prepare our students with the knowledge to implement the diverse and comprehensive mitigation strategies needed to sustain our resources and tribal communities.

  19. U.S. Navy Climate Change Roadmap

    Science.gov (United States)

    2010-04-01

    Climate change is a national security challenge with strategic implications for the Navy. Climate change will lead to increased tensions in nations...with weak economies and political institutions. While climate change alone is not likely to lead to future conflict, it may be a contributing factor... Climate change is affecting, and will continue to affect, U.S. military installations and access to natural resources worldwide. It will affect the

  20. Coping with climate change. Principles and Asian context

    Energy Technology Data Exchange (ETDEWEB)

    Chandrappa, Ramesha [Karnataka State Pollution, Bangalore (India). Control Board, Biomedical Waste Section; Gupta, Sushil [Risk Management Solutions India, Noida (India); Kulshrestha, Umesh Chandra [Jawaharlal Nehru Univ., New Dehli (India). School of Environmental Sciences

    2011-07-01

    The Environmental and climatic issues varies from continent to continent and is unique to Asia. Understanding the issues does need lot of research and study material which students may not be able to gather due to shortage of time and resources. Hence an effort is made by authors gathering there experience and academic input from renowned universities of world. Climate change is real and coping with it is major concern in coming days. Most of the books written and sold in the past need updating and customizing. The general description of climate change and world will not help the professionals and students. It needs to seen area wise as a professional will work in specific geographic area. Hence an effort is made to collect data from Asia which host most populated countries along with ecological hot spots. (orig.)

  1. Potential Impacts of Climate Change in Kenya

    International Nuclear Information System (INIS)

    Ogola, J.S.; Abira, M.A.; Awuor, V.O.

    1997-01-01

    According to the United Nations Framework Convention on Climate Change (UNFCCC), climate change is attributed directly or indirectly to human activities that alter the composition of the global atmosphere. It is a phenomenon that is still inadequately understood by the general public. Planners, policy makers and even within institutions of learning, but one which is bound to affect our environment and development activities. There is therefore need for information dissemination, systematic research, policy formulation, and development of strategies for managing climate change. The book is divided into five parts, Part I presents basic information on climate change; Part II looks at climatic change and natural resources; Part III discusses implications of climate change; Part IV presents ethical issues related to climatic change; and Part V deals with responses to climate change

  2. Climate Change: From Science to Practice.

    Science.gov (United States)

    Wheeler, Nicola; Watts, Nick

    2018-03-01

    Climate change poses a significant threat to human health. Understanding how climate science can be translated into public health practice is an essential first step in enabling robust adaptation and improving resiliency to climate change. Recent research highlights the importance of iterative approaches to public health adaptation to climate change, enabling uncertainties of health impacts and barriers to adaptation to be accounted for. There are still significant barriers to adaptation, which are context-specific and thus present unique challenges to public health practice. The implementation of flexible adaptation approaches, using frameworks targeted for public health, is key to ensuring robust adaptation to climate change in public health practice. The BRACE framework provides an excellent approach for health adaptation to climate change. Combining this with the insights provided and by the adaptation pathways approach allows for more deliberate accounting of long-term uncertainties. The mainstreaming of climate change adaptation into public health practice and planning is important in facilitating this approach and overcoming the significant barriers to effective adaptation. Yet, the immediate and future limits to adaptation provide clear justification for urgent and accelerated efforts to mitigate climate change.

  3. Climate Change 2014: Technical Summary

    Science.gov (United States)

    Field, Chrisopher B.; Barros, Vicente; Mach, Katherine; Mastrandrea, Michael; van Aalst, Maarten; Adger, Niel; Arent, Douglas J; Barnett, Jonathan; Betts, Richard; Bilir, Eren; Birkmann, Joern; Carmin, Joann; Chadee, Dave; Challinor, Andrew; Chaterjee, Monalisa; Cramer, Wolfgang; Davidson, Debra; Estrada, Yuka; Gatusso, Jean-Pierre; Hijioka, Yasuakai; Yohe, Gary; Hiza, Margaret; Hoegh-Guldberg, Ove; Huang, He-Qing; Insarov, Gregory; Jones, Roger; Kovats, Sari; Lankao, Patricia Romero; Larsen, Joan Nymand; Losada, Iñigo; Marengo, José; McLean, Roger; Mearns, Linda; Mechler, Reinhard; Morton, John; Niang, Isabelle; Oki, Taikan; Olwoch, Jane Mukarugwiza; Opondo, Maggie; Poloczanska, Elvira; Pörtner, Hans -O.; Reisinger, Andy; Revi, Aromar; Schmidt, Daniela; Shaw, Rebecca; Solecki, William; Stone, Dáithí; Stone, John; Strzepek, Ken; Suarez, Avelino G.; Tschakert, Petra; Valentini, Riccardo; Vicuna, Sebastian; Villamizar, Alicia; Vincent, Katharine; Warren, Rachel; White, Leslie; Wilbanks, Thomas; Wong, Poh Poh

    2014-01-01

    Human interference with the climate system is occurring (WGI AR5 SPM Section D.3; WGI AR5 Sections 2.2, 6.3, 10.3 to 10.6, 10.9). Climate change poses risks for human and natural systems. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC’s Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change. It considers how impacts and risks related to climate change can be reduced and managed through adaptation and mitigation. The report assesses needs, options, opportunities, constraints, resilience, limits, and other aspects associated with adaptation. It recognizes that risks of climate change will vary across regions and populations, through space and time, dependent on myriad factors including the extent of adaptation and mitigation. For the past 2 decades, IPCC’s Working Group II has developed assessments of climate change impacts, adaptation, and vulnerability. The WGII AR5 builds from the WGII contribution to the IPCC’s Fourth Assessment Report (WGII AR4), published in 2007, and the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), published in 2012. It follows the Working Group I contribution to the AR5. The WGII AR5 is presented in two parts (Part A: Global and Sectoral Aspects, and Part B: Regional Aspects), reflecting the expanded literature basis and multidisciplinary approach, increased focus on societal impacts and responses, and continued regionally comprehensive coverage. [1.1 to 1.3] The number of scientific publications available for assessing climate change impacts, adaptation, and vulnerability more than doubled between 2005 and 2010, with especially rapid increases in publications related to adaptation, allowing for a more robust assessment that supports policymaking (high confidence). The diversity of the topics and regions covered has similarly expanded, as has

  4. Regional climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-01-01

    Because studies of the regional impact of climate change need higher spatial resolution than that obtained in standard global climate change scenarios, developing regional scenarios from models is a crucial goal for the climate modelling community. The zoom capacity of ARPEGE-Climat, the Meteo-France climate model, allows use of scenarios with a horizontal resolution of about 50 km over France and the Mediterranean basin. An IPCC-A2 scenario for the end of the 21. century in France shows higher temperatures in each season and more winter and less summer precipitation than now. Tuning the modelled statistical distributions to observed temperature and precipitation allows us to study changes in the frequency of extreme events between today's climate and that at the end of century. The frequency of very hot days in summer will increase. In particular, the frequency of days with a maximum temperature above 35 deg C will be multiplied by a factor of 10, on average. In our scenario, the Toulouse area and Provence might see one quarter of their summer days with a maximum temperature above 35 deg C. (author)

  5. Feframing Climate Change for Environmental Health.

    Science.gov (United States)

    Weems, Caitlin; Subramaniam, Prithwi Raj

    2017-04-01

    Repeated warnings by the scientific community on the dire consequences of climate change through global warming to the ecology and sustenance of our planet have not been give appropriate attention by the U.S. public. Research has shown that climate change is responsible for catastrophic weather occurrences--such as floods, tornadoes, hurricanes, and heat waves--resulting in environmental and public health issues. The purpose of this report is to examine factors influencing public views on climate change. Theoretical and political perspectives are examined to unpack opinions held by the public in the U.S. on climate change. The Health Belief Model is used as an example to showcase the efficacy of an individual behavior change program in providing the synergy to understand climate change at the microlevel. The concept of reframing is discussed as a strategy to alter how the public views climate change.

  6. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    Science.gov (United States)

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  7. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  8. Climate Change Science Teaching through Integration of Technology in Instruction and Research

    Science.gov (United States)

    Sriharan, S.; Ozbay, G.; Robinson, L.; Klimkowski, V.

    2015-12-01

    This presentation demonstrates the importance of collaborations between the institutions with common focus on offering the academic program on climate change science. Virginia State University (VSU) developed and established the course on climate change and adaptation, AGRI 350 for undergraduates, in cooperation with two HBCUs, Delaware State University (DSU) and Morgan State University (MSU). This program was developed to enhance the science curriculum with funding from the USDA NIFA. The hands-on research opportunities for students were supported by the NSF HBCU UP Supplement Grant at VSU. The technical guidance and lesson plans were available through the courtesy of the AMS and faculty/student team training at the NCAR. In the initial stages, the faculty members participated in faculty development workshops hosted by the AMS and NCAR. This contributed to trained faculty members developing the courses on Climate Change at VSU, DSU, and MSU. To create awareness of global climate change and exposure of students to international programs, seven students from VSU, MSU, and DSU participated in the Climate Change course (ENS 320) at the University of Sunshine Coast (USC), Australia. This international experience included faculty members in using SimCLIM for climate change data into decision-making with regard to potential changes to cropping systems and tree growth. The Climate Change program at VSU, DSU, and MSU is emerging into comprehensive academic program which includes use of case studies and exchange of students' reflections with their peers through discussion board and videoconferencing, hands-on research on water quality monitoring and mapping the study sites, and integration of geospatial technologies and i-Tree. In addition, the students' engagement in intensive research was conducted through hands-on experience with Scanning Electron Microscopy in the Marine Science Department, University of Hawaii at Hilo in summer 2015.

  9. Climate change and respiratory health.

    Science.gov (United States)

    Gerardi, Daniel A; Kellerman, Roy A

    2014-10-01

    To discuss the nature of climate change and both its immediate and long-term effects on human respiratory health. This review is based on information from a presentation of the American College of Chest Physicians course on Occupational and Environmental Lung Disease held in Toronto, Canada, June 2013. It is supplemented by a PubMed search for climate change, global warming, respiratory tract diseases, and respiratory health. It is also supplemented by a search of Web sites including the Environmental Protection Agency, National Oceanic and Atmospheric Administration, World Meteorological Association, National Snow and Ice Data Center, Carbon Dioxide Information Analysis Center, Inter-Governmental Panel on Climate Change, and the World Health Organization. Health effects of climate change include an increase in the prevalence of certain respiratory diseases, exacerbations of chronic lung disease, premature mortality, allergic responses, and declines in lung function. Climate change, mediated by greenhouse gases, causes adverse health effects to the most vulnerable patient populations-the elderly, children, and those in distressed socioeconomic strata.

  10. Gender Perspectives on Climate Change & Human Security in India: An Analysis of National Missions on Climate Change

    Directory of Open Access Journals (Sweden)

    Jyoti K Parikh

    2012-04-01

    Full Text Available Women play a crucial role in many activities essential for coping with climate change. Indian women appear to be more vulnerable than men to differential impacts of climate change because they share most of the household managing responsibilities but have limited access to participation in decision making and governance. Most of the policies for climate change adaptation and mitigation do not specifically address the vulnerability of women. The National Action Plan for Climate Change (NAPCC, formulated to shape future discourse of climate change adaptation and development, recognizes the differential impacts of climate change on society, but incorporates merely a few gender specific measures. The paper suggests gender specific measures for each mission of the NAPCC to make the adaptation and development process more inclusive and sustainable in India.

  11. Land use and climate change

    OpenAIRE

    Koomen, E.; Moel, de, H.; Steingröver, E.G.; Rooij, van, S.A.M.; Eupen, van, M.

    2012-01-01

    Land use is majorly involved with climate change concerns and this chapter discusses and reviews the interrelationships between the vulnerability, adaptation and mitigation aspects of land use and climate change. We review a number of key studies on climate change issues regarding land productivity, land use and land management (LPLULM), identifying key findings, pointing out research needs, and raising economic/policy questions to ponder. Overall, this chapter goes beyond previous reviews ...

  12. Wine and Climate Change

    OpenAIRE

    Ashenfelter, Orley; Storchmann, Karl

    2014-01-01

    In this article we provide an overview of the extensive literature on the impact of weather and climate on grapes and wine with the goal of describing how climate change is likely to affect their production. We start by discussing the physical impact of weather on vine phenology, berry composition and yields, and then survey the economic literature measuring the effects of temperature on wine quality, prices, costs and profits and how climate change will affect these. We also describe what ha...

  13. Uncertainties and climatic change

    International Nuclear Information System (INIS)

    De Gier, A.M.; Opschoor, J.B.; Van de Donk, W.B.H.J.; Hooimeijer, P.; Jepma, J.; Lelieveld, J.; Oerlemans, J.; Petersen, A.

    2008-01-01

    Which processes in the climate system are misunderstood? How are scientists dealing with uncertainty about climate change? What will be done with the conclusions of the recently published synthesis report of the IPCC? These and other questions were answered during the meeting 'Uncertainties and climate change' that was held on Monday 26 November 2007 at the KNAW in Amsterdam. This report is a compilation of all the presentations and provides some conclusions resulting from the discussions during this meeting. [mk] [nl

  14. Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands

    DEFF Research Database (Denmark)

    Bjorsne, Anna-Karin; Rutting, Tobias; Ambus, Per

    2014-01-01

    of exposure to three climate change factors, i.e. warming, elevated CO2 (eCO(2)) and summer drought, applied both in isolation and in combination. By conducting laboratory N-15 tracing experiments we show that warming increased both gross N mineralization and nitrification rates. In contrast, gross......The ongoing climate change affects biogeochemical cycling in terrestrial ecosystems, but the magnitude and direction of this impact is yet unclear. To shed further light on the climate change impact, we investigated alterations in the soil nitrogen (N) cycling in a Danish heathland after 5 years......CO(2). In the full treatment combination, simulating the predicted climate for the year 2075, gross N transformations were only moderately affected compared to control, suggesting a minor alteration of the N cycle due to climate change. Overall, our study confirms the importance of multifactorial field...

  15. Climate Change. Solutions for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, T.; Hoegh-Guldberg, O.; Karoly, D.; Lowe, I.; McMichael, T.; Mitchell, C.; Pearman, G.; Scaife, P.; Reynolds, A. (eds.)

    2004-06-01

    The Australian Climate Group was convened in late 2003 by WWF Australia and the Insurance Australia Group (IAG) in response to the increasing need for action on climate change in Australia. This group proposes a set of solutions to lower the risk that climate change will reach a dangerous level.

  16. Climate change - global warming

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2001-01-01

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  17. Climate change: Factors and forecasts

    International Nuclear Information System (INIS)

    Wilson, W.R.

    1990-01-01

    An overview is presented of global climatic change. The greenhouse effect is an established physical phenomena. The reradiative effects of various anthropogenic gases are scientifically demonstrable, and the increasing concentration of such gases in the atmosphere is irrefutable. The delinquent information is the magnitude of the agravated greenhouse effect (AGE)-induced climatic change, the temporal pace of the change and its spatial distribution. The pace of the climatic change implied by many of the general circulation model (GCM) estimates is for a northern hemispheric warming 10-50 times faster than the change since the last ice age. At a relatively aggregated representation, researching the impact of climate change involves estimating energy use and greenhouse gas atmospheric retention, climate modeling and socio-economic impact models. Recognizing that certain of the impacts of anthropogenic gasses will prove to be cumulative, non-reversible and synergistic, it would be prudent to examine mitigating options for immediate implementation. Given the current degree of scientific uncertainty, response priorities would be on the no-regrets or covering-the-bets options. 14 refs., 1 fig., 1 tab

  18. Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.

    Science.gov (United States)

    Nicholas, Patrice K; Breakey, Suellen

    2017-11-01

    Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role

  19. Towards the next generation of climate change assessment: learning from past experiences to inform a sustainable future

    Science.gov (United States)

    Mach, K. J.; Field, C. B.

    2017-12-01

    Over decades, assessment by the Intergovernmental Panel on Climate Change and many others has bolstered understanding of the climate problem: unequivocal warming, pervasive impacts, and serious risks from continued high emissions of heat-trapping gases. Societies are increasingly responding with early actions to decarbonize energy systems and prepare for impacts. This emerging era of climate solutions creates a need for new approaches to assessment that emphasize learning from ongoing real-world experiences and that help close the gap between aspirations and the pace of progress. Against this backdrop, the presentation will take stock of recent advances and challenges in assessment, especially drawing from analysis of climate change assessment. Four assessment priorities will be considered: (1) integrating diverse evidence including quantitative and qualitative results, (2) applying rigorous expert judgment in evaluating knowledge and uncertainties, (3) exploring widely ranging futures and their connections to ongoing choices and actions, and (4) incorporating interactions among experts and decision-makers in assessment processes. Across these assessment priorities, the presentation will critique both opportunities and pitfalls, outlining possibilities for future experimentation, innovation, and learning. It will evaluate, in particular, lessons from risk-based approaches; strategies for transparently acknowledging persistent uncertainties and contested priorities; ways to minimize biases and foster creativity in expert judgments; scenario-based assessment of surprises, deep uncertainties, and decision-making implications; and opportunities for broadening the conception of expertise and engaging different decision-makers and stakeholders. Overall, these approaches can advance assessment products and processes as a basis for sustained dialogue supporting decision-making.

  20. Sweden's third national communication on climate change. Under the United Nations framework convention on climate change

    International Nuclear Information System (INIS)

    2001-01-01

    Sweden's national communication to the UN Convention on Climate Change describes everything about the emission and absorption of greenhouse gases, the motives and forces behind emissions, and official Swedish climate policies. Every five years, Sweden submits a communication on practical climate efforts in Sweden to the UN Convention on Climate Change. The Swedish Environmental Protection Board has coordinated the work of producing the basic documentation for the communication, which also describes the measures already taken and those planned for the future. In addition, scenarios have been adopted for developments in Swedish greenhouse gas emissions, Sweden's vulnerability and Swedish research into the climate and climate change

  1. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    Science.gov (United States)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  2. On climate change and economic growth

    International Nuclear Information System (INIS)

    Fankhauser, Samuel; Tol, Richard S.J.

    2005-01-01

    The economic impact of climate change is usually measured as the extent to which the climate of a given period affects social welfare in that period. This static approach ignores the dynamic effects through which climate change may affect economic growth and hence future welfare. In this paper we take a closer look at these dynamic effects, in particular saving and capital accumulation. With a constant savings rate, a lower output due to climate change will lead to a proportionate reduction in investment which in turn will depress future production (capital accumulation effect) and, in almost all cases, future consumption per capita. If the savings rate is endogenous, forward looking agents would change their savings behavior to accommodate the impact of future climate change. This suppresses growth prospects in absolute and per capita terms (savings effect). In an endogenous growth context, these two effects may be exacerbated through changes in labour productivity and the rate of technical progress. Simulations using a simple climate-economy model suggest that the capital accumulation effect is important, especially if technological change is endogenous, and may be larger than the direct impact of climate change. The savings effect is less pronounced. The dynamic effects are more important, relative to the direct effects, if climate change impacts are moderate overall. This suggests that they are more of a concern in developed countries, which are believed to be less vulnerable to climate change. The magnitude of dynamic effects is not sensitive to the choice of discount rate

  3. A Model for Pre-Service Teachers' Climate Change Awareness and Willingness to Act for Pro-Climate Change Friendly Behavior: Adaptation of Awareness to Climate Change Questionnaire

    Science.gov (United States)

    Dal, Burçkin; Alper, Umut; Özdem-Yilmaz, Yasemin; Öztürk, Nilay; Sönmez, Duygu

    2015-01-01

    Public awareness of the negative effects of climate change is vital since it leads to collective action for prevention and adaptation. However, investigations on to what extent people are aware of the climate change issue are rare in the literature. The present study reported the adaptation process of awareness to climate change questionnaire into…

  4. The Effect of Climate change on Soil Organic Matter Decomposition

    OpenAIRE

    TÓTH, János Attila; LAJTHA, Kate; BOWDEN, Richard; KOTROCZÓ, Zsolt; KRAKOMPERGER, Zsolt; CALDWELL, Bruce; PAPP, Mária

    2007-01-01

    In the last few decades the climate of Síkfkút ILTER Forest (Hungary) became warmerand dryer. Due to the climate change the species composition of forest has been changing, and thetotal leaf litter production has been slightly decreasing. According to our long-term litter manipulationfield experiment, which is part of ILTER Detritus Input and Removal Treatments (DIRT) Project, aftera 4-5 year treating period, at the No Litter, No Root and No Input treatments the soil organic C and Ncontent, t...

  5. Climate change hotspots in the CMIP5 global climate model ensemble.

    Science.gov (United States)

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  6. Linking models of human behaviour and climate alters projected climate change

    Science.gov (United States)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.

  7. Modeling of vine agronomic practices in the context of climate change

    Directory of Open Access Journals (Sweden)

    Tissot Cyril

    2014-01-01

    Full Text Available Global climate change affects regional climates and hold implications for viticulture worldwide. Many studies have addressed the issue of the impact of climate change on viticulture in most wine regions worldwide, yet few studies are devoted to observing and simulating both climate and climate change at the “terroir” scale (local scale. However, phenological variations as well as differences in grapes/wine quality are often observed over short distances in a wine-region, which are related to local characteristics (slope, soil, seasonal climate …. This paper proposes a modeling approach to simulate behavior changes in wine grower activities and to analyze the impact of changing strategies in wine production. Two experiments were conducted in the small wine appellation grand cru Quart de Chaume (Coteaux du Layon, Loire Valley, France and in the wine estate in Mendoza (Bodega Alta Vista where all of the methodology (from the implementation of the knowledge database to the analysis of the first simulation is presented. Given that this prototype is still under development, several research perspectives are discussed.

  8. World Regionalization of Climate Change(1961–2010)

    Institute of Scientific and Technical Information of China (English)

    Peijun; Shi; Shao; Sun; Daoyi; Gong; Tao; Zhou

    2016-01-01

    Traditional climate classification or regionalization characterizes the mean state of climate condition, which cannot meet the demand of addressing climate change currently. We have developed a climate change classification method, as well as the fundamental principles, an indicator system, and mapping techniques of climate change regionalization. This study used annual mean temperature and total precipitation as climatic indices, and linear trend and variation change as change indices to characterize climate change quantitatively. The study has proposed a scheme for world climate change regionalization based on a half century of climate data(1961–2010). Level-I regionalization divides the world into 12 tendency zones based on the linear trend of climate, level-II regionalization resulted in 28 fluctuation regions based on the variation change of climate. Climate change regionalization provides a scientific basis for countries and regions to develop plans for adapting to climate change, especially for managing climate-related disaster or environmental risks.

  9. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  10. Changing Climate in the MENA Means Changing Energy Needs

    Directory of Open Access Journals (Sweden)

    Adam Fenech

    2015-12-01

    Full Text Available The leading authority on climate change, the Intergovernmental Panel on Climate Change (IPCC hasconcluded that warming of the climate system is unequivocal, and will continue for centuries. The regionsin the Middle East and Northern Africa (MENA have experienced numerous extreme climate events overthe past few years including the 2009 flooding in Jeddah, Kingdom of Saudi Arabia; the 2005 dust stormin Al Asad, Iraq; water scarcity throughout the Arab MENA; and the rising sea levels on the Nile Deltacoast, Egypt. A climate baseline can be developed for regions in the MENA by locating climate stations inthe study area using observations made in the Global Climate Observing System (GCOS. For projectionsof future climate, global climate models (GCMs, mathematical equations that describe the physics, fluidmotion and chemistry of the atmosphere, are the most advanced science available. The Climate ResearchLab at the University of Prince Edward Island has a dataset available to researchers, called the Climate,Ocean and Atmosphere Data Exchange (COADE, that provides easy access to the output from fortyglobal climate models used in the deliberations of the Intergovernmental Panel on Climate Change’s(IPCC Fifth Assessment Report (AR5 including monthly global climate model projections of future climatechange for a number of climate parameters including temperature and precipitation. Over the past 50years, climate changes in the MENA Region have led to increases in annual mean temperatures anddecreases in annual total precipitation. Applying all four greenhouse gas emission futures on a baseclimate normal of 1981-2010 to an ensemble of forty global climate models used in the Fifth AssessmentReport of the Intergovernmental Panel on Climate Change (IPCC AR5 results in future temperatureincreases for the MENA Region ranging from 1.6 to 2.3 degrees Celsius, and in a range of futureprecipitation changes from reductions of 11 percent to increases of 36 percent

  11. EdGCM: Research Tools for Training the Climate Change Generation

    Science.gov (United States)

    Chandler, M. A.; Sohl, L. E.; Zhou, J.; Sieber, R.

    2011-12-01

    Climate scientists employ complex computer simulations of the Earth's physical systems to prepare climate change forecasts, study the physical mechanisms of climate, and to test scientific hypotheses and computer parameterizations. The Intergovernmental Panel on Climate Change 4th Assessment Report (2007) demonstrates unequivocally that policy makers rely heavily on such Global Climate Models (GCMs) to assess the impacts of potential economic and emissions scenarios. However, true climate modeling capabilities are not disseminated to the majority of world governments or U.S. researchers - let alone to the educators who will be training the students who are about to be presented with a world full of climate change stakeholders. The goal is not entirely quixotic; in fact, by the mid-1990's prominent climate scientists were predicting with certainty that schools and politicians would "soon" be running GCMs on laptops [Randall, 1996]. For a variety of reasons this goal was never achieved (nor even really attempted). However, around the same time NASA and the National Science Foundation supported a small pilot project at Columbia University to show the potential of putting sophisticated computer climate models - not just "demos" or "toy models" - into the hands of non-specialists. The Educational Global Climate Modeling Project (EdGCM) gave users access to a real global climate model and provided them with the opportunity to experience the details of climate model setup, model operation, post-processing and scientific visualization. EdGCM was designed for use in both research and education - it is a full-blown research GCM, but the ultimate goal is to develop a capability to embed these crucial technologies across disciplines, networks, platforms, and even across academia and industry. With this capability in place we can begin training the skilled workforce that is necessary to deal with the multitude of climate impacts that will occur over the coming decades. To

  12. Identifying Effective Strategies for Climate Change Education: The Coastal Areas Climate Change Education (CACCE) Partnership Audiences and Activities

    Science.gov (United States)

    Ryan, J. G.; Feldman, A.; Muller-Karger, F. E.; Gilbes, F.; Stone, D.; Plank, L.; Reynolds, C. J.

    2011-12-01

    Many past educational initiatives focused on global climate change have foundered on public skepticism and disbelief. Some key reasons for these past failures can be drawn directly from recognized best practices in STEM education - specifically, the necessity to help learners connect new knowledge with their own experiences and perspectives, and the need to create linkages with issues or concerns that are both important for and relevant to the audiences to be educated. The Coastal Areas Climate Change Education (CACCE) partnership has sought to follow these tenets as guiding principles in identifying critical audiences and developing new strategies for educating the public living in the low-lying coastal areas of Florida and the Caribbean on the realities, risks, and adaptation and mitigation strategies for dealing with the regional impacts of global climate change. CACCE is currently focused on three key learner audiences: a) The formal education spectrum, targeting K-12 curricula through middle school marine science courses, and student and educator audiences through coursework and participatory research strategies engaging participants in a range of climate-related investigations. b) Informal science educators and outlets, in particular aquaria and nature centers, as an avenue toward K-12 teacher professional development as well as for public education. c) Regional planning, regulatory and business professionals focused on the built environment along the coasts, many of whom require continuing education to maintain licensing and/or other professional certifications. Our current activities are focused on bringing together an effective set of educational, public- and private-sector partners to target the varied needs of these audiences in Florida and the U.S. Caribbean, and tailoring an educational plan aimed at these stakeholder audiences that starts with the regionally and topically relevant impacts of climate change, and strategies for effective adaptation and

  13. Being Prepared for Climate Change: Checklists of Potential Climate Change Risks, from Step 3

    Science.gov (United States)

    The Being Prepared for Climate Change workbook is a guide for constructing a climate change adaptation plan based on identifying risks and their consequences. These checklists (from Step 3 of the workbook) help users identify risks.

  14. Arctic indigenous peoples as representations and representatives of climate change.

    Science.gov (United States)

    Martello, Marybeth Long

    2008-06-01

    Recent scientific findings, as presented in the Arctic Climate Impact Assessment (ACIA), indicate that climate change in the Arctic is happening now, at a faster rate than elsewhere in the world, and with major implications for peoples of the Arctic (especially indigenous peoples) and the rest of the planet. This paper examines scientific and political representations of Arctic indigenous peoples that have been central to the production and articulation of these claims. ACIA employs novel forms and strategies of representation that reflect changing conceptual models and practices of global change science and depict indigenous peoples as expert, exotic, and at-risk. These portrayals emerge alongside the growing political activism of Arctic indigenous peoples who present themselves as representatives or embodiments of climate change itself as they advocate for climate change mitigation policies. These mutually constitutive forms of representation suggest that scientific ways of seeing the global environment shape and are shaped by the public image and voice of global citizens. Likewise, the authority, credibility, and visibility of Arctic indigenous activists derive, in part, from their status as at-risk experts, a status buttressed by new scientific frameworks and methods that recognize and rely on the local experiences and knowledges of indigenous peoples. Analyses of these relationships linking scientific and political representations of Arctic climate change build upon science and technology studies (STS) scholarship on visualization, challenge conventional notions of globalization, and raise questions about power and accountability in global climate change research.

  15. Evolution under changing climates: climatic niche stasis despite rapid evolution in a non-native plant.

    Science.gov (United States)

    Alexander, Jake M

    2013-09-22

    A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.

  16. Climate change: wildfire impact

    OpenAIRE

    Dautbasic, Mirza; Crabtree, J.; Ioras, Florin; Abrudan, Ioan Vasile; Ratnasingam, Jega

    2011-01-01

    Every ecosystem is a complex organization of carefully mixed life forms; a dynamic and particularly sensible system. Consequently, their progressive decline may accelerate climate change and vice versa, influencing flora and fauna composition and distribution, resulting in the loss of biodiversity. Climate changes effects are the principal topics of this volume. Written by internationally renowned contributors, Biodiversity loss in a changing planet offers attractive study cases focused on bi...

  17. Navigating SA's climate change legislation

    International Nuclear Information System (INIS)

    Dickey, Suzanne

    2006-01-01

    It is proposed that there should be a legislation to address climate change and Greenhouse Gas Emission Reduction Bill. South Australian Government Greenhouse Strategy and climate change legislation in light of the far-reaching implications this legislation could have on clients, who face the impacts of climate change in the business and natural environment. It is a commitment to reduce greenhouse gas emissions in South Australia by 2050 to 60 per cent of 1990 levels

  18. Climate Change and the Social Factor

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Jensen, Anne; Nielsen, Signe Svalgaard

    This poster reports from a explorative study about social aspects of climate change adaptation in Denmark. The aim of the project was to explore how people perceive and relate to climate change adaptation, what risks are associated with climate change and how are those risks balanced with other...... risks and concerns of everyday life? The project found that the distinction between climate change mitigation and adaptation is of little significance for lay people. The prospect of climate change does provoke reflections on social values and the need for saving energy, but when it comes to protecting...... ones own life and property against future damaging effects of climate change the threat seems distant and other forms of home improvement seem more relevant. People have a high level of trust in socio-technical systems and feel that adaptation measures primarily should be taken by the authorities....

  19. Ontological and Epistemological Issues Regarding Climate Models and Computer Experiments

    Science.gov (United States)

    Vezer, M. A.

    2010-12-01

    Recent philosophical discussions (Parker 2009; Frigg and Reiss 2009; Winsberg, 2009; Morgon 2002, 2003, 2005; Gula 2002) about the ontology of computer simulation experiments and the epistemology of inferences drawn from them are of particular relevance to climate science as computer modeling and analysis are instrumental in understanding climatic systems. How do computer simulation experiments compare with traditional experiments? Is there an ontological difference between these two methods of inquiry? Are there epistemological considerations that result in one type of inference being more reliable than the other? What are the implications of these questions with respect to climate studies that rely on computer simulation analysis? In this paper, I examine these philosophical questions within the context of climate science, instantiating concerns in the philosophical literature with examples found in analysis of global climate change. I concentrate on Wendy Parker’s (2009) account of computer simulation studies, which offers a treatment of these and other questions relevant to investigations of climate change involving such modelling. Two theses at the center of Parker’s account will be the focus of this paper. The first is that computer simulation experiments ought to be regarded as straightforward material experiments; which is to say, there is no significant ontological difference between computer and traditional experimentation. Parker’s second thesis is that some of the emphasis on the epistemological importance of materiality has been misplaced. I examine both of these claims. First, I inquire as to whether viewing computer and traditional experiments as ontologically similar in the way she does implies that there is no proper distinction between abstract experiments (such as ‘thought experiments’ as well as computer experiments) and traditional ‘concrete’ ones. Second, I examine the notion of materiality (i.e., the material commonality between

  20. Arctic adaptation and climate change

    International Nuclear Information System (INIS)

    Agnew, T.A.; Headley, A.

    1994-01-01

    The amplification of climatic warming in the Arctic and the sensitivity of physical, biological, and human systems to changes in climate make the Arctic particularly vulnerable to climate changes. Large areas of the Arctic permafrost and sea ice are expected to disappear under climate warming and these changes will have considerable impacts on the natural and built environment of the north. A review is presented of some recent studies on what these impacts could be for the permafrost and sea ice environment and to identify linkages with socioeconomic activities. Terrestrial adaptation to climate change will include increases in ground temperature; melting of permafrost with consequences such as frost heave, mudslides, and substantial settlement; rotting of peat contained in permafrost areas, with subsequent emission of CO 2 ; increased risk of forest fire; and flooding of low-lying areas. With regard to the manmade environment, structures that will be affected include buildings, pipelines, highways, airports, mines, and railways. In marine areas, climate change will increase the ice-free period for marine transport operations and thus provide some benefit to the offshore petroleum industry. This benefit will be offset by increased wave height and period, and increased coastal erosion. The offshore industry needs to be particularly concerned with these impacts since the expected design life of industry facilities (30-60 y) is of the same order as the time frame for possible climatic changes. 18 refs., 5 figs

  1. Hearts or minds? Identifying persuasive messages on climate change

    Directory of Open Access Journals (Sweden)

    Bethany Albertson

    2015-03-01

    Full Text Available This article sheds light on what kinds of appeals persuade the US public on climate change. Using an experimental design, we assign a diverse sample of 330 participants to one of four conditions: an economic self-interest appeal, a moral appeal, a mixed appeal combining self-interest and morality and a control condition with no persuasive appeal.1 Participants were then asked a series of questions about their willingness to support advocacy efforts, including such actions as writing a letter to Congress, signing a petition and joining an organization. We hypothesized that for issues like climate change where it is expensive to address the problem, arguments based on self-interest are more likely to be persuasive than moral appeals. Our experiment yielded some surprising results. Knowledge was an important moderator of people’s attitudes on climate change in response to the persuasive messages. We found that among respondents who were more knowledgeable about climate change that the economic frame was most the persuasive in terms of a subject’s willingness to take actions to support the cause. However, among low knowledge respondents, the control condition without messaging yielded the most concern.

  2. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  3. Selected international efforts to address climate change

    Energy Technology Data Exchange (ETDEWEB)

    Seki, M.; Christ, R. [Atmosphere Unit, United Nations Environment Programme UNEP, Nairobi (Kenya)

    1995-12-31

    Over the past two decades, concern about human-induced climate change has become an increasingly important item on the environmental and political agenda. The signing of the United Nations Framework Convention on Climate Change and the adoption of Agenda 21 at the United Nations Conference on Environment and Development in Rio de Janeiro in 1992 provided international organizations and the nations of the world with a new focus for climate-related activities. Although there remains considerable scientific uncertainty about the extent, magnitude, and rate of climate change and the impacts of such change, actions to address climate change have been initiated both internationally and nationally. Major international activities include the World Climate Programme, the Intergovernmental Panel on Climate Change, the United Nations Framework Convention on Climate Change. and the United Nations Environment Program me. 16 refs.

  4. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  5. Climate change and protection: Recent experiences within planning of the area of cultural and natural heritage

    Directory of Open Access Journals (Sweden)

    Crnčević Tijana

    2015-01-01

    Full Text Available The aim of the paper is to provide an insight into the current legal and other regulatory frameworks that introduces problems of climate change into planning practice of natural and cultural heritage, with special emphasis on the situation in the Republic of Serbia. Further, an overview of the selected case studies of natural and cultural heritage from the UNESCO World Heritage List for which were done studies of the impacts of climate change is included. The results indicate that the legal frameworks as well as actual practice are promoting the development of the ecological networks (the network of areas NATURA 2000 and landscape protection. This applies also to the planning practice in Serbia, where the planning of ecological corridors, habitat networking and other measures, provide responses to climate change. One of the conclusions of this paper is pointing out the necessity of increasing the level of protection of natural and cultural heritage within preserving the authenticity and improving flexibility or adaptability to climate change.

  6. Determinants of Adaptive Capacity to Climate Change among ...

    African Journals Online (AJOL)

    Determinants of Adaptive Capacity to Climate Change among Smallholder Rural Households in the Bongo District, Ghana. ... The results of a binary logistic regression model indicates that five predictor variables (education of the household, farming experience, farm size, belief system and training) out of 11 tested ...

  7. Climate change and poultry production in Nigeria: Farmers ...

    African Journals Online (AJOL)

    The study examined perceived effects and adaptation measures employed by poultry farmers against climate change in derived savannah zone of Enugu State. One hundred and twenty randomly selected poultry farmers were used. The respondents were mainly small scale with 6 years of experience in poultry production ...

  8. Climate effect of ozone changes caused by present and future air traffic

    Energy Technology Data Exchange (ETDEWEB)

    Ponater, M.; Sausen, R.; Feneberg, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1998-08-01

    The potential of aircraft-induced ozone changes to significantly enhance the climate impact of air traffic due to CO{sub 2}-emissions is investigated by means of simulations with an atmospheric general circulation model, coupled to a mixed layer ocean model. Results from several numerical experiments are presented, based on ozone increase patterns for 1992 aviation and on a future scenario for the year 2015. The climate signal is statistically significant for both time slices. Its strength is of comparable magnitude to that arising from aircraft CO{sub 2} emissions, thus meaning a nonnegligible contribution to the total effect. There are indications of a characteristic signature of the aircraft ozone related temperature response pattern, distinctly different from that typically associated with the increase of a well-mixed greenhouse gas. Likewise, the climate sensitivity to nonuniform ozone changes including a strong concentration perturbation at the tropopause appears to he higher than the climate sensitivity to uniform changes of a greenhouse gas. In a hierarchy of experiments based on an aircraft-related ozone perturbation with fixed structure (but increasing amplitude), the climate signal depends in a nonlinear way from the radiative forcing. (orig.) 44 refs.

  9. Climate change and water resources

    International Nuclear Information System (INIS)

    Younos, Tamim; Grady, Caitlin A.

    2013-01-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  10. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  11. Climate change and climate variability: personal motivation for adaptation and mitigation.

    Science.gov (United States)

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on

  12. Climate change and water supply and demand in western Canada

    International Nuclear Information System (INIS)

    Lawford, R.G.

    1990-01-01

    There is reason to be concerned that water resources on the Canadian Prairies could be at considerable risk due to climatic change. The Canadian Prairies frequently experience variations in the climate, which can reduce crop production by 25-50% and annual volumetric river flows by 70-90%. The potential impacts of climatic change on the Prairies are discussed. Consumptive water uses on the Prairies are dominated by irrigation and the water demands arising from thermal power generation. The overall effect of climatic change on water supplies will depend on the ways in which the various components of the hydrological cycle are affected. At the present time it is unsure whether complementary equations are more realistic in estimating evaporation than mass balance techniques. There is a need to obtain good baseline data which will allow the unequivocal resolution of the most accurate technique for estimating evaporation on the Prairies. Climate change could lead to a decrease in spring runoff, and would also lead to earlier snowmelt and peak flows. This could lead to a longer period of low flows during the summer and fall and a further drawdown of moisture reserves. Some appropriate strategies for adapting to climate change would be: encouraging water conservation; reductions in agricultural water use by developing/utilizing strains of plants with lower water demand; controlling new water developments; and enhancing on-farm retention. 10 refs

  13. Global warming and climate change

    International Nuclear Information System (INIS)

    1992-10-01

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  14. Assessing Climate Change Impacts on Global Hydropower

    Directory of Open Access Journals (Sweden)

    Aanund Killingtveit

    2012-02-01

    evaluation, it has been concluded that even if individual countries and regions may experience significant impacts, climate change will not lead to significant changes in the global hydropower generation, at least for the existing hydropower system.

  15. Modeling the effect of climate change on the indoor climate

    NARCIS (Netherlands)

    Schijndel, van A.W.M.; Schellen, H.L.

    2010-01-01

    Within the new EU project ‘Climate for Culture’ researchers are investigating climate change impacts on UNESCO World Heritage Sites. Simulation results are expected to give information on the possible impact of climate change on the built cultural heritage and its indoor environment. This paper

  16. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    Science.gov (United States)

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  17. Adapting Indian Agriculture to Global Climate Change

    Indian Academy of Sciences (India)

    Adapting Indian Agriculture to Global Climate Change · Climate Change: Generic Implications for Agriculture · Controlled environment facilities at IARI used for evaluating model performance in future climate change scenarios · Slide 4 · Slide 5 · Global studies indicate considerable impact of climate change in tropics.

  18. Considerations in Starting Climate Change Research

    Science.gov (United States)

    Long, J. C. S.; Morgan, G.; Hamburg, S.; Winickoff, D. E.

    2014-12-01

    Many have called for climate engineering research because the growing risks of climate change and the geopolitical and national security risks of climate remediation technologies are real. As the topic of climate engineering remains highly controversial, national funding agencies should evaluate even modest outdoor climate engineering research proposals with respect to societal, legal, and risk considerations in making a decision to fund or not to fund. These concerns will be extremely difficult to coordinate internationally if they are not first considered successfully on a national basis. Assessment of a suite of proposed research projects with respect to these considerations indicates we would learn valuable lessons about how to govern research by initiating a few exemplar projects. The first time an issue arrives it can be very helpful if it there are specific cases, not a broad class of projects. A good first case should be defensible and understandable, fit within the general mandate of existing research programs, have negligible physical risk, small physical scale and short duration. By focusing on a specific case, the discussion can be held with limits and help to establish some track record in dealing with a controversial subject and developing a process for assigning appropriate scrutiny and outreach. Even at an early stage, with low risk, small-scale experiments, obtaining broad-based advice will aid in dealing with the controversies. An independent advisory body can provide guidance about a wide spectrum of physical and social risks of funding the experiment compared to societal benefit of gaining understanding. Clearly identifying the research as climate engineering research avoids sending research down a path that might violate public trust and provide an important opportunity to grow governance and public engagement at an early stage. Climate engineering research should be seen in the context of all approaches to dealing with the climate problem

  19. The Impact Snow Albedo Feedback over Mountain Regions as Examined through High-Resolution Regional Climate Change Experiments over the Rocky Mountains

    Science.gov (United States)

    Letcher, Theodore

    As the climate warms, the snow albedo feedback (SAF) will play a substantial role in shaping the climate response of mid-latitude mountain regions with transient snow cover. One such region is the Rocky Mountains of the western United States where large snow packs accumulate during the winter and persist throughout the spring. In this dissertation, the Weather Research and Forecast model (WRF) configured as a regional climate model is used to investigate the role of the SAF in determining the regional climate response to forced anthropogenic climate change. The regional effects of climate change are investigated by using the pseudo global warming (PGW) framework, which is an experimental configuration in a which a mean climate perturbation is added to the boundary forcing of a regional model, thus preserving the large-scale circulation entering the region through the model boundaries and isolating the mesoscale climate response. Using this framework, the impact of the SAF on the regional energetics and atmospheric dynamics is examined and quantified. Linear feedback analysis is used to quantify the strength of the SAF over the Headwaters region of the Colorado Rockies for a series of high-resolution PGW experiments. This technique is used to test sensitivity of the feedback strength to model resolution and land surface model. Over the Colorado Rockies, and integrated over the entire spring season, the SAF strength is largely insensitive to model resolution, however there are more substantial differences on the sub-seasonal (monthly) timescale. In contrast, the SAF strength over this region is very sensitive to choice of land surface model. These simulations are also used to investigate how spatial and diurnal variability in warming caused by the SAF influences the dynamics of thermally driven mountain-breeze circulations. It is shown that, the SAF causes stronger daytime mountain-breeze circulations by increasing the warming on the mountains slopes thus enhancing

  20. The response of soil processes to climate change

    DEFF Research Database (Denmark)

    Emmett, B.A.; Beier, C.; Estiarte, M.

    2004-01-01

    Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out...... the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls on soil respiration, net N mineralization and nitrification, and litter decomposition. Trends of 0%-19% increases of soil respiration in response to warming and decreases of 3%-29% in response...... to drought were observed. Across the environmental gradient and below soil temperatures of 20degreesC at a depth of 5-10 cm, a mean Q(10) of 4.1 in respiration rates was observed although this varied from 2.4 to 7.0 between sites. Highest Q(10), values were observed in Spain and the UK and were therefore...

  1. Climate change - the impacts

    International Nuclear Information System (INIS)

    Reysset, Bertrand; Billes-Garabedian, Laurent; Henique, Julien; Pascal, Mathilde; Pirard, Philippe; Motreff, Yvon; Barbault, Robert; Weber, Jacques; Gate, Philippe; Salagnac, Jean-Luc; Desplat, Julien; Kounkou-Arnaud, Raphaelle

    2012-01-01

    This special dossier about the impacts of climate change is made of 6 contributions dealing with: the mitigation of climate effects and how to deal with them (Bertrand Reysset); how to dare and transmit (Laurent Billes-Garabedian); littoral risks, the Pas-de-Calais example (Julien Henique); extreme meteorological events and health impacts (Mathilde Pascal, Philippe Pirard, Yvon Motreff); Biodiversity and climate: the janus of global change (Robert Barbault, Jacques Weber); adapting agriculture to dryness and temperatures (Philippe Gate); Paris and the future heats of the year 2100 (Jean-Luc Salagnac, Julien Desplat, Raphaelle Kounkou-Arnaud)

  2. ClimateInterpreter.org: an online sharing platform with best practices and resources on effective climate change communication, climate change exhibits, and sustainability efforts at aquariums, zoos, and science museums

    Science.gov (United States)

    Miller, M. K.; MacKenzie, S.

    2011-12-01

    Many aquariums, zoos, museums, and other informal science education (ISE) centers across the country want to connect their visitors with the important issue of climate change. Communicating climate change and the science it embodies is no easy task though, and ISE institutions are seeking creative and collaborative ways to best interpret the issue with their audiences. Some of these institutions, particularly aquariums and zoos, have live specimens on exhibit that stand to be severely impacted by climate change. Others see it as an educational and moral imperative to address such an important issue affecting the world today, especially one so close to the core mission of their institution. Regardless, informal science educators have noticed that the public is increasingly coming to them with questions related to climate change, and they want to be able to respond as effectively as they can. The Monterey Bay Aquarium is one partner in a coalition of aquariums, zoos, museums and informal science education institutions that are working together to present climate change to its visitors. These institutions hold enormous public trust as sources of sound scientific information. Whether it is through exhibitions like the Aquarium's Hot Pink Flamingos: Stories of Hope in a Changing Sea, interpretive and communication techniques to navigate challenging climate change discussions, or with sustainability planning and operational greening efforts, there is a concerted movement to improve the capacity of these institutions to respond to the issue. Ultimately, their goal is to inspire visitors in a way that positively impacts the country's discourse surrounding climate change, and helps steer our dialog toward a focus on solutions. In addition to the Hot Pink Flamingos exhibit, the Aquarium is also working with the coalition to build a website, www.climateinterpreter.org, that can serve as an online platform for sharing the experiences of what different partners have learned at

  3. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  4. Ecosystems and Climate Change. Research Priorities for the U.S. Climate Change Science Program

    Science.gov (United States)

    2006-06-01

    photosynthesis ), evapotranspiration, and energy balance. 12 Climate change recommended research priorities Organic matter inputs to soils and aquatic...may be altered through changes in climate (e.g., coral reefs, seagrass ). Finally, services provided by a number of federally protected areas depend

  5. Building Systems from Scratch: an Exploratory Study of Students Learning About Climate Change

    Science.gov (United States)

    Puttick, Gillian; Tucker-Raymond, Eli

    2018-01-01

    Science and computational practices such as modeling and abstraction are critical to understanding the complex systems that are integral to climate science. Given the demonstrated affordances of game design in supporting such practices, we implemented a free 4-day intensive workshop for middle school girls that focused on using the visual programming environment, Scratch, to design games to teach others about climate change. The experience was carefully constructed so that girls of widely differing levels of experience were able to engage in a cycle of game design. This qualitative study aimed to explore the representational choices the girls made as they took up aspects of climate change systems and modeled them in their games. Evidence points to the ways in which designing games about climate science fostered emergent systems thinking and engagement in modeling practices as learners chose what to represent in their games, grappled with the realism of their respective representations, and modeled interactions among systems components. Given the girls' levels of programming skill, parts of systems were more tractable to create than others. The educational purpose of the games was important to the girls' overall design experience, since it influenced their choice of topic, and challenged their emergent understanding of climate change as a systems problem.

  6. Synopsis of climate change

    Science.gov (United States)

    Angela Jardine; Jonathan Long

    2014-01-01

    Changes in climate can interact with other stressors to transform ecosystems and alter the services those ecosystems provide. This synopsis presents themes that run through the synthesis report regarding the impacts of a changing climate on the forests and waters of the synthesis area as well as long-term, broad-scale, science-based strategies to promote system...

  7. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs...... of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...... on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing...

  8. Climate change mitigation policy paradigms — national objectives and alignments

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Garg, Amit; Christensen, John M.

    2014-01-01

    for discussing how a multi objective policy paradigm can contribute to future climate change mitigation. The paper includes country case studies from Brazil, Canada, China, the European Union (EU), India, Japan, Mexico, Nigeria, South Africa, South Korea and the United States covering renewable energy options......, industry, transportation, the residential sector and cross-sectoral policies. These countries and regions together contribute more than two thirds of global GHG emissions. The paper finds that policies that are nationally driven and that have multiple objectives, including climate-change mitigation, have...... been widely applied for decades in both developing countries and industrialised countries. Many of these policies have a long history, and adjustments have taken place based on experience and cost effectiveness concerns. Various energy and climate-change policy goals have worked together...

  9. Designing ecological climate change impact assessments to reflect key climatic drivers.

    Science.gov (United States)

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  10. Climate change projections: past and future mysteries of climate science

    International Nuclear Information System (INIS)

    Meehl, Gerald A.

    2007-01-01

    Full text: Full text: The history of climate change has been wrapped in mysteries. Some have been solved, and we await the outcome of others. The major mystery of 20th century climate was why did temperatures rise in the early part of the century, level off, and then rise rapidly again after the 1970s? It has only been in the past seven years that advances in climate modelling have allowed us to deconstruct 20th century climate to pull apart the separate influences of natural and human-caused factors. This has allowed us to understand the subtle interplay between these various influences that produced the temperature time evolution. Another mystery has involved extreme weather and climate events. Again, climate models have allowed us to quantify how the small changes in average climate translate into much larger changes of regional extremes. The biggest remaining mysteries in climate science involve the future, and how the climate will evolve over the coming century. Up until now, various scenarios postulating different possible outcomes for 21st century climate, assuming different types of human activities, have been run in the climate models to provide a wide range of possible futures. However, more recently the outlook for global warming is being framed as a combination of mitigation and adaptation. If policy actions are taken to mitigate part of the problem of global warming, then climate models must be relied on to quantify the time-evolving picture of how much regional climate change we must adapt to. Solving this mystery will be the biggest and most important challenge ever taken on by the climate modelling community

  11. Story telling and social action: engaging young people to act on climate change

    Science.gov (United States)

    Cordero, E.

    2014-12-01

    The realization that well designed graphs and clearly worded summaries were not enough to spur the public and policy makers towards an appropriate understanding of our planet encouraged me to search for other ways to share climate stories with the general public. After co-authoring a popular book on food and climate change and giving many talks to the general public, it struck me that young people were largely missing from the dialogue, and little meaningful progress was being made to design effective solutions. I then started working with faculty and students from the Film and Animation Departments at San Jose State University to develop stories about climate change that would be engaging to younger audiences. The result was the Green Ninja Project, based around the Green Ninja, a superhero who focuses on solutions to climate change using humor and silliness to soften what can be a somewhat challenging topic. The Project includes a) The Green Ninja Show - a series of YouTube videos (over 1,000,000 views) highlighting actions young people can take to reduce climate change, b) The Green Ninja Film Festival where students tell their own climate solutions stories, and c) a collection of educational resources that help teachers bring climate science topics into their classroom using hands-on activities. A key component to this work is promoting social action experiences, so that young people can understand how their actions can make a difference. Based on these experiences, I will provide my own reflections on the challenges and opportunities of communicating climate change with young people.

  12. A climate of doubts. The weight of uncertainty about climate change

    International Nuclear Information System (INIS)

    Alex, Bastien

    2014-05-01

    The author proposes a review of four publications about climate change published in 2012 and 2013. He more particularly focuses on how these publications express how climate change is perceived by the different components of our modern societies, how these perceptions have an influence on the answer to challenges related to this phenomenon, what global warming tells us about mankind ability to (re)act to this major challenge. He notices that any doubt about the reality of climate change is exploited and maintains some confusion, favours the propagation and persistence of popular misbelief such as: population of developing countries will be more impacted by effects of climate change, only rich people can afford interest in environment protection and climate preservation. He outlines that a doubting community will not act, and notices that technological advances, for example geo-engineering or climate engineering, tend to deliberately manipulate the environment to counteract the climate change due to human activity

  13. Climate change and agriculture : Impacts and adaptation options in South Africa

    NARCIS (Netherlands)

    Calzadilla, Alvaro; Zhu, Tingju; Rehdanz, Katrin; Tol, Richard S J; Ringler, Claudia

    2014-01-01

    South Africa is likely to experience higher temperatures and less rainfall as a result of climate change. Resulting changes in regional water endowments and soil moisture will affect the productivity of cropland, leading to changes in food production and international trade patterns. High population

  14. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    Science.gov (United States)

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  15. A 'Healthy Islands' framework for climate change in the Pacific.

    Science.gov (United States)

    McIver, Lachlan; Bowen, Kathryn; Hanna, Elizabeth; Iddings, Steven

    2017-06-01

    Small Pacific Island countries (PICs) are among the most vulnerable countries in the world to the anticipated detrimental health effects of climate change. The assessment of health vulnerabilities and planning adaptation strategies to minimize the impacts of climate change on health tests traditional health governance structures and depends on strong linkages and partnerships between actors involved in these vital processes. This article reviews the actors, processes and contexts of the climate change and health vulnerability assessment and adaptation planning project carried out by the World Health Organization and health sector partners in three island countries in the Micronesian region of the Pacific throughout 2010 and 2011: Federated States of Micronesia, Marshall Islands and Palau. Despite their shared history and cultural characteristics, the findings and implications of this article are considered to have substantial relevance and potential application to other PICs. The modified 'Healthy Islands' framework for climate change and health adaptation presented in this article draws upon real-world experience and governance theory from both the health and climate change literature and, for the first time, places health systems adaptation within the vision for 'Healthy Islands' in the Pacific region. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  17. The human factor: climate change and climate communication

    DEFF Research Database (Denmark)

    Kjærgaard, Peter C.

    2011-01-01

    Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)......Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)...

  18. Hydrologic refugia, plants, and climate change.

    Science.gov (United States)

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  19. Impact of choice of future climate change projection on growth chamber experimental outcomes: a preliminary study in potato

    Science.gov (United States)

    Leisner, Courtney P.; Wood, Joshua C.; Vaillancourt, Brieanne; Tang, Ying; Douches, Dave S.; Robin Buell, C.; Winkler, Julie A.

    2017-11-01

    Understanding the impacts of climate change on agriculture is essential to ensure adequate future food production. Controlled growth experiments provide an effective tool for assessing the complex effects of climate change. However, a review of the use of climate projections in 57 previously published controlled growth studies found that none considered within-season variations in projected future temperature change, and few considered regional differences in future warming. A fixed, often arbitrary, temperature perturbation typically was applied for the entire growing season. This study investigates the utility of employing more complex climate change scenarios in growth chamber experiments. A case study in potato was performed using three dynamically downscaled climate change projections for the mid-twenty-first century that differ in terms of the timing during the growing season of the largest projected temperature changes. The climate projections were used in growth chamber experiments for four elite potato cultivars commonly planted in Michigan's major potato growing region. The choice of climate projection had a significant influence on the sign and magnitude of the projected changes in aboveground biomass and total tuber count, whereas all projections suggested an increase in total tuber weight and a decrease in specific gravity, a key market quality trait for potato, by mid-century. These results demonstrate that the use of more complex climate projections that extend beyond a simple incremental change can provide additional insights into the future impacts of climate change on crop production and the accompanying uncertainty.

  20. Municipal vulnerability to climate change

    CSIR Research Space (South Africa)

    Mambo, Julia

    2017-12-01

    Full Text Available South Africa, like the rest of Africa, is considered highly vulnerable to climate change and variability as well as to global change. Climate change is and will continue to be an issue of concern in the development of the country. South Africa faces...

  1. Interactive effects of climate change and biodiversity loss on ecosystem functioning.

    Science.gov (United States)

    Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F

    2018-05-01

    Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.

  2. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  3. Climatic Change. Human Influence?

    OpenAIRE

    Gonçalves, Dionísio; Leite, Solange; Ribeiro, A.C.; Figueiredo, Tomás de

    2016-01-01

    We begin by presenting the functioning of the Climate System and the variety of climates that occurs on the surface of the globe. We analyze climate change based on the sun's orbital parameters and other causes, focusing on the current interglacial period and the influence it had on the development of human societies. The following text looks on developing of the climate of the last 1000 years, with considerations about the warm medieval climate, the little ice age, the recovery...

  4. Climate change: challenges and opportunities for global health.

    Science.gov (United States)

    Patz, Jonathan A; Frumkin, Howard; Holloway, Tracey; Vimont, Daniel J; Haines, Andrew

    2014-10-15

    Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. To provide new US-based temperature projections from downscaled climate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. We searched PubMed and Google Scholar from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average ozone with air temperature data taken from the National Oceanic and Atmospheric Administration, National Climate Data Center. By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). High temperatures are also strongly associated with ozone exceedance days, for example, in Chicago, Illinois. The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; respiratory disorders, including those exacerbated by air pollution and aeroallergens, such as asthma; infectious diseases, including vectorborne diseases and waterborne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic cobenefits could be

  5. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    Fantechi, R.; Almeida-Teixeira, M.E.; Maracchi, G.

    1991-01-01

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  6. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  7. Global change of the climate

    International Nuclear Information System (INIS)

    Moharam-nejad, Naser.

    1995-01-01

    Greenhouse effect is defined. greenhouse gases which are capable to produce greenhouse effect is mentioned. The production of greenhouse effects depends on the following factors; The amount of discharge to the atmosphere, Concentration, Life span, stability, Absorption and Emission. The effect of global change of climate on agriculture and living organisms is discussed. Global actions related to climate change and national procedures are described. The aim of climate change convention is given and the important points of convention is also mentioned

  8. Climate change and food security

    Science.gov (United States)

    Gregory, P.J; Ingram, J.S.I; Brklacich, M

    2005-01-01

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  9. Abrupt climate-independent fire regime changes

    Science.gov (United States)

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  10. Global priority conservation areas in the face of 21st century climate change.

    Directory of Open Access Journals (Sweden)

    Junsheng Li

    Full Text Available In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the "Global 200" ecoregions - a set of priority ecoregions designed to "achieve the goal of saving a broad diversity of the Earth's ecosystems" - over the 21(st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991-2010 and 2081-2100, 96% of the ecoregions considered will be likely (more than 66% probability to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.

  11. Climate and the changing Sun

    International Nuclear Information System (INIS)

    Eddy, J.A.

    1977-01-01

    Long-term changes in the level of solar activity are found in historical records and in fossil radiocarbon in tree-rings. Typical of these changes are the Maunder Minimum (A.D. 1645-1715), the Spoerer Minimum (A.D. 1400-1510), and a Medieval Maximum (c. A.D. 1120-1280). Eighteen such features are identified in the tree-ring radiocarbon record of the past 7500 years and compared with a record of world climate. In every case when long-term solar activity falls, mid-latitude glaciers advance and climate colls; at times of high solar activity glaciers recede and climate warms. It is proposed that changes in the level of solar activity and in climate may have a common cause: slow changes in the solar constant, of about 1% amplitude. (Auth.)

  12. Pan Eurasian EXperiment (PEEX) - towards a new multinational environment and climate research effort in Eurasia

    Science.gov (United States)

    Petäjä, Tuukka; Kulmala, Markku; Lappalainen, Hanna; Sipilä, Mikko; Sorvari, Sanna; Alekseychik, Pavel; Paramonov, Mikhail; Kerminen, Veli-Matti; Zilitinkevich, Sergej

    2013-04-01

    Boreal forests are a substantial source of greenhouse gases, biogenic volatile organic compounds (BVOCs) and natural aerosols, the critical atmospheric components related to climate change processes. A large fraction of boreal forests of the world is situated in Siberian region. Representative measurements of carbon dioxide (CO2) and methane (CH4) concentrations, BVOC emissions and aerosols production from Siberian are of special importance when estimating global budgets of climate change relevant factors. The scope of a new concept of the Pan Eurasian Experiment (PEEX) is to set up a process for planning of a large-scale, long-term, coordinated observations and modeling experiment in the Pan Eurasian region, especially to cover ground base, airborne and satellite observations together with global and regional models to find out different forcing and feedback mechanisms in the changing climate. University of Helsinki together with Finnish Meteorological institute are organizing the Pan-Eurasian Experiment and to gather all the European and Russian key players in the field of climate and Earth system science to plan the future research activities in the Pan-Eurasian region. In the European scale PEEX is part of the JPI Climate Fast Track Activity 1.3. "Changing cryosphere in the climate system - from observations to climate modeling". PEEX research topics are closely related the NordForsk's Top Research Initiative CRAICC - Cryosphere - atmosphere interaction in the changing Arctic climate. PEEX is also a central part of the ongoing the Finnish Cultural Foundation - Earth System modeling Working Group activity (2012-2013). PEEX scientific aims and future actions to develop Pan Eurasian research infrastructure can be linked to several EC and ESA funded activities aiming to develop next generation research infrastructures and data products: EU-FP7-ACTRIS-I3-project (Aerosols, Clouds, and Trace gases Research InfraStructure Network-project 2011-2015); ICOS a research

  13. Business responses to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Pinkse, J.M.

    2006-04-27

    This research project studies the evolution and determinants of corporate climate strategies of multinationals. Since most companies are affected by global climate change in a direct or indirect way, a range of strategies are emerging to mitigate climate change. These strategies are not only of a political nature (e.g. influencing government institutions), but also of a competitive nature. The aim is to introduce a typology of corporate climate strategies, paying specific attention to the market components related to climate change. More and more, multinationals' actions in reducing greenhouse gas emissions are aimed at achieving a sustained competitive advantage in addition to compliance with government regulation. What factors determine these market strategies for climate change will be explored in a theoretical framework based on institutional theory and the resource-based view of the firm.

  14. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  15. How does climate change cause extinction?

    Science.gov (United States)

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-07

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  16. Invertebrates, ecosystem services and climate change.

    Science.gov (United States)

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  17. Fisheries: climate change impacts and adaptation

    International Nuclear Information System (INIS)

    2003-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on fisheries focuses on the impact of climate change on Canada's marine and freshwater fisheries, and the role of adaptation in reducing the vulnerability of the sector. Canadian fisheries encompass the Atlantic, Pacific and Arctic oceans as well as freshwater systems. Fish health, productivity and distribution is strongly influenced by climatic factors such as air and water temperature, precipitation and wind. Most fish species have a distinct set of environmental conditions for optimal growth and survival. If the conditions change in response to changing climate, the fish may be affected. Some of the impacts include reduced growth, increased competition, a shift in species distribution, greater susceptibility to disease, and altered ecosystem function. Studies show that in some areas, fisheries may already be experiencing the effect of climate change. Recommendations were suggested on how to deal with the impacts associated with climate change in sensitive environments. It was noted that actions taken in the fisheries sector will have implications for the water resources, transportation, tourism and human health sectors. 103 refs., 2 tabs., 6 figs

  18. Tracking climate change. The IPCC in Four Questions. The Hidden Face of Climate Research. Climate Change: Facts and Uncertainties

    International Nuclear Information System (INIS)

    Beriot, Nicolas; Jouzel, Jean; Masson-Delmotte, Valerie; Braconnot, Pascale; Dufresne, Jean-Louis; Le Treut, Herve; Pachauri, Rajendra; Cazenave, Anny; Planton, Serge; Feral, Jean-Pierre

    2014-01-01

    Scientists and government delegations from around the world gathered in Stockholm (Sweden) in September 2013 to approve the first volume of the Fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). This document reviews existing scientific knowledge on the Earth's climate. How was it prepared? How do scientists conduct research on climate change? What do they know for certain? What remains to be discovered?

  19. Climate Change Ignorance: An Unacceptable Legacy

    Science.gov (United States)

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  20. Adaptation responses of crops to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Seino, Hiroshi [National Inst. of Agro-Environmental Sciences, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Appreciable global climatic responses to increasing levels of atmospheric CO{sub 2} and other trace gases are expected to take place over the next 50 to 80 years. Increasing atmospheric concentrations of carbon dioxide and other greenhouse gases are producing or will produce changes in the climate of the Earth. In particular, numerous efforts of climate modeling project very substantial increase of surface air temperature. In addition to a general warming of the atmosphere, the possibility of increased summer dryness in the continental mid-latitudes has been suggested on the basis of both historical analogues and some General Circulation Model (GCM) studies. There are three types of effect of climatic change on agriculture: (1) the physiological (direct) effect of elevated levels of atmospheric CO{sub 2} on crop plants and weeds, (2) the effect of changes in parameters of climate (e.g., temperature, precipitation, and solar radiation) on plants and animals, and (3) the effects of climate-related rises in sea-level on land use. The direct effects of elevated CO{sub 2} are on photosynthesis and respiration and thereby on growth, and there are additional effects of increased CO{sub 2} on development, yield quality and stomatal aperture and water use. A doubling of CO{sub 2} increases the instantaneous photosynthetic rate by 30% to 100%, depending on the other environmental conditions, and reduce water requirements of plants by reducing transpiration (per unit leaf area) through reductions in stomatal aperture. A doubling of CO{sub 2} causes partial stomatal closure on both C{sub 3} and C{sub 4} plants (approximately a 40% decrease in aperture). In many experiments this results in reductions of transpiration of about 23% to 46%. However. there is considerable uncertainty over the magnitude of this in natural conditions.

  1. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  2. Floods in a changing climate

    Science.gov (United States)

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  3. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  4. Acting efficiently on climate change

    International Nuclear Information System (INIS)

    Appert, Olivier; Moncomble, Jean-Eudes

    2015-01-01

    Climate change is a major issue. A survey of the utility companies that account for 80% of the world's electric power was released during the 20. climate conference in Lima as part of the World Energy Council' Global Electricity Initiative. It has concluded that all these utilities see climate change as being real and declare that policies for adapting to it are as important as policies for limiting it. Nonetheless, 97% of these utilities think that consumers will refuse to pay more for decarbonized electricity. This is the core problem in the fight against climate change: all agree that the issue is urgent, some agree about what should be done, but none wants to pay

  5. Reduction emissions from transport sector - EU action against climate change

    Science.gov (United States)

    2009-08-01

    This paper explores and discusses the initiation and development of the EU's policies and strategies against climate change and the share experiences in the EU transport sector to reduce CO2 emission.

  6. Climate change and climate variability: personal motivation for adaptation and mitigation

    Directory of Open Access Journals (Sweden)

    Ploubidis George B

    2011-05-01

    Full Text Available Abstract Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622 acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility, Odds Ratio (OR = 2.4 (95% Confidence Interval (CI: 1.4 - 4.0, endanger their life (perceived severity, OR = 1.9 (95% CI: 1.1 - 3.1, or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5. Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1 or plan, OR = 2.2 (95% CI: 1.5 -3.2 for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4 or an emergency plan OR = 1.5 (95%CI: 1.0 - 2

  7. Atmospheric Composition Change: Climate-Chemistry Interactions

    Science.gov (United States)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  8. International Business and Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J.

    2008-11-15

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and climate change policy. Embedded in relevant management literature, this book gives a concise treatment of developments in policy and business activity on global, regional and national levels, using examples and systematic data from a large number of international companies. The first part outlines the international climate policy landscape and voluntary initiatives taken by companies, both alone and together with others. The second part examines companies' strategies, covering innovation for climate change, as well as compensation via emissions trading and carbon offsetting. Written by well-known experts in the field, International Business and Global Climate Change illustrates how an environmental topic becomes strategically important in a mainstream sense, affecting corporate decision-making, business processes, products, reputation, advertising, communication, accounting and finance.

  9. International Business and Global Climate Change

    International Nuclear Information System (INIS)

    Kolk, A.; Pinkse, J.

    2008-11-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and climate change policy. Embedded in relevant management literature, this book gives a concise treatment of developments in policy and business activity on global, regional and national levels, using examples and systematic data from a large number of international companies. The first part outlines the international climate policy landscape and voluntary initiatives taken by companies, both alone and together with others. The second part examines companies' strategies, covering innovation for climate change, as well as compensation via emissions trading and carbon offsetting. Written by well-known experts in the field, International Business and Global Climate Change illustrates how an environmental topic becomes strategically important in a mainstream sense, affecting corporate decision-making, business processes, products, reputation, advertising, communication, accounting and finance

  10. Conservation and adaptation to climate change.

    Science.gov (United States)

    Brooke, Cassandra

    2008-12-01

    The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.

  11. Heating up Climate Literacy Education: Understanding Teachers' and Students' Motivational and Affective Response to Climate Change

    Science.gov (United States)

    Sinatra, G. M.

    2011-12-01

    Changing students' ideas about controversial scientific issues, such as human-induced climate change, presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). First, climate science is complex and requires "systems thinking," or the ability to think and reason abstractly about emergent systems (Goldstone & Sakamoto, 2003). Appreciating the intricacies of complex systems and emergent processes has proven challenging for students (Chi, 2005). In addition to these challenges, there are specific misconceptions that may lead thinking astray on the issue of global climate change, such as the distinction between weather and climate (Lombardi & Sinatra, 2010). As an example, when students are asked about their views on climate change, they often recall individual storm events or very cold periods and use their personal experiences and recollections of short-term temperature fluctuations to assess whether the planet is warming. Beyond the conceptual difficulties, controversial topics offer another layer of challenge. Such topics are often embedded in complex socio-cultural and political contexts, have a high degree of uncertainty, and may be perceived by individuals as in conflict with their personal or religious beliefs (Levinson, 2006, Sinatra, Kardash, Taasoobshirazi, & Lombardi, 2011). Individuals are often committed to their own views on socio-scientific issues and this commitment may serve as a motivation to actively resist new ideas (Dole & Sinatra, 1998). Individuals may also have strong emotions associated with their misconceptions (Broughton, Pekrun, & Sinatra, 2011). Negative emotions, misconceptions, and resistance do not make a productive combination for learning. Further, teachers who find human-induced climate change implausible have been shown to hold negative emotions about having to teach about climate change (Lombardi & Sinatra, in preparation), which could affect how they present the topic to students. In this

  12. Contemplating the Future: Building Student Resilience in Climate Change Education

    Science.gov (United States)

    Allison, E.

    2015-12-01

    Climate change research has largely focused on the biophysical, economic, and political aspects of the phenomenon, its projected impacts, and the possibilities for adaptation (Carey et al. 2014; Castree et al. 2014). In the classroom, too, climate change is generally presented as a scientific, technological, political, and economic challenge. However, defining climate change as physical challenge, divorced from its cultural causes and responses, forecloses some pathways of inquiry and limits the possibilities for adaptation (Adger et al. 2013). Recent perspectives by the environmental historian Mark Carey and colleagues (2014) and by the geographer Noel Castree and colleagues (2014) contend that ethnographic, narrative, social scientific, and humanistic insights are necessary additions to the climate change policy process and can contribute to deliberate, resilient responses to climate change. Among the humanistic insights needed are strategies and practices to maintain fortitude and persistence in the midst of dispiriting ecological trends. Students facing the "gloom and doom" of climate change data in environmental studies courses can experience negative states of mind such as denial, despair, burnout, and grief. Emerging research, however, demonstrates how contemplative practice can shift consciousness and promote resilience. Contemplative practices are those that consciously direct calm, focused attention. Such practices can build internal resilience, by promoting a greater sense of calm and well-being, decreasing stress, and sharpening focus and concentration. In addition, contemplative practices improve relationships with other people, through increasing compassion and flexibility in thinking. They also strengthen relationships with the surrounding world by increasing our ability to question, explore, and cope with rapid change and complexity. This presentation provides a context for incorporating contemplative practices, including mindfulness exercises

  13. Climate change research in Bulgaria

    International Nuclear Information System (INIS)

    Iotova, A.; Koleva, E.

    1995-01-01

    Climate is traditionally one of the main fields of research interest and objects for study in Bulgaria. Therefore, many investigations on its genesis and specific features are carried out in the past and present. Recently, climate change research appears to be the most actual topic and it is in the centre of climatic studies. A major part of these studies are realized at the National Institute of Meteorology and Hydrology (NIMH) because of its essential role in collection and analysis of the basic climatic data for the country. A brief description of the climate change research at NIMH is presented and the obtained results are summarized

  14. Climatic change. What solutions?

    International Nuclear Information System (INIS)

    Vieillefosse, A.

    2009-01-01

    From 1990 to the present day, worldwide greenhouse gas emissions have increased by about 25%. Fighting climatic change has become an urgency: we only have 15 years in front of us to inflect the trajectory of worldwide emissions and to avoid a temperature rise of more than 2 deg. C during this century. Therefore, how is it possible to explain the shift between the need of an urgent action and the apparent inertia of some governing parties? How is it possible to implement a worldwide governance capable to answer the urgency of the fight against climatic change? These are the two questions that this pedagogical and concrete book tries to answer by analysing the different dimensions of climatic change and by making a first status of the building up of the international action, and in particular of the Kyoto protocol. For the post-2012 era, research and negotiations are in progress with the objective of reaching an agreement for the Copenhagen conference of December 2009. Several architectures are possible. This book shades light on the advantages and limitations of each of them with the possible compromises. It supplies a pluri-disciplinary approach of the international negotiations, often considered as complex by the general public. Content: 1 - understanding the climatic change stakes: climatic stakes, the main actors behind the figures, the technical-economical stakes; 2 - understanding the present day architecture of the fight against climatic change: strengths and weaknesses of the Kyoto protocol; encouraging research and technology spreading; the other action means in developing countries; 3 - what structure for a future international agreement?: the Bali negotiation process; the ideal vision: an improved Kyoto protocol; the pragmatic vision: individualized commitments; the negotiation space; preventing a planned fiasco. (J.S.)

  15. Climate change and groundwater: India's opportunities for mitigation and adaptation

    International Nuclear Information System (INIS)

    Shah, Tushaar

    2009-01-01

    For millennia, India used surface storage and gravity flow to water crops. During the last 40 years, however, India has witnessed a decline in gravity-flow irrigation and the rise of a booming 'water-scavenging' irrigation economy through millions of small, private tubewells. For India, groundwater has become at once critical and threatened. Climate change will act as a force multiplier; it will enhance groundwater's criticality for drought-proofing agriculture and simultaneously multiply the threat to the resource. Groundwater pumping with electricity and diesel also accounts for an estimated 16-25 million mt of carbon emissions, 4-6% of India's total. From a climate change point of view, India's groundwater hotspots are western and peninsular India. These are critical for climate change mitigation as well as adaptation. To achieve both, India needs to make a transition from surface storage to 'managed aquifer storage' as the center pin of its water strategy with proactive demand- and supply-side management components. In doing this, India needs to learn intelligently from the experience of countries like Australia and the United States that have long experience in managed aquifer recharge.

  16. Study on climate change in Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongxing

    2015-03-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  17. Study on climate change in Southwestern China

    International Nuclear Information System (INIS)

    Li, Zongxing

    2015-01-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  18. The Ecological consequences of global climate change

    National Research Council Canada - National Science Library

    Woodward, F. I

    1992-01-01

    ... & land use - modeling potential responses of vegetation to global climate change - effects of climatic change on population dynamics of crop pests - responses of soils to climate change - predicting...

  19. Forestry in times of climatic change. From adaptation to climate protection; Forstwirtschaft in Zeiten des Klimawandels. Von Anpassung bis Klimaschutz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The notification 30/2010 of the Thuringian State Institute for Forest, Hunting and Fishing (Gotha, Federal Republic of Germany) reports on the forest management in times of the climatic changes. This notification consists of the following contributions: (1) Perception of the climatic change by private forest owners - A social-scientific investigation (Stefanie Rimkus); (2) Fundamentals for the designation of the inventory destination types adapted to climatic change for Thuringia (Nico Frischbier); (3) Recommendations of tree species adapted to climatic change for the forestry practice in Thuringia (Wolfgang Arenhoevel); (4) Development of carbon storage in the state-owned forest Thuringia (Thomas Wutzler); (5) The carbon inventories in copper beech forests (Fagus Sylvatica L.) under the influence of different silvicultural treatment (Martina Mund); (6) Wood products for the climate protection - The state of the art in Thuringia (Ingolf Profft); (7) HABIT-CHANGE - 'Adaptive management of climate-induced changes of habitat diversity in protected areas' (Nico Frischbier); (8) Cultivation experiences of non-indigenous tree species (Wolfgang Ahrenhoevel); (9) Registration of damages of the storm 'Xynthia' in the forestry office Bad Salzungen by means of ANDROMEDA {sup registered} data (Herbert Sagischewski); (10) www.waldundklima.net - The open internet portal on forest, wood and climate (Ingolf Profft).

  20. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    Enright, W.

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  1. A changing climate of skepticism: The factors shaping climate change coverage in the US press.

    Science.gov (United States)

    Schmid-Petri, Hannah; Adam, Silke; Schmucki, Ivo; Häussler, Thomas

    2017-05-01

    Skepticism toward climate change has a long tradition in the United States. We focus on mass media as the conveyors of the image of climate change and ask: Is climate change skepticism still a characteristic of US print media coverage? If so, to what degree and in what form? And which factors might pave the way for skeptics entering mass media debates? We conducted a quantitative content analysis of US print media during one year (1 June 2012 to 31 May 2013). Our results show that the debate has changed: fundamental forms of climate change skepticism (such as denial of anthropogenic causes) have been abandoned in the coverage, being replaced by more subtle forms (such as the goal to avoid binding regulations). We find no evidence for the norm of journalistic balance, nor do our data support the idea that it is the conservative press that boosts skepticism.

  2. Market strategies for climate change

    NARCIS (Netherlands)

    Kolk, A.; Pinkse, J.M.

    2004-01-01

    The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still

  3. Experiencing the changing climate on the shores of Lake Superior

    Science.gov (United States)

    Akerlof, K.; Maibach, E.

    2011-12-01

    The Great Lakes of the United States - the largest freshwater system in the world - have been termed "the canary in the coal mine" of environmental change. To assess if and how residents of Alger County, Michigan are experiencing changes in climate on the shores of Lake Superior, during the summer of 2010 we conducted a representative household mail survey in collaboration with a national lakeshore and watershed partnership. A total of 765 adult residents (18 years or older) responded to the survey; a 57% survey completion rate. We content analyzed respondents' open-ended characterizations of how they have personally experienced global warming, and compared the results with land surface and storm data for the same geographic region to see whether public perceptions of local changes match trends in National Climatic Data Center data. Just over a quarter of residents (27%) indicated that they had personally experienced global warming. Those who had were most likely to say that they had experienced global warming locally (as opposed to in other locations of the country or globally), and most frequently cited changes in seasons, weather, lake levels, and animals or plant species. However, some local public perceptions appeared to conflict with weather records. For example, residents were more likely to say that they had been experiencing less snow in the winters, while NCDC data suggests the reverse is true. As climate changes differentially in regions across the United States, the public will in turn experience its physical impacts in distinct ways that are unique to each landscape. This may be counter-intuitive to a public that increasingly experiences the world, and issues such as climate change, through sources of information such as national news media that operate at much larger geographic scales. Understanding where these forms of cognitive dissonance may arise may assist researchers, educators, and communicators in furthering discourses with the public about

  4. Future changes of the atmospheric composition and the impact of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Grewe, V.; Dameris, M.; Hein, R.; Sausen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Steil, B. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany). Abt. Chemie der Atmosphaere

    1999-05-01

    The development of the future atmospheric chemical composition, with respect of NO{sub y} and O{sub 3} is investigated by means of the off-line coupled dynamic-chemical general circulation model ECHAM3/CHEM. Two time slice experiments have been performed for the years 1992 and 2015, which include changes in sea surface temperatures, greenhouse gas concentrations, emissions of CFCs, NO{sub x} and other species, i.e., the 2015 simulation accounts for changes in chemically relevant emissions and for a climate change and its impact on air chemistry. The 2015 simulation clearly shows a global increase in ozone except for large areas of the lower stratosphere, where no significant changes or even decreases in the ozone concentration are found. For a better understanding of the importance of (A) emissions like NO{sub x} and CFCs, (B) future changes of air temperature and water vapour concentration, and (C) other dynamic parameters, like precipitation and changes in the circulation, i.e. wind speed, diabatic circulation, stratosphere-troposphere-exchange, the simulation of the future atmosphere has been performed stepwise. This method requires a climate-chemistry model without interactive coupling of chemical species. Model results show that the direct effect of emissions (A) plays a major role for the composition of the future atmosphere, but they also clearly show that climate change has a significant impact and strongly reduces the NO{sub y} and ozone concentration in the lower stratosphere. (orig.)

  5. Factors influencing farmers’ choices of adaptation to climate change in Ekiti State, Nigeria

    Directory of Open Access Journals (Sweden)

    Oluwakemi Adeola Obayelu

    2014-06-01

    Full Text Available Climate change poses a great threat to human security through erratic rainfall patterns and decreasing crop yields, contributing to increased hunger. The perceptions of the indigenous people about climate change and their responses to climate change have significant roles to play in addressing climate change. Therefore a critical study on farmers’ choices of adaptation to is critical for ensuring food security poverty alleviation. A multi-stage random sampling technique was used to select 156 households in Ekiti state while descriptive statistics and multinomial logit were used to analyze the data obtained from the households. The results showed that the most widely used adaptation method by the farmers were soil and water conservation measures (67 percent. The multinomial logit analysis revealed that the factors explaining farmer’s choices of climate change adaptation include age of the farmers, gender of the household head, years of education, years of farming experience, household size, farmers information on climate change, farmers access to credit, farm income, non-farm income, livestock ownership and extension contact.

  6. White House Conference on Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    President Clinton has directed the White House office on Environmental Policy to coordinate an interagency process to develop a plan to fulfill the commitment he made in his Earth Day address on April 21, 1993. This plan will become the cornerstone of the Climate Change Plan that will be completed shortly after the Rio Accord enters into force. The Office on Environmental Policy established the Interagency Climate Change Mitigation Group to draw on the expertise of federal agencies including the National Economic Council; the Council of Economic Advisors; the Office of Science and Technology Policy; the Office of Management and Budget; the National Security Council; the Domestic Policy Council; the Environmental Protection Agency; and the Departments of Energy, Transportation, Agriculture, Interior, Treasury, Commerce, and State. Working groups have been established to examine six key policy areas: energy demand, energy supply, joint implementation, methane and other gases, sinks, and transportation. The purpose of the White House Conference on Global Climate Change was to ``tap the real-world experiences`` of diverse participants and seek ideas and information for meeting the President`s goals. During the opening session, senior administration officials defined the challenge ahead and encouraged open and frank conversation about the best possible ways to meet it.

  7. Risk communication on climate change

    International Nuclear Information System (INIS)

    Wardekker, J.A.

    2004-10-01

    For the title study use has been made of available scientific literature, results of new surveys and interviews. In the first part of the study attention is paid to the exchange of information between parties involved in climate change and differences in supply and demand of information. In the second part citizens' views on climate change, problems with communication on climate change, and the resulting consequences and options for communication are dealt with. In this second part also barriers to action that are related or influenced by communication are taken into consideration

  8. Climate project screening tool: an aid for climate change adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Sharon Yeh; Nikola M. Smith; Mary Beth Hennessy; Constance I. Millar

    2012-01-01

    To address the impacts of climate change, land managers need techniques for incorporating adaptation into ongoing or impending projects. We present a new tool, the Climate Project Screening Tool (CPST), for integrating climate change considerations into project planning as well as for developing concrete adaptation options for land managers. We designed CPST as part of...

  9. 'Changing climate, changing health, changing stories' profile: using an EcoHealth approach to explore impacts of climate change on inuit health.

    Science.gov (United States)

    Harper, S L; Edge, V L; Cunsolo Willox, A

    2012-03-01

    Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.

  10. The climate change: A teaching unit to Secondary School

    Directory of Open Access Journals (Sweden)

    Ana Margarita González

    2002-12-01

    Full Text Available This paper proposes the planning of "Climate change" Secondary School the experience gained in its application Ninth Grade ESBU Tania the Guerilla of Pinar del Río.The subjects are presented in proposal for the simultaneous work of the subjectare:Geography, Chemistry Physicsand Biology with the support of Computing. Work on these subjects taxed at fulfillment of the objectiveof the unit.instruments are also presented for measuring development of knowledge, assessment and materials Discussesthe results of the application thereof.TeachingClimate Change Unit is one of the ways in which they can be realized in the classroom addressing issues of global interest

  11. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  12. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  13. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  14. The essential interactions between understanding climate variability and climate change

    Science.gov (United States)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  15. Public Perception of Uncertainties Within Climate Change Science.

    Science.gov (United States)

    Visschers, Vivianne H M

    2018-01-01

    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.

  16. Using real objects to teach about climate change: an ethnographic perspective

    Science.gov (United States)

    Conner, L.; Perin, S.; Coats, V.; Sturm, M.

    2017-12-01

    Informal educators frequently use real objects to connect visitors with science content that can otherwise seem abstract. Our NSF-funded project, "Hot Times in Cold Places," leverages this premise to teach about climate change through real objects associated with the nation's only permafrost tunnel, located in Fox, Alaska. We posit that touching real ice, holding Pleistocene bones, and seeing ice wedges in context allows learners to understand climate change in a direct and visceral manner. We are conducting ethnographic research to understand visitor experience at both the tunnel itself and at a permafrost museum exhibit that we are creating as part of the project. Research questions include: 1) What is the nature of visitor talk with respect to explanations about permafrost, tipping points, climate change, and geological time? 2) How do attributes of "realness" (scale, resolution, uniqueness, history and adherence to an original) affect visitor's experience of objects, as perceived through the senses and emotions? We use naturalistic observation, interviews, and videotaping to answer these questions. Analysis focuses on child-to-child talk, reciprocal talk between educator and child, and reciprocal talk between parent and child. Our results elucidate the value of real, vs. replicated and virtual objects, in informal learning, especially in the context of climate change education. An understanding of these factors can help informal learning educators make informed choices about program and exhibit design.

  17. The climate change problem and its consequences

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonava, N.A.

    2005-01-01

    The problem of climate change is investigated in the current work in Tajikistan. It shows that the changes of the republic thermal mode is connected with climate global changes. The forecast of climate change on 2050 on various models is given

  18. The climate change problem and its consequences

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonova, N.A.

    2005-01-01

    The problem of climate change is investigated in the current work in Tajikistan. It shows that the changes of the republic thermal mode is connected with climate global changes. The forecast of climate change on 2050 on various models are given

  19. Hydrologic regime alteration of a Mediterranean catchment under climate change projection

    Science.gov (United States)

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Herrmann, Frank; Vanclooster, Marnik

    2014-05-01

    Most of the climate models projections for the Mediterranean basin have showed that the region will likely to experience a general tendency towards drier climate conditions with decreases in total precipitation, increases in temperature, alterations in the rainfall extreme events and droughts frequency (IPCC, 2007; Giorgi and Lionello, 2008; López-Moreno et al., 2011). The region is already suffering from water resources scarcity and vulnerability which are expected to amplify in the next century (Ludwig et al., 2011; Schneider et al., 2013). Therefore, assessing the impact of climate change on the hydrologic regime of Mediterranean catchments is with a major concern not only to scientist but also to water resources policy makers and general public. However, most of the climate change impact studies focus on the flow regime on global or regional scale rather than on the catchment scale which is more useful and more appropriate to guide practical mitigation and adaptation policy. This is because hydro-climate modeling at the local scale is confronted to the variability in climate, topography, geology, lack of observations and anthropogenic activities within the catchment. Furthermore, it is well recognized that hydrological and climate models forecasts are always affected with uncertainty making the assessment of climate change impact on Mediterranean catchment hydrology more challenging. This work aims to assess the impact of climate change on a Mediterranean catchment located in North Africa (the Chiba catchment in northeast Tunisia) through a conjunctive use of physically based hydrological model (SWAT) driven with four climate models*. Quantification of the impact of climate change has been conducted by means of the Indicators of Hydrologic Alteration (Richter et al., 1996) which are also ecologically meaningful. By comparing changes in these indicators in the reference period (1971-2000) to the projected ones in the future (2041-2070), it was possible to draw

  20. Third national climate change conference proceedings

    International Nuclear Information System (INIS)

    1997-01-01

    The international issue of climate change was discussed at this AREA (Alliance for Responsible Environmental Alternatives) conference. AREA, a coalition of industry, labour and municipalities from across Canada, was created to reflect the views and represent the interest of Canadians in the Climate Change debate. The role that Canada should play to optimize Canada's response to the Global Climate Change Challenge at the Kyoto Conference was the principal topic of discussion. Specific topics for panel discussions included the economic impacts of climate change, the effectiveness of voluntary mechanisms to reduce greenhouse gases versus government-mandated actions for achieving climate change targets, the issue of how a differentiated system for emission reduction targets and timetables might be implemented, the economic imperatives and the effect of those imperatives on negotiating positions at Kyoto, and various national agendas and the likely outcomes at Kyoto. tabs., figs